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Abstract

Recent research introduces a methodology for constructing composite indicators, called “σ − µ efficiency analysis”,

illustrating its potential in a case study of world happiness. Building on the landmark research paper, we propose a

novel model that allows statistical inference for both weights in the composite indicator as well as inefficiency, fully

accounting for outliers in the data and unit-specific heterogeneity in weights. The new techniques are based on Bayesian

analysis via Markov Chain Monte Carlo.
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1 Introduction

Greco, Ishizaka, Tasiou, and Torrisi (2019a) introduce a methodology for constructing composite indicators that they call

“σ − µ efficiency analysis”, illustrating its potential in a case study of world happiness. The paper is also a fun read as it

involves considerations from many different scientific fields. Many international organizations e.g. the OECD, UN, World

Bank etc.) use various indicators which are based on equal weights for the underlying variables. A fundamental step in

the construction of composite indicators regards the weighting of the elementary indicators. Quite often, the indicators

are based on the arithmetic mean (e.g. see, among others, the Index of Economic Freedom (Miller et al., 2018) and

the Inclusive Development Index (Samans et al., 2018), or the geometric mean (the 2010 Human Development Index; see

UNDP, 2010). As a matter of fact, “by taking into account the whole set of admissible weight vectors, one can consider the

whole spectrum of preferences of individuals, as well as multiple selves within each individual interested in the composite

indicator” (Greco et al., 2019a. p. 943). In recent research the problem of equal weights which is associated with another

major problem, viz. the problem of “representative agent”, is mitigated by use of multi-criteria decision analysis and

Stochastic Multi-Attribute Acceptability Analysis (SMAA). SMAA involves a decision-maker that is unable to provide

the parameters required for the evaluation process (see e.g. Doumpos et al., 2016, 2017, as well as Greco et al., 2008,

2010, 2016, 2019b). As Greco et al (2019a) write: “More specifically, by considering a probability distribution on the

set of feasible weight vectors, SMAA reveals the probability that a unit attains a given ranking position, as well as the

probability that a given unit is better than another” (Greco et al., 2019, p. 943).

The methodology in Greco et al. (2019a) is, in fact, a novel SMAA approach, where instead of computing the

probability that each considered alternative could obtain a given rank position and the probability of being preferred to

another alternative; one could compute the mean µ and the standard deviation of the values assigned by the weighted

sum, σ. In turn, µ and σ can be employed to obtain a single overall evaluation using the overall (global) efficiency measure

that is proposed by Greco et al (2019a, pp. 942–943). In fact, this represents a new method in the SMAA family.

SMAA takes weight uncertainty into account by considering a probability density f(w) over the space of all weight

vectors, w ∈ W , where W is defined below.

Suppose we have a vector of variables xi ∈ <J (i = 1, ..., n). A composite indicator is defined as:

CI(xi, w) = x′
iw =

J∑
j=1

xijwj , i = 1, . . . , n, (1)

where w ∈ W = {(w1, . . . , wJ) : wj ≥ 0, j = 1, . . . , J,
∑J

j=1 wj = 1}, is a set of weights reflecting the importance of the

different variables in the composite indicator. Given a distribution f(w), w ∈ W , we can define the mean and standard

deviation of the composite indicator:

µi = W x′
iwf(w)dw, i = 1, . . . , n,

σi =
√

W (x′
iw − µi)2f(w)dw, i = 1, . . . , n.

(2)

The expressions in (2) are based, essentially, on specifying a uniform distribution of weights in set W , and, in turn,
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computing µi, σi by simulation when priority constraints like w1 ≥ w2 ≥ . . . ≥ wJ are available. The question is why the

density f(w) should be uniform in W . Surely, this is acceptable if the density represents a “prior” but then a posterior of

the form p(w|data) should have been derived which can be used to provide approximations to µi, σi in (2). An additional

problem that Greco et al. (2019) dealt with is computation of inefficiency, viz. a measure of whether given σi, the mean

µi is as high as possible. They deal with this problem in a second stage where they apply Data Envelopment Analysis

(DEA), in particular m-order frontiers.

Finally, we feel obliged to quote from Greco et al. (2019) on the following serious issue: “We stand by the principle

that a meaningful composite indicator should ideally reflect a multiplicity of viewpoints. Technically speaking, this can

be achieved in the weighting stage, in which individuals that the indicator concerns can participate, by expressing their

preferences on the importance of indicator dimensions. These individuals could constitute different clusters, e.g. experts,

policymakers, or even citizens at whom policies are addressed. Therefore, the main driver of this concept refrains from

the classic scheme of a single, allegedly representative weight vector in the construction of an indicator, by taking into

account all these individuals’ viewpoints. In the past, this has been feasible with the use of SMAA (see, e.g., Greco et al.,

2018)” (Greco et al., 2019, p. 945).

