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Abstract 

Montane forests are unique ecosystems in the tropics and they regulate soil and water 

functions at the landscape scale. Their conservation is important because forests 

contribute with their abundant above and belowground biomass to increased soil stability 

and reduced soil erosion. However, tropical forests are the hotspots of land use change 

mainly due to the fertile soils and the mild climatic conditions where they grow. In the East 

African highlands, the demand for agricultural land by an increasing human population 

and the cultivation on steep hillslopes put pressure on forest and water resources. 

Streams in these montane catchments are often enriched in suspended sediments, which 

affect water quality and represent a loss of soil capital. However, these tropical montane 

ecosystems are understudied, especially in sub-Saharan Africa. Having a scarcity of 

studies on sediment dynamics and hydrology makes it more difficult planning for future 

sustainable land use. To contribute towards closing this knowledge gap, this thesis uses 

three study catchments (27-36 km2) under different land use (e.g. natural forest, tea-tree 

plantations and smallholder agriculture) as a ‘microcosm’ within which to understand 

process response to disturbance within the headwaters of the Sondu River Basin 

(3,470 km2) in the Mau Forest Complex of Kenya. A four-year high-resolution 

sedimentological time series recorded the highest sediment concentrations in the 

smallholder agriculture catchment, followed by the tea-tree plantation and the natural 

forest catchment, caused by increased surface runoff. Rainfall-runoff modelling showed 

that soils of the natural forest catchment had high permeability reflected in the deep water 

flow pathways, in contrast to the compacted soils in the smallholder agriculture catchment 

with a dominance of shallow sub-surface flow to surface runoff. Sediment response to 

rainfall (up to 3.5 hr) was delayed in the smallholder agriculture catchment compared to 

the nearly instantaneous response (<1.5 hr) in the forested catchment due to sediment 

supply from near-by sources. Sediment fingerprinting conducted at the smallholder 

agriculture catchment unravelled the relative contribution of four different sediment 

sources. Agricultural land accounted for the largest contribution (75% with 

95%-confidence interval 63-86%) of the total sediment, while channel banks, gullies and 

unpaved tracks were shown to be local sediment hotspot sources. Suspended sediment 

collected with time-integrated, manual- and automatic-event based sediment samplers at 

the outlet of the three catchments over a period of up to four months, demonstrated that 

particulate carbon and nutrient concentrations were up to three times higher in the natural 

forest compared to the smallholder agriculture catchment. The low particulate 

macronutrient concentrations point to the fast impoverishment of agricultural soils after 

deforestation. The findings of the study clearly show that land use change has an 
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important impact on sediment dynamics and hydrological pathways, which can affect the 

water balance of the whole ecosystem and deteriorate downstream water supplies and 

the water quality of Lake Victoria. The findings of this study further contribute to the wider 

knowledge of other tropical montane systems facing similar pressures like agricultural 

expansion and deforestation. 
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1 General introduction 

Globally, 35.9 billion tonnes of soil is estimated to erode annually (Borrelli et al. 2017). A 

significant 60% of this eroded soil ends up in aquatic systems and is permenantly lost from 

terrestrial ecosystems (Zimdahl 2012). Soil erosion processes are strongly linked to the loss 

of soil health and the degradation of water resources. The topsoil, rich in nutrients and 

organic matter, is the main resource for agricultural production, and therefore soil loss is a 

serious constraint to sustain future agricultural productivity. In addition, soil erosion occurs at 

an unsustainable alarming rate, which is recognized to be much faster than it can be 

replenished through natural soil formation processes (Evans et al. 2020). Current projection 

indicates that the world population is likely to reach 8.5 billion people by 2030 (UN 2019), 

adding on the challenge of feeding this population with deteriorating soil resources. To 

address these global concerns, the UN calls for the ‘protection, restoration and promotion of 

sustainable use of terrestrial ecosystems and sustainably managed forests, combating 

desertification, halting and reversing land degradation and halting biodiversity loss’ as one of 

the sustainable development goals (SDG 15) of the 2030 agenda (UN 2015).  

Overall, the rate of soil erosion varies globally on average by around 1.4 t ha-1 yr-1 between 

neighbouring countries (Wuepper et al. 2020). Latin America, Africa and Asia are in the 

group of the highest predicted soil erosion rates (3.53, 3.51 and 3.47 t ha-1 yr-1, respectively). 

Other parts of the world, such as North America, Europe and Oceania have lower predicted 

rates (2.23, 0.92 and 0.90 t ha-1 yr-1, respectively). The soil erosion rates estimated based on 

land use change projections for the African continent exceeds those of Latin America by 

about 10%, thus turning Africa into the hotspot for soil erosion (Borrelli et al. 2017). In 

sub-Saharan Africa, in particular in the heterogeneous and fragmented landscapes of the 

highlands of East Africa, soil erosion is more severe compared to other regions (Place et al. 

2006; Wuepper et al. 2020).  

Tropical montane regions are particularly prone to surface soil erosion due to their 

topographic position on steep terrain (Wohl 2006; Grangeon et al. 2012) and the occurrence 

of rainfall of high erosivity (Guzman et al. 2013; Nishigaki et al. 2017). In addition to these 

natural underlying conditions, soil erosion in montane ecosystems is accelerated by land use 

changes. The removal of a protective vegetation cover and the loss of the dense rooting 

system of woody ecosystems are among the key factors that enhance erosion processes, 

and consequently suspended sediment contribution. Such land use changes may lead to 

further erodibility of the susceptible soils on fragile ecosystems under steep slopes. Tropical 

headwaters under shifting cultivation may become major contributors of suspended 

sediments because of high surface connectivity between hillslopes and the stream network 
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due to steep slopes and the loss of natural barriers (Fan et al. 2012; Fryirs 2013). Few 

studies in tropical montane regions have found evidence for enhanced turbidity and 

suspended sediment concentrations due to increased soil erosion following the conversion 

of natural forests to agriculture, as was shown in North and South Brazil (Figueiredo et al. 

2010; Didoné et al. 2014; Minella et al. 2018), the Ecuadorian Andes (Harden 2001) and 

East Africa (Nyssen et al. 2009; Tamooh et al. 2012; Guzman et al. 2013).  

Land use change increases sediment loads, and therefore to manage the impacts there is a 

need to understand where the sediment comes from, and which could be the most effective 

measures. However, unravelling sediment dynamics is complex due to their highly spatial 

and temporal variability (Vercruysse et al. 2017). Studies have shown that 80-95% of the 

annual sediment load is generated during high flows of short duration occurring storm peaks 

(De Girolamo et al. 2015; Sun et al. 2016). The smallest proportion of sediment is carried 

during baseflow or dry seasons. Suspended sediment concentrations also change 

throughout individual storm events (Sun et al. 2016). How soil erosion and hydrological 

dynamics in a catchment respond to land use or land use changes, depends on a number of 

catchment-related parameters, climatic conditions and land management practices. Tropical 

montane ecosystems are relevant to study sediment and hydrology dynamics under land 

use change because of erosive rainfall they are exposed to and their irregular topography. 

The Mau Forest Complex in the western highlands of Kenya is such an ecosystem under 

threat of land use conversion. The Mau is the largest tropical montane forest of East Africa 

and it represents an important catchment area for Kenya. However, over the last four 

decades 25% of the forest cover has been lost to commercial and smallholder agriculture 

(Brandt et al. 2018). The Mau Forest is the headwaters to twelve rivers, one of which is the 

Sondu River. The montane headwater catchments of the Sondu River Basin are 

characterised by high surface connectivity due to steep hillslopes. Land use changes and 

anthropogenic disturbance in these headwaters are expected to lead to deterioration of the 

water quality and changes in hydrology. For the development of targeted and sustainable 

land management practices to lower suspended sediment fluxes and their negative impact 

on aquatic habitat, people, livestock and the economy, there is need to understand the 

dynamics of suspended sediments and source areas in these catchments.  

To understand the high temporal and spatial variability of sediment dynamics and 

hydrological response requires long-term monitoring of hydrology and sediment dynamics. 

However, based on a review of 84 publications of sediment studies in Africa, it was found 

that only 20 catchments included gauging station measurements in Kenya. Most of these 

data points were classified as of ‘poor’ data quality due to a low sampling frequency or 
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based on rating curves with less than 50 observations (Vanmaercke et al. 2014). In addition, 

modelled soil erosion rates of highlands are underestimated compared to field 

measurements, likely because of the underrepresentation of field measurements for 

cross-validation in highlands (Borrelli et al. 2017). With the absence of a knowledge base on 

sediment dynamics and hydrology in tropical headwater catchments, such as in the Sondu 

River Basin, the design and application of sustainable land management practices will be a 

challenging task. This study aimed to address this knowledge gap in sediment source areas 

and hydrological flow pathways under contrasting land use in montane ecosystems and to 

improve the understanding of these under-researched environments, which can be used in 

the future to develop targeted soil and water conservation strategies.  

1.1 Aim and objectives of the thesis 

To address the knowledge gap of sediment dynamics and hydrology in tropical headwater 

catchments, the aim of this research is  

to assess the effect of land use on hydrological and environmental quality aspects in 

tropical montane catchments used as a ‘microcosm’ within the headwaters of the 

Sondu River Basin in the South-West Mau, Kenya. 

This study contributes to the current knowledge on water and nutrient cycles for tropical 

montane forests and adds to previous studies in the headwaters of the Mau Forest Complex 

that investigated the key drivers of forest disturbances (Bewernick 2016; Brandt et al. 2018), 

soil hydraulic conditions and soil quality (Owuor et al. 2018), soil organic matter (Chiti et al. 

2018), greenhouse gas emissions (Arias-Navarro et al. 2017a, b; Wanyama et al. 2018), 

hydrological pathways and water sources (Jacobs et al. 2018a), dynamics of dissolved 

nitrogen and nitrate (Jacobs et al. 2017, 2018b) and extends the knowledge base on land 

use, hydrology and sediment dynamics, source areas and particulate macronutrient 

concentrations.  
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This research had the following specific objectives: 

1. To quantify rainfall, runoff and suspended sediment transport dynamics in order to 

assess the influence of land use on suspended sediment yield and their seasonal 

responses (Chapter 4), 

2. To assess the timing of the response of suspended sediment to rainfall and 

discharge and to improve the understanding of the dominant water flow pathways 

under different land use (Chapter 4), 

3. To identify the best sediment tracer composite of a large pool of biogeochemical and 

geochemical elements for sediment provenance determination (Chapter 5), 

4. To estimate the relative sediment contribution from four source areas: agricultural 

land, gullies, unpaved tracks and channel banks (Chapter 5),  

5. To quantify sediment-associated macronutrient (total carbon, total nitrogen and total 

phosphorus) fluxes from catchments under natural forest, tea-tree plantations and 

smallholder agriculture (Chapter 6); and 

6. To draw conclusions on the effect of land use on sediment dynamics in the 

headwaters of the Sondu River Basin and reflect suggestions for sustainable land 

management practices (Chapter 7). 

1.2 Outline of the thesis 

This thesis is based on three peer-reviewed articles; either intended for submission or 

already published (Chapter 4-6): 

Chapter 4 addresses objectives 1 and 2 and provides an assessment of the impact of land 

use on sediment and hydrological dynamics based on a four-year time series of rainfall, 

runoff and suspended sediment concentrations. Hydrological flow pathways are key in 

generating suspended sediment. The difference in hydrological pathways under different 

land uses is described with a rainfall-runoff model under the Data-Based Mechanistic (DBM) 

modelling philosophy. Linear continuous time-transfer function models explain the response 

of water flow pathways to rainfall within the natural forest, tea-tree plantation and smallholder 

agriculture catchment. In addition, cross-correlation functions identify the timing of sediment 

response to runoff and rainfall to assess sediment storage and supply at catchment-scale. 

In Chapter 5, which addresses objectives 3 and 4, a sediment fingerprinting modelling is 

used to investigate relative contributions of four sediment source areas within the 

smallholder agriculture catchment. The focus here is on the smallholder agriculture 

catchment because it is the catchment under the highest disturbances generating six times 

more suspended sediment yield compared to the natural forest catchment. Agricultural land, 
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unpaved tracks, gullies and channel banks are selected as the four main sediment source 

areas. To unravel the relative contribution of each sediment source, a Mix-SIAR un-mixing 

modelling approach is used under a Bayesian framework.  

Chapter 6 addresses objective 5 and explores particulate macronutrient fluxes and continues 

with the comparison of the three catchments dominated by natural forest, tea-tree 

plantations and smallholder agriculture. Sediment-associated total carbon, nitrogen and 

phosphorus fluxes are quantified at the catchment outlets during two sampling periods in 

2018 and 2019. The impact of land use on the different macronutrient concentrations, ratios 

and relationships in suspended sediments is further assessed.  

Chapter 7 concludes the thesis with a perspective of the key findings and limitations 

encountered during the course of this research and on implications for future research. A 

reflection is drawn on to the challenges of the application of sustainable agricultural 

management practices in the rural highlands of Western Kenya coinciding with high poverty 

rates.  
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2 Literature review 

2.1 Tropical montane forest catchments under threat 

Forests and, in particular tropical montane forests, are characterised by a rich above and 

belowground biomass and biodiversity, and provide a wide range of ecosystem services 

(Martínez et al. 2009). They regulate climate and the carbon (C) cycle, absorb C through 

photosynthesis and store the C in the abundant above and belowground biomass (Malmer et 

al. 2010). Tight nutrient cycles associated with litter input and an active soil biological 

community such as fungi or bacteria generates soils rich in soil organic matter and nutrients 

(Neill et al. 1997; Robinson et al. 2020). Forests play a vital role in the hydrological cycle by 

generating rainfall and contributing to controlling floods and streamflow peaks through 

evapotranspiration, interception and soil infiltrability (Bruijnzeel 2004; Ogden et al. 2013). 

Springs originate in montane forest catchments and build important headwaters for river 

systems of high water quality (Buytaert et al. 2006; UNEP 2012). Native forest soils with 

increased permeability generate deep water pathways to recharge groundwater storage, 

especially during wet seasons (Malmer et al. 2010; Ouyang et al. 2019). This increased 

permeability together with a dense vegetative cover with a diverse strata and complex 

rooting system controls soil erosion and reduces discharge of suspended sediments to 

streams (Chaves et al. 2008; Owuor et al. 2018). Among these ecosystem services, tropical 

montane forests also provide adjacent communities and the global population with natural 

resources such as timber, medicinal plants (Masese et al. 2012) or grazing areas for 

livestock (Russell et al. 2001).  

Forests are under severe threat due to a number of complex interconnected factors, which 

can be broadly categorized into: (1) agricultural expansion, (2) infrastructure and (3) urban 

expansion and (4) mining. Population growth is the core driver of deforestation interlinked 

with each of the four drivers (Defries et al. 2010). Deforestation has a long history in 

temperate regions. In Europe forest conversion started before the industrial revolution at the 

end of the 18th century and in North America with the first European settlers due to 

settlement and cultivation (Williams 2000; Kaplan et al. 2009). Today’s focus is on tropical 

and sub-tropical regions where alarming deforestation rates are observed. In 2019, for 

example, 11.9 million hectares of tree cover was lost in the tropics (GFW 2020).  

Commercial and subsistence agricultural expansion accounted for an estimated total of 

around 73% of all deforestation across tropical and sub-tropical countries between 2000 and 

2012 (Hosonuma et al. 2012). Forests are converted to provide land for agriculture to 

produce commodities such as palm oil, soybeans, rice, cocoa, tea and tree plantation 
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woodlands (e.g. eucalyptus, cypress or acacia) (Nepstad et al. 2006; Carter et al. 2018). In 

addition, the expansion of commercial agriculture is driven by the growing global demand of 

beef, where livestock ranches replace natural ecosystems, as is happening in Brazil (Neill et 

al. 1997; Nepstad et al. 2006). On top of large-scale agricultural expansion, scarcity of 

arable land and denseley populated tropical areas urges people to convert forest 

ecosystems to subsistence agriculture usually cultivated by local smallholders (Delve & 

Ramisch 2006; Himeidan & Kweka 2012).  

The second most important cause of deforestation is infrastructure (10%) and urban (10%) 

expansion, which leads to forest fragmentation. This is due to road expansion which is often 

linked to logging. Commercial and illegal logging for timber, pulp and paper often also goes 

together with agricultural expansion, as the land is usually cultivated for agricultural 

purposes after conversion. In some countries like Peru, Bolivia, the Democratic Republic of 

Congo or Indonesia, more than half of the timber exports originate from illegal logging. 

Furthermore, African forests are degraded by the extraction of fuelwood and charcoal 

production (Hosonuma et al. 2012; Brandt et al. 2018). The illegal extraction of timber is 

coinciding with complex, contradictory and poorly implemented regulations in forested areas 

(Laurance 1999; Klopp & Sang 2011). Expansion of the road network also brings in 

settlement and people. In Africa and Asia, urban expansion is projected to increase due to 

the vast growth of urban population which outpaces rural growth (Montgomery 2008). 

Finally, important mineral resources of demand for global trade such as bauxite (aluminium), 

copper, tin, manganese, iron or gold are found under tropical forests (Sonter et al. 2017). 

Mining-induced deforestation accounts for 7% of the tropical forest loss (NYDF 2019). 

2.2 Effects of land use on soils, hydrological flow pathways and water 

resources 

The disturbance and conversion of forests may consequently affect the provision of direct 

and indirect ecosystem services and result in permanent changes of soil physical properties, 

hydrological flow pathways and quality of water resources.  

2.2.1 Soil physical properties 

Studies have shown that land cultivation following clearance of natural forests impacts soil 

physical properties and the water retention capacity of the soil (Bonell 2005; Zimmermann et 

al. 2006; Arnhold et al. 2015). Lower field capacity and plant available water content as well 

as higher wilting point were found in tropical agricultural soils compared to native forest soils 

(Owuor et al. 2018). Agricultural cultivation and land management practices (e.g. using 
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machinery or draft power) contribute to the degradation of soil physical properties, soil 

structural damage and reduction of macropores in soils, resulting in compaction (Cisneros et 

al. 1999; Price et al. 2010). Furthermore, trampling by livestock on pastures also contribute 

to the compaction of the topsoil (Tollner et al. 1990). Compared to the deep and complex 

rooting system of forest vegetation, vegetation on agricultural land generally has a lower root 

diversity and depth reducing the development of macropores (Billings et al. 2018).  

Native forest soils are rich in organic matter and nutrients due to a tighter nutrient cycle 

through an active soil fungal community, soil biota and fresh organic matter input of the 

dense biomass (Neill et al. 1997). The loss of a dense vegetation cover results in a decline 

in soil organic matter and soil nutrients (Chiti et al. 2018; Owuor et al. 2018). Following the 

clearance of natural forests, the reduction in fresh plant material input leads to an increased 

mineralization and thus loss of soil organic matter (Chiti et al. 2018). A reduction in soil 

organic matter will also lead to enhanced compaction of the soil and loss of water retention 

capacity (Owuor et al. 2018). These physical changes consequently impede infiltration rates 

into the soil matrix (Giertz & Diekkrüger 2003; Nyberg et al. 2012). A study in Western Kenya 

showed that infiltration rates were reduced by 60% within 40 years of cultivation (Nyberg et 

al. 2012). Lower infiltration rates on compacted soils lead to increased surface runoff (Figure 

1).  

In addition to the beneficial effect of vegetation on the soil physical properties and infiltration 

rates, vegetation cover protects the ground from erosive rainfall through buffering the kinetic 

energy of rainfall (Bochet et al. 1998; Zuazo et al. 2004) and the roots lead to a high soil 

stability by holding the soil together (Gyssels et al. 2005). Ground vegetation cover further 

traps potentially erodable sediment (Rey 2003; Martínez Raya et al. 2006). Consequently, 

agricultural cultivation as a replacement of a dense forest vegetation is an important factor in 

promoting surface runoff and soil erosion due to the changes in soil physical characteristics, 

the loss of soil organic matter and the reduced vegetation cover. 

Surface runoff is a mechanism for the detachment of soil particles, leading to surface soil 

erosion. Soil erosion is another reason for the enhanced loss of the topsoil rich in organic 

matter and nutrients (Martínez-Mena et al. 2002), besides increased mineralization, lower 

input of soil organic matter and nutrient mining through crop uptake under disturbed soils. 

Nutrients and soil organic matter are essential for plant growth, and, as such, poses 

limitations for soil health and productivity (Morgan 2005; Liniger et al. 2011; Saiz et al. 2016). 

Reduction in soil fertility constrain crop yields of low input agricultural systems in the tropics. 

This might lead to further deforestation in need for more arable fertile land which may 

consequently result in more soil erosion. 
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2.2.2 Hydrological pathways 

The changes in soil physical properties following the removal of a natural forest cover 

impacts catchment hydrology (Giertz & Diekkrüger 2003; Ogden et al. 2013). These changes 

can favour different hydrological flow pathways, such as deep subsurface flow, shallow 

subsurface flow or surface runoff (Geris et al. 2015; Muñoz-Villers et al. 2016). Forest 

ecosystems are characterized by a deep subsurface hydrological connectivity, while a shift 

from deep ‘slow’ flow pathways to superficial ‘quick’ flow pathways are observed in disturbed 

agricultural catchments (Elsenbeer 2001). These preferential flow pathways can lead to an 

increase in runoff ratios and peak runoff (Ogden et al. 2013). Other studies have found 

decreased mean transit times for converted forested catchments (Timbe et al. 2014; Muñoz-

Villers et al. 2016). The mean transit time is a fundamental indicator to assess changes in 

catchment hydrology. Land use might affect flow pathways or catchment storage capacities 

due to their interrelating changes in soil hydraulic properties (Figure 1) (Mosquera et al. 

2016; Muñoz-Villers et al. 2016).  

Tropical natural forests have a so-called ‘sponge-effect’ with enhanced wet season 

infiltration rates, reduced direct runoff and flood peaks and increased dry season base flow 

(Bruijnzeel 2004; Ogden et al. 2013). Studies have shown that the dry season runoff recedes 

more slowly and the runoff rate is greater at the end of the dry season in natural forest 

catchments compared to agricultural catchments (Ogden et al. 2013). The total runoff can be 

35% lower with smaller peak runoff rates during floods from natural forests compared to 

cultivated catchments (Ogden et al. 2013). Natural forest catchments lead to flood peak 

reduction, while the disturbed catchments show higher mean annual streamflow with the 

occurrence of surface runoff, as it was observed by studies in tropical forest ecosystems in 

North and South America and East Africa (Muñoz-Villers & McDonnell 2013; Ogden et al. 

2013; Gebru et al. 2019). Hydrological flow pathways are key drivers for the susceptibility to 

soil erosion in catchments. The shift from deep hydrological flow pathways to surface runoff 

enhances the potential to deliver water with an increased amount of suspended sediment to 

the stream network.  
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Figure 1 Hydrological and sediment flow pathways in an agricultural and tropical forest ecosystem. SOM = soil 
organic matter; OM = organic matter. 

2.2.3 Suspended sediments in surface water 

Increased soil erosion due to changes in soil physical properties and hydrological flow paths 

are also relevant from the water resource perspective due to increased suspended sediment 

fluxes. Suspended sediment refers to the fine-grained fraction of the sediment in 

suspension, generally smaller than 63 µm (Vercruysse et al. 2017). Suspended sediments in 

streams lead to the physical, chemical and biological degradation of water resources 

(Owens et al. 2005; Horowitz 2008). Fine sediment may lower the lifespan and water storage 

capacity of lakes, water reservoirs or dams through siltation and deposition of sediment 

(Mogaka et al. 2006; Foster et al. 2012; Wangechi et al. 2015). These changes may impact 

the economy by reducing capacity for hydropower generation.  

Furthermore, the fine sediments and attached pollutants (Domagalski & Kuivila 1993; 

Thomas et al. 2015) or macronutrients (e.g. carbon, nitrogen or phosphorus) (Kronvang et 

al. 1997; Quinton et al. 2001; Horowitz 2008) can impact the aquatic ecosystem (Owens et 

al. 2005; Kemp et al. 2011) and turn water bodies into an eutrophic state (Foy & Bailey-

Watts 1998; Hilton et al. 2006). Disturbances and poor land management practices in 

headwaters can consequently degrade the water quality or affect the primary production for 

downstream communities and livestock.  
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The composition of suspended sediments depends on their originating terrestrial source 

areas (Evrard et al. 2013; Laceby et al. 2017). The conversion of natural forest ecosystems 

to agricultural land often leads to an increased number of sediment source areas due to 

exposure of areas susceptible to soil erosion (hillslopes) caused by removal of the protective 

vegetation cover. The relative contribution of individual sediment source areas to the total 

suspended sediment budget at the catchments outlet depends on their activity (e.g. gullies) 

and connectivity to the stream network (Poesen et al. 2003; Fryirs 2013). The increase in 

surface catchment connectivity as well as the number of active sediment source areas can 

consequently lead to increased generation of suspended sediments. In order to develop soil 

conservation strategies to address the negative impacts of suspended sediments on water 

resources, a thorough understanding is needed about the key drivers and sources 

underlying sediment dynamics.  

2.3 Highlands of the Mau Forest Complex, Kenya 

The East African highlands are located above 1,200 m above sea level (a.s.l.) and have 

daily mean temperatures below 20°C. They are among the most populated areas in East 

Africa, hosting more than 64% of the total population, while covering only 23% of the total 

land area of East Africa. Population density ranges between 158 persons per km2 in Ethiopia 

and 410 persons per km2 in Rwanda, with a few exceptions such as Vihiga district, Kenya 

with 1,200 persons per km2 (Delve & Ramisch 2006; Himeidan & Kweka 2012). Favourable 

climatic conditions and inherent fertile volcanic soils make these areas suitable for the 

development of productive agricultural areas. Scarcity of arable and fertile land together with 

population pressure pushes people to the most fertile areas located in the proximity of 

natural ecosystems, but also to the most fragile environments prone to soil erosion. East 

African montane forest ecosystems on steep hillslopes are thus typically converted to land 

for agricultural purposes in response to growing population densities (Krhoda 1988; Pellikka 

et al. 2004). Besides forests, wetlands and grasslands are also under extensive conversion 

(Carter et al. 2018). 

One such ecosystem is the Mau Forest Complex (400,000 ha), the largest remaining tropical 

closed-canopy indigenous forest ecosystem of East Africa. The Mau Forest is a complex of 

sixteen contiguous forests and six separated satellite forests. It covers the western highlands 

on the western side of the Kenyan Rift Valley at an altitude range between 1,200 and 

3,000 m.a.s.l (UNEP 2008; Owino et al. 2009). The forest ecosystem builds an important 

headwater catchment for 12 rivers that feed into Lake Baringo, Lake Nakuru, Lake Natron, 

Lake Turkana and Lake Victoria. The transboundary Lake Victoria is the second largest 

fresh water lake in the world and it contributes to the Nile River Basin. The catchment area 
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of the Mau Forest Complex supports livelihoods of approximately 5 million people, livestock, 

wildlife and the economy (energy, industries, agriculture and tourism) with water resources 

(UNEP 2008). The natural forest is also home for the indigenous Ogiek people and provides 

resources for adjacent communities, such as firewood, charcoal, fiber and timber. The forest 

ecosystem also provides raw material (e.g. timber and pulp) for commercial use and 

international trade.  

The Mau Forest Complex has undergone significant land use changes due to the conversion 

of natural forest to subsistence and commercial agriculture. The conversion started as early 

as the colonial time under the British rule (1863-1963), where the Mau Forest was controlled 

under the central state originally managed by local communities (Ogiek people) (Kimaiyo 

2004; Klopp 2012). The colonial state mapped forest boundaries appropriated for the 

government. The land appropriation process was followed by the establishment of tea and 

tree plantations, using mainly exotic species (e.g. Pinus patula, Cupressus lusitanica, 

Eucalyptus spp.), and settlements in 1930 (Binge 1962; Kimaiyo 2004). After independence 

during post-colonial times, the alteration of forest boundaries continued in order to legitimize 

areas for natural resource extraction by large-scale logging (Klopp 2012). During the last few 

decades, around 25% of the area of the Mau Forest Complex, representing 107,707 ha, has 

been converted to agriculture and settlements (Owino et al. 2009). Today’s forest cover loss 

can be mainly attributed to the expansion of subsistence agriculture due to land scarcity and 

population density (Were et al. 2013). Continuous and unsustainable extraction of natural 

resources, encroachment through settlement and livestock grazing lead to the degradation 

of the Mau Forest Complex.  

