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Abstract

In this paper we propose some alternative formulations and estimation of technical and allocative ine�ciency in

the presence of some exogenous variables in the context of a panel stochastic frontier model which includes time-

invariant �rm e�ects (heterogeneity) along with time-varying technical ine�ciency and random noise. These exogenous

variables are used to explain technical and allocative ine�ciency as well as �rm heterogeneity. The presence of these

exogenous variables allows us to relax some of the assumptions made in a recent paper by Lai and Kumbhakar (2019).

These variables also allow to add �exibility in estimating the model parameters as well as both technical and allocative

ine�ciency and costs therefrom. More speci�cally, the incidental parameters problem associated with �rm heterogeneity

in the production function as well in the �rst-order conditions of cost minimization can be avoided by parameterizing

them in terms of the exogenous variables. We propose and implement model comparison based on Bayes factors and

marginal likelihood.
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1 Introduction

Stochastic frontier models going back to Aigner, Lovell and Schmidt (1977), and Meeusen and van den Broeck (1977) and

its earlier extensions to accommodate endogeneity of inputs (Schmidt and Lovell 1979) assumed all the error components

to be independently distributed with some speci�c distributions. The main advantage of assuming distributions on

the error components is that on can get observation-speci�c estimates of technical and allocative ine�ciency and costs

therefrom. Some of the distributions assumptions can be relaxed if there are exogenous variables that can explain these

ine�ciencies. This might be especially useful in panel data models when one wants to control for �rm heterogeneity in

both the production function and the �rst-order conditions of cost minimization. These exogenous variables can also be

used to explain technical ine�ciency either in a pure parametric form or in a stochastic set-up.

In a recent paper Lai and Kumbhakar (2019) consider a state-of-the-art panel stochastic production frontier model

and estimate it using a system that includes both technical and allocative ine�ciency. The system consists of a Cobb-

Douglas production function with �xed e�ects along with the �rst order conditions (FOCs) from cost minimization,

and is a panel generalization of the cross-sectional model in Schmidt and Lovell (1979). By using the FOCs the model

accounts for the endogeneity of inputs which is a problem in production function estimation dating back to Marschak and

Andrews (1944). Allocative ine�ciency is modeled as non-ful�llment of the FOCs which also include �xed e�ects. Lai

and Kumbhakar (2019) propose to take care of the incidental parameters problem associated with the �xed e�ects in the

production function as well as in the FOCs using the half-panel jackknife estimator of Dhaene and Jochmans (2015).

In terms of similarities with Lai and Kumbhakar (2018), our common departure point is that estimating the primal

system (consisting of the production function and the associated FOCs for cost minimization) requires a) taking into

account the econometric endogeneity of inputs, and b) modeling the �xed �rm e�ects in both the production function and

the FOCs. Compared to Lai and Kumbhakar (2018) our paper is di�erent in a number of aspects:

In this paper, we propose alternative, more general speci�cations to the modeling of �xed e�ects assuming that

some exogenous variables (z) are available to explain �rm heterogeneity and ine�ciency. In particular, we break new

ground relative to Lai and Kumbhakar (2018) along the following lines:

i) Instead of assuming that �rm e�ects (heterogeneity) are �xed, we assume that they are members of the wider

class of Mundlak's (1961) model. For this, we specify �rm heterogeneity as a parametric function of the z variables along

with a random error added in it. This enables us to test whether �rm heterogeneity is �xed (determined parametrically

by the z variables) or random.

ii) We model technical ine�ciency using both a distributional assumption (lognormality) and a parametric speci�-

cation (using certain exogenous variables, say z) introduced by Paul and Shankar (2018) and further generalized in Tsionas

and Mamatzakis (2019) where it is shown that the ine�ciency function may depend on endogenous variables as well and

estimation can be performed via the generalized method of moments technique.

iii) Mundlak's approach is examined in its full version as well as in its more traditional �stripped down� version in

which �rm e�ects are linear functions of the average values of available predetermined variables. Mundlak's device is an

important way of modeling �xed e�ects as it nests both �xed and random e�ect speci�cations. Typically, the Mundlak
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device makes �rm e�ects linear functions of the average values of certain exogenous variables (z) and adds an error term.

In fact, this is a testable assumption, something that appears to be novel in the literature. In fact, we propose a generalized

Mundlak speci�cation which does not depend on the assumption that average values of zs are the only determinants of

�rm e�ects.

iv) We do not assume that �rm e�ects and error terms in the �rst-order conditions of cost minimization, re�ect

allocative ine�ciency. As a matter of fact, we allow for a general semi-parametric model that allows arbitrary deviations

from these �rst-order conditions via arti�cial neural networks. The importance of additional terms coming from the

semi-parametric model can be evaluated easily using Bayes factors.

v) Several alternative models are compared in terms of Bayes factors, focusing on �xed versus random e�ects, exact

ful�llment of cost minimizing �rst-order conditions, parametric versus random ine�ciency, as well as the importance of

the semi-parametric modi�cation of the production function and the �rst-order conditions.

vi) As we use a number of di�erent models making di�erent assumptions about the nature of �rm e�ects, the

parametrization of ine�ciency and the nature of the �rst-order conditions it is important to select a particular model. In

the context of Bayesian inference this can be done using Bayes factors or posterior model probabilities. However, once

posterior model probabilities are available, sample distributions of important functions of interest (like returns to scale,

ine�ciency, cost of allocative ine�ciency etc.) can be derived using Bayesian model averaging. Model averaging can

be performed easily by weighting functions of interest arising from di�erent models using the associated posterior model

probabilities.

2 Models

2.1 General

Before proceeding, it might be useful to derive conditions for cost-minimization and illustrate the di�erence between the

primal and dual problems. Suppose there is a single output y, and inputs x ∈ <J+ whose prices are w ∈ <J+. Production

possibilities are given by the production function, y = f(x), which satis�es the standard neoclassical properties. The cost

minimization problem is:

C(w, y) = minx∈<J+ :
∑J
j=1 wjxj ,

subject to y = f(x).

In this problem w and y are predetermined and the optimal solution, C(w, y) is the cost function which provides

the minimum cost to produce output y. Using the Lagrange function, L =
∑J
j=1 wjxj + λ {y − f(x)}, the �rst order

conditions are as follows:

wj = λfj(x)∀j = 1, . . . , J,

y = f(x),

where fj(x) = ∂f(x)
∂xj
∀j = 1, . . . , J . We can eliminate the Lagrange multiplier λ as follows:
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wj
w1

=
fj(x)
f1(x)

∀j = 2, . . . , J,

y = f(x).

There are J equations for the J unknown input demands which are, say, x∗j (w, y)∀j = 1, . . . , J . Standard manipu-

lations yield

wjxj
w1x1

=
fj(x)xj/y

f1(x)x1/y
∀j = 2, . . . , J,

where Ej(x) ≡ fj(x)xj/y, is the elasticity of the production function with respect to input xj . Therefore, the cost-

minimization conditions can be written as:

lnxj − lnx1 = lnw1 − lnwj + ln Ej(x)− ln E1(x),

y = f(x).

This is the �primal� version of the system which consists of the production function and the J − 1 �rst-order

conditions for cost minimization. In the �dual� version of the problem one can specify a functional form for the cost

function C(w, y) and then apply Shephard's lemma to obtain the following duality result:

∂C(w, y)

∂wj
= x∗j (w, y)∀j = 1, . . . , J.

By simple algebraic operations these equations can be written as follows:

∂ lnC(w, y)

∂ lnwj
= s∗j (w, y)∀j = 1, . . . , J,

where s∗j (w, y) ≡ wjx
∗
j (w,y)∑J

j′=1
wj′x

∗
j′ (w,y)

∀j = 1, . . . , J , represent the cost shares of each input.