In this paper, we propose a unifying model where weights and inefficiencies are derived simultaneously from the

same problem, which is stated in the next section. In principle, uniform weights are not optimal and it is of interest to

examine the implications of formal statistical inference for these weights. Of course, it would have been great if statistical

inference provides support for uniform weights but this cannot be known in advance with obvious implications for rankings.

2 The model

Our new model is defined as follows:

CIi = x′
iw + vi − ui, i = 1, . . . , n, (3)

xi = fi1J + εi, i = 1, . . . , n, (4)

CIi is "as close as possible" to fi. (5)

where 1J denotes a vector of ones in <J , fi represents a common factor, vi is a two-sided error term representing noise, and

ui is a non-negative error term. According to equation (3), the composite indicator is a weighted average of elements of

xi, there is noise represented by vi as well as inefficiency ui relative to the frontier value of CIi. The term vi reflects usual

measurement error, and ui is a non-negative error term representing “inefficiency”: For a given value of the regressors, xi,

and given measurement error vi, ui represents the amount by which the observed composite indicator CIi falls short of

its maximum possible value.

Equation (4) represents xi as a factor model, where εi is a two-sided error term in <J . Finally, (5) states that, for

consistency purpose, the common factor and the composite indicator should be similar, to the extent possible. Without
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(5), consistency (viz. fi = CIi) would require: x′
iw = CIi+ε′iw which implies the following restriction among the different

error terms of the model:

ε′iw = −vi + ui ∼ vi + ui, i = 1, . . . , n, (6)

where “∼” denotes equality in distribution. In practice, it seems impossible to impose (6).

Equations (3), (4) and (5) are equivalent to the following problem. Conditional on (fi, i = 1, . . . , n):

min{fi,CIi, i=1,...,n},w
∑n

i=1 (CIi − fi)
2
,

CIi = x′
iw + vi − ui, i = 1, . . . , n,

xi = fi1J + εi, i = 1, . . . , n,

w ∈ <J
+, w

′1J = 1,

(7)

where 1J is a J × 1 vector of ones. This requires the interpretation of (5) in the sense that the L2-norm of the difference

between the composite indicator and the common factor should be as small as possible. Since the factors are not known,

if we are willing to assume:1

fi ∼ iidN (0, σ2
f ), i = 1, . . . , n, (8)

then the problem in (7) is equivalent to a weighted least squares problem of the following form:

λ1

n∑
i=1

(CIi − fi)
2 + λ2

n∑
i=1

(CIi − x′
iw + ui)

2 + λ3

n∑
i=1

u2
i + λ4

n∑
i=1

(xi − fi1J)
2 + λ5

n∑
i=1

f2
i , (9)

where λ1, . . . , λ5 > 0 are weights (whose sum is not necessarily one). Since the weights are unknown, they have to be

estimated as well. In fact (9) is in a form which is implied by the log likelihood / log posterior in (11) below. To derive

the posterior we make the following distributional assumptions:

vi ∼ iidN (0, σ2
v), ui ∼ iidN+(0, σ

2
u), εi ∼ iidNJ(0,Ω), i = 1, . . . , n, (10)

where iidN+(0, σ
2
u) denotes the half-normal distribution. Moreover, 0 denotes a J × 1 zero vector. All random variables

in (10) are independent of each other.

Based on (10) and (8) we define the following augmented posterior distribution:2

p(CI, f, w, u, h, σv, σu, σf ,Ω|X) ∝ h−n/2σ
−n/2
v σ

−n/2
u σ

−n/2
f |Ω|−n/2·

exp
{
− 1

2h2

∑n
i=1(CIi − fi)

2 − 1
2σ2

v

∑n
i=1(CIi − x′

iw + ui)
2 − 1

2σ2
u

∑n
i=1 u

2
i

}
·

exp
{
− 1

2

∑n
i=1(xi − fi1J)

′Ω−1(xi − fi1J)− 1
2σ2

f

∑n
i=1 f

2
i

}
· p(w) · p(σv, σu,Ω|w),

(11)

where CI = [CI1, ..., CIn]
′, f = [f1, ..., fn]

′, w = [w1, ..., wn]
′, u = [u1, ..., un]

′, X = [x′
1, ..., x

′
n]

′, and p(w) is a prior for w

1An alternative assumption is to perform factor analysis using (xi, i = 1, ..., n) prior to solving this problem. Moreover, in equation (8)
below, we assume that the variance of the factor is one, for identification purposes. In Bayesian analysis, this is not strictly necessary if a
proper prior is used for the variance of the factor.