2.4 Review of studies within the Lake Victoria Basin and Kenya 

Soil erosion in Kenya was documented as early as 1935, whereas sediment yield monitoring 

was limited to a few major catchments between 1948 and 1965 (Ongwenyi et al. 1993). Plot 

level sediment and turbidity studies in the Sondu River, which originates in the Mau Forest 

Complex, linked agricultural activities to increased sediment and turbidity values (Shepherd 

et al. 2000; Masese et al. 2012; Njue et al. 2016). Masese et al. (2012) reported an increase 

in turbidity in the lower part of the Sondu River Basin between 1986 and 2011. However, the 

studies are restricted to small-scale experimental plots or to low sampling frequency at 

catchment level. The absence of a turbidity-suspended sediment relationship and low 

sampling frequency without accompanied flow measurements makes calculations of annual 

load uncertain. Other sediment studies focused on large river basins such as the Tana River 

(Tamooh et al. 2012, 2014), including sediment input to reservoirs (Brown et al. 1996) or at 

the Tana Estuary (Kitheka et al. 2005). These studies draw the importance onto floodplains 
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and hydro-power reservoirs in trapping and depositing increased suspended sediments at 

downstream reaches of the Tana River. A discontinuous sediment study over 3.5 years in 

the Mara River Basin demonstrated that catchment disturbances by wildlife and domestic 

livestock were linked to increased sediment loads in a semi-arid catchment. This is in 

contrast to lower stream sediments originating in the Mau Forest Complex coinciding with 

higher annual rainfall (Dutton et al. 2018). These studies have in common that turbidity and 

siltation are recognized as the principal causes of water resource degradation in Kenya and 

partially linked to land use change. However, a platform for long-term sedimentological and 

hydrological measurements in comparison with different land use is missing.  

Several modelling studies applied in the Lake Victoria Basin observed that land use change 

resulted in higher surface runoff (Githui et al. 2010), increased stormflows and reduced dry 

season flows (Mati et al. 2008; Mango et al. 2011), increased soil erosion and sediment 

yields (Ssegane et al. 2008; Defersha & Melesse 2012). However, empirical models tend to 

be highly parameterized which may restrict modelling performance in areas of limited data 

availability and digital elevation models of low resolution (Jayakrishnan et al. 2005). 

Impacts of land use change or anthropogenic disturbance on hydrological functions are 

catchment-dependent and may vary based on a number of factors including climatic 

conditions, and hydrogeological and catchment physical properties. This highlights the 

importance to improve the understanding on hydrological regimes and sediment dynamics of 

under-researched or typically un-gauged tropical montane catchments such as the 

headwaters in the Mau Forest Complex, that are under pressure of natural forest conversion 

to agricultural systems. Sustainable management practices can be applied to also decouple 

sediment source areas in these headwater catchments to sustain the water quality for 

downstream environments, such as Lake Victoria. Land use changes and poor agricultural 

management in the headwaters of the Mau Forest Complex, both directly and indirectly, 

affect fishing activities, tourism, industry, biodiversity and the livelihood of local communities 

in the lake basin (Wangechi et al., 2015) and impose additional economic costs. Lake 

Victoria exhibit high sediment accumulation rates of 2.3 mm yr-1 based on historical records 

(Verschuren et al. 2002) and increased signs of eutrophication (Sitoki et al. 2010) stressing 

the need to mitigate sediment generation and their associated macronutrient inputs in 

headwater regions.   
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3 Description of the study area and methods 

3.1 Study area 

The three catchments in which this study was carried out are located in the headwaters of 

the Sondu River Basin (3,470 km2) in the Mau Forest Complex, Kenya between the 

longitudes 34°04’E-34°49’E and latitudes 0°17’S to 0°22’S (Figure 2). The Sondu River 

feeds into Lake Victoria, the second largest fresh water lake in the world, an important water 

resource for about 30 million people in five countries (Mogaka et al. 2006). The river basin 

ranges from 2,935 m a.s.l. on the top of the Mau Escarpment in the east to the flood plains 

of Lake Vicotria at 1,134 m a.s.l. in the west. The catchments are part of an on-going 

monitoring programme funded by the German Federal Ministry for Economic Cooperation 

and Development (Grant 81206682) and the German Science Foundation (Deutsche 

Forschungsgemeinschaft DFG, Grant BR2238/23-1), which is aimed at assessing the effect 

of land use on different water quality and quantity parameters and started in October 2014. 

The study catchments were used as a ‘microcosm’ to understand process response to 

disturbance where the findings are transferable to other tropical montane systems under 

similar pressures. The catchments were chosen based on the criteria of different land use 

and comparability between the catchment characteristics, such as surface area, shape, 

morphology, geology, pedology and climate to assess the effect of land use on sediment 

dynamics and hydrology. The catchments are dominated by (1) natural forest vegetation 

(35.9 km2), (2) tea-tree plantations (33.3 km2) and (3) smallholder agriculture (27.2 km2) 

(Figure 3).  
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Figure 2 Overview of the a) Sondu River Basin within Kenya showing the b) location of the automatic monitoring 
equipment (gauging station) at the outlet of the tea-tree plantations (TTP), natural forest (NF) and the smallholder 
agriculture (SHA) in the headwaters of the Sondu Basin and elevation (SRTM digital elevation model 30 m 
resolution; USGS, 2000) and c) land use map with weather stations and tipping bucket rain gauges.  
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Figure 3 Locations of the a) suspended sediment sampling points in the tea-tree plantation (TTP), natural forest 
(NF) and smallholder-agriculture (SHA) catchments and dominant soils (Soil and Terrain database for Kenya 
(KENSOTER) version 2.0; ISRIC, 2007). Photos of the b) outlet of the natural forest, c) the tea plantations and in 
the background tree plantations, d) hillslopes of the smallholder agriculture and e) boundary between the tea 
plantations and the South-West Mau. 
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The natural forest catchment is part of the the South-West Mau, the largest forest block in 

the Mau Forest Complex. The Mau Forest Complex is one of the last remaining isolated 

patches of closed-canopy montane forests in Kenya. As an afromontane mixed forest, 

indigenous broad-leafed evergreen trees and shrubs dominate the area with a complex 

vegetation pattern. The forest vegetation follows altitudinal zones from west to east: a lower 

montane forest is found above 1,200 m a.s.l. including species such as Polyscias 

kikuyuensis, Macarangea kilimandscharica, Olea hochstetteri, Casearia battiscombei and 

Fagara spp., transitioning to irregular patches of bamboo forest and grassland vegetation 

above 2,300 m a.s.l. (Binge 1962). In highly degraded areas natural vegetation is replaced 

by cultivated land (Owino et al. 2009; Kinyanjui 2011). A riparian zone transists from the 

forest vegetation containing an understorey of a dense cover of shrubs and tree ferns 

combined with tall indigenous tree species throughout the catchment. The South-West Mau 

is bordered by tea and tree plantations at the western side and degraded through 

encroachment by smallholder farmers on the eastern upland side, transitioning to 

subsistence smallholder agriculture. A buffer belt of governmental tea plantations along the 

eastern and western forest boundaries have been established to prevent further 

encroachment of adjacent local communities (NTZD 2015). The natural forest catchment 

(35.9 km2) was chosen based on the relatively low levels of forest disturbance in the 

South-West Mau (Figure 2).  

The tea-tree plantation catchment ranges from 1,788 to 2,141 m a.s.l. and borders the 

South-West Mau to the west. Commercial tea and tree plantations including mainly exotic 

species (e.g. Pinus patula, Cupressus lusitanica, Eucalyptus spp.) and settlements were 

established at the beginning of the 20th century (Binge 1962). The catchment is dominated 

by tea (Camellia spp.) plantations alternated with Eucalyptus saligna and Cupressus 

lusitanica woodlots that are used for timber production and fuelwood for the tea factories. 

Some of the tea companies apply soil conservation strategies to control soil erosion, such as 

mulching, terracing, planting rows of oat grass interplanted between rows of tea and cover 

trees with mature tea trees during the establishment of new tea bushes. Herbicides are 

commonly used to control weeds. Aerial application of inorganic fertilizer is conducted two to 

three times per year on the tea plantations (150-250 kg N ha-2 yr-1 and 8-13 kg P ha-2 yr-1) 

(Jacobs et al. 2018b). In general, unpaved and paved roads are linked to well-maintained 

sited cut-off drains or open culverts. The design of the well-engineered drainage system 

takes into account the optimal routing of surface runoff to the riparian zones before entering 

the streams. The riparian buffer zone of approximately 30 m includes an intact canopy of 

mixed indigenous tree species with a dense surface cover (Figure 3).  

https://uses.plantnet-project.org/en/Casearia_battiscombei
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The smallholder agriculture catchment is located in the upper part of the Sondu River Basin 

above an altitude of 2,400 m a.s.l. A heterogeneous mosaic of farmlands on average smaller 

than one hectare characterizes the landscape (Figure 3). Subsistence farmers grow 

vegetable crops such as maize, beans, peas, kale, cabbage, and potatoes, millet and tea 

(Camellia spp.). A combination of hoeing and herbicide application is used for weed control. 

Inorganic fertilizer is applied manually on potatoes and maize (23-45 kg N ha-2 yr-1 and 

12-23 kg P ha-2 yr-1), while manure is used for cabbage and other greens. Tillage in the form 

of hand-hoe cultivation and ploughing with oxen are the common practices for soil 

preparation. Soil management strategies such as vegetated buffer strips cultivated with 

Napier grass (Pennisetum purpureum) were only occasionally observed on the mostly steep 

agricultural hillslopes. Crop residues often remain on the fields. Grasslands for livestock and 

gazetted forests of Eucalyptus saligna, Cupressus lusitanica and Pinus patula are alternated 

with croplands. Existing market opportunities for wood products has motivated farmers to 

grow these tree species to improve livelihoods. Mosaics of bamboo forests, as remains of 

the natural forest, grow naturally around springs. Road density of the catchment can be 

considered high, however the quality of the roads is low. The frequent used unpaved roads 

are highly compacted. They often run parallel to the slope connecting the hillslopes with the 

stream network. Under these conditions unpaved roads often become deeply incised gullies. 

Steep hillslopes connect with small floodplains in a steep and narrow valley floor. The 

riparian zone is mostly absent or replaced by Eucalyptus woodlots or agricultural land, which 

makes channel banks susceptible to erosion. The rural agricultural highlands face commonly 

high population densities and severe poverty linked to low agricultural productivity (Place et 

al. 2006).  

The three catchments are characterized by long and steep hillslopes with a maximum slope 

gradient of 72% in the natural forest catchment. The elevation ranges from 1,788 to 

2,691 m a.s.l. The streams are first- and second-order perennial streams merging together 

to the Sondu River (a sixth-order stream) (Figure 2). The drainage density ranges between 

0.42 and 0.64 km km-2. The north-south movement of the Intertropical Convergence Zone 

(ITCZ) results in seasonal shifts and duration in rainfall regimes in Kenya with a bimodal 

rainfall pattern in the study area (Camberlin 2018). The wet seasons are between March and 

June and between October and December referred to the ‘long rainy season’ and the ‘short 

rainy season’, respectively. An intermediate rainy season occurs between the two wet 

seasons. The mean annual rainfall is 1,979 ± 325 mm yr-1 (period 1905-2019) with rainfall 

peaks in April and May (>260 mm month-1). January and February is the dry season with 

monthly rainfall <95 mm month-1. Temperature and evapotranspiration tends to increase with 

decreasing altitude. The mean annual temperature is 12°C at 2,935 m a.s.l. and increases to 
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16°C in the town Kericho at 2,100 m a.s.l. The minimum daily temperature is 11°C and 

exceeds 25°C during the dry season, while June and July are usually the coldest months 

with maxima around 22°C (Jacobs et al. 2017). Evapotranspiration decreases from about 

1,800 to 1,400 mm yr-1 from lower (1,800 m) to higher (>1,900 m) altitudes, respectively 

(Krhoda 1988).  

Geologically, Kericho Phonolites cover the lower catchment (tea-tree plantations), followed 

by phonolitic nephelinites with intercalated tuffs and Mau ashes with basal tuff 

encompassing the natural forest catchment, while phonolitic nephelinites comprises the 

upper catchment in the smallholder agriculture (Binge 1949; Jennings 1962). The 

catchments are covered by up to 3-6 m deep and well-drained, volcanic loamy soils 

(Sombroek et al. 1982), characterized as mollic Andosols and humic Nitisols (ISRIC 2004) 

with moderate to high amounts of organic matter (Figure 3) (Dunne 1979). 

3.2 Methodologies of monitoring 

This research used a combination of biophysical data and modelling to identify sediment and 

hydrological dynamics of catchments under contrasting land use. To unravel the complex 

dynamics of suspended sediments, a four-year time series of hydrological (including runoff 

and rainfall) and sedimentological data in 10-minute resolution from 2015 to 2018 was 

analyzed (Chapter 4). To quantify the relative contribution of different sediment sources in 

the smallholder agriculture catchment, a sediment fingerprinting approach was used and four 

different sediment sources, such as agricultural land (n=137), unpaved tracks (n=60), gullies 

(n=19) and channel banks (n=32), and suspended sediment as target samples (n=35) were 

analysed for their geochemical and biogeochemical elements (Chapter 5). The effect of land 

use on the different sediment-associated macronutrient (total carbon, nitrogen and 

phosphorus) concentrations were quantified (Chapter 6).  

The outlet of each of the three catchments is equipped with an automatic stream monitoring 

system recording data on 10-minute resolution. A radar sensor (VEGAPULS WL61, VEGA 

Grieshaber KG, Schiltach, Germany) records the distance to the water level to determine 

water level or stage. The estimated water level was related to stream discharge based on a 

site-specific second-order polynomial stage-discharge relationship. The calibration was 

checked over a wide range of stream flows using salt-dilution gauging (Shaw et al. 2011), an 

Accoustic Doppler Velocimeter (ADV; FlowTracker, SonTek, San Diego CA, USA) or an 

Acoustic Doppler Current Profiler (ADCP; RiverSurveyor S5, SonTek, San Diego, USA) 

depending on river size and discharge (Jacobs et al. 2018b) (Chapter 4 and 6). For water 

quality, a UV/Vis spectrophotometer (spectro::lyser, s::can Messtechnik GmbH, Vienna, 



Description of the study area and methods 

 

20 
 

Austria) measures in situ turbidity in FTU (formazin turbidity unit) by transmitting a beam of 

light to an optical receptor (Figure 4). With an increase in turbidity, the transmission of light 

decreases. Turbidity was used as a surrogate for suspended sediment concentrations. An ex 

situ linear turbidity-sediment relationship was used to convert long-term turbidity data into 

suspended sediment concentrations. The calibration method is described in Chapter 4.3.2 

(Chapter 4 and 6). The monitoring equipment is visited on a weekly to bi-weekly basis for 

maintenance and downloading of the data. Since January 2016, the data is additionally 

automatically uploaded to an online database, except for the site at the natural forest due to 

network restrictions (Figure 2).  

In addition to the automatic stream monitoring, a total of eight tipping bucket rain gauges (5 

tipping bucket rain gauges: Theodor Friedrichs, Schenefeld, Germany and 3 weather 

stations: ECRN-100 high resolution rain gauge) record rainfall data programmed to measure 

cumulative precipitation per 10 minutes with a 0.2 mm resolution. One weather station each 

was installed in the tea-tree plantation and the smallholder agriculture catchment, while the 

third weather station is located at the boundaries of the South-West Mau. In addition to the 

weather stations, two tipping bucket rain gauges were evenly distributed in each catchment 

of the tea-tree plantations and the smallholder agriculture, while one was installed at the 

outlet of the natural forest catchment. The tipping bucket rain gauges are checked on a 

monthly basis for maintenance and downloading of the data. The average rainfall over each 

catchment area is estimated by weighting the contribution of rainfall measured at each 

tipping bucket using Thiessen polygons (Figure 2) (Chapter 4 and 6).  

Suspended sediment was collected for the turbidity-sediment calibration, the sediment 

fingerprinting and the qualitative analysis of suspended sediment (Chapter 4, 5 and 6). 

Sediment traps (time-integrated sediment sampler) were installed at the outlet of each 

catchment and two additional locations upstream of the outlet of the smallholder agriculture 

catchment following the method by Phillips et al. (2000) (Figure 3 and Figure 4). A 

polyvinylchloride (PVC) pipe (0.045 m (ID) x 0.30-0.50 m) was attached to two metal or 

wooden bars, using plastic cable ties or brackets. The bars were screwed to a metal or 

wooden stand to secure stability on the stream bed. The ends of the PVC pipe were sealed 

and an inlet and outlet (<2mm) towards the top of each end allows stream water to pass 

through. A cap on one end allows the frequent removal of trapped sediment (Figure 4). The 

sediment trap is oriented directly parallel to the flow direction of the stream. Flow velocity 

reduces within the chamber of the pipe to allow suspended sediment to settle. The 

suspended sediment samples were collected every three to five days. In addition to the 

sediment traps, event-based flood samples were manually collected with bulk river water 
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samples (~10 L) at the outlet of each catchment. At the outlet of the smallholder agriculture 

automatic water samplers were additionally installed (3700 Full-size portable sampler, 

Teledyne ISCO, Lincoln, USA) to collect 0.5 L samples during the rising and falling limbs of 

the storm hydrograph (Figure 3). 

 
Figure 4 a) Water monitoring equipment with b) turbidity sensor and c) sediment trap at the outlet of the natural 
forest catchment. 

A flow diagram of the main data chapters is presented with the main aim, objectives, set 

hypotheses, datasets required and the key message of each data chapter (Figure 5). 
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Figure 5 Flow diagram of the study about the (a) aim, (b) objectives, (c) hypotheses, (d) dataset required and (e) 
results of the data chapters. 
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4 Tropical montane forest conversion is a critical driver for 

sediment supply in East African catchments 

4.1 Introduction 

The conversion of native ecosystems to agriculture leads to the degradation of soil 

properties (Morgan 2005; Githui et al. 2009; Owuor et al. 2018), which can increase soil 

erosion rates (Bruijnzeel 2004). Soil erosion does not only deplete fertile topsoil from 

agricultural land, but also leads to water quality deterioration caused by an increase in fine 

suspended sediments (Brown et al. 1996; Quinton et al. 2001; Horowitz 2008). Hence, 

suspended sediment physically affects the fluvial network, (Owens et al. 2005) polluting 

drinking water for communities, livestock and wildlife, and impacting downstream water 

reservoirs and hydropower generation because of the accumulation of the sediments 

(Mogaka et al. 2006; Foster et al. 2012; Wangechi et al. 2015). Additionally, pollutants such 

as pesticides (Brown et al. 1996) and nutrients (phosphorus or nitrogen) (Fraser et al. 1999; 

Quinton et al. 2001; Horowitz 2008) can be attached to sediments and can harm aquatic 

biota (Owens et al. 2005; Kemp et al. 2011; Gellis & Mukundan 2013). The increase in 

nutrient concentrations can result in eutrophication of water bodies (Foy & Bailey-Watts 

1998; Hilton et al. 2006; Mogaka et al. 2006).  

Land use change in catchments with a strong connectivity between sediment sources and 

streams can abruptly increase sediment supply to the fluvial system (Fryirs 2013). There 

may be multiple sediment source areas governing sediment supply, such as hillslope soils 

(Minella et al. 2008; Didoné et al. 2014), gullies (Poesen et al. 2003; Minella et al. 2008; Fan 

et al. 2012), riverbanks (Trimble & Mendel 1995; Lefrançois et al. 2007) and unpaved tracks 

(Ziegler et al. 2001; Minella et al. 2008; Ramos-Scharrón & Thomaz 2016). The term 

connectivity can be further sub-divided into two distinct types, such as structural and 

functional connectivity. Structural sediment connectivity is often defined as a contiguous and 

physical linkage (e.g. topography, surface cover) within the landscape, while the latter is 

described as a process-based concept (e.g. rainfall characteristics, runoff) that links 

landscape units (Zingaro et al. 2019). However, the functional connectivity can also include 

geomorphic processes that drive fluxes of water and sediment (e.g. processes leading to 

sediment transport and availability) (Wainwright et al. 2011; Masselink et al. 2016). 

Unravelling sediment dynamics is complex and requires continuous high-frequency 

monitoring because suspended sediment concentrations change rapidly throughout 

individual storms (De Girolamo et al. 2015; Sun et al. 2016; Vercruysse et al. 2017). 
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Alternatively, turbidity observations can be used as a surrogate to determine in-stream 

suspended sediment concentrations, which allow for establishing continuous in situ 

suspended sediment datasets, even for remote sites (Lewis 1996; Ziegler et al. 2014; 

Minella et al. 2018).  

Streams in montane headwaters are major contributors to suspended sediment yield 

because of the steep terrain that leads to a strong hillslope to channel connectivity (Wohl 

2006; Grangeon et al. 2012; Morris 2014). Significant increases in suspended sediment yield 

can be expected from tropical montane headwater catchments, which are heavily affected by 

deforestation followed by cultivation of erosion prone areas, often without soil conservation 

measures (Wohl 2006; Ramos-Scharrón & Thomaz 2016). Land use change may impact 

catchment hydrology and runoff mechanisms in the tropics (Muñoz-Villers & McDonnell 

2013; Ogden et al. 2013), which are key processes determining sediment yields. 

In East Africa, land use change in tropical montane forests are mainly driven by scarcity of 

arable land (Pellikka et al. 2004) with the most fertile lands located in the proximity of natural 

ecosystems (Krhoda 1988). The Mau Forest Complex exemplifies this case, with one quarter 

of the forest converted to agricultural land over the last four decades (Brandt et al. 2018), in 

addition to the clearances at the beginning of the 20th century to establish commercial tea 

plantations (Binge 1962). Due to its location in the highlands of Kenya, the Mau Forest is a 

critical catchment area for the country; it is the headwater to twelve rivers, one of which is 

the Sondu River, a tributary of Lake Victoria (UNEP et al. 2005; Mogaka et al. 2006). 

Eutrophication and sedimentation are major environmental problems affecting Lake Victoria, 

where sediments are estimated to accumulate at a rate of 2.3 mm yr-1 (Verschuren et al. 

2002). Although authorities in Kenya acknowledge the need to reduce sediment pollution, 

the linkages between land use change and changes in sediment dynamics in the headwater 

catchments are not well quantified (Nyssen et al. 2004; Vanmaercke et al. 2010, 2014). 

There is limited data on sediment export for montane catchments in sub-Saharan Africa in 

general, and in East Africa in particular (Walling & Webb 1996; Ntiba et al. 2001). Clearly, 

this is a significant gap in knowledge of these environments that requires empirical 

measurements to address it. Not only will these measurements improve the understanding 

of these under-researched environments, but they will also assist in the development of 

targeted soil and water conservation strategies to disconnect sediment source areas in the 

upper catchments of the Mau Forest from the fluvial system and downstream environments, 

including Lake Victoria. 
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The overall aim of this study was to elucidate the spatial and temporal dynamics of 

suspended sediment and to quantify suspended sediment loads in tropical montane streams 

under contrasting land uses using a four year high-temporal resolution dataset. The main 

objectives were: (a) to quantify rainfall, streamflow and suspended sediment transport 

dynamics, (b) to compare the seasonal responses in suspended sediment yield, (c) to 

assess the timing of the response of suspended sediment to rainfall and discharge and (d) to 

improve the understanding of the dominant water flow pathways. The hypothesis was set out 

that surface runoff diverted on unpaved tracks is key in generating significantly more 

sediment in a smallholder-dominated catchment than a forested catchment. 



Tropical montane forest conversion is a critical driver for sediment supply in East African 
catchments 

 

26 
 

4.2 Materials and Methods 

4.2.1 Catchment characteristics and site description  

The three catchments studied are located in the headwaters of the Sondu River Basin 

(3,470 km2) in the western highlands of Kenya (Figure 6). Each catchment is dominated by a 

distinct land use: (1) natural forest (NF; 35.9 km2), (2) smallholder agriculture (SHA; 

27.2 km2) and (3) tea-tree plantations (TTP; 33.3 km2). The Sondu River drains into Lake 

Victoria, which is the second largest fresh water lake in the world, an important water and 

economic resource for five countries and one source of the Nile River. 

 
Figure 6 Overview of the A) study catchments: tea-tree plantations (TTP), natural forest (NF) and the smallholder 
agriculture (SHA), showing locations of gauging and weather stations, tipping bucket rain gauges and land use in 
the B) Sondu River Basin and its outlet to Lake Victoria (SRTM digital elevation model 30 m resolution; USGS, 
2000) in Western Kenya.  

The three catchments (Table 1) are characterized by steep hillslopes with a maximum slope 

gradient of 72% in the natural forest catchment. The streams are mostly first- and 

second-order perennial streams that merge together to form the River Sondu (a sixth-order 

stream). The rainy seasons are bimodal with a long rainy season between March and June, 

and a short rainy season between October and December with a continued intermediate 

rainy season between the two wet seasons. Mean annual precipitation is 1,988 ± 328 mm 
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(period 1905-2014) with rainfall peaks in April and May (>260 mm month-1). January and 

February (<95 mm month-1) are the driest months. 

Table 1 Physical characteristics of the three catchments under different land use natural forest, tea-tree 
plantations and smallholder agriculture in the South-West Mau, Kenya. 

 Natural forest Tea-tree plantations Smallholder agriculture 

Outlet coordinates
a
 35°18'32.0472''E 

0°27'47.592''S 

35°13'17.22''E 

0°28'34.9176''S 

35°28'31.7316''E 

0°24'4.0248''S 

Area (km
2
) 35.9 33.3 27.2 

Elevation range (m 

a.s.l.) 

1,968-2,385 1,788-2,141 2,389-2,691 

Mean slope ± SD (%) 15.7±8.4 12.4±7.6 11.6±6.7 

Basin order (Strahler) 2 2 2 

Drainage density 

(km km
-2)

 

0.48 0.42 0.64 

Soil infiltration rate 

(mm hr
-1

)
b
 

760±500 430±290 401±211 

Geology
c
 Igneous rock (Volcanic) 

(100%) 

Igneous rock (Volcanic) 

(100%) 

Igneous rock (Volcanic) 

(72%) & Pyroclastic (28%) 

Dominant soils
c
 Humic Nitisols (100%) Humic Nitisols (100%), Humic Nitisols (72%) & 

mollic Andosols (28%) 

Vegetation Afromontane mixed forest, 

grassland, bamboo, broad-

leafed evergreen trees and 

shrubs 

Tea plantations with 

woodlots of Eucalyptus 

spp., Cypress spp. and 

Pinus spp. 

Perennial & annual crops 

(maize interspersed with 

beans, potatoes, millet, 

cabbage and onions), 

woodlots, grassland 

Riparian vegetation Forest vegetation >30 m buffer with 

indigenous vegetation 

Degraded riparian 

vegetation, Eucalyptus 

woodlots 
a
WGS 1984 UTM Zone 36S 

b
Owuor et al. 2018 

c
KENSOTER Geology data from the Soil and Terrain database for Kenya (KENSOTER) version 2.0 

The natural forest catchment is located in the South-West Mau block of the Mau Forest 

Complex. The Mau Forest is an afromontane mixed forest dominated by indigenous 

broad-leafed evergreen trees and shrubs with a complex vegetation pattern. Riparian forests 

with a mixture of indigenous vegetation are present throughout the catchment. The natural 

forest catchment is characterized by high infiltration rates with the occurrence of shallow to 

deeper subsurface water pathways, whereas the tea-tree plantation and the smallholder 

agriculture catchments have lower infiltration rates with a dominance of surface runoff 

(Jacobs et al. 2018a; Owuor et al. 2018) (Table 1).  

In the smallholder agriculture catchment, subsistence farmers grow maize interspersed with 

beans, potatoes, millet and cabbage on small farms (circa 1 ha). Small-scale tea plantations, 

eucalyptus (Eucalyptus spp.), cypress (Cypressus spp.) and pine (Pinus spp.) woodlots are 

interspersed with crop fields and grazing land (Table 1). A combination of hand weeding, 

hoeing and herbicides is used for weed control. Bamboo (Bambusa spp.) is generally found 

around natural springs. The whole catchment is connected by a dense network of unpaved 
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tracks either bare or sparsely covered by grass; stream crossings rarely have bridges. The 

heavily travelled unpaved tracks have commonly become eroded gullies (Figure 7a-b), that 

run down the slope to rivers, connecting surface runoff from surrounding fields with the 

stream network (Figure 7c-e). Cattle entrance points to the stream are generally highly 

disturbed and have degraded riverbanks (Figure 7d-f). The natural riparian vegetation is in 

many areas replaced by Eucalyptus woodlots or small bushes. In some places, riparian 

wetlands are found. 

