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Bayesian Dynamic Panel Models for Tourism Research   

 

Abstract 

This paper introduces several innovative dynamic panel data models that allow variations in 

slope coefficients both across time and cross-sectional units. We replace time variation with a 

dynamic (autoregressive) component, and introduce several variations of the so-called 

Mundlak device in which random intercepts are linear function of the average values of the 

regressors. We develop all our models in a Bayesian framework, and test their performance 

using an interesting application on the impact of advertising on firm sales. We provide 

technical details of all these models and present tools to compare their performance in a 

Bayesian framework. Moreover, model averaging and posterior model pools are presented to 

gain more insight into the relationship between advertising and sales. 

1. Introduction 

The use of panel data in tourism research is quite prevalent as panel data allow more precise 

estimation of regression parameters (Garín-Mun, 2006; Sequeira and Maçãs Nunes, 2008; Falk, 

2010; Rey et al. 2011). However, most applications, in general, have been static in that they do 

not allow the dependent variable to depend on its past realization. Dynamic panel models 

(DPM), on the other hand, despite their popularity in other related fields have not been used 

much in tourism research. They can bring many advantages to several tourism contexts. For 

example:  demand modeling; where “if the impact of past tourism is neglected, the effect of 

the relevant variable considered will tend to be overestimated (as the estimated coefficients 

will involve direct and indirect effects)” (Garín-Mun, 2006, p.286). Even in contexts where the 

lagged dependent variable is not of high interest, the introduction of these lags is essential to 

control for the dynamic nature of the industry. Adopting the appropriate behavioral 

specification allow us to control for new or different paths between the dependent and 

independent variables (Bond, 2002). In addition, dynamic models are highly effective to deal 

with endogeneity-related issues (i.e. simultaneity, omitted variable bias, country-specific effects 

and measurement error). 

Our aim in this paper is to take the estimation of DPM to a different level, introducing seven 

different advanced formulations that can be used in future tourism applications on panel data. 

We focus specifically on the issue of heterogeneity, where most existing panel data models 

(including DPM) assume that slope coefficients are common across units and heterogeneity is 

modeled using fixed or random effects for the intercept. However, heterogeneity is not 

exhausted by modeling the intercepts as unit-specific and using fixed or random effect 

estimators. Heterogeneity may also be reflected in differences in the slope coefficients. We 

also argue that heterogeneity in slope coefficients is not necessarily exhausted by assuming 

that they are random and follow, for example, a multivariate normal distribution. Instead the 
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slope coefficients may also vary over time, in which case we need models that allow for 

variation over both time and cross-sectional units. In this respect, dynamic slope coefficient 

models may be necessary. This is particularly true when the objective is to use panel data 

models for forecasting purposes, as is common in applied tourism research. For instance, 

when one is using dynamic panel data models for forecasting, adjustment costs are thought to 

be important. Such models can be improved, in terms of forecasting, when coefficients are 

dynamically varying and/or when they are different for each cross-section (using a random-

coefficients framework). However, we are not aware of research that accounts for these 

concerns.  

In addition, different specifications for the variation of coefficients across units or over time 

are rarely tested against alternatives. For example, coefficients can include two components -

one that varies over time and one that varies across individuals. An alternative specification is 

to replace time variation with a dynamic (autoregressive) component. We also discuss the issue 

of independence between the random intercepts and the regressors, where in simple panel 

data models, this is the typical assumption. This assumption cannot however always be correct 

and the fixed effects specification is considered better in this regard. An intermediate 

assumption, which we present, is to use the so-called Mundlak device in which random 

intercepts are a linear function of the average values of the regressors. Clearly, this can be 

extended to the slope coefficients, but this line of research has not yet been pursued in 

theoretical or applied research. 

Finally, we develop all of our models in a Bayesian framework as the traditional sampling – 

theory estimators are more problematic to compute and they may behave erratically in finite 

samples. With dynamic panel data models with random coefficients, in particular, the use of 

sampling-theory estimators is prohibited as the widely used Arellano-Bond Generalized 

Method of Moments (GMM) estimator assumes fixed slope coefficients. As stated by Assaf 

and Tsionas (2019, p. 273), “this is an important handicap which limits the scope of sampling-

theory estimators in dynamic panel data models. Bayesian procedures are more straightforward 

to apply in dynamic models as lagged dependent variables do not create new problems in terms 

of estimation for the Bayesian approach”. Besides, use of the Arellano-Bond GMM estimator 

is problematic when the Arellano-Bond instruments are weak –in which case the sampling 

behavior of GMM can be erratic and unreliable. The standard criticism against the Bayesian 

approach in this context (namely that random parameters are orthogonal to the regressors) 

can be alleviated through the use of the Mundlak device. Use of this device in the context of 

dynamic panel data is, however, novel and constitutes a major contribution of the present 

paper. 
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2. Dynamic Panel Models in Tourism  

Seetaram and Petit (2012) provided an interesting and comprehensive review on the 

application of panel data analysis in tourism research. Generally, and in line with their findings, 

most panel data applications in tourism continue to focus on either the determinants of 

tourism demand or the relationship between tourism and economic growth (Yang, 2012; 

Zhang and Gao, 2016; Du et al. 2016; Bilen et al. 2017; Paramati et al. 2017; Saha et al. 2017; 

Wu and Wu, 2019). In addition, over the last decade, the tourism literature (and similarly the 

hotel literature) has experienced an increased number of applications of dynamic panel models 

(Garín-Mun, 2006; Sequeira and Maçãs Nunes, 2008; Rey et al., 2011; Seetanah, 2011; Yang, 

2012; Assaf et al., 2015; Kim et al., 2019; Woo et al., 2019). Apart from the many advantages 

in estimation that dynamic models introduce over static models (e.g. fixed effect, random 

effect, Ordinary Least Squares (OLS)), they also provide a more realistic representation of 

most modelling contexts in tourism and hospitality; such as the context of demand modeling, 

where it is more logical to assume that current visitation depends on past visitation (Seetaram 

and Petit, 2012). Ignoring such dynamic effects may result in an overestimation of the model 

parameters (Garín-Mun, 2006, p.288). 