2“Augmented” in the sense that latent variables CI, f, u are present in this posterior instead of integrating them out.
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defined over W . Specifically, following Greco et al. (2019b), we assume:

p(w) ∝ IW (w), w1 ≥ w2 ≥ . . . ≥ wJ , (12)

where IW (w) = 1, if w ∈ W , and zero otherwise. The inequality restrictions arise because we assume that different

priorities can be given to different variables. Moreover, p(σv, σu,Ω) is a prior on the parameters σv, σu,Ω. We use the

reference prior:

p(σv, σu, σf ,Ω|w) ∝ σ−1
v e−(q/2σ2

v)σ−1
u σ−1

f |Ω|−(J+1)/2, (13)

where q = 10−6. This prior is flat or “non-informative” for the scale parameters σu, σf and the different elements of Ω.3

In particular, we are interested in the posterior:

p(w|X) ∝ p(w|X)dϑ, (14)

where ϑ = [CI, f, u, σv, σu,Ω]. Posterior means of weights can be obtained as:

w = S−1
S∑

s=1

w(s), (15)

and posterior mean inefficiency as:

ui = S−1
S∑

s=1

u
(s)
i , i = 1, . . . , n. (16)

The posterior mean composite indicator can be estimated as

CIi = S−1
S∑

s=1

CI
(s)
i , i = 1, . . . , n. (17)

Posterior standard deviations, and in fact, posterior densities can be computed easily based on MCMC draws for these

parameters of interest.

3 Outliers and other problems

Greco et al. (2019a) argue convincingly that outliers can certainly be a problem and they propose standardizing the data,

as in Greco et al. (2018a, see online Appendix A.2). We use the same normalizations. This takes care of outliers, at least

in a partial way. As they write they adopt m-order frontiers to account for outliers in a second stage: “In this respect,

the robust m-order frontiers aid significantly in adjusting the estimators to account for these outliers, and given these

noticeable differences (especially around the frontiers containing the outliers), we strongly encourage their use alongside

our proposed approach”. In this work we follow a different approach which is easy to implement in practice. Specifically,
3Although this prior is rather flat, we need q > 0 to make sure that the posterior is finitely integrable.
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instead of the normal distribution of εi in (10) we assume a multivariate Student-t distribution:

εi ∼ tJ,ν(0,Ω), i = 1, . . . , n, (18)

where tJ,ν(0,Ω) denotes the J-variate Student-t distribution, whose location is a zero vector and the scale matrix is Ω (we

use the same symbol as in (10) to economize on notation but the interpretation is, apparently, different). A well-known

way to construct the distribution is as follows:

εi|U ∼ NJ(0, (U/ν)
−1/2Ω), U ∼ χ2

ν . (19)

Therefore, a multivariate Student-t distribution can be constructed as a multivariate normal with zero location

vector and scale matrix (U/ν)−1/2Ω where U follows the chi-square distribution with ν degrees of freedom.

In turn, this mixing process gives rise to the multivariate Student-t distribution with density:

p(εi; ν,Ω) =
Γ((ν + J)/2)

Γ(ν/2)(νJ)J/2|Σ|1/2
(
1 + 1

ν ε
′
iΩ

−1εi
)
, i = 1, . . . , n, (20)

whose covariance matrix is ν
ν−2Ω, provided ν > 2, and Γ(·) denotes the gamma function. Relative to (11) only minor

modifications are needed in MCMC to accommodate drawing ν and Uis, as working directly with (20) is quite cumbersome

(for details see Geweke, 1993, and Fernandez and Steel, 1999). Our prior for the degrees of freedom follows Geweke (1993)

and we assume:

p(ν) = λe−λν , ν > 0, (21)

where λ = 1
5 , implying that the prior mean and variance of ν are 5, i.e. we have considerable deviations from normality

but the Student-t distribution possesses moments up to fourth order. Deviations from normality can be justified, a priori,

based on the evidence and concerns of Greco et al. (2019).

It is notable that in Greco et al. (2019a) technical efficiency is measured using

u∗
i = min

α,β≥0, α+β=1
min

(σ′,µ′)∈Ψ̂
Fα,β(σi, µi)− Fα,β(σ

′, µ′), (22)

where Fα,β(σ, µ) = αµ+ βσ, Ψ̂ = {(σ, µ} |�∃(σ′, µ′) ∈ Ψ& (σ′, µ′) 6= (σ, µ), σ′ ≤ σ, µ′ ≥ µ}, and

Ψ =

{(
n∑

i=1

ωiµi,

n∑
i=1

ωiσi

)
| ωi ≥ 0, i = 1, . . . , n,

n∑
i=1

ωi = 1

}
.