 
Figure 7 a-c) Incised and unpaved tracks provide a direct connection with the stream, d-e) degraded and 
disturbed riverbank from livestock entering the streams and f) eroded suspended sediments in streams within the 
smallholder agriculture catchment. 

The tea-tree plantation catchment has tea fields alternated with Eucalyptus spp. and 

Cypress spp. woodlots that are used for fuelwood at the tea factories. Some of the tea 

companies use mulch and rows of oat grass between rows of tea to control soil erosion 

during the establishment of new tea bushes. Herbicides are commonly used to control 

weeds. Cover crops with mature tea trees during the establishment of a new tea crop, 

terracing and sited cut-off drains are also used within the catchment to control soil erosion. 

The catchment is covered by a network of well-maintained paved and unpaved roads, linked 

to drainage systems, such as open culverts along the roads that connect them to the 
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streams. The riparian vegetation includes a mix of indigenous tree species that cover 

densely the ground and form a buffer of approximately 30 m (Table 1). 

The study area is underlain by folded volcanics from the early Miocene times. Porphyritic 

phonolites, a member of the sequence of basic and intermediate lavas (igneous rocks) are 

predominant in the study area (Binge 1962), where pyroclastic rocks cover the upper part of 

the catchment (ISRIC 2004). The study area comprises well-drained, very deep (>1.8 m) 

dark-red and dark-brown loamy soils (Sombroek et al. 1982), with moderate to high amounts 

of organic matter under the forest cover (Dunne 1979). 

4.2.2 Automated hydrological and sediment monitoring  

This study uses a four year dataset (January 2015 to December 2018) on rainfall, discharge 

and turbidity with a 10 minute resolution (Figure 6). A radar sensor (VEGAPULS WL61, 

VEGA Grieshaber KG, Schiltach, Germany) collected continuous water level measurements. 

Water level (‘stage’) was used to determine stream discharge based on a site-specific 

second-order polynomial stage-discharge relationship (Jacobs et al. 2018b). The calibration 

was checked over a wide range of stream flows using salt-dilution gauging (Shaw et al. 

2011), an Acoustic Doppler Velocimeter (ADV; FlowTracker, SonTek, San Diego CA, USA) 

or an Acoustic Doppler Current Profiler (ADCP; RiverSurveyor S5, SonTek, San Diego, 

USA) depending on river size and discharge (Jacobs et al. 2018b). Specific discharge 

[mm day-1] was determined by integrating instantaneous discharge taken at 10 minute 

intervals over a day and relating it to the catchment area. Precipitation was measured using 

eight automatic tipping bucket rain gauges calibrated to measure cumulative rainfall every 

10 minutes with a 0.2 mm resolution (5 tipping bucket rain gauges: Theodor Friedrichs, 

Schenefeld, Germany, and 3 weather stations: ECRN-100 high resolution rain gauge). Using 

Thiessen polygons, the weighted contribution of rainfall of every tipping bucket in each 

catchment was estimated. A more detailed description of the study sites and instrumentation 

can be found in Jacobs et al. 2018b. Turbidity was measured in situ as a surrogate for 

suspended sediment concentrations using a UV/Vis spectroscopy sensor (spectro::lyser, 

s::can Messtechnik GmbH, Vienna, Austria). Turbidity is measured in FTU (formazin turbidity 

unit) by transmitting a beam of light to an optical receptor. With an increase in water turbidity 

the transmission of light decreases. To calculate sediment concentrations, a site-specific 

turbidity-suspended sediment calibration was established (section 4.2.3.1). Before each 

turbidity measurement, the window of the sensors was automatically cleaned by compressed 

air to remove any interfering particles. The sensors were additionally cleaned manually on a 

weekly basis using a specific cleaning agent recommended by the manufacturer to reduce 

biofouling on the measurement window and by manually removing debris and sediment. 
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4.2.3 Calibration, quality assurance and analysis  

4.2.3.1 Sediment-turbidity rating curve 

We used a site-specific, ex situ incremental suspension calibration to convert long-term 

turbidity records into an estimate of instantaneous suspended sediment concentrations 

(mg L-1). A river water-sediment suspension with 16 to 18 concentration increments was 

established to simulate changing stream water suspended sediment concentrations 

occurring from low flow conditions (minimum 0 mg L-1) to storm events (maximum 

4,607 mg L-1). The sediment suspension consisted of fine suspended sediment collected 

from sediment traps (time-integrated Phillips samplers) and fine soil material mixed with 

turbid river water collected during storm events. To ensure that only the clay size fraction 

remained in the suspension, the sediment suspension was decanted twice after the settling 

time for coarse particles (particle size >2 µm) had elapsed (Stokes law: 98 sec). The 

spectro::lyser probes from each monitoring station measured each concentration increment 

starting with river water representing low flow conditions (0 to 8 FTU). Small quantities of the 

synthetic sediment suspension were added at each concentration increment until the 

maximum measurable turbidity of 1,500 FTU was reached. The exact concentration was 

then determined gravimetrically from a 250 mL sub-sample at each increment. Total 

suspended sediment load was determined by multiplying suspended sediment concentration 

by discharge. Suspended sediment yield was calculated by integrating the sediment load 

over time and relating it to the catchment area. The sediment mass is reported in tonnes 

(t=megagrams) to conform with other published values.  

4.2.3.2 Data quality assurance 

Quality assurance of the turbidity, discharge and precipitation dataset was performed in two 

different ways. First, during equipment maintenance and manually downloading of the data 

any observed anomalities were recorded in a log book. Potential causes of anomalous 

values included (i) sensor above water level, (ii) turbidity sensor completely buried by 

deposited sediment during storm periods, (iii) biofilm or other phenomena on the 

measurement window due to malfunctioning of automatic cleaning with compressed air, (iv) 

measurement gaps due to incidents of power supply failure or (v) counting of number of tips 

by the rain gauges restricted by blocked funnel or spiderwebs. The readings for these 

periods were flagged with Not-a-Number (NaN). 

After anomalous values were replaced by NaN, the median absolute deviation (MAD) was 

used to detect local outliers. The MAD has the following form: 

𝑀𝐴𝐷𝑖 = 𝑏 𝑀𝑖2(|𝑥𝑖 − 𝑀𝑖1(𝑥𝑖)|)     ( 1 ) 
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where 𝑥𝑖 is the whole dataset, 𝑀𝑖1 is the median of the dataset and  𝑀𝑖2 is the median of the 

absolute deviation from the dataset from its median. The constant b estimates the standard 

deviation and was set to 1.4826 for normal distribution (Leys et al. 2013).  

A moving window of k measurements around observation 𝑥𝑖  at time 𝑡𝑖  was used to detect 

local outliers with 𝑥𝑗 =  (𝑥𝑖−𝑘/2 … 𝑥𝑖−1, 𝑥𝑖+1 … 𝑥𝑖+𝑘/2): 

𝑥𝑖−𝑀𝑗,𝑖

𝑀𝐴𝐷𝑗,𝑖
> 𝑎    ( 2 ) 

where a=6 is the threshold for outlier selection, 𝑀𝑗,𝑖 is the median and the 𝑀𝐴𝐷𝑗,𝑖 is the MAD 

for 𝑥𝑗, while the moving window k was set to 16. Missing sediment data was interpolated 

using a linear function. 

4.2.3.3 Data analysis 

All data were tested for normality with the Shapiro-Wilk test. Significant differences were 

tested on suspended sediment, rainfall and discharge values among the different land uses 

using Kruskal-Wallis test for analyses of variances. To detect the significance of the effect of 

land use on the hydrological and sedimentological parameters, and within and among 

seasons on suspended sediment load the pairwise Wilcoxon rank sum test was used.  

Five seasons, dry season, start of long rains, long rains (long rainy season), intermediate 

rains (season between the long and short rainy season) and short rains (short rainy season), 

were identified to calculate their contribution to annual suspended sediment yield (Jacobs et 

al. 2018b). The periods were chosen based on exceeding a threshold of monthly specific 

discharge for each catchment. The seasons for each year vary in length and timing due to 

variations in the onset of the rains and monthly streamflow (Figure 8).  

 
Figure 8 Timing of the five hydrological seasons for the natural forest (NF), tea-tree plantation (TTP) and 
smallholder agriculture (SHA) catchment during the observation period January 2015 to December 2018. 
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4.2.3.4 Modelling flow pathways 

A linear continuous-time (CT) transfer function (TF) model with rainfall-runoff non-linearity 

was used to identify the dynamics that explain the response of water flow pathways to 

rainfall within a catchment by conceptualising a Single-Input, Single-Output (SISO) system 

(Young & Garnier, 2006). These types of models are equivalent to systems of linear 

differential equations and can be applied in numerous mass and energy transport as well as 

chemical or biochemical proccess applications, including flow and sediment delivery models 

(Chappell et al. 2006). The transfer function modelling process follows the Data-Based 

Mechanistic (DBM) modelling philosophy, searching through a range of model structures, 

ordering them according to statistical criteria, then retaining models that have a physical 

explanation (Young & Beven 1994). The DBM approach produces parsimonious models 

describing rainfall-runoff relationships, that include very few tuneable parameters (Lees 

2000). Hourly time series of rainfall [mm hr-1] was used as input, and the corresponding 

hourly time series of discharge [m3 sec-1] as output (the units conversion is absorbed into the 

model coefficients, in case of Eq. 6 – into coefficient 𝑏0). These parameters have 

hydrological interpretation, describing hydrological pathways, so while these are not strictly 

hydrological models derived from the process models, they still apply to hydrological 

systems (Beven 2012).  

Hydrological processes are known to be non-linear (Beven 2012), with the effectiveness of 

rainfall (amount of rainfall converted into discharge) dependent upon the state of saturation 

of the catchment. Therefore, the rainfall-runoff non-linearity is modelled using the 

Hammerstein model structure, with the input (rainfall) transformed using a non-linear 

function into what is termed ‘effective rainfall’, which then drives the linear dynamics of the 

transport process model. This study uses a power law relationship between measured 

rainfall and effective rainfall as surrogate for soil moisture to translate rainfall to effective 

rainfall (see text S1 for more details). Effective rainfall is the dynamically changing proportion 

of rainfall representing the volume of streamflow generated after soil moisture storage is 

deducted from the total rainfall (Beven 2012). The RIVCBJ (Refined Instrumental Variable 

Continuous Time Box-Jenkins Identification, for continuous models, Young and Garnier, 

2006) algorithm was used to estimate model parameters. RIVCBJ is a component of the 

CAPTAIN toolbox which runs within MATLAB® (Taylor et al. 2007). The linear CT transfer 

function model has the following form: 

𝑌(𝑠) =  
𝐵(𝑠)

𝐴(𝑠)
𝑈(𝑠)𝑒−𝑠𝜏 + 𝐸(𝑠)      ( 3 ) 

𝐴(𝑠) and 𝐵(𝑠) characterise the dynamic relationship between the input and the output 

signals in the Laplace operator domain. The Laplace operator is the Laplace frequency 
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domain equivalent of the time derivative operator 𝑠~
𝑑

𝑑𝑡
. Functions 𝐴(𝑠) and 𝐵(𝑠) are 

constructed as polynomials in the s domain as follows, with m and n being the respective 

orders of the numerator and denominator polynomials: 

𝐴(𝑠) =  𝑠𝑛 +  𝑎1𝑠𝑛−1 + ⋯ + 𝑎𝑛𝑠0      ( 4 ) 

 

𝐵(𝑠) =  𝑏0𝑠𝑚−1 + 𝑏1𝑠𝑚−2 + ⋯ + 𝑏𝑚𝑠0     ( 5 ) 

In Eq. (3) 𝑌(𝑠) denotes the Laplace transform of the output signal as hourly streamflow 

[m3 sec-1], 𝑈(𝑠) is the Laplace transform of the input signal hourly rainfall [mm hr-1], 𝐸(𝑠) are 

the model residuals and 𝑒−𝑠𝜏 is the Laplace transform of time delay τ representing the pure 

time delay (as opposed to the dynamic lag resulting from the system’s dynamics) in time 

units between the input and output signals.  

In this study, up to third order models were tested for all the sites and model fit was 

evaluated according to the coefficient of determination (𝑅𝑡
2) (also known as the Nash-

Sutcliffe efficiency) (see text S2) and the Young Identification Criterion (YIC) (see text S3 

and S4). First order transfer function models were selected for the three catchments, where 

each system has a different depletion time, determined by its time constant. A first order 

continuous time transfer function model is written as: 

𝑌 =  (
𝑏0

𝑠+𝑎1
) 𝑒−𝑠𝜏𝑈 = (

𝑆𝑆𝐺

𝑠𝑇𝐶+1
) 𝑒−𝑠𝜏𝑈    ( 6 ) 

where 1/𝑎1 is the time constant and the parameter 𝑏0/𝑎1 represent the Steady State Gain 

(SSG) of the hypothetical pathway of rainfall through the catchment with 𝑎 and 𝑏 as the 

dynamic response characteristics. The time constant (TC) reflects the response between the 

input (rainfall) and the output (runoff or streamflow) (Young & Garnier 2006). Linear CT 

transfer function models were identified for each year between 2015 and 2018 for all three 

catchments. 

4.2.3.5 Sediment response to hydrological variables 

We used the cross-correlation function (CCF) to identify the statistical correlation between 

two sets of time series at different time lags (Lee et al. 2006; Mayaud et al. 2014). Rainfall 

and discharge time series were cross-correlated with the suspended sediment concentration 

time series. The peak response time between either precipitation or discharge to sediment 

concentrations was calculated as the delay time in time lags together with its correlation 

strength between these variables. Cross-correlation functions were calculated as: 
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𝐶𝐶𝐶(𝜏) =
1

𝑛
∑(𝑥𝑖−𝑥̅)(𝑦𝑖−𝜏−𝑦̅)

𝜎𝑥𝜎𝑦
     ( 7 ) 

where 𝐶𝐶𝐶(𝜏) is the cross-correlation coefficient at time lag 𝜏, 𝜏 = 0, ±1 ± 2 … ± 𝑚 between 

the two time series (sampled every 10 minutes), where 𝑥𝑖 is observed rainfall or positive 

derivative of discharge at sample number 𝑖 and 𝑦𝑖−𝜏  is the suspended sediment 

concentration at sample number 𝑖 − 𝜏, 𝑥̅  is the mean rainfall or positive derivative of 

discharge, 𝑦̅ is the mean suspended sediment concentration, 𝜎𝑥 is the standard deviation of 

rainfall or estimated positive derivative of discharge and σ𝑦 is the standard deviation of 

suspended sediment and 𝑛 is the number of data points. At the 95%-confidence interval, lag-

time correlations are significant when 𝐶𝐶𝐶(𝜏) exceeds the standard error of 2/√𝑁, where 𝑁 

is the length of the dataset (Diggle 1990). The positive derivative of discharge, i.e. the 

estimated rate of change on the rising limb of the hydrograph, was selected because the 

main sediment pulses are mostly generated during the rising limb (Alexandrov et al. 2003; 

De Girolamo et al. 2015). A similar derivative effect has been observed in dynamic sediment 

load models by Walsh et al. (2011). The CCF analysis was carried out for each year 

between 2015 and 2018 for all three catchments.  

4.3 Results 

4.3.1 Hydrological response of the three catchments  

Mean annual rainfall for the study period was 1,842, 1,730 and 1,554 mm yr-1 with maximum 

hourly rainfall over the whole observation period of 37.4, 33.1 and 27.5 mm hr-1 for the 

natural forest, tea-tree plantations and smallholder agriculture catchments, respectively. The 

wettest year for the smallholder agriculture catchment was 2018 with 1,823 mm yr-1 of 

rainfall, while for the natural forest and tea-tree plantations precipitation was highest in 2015 

with 1,986 and 1,928 mm yr-1, respectively. The annual mean specific discharge was 

632±157, 610±153 and 621±224 mm yr-1 for the natural forest, tea-tree plantations and 

smallholder agriculture catchments, respectively. The catchment runoff coefficient was 

similar for the natural forest and the tea-tree plantations with a mean of 0.34 and 0.35, 

respectively, and 0.39 for the smallholder agriculture (Table 2).  
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Table 2 Hydrological characteristics and total suspended sediment (and 95%-confidence interval) for the three 
catchments under different land use natural forest (NF; 35.9 km

2
), tea-tree plantations (TTP; 33.3 km

2
) and 

smallholder agriculture (SHA; 35.9 km
2
) in the South-West Mau, Kenya. Different capital letters indicate 

significant differences between the different land uses (p<0.05).  

Site 

Year Annual 

rainfall  

 

(mm yr
-1

) 

Annual 

specific 

discharge 

(mm yr
-1

) 

Runoff 

coefficient 
a 

Total suspended 

sediment load 

 

(t yr
-1

) 

Total suspended 

sediment yield 

 

(t km
-2

 yr
-1

) 

NF 

2015 1,986 714 (693-738) 0.36 (0.35-0.37) 407 (378-439) 11.3 (10.5-12.2) 

2016 1,846 518 (497-542) 0.28 (0.27-0.29) 667 (615-724) 18.6 (17.1-20.2) 

2017 1,783 483 (466-502) 0.27 (0.26-0.28) 673 (622-729) 18.7 (17.3-20.3) 

2018 1,755 812 (783-844) 0.46 (0.45-0.48) 1,337 (1,228-1,457) 37.2 (34.2-40.6) 

 
Mean 1,842 A 

632 (610-656) 

A 

0.34 (0.33-0.36) 

A 
771 (711-837) A 21.5 (19.8-23.2) A 

TTP 

2015 1,928 768 (730-820) 0.40 (0.38-0.43) 2,376 (2,185-2,603) 71.4 (65.6-78.2) 

2016 1,655 593 (555-642) 0.36 (0.34-0.39) 1,397 (1,277-1,539) 42.0 (38.4-46.2) 

2017 1,478 408 (372-468) 0.28 (0.25-0.32) 780 (701-880) 23.4 (21.0-26.4) 

2018 1,858 673 (634-728) 0.36 (0.34-0.39) 1,042 (952-1,151) 31.3 (28.6-34.5) 

 
 Mean 1,730 A 

610 (573-665) 

A 

0.35 (0.33-0.38) 

A 

1,399 (1,279-1,543) 

A 
42.0 (38.4-46.3) A 

SHA 

2015 1,607 561 (539-582) 0.35 (0.34-0.36) 2,324 (2,161-2,494) 85.4 (79.5-91.7) 

2016 1,369 479 (456-503) 0.35 (0.33-0.37) 2,271 (2,088-2,464) 83.5 (76.8-90.6) 

2017 1,416 492 (471-514) 0.35 (0.33-0.36) 2,440 (2,237-2,653) 89.7 (82.2-97.5) 

2018 1,823 953 (920-986) 0.52 (0.50-0.54) 7,273 (6,774-7,790) 267.4 (249.1-286.4) 

 
Mean 1,554 A 

621 (596-646) 

A 

0.39 (0.38-0.41) 

A 

3,577 (3,315-3,851) 

A 
131.5 (121.9-141.6) B 

a
Annual specific discharge as proportion of annual rainfall 

Discharge in all catchments was flashy and varied seasonally. Rising limbs were generally 

steep and had variable falling limbs depending on event size. The highest discharge peaks 

were measured during the long rainy seasons between April and July in 2015, 2016 and 

2018. In contrast, 2017 was the driest year with a late onset of the rains and the highest 

discharge peaks between August and November for the smallholder agriculture and the 

natural forest catchments. However, in the tea-tree plantation catchment the rains started in 

May lasting until November 2017, resulting in discharge peaking in May and September 

2017. High discharges were also recorded in January 2016 because the 2015 rains 

continued through November and December and were followed by an unusually wet January 

(Figure 9).   
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Figure 9 Time series of daily accumulated rainfall (R) [mm day

-1
], daily specific discharge (Q) [mm day

-1
] and 

hourly suspended sediment yield (SSY) [t km
-2

 hr
-1

] aggregated from 10 minute resolution with 95%-confidence 
interval of the a) natural forest, b) smallholder agriculture and c) tea-tree plantation catchments in the South-West 
Mau, Kenya, between October 2014 and December 2018. 
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4.3.2 Relationship between turbidity and suspended sediment 

concentration 

We obtained one rating curve for all three catchments to predict suspended sediment 

concentration from the measured turbidity values. A linear model provided the best fit 

between the in situ turbidity and suspended sediment concentrations, and there was no 

significant difference between slopes for each site-specific calibration (p-value>0.1). The 

intercept of the linear model was forced through the origin to prevent negative sediment 

concentrations at low turbidity, yielding an equation of the form TSS = 2.4*turbidity (R2=0.98, 

p-value<0.001, n=50; Figure 10). This equation was used to convert the turbidity data to 

suspended sediment concentrations. 

 
Figure 10 Relation between total suspended sediment concentrations (TSS) [mg l

-1
] and turbidity [FTU=Formazin 

Turbidity Unit] measurements for three catchments: natural forest (NF), tea-tree plantations (TTP) and 
smallholder agriculture (SHA) and the fitted linear model (grey shaded area: 95%-confidence interval). 
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4.3.3 Suspended sediment dynamics 

Sediment yield for the natural forest was lower than for the other two catchments (Figure 9). 

The sedigraph of the natural forest had smaller peaks with a short event time, whereas the 

smallholder agriculture and tea-tree plantations showed a steep increase followed by a flat 

recession with a long event time. The sedigraph of the smallholder agriculture catchment 

showed a flashy sediment response to rainfall and increased discharge. The maximum 

sediment yield in the natural forest catchment was 0.2 t km-2 hr-1, followed by the tea-tree 

plantations with 1.5 t km-2 hr-1 and the smallholder agriculture with a maximum sediment 

peak of 1.6 t km-2 hr-1 (Figure 9). The mean annual suspended sediment yield was 

significantly higher for the smallholder agriculture catchment (131.5±90.6 t km-2 yr-1) than for 

the tea-tree plantations (42.0±21.0 t km-2 yr-1) and the natural forest (21.5±11.1 t km-2 yr-1) 

(p<0.05) (Table 2). The lowest mean suspended sediment concentration (33.8±73.8 mg l-1) 

was also lowest for the natural forest catchment, followed by the tea-tree plantations 

(47.4±90.7 mg l-1). Concentrations were three to four times higher at the outlet of the 

smallholder agriculture catchment (128.6±233.4 mg l-1) than at the other catchments 

(p=0.04). The daily mean suspended sediment load from the natural forest was the lowest, 

followed by the tea-tree plantations and the smallholder agriculture (2.1, 3.9 and 10.0 t day-1, 

respectively). The total suspended sediment load for the entire study period (2015-2018) for 

the smallholder agriculture (14,308 t) was four times higher than that of the natural forest 

(3,083 t), whereas sediment load for the tea-tree plantations (5,595 t) was only twice that of 

the natural forest. These loads represent a mean of 771, 1,399 and 3,577 t yr-1 for the 

natural forest, tea-tree plantations and smallholder agriculture, respectively. Suspended 

sediment yield increased from 2015 to 2018 in the natural forest and smallholder agriculture 

catchments. In the tea-tree plantations, a similar sediment and rainfall pattern was observed 

with a decline from 2015 to 2017 and then an increase again in 2018 (Table 2). The natural 

forest had the longest period of missing data lasting for 95 days in November 2015 to 

February 2016, followed by a shorter gap in the smallholder agriculture of 50 days from 

March to April 2015 and the tea-tree plantations had the shortest period of missing sediment 

data of 13 days between March and April 2017. Besides these periods, minor gaps were 

usually of less than 24 hours with a total of missing sediment data of 7% for the natural 

forest, 2% for the tea-tree plantations and 4% for the smallholder agriculture catchments 

between 2015-2018. 

4.3.4 Seasonal variations in suspended sediment  

During the study period, suspended sediment yield showed pronounced seasonal variability, 

with most sediment being transported during the long rains in all catchments, and the 

highest monthly yields being recorded for the smallholder agriculture catchment (Figure 11). 
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Overall, more than half of the sediment yield (45-52%) was attributed to the long rains, which 

cover less than one third of the year. The sediment contribution during the long rains, 

intermediate rains and short rains in the smallholder agriculture was significantly greater 

than in the natural forest and tea-tree plantations (p<0.05). For the natural forest the streams 

carried significantly more material during the long rains (mean yield of 

4.3±1.8 t km-2 month-1) than during any other season. In the tea-tree plantations and 

smallholder agriculture, the sediment yield for the long rains (mean 10.9±6.9 and 

30.7±10.6 t km-2 month-1, respectively) differed significantly from the dry season (mean 

0.4±0.2 and 0.6±0.3 t km-2 month-1, respectively), the intermediate rains (mean 1.1±0.6 and 

5.4±3.3 t km-2 month-1, respectively) and the short rains (mean 3.2±2.2 and 

23.9±26.1 t km-2 month-1, respectively), while there was no difference between the sediment 

yield for the start of the long rains (mean 5.7±6.5 and 7.8 t km-2 month-1, respectively) and 

the long rains (p<0.05). 

 
Figure 11 Boxplots of the monthly total suspended sediment yield [t km

-2 
month

-1
] for different seasons for the 

natural forest (NF), tea-tree plantations (TTPs) and smallholder agriculture (SHA) catchments in the South-West 
Mau, Kenya. Seasons: dry season, start of the long rainy season, long rainy season, intermediate rainy season 
and short rainy season between January 2015 and December 2018. Different letters above the box plot indicate 
significant differences between the land uses within each season (p<0.05). 

4.3.5 Flow pathways and streamflow dynamics 

We compared hydrological flow pathways for each catchment as these are key in delivering 

sediments to the streams. Rainfall-runoff response was modelled over a continuous period 

of one year for each monitoring year 2015-2018 (Figure 13). In all three catchments, first 

order linear models (Eq. 6) were selected because these had the highest coefficients of 

determination (𝑅𝑡
2) ranging between 86 and 93% and explained the data with the most 



Tropical montane forest conversion is a critical driver for sediment supply in East African 
catchments 

 

40 
 

negative YIC ranging between -12.5 and -10.4. The tea-tree plantations had a lower model 

performance in 2017 compared to the other years with a 𝑅𝑡
2 value of 54% and a YIC of -8.3, 

where the first order model was identified as the optimal model (Table 3). A simple first order 

model was used to derive the time constant to compare the dynamic relationship between 

rainfall and runoff response among the three catchments. The interpretation of the 

continuous time transfer function model suggests a slower rainfall-runoff catchment 

response in the natural forest and tea-tree plantation catchments in contrast to the fast flow 

response to rainfall in the smallholder agriculture catchment. The time constants calculated 

ranged from 8.4 to 11.5 days in the natural forest catchment and from 9.6 to 13.0 days in the 

tea-tree plantations. The smallholder agriculture had time constants between 6.2 to 8.6 days 

(Table 3).  

Table 3 Summary of the linear continuous-time transfer function models for the natural forest, tea-tree plantation 
and smallholder agriculture catchment in the South-West Mau, Kenya for four years (study period 2015-2018). 

YIC=Young Identification Criterion, 𝑅𝑡
2=coefficient of determination, model structure [n=denominator polynomial, 

m=numerator polynomial, τ=pure time delay]. 

Site Year Time constant 

[days] 

YIC 𝑹𝒕
𝟐 Model structure [n, m, τ] 

Natural forest 2015 11.5 -11.2 0.92 [1 1 2] 

 2016 12.6 -11.1 0.92 [1 1 2] 

 2017 8.4 -11.2 0.92 [1 1 2] 

 2018 9.8 -12.1 0.93 [1 1 2] 

Tea-tree plantations 2015 12.1 -10.4 0.86 [1 1 2] 

 2016 9.6 -11.5 0.90 [1 1 2] 

 2017 13.0 -8.3 0.54 [1 1 2] 

 2018 10.5 -11.4 0.92 [1 1 2] 

Smallholder 

agriculture 

2015
a
 8.6 -10.7 0.86 [1 1 2] 

 2016 8.7 -11.3 0.88 [1 1 3] 

 2017 6.2 -12.5 0.96 [1 1 2] 

 2018 6.9 -11.4 0.92 [1 1 2] 
a
Data used in the analysis 1May-31Dec2015 

4.3.6 Time lags between rainfall and discharge to sediment concentrations 

The analysis using cross-correlation functions (CCF) (Eq. 7) showed statistically significant 

correlations between rainfall and discharge to suspended sediment exceeding the 

95%-confidence interval of 0.001 for a sample size of 61,201 in all three catchments for the 

four years. The CCF indicates the impulse response time between the peak of rainfall and 

discharge to the suspended sediment peak (Figure 14). The natural forest had almost 

instantaneous (<10 minutes) to rapid responses (1.5 hrs) in suspended sediment to both 

rainfall and discharge in all four years. A period shorter than a year was used for the natural 

forest in 2015 and 2016 because of missing sediment data (Table 4). The rainfall to 

sediment cross-correlogram in the tea-tree plantations differed from the other two 

catchments, with a first fast peak within one hour followed by a delayed second peak after 5 
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to 8.5 hours. The discharge to sediment response in the tea-tree plantations was similar to 

that of the smallholder agriculture catchment with a time lag of around two to three hours. 