Therefore, there are two ways to estimate the technology. In the dual approach one would have to estimate the

cost function along with its associated J − 1 share equations (as by de�nition cost shares sum to unity). In the primal

approach one would have to estimate the production function along with the J − 1 �rst-order conditions. In theory, the

dual approach can be used to obtain both technical and allocative ine�ciency in a way that respects the so-called Greene's

problem but the resulting system of equations allowing for allocative distortions is highly nonlinear. From this perspective,

estimating the primal system is easier, no matter how complicated the production function may be.

2.2 New models

We start with the formulation used in Lai and Kumbhakar (2019) with a slight change in notations:

ln yit = β0 +

J∑
j=1

βj lnxjit + τ1i + v1it − uit, i = 1, ..., n, t = 1, ..., T, (1)
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where yit is output for �rm i and date t, xjit is the jth input for �rm i and date t , τ1i is �rm heterogeneity representing

time-invariant managerial skill, v1it is a two-sided error term, uit is a non-negative error component that represents

technical ine�ciency in production, and βj > 0, j = 1, ..., J . From the FOC of cost minimization (where inputs are

endogeneous choice variables and output is predetermined) we obtain:

∂ ln yit/∂ lnxjit
∂ ln yit/∂ lnx1it

=
wjitxjit
w1itx1it

=
βj
β1
eζjit , 2 = 1, ..., J. (2)

These conditions can be expressed as follows:

lnx1it − lnxjit = ln(wjit/w1it) + (lnβ1 − lnβj) + τji + vjit, j = 2, ..., J. (3)

where ζjit = τji + vjit is a two-sided error component that represents deviations from the exact ful�llment of FOC and,

therefore, represents allocative ine�ciency.1 Speci�cally, vjit is a two-sided error component and τji is a �xed e�ect

(speci�c for each input and �rm).

This system of equations (which is nonlinear in the parameters) can be estimated using the method of maximum

likelihood (ML) after noticing that the Jacobian of transformation from vit = [v1it, ..., vJit]
′ to the endogenous variables

Xit = [lnx1it, ..., lnxJit]
′ is simply

∑J
j=1 βj . Since there is a large number of �xed e�ects τ i = [τ1i, ..., τJi]

′ whose number

grows with the number of �rms (n) estimation by ML yields consistent estimators when both n and T grow to in�nity

but not for �xed T as n tends to in�nity (Neyman and Scott, 1948, and Schmidt, 19882).

We can write (1) and (3) as follows:

F (Xit;Zit,β) = τ i1J + vit − uitι, i = 1, ..., n, t = 1, ..., T, (4)

where Zit ∈ <dZ is a vector of exogenous variables, β = [β1, ..., βJ ]′, ι = [1, 0, ..., 0]′, 1J = [1, 1, ..., 1]′. One can either

keep β0 as a parameter but impose the identi�ability restriction:
∑n
i=1 τ1i = 0, or drop β0 and leave

∑n
i=1 τ1i unrestricted

(that is, we set β0 = 0). We use the �rst option without loss of generality. Moreover

F (Xit;Zit,β) =



ln yit − β0 −
∑J
j=1 βj lnxjit

lnx1it − lnx2it − ln(w2it/w1it)− (lnβ1 − lnβ2)

...

lnx1it − lnxJit − ln(wJit/w1it)− (lnβ1 − lnβJ)


, i = 1, ..., n, t = 1, ..., T. (5)

1Greene's problem arises only if we consider the cost function and associated share equations. In this paper, we use the production function
and associated �rst-order conditions for cost minimization. Therefore, the terms that account for allocative ine�ciency in the �rst-order
conditions do not appear in the production function itself. However, the computation of allocative ine�ciency becomes involved in this case,
an issue that we take up in equations (7)-(10).

2The incidental parameters problem has not been resolved as of yet although a number of contributions have been made. For details see
Arellano and Hahn (2006), and Lancaster (2002). For the Bayesian approach see Liseo (2005). The Bayesian approach to the incidental
parameters problem is still developing. The discussion boils down to considering di�erent kinds of asymptotics, viz. n → ∞ with �xed T ,
T →∞ with �xed n, or n, T →∞ possibly at di�erent rates. When n, T →∞ the incidental parameters problem does not appear as estimators
are consistent although, of course, they may be biased in �nite samples particularly in nonlinear or dynamic models.
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The above model can be estimated (as in Lai and Kumbhakar (2019)) using the distributional assumptions:

vit ∼ iidNJ(0,Σ), uit ∼ iidN+(0, σ2
u), i = 1, ..., n, t = 1, ..., T, (6)

where N+(0, σ2
u) denotes the half-normal distribution and NJ(0,Σ) denotes the J-variate normal distribution with mean

a zero vector, and covariance matrix Σ. To refer to this model later we call itModel 0. If τi are parameters, the residuals

from the production function in (1), i.e., v1it − uit, can be used to estimate technical ine�ciency from the Jondrow et al.

(1982) formula. For the system de�ned in (1) and (3) it is straightforward to derive the input demand functions (xjit)

with and without ζjit and derive the algebraic formula for the cost of allocative ine�ciency from

∑
j

wjitxjit|ζjit 6=0 −
∑
j

wjitxjit|ζjit=0 ≡ C(wit, yit)|ζjit 6=0 − C(wit, yit)|ζjit=0. (7)

Following Schmidt and Lovell (1979) and Lai and Kumbhakar (2019), we compute cost of allocative ine�ciency from

CAIit = lnC(wit, yit)|ζjit 6=0 − lnC(wit, yit)|ζjit=0, (8)

which when multiplied by 100 can be interpreted as the percentage increase in cost due to allocative ine�ciency. For the

system de�ned in (1) and (3)is given by the expression

CAIit = (Eit − ln r) , (9)

where

Eit =
1

r

J∑
j=2

βjζjit + ln

β1 +

J∑
j=2

βj exp(−ζjit)

 , (10)

and r =
∑J
j=1 βj . That is, cost is increased by 100 (Eit − ln r) percent due to allocative ine�ciency. If there is no input

allocative ine�ciency (i.e., ζjit = 0 for all i, j, t), then Eit − ln r = 0. Similarly, cost of technical ine�ciency is 1
ruit, i.e.,

cost is increased by ( 1
ruit)100 percent due to technical ine�ciency, uit. It is worth emphasizing that to compute CAI it

is necessary to solve for xjit using the system in ((1)) and ((3)). This requirement restricts the use of �exible functional

form for the production function in ((1)).

3 Model I: Parameterized technical ine�ciency

An alternative to assuming uit to be random and distributed half-normally is to specify it as a parametric function of the

Z variables. Following Paul and Shankar (2018) and Tsionas and Mamatzakis (2019) in Model I we fully parameterize
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technical e�ciency as3

e−uit = Φ(Z ′itγ)⇒ uit = − ln Φ(Z ′itγ), (11)

where Zit is the vector of exogenous variables explaining ine�ciency, γ is the corresponding parameter vector, and Φ(.)

denotes a cumulative distribution function that takes values in (0, 1]. One can use any cumulative distribution function,

for example, the standard normal cumulative distribution function Φ(z) which is: Φ(z) =
∫ z
−∞(2π)−1/2e−ξ

2/2dξ.

To continue with this approach, we set F (Xit;Zit,β)− ln Φ(Z ′itγ) ≡ F(Xit;Zit,β,γ), and write the system as

F(Xit;Zit,β,γ) = τ i1J + vit, i = 1, ..., n, t = 1, ..., T, (12)

where

vit ∼ iidNJ(0,Σ), i = 1, . . . , n, t = 1, ..., T. (13)

The �rm heterogeneity vector τ i creates the incidental parameters problem when the elements of τ i are treated as

parameters because its dimension increases with n. One way to deal with the problem is to use either the �rst di�erence

or the within transformation to the model in (12) as in Lai and Kumbhakar (2019). Another alternative is to parameterize

explicitly the correlation between the �rm e�ects and the predetermined variables (as suggested by Mundlak (1978) and

Chamberlain (1980)):

τ1i =
∑T
t=1Z

′
ita1t + ω1i,

τ2i =
∑T
t=1Z

′
ita2t + ω2i,

...