Three trends can be observed form the existing dynamic panel studies in tourism and 

hospitality research: 

1. First, the use of the Arellano-Bond (AB) technique seems to be the most common 

approach for estimating dynamic panel models and for deriving both short-run and 

long-run relationships (Maloney et al. 2005; Naudé and Saayman, 2005; Fayissa et al. 

2008; Brida and Risso; Seetanah, 2011; Santana-Gallego et al. 2011; Massidda and Etzo, 

2012; Li et al. 2015; Li et al. 2017). The same conclusion was also reported by Seetaram 

and Petit (2012). 

 

2. Second, given the heavy use of the (AB) technique, most estimations are based on the 

GMM procedure. Our review of the literature clearly indicates that the Bayesian 

approach has been absent from most existing studies in tourism and hospitality. As 

mentioned above and later in the paper, the Bayesian approach introduces clear 

advantages in the estimation of panel models such as the ability to perform better when 

T is small and the higher flexibility it offers for complex model specifications such as 

the ones we are proposing in this study. The Bayesian approach also does not require 

instrumental variables, as is the case with GMM. When the Arellano-Bond instruments 

are weak, the sampling behavior of GMM can result in inconsistent estimates.  

 

3. Third, none of the existing studies has fully explored heterogeneity. While accounting 

for dynamic effects is a critical issue, we argue that there is a far more important issue, 

namely whether one can reasonably assume that only intercepts are unit-specific, but 

otherwise the slope coefficients are the same. For many reasons, the latter is, 

https://scholar.google.com/citations?user=Cl3HpekAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Cl3HpekAAAAJ&hl=en&oi=sra
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apparently, true as not all units, at a given point in time, have exactly the same 

“technology” of transforming explanatory variables to dependent variables (whatever 

specific meaning this acquires in any given economic narrative). Panel data 

specifications with slope coefficients that are allowed to differ across cross-sectional 

units and/or over time have received practically no attention in the literature. The 

increased use of Arellano and Bover and Arellano and Bond specifications means that 

researchers become increasingly aware that processes in tourism economics are 

inherently dynamic (due to, for example, adjustment costs or other inertia). This opens 

up novel questions. First, are the dynamic responses the same across cross-sectional 

units? Second, are responses of the dependent variable to explanatory variables time-

invariant and/or homogenous across cross-sectional units? 

 

3. Why Bayesian? 

In addition to the many advantages of the Bayesian approach that we discussed above, here 

we provide additional background as to why the Bayesian estimator is highly effective in the 

context of panel data. Suppose we have a standard panel data autoregressive model of the 

form: 

, 1 , 1,..., , 1,..., ,it i i t ity y u i n t T  −= + + = =              (1) 

where i s are fixed effects. If T  tends to infinity, then the least-squares-dummy-variables 

(LSDV) estimator of i  and  are consistent. However, for finite T , and | | 1  , as N  tends 

to infinity it is known that the LSDV estimator of   is inconsistent due to the incidental 

parameters problems (Neyman and Scott, 1948). While the maximum likelihood estimators 

are inconsistent, there have been proposed consistent instrumental variables/methods of 

moments estimators (e.g. Anderson and Hsiao, 1981, 1982; Arellano and Bond, 1991; Arellano 

and Bover, 1995; Ahn and Schmidt, 1995; Blundell and Bond, 1998). 

If we take first differences, we can eliminate the fixed effects, since: 

, 1 , 1,..., , 1,..., .it i t ity y u i n t T − =  + = =                       (2) 

   

If | | 1  , the process has been going on for a long time, and 2~  (0, )it uu iid N   the likelihood 

function is: 

 /2 /2 11
2 1

(2 ) | | exp ,
nnT n

i ii
 − − −

=
 −    u u             (3)  
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where  1 2, ,...,i i i iTy u u  =   u , and the covariance matrix 2 *

u =  , where 
*  is a matrix 

whose element (1,1) is 2
1 +

 and all other elements are -1, 0, or 2 (see Hsiao et al., 2002, formula 

3.2). The corresponding Maximum likelihood estimation (MLE) is consistent as N  tends to 

infinity, regardless of whether T  is fixed or tends to infinity. The introduction of weakly 

exogenous variables (such as a vector itx ) follows a similar treatment. Moreover, if the process 

has started from a finite period in the past not too far back from the 0th period, and 

1( )iE y b =  (where b is an unknown constant that can be estimated), the analysis is somewhat 

different but similar in its main spirit; see Hsiao et al. (2002) for more details. 

Under the assumption of conditioning on the initial conditions, Hsiao et al. (1999) show that 

the Bayes estimator performs very well when T  is small, which is quite important in practice. 

This result is certainly surprising. As Hsiao et al. (2002) mention, this could be due to the fact 

that the Bayes estimator is a weighted average of estimators for individual units and thus it is 

effectively “trimming” estimates that are unreliable in small samples. The result is certainly 

interesting and paves the way for consideration of more general panel data models and richer 

structures or sources of heterogeneity. Of course, consistent estimators may perform badly in 

finite samples, so consistency cannot be the sole criterion for selecting an estimator. 