The smallholder agriculture had variable time lags between either rainfall or discharge to 

sediment ranging between 1.5 to 3.8 hours. The impulse response time between the peaks 

of discharge and sediment concentration was in general longer compared to the rainfall peak 

(Table 4).  

Table 4 Summary of cross-correlation functions (CCF) between rainfall/ positive derivative of discharge to 
suspended sediment with time lag (in hours) and peak cross-correlation coefficients reported for the natural 
forest, tea-tree plantation and smallholder agriculture catchment in the South-West Mau, Kenya over four years 
(study period 2015-2018). 

Site Year Discharge to sediment Rainfall to sediment 

Time lag  
[hours] 

CCF coefficient Time lag 
[hours] 

CCF coefficient 

Natural forest 2015
a
 1.0 0.10 1.5 0.16 

 2016
a
 <0.2 0.03 <0.2 0.05 

 2017 0.5 0.07 <0.2 0.12 

 2018 0.5 0.10 0.2 0.03 

Tea-tree 

plantations
b
 

2015 2.5 0.34 1
st
 0.5 and 2

nd
 

6.5 

1
st
 0.08 and 2

nd
 

0.17 

 2016 2.3 0.18 1
st
 1.0 and 2

nd
 

7.0 

1
st
 0.08 and 2

nd
 

0.16 

 2017 3.2 0.32 1
st
 0.8 and 2

nd
 

8.5 

1
st
 0.08 and 2

nd
 

0.14 

 2018 1
st
 0.5 and 2

nd
 

2.0 

1
st
 0.17 and 2

nd
 

0.17 

1
st
 0.3 and 2

nd
 

5.0 

1
st
 0.18 and 2

nd
 

0.15 

Smallholder 

agriculture 

2015 2.8 0.27 0.7 0.13 

 2016 2.2 0.18 1.5 0.08 

 2017 3.8 0.17 1.5 0.11 

 2018 2.2 0.21 3.5 0.15 

a
Data used in the analysis 1Jan-22Nov2015 and 1Mar-31Dec2016 

b
1

st
 and 2

nd
: identifies the first and second time lag and CCF coefficient of the CCF in the tea-tree plantations 

4.4 Discussion 

4.4.1 Suspended sediment dynamics 

This study shows that the annual suspended sediment yield is around six times greater for 

the drier smallholder agriculture catchment, and twice greater in the tea-tree plantation 

catchment compared to the wetter natural forest catchment. The sediment yield difference is 

likely the result of more vegetation cover and low structural and process-based connectivity 

in the natural forest, where consequently erosion processes (including mass wasting) are not 

as active. Similar findings were reported for the neighbouring Mara River Basin, where a 

semi-arid catchment had higher suspended sediment yields (44 t km-2 yr-1) with half of the 
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annual rainfall in contrast to a wetter, but less populated and less disturbed catchment 

(33 t km-2 yr-1) (Dutton et al. 2018) (Table 5).  
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Table 5 Overview of different studies reporting annual suspended sediment yields (SSY) in Kenyan headwater streams and tropical montane forest catchments 
worldwide derived from gauging station measurements. 

Montane catchment Area  
(km

2
) 

Land use Study 
period  
(year) 

Annual 
rainfall 
(mm yr

-1
) 

SSY 
(t km

-2 
yr

-1
) 

Reference 

Sub-catchments of Sondu 
Basin (West Kenya) 

35.9 
33.3 
27.2 

Natural forest 
Tea-tree (Eucalyptus) plantations 
Smallholder agriculture 

2014-2018 
2014-2018 
2014-2018 

1,842 
1,730 
1,554 

21 
42 
131 

This study 

Different catchments 
throughout southern half of 
Kenya 

n.a. 
n.a. 
n.a. 
n.a. 

Natural forest (100%) 
Natural forest (>51%) 
Agricultural land (>50%) 
Grazing land 

1948-1968 
1948-1968 
1948-1968 
1948-1968  

n.a. 
n.a. 
n.a. 
n.a. 

20-30 
10-100 
10-1,500 
5,000-20,000 

Dunne, 1979 

Athi (Kenya) 510 Agriculture, grazing land and settlements 1985 n.a. 109 Kithiia, 1997 
Upper Mara-Emarti 
(South-West Kenya) 
Middle Mara-Talek 
(South-West Kenya) 

2,450 
 
4,050 

Smallholder agriculture and urban development 
 
Grazing land 

2011-2014 
(3-4 months) 
2011-2014 
(3-4 months) 

1,400 
 
600 
 

33 
 
44 

Dutton et al., 2018 
 
Dutton et al., 2018 
 

Ruharo (Uganda) 2,121 Grazing land, agriculture, <20% Papyrus wetlands 2009-2010 1,535 106 Ryken et al., 2015 
Koga (Uganda) 379 Grazing land, agriculture, >80% Papyrus wetlands 2009-2010 1,330 37 Ryken et al., 2015 
Andit Tid (Ethiopia) 
Anjeni (Ethiopia) 
Maybar (Ethiopia) 

4.77 
1.13 
1.12 

Agriculture (30%) 
Agriculture (80%) 
Agriculture (60%) 

1989-1996 
1989-1996 
1989-2001 

1,467 
1,675 
1,417 

522 
2,470 
740 

Guzman et al., 2013 

May Zegzeg (Ethiopia) 1.87 Agriculture and grazing land 
Agriculture and grazing land with soil conservation practices

 
2000 
2006 

774 
708 

850 
190 

Nyssen et al., 2009 

Arvorezinha (South Brazil) 1.23 Agriculture with traditional soil management & natural forest 
Agriculture with soil conservation practices & natural forest 
Agriculture with traditional soil management & cultivated forest 

2002-2003 
2004-2008 
2009-2016 

2,051 
1,655 
2,102 

298 
68 
163 

Minella et al., 2018 

Conceição (South Brazil) 800 >85% agriculture (soybean, wheat, oats, ryegrass) with soil 
management, <15% gallery forest, wetlands and urban areas 

2000-2010 
2011 
2012 

1718 
1,422 
1,463 

140 
242 
41 

Didoné et al., 2014 

Guaporé (South Brazil) 2,000 Agriculture (soybean, tobacco, maize, oats, ryegrass), grazing 
land and cultivated forest 

2000-2010 
2011 
2012 

1550 
1,195 
1,660 

140 
390 
158 

Didoné et al., 2014 

Baru (Borneo) 0.44 Disturbed logged natural forest 1989 3,205 1,632 Douglas et al., 1993 
  Natural forest immediately after logging  1991 2,609 1,017 Douglas et al., 1993 
  Natural forest after logging 1995-1996 2,956 592 Chappell et al., 

2004 
W8S5 (Borneo) 1.7 Natural forest 1989 

1991 
3,205 
2,609 

118 
117 

Douglas et al., 1993 

Mae Sa (Thailand) 74.2 Natural forest (62%) and agriculture (>20%) 2006-2008 1,743 323 Ziegler et al., 2014 
Basper (Philippines) 0.32 Grassland and shrubs 2013 2,660 2,740 Zhang et al., 2018 

n.a.=no data available 
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Missing sediment data and linear interpolation to fill these gaps could have increased the 

uncertainty in the sediment yields calculated. However, data gaps during dry periods, such 

as those in the sediment data for the natural forest during 2015 and 2016, would not have a 

large influence on yield calculations because of the small amount of material transported. 

Gaps during periods of heavy rainfall, which occasionally occurred in the smallholder 

agriculture catchment due to siltation, could have contributed to underestimation of the 

sediment yield, as peaks in the sediment concentration could be missing.  

For Africa, suspended sediment yield was estimated to be 634 t km-2 yr-1 at continental scale 

based on 682 catchments and rivers with larger drainage areas (mean >1,000 km2) 

(Vanmaercke et al. 2014). Compared to this, and other sediment studies in Kenya with 

varying catchment sizes of 24-42,000 km2 and 8.2 to 6,330 t km-2 yr-1 (Dunne 1979; 

Vanmaercke et al. 2014), the annual suspended sediment yields (21-131 t km-2 yr-1) are 

within the lower reported ranges. Suspended sediment yields from the tea-tree plantations 

and natural forest catchment of this study are comparable to those observed in the 

neighbouring upper Mara River Basin (33 t km-2 yr-1; Dutton et al., 2018), which is dominated 

by small-scale farming and urban development. The smallholder agriculture catchment in 

this study had slightly higher suspended sediment yields than the Athi catchment in Kenya 

(109 t km-2 yr-1; Kithiia, 1997) and had lower suspended sediment yields than disturbed 

agricultural catchments in montane headwaters such as the May Zegzeg catchment in 

Ethiopia (850 t km-2 yr-1; Nyssen et al., 2009) or the Arvorezinha, Conceição and Guapore 

catchments in South Brazil (140-298 t km-2 yr-1; Didoné et al., 2014; Minella et al., 2018). 

Guzman et al. (2013) found that in Ethiopia the highest suspended sediment yields 

(2,470 t km-2 yr-1) in small catchments were in those with the largest proportion of agricultural 

land. Their reported annual yields were significantly higher than the suspended sediment 

yields observed in this study with similar annual rainfall. Annual suspended sediment yields 

of 117 up to 2,740 t km-2 yr-1 from undisturbed to highly disturbed forest or upland grassland 

catchments were measured in South-East Asia (Borneo, Thailand and the Philippines) 

subjected to mass wasting during typhoon or post-typhoon events (Douglas et al. 1993; 

Ziegler et al. 2014; Zhang et al. 2018) (Table 5).  

4.4.2 Factors controlling sediment yield  

Vegetation cover 

The low annual suspended sediment yield measured in the Mau Forest shows that forest 

vegetation is the most effective surface cover to limit soil erosion despite the steepest slopes 

of the forested catchment (Table 1). The dense vegetation, diverse strata and complex 



Tropical montane forest conversion is a critical driver for sediment supply in East African 
catchments 

 

45 
 

rooting systems prevent soil detachment and trap potentially erodible material. Similarly, a 

dense perennial tea vegetation covers the soil surface in the tea-tree plantations, which can 

buffer erosive rainfall (Edwards & Blackie 1979). Nevertheless, the annual suspended 

sediment yield for the tea-tree plantation catchment was twice that of the natural forest 

despite the soil conservation practices applied by tea companies such as mulching, planting 

of buffer strips (oat grass) between rows of young tea bushes or cover trees on newly 

planted tea plots. This indicates that high sediment loads originate from unprotected bare 

surfaces during renovation of tea plantations or logging activities of woodlots. Logging 

activities trigger overland flow and erosion processes and lead sediments to the streams, 

when there are no buffer strips (Douglas et al. 1993; Chappell et al. 2004). The dense 

vegetation contrasts with the land management in the smallholder agriculture catchment, 

where steep slopes tend to be bare between crop harvest and the start of the next cropping 

season. During that period, bare surfaces are prone to soil erosion, although cropland 

surface erosion was not observed, which may be explained by the high infiltration rates 

previously measured on these croplands (401±211 mm hr-1) (Owuor et al. 2018). The routing 

of main flow paths was observed on compacted gullied tracks which act as ephemeral 

channels during a storm event. Based on these observations, the hypothesis was set that 

rural unpaved tracks in the smallholder agriculture generate a larger contribution to the total 

sediment load than agricultural land, but further work is required to confirm this. A potential 

reason for the annual increase in suspended sediment yield in the smallholder agriculture 

and the natural forest catchments during the study period could be the reduced tree cover 

and increasing areas under annual crops and forest disturbance indicated by the study of 

Brandt et al. (2018). 

Connectivity between sediment sources and the streams 

The tea-tree plantations and the smallholder agriculture have a higher structural and 

process-based connectivity than the natural forest, which may be causing higher sediment 

transfer by connecting multiple source areas with the streams. Lateral linkages (tracks, 

gullies or drains) can be recognized as process-based concepts that connect sediment 

source areas at catchment-scale with the stream network (Lane & Richards 1997), which 

can be an important driving force for the total sediment load into the rivers (Sidle & Ziegler 

2010). 

In the smallholder agriculture catchment, unpaved tracks are the main pathways for people 

and livestock to access streams, thus being frequently used and heavily trafficked also by 

motorbikes (Figure 7). This activity generates highly compacted surfaces, where soil 

infiltration is impeded. Ziegler et al. (2001) observed that unpaved rural roads, similar in 
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appearance to the unpaved tracks of this study, generate significantly more overland flow 

compared to adjacent hillslopes. As a consequence of low infiltration rates and 

downslope-orientated tracks, surface runoff energy increases generating more volume and 

velocity of flow that can transport large quantities of soil, eventually eroding tracks into 

gullies (Svoray & Markovitch 2009; Sidle & Ziegler 2010). Other researchers found a strong 

influence of subsurface water tables in valleys on gully formation and the development of 

large scale sediment mobilization (Tebebu et al. 2010; Zegeye et al. 2018). High sediment 

loads at the outlet of the smallholder agriculture catchment are thought to originate from the 

eroded unpaved tracks and its connecting adjacent source areas. In addition, a combination 

of a high structural and process-based connectivity might be the key process for the 

significant higher sediment yields. Catchment drainage density is higher in the smallholder 

agriculture (0.64 km km-2) compared to the natural forest and tea-tree plantations (0.48 and 

0.42 km km-2, respectively) suggesting a link to increased erosion rates. The tea-tree 

plantation catchment is hydrologically connected through a network of tracks and 

well-engineered paved and unpaved drains in between the tea fields. The design of the 

well-engineered drains took into account the appropriate routing of surface runoff to the 

riparian zones before entering the streams, suggesting a higher hydrological connectivity 

than in the smallholder agriculture catchment. However, the drains are well-maintained with 

a densely forested riparian zone, which reduces sediment export, thereby reducing sediment 

transport connectivity. The strong hydrological connectivity of the tea-tree plantation 

catchment could lead to high sediment transport and loads with poor maintenance of the 

drainage network. 
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Riparian zones 

Dense riparian vegetation can trap sediments before they reach the stream (Pavanelli & 

Cavazza 2010). An intact forested riparian zone in the natural forest and a riparian buffer of 

30 m, as pre-described by the Kenya’s Water Act (Republic of Kenya 2012), of mixed 

indigenous vegetation in the tea-tree plantations seem to be reducing sediment delivery to 

the streams by trapping eroded soil. In contrast, high sediment loads are expected in the 

smallholder agriculture catchment, where the riparian vegetation is highly degraded or 

replaced by crops or woodlots planted on the river banks. Small floodplains in a steep, 

narrow valley floor provide limited space for sediment storage. In the same river basin, other 

studies reported that highly degraded riparian zones adjacent to areas cultivated by 

smallholder agriculture lead to increased suspended sediment concentrations (Masese et al. 

2012; Njue et al. 2016). In the smallholder agriculture catchment, livestock access the 

streams through the riparian area for watering (Figure 7d-f), which damages the riverbank 

and the riparian vegetation and further increases sediment supply. 

4.4.3 Water pathways are key for sediment production 

Hydrological pathways such as surface runoff or subsurface flow are key in determining 

sediment response in catchments. The analysis showed that the natural forest and tea-tree 

plantation catchments, with lower suspended sediment yields had the longest streamflow 

response time to rainfall using the CT transfer function model (Eq. 6). This supports the 

hypothesis that faster pathways indicate that surface runoff mobilizes soil particles causing 

six times more suspended sediment yields.  

The number of pathways and their response time depend on catchment characteristics 

(Chappell et al. 2006; Ockenden & Chappell 2011). Forest ecosystems are generally 

characterized by complex catchment behaviour (Chappell et al. 1999), where soils with high 

infiltration rates promote infiltration to deeper subsurfaces. These pathways can be divided 

into shallow water pathway and deep groundwater pathway (Chappell & Franks 1996). The 

high infiltration rates (760±500 mm hr-1, Owuor et al. 2018) and the long time constants 

derived through modelling for the natural forest catchment (Table 3) point to subsurface flow 

pathways. Jacobs et al. (2018a) reported the occurrence of shallow to deeper subsurface 

flow by using an endmember mixing analysis in the same natural forest catchment. 

Groundwater seemed to be an important stream water source (Jacobs et al. 2018a), which 

agrees with the calculated long response time (Table 3). The findings corroborate those of 

other studies in tropical forest catchments, which demonstrated that subsurface flow is the 

main water pathway of forest ecosystems (Noguchi et al. 1997; Boy et al. 2008; Muñoz-
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Villers & McDonnell 2013). Consequently, low suspended sediment yields are associated 

with limited surface erosion and sediment delivery to the streams in the natural forest 

catchment.  

The main pathways in the tea-tree plantations with slightly shorter time constants (Table 3) 

and almost half the infiltration rate (430±290 mm hr-1, Owuor et al. 2018) compared to the 

natural forest suggest that shallow subsurface flow and surface runoff may dominate. 

Overland flow was observed to be routed through the well-engineered drainage network 

along roads and surface water drains between tea plantations to the well buffered fluvial 

network. Overland flow was also thought to be significant by Jacobs et al. (2018b), where 

nitrate concentrations in stream water seemed to be diluted by surface runoff. The 

well-maintained drains explain the lower suspended sediment yields, despite the prevalence 

of surface runoff observed in the tea-tree plantations.  

The analysis of the smallholder agriculture catchment showed a relatively fast pathway. 

However, Owuor et al. (2018) measured infiltration rates of 401±211 mm hr-1 on croplands in 

the catchment, suggesting that subsurface flow is the most likely pathway. Nevertheless, 

field observations of runoff along with poorly maintained highly compacted tracks, and the 

shape of a classification of hysteresis loops by Jacobs et al. (2018b) provides a contrasting 

insight suggesting that surface runoff in the smallholder agriculture is an important vector for 

sediment. The hypothesis is that the tracks act as ephemeral streams and receive water 

from the surrounding areas as shallow lateral flow, thus explaining the shorter water 

response times. The natural forest and tea-tree plantation catchment with high tree cover 

showed similar time constants, whereas the much lower tree cover in the smallholder 

agriculture catchment lead to faster pathways. The generally slow pathway component in 

each model can be explained by the presence of deep and well-drained soils in all 

catchments (Sombroek et al. 1982). 

4.4.4 Sediment response times and event duration 

The shorter time lag between the peaks of rainfall to sediment than to discharge can be 

attributed to exposed and easy erodible material adjacent to the outlet. The almost 

instantaneous sediment response to rainfall in the natural forest and tea-tree plantations 

suggest sediment supply from readily available, nearby sediment sources (Francke et al. 

2014; Tena et al. 2014; De Girolamo et al. 2015) (Figure 12). Near-channel or in-channel 

sediment sources can originate from the stream bank or the stream bed (Kronvang et al. 

1997; Chappell et al. 1999; Lenzi & Marchi 2000). Temporarily stored sediment is thought to 

be mobilized very quickly during the first stages of a storm event (Eder et al. 2010). Fast 
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response systems of short duration and low mass magnitude, as those observed in the 

natural forest catchment, are characterized by rapid sediment flushing and fast depletion of 

sediment supply (Chappell et al. 1999), due to limited availability of eroded material from the 

protected surface (Fang et al. 2008; Fan et al. 2012; De Girolamo et al. 2015). The paved 

drain network in the tea-tree plantation catchment can act as conduits transporting sediment 

instantaneously from nearby logged plantations or tracks to the stream. The delayed 

sediment response after a rainfall event in the smallholder agriculture and the second 

sediment response in the tea-tree plantation catchment suggest a long travel distance 

between the sediment source and the catchment outlet. The delayed response can be 

related to the magnitude of mass, where more distant sediment source areas from the wider 

catchment accumulate more mass over a longer period. These responses may also indicate 

the breaching of barriers such as hedges, fences or grazing land, especially in the 

smallholder agriculture catchment. The long recession limb in the smallholder agriculture 

and the tea-tree plantation catchments is typically explained as a slow depletion of sediment 

supply (Francke et al. 2014; Tena et al. 2014; De Girolamo et al. 2015). The more 

pronounced sedigraph in the smallholder agriculture catchment can be associated with the 

wide range of accumulated sediment source areas (Figure 12).  
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Figure 12 Typical shape of the sedigraph (sediment conc.=concentration [mg l

-1
] and hydrograph (discharge 

[m
3
 sec

-1
] (10 minute resolution) for events in the natural forest (02/06-03/06/2018 10:00), the tea-tree plantation 

(24/04-25/04/2018 10:00) and the smallholder agriculture (17/05-18/05/2018 16:00) catchment in the South-West 
Mau, Kenya. 
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4.4.5 Seasonal variability of suspended sediment  

Throughout the study period, distinct seasonal variability was observed in suspended 

sediment yield for the natural forest, tea-tree plantations and smallholder agriculture with 

higher yields in periods of high discharge and rainfall. In climates with strong seasonality of 

rainfall, seasons can explain sediment dynamics (Horowitz 2008; De Girolamo et al. 2015), 

as was observed in this study. Wet seasons or high-flow events generate the largest 

proportion (80-95%) of the annual sediment load, as observed by De Girolamo et al. (2015), 

Sun et al. (2016) and Vercruysse et al. (2017) in other areas, while the sediment load is the 

smallest in the dry season with less than 5% in this study. The seasonal differences were 

more pronounced in the smallholder agriculture catchment compared to the other two 

catchments explained by the high catchment surface connectivity and low vegetation cover. 

4.5 Conclusions 

This study presents the first long-term high-resolution sediment dataset of East Africa in 

Kenya. The four years of continuous data for the natural forest, tea-tree plantation and 

smallholder agriculture catchments provide critical insights in contrasting sediment dynamics 

of the tropical montane Mau Forest Complex. The analysis revealed that land use is a 

critically important driver for sediment supply, where smallholder agriculture generates six 

times more annual suspended sediment yield than a catchment dominated by natural forest. 

Besides vegetation cover, a strong catchment surface connectivity through unpaved tracks 

and gullies from hillslopes to the fluvial network is thought to be the main reason for the 

differences in sediment yields. However, further work is required to test this hypothesis. 

Catchments with a high tree cover, such as the natural forest and the tea-tree plantations 

seem to have similar water pathways with a dominance of subsurface flow. In contrast, in the 

highly disturbed landscape such as that of the smallholder agriculture catchment, surface 

runoff dominates and soil erosion increases suspended sediment yield. This superficial 

water pathway results in the more pronounced seasonal impact of rainfall in the smallholder 

agriculture compared to the other two catchments, also due to varying vegetation cover. 

Delayed sediment response to rainfall and a slow depletion in sediment supply in the 

smallholder agriculture and tea-tree plantations suggests that the wider catchment area is 

supplying sediment from a range of sediment sources, especially in the catchment 

dominated by smallholder farming. In contrast, the fast depletion in sediment supply in the 

natural forest suggests the importance of nearby sediment sources and temporarily stored 

sediment.  
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Land scarcity and population growth bring enormous pressure on natural forest ecosystems. 

Forest conversion will increase sediment production, which will affect, not only many people 

in the Sondu River Basin who rely on the rivers for drinking water, but also Lake Victoria 

which is already affected by increased sediment supply. The implementation of catchment 

management, such as soil conservation measures and better engineering of rural trackways 

is essential to reduce sediment supply to water bodies. However, a detailed sediment source 

fingerprinting analysis is necessary to identify the main contributing sediment sources. This 

will support the application of better management strategies at the source to prevent 

sediment entering the stream network. Sediment yields reported in other sediment studies in 

montane smallholder agriculture catchments were higher than in this study, which provide a 

warning of potentially higher sediment loss in the future unless mitigation strategies are 

implemented.  
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4.6 Supporting information 

This study uses a four year (2015-2018) high-temporal resolution dataset on rainfall, 

discharge and calibrated suspended sediment of a natural forest, tea-tree plantation and 

smallholder agriculture catchment in the South-West Mau, Kenya. Sediment dynamics and 

hydrological flow pathways were compared between the three catchments as these are key 

in delivering sediments to the streams. Therefore, rainfall-runoff was modelled using a linear 

continuous time (CT) transfer function model over a continuous period of one year for each 

monitoring period. Figure 13 exemplifies the output of the simulated discharge using the 

linear CT transfer function model for 2018. Cross-correlations were used to further assess 
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the timing of the response of suspended sediment to rainfall and discharge. An example is 

given in Figure 14 between discharge and suspended sediment for 2018 for each 

catchment. 

The supporting information provides the equation for the power law relationship between 

measured rainfall and effective rainfall as surrogate for soil moisture. Effective rainfall is 

used as input for the linear CT transfer function model. In addition, the coefficient of 

determination (akin to Nash Sutcliffe Efficiency) and the Young Information Criterion (YIC) 

are explained as the model assessment criteria for the linear CT transfer function model. 

The figures show an example of the output of the simulated discharge using the linear CT 

transfer function model within the CAPTAIN toolbox in MATLAB (Taylor et al. 2007) and 

cross-correlograms between discharge and suspended sediment for the period of 2018. 

Text S1. 

Effective rainfall is calculated with the power law which is given by: 

Re(t) =  Robs(t) ∗ (Qobs(t − 1))α (S1)

where Re(t) is the effective rainfall at time t, Robs the observed rainfall, Qobs is the observed 

runoff (discharge) with flow being used as the index of antecedent wetness, this process 

produces the power law parameter α that determines the fraction of the rainfall that 

generates runoff and is a constant exponent which is optimized from the observed data. Re 

is the effectiveness of rainfall (amount of rainfall converted into discharge), to fit into the 

linear CT transfer function model.  

Text S2. 

Model assessment criteria based on the coefficient of determination: 

 

Model fit was evaluated according to the coefficient of determination Rt
2 (akin to Nash 

Sutcliffe Efficiency) and the Young Information Criterion (YIC) (Young & Beven 1994) 

contained in the Captain Toolbox for Matlab (Taylor et al. 2007): 

Rt
2 = 1 −

∑ (Qm
i −Qo

i )2N
i=1

∑ (Qo
i −Qo̅̅ ̅̅ )2N

i=1

     (S2) 

where Qo
i  is observed discharge, Qm

i  is modelled discharge at i. Qo
̅̅̅̅  is the mean of the 

observed discharge series. The coefficient of determination can range between 1 > Rt
2 >

− ∞, with 1 being a perfect predicted model.  

Text S3-4. 
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A measure of parameterisation is tested with the Young Information Criterion (YIC): 

YIC = ln
σr

2

σo
2 + ln{NEVN} (S3)

where σr
2 and σo

2 are the variances of the residual series and observed series, respectively 

and NEVN (normalised error variance norm) is given by: 

NEVN =  
1

np
∑

σr
2pii

ai
2

np
i=1        (S4) 

where np  is the number of estimated parameters, pii is the ith diagonal of the parameter 

covariance matrix and ai
2 is the square of the ith parameter.  

Generally, a large negative value indicates a good fit with the lowest amount of parameters 

necessary to represent the dynamics of the system. A higher order model shows a better fit, 

but the parameters have a greater uncertainty. The final model choice was based on a Rt
2 as 

high as possible, balanced by a large negative YIC. 
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Figure 13 Time series of rainfall [mm hr

-1
] and observed and simulated discharge (Q) [m3 sec

-1
] using the linear 

continuous time transfer function model for the a) natural forest, b) tea-tree plantation and c) smallholder 
agriculture catchments for the period 2018. 
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Figure 14 Time series of discharge [m3 sec

-1
] and suspended sediment (TSS) [mg L

-1
] (10 minute resolution) 

between January 2018-December 2018 (top plot) and output of cross-correlation function of the time series 
between discharge and suspended sediment of 2018 with time lag (10 min) and 95%-confidence interval (CI) 
(bottom plot) of the a) natural forest, b) tea-tree plantations and c) smallholder agriculture. The cross-correlation 
function between two time series (e.g. discharge and suspended sediment), is a function of the time lag 
measured in samples. For each time lag a cross-correlation coefficient is calculated. The peak correlation of the 
cross-correlogram shows the peak response time between discharge to suspended sediment concentration in 
time lags (10 minutes). The time lag is for the natural forest at 30 minutes, for the tea-tree plantations at 
30 minutes with a delayed response at 120 minutes and for the smallholder agriculture at 132 minutes.   
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5 Agricultural land is the main source of stream sediments after 

conversion of an African montane forest 

5.1 Introduction 

Montane headwater catchments are susceptible to soil erosion due to their topographic 

position on generally steep hillslopes (Wohl 2006; Morris 2014; Nishigaki et al. 2017). Soil 

erosion is accelerated on land where erosive rain falls on landscapes deforested and 

converted to agriculture (Defersha & Melesse 2012; Gessesse et al. 2015; Nishigaki et al. 