τJi =
∑T
t=1Z

′
itaJt + ωJi,

(14)

where ajt is a vector of parameters (j = 1, ..., J, t = 1, ..., T ), and ωi = [ω1i, ..., ωJi]
′, i = 1, ..., n is a vector of random

e�ects or error terms uncorrelated with the Xit;Zit variables. We will call this the General Mundlak Formulation

to model �rm e�ects.4

To reduce the number of ajt parameters, we consider a parsimonious formulation and assume that �rm e�ects

depend on the mean (over time) values of the predetermined variables, i.e.,

τji = Z
′
iαj + ωji, j = 1, ..., J, i = 1, ..., n, (15)

where Zi = T−1
∑T
t=1Zit, i = 1, ..., n. We call this Means-based Mundlak Formulation.

3As uit ≥ 0, technical e�ciency e−uit ∈ (0, 1]. We wish to thank an anonymous reviewer for raising the point that exogenous variables can,
in fact, appear in this equation as well as in the production function and no modi�cations are needed in terms of estimation. Another point
raised by the reviewer concerns the use of the Cobb-Douglas production function. The advantage of the Cobb-Douglas is that it is self-dual in
the sense that the cost function corresponding to a Cobb-Douglas production function is also Cobb-Douglas and its parameters can be recovered.
Clearly, alternative functional forms can be clearly estimated along with the system of their �rst-order conditions using all the new devices
proposed in this paper (Mundlak generalized speci�cation, parametric speci�cation of ine�ciency, neural networks in �rst-order conditions to
allow for semi�parametric formulation, etc.) For other functional forms like the translog, we do not have the cost function in closed form and,
therefore, we cannot recover allocative ine�ciency and its cost. This is a major research problem and we are currently working on it hoping to
provide results in the not too distant future.

4Note that in Chamberlain (1980), Mundlak (1978), the �rm e�ects are expressed as functions of the covariates. Since in our case covariates
are inputs (x) which are endogenous, we specify �rm-e�ects as functions of exogenous variables.
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τ i =

T∑
t=1

(IJ ⊗Z ′it)at + ωi, i = 1, ..., n, (16)

where IJ denotes the J×J identity matrix, and at = [a′1t,a
′
2t, ...,a

′
Jt]
′, t = 1, ..., T is a parameter vector whose dimension-

ality is JdZ . In total, there are TJdZ such parameters. For �xed T and large n, this approach is desirable as, usually, we

have a large number of �rms and relatively few time periods. Denoting Zi = [IJ ⊗Z ′it, t = 1, ..., T ], a J × dZJT matrix,

and a = [a′1,a
′
2, ...,aT ]′, a dZJT × 1 vector, we have:

τ i = Zia+ ωi, i = 1, ..., n. (17)

Therefore, the system consists of (12), (13), (17) along with the following distributional assumption:

ωi ∼ iidN (0,Ω), i = 1, ..., n. (18)

The advantages of the Mundlak device are many. First, it allows explicitly for correlation between a vector of �rm

e�ects and the input variables via the predetermined variables. Second, when a = 0dZJT , the model reduces to a standard

random e�ects model where the random e�ects are the ωis. Third, when Ω = OJ×J , the model reduces to a �xed e�ects

model in the sense that the τ is are parametric functions of Zi, i.e. τ i = Zia. Thus this �xed e�ects model is not the

same as the one in which the τi are parameters.

Denoting θ = [β′,γ′]′ ∈ <d where d stands for the dimensionality of the parameter vector, the likelihood function

is:

L(θ,Σ,a,Ω;D) =
∫
<J (2π)−nT/2|Σ|−nT/2

∏n
i=1

∏T
t=1 exp

{
− 1

2 [F(Xit;Zit,θ)− τ i]′Σ−1 [F(Xit;Zit,θ)− τ i]
}
·

(2π)−n/2|Ω|−n/2
∏n
i=1 exp

{
− 1

2 (τ i −Zia)
′
Ω−1 (τ i −Zia)

}
dτ i.

(19)

where D = {yit, Xit,Zit, i = 1, ..., n, t = 1, ..., T} denotes the entire set of data. In a Bayesian framework, suppose we

have a prior of the form

p(θ,Σ,a,Ω) ∝ p(Σ,Ω) · p(θ,a|Σ,Ω) ∝ |Σ|−(J+1)/2 · |Ω|−(J+1)/2 · p(θ,a) ∝ |Σ|−(J+1)/2 · |Ω|−(J+1)/2 · p(a). (20)

The prior for the covariance matrices, p(Σ) ∝ |Σ|−(J+1)/2 and p(Ω) ∝ |Ω|−(J+1)/2 is the standard �non-informative�

prior (Zellner, 1971, p. 24, formula 8.9) and p(θ,a) ∝ const., viz. a �at prior for all parameters β and γ. For the Mundlak

parameters, a, we assume a prior of the form:

a ∼ NTJdZ
(
0, h2I

)
, (21)

where the parameter h = 103 so that the prior is relatively uninformative. We use this �regularization prior� because the
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number of parameters in a is potentially large. The prior is rather di�use for all practical purposes. For example, in our

application, which is the same as in Lai and Kumbhakar (2019) we have n = 192, T = 12, J = 3 and dZ = 4 if relative

input prices, a time trend, and output are used as the predetermined variables. This leads to TJdZ = 108 parameters.

Although this number of parameters may seem exceedingly large, in fact, (14) is much more general compared to (15).

Note that (15) involves only dZJ = 9 parameters so the question of model �t versus parsimony remains to be resolved on

empirical grounds.

We write the prior for all the parameters as:

p(θ,Σ,a,Ω) ∝ |Σ|−(J+1)/2|Ω|−(J+1)/2 · exp
(
− 1

2h2a
′a
)
. (22)

Using Bayes' theorem, the posterior is:

p(θ,Σ,a,Ω|D) ∝ L(θ,Σ,a,Ω;D)p(θ,Σ,a,Ω) ∝∫
<J |Σ|

−nT/2−(J+1)/2 exp
{
− 1

2

∑n
i=1

∑T
t=1 [F(Xit;Zit,θ)− τ i]′Σ−1 [F(Xit;Zit,θ)− τ i]

}
×

|Ω|−n/2−(J+1)/2 exp
{
− 1

2

∑n
i=1 (τ i −Zia)

′
Ω−1 (τ i −Zia)− 1

2h2a
′a
}

dτ i.

(23)

Alternatively, we can consider the posterior augmented with the �rm e�ects to avoid the multivariate integration:

p(θ,Σ,a,Ω, τ |D) ∝ |Σ|−nT/2−(J+1)/2 exp
{
− 1

2

∑n
i=1

∑T
t=1 [F(Xit;Zit,θ)− τ i]′Σ−1 [F(Xit;Zit,θ)− τ i]

}
×

|Ω|−n/2−(J+1)/2 exp
{
− 1

2

∑n
i=1 (τ i −Zia)

′
Ω−1 (τ i −Zia)− 1

2h2a
′a
}
,

(24)

where τ = [τ ′1, ..., τ
′
n]′. The posterior in (24) can be analyzed using numerical techniques organized around Markov Chain

Monte Carlo (MCMC), and especially the Gibbs sampler with data augmentation. The Gibbs sampler provides a sequence

of draws
{
θ(s),Σ(s),a(s),Ω(s), τ (s), s = 1, ..., S

}
(in general, not i.i.d) which converges in distribution to the posterior

non-normalized density provided by (24).

Once the parameters are estimated, we can compute costs of technical and allocative ine�ciency using the same

procedure discussed earlier for Model 0. Since technical ine�ciency is fully parameterized, it can be estimated from (11)

without using the Jondrow et al. (1982) procedure. However, there is no change in the computation of CAI.