The reader may be surprised to see that a normal likelihood/posterior is used to provide 

statistical inferences without allowing for “endogeneity inherently present” in DPM. However, 

the endogeneity arises when the LSDV estimator is used as sample averages of the errors and 

the lagged dependent variables are, naturally, correlated. Moreover, for “fixed T , large N  ” 

consistent estimators such as “first-differenced GMM” may be problematic (e.g. Bond et al., 

2001) as it is not always the desired kind of asymptotic in empirical research. As a matter of 

fact, a fairly common assumption in dynamic panel models is that errors itu , any potential 

regressors, and the lagged dependent variable are uncorrelated. Problems arise when the 

individual effects need to be wiped out by using certain transformations.  

That is, problems arise when we have to face the incidental parameters problem (i.e. number 

of individual effects increases with n).  Moral-Benito (2013) has shown that we have, 

essentially, a normal likelihood whose maximization is asymptotically “equivalent to the class 

of first-differenced GMM estimators discussed in Arellano and Bond (1991) augmented with 

moments resulting from lack of autocorrelation in the errors”. Additionally, provided that we 

make a mean-stationarity assumption, i.e. first differences of the dependent variable and 

regressors are orthogonal to the errors, we can exploit the resulting moment conditions as 

discussed in Arellano and Bover (1995). Additionally, Hsiao et al. (1999) showed that the 

Bayesian estimator and the familiar mean-group estimator are equivalent and consistent-

asymptotically-normal estimators of the average coefficient as long as ,n T→ →  and 

/ 0n T → . This implies that both n  and T  should be large but n  should grow faster than 
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T  so this result is more relevant in applications with large n  but small T  which is, admittedly, 

a common situation.  

 

 

4. New Dynamic Models 

Given the power and flexibility of the Bayesian approach, we introduce here seven new 

dynamic models, all developed in a Bayesian framework. Our models are based on the idea of 

further exhausting heterogeneity by introducing dynamic slope coefficient models. One 

common feature of our models is that they all allow for heterogeneity in slope parameters.1  

The base model (M1) is a model where slope coefficients are common for all cross-sectional 

units, and only intercepts are allowed to be different to capture heterogeneity. This can be 

expressed as follows: 

               
( ) ( )

, 1
11

, 1,..., , 1,...,it i it i t it
kk

y x y u i n t T   −


= + + + = =                                                (3) 

where ( )2~ ,i iidN     represents the random effects, ( )2~ 0,it uu N   is the error term. 

The initial conditions can be expressed as: ( )
0

2

0 0~ ,
ii i yy N y  . This is probably the simplest 

model that accounts for heterogeneity in the context of panel data, when ρ=0. Despite this 

fact, it is really the dynamic panel data model popularized by the Arellano and Bover and 

Arellano and Bond estimators. In a Bayesian context, with fixed data, estimation and inference 

in the model is straightforward, but this is not so in a frequentist context because of the 

incidental parameters problem. 

Before proceeding, we need to mention that M1 is already an advanced econometric tool 

unless ρ=0, in which case we have a static panel data model which has been the main 

workhorse of empirical analysis for many decades. Assuming that ρ=0, so that we do not have 

dynamics, a lot of attention has been paid to whether we have fixed or random effects (which 

can be tested using Hausman’s test). This motivates us to introduce entirely new classes of 

general models for panel data, which we analyze below. 

 

4.1. Model 2 (M2): Dynamic random coefficients I 

 
1 This is in line with Hsiao et al. (1999). In all subsequent discussion, initial conditions are treated as 

unknown parameters with a ( )20,10N  prior. 
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Building on M1, our second model (M2) can be expressed as:  

 
( ) ( )

, 1
1 1

, 1,..., , 1,..., ,it i it t t i t it
k k

y x y u i n t T−
 

= + + + = =     (4) 

where ( )2~ ,i iidN     represents the random effects, ( )2~ 0,it uu N   is the error term. 

The initial conditions can be expressed as: ( )
0

2

0 0~ ,
ii i yy N y  , and we make the following 

assumptions for the coefficients: 

 

( )
1

0 0

0 0

, ,

, ~ (0, ),

~ , ,

~ ( ), 1.

t t t

t t t tv v N

N

Exp

  

 

  

  

−

=

= + 



=

               (3) 

The model is still a dynamic panel data model with intercepts that vary across individuals and 

slope coefficients that are allowed to be time-varying, albeit they are the same across individual 

units. Notably, the coefficient of lagged dependent variables are time-varying as well, which is 

a novelty relative to the standard Arellano and Bover and Arellano and Bond specifications. 

This model extends M1 in two dimensions: First, it allows for dynamics by dependence of the 

lagged dependent variable, and second, it allows the slope coefficients to be time-varying. 

Intercepts are still allowed to be different to capture heterogeneity. The time variation of the 

coefficients is assumed to be “smooth” in the sense that it is given by a random walk 

formulation.  

 

4.2. Model 3 (M3): Dynamic random coefficients II 

This model generalizes M2 in the sense that slopes and the coefficient of the lagged dependent 

variable are allowed to depend on both time and cross-sectional units. M3 allows for both time 

variation across cross-sectional units and dynamics in the slope coefficients. Again, as in M2, 

notably, the coefficient of lagged dependent variables is time-varying as well, which is a novelty 

relative to the standard Arellano and Bover and Arellano and Bond specifications. The main 

novelty of M3 is that it is a quite general specification for dynamic panel data in which slope 

coefficients are time-varying (in an autoregressive way) while they are simultaneously allowed 

to be different across cross-sectional units. This is clearly far more general than any 

specification proposed so far in the literature for handling dynamic panel data. 