2017). This phenomenon is evident in many places in sub-Saharan Africa in general and in 

East Africa in particular (Penny 2009). Soil particles are eroded and transported to downhill 

areas. The loss of topsoil reduces not only the arable soil depth, but also the content of soil 

organic matter, nutrients, and trace elements (e.g. organic carbon, nitrogen, phosphorus, 

magnesium, potassium) (Quinton et al. 2001; Morgan 2005), hampering agricultural 

productivity (Morgan 2005; Liniger et al. 2011; Saiz et al. 2016). Element concentrations are 

generally enriched in the fine particle fraction (particle size <63 µm) (Quinton et al. 2001; 

Rawlins et al. 2010; Laceby et al. 2015b), which are easily transported through water erosion 

(Morgan 2005). In addition to these on-site effects, soil erosion degrades waterways as 

suspended sediments reduce the physical, biological and chemical water quality of streams 

(Owens et al. 2005; Horowitz 2008). These off-site effects increase adversely water 

treatment costs (Clark 1985), and cause the siltation of water reservoirs, which can affect 

water supply and hydropower generation through reduced water storage capacity (Mogaka 

et al. 2006; Devi et al. 2008; Kondolf et al. 2014). Furthermore, sediments can be 

contaminated with heavy metals, nutrients and pesticides, degrading water quality (drinking 

water), affecting primary production and damaging aquatic habitats (Quinton et al. 2001; 

Horowitz 2008; Gellis & Mukundan 2013). Agricultural intensification together with poor land 

management practices accelerate soil erosion (Liniger et al. 2011) and increase the number 

of source areas that contribute sediment to the stream network. This highlights the 

importance of identifying sediment sources, so that efficient management strategies can be 

implemented to reduce soil erosion and sediment delivery to the streams, thus reducing 

on- and off-site impacts.  

Sediment source fingerprinting is a well-established, valuable technique to identify and 

apportion target sediments, in this case stream sediments, to their different sources within a 

catchment (Evrard et al. 2013; Owens et al. 2016; Laceby et al. 2017; Davies et al. 2018). 

Fingerprinting begins with the classification of potential sediment sources based on 
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reconnaissance sampling with the help of, for example, Google Earth imagery (Boardman 

2016) and sampling of target and sediment sources across hydrographs (Phillips et al. 2000; 

Evrard et al. 2013). Then, potential tracer properties are selected, followed by statistical 

tracer selection (Collins et al. 2012, 2017; Gellis & Noe 2013; Smith et al. 2018). Several 

fingerprinting studies have used different sediment properties to successfully determine their 

provenance. For example, Singh (2009), Collins et al. (2010) and Hardy et al. (2010) used 

geochemical elements, while Fox and Papanicolaou (2008), Evrard et al. (2013) and 

Mckinley et al. (2013) used biogeochemical properties. Mukundan et al. (2010), Owens et al. 

(2012) and Evrard et al. (2016) included fallout radionuclides and others used a combination 

of different fingerprinting properties (Froger et al. 2018). Fundamental for the selection of 

trace elements for fingerprinting is that the tracers are present in measurable concentrations, 

behave in a conservative way through the mixing process (i.e. no change from source to 

sink) and are representative for the source (Koiter et al. 2013; Collins et al. 2017; Stock et al. 

2018). 

The advantage of using geochemical elements as tracers is that they provide a useful and 

inexpensive tool to determine rapidly a substantial number of potential tracer properties 

(Collins et al. 2017). Total nitrogen and total carbon are proven to be good tracers in 

discriminating between surface soil erosion (e.g. topsoil of agricultural land) and subsoil 

erosion processes (e.g. unpaved tracks, gullies or channel banks) (Owens et al. 2006). As 

the target sediment originates from upstream hillslope areas, the biogeochemical or 

geochemical elemental composition in the sediment source should be similar to the mixed 

sediment at the catchments outlet (Laceby et al. 2017). Having a large pool of tracers 

increases the chance to select statistically the optimum tracer composite to differentiate the 

target sediment to its originating sources and to quantify their relative contributions to the 

sediment in the stream water (Collins et al. 2017). 

A wide variety of Frequentist or Bayesian modelling approaches have been applied in un-

mixing modelling (Nosrati et al. 2014; Collins et al. 2017; Smith et al. 2018). The 

effectiveness of Bayesian sediment fingerprinting models with the use of geochemical 

fingerprint compositions has been demonstrated by Koiter et al. (2013), Cooper et al. (2014) 

and Blake et al. (2018) and has been positively evaluated by Davies et al. (2018). Bayesian 

models apply probability distributions and incorporate prior knowledge. This leads gradually 

to increased knowledge from one experiment to the next and to strengthening model 

performance. The prior knowledge of an uncertain quantity is described by the probability 

models (Davies et al. 2018; Stock et al. 2018). 
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The Sondu River Basin in Kenya, one of the headwaters of Lake Victoria, has experienced 

land use changes over the last four decades, where 25% of the largest remaining tropical 

montane forest in Kenya, the Mau Forest Complex, has been converted to commercial (tea 

and tree plantations) and smallholder agriculture (Brandt et al. 2018). A four-year sediment 

monitoring study, revealed that smallholder agriculture generates a five times higher annual 

sediment yield than a montane forest ecosystem (South-West Mau Forest part of Mau 

Forest Complex) and almost three times higher than commercial agriculture (tea and tree 

plantations), where erosion management strategies are implemented (Stenfert Kroese et al. 

2019). The smallholder agriculture catchment, located in the montane headwater of the 

Sondu River Basin plays an important role in sediment delivery to the downstream reaches 

of Lake Victoria. Intensive land use practices without soil conservation techniques can 

increase sediment yields within the Lake basin, especially in regions with a high structural 

catchment connectivity (Fryirs 2013). A dense network of unpaved tracks connects hillslope 

areas with the stream network within the smallholder agriculture catchment and it has been 

observed delivering sediment-rich water to the streams during rain storms. This, together 

with a number of sediment studies in the tropics highlighting the importance of unpaved 

tracks in acting as natural drainages and discharging sediment direct to the stream network 

(Ziegler et al. 2001; Minella et al. 2008; Ramos-Scharrón & Thomaz 2016), suggest that 

these tracks may be a key sediment source. 

The overall aim of the study was to apportion the relative contributions of four potential 

sediment sources: agricultural land, gullies, unpaved tracks and channel banks to 

suspended sediment yields within a smallholder agriculture catchment in the headwater of 

the Sondu River Basin. Identifying the major sediment source is critical to develop targeted 

soil conservation strategies to reduce erosion, to disconnect source areas from the stream 

network and to decrease sediment delivery to Lake Victoria.  

The main objective was to determine the main sediment source within a smallholder 

agriculture catchment, through (a) identification of the best sediment tracer composite of a 

large pool of biogeochemical and geochemical elemental properties for sediment 

provenance determination, and (b) estimation of the relative sediment contribution from 

agricultural land, gullies, unpaved tracks and channel banks using a Bayesian multivariate 

un-mixing model. The hypothesis was set out that unpaved tracks are the main sediment 

source to the target sediment. 
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5.2 Methods 

5.2.1 Catchment description 

The study area is a smallholder agriculture catchment (27 km2) located in the western 

highlands of Kenya. It is part of the headwater of the Sondu River Basin, which drains into 

Lake Victoria (Figure 15). The catchment has a dry season (January to March) and a wet 

season with two rainfall peaks: the long rains from March to May (77-277 mm month-1) and 

the short rains from June to September (~160 mm month-1) with continued intermitend 

rainfall events between seasons. The annual rainfall ranged from 1,400 to 1,800 mm (period 

2015-2018) (Stenfert Kroese et al. 2020b).  

 
Figure 15 (a) Elevation map (SRTM digital elevation model 30 m resolution (USGS 2000)) of the Sondu River 
Basin with outlet to Lake Victoria and (b) pedological map with source and target sediment sampling points 
(Geology data from the Soil and Terrain database for Kenya (KENSOTER) version 2.0 (ISRIC 2004) with imagery 
basemap (Esri 2020) of the smallholder agriculture catchment in the highlands of (c) Kenya (map generated 
using ArcMap 10.4 (10.4.1) (ESRI 2016). 

Throughout the catchment steep slopes (maximum 52.4%) characterise the montane area 

with an altitude range from 2,389 m a.s.l. at the catchment outlet to 2,691 m a.s.l. at the 

source. The geology is characterised by lava flows of volcanic (72%) and pyroclastic (28%) 

parent material (ISRIC 2004). Phonolites, a member of a group of extrusive igneous 

porphyritic rocks (lavas), predominate in this area (Binge 1962). There are two soil types: 

mollic Andosols (28%) in the upper part of the catchment and humic Nitisols (72%) in the 
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middle and lower part (Table 6). They are well drained, deep soils (up to 5-6 m in depth) 

consisting of dark-brown loamy to clayey soils (Sombroek et al. 1982) with moderate to high 

organic matter content (Dunne 1979). Nitisols are characterised by high concentrations of 

free iron. Mollic Andosols are formed following rapid weathering of porous volcanic material. 

Dominant minerals include allophanes, with hydrous aluminosilicates, and ferrihydrite. 

Aluminium-humus complexes protect the organic matter from bio-degradation (WRB 2015). 

Due to their high porosity these soils have excellent internal drainage with infiltration rates of 

400 mm hr-1 (Owuor et al. 2018). Nevertheless, desiccated Andosols, common after 

deforestation, have low water permeability that makes them susceptible to water erosion 

(WRB 2015).  

Table 6 Physical characteristics of a smallholder agriculture catchment in the South-West Mau, Kenya 
(SD=standard deviation). 

Area km
2
 27.2 

Outlet coordinates
a
 Longitude 35°28'31.7316''E 

 Latitude 0°24'4.0248''S 
Stream order (Strahler)  1, 2 
Drainage density km km

-2
 0.64 

Track density km km
-2

 4.28 
Altitude range m a.s.l. 2,389-2,691 
Mean slope ± SD % 11.6±6.7 
Geology

b
  Igneous rock (Volcanic) (72%) 

Pyroclastic (28%) 
Dominant soils

b
 

 
Humic Nitisol (72%) 
Mollic Andosol (28%) 

Soil profile Andosol AC to ABC 
 Nitisol AB(t)C 
Land use  Perennial & annual crops, woodlots, grazing land 
a
WGS 1984 UTM Zone 36S 

b
Geology data from the Soil and Terrain database for Kenya (KENSOTER) version 2.0 

Historically, most of the catchment was covered by the Mau Forest Complex, which was 

cleared for agricultural land over the last four decades (Brandt et al. 2018). Today their fertile 

volcanic soils are planted with a variety of crops including maize, interspersed with beans, 

potatoes, millet, cabbage and tea on small farms (<1 ha). Eucalyptus (Eucalyptus ssp.), 

cypress (Cupressus ssp.) and pine (Pinus ssp.) woodlots are interspersed with croplands 

and grazing land. Tillage in the form of hand-hoe cultivation and ploughing with oxen are the 

common practices for soil preparation. A dense network of unpaved tracks, organized in a 

rectangular grid, connect hillslopes with the stream network. These tracks regularly used by 

people and livestock often become incised to form gullies. Gullies can be found on steep 

slopes or around unprotected springs. Stream channel banks are susceptible to erosion due 

to the absence of riparian vegetation (Figure 16). The catchment supplies on average 

106±46.8 t km-2 yr-1 of fine suspended sediment at the outlet (Stenfert Kroese et al. 2019). 
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5.2.2 Source and target sediment sampling design 

Source and target sediment sampling were conducted from April to June 2019. A stratified 

sampling design was used which was based on field reconnaissance and Google earth 

imagery. Sampling points were restricted to areas where soil mobilization and on-field 

transport processes from hillslope areas were potentially connected with the stream network. 

To represent material susceptible to runoff detachment, sediment source samples were 

collected by scraping the uppermost layer of soil (~2 cm) of agricultural land and unpaved 

tracks (Figure 16a & c). The agricultural land source group included annual cropping field 

and fallow land, tea plots and grassland. Grasslands were not distinguishable from the 

cropland sources based on similar tracer concentrations, because they are used in rotations 

with croplands (Figure 21). Each agricultural land sampling point (n=137) was composed of 

multiple subsamples of the same land use collected along parallel transects within a radius 

of 25 m around a sampling point pre-selected visually on recent Google earth imagery. 

Multiple unpaved tracks samples were collected along transects on the track width, track 

length and of track walls and combined to a bulk sample (n=60). Samples of gullies (n=19) 

and channel banks (n=32) (Figure 16b & d) were collected from several points along vertical 

and horizontal profiles of the subsoil (up-to a depth of 2 m) and combined into a single 

sample. Channel bank samples were only taken on sites with exposed banks without 

vegetation cover. Litter or vegetated cover was removed prior to taking soil samples. Each 

surface and subsoil sample was composed of 10-20 subsamples. A plastic trowel was used 

for sample collection to avoid metal cross-contamination (Figure 17a & b). 
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Figure 16 (a) Characteristic landscape of the smallholder agriculture catchment, (b) hillslope gully, (c) unpaved 
eroded track connecting with the stream and (d) exposed channel bank. 

Target sediment samples consisted of flood sediment samples (n=6) and time-integrated 

suspended sediment samples (n=29). Flood sediment samples were collected manually and 

automatically at the catchment outlet. Manual event-based samples were retrieved with bulk 

river water samples (~10 L). In addition, two automatic water samplers (3700 Full-size 

portable sampler, Teledyne ISCO, Lincoln, USA) were used to collect 0.5 L samples during 

the rising and falling limbs of the storm hydrograph. Sediment from the bulk river water 

samples and the automatic sampling were extracted through the settling and sedimentation 

method and then air-dried (Figure 17a-c). For time-integrated samples three sediment traps 

following the method by Phillips et al. (2000) were installed at the outlet and at two locations 

upstream of the outlet (Figure 15) and samples were collected every three to five days.  
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Figure 17 Flow diagram of the sediment fingerprinting sampling, analytical and statistical procedure (in brackets 
sample number).  

5.2.3 Sediment source and target sediment processing and analysis  

Sediment source samples were sieved to <63 µm in the field to facilitate direct comparison 

to the target sediment samples (Walling et al. 1999; Collins et al. 2017). Sediment source 

samples were air-dried and ground for further analysis (Figure 17c). All sediment samples 

(sources and target) were analysed in the laboratory for their chemical properties, including 

total carbon (TC) and total nitrogen (TN) content (Carter et al. 2003; Evrard et al. 2013) and 

major and minor elemental geochemical constituents (Carter et al. 2003; Collins et al. 2010) 

as potential sediment tracers. For TC and TN concentration a sub-sample of 15 mg was 

wrapped in tin capsules and combusted in an elemental micro-analyser (Elementar vario 

MICRO Cube, Elementar Analysensysteme GmbH, Langenselbold, Germany) at 950°C. A 

handheld XRF spectrometer (Bruker Tracer IV-SD, Bruker, Kennewick, WA USA) that uses 

energy dispersive X-ray fluorescence (EDXRF) was employed to determine the following 

major elements: Al2O3, CaO, Fe2O3, K2O, MgO, Na2O, P2O5, SiO2 and TiO2 and trace 

elements: Ba, Cr, Cu, Mn2O3, Nb, Ni, Pb, Rb, Sr, Y, Zn and Zr. For this analysis, a 

sub-sample of 500 mg was placed onto a thin film to measure trace elements at a setting of 

40kV and 15.7 µA and major elements at an excitation of 15kV and 35 µA under vacuum 

with Helium gas. For each sample the mean of three replicates was used for further analysis 

(Figure 17d). 
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5.2.4 Tracer selection procedure 

To select tracers for optimal discrimination of different sources, a verification procedure is 

needed to prove the strength of composite tracers for source apportionment. A two-step 

tracer selection approach was used based on a statistical tracer screening combined with a 

logical-based selection (step 2) for an optimum range of tracers (Figure 17e). This two-step 

approach differs from un-mixing models under the Frequentist framework, where commonly 

a three-stage statistical procedure is aimed to select a minimum range of tracers (Davies et 

al. 2018; Batista et al. 2019). The use of several tracers including weak tracers increases the 

explanatory power of un-mixing modelling under the MixSIAR Bayesian framework (Small et 

al. 2004; Martínez-Carreras et al. 2008; Sherriff et al. 2015). The covariance structure in the 

MixSIAR un-mixing modelling reduces redundancy and therefore a discriminant function 

analysis to create a composite of a minimum of tracers is not required (Stock et al. 2018). 

The range test was used to exclude elements that do not differentiate sediment sources 

(Blake et al. 2018). A target element concentration should be in range with the source mixing 

polygon showing whether a tracer on the target sediment is enriched or depleted compared 

to the sediment sources (Walling et al. 1999; Mukundan et al. 2010). Consequently, the 

range test analyses the conservative behaviour of the selected tracers (Collins et al. 2017). 

Elements plotting outside the mixing polygon are removed from the subsequent analysis. 

Here, the mean and standard deviation of log-transformed concentrations of the target 

sediment should be within the ranges of the concentrations of the sediment sources. Tracers 

outside this criterion violate the numerical modelling assumptions and may lead to false 

results of the un-mixing model (Collins et al. 2013). The remaining elements selected by the 

range test were screened for their discrimination power to distinguish between surface and 

subsurface sources. The discriminating power of the selected tracer composite was 

evaluated using the reclassification coefficient and linear discriminant analysis (LDA) 

bi-plots. Based on the evaluation of the discrimination power, two different scenarios were 

run: scenario 1 with the inclusion of the unpaved tracks as individual source, and scenario 2 

excluding the tracks from the analysis. Tracers were screened independently for each 

scenario. For statistical analyses, the R software (RStudio 2017) was used together with the 

packages MASS (Venables & Ripley 2002) and klaR (Weihs et al. 2005) for the LDA 

cross-validation. 

5.2.5 Modelling source apportionment 

To estimate the relative contribution of each source at catchment level, a Bayesian 

un-mixing model was applied using the MixSIAR model (Stable Isotope Analysis in R) (Stock 

& Semmens 2016). The MixSIAR model runs in the JAGS (Just Another Gibbs Software) 
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software (Plummer 2003) to carry out a Markov chain Monte Carlo (MCMC) sampling 

together with a Bayesian analysis that produces diagnostics, density plots a posteriori and 

summary statistics. Prior to modelling, element concentrations were log transformed to 

approach normality. The MixSIAR model uses the mean and standard deviation of the 

tracers as inputs. The model parameters, i.e. the proportions of tracer compositions of the 

sediment sources, are treated as random variables. Parameter uncertainty is specified by 

using three different stages of probabilistic predictions by: (1) using the Dirichlet distributions 

to determine prior probability distributions for parameters, (2) constructing a likelihood 

function for the model and (3) using the Bayes rule to adjust prior distributions based on 

observed data to derive the posterior probability distribution (Bolstad 2007). The basic linear 

un-mixing model takes the following form: 

𝐶𝑡𝑖 = ∑ 𝑃𝑠𝐶𝑆𝑖
𝑚
𝑠=1      ( 8 ) 

with  ∑ 𝑃𝑠 = 1𝑚
𝑠=1  and 0 ≤ 𝑃𝑠 ≤ 1. 𝐶𝑡𝑖 is the concentration of tracer i of the target sediment t, 𝑃𝑠 

is the proportional contribution from sediment source s, and 𝐶𝑆𝑖 is the concentration of tracer 

i of the sediment source s with the number of sediment source m. The estimated 

discrimination of sediment sources was carried out with the MCMC sampling on three ‘long’ 

chains of length 300,000 with a 200,000-sample burn-in and a jump length of 100 to 

minimize autocorrelation between runs, yielding 3,000 model values of proportional source 

contributions. Un-mixing model convergences were assessed with the Gelman-Rubin 

diagnostic, where the chain length was increased when >5% of total variables was above 

1.05 (Stock & Semmens 2016). The un-mixing modelling results of the relative contributions 

of each sediment source are presented as the average with 95%-confidence interval for 

scenario 1 and 2 (Figure 17f). 

5.3 Results 

5.3.1 Tracer selection and their discriminative behaviour  

Prior to the statistical procedure of tracer selection, P2O5 was removed as a potential tracer. 

Phosphorus concentrations may be highly variable in space due to inorganic fertilizer 

applications and because phosphorus is prone to transformation. This non-conservative 

behaviour may influence the fingerprinting modeling results (Granger et al. 2007; Collins et 

al. 2017). Highly P2O5-enriched sediment sources were observed on samples originating 

from tea fields within the catchment. Of 23 geochemical and biogeochemical elements 

measured in each source and target sediment sample, eight (including P2O5) were removed 

due to values below the detection limit (with the exception of P2O5) (Table 9). During the 

tracer screening, with the tracks included as a source (scenario 1), another five elements 
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were removed because these did not comply with the range test (see Methods, step 1). The 

ten elements remaining that passed the range test were further assessed. Rb and Zr were 

excluded in step 2 due to their low discrimination power to differentiate between surface and 

subsurface sources. A final set of eight tracers remained, comprising: TN, Al2O3, Fe2O3, K2O, 

MgO, Mn2O3, Sr and Nb. All selected composite fingerprints were able to reclassify correctly 

80% of the samples in their source group after the LDA cross-validation. Because a 

reclassification coefficient of 80% (Table 7, scenario 1) is considered to be weak and 

because of the overlapping of tracers on the tracks with the other three sediment sources 

(Figure 18a), a second scenario was run where tracks as individual source were excluded. 

The tracers remained the same for a reduced number of sediment sources and the exclusion 

of the tracks increased the discriminatory power of the composite fingerprints to 95% (Table 

7, scenario 2). 

Table 7 Tracers for two selection steps and reclassification coefficient (%) for scenario 1 with unpaved tracks and 
scenario 2 without unpaved tracks. 

Scenarios Selection step Selected tracers % of correctly 
classified samples 

Scenario 1: Unpaved 
tracks included 

Step 1 TN, Al2O3, Fe2O3, K2O, MgO, Mn2O3, Sr, Rb, 
Nb, Zr 

 

Step 2 TN, Al2O3, Fe2O3, K2O, MgO, Mn2O3, Sr, Nb 80 

Scenario 2: Unpaved 
tracks excluded 

Step 1 TN, Al2O3, Fe2O3, K2O, MgO, Mn2O3, Sr, Rb, 
Nb, Zr 

 

Step 2 TN, Al2O3, Fe2O3, K2O, MgO, Mn2O3, Sr, Nb 95 

The tracers discriminated agricultural land, gullies and channel banks sediment sources well 

as shown in the LDA bi-plot using the first and second discriminant functions (LD1 and LD2) 

(Figure 18a - scenario 1). Agricultural land and gullies do not overlap much unlike the tracer 

signature for the tracks that was not well discriminated. The confusion matrix shows the 

performance of the discriminant analysis and predicts the number of overlying samples with 

the tracks: agricultural land has 22 samples, the channel banks 5 and the gullies source has 

3, which is also depicted in the LDA plot with highly distributed points of overlying sources 

(Figure 18a). When the tracks source is removed from the analysis in scenario 2, the LDA 

bi-plot shows improved source discrimination for the agricultural land, gullies and channel 

banks sources (Figure 18b).  
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Figure 18 Linear discriminant analysis (LDA) for a) scenario 1: unpaved tracks included & b) scenario 2: unpaved 
tracks excluded showing the first and second discriminant functions (LD1 and LD2) of source reclassification 
using the selection of the composite fingerprints. Ellipses represent the 95%-confidence interval. The confusion 
matrix shows predicted (rows) and actual (column) number of samples for each scenario. 

5.3.2 Source and target tracer composition 

TN was a powerful tracer to discriminate between topsoil (agricultural land) and subsoil 

sediment sources (gullies, channel banks). The high TN (4.5±0.6 g kg-1) content on the 

target sediment suggests that most of this sediment originated from the N-enriched 

agricultural lands (4.5±0.7 g kg-1), where the sources from subsurface soil were depleted. 

The mean concentrations of Al2O3, Fe2O3 and MgO in agricultural land were significantly 

lower than in the gullies, channel banks and tracks sediment sources (p<0.05). Low 

concentrations of these tracers at the agricultural land source corresponded with low 

concentrations at the target, with no significant difference between Al2O3 and MgO. The 

highest concentrations for Al2O3, Fe2O3 and MgO were measured in the gullies with 

292.5±49.6, 251.1±44.6 and 12.8±3.3 g kg-1, respectively. The mean concentrations of the 

tracers from the gullies were significantly lower and higher than those in the soil of 

agricultural land, except in Sr (p<0.05). The mean concentrations of the tracks were within 

the range of those of the agricultural land (Figure 19) and were not analysed further because 

they cannot be distinguished from the agricultural land.  
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Figure 19 Tracer concentrations (g kg

-1
) on sediment sources (AL=agricultural land, CB=channel banks, 

G=gullies and T=tracks) and target sediments (TS) (letters indicate significant difference p<0.05). 

5.3.3 Sediment apportionment to their sources 

The un-mixing model using the selected eight tracer fingerprints on the sediment sources 

passed the Gelman-Rubin convergence diagnostic with a long MCMC chain run length. All 

the potential scale reduction factor values were <1.05, indicating that the chain length of the 

MCMC was long enough. The fingerprinting results estimate the contributions of the four 

sediment sources to the target sediment with uncertainty estimated through the MCMC 

simulation procedure with 3,000 posterior realizations, which are expressed as mean and 

95%-confidence intervals (CI). The fingerprinting analysis shows that agricultural land 

accounted for 75% (95%-CI 63-86%) of the target sediment at the outlet of the smallholder 
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agriculture catchment while the channel banks contributed with 21% (95%-CI 8-32%). The 

lowest contributions to sediment were generated by the tracks and gullies with 

3% (95%-CI 0-12%) and 1% (95-CI 0-4%), respectively. With the removal of tracks as 

independent sediment source, the relative contributions increased slightly for the agricultural 

land to 77% (95%-CI 67-87%) and for the channel banks to 22% (95%-CI 11-33%). The 

apportionment for gullies remained the same at 3% (Figure 20). 

 
Figure 20 Relative apportionments of agricultural land, channel banks, tracks and gullies sediment sources based 
on 3,000 MCMC runs with (a) tracks included as a sediment source and (b) excluded tracks. 

5.3.4 Sediment yield of each sediment source 

We calculated absolute sediment generated by each sediment source by using the 

contributions of each source and the sediment yield of 106 t km-2 yr-1 calculated at the 

catchment outlet by Stenfert Kroese et al. (2019). The contribution of agricultural land was 

estimated to be 80 t km-2 yr-1, 22 t km-2 yr-1 by channel banks, 3 t km-2 yr-1 by tracks and 

1 t km-2 yr-1 by gullies. In addition to the absolute sediment contributions per catchment area 

(27 km2), the sediment yield was evaluated of each specific sediment source per unit area 

within the catchment. The total annual sediment load (2,892 t) was multiplied by the relative 

sediment contribution to obtain the sediment yield per source area (Table 8). This was then 

divided by the area occupied by the different sources to calculate the sediment yield per unit 

area, i.e. the amount of sediment originating from one square kilometre of land covered by 

that particular sediment source. By including the unit area, the sediment yield was highest 

for channel banks (6,073 t km-2 yr-1), followed by gullies (567 t km-2 yr-1), tracks 

(150 t km-2 yr-1) and the lowest for agricultural land (85 t km-2 yr-1).  



Agricultural land is the main source of stream sediments after conversion of an African 
montane forest 

 

71 
 

Table 8 Relative (%) and absolute sediment contributions (t km
-2

 yr
-1

) weighted per source area and catchment 
area for tracks included and excluded of the sediment apportionment within a smallholder agriculture catchment 
in the Sondu Basin of Kenya. In brackets 95%-confidence interval. 