4 Model II: Lognormal distribution for technical ine�ciency

In Model II we replace the parametric assumption on uit in (11) with a distributional assumption, viz.,

lnuit ∼ N (Z ′itδ, σ
2
u), i = 1, ..., n, t = 1, ..., T, (25)

i.e., uit is assumed to follow a lognornal distribution where δ is the vector of parameters associated with the exogenous

variables Zit. The modeling of τi is performed along the lines of Mundlak discussed before.

This distribution more convenient relative to the truncated normal speci�cation both in terms of estimation and
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interpretation of the δ parameters. In the truncated normal model the Zit variables appear in a complicated way in the

mean function of uit and it is cumbersome to derive marginal e�ects of the Zit variables or interpret the δ parameters. In

(25) the interpretation is straightforward. For example, if Zkit is in log, ∂E[ln(uit)]/∂Zkit = δk, that is the δk parameters

are elasticities of the environmental variables on mean ine�ciency.

From the distributional assumption in (25) we have:

p(uit|Zit, δ, σ2
u) =

1

uit
(2πσ2

u)−1/2 exp
{
− 1

2σ2
u

(
lnuit −Z ′itδ

)2}
, i = 1, ..., n, t = 1, ..., T. (26)

Since marginal likelihoods and Bayes factors can be computed, we can compare u being a random versus deterministic.

Comparing (7) and (22) is important as, in principle, it allows to determine whether technical ine�ciency is random. In

turn, this allows to compare di�erent approaches to e�ciency as in (7) and (22).

Technical details on estimation of this model are presented in the Technical Appendix. Once the parameters are

estimated, we can use the procedure under Model 0 to estimate technical and allocative ine�ciency and costs therefrom.

5 Model III: Generalization of Allocative Ine�ciency

Following Schmidt and Lovell (1979), Lai and Kumbhakar (2019) modeled allocative ine�ciency as deviations from the

exact ful�llment of the FOCs of cost minimization. This departure is captured by a random variable which might have a

non-zero mean (for each input pair) in a cross-sectional model (as in Schmidt and Lovell (1979)) and a �rm-speci�c mean

for each input pair in a panel data (as in Lai and Kumbhakar (2019)). Note that the deviations from the exact FOCs is

likely to depend on input prices (Farrell (1957)). This can be easily seen from the Farrell type �gure explaining costs of

technical and allocative ine�ciency as in Figure 4.1 in Kumbhakar and Lovell (2000), p. 160 and Figure 8.2 in Kumbhakar,

Wang and Horncastle (2015). However, this important feature is not incorporated in any of the stochastic frontier model

that estimated allocative ine�ciency and cost therefrom. To allow allocative ine�ciency to depend on input prices and

possibly on some environmental variables (ZAit), which might be di�erent from Zit � the ones that are used to explain

technical ine�ciency, we write the FOC in (3) in a more general form as follows:

lnx1it − lnxjit = ln(wjit/w1it) + (lnβ1 − lnβj) + fj ({ln(wjit/w1it), j = 2, ..., J} ,ZAit) + τji + vjit, j = 2, ..., J, (27)

where fj (., .) is a function of log relative input prices and ZAit. Note that ZAit might be di�erent from Zit, for at least

some elements if not all. Suppose wit = [ln(w2it/w1it), ..., ln(wJit/w1it)]
′ is the (J − 1) × 1 vector of log relative input

prices so that

lnx1it − lnxjit = ln(wjit/w1it) + (lnβ1 − lnβj) + fj (wit,ZAit) + τji + vjit, j = 2, ..., J. (28)

The functions fj (wit,ZAit) , j = 2, ..., J allow for deviations of the FOCs from those of cost minimization in a

systematic way via input prices as noted in Farrell (1957). Of course, τji, vjit also represent deviations from the FOCs.
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The purpose of introducing additional features into allocative ine�ciency via fj (wit,ZAit) , j = 2, ..., J , is to relate

deviations from cost minimization explicitly to input prices and some other ZA variables. The τji components might

be related to unobserved input- and �rm-speci�c factors such as managerial skill in allocating di�erent inputs. Finally,

the vjit component is purely random and is outside the control of �rms. Thus we allow for deviations in the form

of functions fj (wit,ZAit) , j = 2, ..., J , in order to examine whether di�erence in input prices can explain allocative

ine�ciency beyond those that can be attributed to random errors or time-invariant managerial skills. If this is the

case, then we expect fj (wit,ZAit) = 0 ∀j = 2, ..., J , empirically. If we denote ζejit = fj (wit,ZAit) + τji + vjit, then

ζejit = ζjit + fj (wit,ZAit). That is, allocative ine�ciency in Lai-Kumbhakar becomes a special case of our extended

model. If fj (wit,ZAit) = 0 ∀j = 2, ..., J then there is no systematic deviation explained by exogenous variables other

than, possibly, τji and the error terms vjit. Using ζ
e
jit as allocative ine�ciency for the input pair (j, 1), we can de�ne CAI

in our extended model as before, i.e., CAIeit = (Eeit − ln r) where Eeit = 1
r

∑J
j=2 βjζ

e
jit + ln

(
β1 +

∑J
j=2 βj exp(−ζejit)

)
and

r =
∑J
j=1 βj .

An important feature of the extension in Model III is that we do not assume any functional form of fj (wit,ZAit).

We model this function semi-parametrically using arti�cial neural networks (ANN):

fj (wit,ZAit) ≡ fj (W it) =

Gj∑
g=1

δ1jgϕ
(
W ′

itδjg
)
, j = 2, ..., J, (29)

where W it ≡ [w′it,ZA
′
it]
′, δ1j and δjg are parameters, and ϕ(.) is an activation function, for which we assume:

ϕ(ξ) =
1

1 + e−ξ
, ξ ∈ <. (30)

For identi�cation purposes, we assume δ1j1 < δ1j2 < ... < δ1jG. It is well known that an ANN can approximate any

functional form provided the number of nodes Gj increases. For simplicity we assume Gj = G ∈ {1, 2, ...} and we select

the value of G using a data-based procedure (viz. Bayes factors). The introduction of (29) does not introduce any new

statistical problems other than we have to specify a prior for δ = [δ1jg, δ
′
2g, ..., δ

′
Jg, g = 1, ..., G]′. Speci�cally, we assume

the same prior as in (21), viz.:

δ ∼ N
(
0, h2I

)
, (31)

where h = 103 which can be dominated easily by the data. There are di�erent ways in which (29) can be zero. One

possibility is that δ1jg = 0 ∀j, g. Another possibility is δjg = 0 ∀j, g irrespective of the values of δ1jg.

We do not favor one speci�cation over the others a priori and prefer to perform Bayesian model comparison in the

system of production function, FOC from cost minimization, with and without (29). Instead, we examine whether (29)

provides a better �t to the data relative to the �cost� of having more parameters. We call this the ANN speci�cation.

Estimation of the models is presented in the Appendix.

Based on the speci�cations of Models I-III, we end up with several di�erent models which are described in Table

1. Model 1a (Model 1b) use the parametric speci�cation of ine�ciency, the full Mundlak speci�cation of τ and without
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Table 1: Models
Mundlak full speci�cation

for τ as in (14)
Mundlak means- speci�cation

for τ as in (15)
Without ANN for the FOC of cost minimization

Parametric ine�ciency as in (11) Model 1a Model 3a
Lognormal as in (25) Model 2a Model 4a

Including ANN for the FOC of cost minimization as in (29)
Parametric ine�ciency as in (11) Model 1b Model 3b
Lognormal ine�ciency as in (25) Model 2b Model 4b

(with) the deterministic semi-parametric functions (ANN) explaining allocative ine�ciency. Similarly, Model 3a (Model

3b) use the parametric speci�cation of ine�ciency, the restricted Mundlak speci�cation of τ and without (with) the

semi-parametric functions (ANN) explaining allocative ine�ciency. Model 2a (Model 2b) use the lognormal speci�cation

of ine�ciency, the full Mundlak speci�cation of τ and without (with) the semi-parametric functions (ANN) explaining

allocative ine�ciency. Finally, Model 4a (Model 4b) use the lognormal speci�cation of ine�ciency, the restricted Mundlak

speci�cation of τ and without (with) the semi-parametric functions (ANN) explaining allocative ine�ciency. The di�erence

between type �a� and type �b� models is in the inclusion of semi-parametric functions explaining allocative ine�ciency in

terms of the environmental variables.