The well-known Debreu-Farrell efficiency measure may be defined as θµ(σi, µi) = min
{
θ|(σi, θµi) ∈ Ψ̂

}
in the case

of µ-orientation, and θσ(σi, µi) = max
{
θ| (θσi, µi) ∈ Ψ̂

}
, in the case of σ-orientation. Pareto-Koopmans efficiency requires

θµ(σi, µi) = 1 or θσ(σi, µi) = 1 depending on the orientation. In our model, inefficiency is measured directly using (10)

and (11). In (3) there is no choice of orientation as inefficiency is directly attached to the composite indicator.
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Similar to (17) we can define the posterior standard deviation of the composite indicator:

SDCIi =

√√√√S−1

S∑
s=1

(
CI

(s)
i − CIi

)2
, i = 1, . . . , n. (23)

In turn, we can consider a model of the form:

CIi = b0 + b1SDCIi + b2SDCI2i + ṽi − ũi, i = 1, . . . , n, (24)

where vi ∼ iidN (0, σ2
ṽ), and, independently, ui ∼ iidN+(0, σ

2
ũ). The model should be a reasonable approximation based

on Figure 3, 4 and 7 in Greco et al. (2019) and it is consistent with µ-orientation.4 A potential problem is that we do not

allow for different groups. The problem can corrected easily, using the following model:

CIi = b0,Gi
+ b1,Gi

SDCIi +
1
2b2,Gi

SDCI2i + ṽi,Gi
− ũi,Gi

, i = 1, . . . , n, (25)

where ṽi ∼ iidN (0, σ2
ṽ,Gi

), and, independently, ũi ∼ iidN+(0, σ
2
ũ,Gi

), and Gi ∈ G = {1, . . . , G} ⊂ Z, indicates the group

membership (Z denotes the set of integers in <). There are, potentially, G groups at most, and the question is to estimate

Gi and the parameters conditional on the data. It is well-known that this is a mixture model that can be analyzed using

standard Bayesian MCMC techniques. We impose monotonicity and concavity restrictions using:5

b1,Gi
+ b2,Gi

SDCIi ≥ 0, b2,Gi
≤ 0 ∀Gi ∈ G, i = 1, . . . , n. (26)

An alternative is to modify the model as follows:

CIi = x′
iw + vi, i = 1, . . . , n, (27)

xi = fi1J + εi, i = 1, . . . , n, (28)

CIi is "as close as possible" to fi, i = 1, . . . , n, (29)

from which inefficiency (ui) is absent. For models that include inefficiency, for each MCMC draw, consider

CI
(s)
i = x′

iw
(s), SD

(s)
i =

√
x′
iVwxi, i = 1, . . . , n, s = 1, . . . , S, (30)

where Vw = S−1
∑S

s=1(w
(s) − w)(w(s) − w)′ = S−1

∑S
s=1 w

(s)w(s)′ − w · w′, and w is defined in (15). Given w these

measures can be computed easily. Then, for each MCMC draw (s = 1, ..., S), we estimate the following model by MCMC
4Clearly, σ− orientation can be easily accommodated.
5These conditions are imposed easily via rejection sampling in MCMC, i.e. draws which do not satisfy the constraints are rejected.
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for mixtures (Geweke and Amisano, 2007):

CI
(s)
i = b

(s)
0,Gi

+ b
(s)
1,Gi

SD
(s)
i + 1

2b
(s)
2,Gi

SD
(s) 2
i + ṽ

(s)
i,Gi

− ũ
(s)
i,Gi

, i = 1, . . . , n, (31)

subject to (26) for each Gi ∈ G. The model provides directly µ− σ inefficiency measures as:

ui = S−1
S∑

s=1

ũ
(s)
i,Gi

, i = 1, . . . , n, (32)

with the understanding that ũ(s)
i,Gi

is really ũ
(s)

i,G
(s)
i

, since group membership may change across MCMC iterations. Equation

(32) provides local inefficiency, that is inefficiency of a unit relative to its own frontier. Global inefficiency is defined

relative to a meta-frontier as follows. Given SDi, suppose G∗
i maximizes the value of: b