Scenario Sources Surface 
area 
km

2
 

Relative 
contribution 
% 

Absolute contribution 
per source area 
t km

-2
 yr

-1
 

Absolute contribution 
per catchment area 
t km

-2
 yr

-1
 

Scenario 1 

(tracks 
included) 

Agricultural 
land 

25.7 75 (63-86) 85 (71-97) 80 (67-91) 

Gullies 0.1 1 (0-4) 567 (0-2,268) 1 (0-4) 
Channel banks 0.1 21 (8-32) 6,073 (2,314-9,254) 22 (8-34) 
Tracks 0.6 3 (0-12) 150 (0-598) 3 (0-13) 

Scenario 2 

(tracks 
excluded) 

Agricultural 
land 

26.8 77 (67-87) 83 (72-94) 82 (71-92) 

Gullies 0.1 1 (0-4) 567 (0-2,268) 1 (0-4) 
Channel banks 0.1 22 (11-33) 6,362 (3,181-9,544) 23 (12-35) 

5.4 Discussion 

5.4.1 Behaviour of selected tracer elements 

The tracer composite of scenario 2, excluding tracks, explained 95% of classified sources, 

which is considered to be robust (Sherriff et al. 2015). The selected tracers showed clear 

differences in their concentrations between sources, caused by underlying biogeochemical 

and pedological processes related to each element. TN is an important plant nutrient and 

therefore a powerful tracer to discriminate between surface (agricultural land) and 

subsurface (gullies and channel banks) sediment sources. The higher concentrations at the 

soil surface reflect the inputs from atmospheric sources, fertilization, animal manure and 

biological N fixation (Jobbágy & Jackson 2004; Fox & Papanicolaou 2007). This decrease in 

TN concentrations with depth helped differentiate between surface and subsoil sources in 

this study, similarly to previous fingerprinting studies e.g. Russell et al. (2001), Gellis et al. 

(2009) and Collins et al. (2019). To characterise the natural variability in the distribution of 

TN among sediment sources, a larger number of source samples was collected than 

typically obtained as recommended by Laceby et al. (2015a). As suspended sediment was 

derived during high flow events when sediment travel times are short, the reduction in TN 

concentrations due to biological processes, such as mineralization are expected to be small 

(Rose et al. 2018). 

Geochemical tracers also showed differences between surface and subsoil sources resulting 

from weathering and pedogenic processes. For example, Al2O3, Fe2O3 and MgO were 

enriched in subsoils and depleted in topsoils, whereas the opposite was observed for K2O 

and Mn2O3. This elemental behaviour was observed in a fingerprinting study by Tiecher et al. 

(2017), where aluminium was a strong tracer to differentiate subsoil and surface sources in 

Southern Brazil. Clay content is expected to increase with soil depth with enriched residual 

Al2O3 and Fe2O3 concentrations (McLaughlin 1954; Marques et al. 2004). The subsoil is 

expected to be enriched with trace elements (Sr and Nb), because clay acts as a sink for 
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these elements (Horowitz 1991). Tropical climates with high annual rainfall intensify 

weathering processes of mollic Andosols and humic Nitisols. Less weathered subsoil may 

therefore exhibit higher concentrations in Al2O3, Fe2O3 and MgO (Tyler 2004; Bini et al. 

2011). The elemental composition of the topsoil may not have been as influenced by 

pedological processes as deeper horizons which are closer to the parent material (Tyler 

2004). Igneous rocks are rich in Fe2O3 and MgO (Marshak 2008), thus providing a good 

discriminator for subsoil sources with higher concentrations of these elements. Conversely, 

K2O and Mn2O3 are plant macro- and micronutrients and are recycled by plants mainly in the 

topsoil. Vegetation on agricultural land may transport these heavier elements (K2O and 

Mn2O3) to the topsoil, a process that does not occur in gullies or unpaved tracks which are 

mostly bare (Jobbágy & Jackson 2001, 2004).  

Although the tracers helped to differentiate between surface and subsoil sources, they could 

not differentiate clearly between the different land uses, such as grasslands and cropping 

fields. Only 67% of the sources were correctly classified by the tracers, which is why the 

different land uses were categorized into one sediment source group called agricultural land 

(Figure 21). Future source apportionment studies could also include the use of an 

informative prior from independent evidence to help constrain the model given source 

overlap (Wynants et al. 2020).  

5.4.2 Sediment sources and hotspots 

The results of this study show that agricultural land is the main sediment source in the 

smallholder agriculture catchment with a contribution of 77%. This is reflected in the 

chemical composition of the target sediments, with tracer concentrations similar to those 

expected in agricultural topsoils (Figure 19). A similar source apportionment was observed in 

two studies in steep cultivated catchments in South-Brazil, where surface erosion originates 

mainly from agricultural land with smaller to minor contributions from channel banks and 

unpaved tracks (Minella et al. 2008; Tiecher et al. 2017). Also in a Zambian catchment, 

sediments were found to mainly originate from communal land cultivation, which covered 

about 70% of the catchment area. In that study, a dense network of trackways was thought 

to connect overgrazed hillslope areas with the stream network delivering sediment from the 

bush grazing sediment source (Collins et al. 2001). These findings further elucidate the need 

for soil conservation strategies in other tropical catchments with a current trend towards 

agricultural expansion (Hosonuma et al. 2012). 

In this study, unpaved and highly compacted tracks often run parallel to the slope, thus 

acting as conduits during rainfall events and turning into ephemeral streams carrying surface 
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runoff with high loads to the streams. Due to their frequent use and position, it was 

hypothesised that these tracks would be the main sediment source, as suggested by other 

sediment fingerprinting studies (Motha et al. 2004; Nosrati & Collins 2019). However, the 

tracks were found to be only a minor contributor to the overall catchment sediment budget. 

Their role as conduits from the surrounding source areas to the stream may explain the 

overlap of tracers in the track samples with the remaining sources. Besides, unpaved tracks 

may have been converted from agricultural land which might also lead to similarity in their 

tracer characteristics. Consequently, unpaved tracks were excluded as an independent 

sediment source, because the tracer composite could not clearly distinguish from agricultural 

land, leading to 80% of correctly classified samples. 

Although the sediment yield per unit area of channel banks, gullies and unpaved tracks are 

large, they are not the main contributors to sediments at catchment scale. However, the 

sediment contribution increases at a smaller scale, which was also observed by Tiecher et 

al. (2017) for sub-catchments <3 km². The scale-dependency points to one main finding: that 

sediment loss from agricultural land per unit area is relatively low, but because it occupies 

most of the catchment area, it contributes the greatest proportion of the sediment yield. 

Channel banks, gullies and unpaved tracks are significant local hotspot sources, but their 

overall contribution is of lower significance. Instead, gullies and unpaved tracks act as 

significant conduits, connecting hillslopes with the streams. When weighting sediment 

contributions to the whole catchment, a dilution effect by the catchment area decreases the 

sediment supply from the scale-dependent source areas. When scaling up to the Sondu 

River Basin, the large proportion of agricultural areas within the whole catchment raises a 

concern, as it discharges an increasing amount of sediment at the outlet into Lake Victoria. 

However, source apportionment might vary depending on sampling locations of target 

sediment in nested sub-catchments due to catchment-scale dependent sediment dynamics 

(Koiter et al. 2013). A large scale campaign may give additional information of changing 

source contributions within the whole catchment.  

5.4.3 Implications of sediment management strategies  

An increased sediment yield in the streams originating from nutrient-rich topsoil of 

agricultural land contributes to eutrophication of waterbodies (Mainstone & Parr 2002) and 

threatens crop yields (Liniger et al. 2011; Saiz et al. 2016). The loss in annual agricultural 

productivity will decrease farmer’s revenue, but, more importantly, it will threaten food 

production and security for future generations due to slow rates of soil formation (Evans et 

al. 2019). This is a further impediment for the already low agricultural productivity of the 

country, where soil erosion is a primary constraint to improving yields (Cilliers et al. 2018). 
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Cohen et al. (2006) estimated the magnitude of soil erosion losses for Kenya’s economy to 

be US$ 390 million annually or 3.8% of the gross domestic product. In addition to the on-site 

impacts, the nutrient rich topsoil ending up in the streams may lead to an oversupply of 

macronutrients (N and P) (Quinton et al. 2001; Horowitz 2008) resulting in an eutrophic state 

of watercourses, turning rivers from natural to degraded (Kreiling et al. 2018). The discharge 

of nutrient rich sediments from the montane streams to the outlet of the Sondu River Basin is 

in particular a threat for the already enriched Lake Victoria (Lung’ayia et al. 2001) and 

degrades the lake’s water quality. This emphasizes the need for targeted mitigation 

measures to decrease hidden costs of on- and off-site impacts of soil erosion.  

Since the majority of the annual sediment yield in the study area originates from agricultural 

land, this should be the main target for soil management strategies. The largest proportion of 

the total sediment budget (59%) is generated during the start of the long rainy season, which 

coincides with the start of the planting season (March-April), large areas of bare soil or low 

ground vegetation cover on agricultural land (Stenfert Kroese et al. 2020b). Vegetative buffer 

strips alternated with fields cultivated with perennial crops can reduce the pace of surface 

runoff and can trap eroded material. This practice could lead to a significant reduction in soil 

loss from cropping fields, especially during the planting season (Wanyama et al. 2012). 

Buffer strips could also act as source of livestock feed for example to cultivate fodder crops 

such as Napier grass (Pennisetum purpureum). Currently, erosion buffer strips are only 

occasionally observed on agricultural land within the catchment. The sampling campaign 

was restricted to one hydrological period (April-June 2019), which limits the characterization 

of seasonal dynamics of sediment sources. In the future, target sediment could be sampled 

throughout different seasons (short and long rainy season and dry season) to test whether 

there are temporal changes in source contributions. 

A small floodplain in a steep, narrow valley floor provides limited space for sediment storage 

in the study area. This increases the need for enhanced on-field erosion mitigation measures 

to protect soil on hillslopes. Other methods to reduce soil erosion from agricultural land 

include terracing and the cultivation of cover crops, which can boost crop productivity. Cover 

crops can protect the surface from erosive rainfall by reducing the energy of raindrops 

(Morgan 2005; Durán et al. 2008), as well as enhancing soil organic matter (Gyssels et al. 

2005). Terracing on steep slopes, especially in the study area, could reduce surface erosion 

through decreasing slope length and steepness in dividing the slope into smaller segments 

(Liniger et al. 2011). In Kenya, fanya juu terracing is commonly used on moderately steep 

slopes up-to 20% (Tiffen et al. 1994). The use of these terraces on croplands have 
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increased crop yields by 25% in East Africa (Liniger et al. 2011) and help the recovery of soil 

organic matter (Saiz et al. 2016) due to reduced soil erosion.  

Although the unpaved tracks are not a main source of sediment, according to this study, they 

show high erosion rates per area, acting as hotspots, and therefore effective management 

strategies should still be targeted at unpaved tracks. Other studies have emphasized 

unpaved roads as landscape features with high erosion rates and as significant contributors 

of sediment to the stream network (Sidle et al. 2004; Croke et al. 2005; Rijsdijk et al. 2007). 

In Malaysia erosion rates were estimated up to 320±24 t ha-1 yr-1 originating from steep skid 

trails (>20% gradient) in logged forests (Sidle et al. 2004), while in South-Brazil the need for 

erosion control programmes were stressed onto unpaved tracks as they form into perennial 

landscape features (Thomaz et al. 2014; Tiecher et al. 2017). The potential sediment 

contribution could increase with the length of a track, where the gullied track length defines 

the distance of sediment transport (Croke et al. 2005). These results stress on the 

importance of disconnecting rural unpaved tracks from the drainage system to lower the 

contribution of sediment from surrounding hillslopes in tropical disturbed catchments. 

Sediment yield could be further reduced by disconnecting cultivated hillslope areas in the 

smallholder catchment from the highly incised and mainly long unpaved tracks to reduce 

sediment delivery during storm events. In addition, water pathways on the tracks could be 

diverted to adjacent agricultural lands to attenuate the routing of surface runoff by unpaved 

tracks to the streams.  

Riparian zones, as described within Kenya’s Water Act, are defined as a buffer of 30 m 

along the watercourse (Republic of Kenya 2012). Riparian vegetation is efficient in buffering 

significantly surface runoff, reducing suspended sediments and nutrient discharge from 

agricultural land (Sheridan et al. 1999; Borin et al. 2005; Décamps et al. 2009), but also 

prevents the collapse of channel banks (Simon & Collison 2002). A dense riparian 

vegetation can strengthen channel bank stability through a dense rooting system (Abernethy 

& Rutherfurd 2000; Small et al. 2004). Tiecher et al. (2017) showed that the presence of an 

intact riparian forest disconnected cultivated areas from the stream network, decreasing the 

sediment contribution from cropland sources compared to areas with a degraded riparian 

forest in a catchment in Southern Brazil. The same was found in the Chesapeake Bay 

watershed, USA, where a forested floodplain increased the amount in trapped sediment 

(Gellis et al. 2009). In the study area, widespread cultivation within the buffer zone and the 

absence of riparian vegetation may result in the higher transfer from soil particles originating 

from hillslopes areas. Furthermore, increased pressure on available arable land in the 

catchment is leading to conversion from wetlands to agricultural lands. With this conversion, 
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another important sediment trap is lost (Kansiime et al. 2007; Ryken et al. 2015). This 

emphasises the need for appropriate management of riparian areas to buffer hillslope 

sediments and to strengthen channel banks. 

In the study area, gullies provided the smallest contribution (1%) to the sediment budget. 

Although the overall sediment contribution of channel banks and gullies remained low, both 

sources are potential soil erosion hotspots at the local scale. Furthermore, the absence of 

management strategies might increase the relative sediment contribution with proceeding 

gully head or wall erosion (Croke et al. 2005). Gully rehabilitation could be achieved by 

replanting trees and increasing vegetation cover. Further gully expansion could be impeded 

in diverting waterways to avoid lateral runoff water entering through gully walls and keeping 

away livestock and human movement from highly eroded areas (Liniger et al. 2011). 

5.5 Conclusions 

We aimed to identify the relative contribution of four sediment sources: agricultural lands, 

unpaved tracks, gullies and channel banks using un-mixing modelling (MixSIAR) to assess 

the relative contribution to suspended sediment at the outlet of a smallholder agriculture 

catchment in the highlands of Kenya. Due to the topography of this montane headwater 

catchment, there is a strong structural catchment connectivity between hillslope areas and 

the stream, with limited deposition of sediment in the narrow floodplain with a steep valley 

floor. The sediment fingerprinting demonstrated that topsoil of agricultural lands (77% with 

95%-CI of 67-87%) is the main source of suspended sediment. A dense network of unpaved 

trackways fragments the landscape of the catchment and acts as conduit between hillslope 

areas and waterways. However, these tracks could not be identified as individual sediment 

source. The lack of an intact riparian vegetation results in subsoil channel bank erosion as a 

second major sediment contributor with 22% (11-33% 95%-CI), whereas gullies contribute 

only a small proportion with 1% (0-4% CI-95) to the sediment yield.  

Sediment fingerprinting may be applied in other tropical agricultural catchments to further 

develop the knowledge base of sediment source areas where problems of soil erosion and 

the accumulation of sediments are a concern. Based on these findings, it was speculated 

that in catchments dominated by smallholder agriculture in large parts of East Africa in 

combination with poor road network and lack of appropriate runoff and sediment 

management strategies agricultural land is the main source of sediment. These results 

emphasize the need for targeted erosion mitigation strategies on agricultural land to limit soil 

erosion and control annual sediment yield. Moreover, the large proportion in agricultural 

areas in the highly populated highlands of Kenya raises concern in discharging an increasing 
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amount of sediment to the streams, consequently, impacting further the water quality of Lake 

Victoria.  
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5.6 Supporting information 

Table 9 Average concentrations of TN, TC and geochemical elements of source and target sediment samples (* 
removed prior analysis). 

 
Agricultural land Tracks Gullies Channel banks Target sediment 

TN [g kg
-1

] 5 3 1 3 4 

TC [g kg
-1

] 53 41 16 29 50 

Na2O [g kg
-1

] 32 33 30 30 34 

MgO [g kg
-1

] 8 11 13 12 9 

Al2O3 [g kg
-1

] 157 214 293 185 166 

SiO2 [g kg
-1

] 478 466 454 455 449 

P2O5 [g kg
-1

]* 1 1 1 1 1 

K2O [g kg
-1

] 23 21 14 25 23 

TiO2 [g kg
-1

] 30 34 36 40 30 

Mn2O3 [g kg
-1

] 4 3 3 4 3 

Fe2O3 [g kg
-1

] 213 232 251 241 240 

CaO [g kg
-1

] 9 9 7 11 11 

Ba [ppm]* 0.03 0.03 0.02 0.02 0.02 

Cr [ppm]* -0.03 -0.01 -0.01 -0.03 -0.02 

Ni [ppm]* 0.00 0.00 0.00 0.00 0.00 

Cu [ppm]* 0.00 0.00 0.00 0.00 0.00 

Zn [ppm]* 0.01 0.01 0.01 0.00 0.00 

Pb [ppm]* 0.00 0.00 0.00 0.00 0.00 

Rb [ppm] 0.00 0.00 0.00 0.00 0.00 

Sr [ppm] 0.04 0.03 0.05 0.05 0.04 

Y [ppm]* 0.00 0.00 0.00 0.00 0.00 

Zr [ppm] 0.15 0.16 0.52 0.16 0.15 

Nb [ppm] 0.03 0.03 0.11 0.04 0.03 
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Figure 21 Linear discriminant analysis (LDA) showing the first and second discriminant functions (LD1 and LD2) 
of source reclassification using the selection of the composite fingerprints. Ellipses represent the 95%-confidence 
interval. The confusion matrix shows predicted (rows) and actual (column) number of samples with 
reclassification coefficient. 
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6 Particulate macronutrient exports from tropical African 

montane catchments point to the impoverishment of 

agricultural soils 

6.1 Introduction 

In sub-Saharan Africa, streams often have high concentrations of suspended sediments 

mainly due to the anthropogenic disturbance of natural ecosystems (Mogaka et al. 2006; 

Penny 2009). These sediment concentrations can be particularly high in the steep highlands 

of East Africa, where surface soil erosion in catchments dominated by agriculture generates 

significantly more suspended sediments than in native forest catchments (Brown et al. 1996; 

Tamooh et al. 2014; Stenfert Kroese et al. 2020b). The loss of organic carbon- (C) and 

nutrient-rich topsoil through surface runoff induced by soil erosion from agricultural surfaces 

(Quinton et al. 2001; Powlson et al. 2011) leads to further deterioration of tropical soils 

(Okalebo et al. 2005; Tully et al. 2015). Phosphorus (P) and nitrogen (N) are soil nutrients 

which can limit crop growth and therefore their loss from topsoils should be avoided (Pasley 

et al. 2019). The clays found in many of the tropical soils of East Africa contain amorphous 

iron (Fe), which can limit plant P availability and consequently the application of fertilizers 

(inorganic N and P and/ or manure) is often required to improve agricultural productivity 

(Mutuo et al. 1999). Soil-forming processes tend to be much slower than the rates of soil 

loss through erosion (Amundson et al. 2015; Evans et al. 2020), which can lead to soil and 

plant nutrient deficits resulting in low and stagnant crop yields (Lederer et al. 2015; Saiz et 

al. 2016). Soil organic matter is a critical determinant of soil fertility, providing nutrients to 

plants, and playing fundamental roles in soil carbon sequestration and soil water functions 

(Weil & Brady 2016; Owuor et al. 2018). Processes affecting nutrient stocks and pools of 

soils are tightly connected to the processes controlling riverine C and nutrient fluxes.  

Sediments and their associated organic C and nutrients, such as N and P (Quinton et al. 

2001; Horowitz 2008; Johnson et al. 2018) may impact streams by reducing benthic 

communities, primary productivity and water storage capacity of water reservoirs (Tamene et 

al. 2006; Hunink & Droogers 2011) and by increasing turbidity (Tamooh et al. 2014; Stenfert 

Kroese et al. 2020b). In nutrient-limited freshwater systems, an excess of nutrients can 

cause eutrophication (Smith & Schindler 2009; Smith et al. 2017; Jarvie et al. 2019), 

inducing algal blooms and promoting invasive weeds (e.g. water hyacinth) (Lung’ayia et al. 

2001). When C enters the watercourse, it can be mineralised and emitted as a greenhouse 
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gas (Marx et al. 2017b, a). Nutrient-enriched sediments can turn stream waters from sink to 

source of nutrients through sorption and desorption processes and increased chemical and 

biological activity (Mainstone & Parr 2002; Palmer-Felgate et al. 2009; Kreiling et al. 2019). 

Several studies investigating the effects of land use change and agricultural intensification 

on the water quality of river systems have focused on dissolved C and nutrients such as N 

and P (Drewry et al. 2009; Smith et al. 2017; Bowes et al. 2018). Others have shown that up 

to 95% of the nutrient loads and up to 40% of the C loads in streams are transported in 

particulate form, associated to suspended sediments (Scanlon et al. 2004; Moran et al. 

2005; Rodríguez-Blanco et al. 2015). Sediment-associated nutrients are spatially variable 

(Withers et al. 2001; Harrington & Harrington 2014) and their concentrations increase during 

storm events with the rising limb of the hydrograph (Drewry et al. 2009; López-Tarazón et al. 

2016). Walling et al. (1997) and Bender et al. (2018) observed that P loads mainly occur in 

particulate form, while N is mainly transported in dissolved form (Wang et al. 2015). Others 

have found that the major inputs to rivers occur as dissolved P and N loads (Harrington & 

Harrington 2014). Currently, there are no studies for East Africa investigating 

sediment-associated C, N and P exports from different land uses. This is an important gap in 

the knowledge because the East Africa region has a very dynamic land use system, with 

intensive conversion of natural ecosystems (forests, wetlands and grasslands) to 

subsistence and commercial agriculture (Carter et al. 2018). 

This study aims to fill this knowledge gap by developing an improved understanding of the 

response of suspended sediments and C and nutrient fluxes associated with sediments 

under contrasting land use at catchment scale in the headwaters of the Sondu River Basin 

originating in the Mau Forest Complex, Kenya. Earlier work in the area found increased 

suspended sediment yields and dissolved nitrate exports in agricultural compared to forested 

land use types (Jacobs et al. 2018b; Stenfert Kroese et al. 2020b) and identified agricultural 

land as the main source of sediments within a smallholder agriculture catchment (Stenfert 

Kroese et al. 2020a). Therefore, the hypothesis was set out that the sediment-associated C 

and nutrient fluxes would be higher from the more intensively managed agricultural 

catchments than from a natural forest catchment.  

6.2 Materials and methods 

6.2.1 Catchment characteristics 

This study was conducted in nested catchments in the montane headwaters of the Sondu 

River Basin (3,470 km2) located in the South-West Mau, Western Kenya, home to one of the 

largest closed-canopy montane forest of East Africa (the Mau Forest Complex), and where 
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the inherent fertility of the soils allowed the development of a tea industry in parallel to 

subsistence agriculture (Binge 1962). Over the last four decades, the western highlands of 

Kenya have undergone significant land use changes, whereby 25% of the Mau Forest 

Complex was converted to commercial and smallholder agriculture (Brandt et al. 2018). As 

an important headwater area to tributaries of Lake Victoria, the Mau Forest Complex is a 

critical catchment area that supplies people (approximately 5 million), livestock, wildlife and 

the economy with fresh water (UNEP 2008). Lake Victoria, an important freshwater lake for 

five countries, has shown increased signs of eutrophication over recent years (Zhou et al. 

2014), stressing the need for mitigation and control of nutrient inputs. 

The study catchments are characterized by distinct land uses: (1) natural forest (NF; 

35.9 km2), (2) tea-tree plantations (TTP; 33.3 km2) and (3) smallholder agriculture (SHA; 

27.2 km2) (Figure 22 & Figure 23). The mean slope gradient of the catchments ranges 

between 11.6 and 15.7%, up to a maximum of 72% in the natural forest catchment. The 

streams are first- and second-order perennial streams merging to Sondu River (a sixth-order 

stream). The region has a bimodal rainfall pattern with a long rainy season (March-June) and 

a short rainy season (October-December) with a continued intermediate rainy season 

between the two wet seasons (July-September). The driest months are in January and 

February. The mean annual rainfall is 1,979 ± 325 mm yr-1 (period 1905-2019). Geology is 

composed of folded volcanics from the early Miocene. Kericho Phonolites cover the lower 

catchment (tea-tree plantations), followed by phonolitic nephelinites with intercalated tuffs 

and Mau ashes with basal tuff encompassing the natural forest, while phonolitic nephelinites 

comprises the upper catchment in the smallholder agriculture (Binge 1949; Jennings 1962). 

The catchments are covered by deep (>1.8 m) and well-drained, dark-red loamy soils 

(Sombroek et al. 1982), characterized as mollic Andosols and humic Nitisols (ISRIC 2004) 

with moderate to high amounts of organic matter (Dunne 1979). 
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Figure 22 a) Tea-tree plantation (TTP) and natural forest (NF) and b) smallholder agriculture (SHA) catchments 
with imagery basemap (Esri 2020) as nested catchments of the c) Sondu River Basin with elevation (SRTM 
digital elevation model 30 m resolution) (USGS 2000) in the South-West Mau, Kenya. 

The natural forest catchment falls within the South-West Mau Forest part of the Mau Forest 

Complex. As an afromontane mixed forest, species such as Polyscias kikuyuensis, 

Macarangea kilimandscharica, Olea hochstetteri, Casearia battiscombei and Fagara spp. 

dominate the vegetation, transitioning to irregular patches of bamboo forest above 

2,300 m a.s.l. (Binge 1962). The riparian zone transits from the forest vegetation containing 

an understorey with a dense cover of shrubs and tree ferns combined with tall indigenous 

tree species (Table 10).  

The tea-tree plantation catchment borders the South-West Mau to the west. The catchment 

is characterised by tea (Camellia spp.) plantations alternated with Eucalyptus saligna and 

Cupressus lusitanica woodlots used for fuelwood for tea processing at the tea factories and 

timber production. The common practices to control soil erosion are mulching and 

interplanting rows of oat grass between rows of tea during the establishment of new tea 

fields, cover crop establishment with mature tea trees, and terracing and sited cut-off drains. 

A well maintained road system along with open culverts as road drainages connects surface 

runoff with the riparian buffer zone. Herbicides are commonly used to control weeds. Aerial 

application of inorganic fertilizer is conducted two to three times per year on the tea 

plantations (150-250 kg N ha-1 yr-1 and 8-13 kg P ha-1 yr-1) (Jacobs et al. 2018b). Riparian 

https://uses.plantnet-project.org/en/Casearia_battiscombei
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zones of up to 30 m from the river are commonly vegetated by native tree species densely 

covering the ground (Table 10). 

In the upper smallholder agriculture catchment, subsistence farmers grow maize 

interspersed with beans, potatoes, millet, cabbage and tea (Camellia spp.) on farms usually 

smaller than one hectare. Grasslands for livestock and woodlots of Eucalyptus saligna, 

Cupressus lusitanica and Pinus patula are alternated with agricultural land. A combination of 

hoeing and herbicide application is used for weed control. Inorganic fertilizer is applied 

manually on potatoes and maize (23-45 kg N ha-1 yr-1 and 12-23 kg P ha-1 yr-1 twice a year 

on potatoes and once a year on maize), while manure is commonly used for cabbage and 

other greens. Unpaved roads, frequently used by people, livestock and motorbikes, often 

develop into deeply incised gullies running down slope, coupling hillslopes with the stream 

network. Degraded river banks with a sparse or absent riparian vegetation are prone to 

erosion, and in some places degraded riparian wetlands are found (Table 10). 

Table 10 Catchment characteristics under different land use natural forest, tea-tree plantations and smallholder 
agriculture in the South-West Mau, Kenya. 