6 Empirical application

We use the same data as in Lai and Kumbhakar (2019) which was also used by Rungsuriyawiboon and Stefanou (2008).

We have panel data on n = 82 U.S. electric power generation plants during 1986 = 1997 (T = 12). The three inputs are

labor and maintenance, fuel, and capital. Output is net steam electric power generation in megawatt-hours, de�ned as

power produced using fossil-fuel �red boilers to generate steam for turbine generators. We added a time trend variable

the production function to capture technical change. In the absence of environmental variables in the data, we use input

prices, output, and time trend as the Z variables. The ZA variables are those in Z without the input prices. MCMC is

implemented using 150,000 draws discarding the �rst 50,000 to mitigate possible start up e�ects.

All models are de�ned in Table 1. Therefore, the models are as follows:

� Model 1a: Parametric ine�ciency and full (generalized) Mundlak device for �xed e�ects.

� Model 2a: Lognormal ine�ciency and full (generalized) Mundlak device for �xed e�ects.5

� Model 1b: ANN semi-parametric component in �rm e�ects, parametric ine�ciency and full (generalized) Mundlak

device for �xed e�ects.

5Mundlak (1978) speci�ed the �xed �rm e�ects as a functions of the temporal averages of the regressors. In eq (14) we consider the
�rm e�ects (�xed and/or random) as functions of some Z variables observed over the entire time periods plus unobserved errors. We call it
generalized Mundlak formulation because each of the �rm e�ects is assumed to depend on a set of Z variables which are not the mean values
of the regressors. In the simpler version of it (eq 15), the �rm e�ects are assumed to be related to (time) mean of the Z variables. These
formulations provide generalization of both �xed e�ects and random e�ects. Note that even if the �rm e�ects are random, we allow correlations
between the �rm e�ects and the regressors (X variables) because X and Z variables are correlated.
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� Model 2b: ANN semi-parametric component in �rm e�ects, Lognormal ine�ciency and full (generalized) Mundlak

device for �xed e�ects.

� Model 3a: Parametric ine�ciency and restricted Mundlak device for �xed e�ects. Model 4a: Lognormal ine�ciency

and restricted Mundlak device for �xed e�ects.

� Model 3b: ANN semi-parametric component in �rm e�ects, Parametric ine�ciency and restricted Mundlak device

for �xed e�ects.

� Model 4a: Lognormal ine�ciency and restricted Mundlak device for �xed e�ects.

� Model 4b: ANN semi-parametric component in �rm e�ects, Lognormal ine�ciency and restricted Mundlak device

for �xed e�ects.

Therefore the models di�er in several respects: The nature of �rm e�ects, the nature of ine�ciency and whether we should

allow for a semi-parametric ANN formulation in the FOCs of cost minimization.

Since we are interested in extensive model comparisons, the Bayesian framework is the appropriate vehicle for it.

The Bayes factor in favor of a model (say I) against another model (say II) is BFI:II = pI(D)
pII(D) , if BFI:II > 1 where D

denotes the data and pι(D) =
∫
pι(D,λ)d λ =

∫
Lι(λ;D)pι(λ)dλ, where λ represents all parameters and latent variables

(like �rm e�ects and ine�ciency) in model ι ∈ {I, II}. Therefore pι(D) represents the integrating constant of the posterior

distribution, that is: p(λ|D) = Lι(λ;D)pι(λ)∫
Lι(λ;D)pι(λ)dλ

= Lι(λ;D)pι(λ)
pι(D) , and ι ∈ {I, II}. More generally, the posterior probability of

a model ι ∈ I ⊂ Z (where Z denotes the set of integers) is de�ned as: Pι(D) = pι(D)∑
i∈I pi(D) , ι ∈ I. Clearly,

∑
ι∈I Pι(D) = 1.

To approximate the marginal or integrated likelihood (also known as �evidence�), we note that

pι(D) =
Lι(λ;D)pι(λ)

p(λ|D)
∀ι ∈ I ⊂ Z, (32)

which holds for all values of λ. Therefore, we can use any point, say the posterior mean λ = E(λ|D) to obtain:

pι(D) =
Lι(λ;D)pι(λ)

p(λ|D)
∀ι ∈ I ⊂ Z. (33)

The only unknown quantity in this expression is the denominator, p(λ|D). However, if we use a Laplace ap-

proximation we obtain: p(λ|D) ' (2π)−dim(λ)/2|V |−1/2, where dim(.) denotes the dimensionality of a vector, and

V is the covariance matrix of λ which we can approximate closely using the available MCMC draws, viz. V =

S−1
∑S
s=1

(
λ(s) − λ

)(
λ(s) − λ

)′
, and λ = S−1

∑S
s=1 λ

(s). In turn, the log of (33) can be approximated easily based on

information from MCMC.

Bayes factors and posterior model probabilities strongly favored an ANN with G = 1. For example, the Bayes

factor in favor of G = 1 and against G = 2 turned out to be 125.32, 144.12, 212.14 and, nearly, 512 for models 1b through

4b, respectively. Therefore, in Table 2, for these speci�cations we proceed under the assumption that G = 1. For G0 (the

number of nodes of ANN in the production function) we have G = 1 for the ANN model. Performing model comparison

only for these models, and G ∈ {1, ..., 5}, the posterior probability of ANN (G = 3) was nearly 97% so, in the interest
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Table 2: Bayes factors and posterior model probabilities for di�erent models
Bayes factor posterior model probability

No ANN in FOCs
1a 1.000 0.0317
2a 0.032 0.001
3a 0.085 0.0027
4a 0.014 0.0004

ANN in FOCs
1b 24.812 0.7875

2b 3.717 0.118
3b 1.130 0.0359
4b 0.718 0.0228

Notes: The Bayes factor in favor of a model (say I) and against another model (say II) is BFI:II =
pI (D)

pII (D)
, where D denotes the data and pι(D) =∫

pι(D,λ)d λ =
∫
Lι(λ;D)pι(λ)dλ, where λ represents all parameters and latent variables (like individual e�ects and ine�ciency) in model ι ∈ {I, II}.

Therefore pι(D) represents the integrating constant of the posterior distribution, that is: p(λ|D) =
Lι(λ;D)pι(λ)∫
Lι(λ;D)pι(λ)dλ

=
Lι(λ;D)pι(λ)

pι(D)
, and ι ∈ {I, II}.

The posterior probability of a model ι ∈ I ⊂ Z is de�ned as: Pι(D) =
pι(D)∑
i∈I pi(D)

, ∀ι ∈ I ⊂ Z.

Table 3: Bayes factors for other model features
Model against �xed e�ects against Means-based Mundlak

in (15)

against lognormal speci�cation

as in (26)

1a 1.000 342.81 77.62
2a 3,122.55 685.32 101.43
3a 2,891.43 302.12 71.10
4a 1,440.12 244.21 34.71
1b 717.12 5,522.32 5,832.33
2b 34,021.12 33,072.67 31,515
3b 35,617.87 3,516.13 7,771.10
4b 32,381,18 3,155,71 3,212.32

Notes: The Table provides Bayes factors against �xed e�ects, speci�cation (15) and speci�cation (26). We normalize so that the Bayes factor is equal
to one for Model 1a. We use G = G0 = 1.

of brevity (viz. not having to discuss and average over a large number of di�erent models per cases a, b, c, and d, we

proceed on the assumption that the values of G and G0 are as given above. From Table 2, it turns out that the best model

is 1b whose Bayes factor relative to model 1a is 24.812 and its posterior model probability is 0.7875. This implies that

we do need ANN in FOCs, along with parametric ine�ciency as speci�ed in (11) along with a full Mundlak speci�cation

for the �xed e�ects. As full Mundlak speci�cations are rarely, if ever, used this means that they should be given some

attention in future empirical work. The fact that the posterior probability of model 1b is much greater than the other

posterior model probabilities in Table 2, implies that the assumptions of lognormality for ine�ciecy and the exclusion of

ANNs from the FOCs are quite detrimental in terms of �t of the alternative models.