M3 can be expressed as follows: 
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( ) ( )

( ) ( )

, 1

1 1

, 1
1 1

, 1,..., , 1,...,

or

, 1,..., , 1,..., ,

it i it it it i t it

k k

it it it it i t it
k k

y x y u i n t T

y x y u i n t T

  

 

−

 

−
  

= + + + = =

= + + = =

  (4)

  

where k is the dimensionality of the regressors in itx , and 1k k= + . Here we assume that 

itx contains a column of ones so that the intercept is unit-specific as well as time-varying. We 

rewrite the model in compact form as follows: 

( ) ( )1 1

, 1,..., , 1,..., ,it it it it
k k

y z u i n t T
 

= + = =                                                  (5) 

where 1k k= + , and ( )2~ 0,it uu N   is the error term. The initial conditions can be 

expressed as: , and we make the following assumptions for the coefficients: 

 

( )

, 1

0 0

1

0 0

, ,

, ~ (0, ),

~ , ,

~ ( ), 1.

it it it

it i t it it

i i i

i

v v N

N

Exp

  

 

  

  

−

−

=

= + 



=

                                (6) 

 

4.4. Model 4 (M4): Mundlak device 

Our fourth model takes a different approach by using the Mundlak device. The Mundlak 

device is used to model individual effects differently. These effects are related to average values 

of the regressors (so the device allows for fixed effects), but at the same time an error term is 

utilized so that random effects are introduced as well. Clearly, the Mundlak device is more 

general than either fixed or random effects and allows considerable flexibility in modeling. 

Since the individual effects are related to average number of regressors, the problem reduces 

to estimating a fixed number of parameters which do not increase with n  or T  so the 

incidental parameters problem does not arise. To illustrate, the Mundlak device generalizes 

fixed and random effects (for the intercept) as follows: 

 

 
( ) ( )

, 1
11

, 1,..., , 1,...,it i it i t it
kk

y x y u i n t T   −


= + + + = =   (7) 

( )
0

2

0 0~ ,
ii i yy N y 
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where ( )2, ~ 0,i i i ix iidN= +       represents the random effects, 
1

1

T

i itt
x T x−

=
=   , and 

 is the error term, and are the initial conditions.  

When 0 =  we have the fixed effects formulation. When 0  , we have the random 

effects formulation augmented by an assumption of dependence of intercepts on average 

values of the regressors. 

We can write the model as follows: 

                                  ( ), 1,..., , 1,..., ,it it it iy z u i n t T = + + = =        (8) 

where , 1[ , , ]it i it i tz x x y −
  = . The econometric implication is that the error terms are correlated 

for the same unit due to the presence of i . If we stack the observations, we can write the 

model as 

,i i iy Z v= +               (9)  

where 
2 2cov( )i u T Tv I J = + , and TJ denotes a matrix whose elements are all equal to one. 

 

 

4.5. Model 5 (M5): Mundlak device with random coefficients I 

In this specification, we augment the standard Mundlak device (M4) with the assumption of 

random coefficients for the slopes: 

 

 
( ) ( )

, 1
1 1

, 1,..., , 1,..., ,it i it i i i t it
k k

y x y u i n t T−
 

= + + + = =     (10) 

where ( )2, ~ 0,i i i ix iidN= +       are the random effects, 
1

1

T

i itt
x T x−

=
=  , and 

( )2~ 0,it uu N   is the random error term. The initial conditions can be expressed as:

( )
0

2

0 0~ ,
ii i yy N y  , and we make the following assumptions for the coefficients: 

  ( ), ~ , , 1,..., .i i i N i n=  =                  (11) 

 

( )2~ 0,it uu N  ( )
0

2

0 0~ ,
ii i yy N y 
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4.6. Model 6 (M6): Mundlak device with random coefficients II 

Model M6 is more general than M5 and closer to the spirit of M4, in the sense that variation 

of slopes depends on average values of the regressors as well. This model allows for 

heterogeneity by modeling the slopes as functions of the average values of the regressors, 

instead of focusing attention exclusively on individual effects. Indeed, it can be argued that 

heterogeneity does not exhaust itself in modeling constant terms, as slopes can be different 

for each individual. 

 

 
( ) ( )

, 1
1 1

, 1,..., , 1,...,it i it i i i t it
k k

y x y u i n t T   −
 

= + + + = =                                (12) 

 where ( )2, ~ 0,i i i ix iidN= +       are the random effects, 
1

1

T

i itt
x T x−

=
=  , and 

( )2~ 0,it uu N   is the random error term. The advantage of this approach is that the incidental 

parameters problem is solved by reducing it to estimation of k  parameters   in x . 

Therefore, we extend the Mundlak device to modeling the slopes; not only the firm effects.  

The initial conditions can be expressed as: ( )
0

2

0 0~ ,
ii i yy N y  , and we make the following 

assumptions for the coefficients: 

( )
  ( )

( ) ( )

1 1

1 11

0 0

, , , 0 0

0 0

i

i i i i i M i
Mk MkM

i M M

x

I x

x

 

      

 
 

     
     = = + =  +
    
         

         (13) 

where ( )i M iX I x=  and ~ (0, ), 1,...,i N i n  =  

 

4.7. Model 7 (M7): A general panel data model 

Model M7 is general in the sense that we allow for cross-sectional and time variation of 

slopes: 

 

                            
( ) ( )

, 1

1 1

, 1,..., , 1,...,it it it it it i t it

k k

y x y u i n t T   −

 

= + + + = =                           (14)  
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where 
1

1

T

i itt
x T x−

=
=  , and ( )2~ 0,it uu N   is the random error term. The initial conditions 

can be expressed as: ( )
0

2

0 0~ ,
ii i yy N y   and we make the following assumptions for the 

coefficients: 

 

( )
 

( ) ( )

( )

( ) ( )

1

1 1

1

0 0 0

1

0 0

1

0 0

, , ,

,

~ (0, ),

~ ( , ),

, ~ 0, ,

~ , , ~ 0, ,

~ ( ), 1,

~ ( ), 1.

it it it it
k

it i t it
k k

it k

i M

t t t t k

i i i k i

i

i

v

v N

iidN

e e iidN

N iidN

Exp

Exp







   

   

 

 

    

  

  



 

−

−

−

=

= + + +





= + 

 

=

=

             (15) 

Hence all coefficients have an additive decomposition ( it i t itv  = + + ) into cross-sectional 

effects ( i , time effects ( t ) and a random component ( itv )). The time effects evolve 

according to a random walk and cross-sectional effects are independent across units but 

dependent for the different coefficients (through matrix  ). 