 Natural forest Tea-tree plantations Smallholder agriculture 

Outlet coordinates
a
 35°18'32.0472''E 

0°27'47.592''S 

35°13'17.22''E 

0°28'34.9176''S 

35°28'31.7316''E 

0°24'4.0248''S 

Area (km
2
) 35.9 33.3 27.2 

Elevation range (m a.s.l.) 1,968-2,385 1,788-2,141 2,389-2,691 

Mean slope ± SD (%) 15.7±8.4 12.4±7.6 11.6±6.7 

Basin order (Strahler) 1, 2 1, 2 1, 2 

Drainage density (km km
-2

) 0.48 0.42 0.64 

Sediment 

particle size 

Clay % 

Sand % 

81 

19 

76 

24 

87 

13 

Geology Phonolites Phonolitic nephelinites Phonolitic nephelinites 

and Mau ashes with basal 

tuff 

Dominant soils
b
 Humic Nitisols Humic Nitisols Mollic Andosols & humic 

Nitisols 

Vegetation Afromontane mixed 

forest with broad-

leafed evergreen trees 

and shrubs, grassland, 

bamboo 

Perennial tea plantations, 

Eucalyptus saligna and 

Cupressus lusitanica 

woodlots 

Perennial & annual crops 

(maize, beans, potatoes, 

millet, cabbage and 

onions, tea), woodlots, 

grassland 

Riparian vegetation Forest vegetation >30 m buffer with 

indigenous vegetation 

Degraded riparian 

vegetation and wetlands, 

Eucalyptus woodlots 
a 
WGS 1984 UTM Zone 36S 

b
 KENSOTER Geology data from the Soil and Terrain database for Kenya (KENSOTER) version 2.0 

6.2.2 Continuous field monitoring 

The outlet of each catchment is equipped with an automatic gauging station to measure 

continuously (10 minute interval) water level (m) with a radar sensor (VEGAPULS WL61, 

VEGA Grieshaber KG, Schiltach, Germany) and turbidity (formazin turbidity unit=FTU) using 
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a UV/Vis spectroscopy sensor (spectro::lyser, s::can Messtechnik GmbH, Vienna, Austria) 

(Figure 22). Stream discharge (m3 s-1) was obtained by using a site-specific second-order 

polynomial water level to discharge rating curve (Jacobs et al. 2018b). Specific discharge 

[mm day-1] was determined by integrating instantaneous discharge taken at 10 minute 

intervals over a day and relating it to the catchment area. In situ turbidity measurements 

were used to estimate suspended sediment concentrations (mg L-1), based on a rating curve 

between turbidity and suspended sediment concentrations established by Stenfert Kroese et 

al. (2020b). After obtaining continuous discharge and suspended sediment concentration 

values, suspended sediment load was determined by multiplying suspended sediment 

concentration and discharge for each 10 minute interval. Suspended sediment yield was 

calculated by integrating sediment load over time and relating it to the catchment area. 

Precipitation was measured using eight automatic tipping bucket rain gauges calibrated to 

measure cumulative rainfall every 10 minutes with a 0.2 mm resolution (5 tipping bucket rain 

gauges: Theodor Friedrichs, Schenefeld, Germany, and 3 weather stations: ECRN-100 high 

resolution rain gauge) (Figure 22). Thiessen polygons weighted the contribution of rainfall of 

every tipping bucket to each catchment. A more detailed description of sampling sites and 

instrumentation can be found in Jacobs et al. (2018). This study uses hydrological and 

sedimentological data between January 2018 and December 2019. 

6.3 Data quality assurance 

For quality assurance the turbidity, discharge and rainfall datasets were checked for 

anomalities. Recorded values were flagged with Not-a-Number (NaN) during malfunctioning 

such as (i) sensor above water level, (ii) siltation of turbidity sensors, (iii) biofilm or debris on 

the measurement window due to malfunctioning of automatic cleaning with compressed air, 

(iv) measurement gaps due to incidents of power supply failure or (v) restricted counting of 

number of tips by the rain gauges by blocked funnel or spiderwebs.  

Once anomalous values were replaced by NaN, local outliers were detected by the median 

absolute deviation (MAD) for discharge and suspended sediment: 
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𝑀𝐴𝐷𝑖 = 𝑏 𝑀𝑖2(|𝑥𝑖 − 𝑀𝑖1(𝑥𝑖)|)      ( 9 ) 

where 𝑥𝑖 is the whole dataset, 𝑀𝑖1  is the median of the dataset and  𝑀𝑖2 is the median of the 

absolute deviation from the dataset from its median. The standard deviation is estimated by 

the constant b set to 1.4826 for normal distribution (Leys et al. 2013). A moving window of 

k=16 measurements around observation 𝑥𝑖  at time 𝑡𝑖  was used to detect local outliers with 

𝑥𝑗 =  (𝑥𝑖−𝑘/2 … 𝑥𝑖−1, 𝑥𝑖+1 … 𝑥𝑖+𝑘/2): 

𝑥𝑖−𝑀𝑗,𝑖

𝑀𝐴𝐷𝑗,𝑖
> 𝑎    ( 10 ) 

where a=6 is the threshold for outlier selection, 𝑀𝑗,𝑖 is the median and the 𝑀𝐴𝐷𝑗,𝑖 is the MAD 

for 𝑥𝑗. There are gaps for discharge and suspended sediment data for the smallholder 

agriculture catchment in September until October 2019 due to theft of the power supply. 

Missing sediment data was integrated using a linear interpolation. 

6.3.1 Suspended sediment sampling 

Suspended sediment was sampled during the long rainy seasons in 2018 and during the 

drier period of the start of the long rainy season in 2019 (May-September 2018 and 

April-May 2019). The sediment sampling covered 20 and 12 sampling days in the natural 

forest, 22 and 13 days in the tea-tree plantation and 13 and 16 sampling days in the 

smallholder agriculture catchment in 2018 and in 2019, respectively. Three different methods 

were deployed for suspended sediment sampling: time-integrated sampling with sediment 

traps (n=88) following the method by Phillips et al. (2000) (Figure 23d), manual (n=6) and 

automatic (n=7) (3700 Full-size portable sampler, Teledyne ISCO, Lincoln, USA) storm 

event-based bulk sampling (Table 11). The manual event-based sampling was conducted 

next to the installed time-integrated samplers at each catchments outlet (Figure 22). 

Time-integrated samplers were emptied of accumulated suspended sediment after three to 

five days. The storm event-based samples were retrieved during a storm manually with bulk 

river water samples (~10 L). The auto-sampling was only conducted at the outlet of the 

smallholder agriculture catchment, whereby samples were collected during the rising and 

falling stages of a storm event at 30 minute interval and composed to a bulk sample. 

Sediment in suspension from all three sampling methods was extracted through settling and 

sedimentation followed by air-drying in aluminium trays.  
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Table 11 Total number of samples of time-integrated, manual and automatic storm event-based sediment 
sampling of the natural forest, tea-tree plantations and smallholder agriculture catchments in 2018 and 2019. 

Catchment Year Number of 
time-integrated 
sediment samples 

Number of manual 
storm event-based 
bulk samples 

Number of automatic 
storm event-based 
bulk samples 

Natural forest 2018 20 - - 

2019 12 2 - 
Tea-tree plantations 2018 22 - - 

2019 11 3 - 
Smallholder 
agriculture 

2018 13 - - 
2019 10 1 7 

 
Figure 23 a) Tea-tree plantation catchment, b) outlet of the natural forest and c) outlet of the smallholder 
agriculture catchment and d) time-integrated sediment trap. 

6.3.2 Processing and qualitative analysis of suspended sediment  

An aliquot of each sediment sample (>230 mg) was ground using a ball mill grinder for 

further laboratory analysis. The ground samples were analysed for total carbon (TC), total 

nitrogen (TN) and total phosphorus (TP) concentrations. In this context, TC, TN and TP refer 

to the total C, N and P concentration in suspended sediments, which corresponds to 

particulate C, N and P (expressed in g kg-1). For TC and TN concentration measurements, a 

sub-sample of 30 mg of ground sediment was wrapped in tin capsules and combusted in an 

elemental micro-analyser (Elementar vario EL III, Elementar Analysensysteme GmbH, 

Langenselbold, Germany) at 950°C. For TP concentration measurements, a sub-sample of 
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200 mg of ground sediment was digested in 4.4 mL of sulphuric acid-hydrogen peroxide 

digest reagent and heated to 400°C for two hours (Allen et al. 1974). After diluting the 

digestate twice, TP was determined using colorimetry based on a reaction with acidic 

molybdate in the presence of antimony which forms an antimony-phosphomolybdate 

complex. Ascorbic acid turns the complex in an intensely blue (phosphomolybdenum blue) 

which is measured spectrophotometrically at 880 nm in a segmented flow analyser 

(Auto-analyser 3HQ, SEAL Analytical Ltd., Hampshire, United Kingdom). The remaining 

sediment samples were analysed for organic matter using gravimetric weight change by loss 

on ignition at 500°C for 4 hours in a muffle furnace.  

To estimate nutrients and C concentrations in stream water (mg L-1), the mean suspended 

sediment concentrations (mg L-1) for each sampling period were multiplied with the 

particulate nutrients and C concentrations (g kg-1) per dry weight sediments. For TC, TN and 

TP load calculations, the mean discharge and suspended sediment concentration was 

obtained for each sediment sampling period. The concentrations of TC, TN and TP (g kg-1) 

were multiplied to the mean discharge (m3 s-1) and mean suspended sediment 

concentrations (mg L-1) to obtain the sediment-associated loads (t day-1). Annual suspended 

sediment-associated TC, TN and TP yields were calculated by integrating the mean of the 

daily loads to annual loads and relating it to the catchment area.  

6.3.3 Data analysis 

All data were analysed for normality using the Shapiro-Wilk test. Significant differences were 

tested on particulate TC, TN and TP values among the different land uses between the two 

years using the Kruskal-Wallis test for analyses of variances. The effect of land use on 

particulate TC, TN and TP concentrations within each year were tested for significance using 

the pairwise Wilcoxon rank sum test. To test the linear relationship between two 

macroelements, the correlation coefficient r was identified between each two of the 

macroelements. All significant differences reported are at p<0.05. 

6.4 Results 

6.4.1 Hydrological and suspended sediment responses 

Mean annual rainfall for the study period (2018-2019) was 1,989, 2,006, and 1,671 mm yr-1 

for the natural forest, tea-tree plantation and smallholder agriculture catchments, 

respectively. In the natural forest and the tea-tree plantations, 2019 was wetter than 2018, 

while the smallholder agriculture catchment was drier in 2019. Mean annual specific 

discharge was highest in the natural forest catchment followed by the tea-tree plantation and 

the smallholder agriculture catchments with 806 (778-834) mm yr-1, 678 (642-714) mm yr-1 
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and 658 (634-682) mm yr-1. The catchment runoff coefficient was highest for the natural 

forest catchment (0.41) and smaller for the tea-tree plantations and the smallholder 

agriculture with a mean of 0.34 and 0.39, respectively. The mean annual suspended 

sediment yield for the two years was highest in the smallholder agriculture with 

231 (215-248) t km-2yr-1 followed by the natural forest with 57 (54-62) t km-2yr-1 and the 

tea-tree plantation catchments with 48 (44-52) t km-2yr-1 (Table 12). 

Table 12 Hydrological characteristics and total suspended sediment (TSS) (and 95% confidence interval) of the 
three catchments under different land use natural forest (NF), tea-tree plantations (TTP) and smallholder 
agriculture (SHA) in the South-West Mau, Kenya of 2018 and 2019. 

Site 

Year Annual 

rainfall 

[mm yr
-1

] 

Annual specific 

discharge  

[mm yr
-1

] 

Runoff 

coefficient
a 

TSS load 

 

[t yr
-1

] 

TSS yield  

 

[t km
-2

 yr
-1

] 

NF 2018 1,881 814 (783-845) 0.43 (0.42-0.45) 1,343 (1,230-1,461) 37 (34-41) 

 
2019 2,098 798 (772-823) 0.38 (0.37-0.39) 2,730 (1,925-2,234) 76 (73-84) 

 
Mean 1,989 806 (778-834) 0.41 (0.39-0.42) 2,037 (1,925-2,234) 57 (54-62) 

TTP 2018
b
 1,922 677 (637-717) 0.35 (0.33-0.37) 1,067 (972-1,167) 32 (29-35) 

 
2019 2,089 679 (647-711) 0.32 (0.31-0.34) 2,105 (1,933-2,284) 63 (58-69) 

 
Mean 2,006 678 (642-714) 0.34 (0.32-0.36) 1,586 (1,453-1,725) 48 (44-52) 

SHA 2018 1,870 942 (909-974) 0.50 (0.49-0.52) 5,244 (4,872-5,629) 193 (179-207) 

 
2019

c
 1,473 375 (359-390) 0.25 (0.24-0.27) 7,336 (6,835-7,854) 270 (251-289) 

 
Mean 1,671 658 (634-682) 0.39 (0.38-0.41) 6,290 (5,853-6,741) 231 (215-248) 

a
Specific discharge as proportion of annual rainfall 

b
Gaps in discharge and suspended sediment data due to sensor malfunctioning 

c
Gaps in discharge and suspended sediment data due to theft of power supply 

In all three catchments, discharge followed the rainfall pattern. The rising limb of the 

hydrograph was generally steep, followed by either steep or gentle falling limbs, depending 

on the magnitude of the storm event. Discharge peaked during the long rainy season 

between April and July in 2018. In contrast, 2019 experienced a delayed onset of the rains 

and the highest discharge peaks occurred between October and December. Suspended 

sediment peaks followed the same pattern as discharge (Figure 24). 
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Figure 24 Daily accumulated rainfall (R) [mm day

-1
], specific discharge (Q) [mm day

-1
] and suspended sediment 

yield (SSY) [t km
-2

 day
-1

] aggregated from 10 minute resolution with 95% confidence interval (CI) of the a) natural 
forest, b) smallholder agriculture and c) tea-tree plantation catchments in the South-West Mau, Kenya between 
January 2018 and December 2019. 

6.4.2 Macronutrient concentrations on sediment and in the stream 

Suspended sediment sampling for the particulate TC, TN and TP analysis was conducted 

during the high flows in 2018 (May-September), while in 2019 the sampling coincided with 

the start of the long rainy season during April and May (Figure 24). The TC concentrations 

were 7% lower in the natural forest catchment and 15% higher in the smallholder agriculture 

in 2019 than in the previous year. The TN concentrations were 8-20% higher in 2019 than in 
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2018 for all three catchments. In the natural forest and the tea-tree plantation catchments, 

the TP concentrations were 25% and 17% higher, respectively, and 38% lower in the 

smallholder agriculture catchment in 2019 than in 2018 (Figure 25). 

 
Figure 25 Particulate total carbon, nitrogen and phosphorus concentrations [g kg sediment

-1
] of time-integrated, 

manual and automatic collected samples of the natural forest (NF), tea-tree plantation (TTP) and smallholder 
agriculture (SHA) catchments in the South-West Mau, Kenya in 2018 and 2019. Different letters indicate 
significant differences between land uses (p<0.05). 

Particulate TC, TN and TP concentrations were significantly higher in the natural forest 

catchment than in the tea-tree plantation and smallholder agriculture catchments in both 

years. The TC concentrations were significantly higher in the tea-tree plantations than in the 

smallholder agriculture in 2018, while there was no difference in 2019. TN and TP 

concentrations were significantly higher in the tea-tree plantation than in the smallholder 

agriculture catchment in 2019, but concentrations were not significantly different between the 

tea-tree plantations and the smallholder agriculture in 2018 (Table 13). 
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Table 13 Mean ± standard deviation of particulate TC, TN and TP concentrations [g kg sediment
-1

] of 
time-integrated, manual and automatically collected samples, suspended sediment concentrations (TSS) [mg L

-1
] 

and TC, TN [mg L
-1

] and TP [µg L
-1

] concentrations in water at the outlet of the natural forest (NF), tea-tree 

plantations (TTP) and the smallholder agriculture (SHA) in the South-West Mau, Kenya based on 13-22 sampling 
days for the sampling campaign from May-October 2018 and 14-18 sampling days for the period April-June 2019. 

  Concentrations in sediment Concentrations in stream water 

Site 
Year TC 

[g kg
-1

] 

TN 

[g kg
-1

] 

TP 

[g kg
-1

]
 

TSS 

[mg L
-1

] 

TC 

[mg L
-1

] 

TN 

[mg L
-1

] 

TP 

[µg L
-1

] 

NF 2018
a
 151.0±20.5 11.2±1.3 0.6±0.2 43.6±10.9 6.6±1.8 0.5±0.1 28.5±13.9 

 
2019

b
 141.4±14.6 12.2±1.3 0.9±0.2 43.4±22.0 6.0±2.6 0.5±0.2 36.2±20.5 

 
Mean 146.2±17.6 11.7±1.3 0.7±0.2 43.5±16.4 6.3±2.2 0.5±0.2 32.4±17.2 

TTP 2018
a
 69.2±16.9 6.1±1.8 0.4±0.1 50.8±48.1 3.6±4.3 0.3±0.3 21.9±23.8 

 
2019

b
 69.5±17.3 7.3±1.5 0.5±0.1 104.7±127.3 6.3±6.9 0.7±0.7 43.4±36.9 

 
Mean 69.4±17.1 6.7±1.6 0.5±0.1 77.8±87.7 5.0±5.6 0.5±0.5 32.7±30.4 

SHA 2018
a
 48.1±4.9 4.5±0.8 0.4±0.1 188.0±151.7 8.7±6.4 0.8±0.6 70.6±52.0 

 
2019

b
 56.9±7.7 5.6±0.6 0.3±0.1 231.4±441.0 11.9±22.9 1.2±2.5 63.1±123.1 

 
Mean 52.5±6.3 5.0±0.7 0.3±0.1 209.7±296.4 10.3±14.7 1.0±1.5 66.8±87.6 

a
wet period May-October 2018 

b
drier period April-June 2019 

The mean TC, TN and TP concentrations in the stream water for both years, estimated 

based on the particulate macronutrient concentrations and suspended sediment 

concentrations, were highest for the smallholder agriculture and lowest for the natural forest 

catchment and tea-tree plantations (Table 13). 

The natural forest catchment had the highest percentage of organic matter in suspended 

sediments with 31%, followed by the tea-tree plantations with 24% and the lowest 

percentage was measured in the smallholder agriculture catchment with 16% (Table 10). 

6.4.3 Stoichiometric macronutrient ratios and their relationships 

The C:N ratio in the sediment from natural forest (12.6±1.0) was significantly higher (p<0.05) 

than those of the tea-tree plantations (10.5±1.2) and the smallholder agriculture (10.6±1.3) 

for both years, while the C:N ratio was not significantly different between the tea-tree 

plantations and the smallholder agriculture (p>0.05). The C:P ratio in the natural forest 

(269.8±106.4) was significantly higher than the tea-tree plantations (160.5±39.2) and the 

smallholder agriculture (126.7±22.6) in 2018, but the C:P ratio was not significantly different 

between the three catchments in 2019. The N:P ratio was significantly higher in the natural 

forest (19.9±6.9) than the smallholder agriculture (11.8±3.0) in 2018, while 2019 showed no 

significant difference between the three catchments (p>0.05). The C:N ratio was significantly 

higher in 2018 than in 2019 in the natural forest and the tea-tree plantations, while the C:P 

and N:P ratio was significantly higher in 2019 than 2018 in the smallholder agriculture 

(Figure 26). The sediment-associated C:N:P ratio was highest in the natural forest 
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catchment with 225 C: 17N: 1P, followed by the smallholder agriculture with 172 C: 16N: 1P 

and the tea-tree plantations with 148 C:14 N: 1P, whereas the N:P ratio was similar for all 

three catchments. 

 
Figure 26 Macronutrient ratios for carbon-nitrogen (C:N), carbon-phosphorus (C:P) and nitrogen-phosphorus 
(N:P) of the natural forest (NF), tea-tree plantation (TTP) and smallholder agriculture (SHA) catchments in the 
South-West Mau, Kenya. Different letters indicate significant differences between catchments and the asterisk 
indicates significant differences within one catchment between years (p<0.05). 

TC, TN and TP concentrations were correlated against each other for all three catchments 

(Figure 27). The strongest relationship was observed between TC and TN within the tea-tree 

plantations (r=0.87), followed by the smallholder agriculture (r=0.71) and the natural forest 

catchment (r=0.64). The correlation between TN and TP was strongest in the tea-tree 

plantations (r=0.58). No significant relationships were found between TC and TP in the 

natural forest and in the smallholder agriculture catchment with low correlation coefficient 

values ranging between -0.15 and 0.04, and between the correlation of TN and TP in the 

smallholder agriculture (r=-0.21) (p>0.05). The correlations of the natural forest catchment 

were in general higher than those of the tea-tree plantations and the smallholder agriculture 

(Figure 27). 
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Figure 27 Correlations with correlation coefficient r obtained between total carbon, nitrogen and phosphorus 
[g kg sediment

-1
] concentrations of the natural forest (NF), the tea-tree plantation catchments (TTP) and the 

smallholder agriculture (SHA) in the South-West Mau, Kenya in 2018 and 2019. Significant difference at p<0.05. 

6.4.4 Sediment-associated macronutrient loads 

The mean daily suspended sediment loads for the sampling period were highest in the 

smallholder agriculture, followed by the natural forest and lowest in the tea-tree plantations 

(14.6±15.0 t day-1, 4.9±2.5 t day-1 and 3.4±3.9 t day-1, respectively). The mean daily TC and 

TN load in suspended sediment during the sampling periods in 2018 and 2019 was highest 

for the smallholder agriculture (668.9±661.9 kg day-1 and 60.5±59.5 kg day-1), followed by 

the natural forest (496.9±335.3 kg day-1 and 37.2±20.9 kg day-1) and the tea-tree plantation 

catchment (193.4±178.6 kg day-1 and 18.1±18.5 kg day-1). For the sediment-associated TP, 

the highest daily loads were observed in the smallholder agriculture followed by the natural 

forest and the tea-tree plantations (5.5±5.1 kg day-1, 1.9±1.3 kg day-1, and 1.4±1.3 kg day-1, 

respectively). The mean annual sediment-associated TC, TN and TP yields of the sampling 

period is estimated to be highest for the smallholder agriculture (9.0±8.9 t TC km-2 yr-1, 

0.8±0.8 t TN km-2 yr-1 and 73.9±68.9 kg TP km-2 yr-1), followed by the natural forest and 

lowest for the tea-tree plantations (2.1±2.0 t TC km-2 yr-1, 0.2±0.2 t TN km-2 yr-1 and 

14.9±13.6 kg TP km-2 yr-1) (Table 14). 
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Table 14 Overview of total suspended sediment-associated (TSS) total carbon (TC), total nitrogen (TN) 
[t km

-2
 yr

-1
] and total phosphorus (TP) yields [kg km

-2
 yr

-1
] and total suspended sediment yields [t km

-2
 yr

-1
] based 

on 13-22 sampling days for the sampling campaign from May-October 2018 and 14-18 sampling days for the 

period April-June 2019. 

Site 
Year TSS TC yield 

[t km
-2

 yr
-1

] 

TSS TN yield 

[t km
-2

 yr
-1

] 

TSS TP yield 

[kg km
-2

 yr
-1

]
 

TSS yield 

[t km
-2

 yr
-1

] 

NF 2018 wet period 9.0±5.6 0.7±0.4 32.1±17.4 59.3±41.1 

 
2019 drier period 1.2±1.2 0.1±0.1 7.0±8.6 8.5±9.3 

 
Mean 5.1±3.4 0.4±0.2 19.6±13.0 50.2±25.2 

TTP 2018 wet period 3.0±2.6 0.3±0.2 20.5±15.5 51.3±44.4 

 
2019 drier period 1.2±1.3 0.1±0.2 9.3±11.7 24.0±41.9 

 
Mean 2.1±2.0 0.2±0.2 14.9±13.6 37.7±43.2 

SHA 2018 wet period 17.5±16.9 1.6±1.5 145.6±133.2 383.7±385.6 

 
2019 drier period 0.4±0.8 0.05±0.1 2.3±4.5 8.2±15.9 

 
Mean 9.0±8.9 0.8±0.8 73.9±68.9 196.0±200.8 

 

6.5 Discussion 

6.5.1 Land use affects sediment-associated carbon and nutrient 

concentrations 

This study shows that land use is a key control of suspended sediment-associated TC, TN 

and TP concentrations in the headwaters of the Sondu River Basin. Most significantly, the 

natural forest catchment has much higher particulate TC, TN and TP concentrations in 

contrast to the agricultural catchments. These results refute the hypothesis that 

particulate-bound TC, TN and TP concentrations per dry weight sediment are highest in 

agricultural catchments with the majority of suspended sediment (77%) originating from 

agricultural land (Stenfert Kroese et al. 2020a).  

The TC concentrations of the natural forest catchment were more than twice the 

concentrations recorded in the Congo basin under disturbed and undisturbed forest cover 

(14-95%) (Coynel et al. 2005) and of disturbed agricultural catchments in temperate regions 

(Walling et al. 2001; López-Tarazón et al. 2016), while the smallholder agricultural and 

tea-tree plantation catchments of this study fell within the range of the concentrations 

reported (Table 15). Other catchments of disturbed river basins under mixed land use (Tana 

River basin, Kenya and Ayeyarwady and Thanlwin River, Myanmar) had lower TC 

concentrations (Bird et al. 2008; Tamooh et al. 2012) than the concentrations of all three 

catchments of this study.  

The TN concentrations of the natural forest catchment were in the same range as those of 

sub-catchments under mixed land use of the Yangtze River, Jialing River and Wujian River, 

China, during the wet season, but exceeded the concentrations of intensified agricultural 
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catchments in the USA, New Zealand and Spain by up to 12-fold (McDaniel et al. 2009; 

McDowell 2015; López-Tarazón et al. 2016). The TN concentrations of the agricultural 

catchments of this study were within the ranges of concentrations in intensified temperate 

agricultural catchments (Walling et al. 2001; Pavanelli & Selli 2013) (Table 15).  

The particulate TP concentrations of the natural forest, tea-tree plantations and smallholder 

agriculture catchments were lower compared to P-saturated agricultural catchments of 

temperate regions (Neal et al. 2006; Ramos et al. 2015; Sandström et al. 2020) or of 

sub-catchments in China during the wet season (Wang et al. 2015) (Table 15). A tobacco 

cultivated catchment in sub-tropical Brazil, with a TP range of 0.09-3.58 g P kg-1, with a 

similar mean annual rainfall of 1,938 mm yr-1 (Bender et al. 2018) exceeded the 

concentrations of this study, most likely due to the high fertilizer application rates.  

In contrast to this study with depleted nutrients in agricultural catchments, agricultural land 

use and catchment disturbance were directly correlated with increased nutrient 

concentrations in sediment, where usually lower TP concentrations were observed in 

forested (Haggard et al. 2007) and less agriculturally intensive catchments in the UK 

(Palmer-Felgate et al. 2009). The present results also differ from a study in the Fox River 

Watershed, USA, where the historical accumulation of legacy P in sediments led to no 

relationship between TP concentrations and land use or management activities (Kreiling et 

al. 2019).  

Enriched TC, TN and TP concentrations were found in suspended sediment with a higher 

percentage of the coarser fraction (60 µm-2 mm) from the natural forest catchment (Table 

10), while the smallholder agriculture catchment with the finer suspended sediment showed 

lower TC, TN and TP concentrations. This is in contrast to the study by Walling et al. (2001), 

where the catchment with the finest material had higher nutrient concentrations. This 

enrichment of fine particle fraction has also been observed in other studies (Uusitalo et al. 

2001; Kreiling et al. 2019; Sandström et al. 2020). The Severn catchment (in England and 

Wales) dominated by arable cultivation had unexpectedly low nutrient concentrations, 

compared to three other South-Western British rivers with a smaller coverage in arable land. 

The lower nutrient concentrations were explained by the higher amount of coarser material 

and an upland area characterized by soils with lower nutrient concentrations (Walling et al. 

2001). The high nutrient concentrations of the natural forest catchment of this study might be 

associated with the nutrient-rich soils and biologically fresh material contributing largely to 

the sediment despite the coarser material.  
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Despite the application of inorganic fertilizers on agricultural land within the tea-tree 

plantation and the smallholder agriculture catchments, the sediment-associated nutrient 

concentrations measured were one to three-fold lower than the natural forest catchment. 

The tea-tree plantation catchment receives higher fertilizer inputs compared to the 

smallholder agriculture catchment explaining the slightly higher nutrient concentrations in 

sediments.  
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Table 15 Overview of particulate total carbon (TC), total nitrogen (TN) and total phosphorus (TP) mean concentrations [g kg
-1

] of catchment studies around the world. Analysed 
sample material: SS = suspended sediment, BS = riverbed sediment and WS = water sample. DR Congo = Democratic Republic of Congo, TRPR = Tana River Primate 
Reserve. 

Catchment/ basin Country Area 
[km

2
] 

Land use Sample Study period 
[year]

b
 

Rainfall 
[mm] 

TC  
[g kg

-1
] 

TN  
[g kg

-1
] 

TP  
[g kg

-1
] 

Reference 

Tropical catchments 
Sondu basin Kenya 36 Forest SS 2018-2019 1,989 147.61 12.06 0.81 This study 
Sondu basin Kenya 33 Agriculture SS 2018-2019 2,006 83.72 8.00 0.54 This study 
Sondu basin Kenya 27 Agriculture SS 2018-2019 1,671 53.29 5.02 0.33 This study 
Kora (Tana River) Kenya 22,080 Mixed land use SS 2009-2011 450-900 25.32

c
 n.a. n.a. Tamooh et al. 