To compare parametric versus lognormal (stochastic) technical ine�ciency, viz. models �a� versus �b�, that is models

1a, 2a versus models 1b, 2b, Bayes factors (or posterior odds when the prior odds ratio is equal to one) are reported in

Table 2. The Bayes factor in favor of stochastic ine�ciency (model 2b versus 1b) is 34,021.12
3,122.55 = 10.90, approximately. The

evidence against simple �xed e�ects and against the Means-based Mundlak speci�cation is overwhelming in all models

in Table 2. Models 1a-4a show moderate to strong evidence against of stochastic ine�ciency, while models 1b-4b show

overwhelming evidence in favor of it. Therefore, there is ample evidence against the parametric ine�ciency model.

The posterior model probability for Model 1b is approximately 79% so this model clearly stands out in the light of
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the data. However, all other models have jointly a posterior model probability of nearly 21% so we cannot ignore them

and there is scope for Bayesian Model Averaging (BMA)6. In practical terms, this implies that the cost minimization FOC

need to allow for semi-parametric formulations including relative prices and environmental variables.

In Table 3, we take up a �grand comparison� between all models (1a to 4a and 1b to 4b). The comparison is

performed in three aspects: First, in terms of the nature of �xed e�ects. Second, in terms of the Mundlak speci�cation

and, third, against the lognormal distributional speci�cation. The Bayes factors reported in Table 3 are in favor of a

particular �column� model (1a-4a and 1b-4b) and against �row� speci�cations such as �xed e�ects, the Mundlak means-

speci�cation, and lognormality. From the evidence in Table 3, the model with the highest Bayes factor (relative to model

1a) is model 3b (the Bayes factor is nearly 35,617.

Posterior means and posterior standard deviations of the most important functions of interest are summarized

in Table 4. In terms of technical e�ciency, the results vary widely. For example, technical e�ciency in model 2b has

a posterior mean of 89.13% (posterior standard deviation 0.69%). Allocative ine�ciency is 4.58% (posterior standard

deviation 3.27%) for the labor-fuel input pair, and 4.06% (3.61%) for the capital-fuel pair for model 1b, whereas they are

2.22% (1.54%) and 2.91% (2.93%), respectively for model 2b. The large posterior standard deviations suggest that there

is considerable heterogeneity across di�erent �rms. The posterior standard deviations are much smaller for other models

(for the �b� type). In terms of the cost of allocative ine�ciency, model 2b suggests that it is 14.97% (posterior standard

deviation 2.21%). All other models imply much higher costs -close to 24% for models of the �a� type. For model 1b, cost

of allocative ine�ciency is much lower. The di�erent implications are, clearly, attributed to the di�erent assumptions

and speci�cations underlying each model. The same results are true for �xed e�ects in the production function or the

cost-minimizing �st-order conditions. Relative to model 2b, costs of allocative ine�ciency are much higher in Lai and

Kumbhakar (2019, Table 4) and they average almost 30% with standard deviation 12.35%. Our estimates are about half

of the mean cost of allocative ine�cient in Lai and Kumbhakar (2019). In their study, technical e�ciency averages 75.12%

(standard deviation 15.03%). In our case, it averages 89.13% (posterior standard deviation 0.69%) and, therefore, almost

15 percentage higher compared to Lai and Kumbhakar (2019) with a much small posterior standard deviation.

In terms of �xed e�ects in the �rst-order cost-minimizing equations, model 2b suggests that the posterior mean is

0.338 (posterior standard deviation 0.0232) in the labor-fuel equation, and 0.0171 (posterior standard deviation 0.0113) in

the capital-fuel equation, suggesting that more labor and capital is used than necessary. In contrast, these estimates are

0.012 (standard deviation 0.449) and -3.76 (standard deviation 0.47) in Lai and Kumbhakar (2019, Table 4) suggesting a

slight overuse of labor and a quite large under-utilization of capital, relative to fuel. Part of the reason is, of course, that

in our model 2b, we use an ANN formulation which is quite �exible and also that the full Mundlak speci�cation for the

treatment of �rm e�ects is much more general than standard �xed e�ects formulations. Marginal posterior distributions

of �xed e�ects with and without ANN are reported in Figure 1 (left and right panel, respectively). In Figure 2 we report

posterior distributions of technical e�ciency for all models.

Evidence on the posterior densities of allocative ine�ciency in Figure 3 suggests that, after using Bayesian Model

6Of course all other models, individually have negligible posterior probability so they are strongly rejected by the data, although we do take
them into account in BMA, as collectively they account for 26% in terms of posterior model probability
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Table 4: Empirical results

1a 2a 3a 4a 1b 2b 3b 4b

Technical E�ciency

Posterior means 0.9085 0.8351 0.7911 0.7433 0.9484 0.8913 0.8069 0.8263
Posterior s.d. (0.0137) (0.0109) (0.0219) (0.0084) (0.0116) (0.0069) (0.0068) (0.0125)

Fixed E�ects (Production Function)

Posterior means 0 0 0 0 0 0 0 0
Posterior s.d. (0.0181) (0.0218) (0.0082) (0.0144) (0.0342) (0.0229) (0.0055) (0.0180)

Fixed E�ects (Labor-fuel Equation)

Posterior means 0.0388 0.021 0.0095 0.0228 0.0438 0.0338 0.0096 0.0232
Posterior s.d. (0.0369) (0.0206) (0.0047) (0.0192) (0.0345) (0.0232) (0.0067) (0.0145)

Fixed E�ects (Capital-fuel Equation)

Posterior means 0.024 0.0427 0.0091 0.0307 0.0222 0.0171 0.0063 0.0219
Posterior s.d. (0.0146) (0.0313) (0.0065) (0.0223) (0.0179) (0.0113) (0.0077) (0.0159)

Allocative Ine�ciency (Labor-fuel Equation)

Posterior means 0.0447 0.0316 0.0074 0.0331 0.0458 0.022 0.0081 0.0198
Posterior s.d. (0.0298) (0.0217) (0.0054) (0.0325) (0.0327) (0.0154) (0.0065) (0.0224)

Allocative Ine�ciency (Capital-fuel Equation)

Posterior means 0.0528 0.0335 0.0092 0.0267 0.0406 0.0291 0.01 0.0265
Posterior s.d. (0.0351) (0.0265) (0.0087) (0.0206) (0.0361) (0.0293) (0.0068) (0.0236)

Cost of Allocative Ine�ciency

Posterior means 0.2428 0.2345 0.2389 0.2407 0.0958 0.1497 0.0663 0.1149
Posterior s.d. (0.0316) (0.0335) (0.043) (0.0286) (0.0249) (0.0221) (0.0151) (0.0200)
Notes: Reported in the Table are posterior means with posterior standard deviations (s.d) in parentheses. For de�nitions of the models, see Table 1.

Returns to scale are de�ned as RTS =
∑J
j=1

{
βj +

∂f0(Xit,Zit)
∂ ln xjit

}
. Output elasticities are de�ned as εjit = βj +

∂f0(Xit,Zit)
∂ ln xjit

, j = 1, ..., J. We impose

the restriction that elasticities should be non-negative via rejection sampling in MCMC.

Averaging, allocative ine�ciencies are fairly large for both equations, ranging from �5% to over 15%.