(s)
0,Gi

+ b
(s)
1,Gi

SD
(s)
i + 1

2b
(s)
2,Gi

SD
(s) 2
i ,

with respect to Gi for all s = 1, ..., S. In turn, global inefficiency is:

uglobal
i = ui +

[(
b
(s)
0,G∗

i
− b

(s)
0,Gi

)
+
(
b
(s)
1,G∗

i
− b

(s)
1,Gi

)
SD

(s)
i + 1

2

(
b
(s)
2,G∗

i
− b

(s)
2,Gi

)
SD

(s) 2
i

]
. (33)

The models in (25) and (31) are called Models A and B, respectively. Model A using posterior means of the

composite indicator and its standard deviation, whereas Model B accounts for parameter uncertainty in the composite

indicator and its standard deviation. On prior grounds, this is an important feature and the results delivered by Models

A and B could be very different. Our Model C allows for random country-specific weights:

wi ∼ iidNJ(w, σ
2
wIJ), i = 1, . . . , n, (34)

where w = 0.5, σw = 0.5, and IJ denotes the J × J identity matrix. For practical purposes this prior is rather diffuse.

The importance of Model C is in the fact that we account for heterogeneity. In effect, if this model receives support in

the light of the data, it means that a single composite indicator with common weights, may be problematic. In effect, this

would put into doubt the notion that there is a single composite indicator that can summarize the data.

Models D, E, F are the same as A, B, C, except that we adopt a multivariate Student-t distribution for εis as in

(20).

4 Empirical application

As in Greco et al. (2019a) we apply σ−µ efficiency analysis to the data set in the 2017 Report of ‘World Happiness’. The

‘World Happiness’ report (WHR, Helliwell et al., 2017) presents and analyses data of a survey conducted by the Gallup

World Poll.6 There are six key variables (GDP per capita, healthy life expectancy at birth, social support, freedom to
6Specifically, 3,000 respondents in each of the -roughly- 150 countries considered, evaluate their lives on a 0-10 scale known as ‘Cantril

Ladder’ (see Helliwell et al., 2017, p.123). As in Greco et al. (2019) “[w]e use a three-year rolling-window for the six variables, in order to be
consistent with the procedure used by theWorld Happiness Report for the subjective evaluation. This means that the values we consider in each
dimension in year 2016 are in fact non-weighted arithmetic averages of the period 2014-2016. We restrict the sample to only these countries
that possess data for all 6 dimensions for the 2016 and at least one of the years 2014 and 2015. After this data cleaning procedure we are left
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Table 1: Bayes factors
model Bayes factor

Model A without inefficiency 1.000 (6 groups)
Model A 17.42 (4 groups)
Model B 85.12 (5 groups)
Model C 21.30 (3 groups)
Model D 44.82 (6 groups)
Model E 113.32 (5 groups)
Model F 17.12 (6 groups)

Notes: Bayes factors have been computed for all combinations of models and number of groups G ∈ G = {1, ..., 10}. The optimal number of groups
in indicated in parentheses. Models A, B, C use the multivariate normality assumption as in (10). Models D, E, F use the multivariate Student-t
assumption as in (20).

make life choices, generosity and perceptions of corruption) for 119 countries. Weights of the composite indicator are

ranked in this order.

Following Greco et al. (2019a) we discuss and report only the efficiency of the top-10 ranked countries of the 2017

‘World Happiness’ report. Greco et al. (2019a) find that the top ten countries are countries found in the top ten rankings

are the following: Norway, Denmark, Iceland, Switzerland, Finland, the Netherlands, Canada, New Zealand, Australia

and Sweden, in this order. However, we find five or six groups when using Models D, E or F, instead of a total of 31 as

in Greco et al. (2019a).

Greco et al. (2019a) find that “the countries which are self-claimed to be ranked in the top-10 positions (i.e. having

the top-10 highest subjective evaluation) are positioned in our top-10 list as well, with the exception of Iceland and Finland,

which we position in the 11th and 13th places accordingly”. Our findings are similar. Before discussing the empirical

results, it is important to perform model selection as we have six competing specifications (viz. Models A–F). The Bayes

factors in favor of each model relative to the benchmark are presented in Table 1 along with the optimal number of

groups in each case. We have considered 60 models (models A–F along with unknown number of groups G ∈ {1, . . . , 10}).

As a benchmark we consider Model A without inefficiency and we compute all Bayes factors relative to this model. 7

Evidently, Model E is strongly preferred over the alternatives so, we proceed using Model E. The importance of this finding

is that a single set of weights can be used and heterogeneous weights are not needed in terms of fit versus parsimony.