4.8. Model 8 (M8): A Mundlak device when the random effects depend on other 

functions of the data 

Finally, the last model generalizes the Mundlak device in that intercepts (cross-sectional 

effects) do not depend exclusively on average values of the regressors but other functions of 

the data as well ( standard deviations, higher moments, etc.): 

 

 
( ) ( )

, 1
11

, 1,..., , 1,...,it i it i t it
kk

y x y u i n t T   −


= + + + = =   (16) 

where ( )2

1 2( ) , ~ 0, ,i i i i ix vech s iidN       = + +  
1

1

T

i itt
x T x−

=
=  , 

( )( )1

1

T

i it i it it
s T x x x x−

=

= − − , and  is the random error term. The initial 

conditions can be expressed as:  , where vech(.) is the vector stacking the 

different elements of the indicated matrix. 

( )2~ 0,it uu N 

( )
0

2

0 0~ ,
ii i yy N y 
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The model in (16) introduces more generality as the simple Mundlak device may be responsible 

for potential misspecification. This misspecification could be important in obtaining consistent 

parameter estimates as n gets larger. For example, although the Mundlak device reduces the 

problem of incidental parameters by estimating a fixed number of parameters, the parameters 

relate to average values of the regressors. This is, however, only an assumption; if it is not true, 

misspecification will compromise the ability of the model to deliver consistent estimators. 

From the point of view of modeling heterogeneity, the assumption that individual effects relate 

to average values of the regressors may be wrong when the distribution of regressors matters 

for individual effects. This can be taken into account, while not compromising the reduction 

of the problem of incidental parameters to estimating a fixed number of parameters, by 

including higher moments of the distribution of regressors into the Mundlak device. For 

example, standard deviations or variances of the regressors can be used to ‘explain’ the 

individual effects, in the interest of making the approach more flexible. 

 

5. Empirical Application  

We test our models using an application on the impact of advertising on firm sales. Most 

previous studies in the literature (Heyse and Wei, 1985; Sonnier et al. 2011; Bruce et al. 2012; 

Assaf et al. 2015) have assumed a dynamic impact of advertising on sales (or other related 

performance metrics) due to the carry-over effects or wear out of advertising campaigns (Bass 

et al. 2007). In our estimation, we focused on a sample of US restaurants, covering a sample 

of 22 publicly traded restaurants from 2001 to 20162. The data is unbalanced and we have a 

total of 341 observations3. In addition to advertising, we also control for the impact of firm 

size and financial leverage, two variables that are commonly used in similar contexts (Luo et 

al., 2010; Lee et al., 2013). All data we collected from the COMPUSTAT database. Following 

previous research (e.g. Luo and De Jong, 2012), we measured advertising spending as the 

reported firm advertising expenditure. We measured firm size as the log of total assets and 

financial leverage as firms’ long-term book debt over total assets. We provide the descriptive 

statistics of all these variables in Table 1.  

6. Results  

As mentioned, we estimated all our models in a Bayesian framework. Appendix A provides 

more technical about the Bayesian procedure of the various models. For the purpose of 

comparison, we estimate all eight models proposed in this paper. We use the model pooling 

proposed by Geweke and Amisano (2011). This approach assumes that none of the competing 

models corresponds to the true data generating process, but instead considers a linear 

 
2 The financial data was not available in some years for all the restaurants included in the sample, 
resulting in the unbalanced sample.  
3 See footnote 2.  
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prediction pool based on the predictive likelihood (log score function) from a set of competing 

models. To illustrate, given a set of models {ℳ𝑖} 𝑖=1
𝑀  and a set of predictive densities 

{𝑝(𝑦𝑡|𝑦1, . . . , 𝑦𝑡−1, ℳ𝑖)} 𝑖=1
𝑀 , we consider the following form of combined predictive 

densities:  

 
∑ 𝑤𝑖

𝑀

𝑖=1

𝑝(𝑦𝑡|𝑦1, . . . , 𝑦𝑡−1, ℳ𝑖), where ∑ 𝑤𝑖

𝑀

𝑖=1

= 1,  𝑤𝑖 ≥ 0, 𝑖

= 1, . . . , 𝑀. 

(17) 

The optimal weight vector 𝒘∗ is chosen to maximise the log pooled predictive score function; 

that is,  

 argmax
𝑤𝑖,𝑖=1,...,𝑀

∑ log (∑ 𝑤𝑖

𝑀

𝑖=1

𝑝(𝑦𝑡|𝑦1, . . . , 𝑦𝑡−1, ℳ𝑖))

𝜏2

𝑡=𝜏1

, (18) 

where the predictive density is evaluated at the realized value 𝑦𝑡. Conditional on the data up 

to time 𝑡 − 1, i.e., 𝑦1, . . . , 𝑦𝑡−1, we obtain a large number of posterior draws for the parameters 

(by applying the MCMC algorithm for a large number of iterations), which are then used to 

evaluate the predictive likelihood 𝑝(𝑦𝑡 = 𝑦𝑡
𝑜|𝑦1, . . . , 𝑦𝑡−1, ℳ𝑖). Based on the entire history of 

predictive likelihood values we can estimate the weights in expression (18). For optimization, 

we have used a standard nonlinear solver (Nash, 1984). Given the data 𝑌 we define the 

marginal likelihood or evidence of a model as: 

                            𝑀𝑖(𝑌) = ∫ 𝐿𝑖(𝜃𝑖; 𝑌)𝑝𝑖(𝜃𝑖)𝑑𝜃𝑖 ,                                                           (19) 

where 𝐿𝑖(𝜃𝑖; 𝑌), 𝑝𝑖(𝜃𝑖) denote the likelihood and prior, respectively. 