As posterior model probabilities are available, we can perform Bayesian Model Averaging (BMA) as follows. For

any function of interest ψ(D,λ) which takes the form ψι(D,λ), for a particular model ι ∈ I ⊂ Z, the BMA version is:

ψBMA(D,λ) =
∑
ι∈I

Pι(D)ψι(D,λ). (34)

Functions of interest include �rm e�ects, technical and allocative ine�ciency, etc.

In Kumbhakar and Lai (2019, Table 3) the coe�cients of log inputs in the Cobb-Douglas production function

are 0.2219, 0.7795, and 0.0083. The last coe�cient has standard error 0.102 suggesting that it is not signi�cant. The

means of elasticities are, respectively 0.35, 0.60 and 0.13 with small posterior standard deviations (0.014, 0.010, and 0.023,

respectively). These estimates are, clearly, di�erent compared to Lai and Kumbhakar (2019). As we use di�erent models

in this study this is, more or less, expected.

Clearly, there is an issue in that estimates of various functions of interest di�er across models. The issue is less

serious than it seems at �rst sight as, �nally, we can either select the best model (using the Bayes factors reported in Tables

2 and 3) or perform BMA as we do in Figure 4. We should mention that the concern of di�erent results from di�erent
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Figure 1: Posterior densities of �rm e�ects
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Notes: The Figures report the posterior distributions of �xed e�ects for all variants of Models 1 and 2. For each MCMC draw we save the �xed e�ects
and then we average across the sample and parameter draws to account for parameter uncertainty. Since a constant appears in the production function
we normalize, without loss of generality, the sum of �xed e�ects to zero for each equation in the system of production function and the �rst-order
conditions of cost minimization. No such normalization is necessary in the �rst-order conditions for cost minimization.

Figure 2: Posterior densities of technical e�ciency
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Notes: The Figures report the posterior distributions of technical e�ciency for all variants of Models 1 and 2. Technical e�ciency is de�ned as
rit = e−uit . For each MCMC replication we save the draws for uit, and then we average across the sample and parameter draws to account for
parameter uncertainty.
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Figure 3: Posterior distributions of allocative e�ciency
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Figure 4: Bayesian Model Averaging (BMA) densities
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Notes: The Figures show the posterior distribution of technical e�ciency, allocative e�ciency, cost of allocative e�ciency, and �rm e�ects. BMA is
based on posterior model probabilities reported in Table 2.

models is indeed valid but on the positive side, however, BMA takes into account not only parameter uncertainty but also

uncertainty with respect to which model is most likely to be �true� or �closer to the truth� given the data. Of course, as

di�erent models involve di�erent assumptions about many aspects (nature of �rm e�ects, semi-parametric terms in FOCs,

nature of ine�ciency, etc.) they also tend to provide di�erent results in terms of functions of interest. In a Bayesian

inference framework, the most reasonable approach is to recognize the presence of model uncertainty and, therefore, use

BMA as we do in Figure 4.

Posterior densities of technical e�ciency change are reported in Figure 5. Models of the �a� variety imply little

technical e�ciency change (averaging 0.025). For models of the �b� type, e�ciency change ranges from �0.5% to 0.5%,

and the same is true. The BMA density reported in the lower panel of Figure 5 shows that e�ciency change has been

close to zero ranging from �0.5% to slightly over 0.5%. Therefore, despite the presence of considerable technical e�ciency

(close to 89% for model 2b in Table 4), it appears that management has done little to improve this score. In the BMA

density of e�ciency change, it is clear that it is bimodal with two modes near zero and 0.4%, respectively so there is some

heterogeneity across �rms in terms of improving e�ciency, albeit by small amounts, in most models (see upper panel of

Figure 5).

An important feature is change in cost of allocative e�ciency provided in Figure 6. Although posterior densities

di�er widely across models for models of the �a� and �b� variety, this change in costs is rather small averaging, respectively,

0.5% and 1%. The BMA density is clearly bimodal with modes close to �0.002 and 0.005. The range of all these densities

is con�ned to values close to zero suggesting that costs of allocative ine�ciency change are rather small, despite the fact

that allocative ine�ciencies themselves are large (Figure 3). Speci�cally, under-utilization of capital does not seem to be
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Figure 5: Posterior densities of technical e�ciency change
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Notes: The Figures show the posterior distribution of technical e�ciency change, de�ned as EC = ûit− ûi,t−1 in (29), where ûit is estimated e�ciency
change. The measure is calculated using draws of uit and then taking �rst di�erences. In turn, we average across all observations and MCMC draws to
account for parameter uncertainty. BMA is based on posterior model probabilities reported in Table 2.
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Figure 6: Posterior densities of cost of allocative ine�ciency change
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Notes: The Figures show the posterior distribution of the cost of allocative ine�ciency change. In turn, we consider its �rst di�erence, 4CAIit =
CAIit − CAIi,t−1. In turn, we average across all observations and MCMC draws to account for parameter uncertainty. BMA is based on posterior
model probabilities reported in Table 2.

the case as in Lai and Kumbhakar (2019, Table 4).

For model comparison, the underlying production function can be more general than Cobb-Douglas. It is straight-

forward to estimate any production function along with the FOCs with allocative ine�ciency embedded.7 In (the left

panel of) Figure 7, we report distributions of Bayes factors in favor of model 2b and against, Cobb-Douglas, translog and

Generalized Leontief, all estimated along with the FOC for cost minimization and �xed e�ects ï¾÷ la Lai and Kumbhakar

(2019). Clearly, the new model performs better compared to the translog and generalized Leontief, meaning that, in

the light of the data, the new model performs well in terms of �t and number of parameters. This is important, as the

Cobb-Douglas production is not �exible.8 Speci�cally, the posterior odds (with prior odds equal to 1) average over 50,

but they extend from 30 to over 120. According to Kass and Raftery (1995) in order to have �strong� evidence against a

model the Bayes factor should exceed 20. According to Je�reys it should be greater than 31.6, which is far in the left tail

7The problem is in computing costs of allocative ine�ciency which requires solving for input quantities with and without allocative ine�ciency.
This is non-trivial. See, for example, Kumbhakar and Wang (2006) who addressed this for a translog production function. No analytical
expression for CAI can be derived for the translog case.

8In spite of this we used the extended CD speci�cation (ANN) because it helped us in computation of costs of allocative ine�ciency.
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Figure 7: Distributions of Bayes factors
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of our reported Bayes factors using either SIR or exact MCMC.

The distribution of these Bayes factors arises because we omit randomly b observations at a time where b is randomly

selected from {1, 2, ..., 20}. We perform this for a total of 10,000 times. Posterior simulation is performed using sampling-

importance-resampling (SIR, Rubin, 1987, 1988) to approximate the new posterior distribution. From the original MCMC

sample (100,000 draws after burn-in) we consider 20,000 replications to implement SIR. In (the right panel of) Figure 7, we

report the same distributions but this time we consider exact MCMC inference using 150,000 draws with a burn-in phase

of 50,000. We do this in the interest of comparing SIR with exact MCMC. It turns out that SIR provides an accurate

enough approximation, at least in terms of average Bayes factors and their spread across the sample.

Concluding remarks and further research

In this paper we addressed the issue of speci�cation and estimation of technical ine�ciency and costs therefrom using a

system approach. In particular, we consider speci�cations to address the incidental parameters problem raised in Lai and

Kumbhakar (2019) because of �xed �rm e�ects in the production function as well as in the �rst-order conditions of cost

minimization. To deal with the incidental parameters problem, we draw the insight of Mundlak (1978) and expressed

�rm e�ects as either functions some exogenous variables (full version) or the mean of the exogenous variables (restricted

version). Extensive model comparison and Bayesian model averaging are implemented using Bayes factors, and associated

posterior model probabilities.