From another, perspective, comparing the benchmark model with Model E, provides a principled way to test that a single

common indicator is acceptable in the light of the data, instead of taking it for granted. In other words, a single common

composite indicator is valid but in addition a Student-t distribution is also strongly favored by the data.The Bayes factors

favor by far Model E.

Posterior results for the WHR data are provided in Table 2 along with the WHR and Greco et al. (2019) rankings.

Besides the apparent difference in rankings which is due to the non-uniform weights and statistical inference, it is of some

interest to notice that, for example, Singapore is ranked 2 by using uniform weights but falls all the way to 35 in model D

with a final sample of 119 countries”.
7Suppose p(θ|X) ∝ L(θ;X)p(θ) is the posterior of a certain model, and M (X) is the normalizing constant of the posterior, viz. M (X) =

Θ L(θ;X)p(θ)dθ where Θ ⊂ <d is the parameter space. This is known as marginal (or integrated) likelihood and summarizes all evidence
(data-based and prior-based) in favor of a given specification. Clearly, p(θ|X)dθ =

L(θ;X)p(θ)

Θ L(θ;X)p(θ)dθ =
L(θ;X)p(θ)

M(X)
. The marginal likelihood

is obtained using the procedure in Chib (1995) which makes use of the conditional posterior distributions. Given marginal likelihoods, say
Mm(X),m = 1, ...,M ′, and the marginal likelihood of a benchmark model, say Mo(X), the Bayes factor in favor of model m and against model
o is: BFm,o(X) =

Mm(X)
Mo(X)

, m = 1, ...,M ′. For any model m′ 6= m the Bayes factor BFm,m′ (X) =
Mm(X)
Mm′ (X)

=
Mm(X)
Mo(X)

Mo(X)
Mm′ (X)

=
BFm,o(X)

BFm′,o(X)
,

so the choice of the benchmark model does not affect the results.
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Table 2: Empirical results for WHR data
Country WHR rank(a) Greco et al. (2019) rank

and inefficiency(a)
Model D Model E

Norway 1 6, 0.034 2, 0.042 2, 0.034
Denmark 2 3, 0.033 1, 0.017 1, 0.033
Iceland 3 11, 0.016 13, 0.025 13, 0.016

Switzerland 4 7, 0.020 9, 0.014 9, 0.020
Finland 5 13, 0.030 12, 0.024 12, 0.030

Netherlands 6 10, 0.028 11, 0.017 11, 0.028
Canada 7 9, 0.036 3, 0.056 3, 0.036

New Zealand 8 1, 0.052 2, 0.037 2, 0.052
Australia 9 4, 0.038 5, 0.042 4, 0.038
Sweden 10 5, 0.028 4, 0.039 5, 0.028
Austria 13 17, 0.032 16, 0.043 17, 0.032

United States 14 19, 0.011 18, 0.025 19, 0.011
Ireland 15 8, 0.038 9, 0.031 9, 0.038

Germany 16 15, 0.031 17, 0.075 15, 0.031
Belgium 17 18, 0.007 19, 0.022 19, 0.007

Luxembourg 18 12, 0.010 14, 0.028 14, 0.010
United Kingdom 19 14, 0.018 13, 0.041 16, 0.018

Singapore 26 2, 0.034 35, 0.044 7, 0.034
Nicaragua 41 33, 0.005 52, 0.012 50, 0.005
Ecuador 44 38, 0.002 41, 0.007 40, 0.002

Kazakhstan 60 30, 0.006 35, 0.002 37, 0.006
Hong Kong 71 16, 0.012 22, 0.012 24, 0.012
Honduras 91 40, 0.016 91, 0.019 40, 0.016

F.Y.R. of Macedonia 92 41, 0.004 44, 0.001 44, 0.004
Egypt 111 55, 0.000 57, 0.000 55, 0.000
Iraq 117 54, 0.000 59, 0.000 56, 0.000

Notes: (a) Taken from Table 4 of Greco et al. (2019a). Inefficiency corresponds to δi7 in Table 4 of Greco et al. (2019a) which is based on seven
frontiers. The ranks correspond to σ − µ frontier (sixth column in Table 4 of Greco et al. (2019a).

but is 7 in model E. This fact is due to the deviation of optimal weights from uniformity. In addition, the change in rank is

justified by handling of outliers through the Student-t distribution, inefficiency in the happiness index and incorporation

of statistical uncertainty about the weights. The fact that there is considerable statistical uncertainty about weights is

also illustrated in Figure 1, panel (b). In panel (d) of the same Figure, it is evident that there is considerable inefficiency

(ranging from zero to roughly 40% averaging 15-20%. Local inefficiency is less pronounced (panels (d) and (f) of Figure 1)

and averages roughly 2% across the different models. Besides parameter (weight) uncertainty there is also, and perhaps

more importantly, model uncertainty as illustrated in Figure 2 which reports results for different models. Clearly, results

from the model with the highest Bayes factor (which is the posterior odds ratio when the prior odds are 1:1) should be

preferred.