Using (19) we can also construct the posterior model probabilities (PMP), which given (in-

sample) marginal likelihoods 𝑀𝑖(𝑌), 𝑖 = 1, … , 𝑀, the PMP for model 𝑖 can be defined as: 

 

                             𝑃𝑀𝑃𝑖 =
𝑀𝑖(𝑌)

∑ 𝑀𝑗(𝑌)𝑀
𝑗=1

, 𝑖 = 1, … , 𝑀.          (20) 

 

Table 2 reports the model comparison’s results. Based on the Bayes factor, the model pooling 

of Geweke and Amisono, and PMP, M8 outperforms all other models in our application. For 

example, in comparison to the base model M1, M8 has a Bayes factor of 103.21, indicating a 

considerably better performance. According to model pooling, M8 has the highest PMP, 

clearly indicating that it performs best, followed then by other models with PMP > 0.  
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Further evidence on the performance of the various models is reported in Table 3 where we 

provide the out of sample forecasting performance of each model.  The magnitude of 

forecasting mistakes is measured with root mean squared forecast error (RMSFE). Forecasting 

is performed for one and two years ahead. Specifically, for each hotel, we leave out the last 

one or two years, estimate the models and predict the left-out observations using the posterior 

mean point forecast and compute the RMSFEs as usual. We also tested forecasting in two 

other ways. First, we use the Geweke-Amisano out-of-sample posterior model probabilities to 

predict observations that we left out. Second, we use the in-sample posterior model 

probabilities to perform Bayesian model averaging and, in turn, predict out of sample. Clearly, 

the models are performing well across both approaches, but the first approach clearly performs 

much better as the RMSFEs are much smaller. In addition, it is clear that M8 has the lowest 

RMSFE in our present application, indicating best forecasting performance.  

Finally, we report (in Table 4) the posterior mean and standard deviations of all variables in 

our application. These include advertising, size, leverage, as well as the lag of sales. Figures 1-

4 also report the posterior densities of these variables. It is clear that all models indicate a 

significant and positive impact of advertising on sales, as is expected from the literature (e.g. 

Darrat et al. 2015; McAlister et al. 2016). The lag of sales also seems significant across most 

models, providing more support for the use of dynamic formulation. As is clear from the 

densities, there are notable deviations from normality, so asymptotic theory may not be valid 

in our context. In Figure 5, we report the same densities using Bayesian model averaging 

(BMA), where we average over all models used in the paper. This way, we account for any 

uncertainty (when assessing parameters and predictions) that can result from the model 

selection process. In general, our results are consistent with those reported in Figures 1-4. For 

instance, we can see from Figure 5 the effect of advertising on sales is positive and close to 

0.23 ranging from 0.17 to 0.3.  

 

7. Conclusions  

In this paper, we introduced several innovative dynamic panel data models that allow for 

variations in slope coefficients both across time and cross-sectional units. To our knowledge, 

these models have not been explored in previous studies. As mentioned, our models better 

capture heterogeneity, as most current static or dynamic panel data models are based on the 

assumption that slope coefficients are common across units and heterogeneity is modeled 

using fixed or random effects for the intercept. However, heterogeneity is not fully captured 

through assuming that intercepts are unit-specific or by using fixed or random effect 

estimators. In our models, we allow the slope coefficients to vary both across time and cross-

sectional units, and in a dynamic fashion (i.e. dynamic slope coefficients). Importantly, we also 

introduced for the first time, flexible models based on the Mundlak device; which is more 

general than either fixed or random effects and does not suffer from the incidental parameters 

problem.  
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We applied these new models in an interesting application showing the effects of advertising 

on sales. We compared their performance using model pooling and posterior model 

probabilities. We also assessed their out of sample forecasting performance. For the present 

application it was clear that M8 outperformed all other models, which is not surprising given 

that M8 is based on the more flexible Mundlak device and is more general in the sense that it 

is likely to better address any misspecification issues created by the simple Mundlak device. 

Regardless, these models are open for testing, and future studies are encouraged to at least 

consider some of them for comparison purposes. Simply, relying on the Arellano-Bond (AB) 

model, as is common in the tourism literature, may run the risk of misspecification in some 

applications, as the AB model (in contrast to the models proposed in this study) is based on 

fixed slope coefficients. Hence, it does not fully exhaust heterogeneity.  

Finally, we encourage more use of the Bayesian approach for the estimation of dynamic panel 

data models in tourism research. As mentioned, the Bayesian approach has particular 

advantages in the context of dynamic models, as the use of lagged dependent variables does 

not introduce any additional problems with Bayesian estimation. In addition, the use of the 

GMM estimator is problematic when the Arellano-Bond instruments are weak. In such a case, 

the sampling behavior of GMM can lead to unreliable estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Descriptive Statistics 
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Variable   Obs. Mean Std. Dev. Min Max 

Sales 341 3251.621 5445.581 52.346 28105.7 

Advertising 341 101.722 181.564 0.1 808.4 

Firm Size 341 2.971 0.588 1.477 4.579 

Financial Leverage 341 0.670 0.600 0.144 4.071 
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Table 2. Model Comparison 

 M1 M2 M3 M4 M5 M6 M7 M8 

Bayes 
factor 

1.000 7.44 11.28 15.62 11.03 27.36 81.16 103.21 

Geweke-
Amisano 

0.000 0.000 0.000 0.000 0.000 0.038 0.092 0.870 

PMP 0.0039 0.0288 0.0437 0.0605 0.0427 0.106 0.3145 0.3999 

Notes: Geweke-Amisano provides the Geweke-Amisano posterior model probabilities in a 

posterior predictive pool using a hold-out sample of five observations for each firm. PMP 

denotes posterior model probabilities using the Bayes factor. 