In terms of future research, it might be important to examine the role of the Mundlak formulation in more general

panel data models. The Mundlak formulation resolves the incidental parameters problem as it depends on a �nite-

dimensional vector of parameters, at least in its restricted version, while its more general version is expected to work

better compared to alternatives. Intermediate cases between the full and restricted versions are worthwhile to examine,

as they can yield signi�cant reduction in the number of parameters. This is, however, a data - speci�c problem. The

semi-parametric modi�cation of the �rst-order conditions for cost minimization is quite important since it allows allocative
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ine�ciency to depend on input prices in a �exible way, and it is in the line of Farrell (1957). However, use of all these

extensions requires availability of some predetermined/exogenous variables (ideally variables other than input prices and

output which are assumed to be exogenous in a cost minimizing framework).

Another important extension would be to examine the behavior of di�erent estimators in the context of dynamic

production systems, i.e., in the context of a dynamic panel data model with individual e�ects. Linear dynamic panel

data models have been examined in the context of single equations using the Generalized Method of Moments (GMM)

estimator. Systems, on the other hand, have received much less attention. Dynamic production models arise naturally

in the context of intertemporal optimization models of the �rm or in models with adjustment costs in the short-run.

Another generalization of the models considered here is the presence of individual e�ects in the semi-parametric terms in

the �rst-order conditions. This problem is signi�cantly more di�cult as additional individual e�ects are included in the

nonlinear part of the model. Although there are numerically e�cient techniques to deal with the problem (Greene, 2005a,

b) they are still subject to the incidental parameters problem and an application of the Mundlak device is likely to be

necessary. Endogeneity in stochastic frontier models has also been considered in Amsler, Prokhorov, and Schmidt (2016)

where variants of 2SLS and LIML are considered. Such techniques may be pro�tably employed using the information

provided by �rst-order conditions for cost minimization, at least in an �informal� way. This may help to provide di�erent,

and perhaps, simpler estimators to deal with both endogeneity and the incidental parameters problem.

Technical Appendix

To provide access to the augmented posterior in (24), we have the following posterior conditional distributions from which

random drawings is obtained9:

τ i|· ∼ N (τ̂ i, V i) ∀i = 1, ..., n, (A.1)

where Fi = [F(Xi1,Zi1,θ)′, . . .F(XiT ,ZiT ,θ)′]′, Wi = [Z ′1a, ...,Z
′
Ta]′, Yi = [F′i,W

′
i]
′
,

τ̂ i =
[
I⊗Σ−1 + h2I

]−1 [
(I⊗Σ−1) + h2I

]
Yi, i = 1, ..., n, and V i =

[
I⊗Σ−1 + h2I

]−1 ∀i = 1, ..., n.

For covariance matrices, we have:

p(Σ|·) ∝ |Σ|−(nT+J+1)/2 exp
(
− 1

2 trAΣΣ−1
)
, (A.2)

p(Ω|·) ∝ |Ω|−(n+J+1)/2 exp
(
− 1

2 trAΩΩ−1
)
, (A.3)

where AΣ =
∑n
i=1

∑T
t=1 (F(Xit;Zit,θ)− τ i) (F(Xit;Zit,θ)− τ i)′, and AΩ =

∑n
i=1

∑T
t=1 (τ i −Zia) (τ i −Zia)

′
. These

are in the form of an inverted Wishart distribution (Zellner, 1981, pp. 395�396, particularly B.53, and 8.15 in p. 227).

9The symbol �|·� denotes conditioning on all other parameters and latent variables in the augmented posterior distribution.
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For the parameters in the Mundlak speci�cation we have:

a|· ∼ N (â, V a) , (A.4)

where â = [Z ′(I⊗Ω−1)Z+h2I]−1Z ′(I⊗Ω−1)τ , Va = [Z ′(I⊗Ω−1)Z+h2I]−1, Z = diag(Z1, ...,Zn), and τ = [τ ′1, ..., τ
′
N ]′.

Drawing structural parameters of the production function and the ine�ciency function, θ, is not straightforward

as they enter nonlinearly in (12). In this case we use the Girolami and Calderhead (2011) Riemannian MCMC method

which is based on �rst- and second-order derivatives of the log posterior. These derivatives are computed numerically.

When considering parameters in the lognormal distributional in (26), most steps are valid, except that θ contains

only the production function parameters, and we have to draw uit, i = 1, ..., n, t = 1, ..., T , δ, as well as σ2
u. Under a �at

prior of the form: p(δ, σu) ∝ σ−1u , we have the following posterior conditional distributions, viz.,

δ|· ∼ N
(
(Z ′Z)−1Z ′ log u, σ2

u(Z ′Z)−1
)
, (A.5)

where Z = [Zit, i = 1, .., n, t = 1, ..., T ], u = [uit, i = 1, ..., n, t = 1, ..., T ],

(logu−Zδ)′(logu−Zδ)
σ2
u

|· ∼ χ2
nT . (A.6)

Finally, to draw log u, we follow an optimal rejection technique. As candidate densities we use independent expo-

nential densities whose parameters are selected so as to maximize the acceptance rate relative to its posterior conditional

distributions. The required optimizations are always valid as the posterior conditional density of log uit is log-concave.

For models including a semi-parametric modi�cation, e.g., the models in Section 5 , we follow the same procedures

with the Girolami and Calderhead (2011) Riemannian MCMC method for nonlinear parameters, including the parameters

of the ANN functions.

The Girolami and Calderhead (2011) algorithm

Regarding the Girolami and Calderhead (2011, GC) algorithm to update draws for θ, we use local information about both

the gradient and the Hessian of the log-posterior conditional of θ at the existing draw. A Metropolis test is again used

for accepting the candidate so generated but the GC algorithm moves considerably faster relative to our naive scheme

previously described. It has been found that the GC algorithm performs much better than a standard Metropolis-Hastings

algorithm, and autocorrelations are, more often than not, much smaller.

Suppose L (θ) = log p (θ|X) is used to denote for simplicity the log posterior of θ. Moreover, de�ne:

G (θ) = est.cov ∂
∂θ log p (X|θ) , (A.7)

which is the empirical counterpart of

Go (θ) = −EY |θ
∂2

∂θ∂θ′ log p (X|θ) . (A.8)
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The Langevin di�usion is given by the stochastic di�erential equation:

dθ (t) = 1
2∇̃θL {θ (t)} dt+ dB (t) , (A.9)

where

∇̃θL {θ (t)} = −G−1 {θ (t)} · ∇̃θL {θ (t)} , (A.10)

is the so called �natural gradient� of the Riemann manifold generated by the log posterior. The elements of the Brownian

motion are

G−1 {θ (t)} dBi (t) =|G {θ (t)} |−1/2
Kβ∑
j=1

∂
∂θ

[
G−1 {θ (t)}ij |G {θ (t)} |1/2

]
dt (A.11)

+
[√
G {θ (t)}dB (t)

]
i
.

The discrete form of the stochastic di�erential equation provides a proposal as follows:

θ̃i =θoi + ε2

2

{
G−1 (θo)∇θL (θo)

}
i
− ε2

Kθ∑
j=1

{
G−1 (θo)

∂G (θo)

∂θj
G−1 (θo)

}
ij

(A.12)

+ ε2

2

Kθ∑
j=1

{
G−1 (θo)

}
ij

tr

{
G−1 (θo)

∂G (θo)

∂θj

}
+

{
ε

√
G−1 (θo)ξo

}
i

=µ (θo, ε)i +

{
ε

√
G−1 (θo)ξo

}
i

,

where βo is the current draw. We select ε so that, approximately, 20% of candidates are eventually accepted.

The proposal density is:

θ̃|θo ∼ NKθ
(
θ̃, ε2G−1 (θo)

)
. (A.13)

Finally, convergence to the invariant distribution suggests using the Metropolis-Hastings probability:

min

1,
p
(
θ̃|·,Y

)
q
(
θo|θ̃

)
p (θo|·,Y ) q

(
θ̃|θo

)
 . (A.14)
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