It is, perhaps, of interest to notice that (from results not reported here in the interest of space) we obtain the

following posterior median rankings for selected countries: Saudi Arabia 21, United Arab Emirates 28, Qatar 29, Bahrain

39 and Kuwait 40. From the 2019 WHR report (covering the period 2016–18) the reported rankings were, respectively,

28, 21, 29, 37, and 51. From the 2017 WHR report (covering the period 2014–16) the reported rankings were, respectively,

37, 21, 35, 41, and 39. So, in these cases, our results roughly match those in the WHR report.
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Table 3: Posterior statistics for weights (Model E)
posterior mean posterior s.d.

GDP per capita 0.2433 0.0299
healthy life expectancy at birth 0.2016 0.0239

social support 0.1701 0.0145
freedom to make life choices 0.1472 0.016

generosity 0.1275 0.0168
perceptions of corruption 0.1104 0.0151

Notes: Weights are ordered from high to low corresponding to the variables in the order they appear in the Table.

Reported in Figure 1 are marginal posterior densities of the composite indicator weights in panel (a), using Model E, the

posterior distribution of percentage difference between the common factor and the composite indicator, in panel (a), and

marginal posterior densities of global inefficiencies for models A–F in panels (c)-(f).

In panel (b) of Figure 1, reported are percentage differences between the composite indicator and the common

factor, which range from -0.2% to 0.3% with considerable probability mass in the neighborhood of zero. In effect, the

hypothesis that these differences are zero cannot be rejected in the light of the data. In panel (a) of Figure 1, reported are

posterior distributions of weights (for the preferred model E). Marginal posterior densities of global and local inefficiency,

for all models are reported in panels (c)–(f) of the same Figure. Evidently, global inefficiencies are much larger as they are

defined relative to a metafrontier as in (33). In Figure 2, reported are marginal posterior cumulative distribution functions

of the composite indicator weights. It is evident that the distributions satisfy a no-crossing property so, the weights can

be ordered without ambiguity.

In Figure 3, reported are posterior densities of the percentage difference between the composite indicator and the

common factor for all models A–F. Apart for Model E, posterior densities of the percentage difference have considerably

more spread. For Models D and F, due to bimodality, it is not even clear that this condition holds.

Posterior densities of degrees of freedom (ν) for the multivariate Student-t, are reported in Figure 4. For the

preferred model E, they range from 1 to 8 with modes around 3 and 6 so, it is doubtful that fourth moments exist. For

models D and F the posteriors are unimodal with posterior mean around 10 but they range from 2 to 16 so, there is

considerable posterior uncertainty. However, based on the probable values of ν it is clear that outliers are accounted for,

as ν can be quite low and, in any case, nowhere near 30, which corresponds, approximately, to a multivariate normal

distribution.

Finally, we discuss posterior sensitivity to prior values of λ in (21) as it relates to (19) or (20). We draw randomly

1,000 values of λ in the interval
[

1
30 , 2

]
which implies that prior expectations about the degrees of freedom parameter (ν)

of the multivariate Student-t distribution range from 1
2 to 30. For ν ' 30 the Student-t and the normal behave roughly

the same.8 To conserve space, we report the absolute percentage differences of new marginal posterior moments of weights

(across all 1,000 priors and relative to the benchmark prior ) in panel (g) of Figure 4. Evidently, the posterior moments

are approximately the same and they do not deviate significantly from the benchmark prior (λ = 1
5 ).

8The new posterior moments are computed using the sampling-importance-resampling method of Rubin (1987) and Smith and Gelfand
(1992). We use a 20% sub-sample size from the original MCMC sample.
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Figure 1: Aspects of the posterior distribution
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Figure 2: Marginal posterior distributions of weights
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Figure 3: Posterior densities of difference between CIi and fi for different models
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Figure 4: Posterior densities of degrees of freedom (ν) for multivariate Student-t distribution of εis and prior sensitivity
analysis
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Concluding Remarks

We provided a novel model of constructing composite indicators that takes into account statistical uncertainty about

weights of different predetermined variables on the indicator, and can handle outliers in a formal way via a Student-t

distribution. In an empirical application to WHR data we document important differences in rankings of different countries

in terms of the happiness indicator. We also document that there is significant model uncertainty so model comparison

and model selection (via Bayes factors) should be part of any analysis of composite indicators as they seem to be sensitive

to model specification and / or outlying observations.