 

Table 3. Out of sample forecasting  

 RMSFE (%), 1 year ahead RMSFE (%), 2 years 
ahead 

M1 34.41 40.01 

M2 22.32 32.60 

M3 17.51 22.35 

M4 12.35 16.71 

M5 7.31 9.44 

M6 2.45 3.08 

M7 1.93 2.79 

M8 1.81 2.44 

Geweke-Amisano pool 1.32 2.05 

Averaging based on in-sample 
BF 

2.33 3.71 
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Table 4. Posterior Mean and Standard Deviation 

 M1 M2 M3 M4 M5 M6 M7 M8 

advertising 0.209* 

(0.017) 

0.313* 

(0.032) 

0.144* 

(0.017) 

0.120* 

(0.009) 

0.233* 

(0.024) 

0.187* 

(0.017) 

0.302* 

(0.015) 

0.221* 

(0.015) 

size 1.762* 

(0.07) 

1.351* 

(0.025) 

0.856* 

(0.022) 

0.921* 

(0.019) 

1.150* 

(0.022) 

0.933* 

(0.019) 

1.230* 

(0.026) 

1.190* 

(0.035) 

leverage -0.019 

(0.032) 

-0.044 

(0.030) 

-0.035* 

(0.012) 

-0.022 

(0.030) 

-0.015* 

(0.007) 

-0.022* 

(0.006) 

-0.017* 

(0.002) 

-0.031 

(0.017) 

lagged 

sales 

0.315* 

(0.021) 

0.521* 

(0.018) 

0.552* 

(0.013) 

0.613* 

(0.022) 

0.587* 

(0.019) 

0.616* 

(0.022) 

0.510* 

(0.035) 

0.481* 

(0.029) 

Note: Numbers in parentheses are the posterior standard deviations. * indicates significance 

at the 5% level. 
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FIGURE 1. Marginal Posterior Densities of Advertising across All Models 
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FIGURE 2. Marginal Posterior Densities of Firm Size across All Models 
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FIGURE 3. Marginal Posterior Densities of Leverage across All Models 
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FIGURE 4. Marginal Posterior Densities of Lagged Sales across All Models 
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FIGURE 5. Model-averaged Marginal Posterior Densities  
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Appendix A: Bayesian Technical details  

 

This appendix provides more technical details about Bayesian estimation. We focus on M3 

which is a generalization of M1 and M2, M6, which is a generalization of M4 and M5, and 

M7 which can be simply extended to M8. 

Model 3 (M3) 

Considering M3 again as defined in (5): 

( ) ( )1 1

, 1,..., , 1,..., ,it it it it
k k

y z u i n t T
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= + = =                             (A.1) 

  

The augmented posterior of the model can be written as follows: 
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  (A.2) 

where our prior is the standard non-informative form: 

1 ( 1)/2( , ) | | k

u up   − − +   .        (A.3) 

Drawing from the conditional posteriors of ,u   is straightforward since: 

( )
2

21 1

2
| , , ~ ( ),

n T

it it iti t

u

y z
y X nT


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
= =
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      (A.4) 

and 

 ( 2)/2 11
2

( | ) | | exp ,nT kp tr A− + + −   −        (A.5) 

where , 1 , 1 0 0 0 01 1 1
( )( ) ( )( )

n T n

it i t it i t i i i i ii t i
A         − −= = =

 = − − + − −   . This conditional 

posterior is in the inverted Wishart family. 

The conditional posterior of each i  is: 
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( )/2 1( | ) exp , 1,..., ,k

i i ip a i n  − − − =                             (A.6) 

    

where 1

0 0 0 0 0( ) ( ) .i i i ia     −= −  − +  This is an inverted gamma distribution provided 

2k  . 

The difficult part of the MCMC sampler is to draw efficiently { }it . These parameters can 

be updated as follows: 

( ), 1 , 1
ˆˆ| , , , , ~ , , 1,..., , 1,..., 1,it i t i t k it ity X N V i n t T   − + = = −     (A.7) 
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1

2 2 1ˆ 2it u it it uV z z 
−

−= +   with the proper adjustments for 0i  and iT . 

 

Model M6 (Mundlak device) 

We use (12) to write the model in the form: 

, 1,..., , 1,..., ,

, 1,..., ,

it it i it

i i i

y z u i n t T

X i n



  

= + = =

= + =
       (A.8) 

If we stack observations, we have ,i i i iy Z u= + and using the Mundlak device we obtain: 

( ) ( ) , 1,...,i i i i i iy Z X u Z i n = + + = .       (A.9) 

This is a model with fixed coefficients and the covariance of the error is  

( )( ) 2 , 1,..., ,i i i i i i u T i iE u Z u Z I Z Z i n    + + = +  =
  

     (A.10) 

which shows that it is different for different units. The likelihood function of the model can 

be written as follows4: 

( ) ( )( ) ( ) ( )( )
1

2 1/2 21
2 11

; , | | exp
n n

u T i i i i u T i i i i iii
L y X I Z Z y Z X I Z Z y Z X    

−
−

==

 
 = +   − − +  − 

 


(A.11) 

 
4 For simplicity we omit terms involving the initial conditions. 



30 

where the parameter vector  , , ( )u vech    =  . If we parametrize   in terms of the 

non-zero elements of its Cholesky factorization, C C = where C  is lower triangular, it is 

not difficult to use general-purpose optimization algorithms to find the maximum likelihood 

estimator. 

Given a non-informative prior, ( ) 1 ( 1)/2| | k

up   − − +  , where with some abuse of notation 

in the main text, k  is the dimensionality of itz , the posterior can be analyzed efficiently 

using the Girolami and Calderhead (2012) algorithm. The algorithm uses first and second 

derivative information about the log-posterior: ( ) ( )| , ; , ( )p y X L y X p   . Given a 

MCMC draw for  , a draw for i  can be obtained as: 

( )ˆˆ| , , ~ , , 1,..., ,i i iy X N V i n=         (A.12) 

where ( ) ( ) ( )
1 1

2 1 2 1 2 2 1ˆˆ ,   , 1,..., .i i i u i i u i i u i i uZ Z Z y X V Z Z i n     
− −

− − − = +  +  = +  =  

Notice that, in this instance, we “concentrate out” the unit-specific parameters as we are 

using the likelihood ( ); ,L y X . Of course, the algorithm can be used in several special 

cases including Model M3. For Model M8 we use exactly the same algorithm as the only 

difference relative to Model M6 concerns the definition of 
iX . 

Model M7 

Model M7 has the following structure: 

, 1,..., , 1,..., ,it it it ity z u i n t T= + = =        (A.13) 

with 

it i t itv   = + + +          (A.14) 

Conditionally on the time effects, we have: 

( )it it t it it it i ity z z z v u    − = + + +        (A.15) 

which we can stack as follows: 

, 1,...,i i i iy Z Z i n  − = + =         (A.16) 

where ( )i i i i iZ v u = + +  whose covariance matrix is 
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( ) ( ) 2

i i i i i uE Z Z I    = = + +        (A.17) 

Therefore, we can express the posterior as 

( ) ( ) 
( ) ( ) 

1/2 11
2 11

/2 11
1 12 1

( | , ) | | exp

| | exp ( )

n n

i i i i i i i iii

TT

t t t tt

p y X y Z Z y Z Z

d p 

    

     

− −

==

− −

− −=

   − − −  − − 
 

 − −  − 




(A.18) 

where ( )p  is a non-informative prior. Conditional on  , we can draw  as follows: 

( )1 1 1 1 1| , , ~ ( ) ( ),  ( ) ,y X N Z Z Z Y Z Z Z− − − − −     −       (A.19) 

where  1,..., nZ diag Z Z= , 
1[ ,..., ]nY Y Y  =  and 

1[ ,..., ]ndiag =   . The different elements 

of ,   and 2

u are updated using a Girolami and Calderhead (2012) technique (see 

Appendix B). The different elements of  are updated using the Wishart conditional 

posterior: 

 ( 1)/2 11
2

( | , , ) | | exp ,T kp y X trA− + + −    −    
     (A.20) 

where ( )( )1 11

T

t t t tt
A    − −=

= − − .  

To draw from the posterior conditional of t  we write the model as follows: 

( ) ( )it it i it t it it ity z z z v u    − + = + + .      

We can stack the observations as  

( ) ( ) , 1,..., ,t t t i t t t t ty y Z Z Z v u t T − + = + + =        (A.21) 

where ( ) ( ) 2cov t t t t n t u n tZ v u Z I Z I V+ =  +  . Since ( )1 1| , ~ ,t t tN   − −   the 

conditional posterior of time effects is given as follows: 

( )1 1
ˆ ˆ| , , , , ~ ,t t t t ty X N V   − +  ,       (A.22) 

where  

( )
1

1 1 1 1

1 1
ˆ 2 , 1,..., 1,t t t t t t t t tZ V Z Z V y t T   

−
− − − −

− +
    = +  + + = −     and          

1
1 1ˆ 2t t t tV Z V Z 

−
− − = +    
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For 0 , T  we need the obvious adjustments in the conditional posterior distributions. 

 

 

Appendix B: The Girolami-Calderhead Update 

Suppose ( ) ( )logL p = X  is used to denote (for simplicity) the log posterior of  . Let us 

define  

 ( ) ( )est cov log p 


=  G X  (A.23) 

which is the sample analogue of  

 ( ) ( )
2

logo YE p   
  

= − G X  (A.24) 

The Langevin diffusion is the following stochastic differential equation:  

 ( ) ( )  ( )1
2

d t L t dt d t = + B  (A.25) 

where  

 ( )  ( )  ( ) 1L t t L t   −= −  G  (A.26) 

is the gradient of the Riemann manifold associated with the log posterior. The various 

elements of Brownian motion are defined as follows: 

 ( )  ( ) ( )  ( )  ( ) 1 1 2 1 1 2

1

K

i ij
j

t d t t G t t dt



   

 − −  −   
   

=

=   G B G G  (A.27) 

 ( )  ( )
i

t d t +
  

G B  

The discretization of the stochastic differential equation provides a proposal as follows:  

 
2 1 2 1 1

2 1

o

j

Ko o o o o

ii ji
ij

L
 


      

 
 
 

  − − −          
            =          

 

= +  − 
G

G G G

  2 1 1 1

2 1
tr

o

j

K o o o o

j ij i


    
 
 
 

  − − −        
        =           

+ +
G a

G G G  

                               ( ) 1o o o

i
i

     
 

−  
  

   

=  + G                                               (A.28) 



33 

where 
o  is the current draw. The proposal density is  

 2 1o o

Kq N


    
   −  
    

    
 =  G  (A.29) 

and convergence to the posterior distribution is ensured by using the Metropolis-Hastings 

probability:  

 
( ) ( )
( )

min 1

o

o o

p Y q

p Y q

  

  
 
 

    
 

    
a

. (A.30) 

Finally, we select ε during the burn-in phase so that, approximately, 25% of all candidates 

are, eventually, accepted. 

 

 

 

 

 