Approximate Bayesian Computation (ABC) approaches are strongly encouraged for future work, along with Info-

Metrics techniques (to avoid many distributional assumptions required here, which could be a drawback). ABC methods,

usually, rely on moments but, on the other hand, moments are sensitive to outliers. Ways to resolve this problem in ABC

are necessarily left for future research.

TECHNICAL APPENDIX

To provide access to the posterior in (11), we use a Gibbs sampler which is based upon drawing successively from the

posterior conditional distributions associated with (11). Given starting values f (0)
i , w(0), u

(0)
i , σ

(0)
v , σ

(0)
u , σ

(0)
f ,Ω(0), we draw

from the following posterior conditional distributions, for s = 1, . . . , S.

CI
(s)
i ∼ CIi|f (s−1)

i , w(s−1), u
(s−1)
i , σ(s−1)

v , σ(s−1)
u , σ

(s−1)
f ,Ω(s−1), X), i = 1, ..., n, (A.1)

f
(s)
i ∼ fi|CI

(s)
i , w(s−1), u

(s−1)
i , σ(s−1)

v , σ(s−1)
u , σ

(s−1)
f ,Ω(s−1), X), (A.2)

w(s) ∼ w|CI
(s)
i , f

(s)
i , u

(s−1)
i , σ(s−1)

v , σ(s−1)
u , σ

(s−1)
f ,Ω(s−1), X), (A.3)

u
(s)
i ∼ ui|CI

(s)
i , f

(s)
i , w(s), σ(s−1)

v , σ(s−1)
u , σ

(s−1)
f ,Ω(s−1), X), i = 1, . . . , n, (A.4)

σ(s)
v ∼ σv|CI

(s)
i , f

(s)
i , w(s), u

(s)
i , σ(s−1)

u , σ
(s−1)
f ,Ω(s−1), X), (A.5)

σ(s)
u ∼ σu|CI

(s)
i , f

(s)
i , w(s), u

(s)
i , σ(s)

v , σ
(s−1)
f ,Ω(s−1), X), (A.6)

σ
(s)
f ∼ σu|CI

(s)
i , f

(s)
i , w(s), u

(s)
i , σ(s)

v , σ(s−1)
u ,Ω(s−1), X), (A.7)

Ω(s) ∼ Ω|CI
(s)
i , f

(s)
i , w(s), u

(s)
i , σ(s)

v , σ(s)
u , σ

(s−1)
f , X). (A.8)

In turn,
[
f
(s)
i , w(s), u

(s)
i , σ

(s)
v , σ

(s)
u , σ

(s)
f ,Ω(s), s = 1, ..., S

]
is a sample from the distribution whose non-normalized

density is given by (11). The Gibbs sampler operates by drawing from the following conditional posterior distributions:

CIi|· ∼ N

(
h2(x′

iw − ui) + σ2
vfi

σ2
v + h2

,
σ2
vh

2

σ2
v + h2

)
, i = 1, . . . , n, (A.9)
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fi|· ∼ N

(
σ2
f · 1′JΩ−1xi

σ2
f1

′
JΩ

−11J + 1
,

σ2
f

σ2
f1

′
JΩ

−11j + 1

)
, i = 1, . . . , n, (A.10)

w|· ∼ NJ

(
(X′X)−1X′ (CI + u) , σ2

v(X′X)−1
)
, (A.11)

ui|· ∼ N+

(
(x′

iw − CIi)σ
2
u

σ2
v + σ2

u

,
σ2
vσ

2
u

σ2
v + σ2

u

)
, i = 1, . . . , n, (A.12)

∑n
i=1(CIi − x′

iw + ui)
2 + q̄

σ2
v

|· ∼ χ2
n, (A.13)

∑n
i=1 u

2
i

σ2
u

|· ∼ χ2
n, (A.14)

∑n
i=1(CIi − fi)

2

σ2
f

|· ∼ χ2
n, (A.15)

p(Ω|·) ∝ |Ω|−(n+J+1)/2 exp
{
− 1

2 trΩ
−1Q

}
, (A.16)

where Q =
∑n

i=1(xi − fi1J)(xi − fi1J)
′, and X is the n× J matrix containing all data on xis. All these distributions are

well known and random number generation is quite easy. In particular, the last one is an inverted Wishart distribution

(Zellner, 1971, pp. 395–396).
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