(2014) Garissa (Tana River) Kenya 32,500 Mixed land use SS 2009-2011 450-900 19.92
c
 n.a. n.a. 

TRPR (Tana River) Kenya 66,500 Mixed land use SS 2009-2011 450-900 17.29
c
 n.a. n.a. 

Oubangui (Congo basin) DR Congo 489,000 Forest (22%) SS 1990-1996 1,550 60.61 n.a. n.a. Coynel et al. 
(2005) Mpoko (Congo basin) DR Congo 23,900 Forest (14%) SS 1991-1994 1,550 41.67 n.a. n.a. 

Ngoko-Sangha (Congo 
basin) 

DR Congo 67,000 Forest (95%) SS 1991 1,550 61.17 n.a. n.a. 

Congo/Zaire (Congo 
basin) 

DR Congo 3,500,000 Forest (50%) SS 1990-1993 1,550 64.64 n.a. n.a. 

Arroio Lajeado Ferreira Brazil 1.2 Mixed land use WS 2011-2015 1,938 n.a. n.a. 1.22 Bender et al. 
(2018) 

Streams in New Zealand New 
Zealand 

<20,000 Agriculture BS 2012 (02-03) n.a. 2.10 0.21 0.42 McDowell 
(2015) 

Ayeyarwady and 
Thanlwin River 

Myanmar n.a. Mixed land use SS 2006 (05,08,09) ~3,000 14.65
c
 n.a. n.a. Bird et al. 

(2008) 

Temperate and Mediterranean catchments 
Duck Creek, Fox River, 
Wolf River 

USA <9,666 Mixed land use BS 2016-2017 748-800 n.a. n.a. 0.47
d
 Kreiling et al. 

(2019) 
Embarras basin, 
Vermilion basin 

USA <839 Agriculture BS 2004 1,270 n.a. 0.34
d
 0.36

d
 McDaniel et al. 

(2009) 
Wye, Welland, Avon UK 0.4-9.9 Agriculture (more 

intensive) 
BS 2005-2006 671-905 n.a. n.a. 1.56 Palmer-

Felgate et al. 
(2009) Wye, Avon UK 0.4-9.9 Agriculture (less 

intensive) 
BS 2005-2006 671-905 n.a. n.a. 0.63 

Severn, Avon, Eve, Dart UK <6,850 Agriculture SS 1995-1996 600-
2,300 

53.70
c
 4.47 1.49 Walling et al. 

(2001) 
Upper Thames River UK 3,500 Mixed land use WS 1997 (1-6 years) n.a. n.a. n.a. 2.16-

6.87 
Neal et al. 
(2006) 

Enxoé River Portugal 61 Agriculture SS 2010-2013 500 n.a. n.a. 4.30 Ramos et al. 
(2015) 

Ésera basin Spain 1,484 Mixed land use SS 2011-2012 1,069 60.81 0.80 n.a. López-Tarazón 
et al. (2016) 

Reno River Italy 389 Agriculture SS 2000-2009 950- n.a. 9.50 0.46 Pavanelli and 
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(flood events) 1,015 Selli (2013) 
South Sweden Sweden <33.1 Agriculture (54-59%) WS 2004-2017 539-623 n.a. n.a. 1.07 Sandström et 

al. (2020) <16.3 Agriculture (89-93%) WS 2004-2017 506-709 n.a. n.a. 1.78 
Yangtze River (sub-
catchment) 

China n.a. Mixed land use SS 2010 (05-10) n.a. n.a. 1.23 0.54 Wang et al. 
(2015)     2011 (11-04) n.a. n.a. 11.36 4.09 

Jialing River (sub-
catchment) 

China n.a. Mixed land use SS 2010 (05-10) n.a. n.a. 3.29 0.55 

    2011 (11-04) n.a. n.a. 22.50 5.00 

Wujian River (sub-
catchment) 

China n.a. Mixed land use SS 2010 (05-10) n.a. n.a. 4.09 0.86 

   2011 (11-04) n.a. n.a. 18.18 4.55 

n.a. = not available 
b
month of the year 

c
particle organic carbon 

d
concentrations presented in median 
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Even though particulate concentrations in sediments were the highest in the natural forest 

catchment, the sediment-associated loads and the concentrations of particulate TC, TN and 

TP in the stream water were highest in the smallholder agriculture due to the overall higher 

suspended sediment concentrations (Table 14). These higher loads and in-stream 

concentrations in the smallholder agriculture catchment agree with a study conducted in the 

same three catchments by Jacobs et al. (2018) revealing the highest dissolved nitrate loads 

in the agricultural compared to the forested streams.  

Our sediment-associated TC, TN and TP yield estimations may be underestimated due to 

the sampling of the drier start of the long rainy season in 2019. In addition, the short 

sampling period in both years might have resulted in a higher uncertainty range. For an 

improved understanding of the particulate TC, TN and TP fluxes, an increased sampling 

frequency during the long rains, would give additional temporal information.  

6.5.2 Suspended sediments from organic and mineral origin 

The low TC and nutrient concentrations in sediments from agricultural soils are associated 

with soils critically lower in nutrients and organic matter compared to nutrient-rich forest 

soils. The native forest vegetation was converted to smallholder farms during the last few 

decades (Brandt et al. 2018). This conversion leads to reduced organic inputs and increased 

decomposition rates of soil organic matter following physical and chemical management 

practices (Freibauer et al. 2004). Globally, an average decrease in soil TC of around 30% 

was found for soils after conversion of forests to croplands (Murty et al. 2002; Don et al. 

2011), while a study of a converted native forest in the highlands of Western Kenya showed 

a decrease by 30-40% within the first 39 years after conversion (Nyberg et al. 2012). 

Similarly, a decline in soil organic carbon and nutrients was observed following conversion to 

agricultural cultivation in the same catchments of the Mau Forest Complex (Were et al. 2016; 

Arias-Navarro et al. 2017b; Owuor et al. 2018; Wanyama et al. 2018). The highest TC and 

TN concentrations were measured in the surface soil (0-0.05 m) of the natural forest 

catchment (81.1±24.2 g kg-1 and 4.9±2.3 g kg-1, respectively), compared to lowest 

concentrations on croplands in the smallholder agriculture (56.9±11.1 g kg-1 and 

2.1±1.2 g kg-1, respectively) (Owuor et al. 2018). Chiti et al. (2018) found a significant decline 

in soil organic carbon as a consequence of forest degradation in the same tropical montane 

forest. In their study, the organic horizon, the litter layer, had the highest TC concentration 

under primary forest (412.3±23.2 g kg-1) compared to a degraded forest (408.2±21.3 g kg-1) 

and to cypress (398.6±19.6 g kg-1) and tea plantations (381.7±17.6 g kg-1) that replaced the 

forest. With the reduction in the organic horizon a decline in soil TC was found in the 

uppermost mineral soil layer (<0.05 m) (Chiti et al. 2018). This implies that suspended 
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sediment is of mineral origin in the agricultural catchments and of organic origin in the 

natural forest catchment, which is also reflected in the differences in organic matter and the 

C concentrations in suspended sediment (Table 10 and Table 13).  

The higher C:N:P ratios and the higher relationship between TC and TN in the natural forest 

catchment (Figure 27) further imply due to a tighter nutrient cycle, that TN is of organic 

origin, where a lower and similar relationship in both agricultural catchments suggests 

mineral sediment sources. Similarly, the study of Johnson et al. (2017) in a forested 

catchment in the Piedmont region, Maryland (USA) showed that sediment sources from 

forest floor litter had the highest TC and TN concentrations compared to near-stream 

sources such as stream bed and stream banks. The fresher material from the forest floor 

was likely the least degraded resulting in higher TC and nutrient concentrations (Johnson et 

al. 2018). Old native forest catchments maintain a tight nutrient cycle through higher surface 

biodiversity and biomass. They accumulate organic matter and nutrients by decomposition of 

fresh litter material and humus compared to managed land use types (Dawson & Smith 

2007). A strong relationship was observed between TC and TP for the tea-tree plantation 

catchment, which may indicate that the mineralization of soil organic matter contributes to 

the available TP concentration, as it was observed in the study of Maranguit et al. (2017). 

Particulate nutrients, in particular TP with a high affinity to amorphous Fe, can be stored at 

downstream reaches. However, deposited sediment can turn to a nutrient source in 

dissolved form. This process might inevitably increase the risk of eutrophication at 

downstream reaches. Therefore, soil stability through soil organic matter should be improved 

to reduce soil erosion and suspended sediments to constrain the loss of soil organic carbon 

and nutrients. Soil management practices should be focused on the retention of soil organic 

matter through boosting agricultural productivity, mulching or cover crops in the agricultural 

catchments to maintain soil fertility. Increased crop residues create a positive feedback loop 

for the accumulation of organic matter (Nyberg et al. 2012). Other management practices 

such as vegetative buffer strips, erosion ditches or fanya juu terracing can prevent soil 

erosion (Tiffen et al. 1994; Conelly & Chaiken 2000).  

6.5.3 Historical nutrient losses on agricultural soils – impoverished 

agricultural soils 

The low sediment-bound concentrations (TC, TN and TP) in the smallholder agriculture 

catchment reflect soils low in organic matter and nutrients due to intensive cropping without 

appropriate practices for restoration of the soil fertility. In addition to the decline in organic 

matter upon conversion, soils cultivated on steep hillslopes with poor soil conservation 
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strategies and excessive surface runoff are prone to erosion and further nutrient depletion 

(Stenfert Kroese et al. 2020b). This may have been intensified by the cultivation of a major 

nutrient miner, Pyrethrum daisy (Chrysanthemum cinerariifolium), following the clearance of 

the South-West Mau, which is known to promote surface soil erosion, due to poor soil cover 

(Smaling et al. 1993). Similar soil nutrient deficits have been observed in other densely 

populated tropical agricultural regions cultivated on steep hillslopes in Uganda (Lederer et al. 

2015), Tigray (Ethiopia) (Girmay et al. 2009) or Kisii District (Western Kenya) (Smaling et al. 

1993) through aggregated nutrient losses, caused in particular by surface erosion and 

insufficient compensation by fertilizer application. Scarcity of land leads to an 

overexploitation of soil nutrients on agricultural land due to the absence of fallow periods.  

6.5.4 Surface and subsurface sediment sources 

In addition to soils low in organic matter and nutrient losses through land use change and 

historical cultivation, the lowered concentrations of sediment C, N and P in the smallholder 

agriculture catchment may be explained by sediment originating from the subsurface. 

Sediment C and nutrient concentrations are often lower in the subsurface (Russell et al. 

2001; Gellis et al. 2009; Wanyama et al. 2018). The sediment fingerprinting study of Stenfert 

Kroese et al. (2020a) demonstrated that the subsoil sources are of increased importance in 

the smallholder agriculture compared to the natural forest and the tea-tree plantation 

catchment due to exposure of subsoil to erosion processes.  

6.6 Conclusions 

Catchments in the headwaters of the Sondu River Basin of the South-West Mau, Kenya, 

show that cultivated land uses have led to a pronounced decline in sediment-associated TC, 

TN and TP concentrations compared to native forest ecosystems. The high C:N ratio in the 

natural forest catchment reveals that most particulate TN is organic matter based. The native 

forest is rich in biomass, with a tighter nutrient cycle and likely high soil organic matter input. 

This is in contrast to the smaller nutrient stocks in the agricultural land, reflecting the 

impoverished agricultural soils due to its low organic matter content. The disturbance of soil 

through agricultural practices increases soil mineralization of soil organic matter, echoed in 

the lower organic matter content in suspended sediments. Despite the lower 

sediment-associated TC, TN and TP concentrations, the smallholder agriculture had the 

greatest particulate TC, TN and TP yields due to the higher export of suspended sediment 

yields passing the outlet. Elevated TC, TN and TP concentrations in sediments and in 

stream water contribute to nutrient pollution and eutrophication impacting the downstream 

reaches such as Lake Victoria. Management practices should focus on restoring soil organic 



Particulate macronutrient exports from tropical African montane catchments point to the 
impoverishment of agricultural soils 

 

102 
 

matter of agricultural topsoils to increase soil organic carbon, soil nutrients and improve 

agricultural productivity. Practices to manage soil organic matter should also control soil 

erosion and consequently reduce suspended sediment concentrations and the loss of 

nutrient-rich topsoil.  
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7 Discussion and conclusions 

Africa is projected as the continent with the highest soil erosion rates based on land use 

change modelling (Borrelli et al. 2017). The heterogeneous and fragmented landscapes of 

tropical montane headwaters in East Africa are susceptible to soil erosion due to cultivation 

on fragile hillslopes coinciding with rainfall of high erosivity. This discussion provides a 

summary of the key findings of this thesis with an evaluation of the limitations encountered 

during the course of the research and a perspective on implications for future research. A 

reflection is drawn on to the importance of the findings for rural farmers, challenges of the 

application of soil conservation measures and the future of agricultural productivity of soils 

experiencing severe erosion in East African highlands.  

7.1 Summary of key findings 

The individual chapters of this thesis contributed to filling the knowledge gaps on the impact 

of land use on suspended sediment and their particulate macronutrient dynamics and 

hydrological flow pathways in headwaters of the Sondu River Basin, in Kenya.  

Temporal and spatial variability of suspended sediment and hydrology 

This thesis explored the relationship between rainfall, runoff and suspended sediment 

transport dynamics and sediment yield, and the temporal dynamics of sediment supply 

(Chapter 4). The analysis uses a four-year high-frequency dataset of hydrology and 

suspended sediment obtained during the observation period between 2015 and 2018 to 

explore these complex relationships. One of the main findings is that the smallholder 

agricultural catchment generated six times more suspended sediment yield 

(131.5±90.6 t km-2 yr-1) than the forested catchment (21.5±11.1 t km-2 yr-1), which was more 

than three times the yield of the catchment under tea and tree cultivation 

(42.0±21.0 t km-2 yr-1). Putting these results into the wider context, the annual sediment yield 

was still at the lower end of the reported ranges for other sediment studies in Kenya 

(8.2-6,330 t km-2 yr-1) and other tropical montane catchments (140-2,470 t km-2 yr-1) 

(Vanmaercke et al. 2010; Guzman et al. 2013; Didoné et al. 2014). All three catchments 

showed pronounced seasonal variability, where the long rains (March-April) contributed 

about half of the sediment yield (45-52%). The dry season (January-February) contributed 

with only 5% to the sediment yield. Moreover, further evidence was presented on the extent 

to which hydrological flow pathways control suspended sediment variability. It was 

demonstrated that conversion of forests to agriculture leads to a shift in the dominant water 

pathways from deep subsurface to shallow subsurface flow and surface runoff. In agricultural 
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land, surface runoff dominates soil erosion processes and therefore, suspended sediment 

generation. Lastly, this chapter presents evidence for delayed sediment responses observed 

in the smallholder agriculture catchment, in contrast to fast responses in the forested 

catchment. This delayed sediment response to rainfall and a slow depletion in sediment 

supply in both agricultural catchments suggest that a range of sediment sources from the 

wider catchment area supplies sediment. In contrast, the fast depletion of sediment supply in 

the natural forest suggests the importance of nearby sediment sources and temporarily 

stored sediment. The dominant water pathways (blue arrows) and sediment (yellow arrows) 

pathways in the three different catchments are displayed in Figure 28. The densely 

vegetated land cover and riparian zone in the natural forest catchment prevents soil erosion 

with only localized source areas supplying sediment to the stream network. In the tea-tree 

plantation catchment, only temporarily bare surfaces such as logged areas or new 

established plantations are thought to be the main sediment contributors. However, a 

riparian zone throughout the catchment buffers the stream and a well-maintained drainage 

network reduces sediment supply. In contrast, the smallholder agriculture catchment has 

several contributing sources areas from unpaved trackways, gullies, agricultural land to bare 

channel banks, increasing sediment generation at the catchment’s outlet. In addition to being 

a source area, gullies and unpaved trackways are thought to act as conduits between 

hillslopes and the stream network. 

 
Figure 28 Conceptual model of dominant water (blue arrows) and sediment (yellow arrows) pathways originating 
from different sediment source areas with annual suspended sediment yield at the outlet of the a) natural forest, 
b) tea-tree plantation and c) smallholder agriculture catchment in the South-West Mau, Kenya. 



Discussion and conclusions 

 

105 
 

Tracer elements and sediment source areas 

Chapter 5 identifies the contributions of four sediment source areas in the smallholder 

agriculture catchment based on the best statistically selected sediment tracer composite. 

The work presented in Chapter 4 led to the hypothesis that unpaved tracks are the main 

source areas of the six times higher observed suspended sediment yield in the smallholder 

agriculture catchment. Therefore, the work under Chapter 5 focused on the smallholder 

agriculture catchment to address this hypothesis. To develop targeted soil conservation 

strategies to reduce erosion and suspended sediment delivery to the streams by 

disconnecting sediment source areas, it is essential to identify sediment source areas by 

their relative contribution in the smallholder agriculture catchment. Therefore, based on the 

previously gained knowledge of the delayed sediment response and field reconnaissance, 

four sediment sources were selected: agricultural land, unpaved tracks, gullies and channel 

banks to apply a sediment fingerprinting approach. A final set of eight tracers were selected 

out of 23 geochemical and biogeochemical elements. Two different scenarios were 

evaluated with the unpaved tracks included (scenario 1) and excluded (scenario 2) as an 

individual source due to an overlap with tracers. In scenario 1, 80% of the samples were 

reclassified correctly in their source group, while in scenario 2 an improved reclassification of 

95% was achieved. However, both scenarios demonstrated that agricultural land is the main 

source of suspended sediments (scenario 1: 75% and scenario 2: 77%) for the 

smallholder-dominated catchment, while channel banks are the second most important 

contributors. Despite the small relative contribution of channel banks, gullies and unpaved 

tracks, their sediment yield per unit area was large. The scale-dependency points to one 

main finding: that sediment loss from agricultural land per unit area was relatively low, but 

because it occupies most of the catchment area, it contributes the greatest proportion of the 

sediment yield. Channel banks, gullies and unpaved tracks are significant local hotspot 

sources, but their overall contribution is of lower significance.  

Spatial variability of particulate macronutrient fluxes 

The work presented in Chapter 6 focused on the particulate macronutrient (total carbon=TC, 

total nitrogen=TN and total phosphorus=TP) concentrations originating from the natural 

forest, tea-tree plantation and smallholder agriculture catchments. The analysis of Chapter 6 

builds on the quantification of suspended sediment in Chapter 4, aiming to address the 

knowledge gap of how much sediment-associated TC, TN and TP end up in the stream 

under contrasting land use. The application of fertilizers in the agricultural catchments would 

be expected to lead to high sediment-associated nutrient concentrations. Surprisingly, one of 

the main findings is that particulate TC, TN and TP concentrations were up to three-fold and 
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significantly (p<0.05) higher in the natural forest catchment compared to agricultural 

catchments. However, the mean macronutrient concentrations in the stream water for the 

sampling periods in 2018 and 2019, estimated based on the particulate macronutrient 

concentrations and suspended sediment concentrations, were highest for the smallholder 

agriculture and lowest for the natural forest catchment and tea-tree plantations. It can be 

argued that this difference is attributed to the high suspended sediment loads in the 

smallholder agriculture catchment. The TC concentrations of this study were higher than 

other reported concentrations (Walling et al. 2001; López-Tarazón et al. 2016), while the TN 

concentrations of the natural forest catchment were higher than intensified agricultural 

catchments, but the values of both agricultural catchments fell within those reported ranges 

(Walling et al. 2001; Pavanelli & Selli 2013). The TP concentrations were lower compared to 

P-saturated agricultural catchments of temperate regions (Neal et al. 2006; Ramos et al. 

2015; Sandström et al. 2020). The high C:N ratio (12.6±1.0 g kg-1) in the natural forest 

catchment reveals that most particulate nitrogen is organic matter based. Low C:N ratios 

(10.6±1.3 g kg-1) and low nutrient concentrations point to impoverishment of agricultural soils 

with a smaller nutrient stock due to its low organic matter content due to poor management 

practices and low organic matter inputs.  

7.2 The future of agriculture in tropical montane ecosystems 

The western highlands of Kenya are known for their inherent fertile soils of volcanic origin. 

The characteristic soils in the study area are humic Nitisols and mollic Andosols (ISRIC 

2004). Andosols are formed following the weathering of volcanic material, where 

aluminium-humus complexes protect soil organic matter from bio-degradation or 

mineralization (WRB 2015). Deep Nitisols have favourable soil physical characteristics of 

high permeability. A coarse A-horizon over a fine textured B-horizon with high clay content 

lead to well-drained soils (Sombroek et al. 1982).  

Following forest clearance and subsequent cultivation, changes in the soil hydraulic 

properties cause a loss of permeability of these typically well-drained soils (Owuor et al. 

2018). This process makes these soils more susceptible to soil erosion, as shown in this 

thesis, where the smallholder agriculture catchment generated six times more suspended 

sediments compared to the natural forest catchment (Chapter 4). The continuous loss of 

topsoil can affect agricultural productivity because of the loss of the nutrients and reduced 

plant water availability. Since this study has shown that the major sediment source in the 

smallholder agriculture is agricultural land, much of the natural soil capital is lost to the 

aquatic system (Chapter 5). The loss of the agricultural topsoil and densely populated areas 

under continuous cultivation over many decades in tropical countries may lead to the further 
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restriction of productivity. The lack of alternative land for fallow land due to high population 

densities commonly lead to the overexploitation of agricultural land, as it was shown in 

tropical agricultural regions cultivated on steep hillslopes in Uganda (Lederer et al. 2015), 

Tigray (Ethiopia) (Girmay et al. 2009) or Kisii District (Western Kenya) (Smaling et al. 1993), 

while the annual nutrient depletion rate is >60 kg ha-1 (N, P2O5 and K20) for Kenya (Henao & 

Baanante 2006). Several studies in tropical montane catchments experienced high losses in 

soil organic carbon and nutrients following conversion to agricultural cultivation (Solomon et 

al. 2000; Nyberg et al. 2012; Were et al. 2016). The low concentrations of particulate TC, TN 

and TP in the smallholder agriculture compared to the natural forest catchment reflects the 

nutrient depleted soils through elevated soil erosion in combination with continuous 

cultivation over many decades and low input use (Chapter 6).  

Compared to agricultural systems, a natural forest ecosystem has a tighter nutrient cycle 

and high inputs of organic matter through litter input. Consequently, forest conversion to 

cultivation leads to reduced fresh organic matter input, especially when little crop residue 

remains on the fields after harvesting (Celik 2005; Chiti et al. 2018). Since fertilizer 

application is extremely low, agricultural production by smallholder farmers in this region is 

highly dependent on the quantity of soil organic matter. Naturally, tropical soils recycle their 

nutrients through mineralization of soil organic matter in order to maintain soil fertility. 

However, if organic matter inputs are too low, this process cannot support agricultural 

productivity due to low inputs. Nutrient mining through harvest increases the pressure on 

these already nutrient constrained soils. In addition, the clay in these tropical soils contains 

amorphous iron (Fe), which can limit plant P availability. A study in a similar montane region 

of the Munessa-Shashamane Forest in Ethiopia showed that the loss of soil organic carbon 

of forest origin on converted forest soils is not compensated by the low crop derived soil 

organic carbon (Lemenih et al. 2005). A decrease in soil organic matter reduces soil 

aggregate stability, which can further accelerate soil erosion. Lower soil water permeability 

leads to increased susceptibility of surface soil to erosion which further reduces soil organic 

matter (Chapter 4 and 6). This cycle of organic matter mineralization in a low input system 

and the additional loss through soil erosion leads to a continuous loss of the already 

degraded organic matter content, further reducing the productivity of the soil (Figure 29).  

The Kenyan highlands are of high importance for agriculture in particular because of the 

favourable climatic conditions. Since the greatest part of the country relies on rain-fed 

agriculture due to the lack of irrigation systems. However, climatic factors (e.g. heavy 

rainfall) and changing vegetation cover can speed up soil chemical weathering processes or 

mineralization of soil organic matter (Purwanto & Alam 2020). Chapter 5 shows that the 
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surface soil was depleted in macronutrients compared to less weathered subsoils (Stenfert 

Kroese et al. 2020a). The rain-fed agricultural system is vulnerable to climate change and 

adds on the existing challenges for agricultural productivity. Seasons of droughts or a 

delayed onset of the rainy season leads to food insecurity, which can increase the 

dependency on imports. Finally, erosive rainfall makes the already erosion prone hillslopes 

susceptible to soil erosion. Under climate change the amount of intensive rainfall days is 

likely to increase in the future in Kenya, which highlights the need to reduce the negative 

impact on soil erosion to secure agricultural production. 

Agricultural productivity is constrained by nutrient deficient soils. Therefore, replenishing soil 

fertility and boosting productivity is essential to sustain agricultural productivity and the 

long-term viability of the soils. Finally, an increase in crop residue input could reduce on- and 

off-site impacts of soil erosion and slow down the negative feedback loop of organic matter 

mineralization as shown in Figure 29. Land is, as in many other places in the world, the most 

important resource of Kenya for rural communities (Nyangito et al. 2004), this is why it is 

essential to protect the soil on-site through targeted soil conservation measures. 

 
Figure 29 Basic cycle of soil organic matter (SOM) and particulate soil organic carbon (SOC) and nutrients (N 
and P) in a typical low input agricultural system. 

7.3 Soil conservation in rural areas 

The agricultural sector in Kenya contributes with 26% to the gross domestic product (GDP). 

Furthermore, agriculture plays a vital role for the rural economy, employing more than 70% 

of Kenya’s rural population (FAO 2020). Smallholder farming is key in economic growth, food 

security and poverty alleviation. However, the country’s agricultural performance is 

unsustainable and stays relatively low resulting in a dependency on imported goods. Wheat, 

palm oil, sugar, corn and rice are the most imported agricultural products in Kenya (FAO 

2020). The country turned from a self-sufficient producer to a net importer of most food 

staples due to a decline in production (Nyangito et al. 2004; Henao & Baanante 2006). Rural 
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smallholder farmers practice subsistence agriculture but rely on purchasing food because 

they cannot meet their staples. Farmers are forced to sell their little surplus such as other 

marketable vegetables right after harvest independent of a beneficial market price because 

of the direct need of income. Often this leads to a disadvantage in purchasing their staple 

during times of higher market prices (Nyangito et al. 2004). Additionally, many rural 

households rely on off-farm incomes. The imbalance between low income and dependency 

on purchasing food externally explains the vulnerability for food security based on high 

poverty rates in these rural settings ($360 per capita income) (Place et al. 2006). In addition 

to low productivity and income revenues, soil erosion losses account for 3.8% of the GDP 

which leads to another constraint for agricultural production (Cohen et al. 2006). The 

intention of this discussion is not to provide solutions to increase agricultural productivity but 

rather to reflect on the challenges of the application of soil erosion control measures in rural 

regions under high poverty rates. 

Despite these challenges, smallholder farmers remain key in food and nutrition security due 

to the large proportion (83%) of the total population living in the rural Kenyan highlands 

(Himeidan & Kweka 2012; Paloma et al. 2020). Increasing productivity can be a demanding 

task when the soil is lost to the aquatic system due to soil erosion. As increased agricultural 

efficiency is a must for poverty alleviation, there is a fundamental need for protecting the soil 

from erosion as soil is the natural capital for the people in the rural highlands. However, the 

interest in applying sustainable agricultural practice is not only restricted by the lack of 

external resources, but also by restricted property rights in rural areas. Favourable land 

tenure arrangements for farmers would improve their long-term right to own the land, thus, 

the motivation would be higher to sustain the health of the soil also for the next generation 

(Henao & Baanante 2006). 

Usually, rural farmers associate soil erosion with soil degradation and link that with a loss in 

their inherent productivity levels but are restricted to invest in soil conservation measures by 

the lack of financial, labour and land resources. Accessibility of agro-inputs to boost organic 

matter inputs is often restricted by the high cost (Sheahan & Barrett 2017). Policies and 

investment strategies at national level must be implemented to make purchasing agro-inputs 

more economically attractive and more available for rural farmers. The costs of fertilizers are 

particularly high in rural areas due to high transportation costs based on poor road 

conditions. This often leads to higher production costs in relation to the produce revenue 

(Place et al. 2006). The investment in the rural infrastructure can make purchasing of 

agro-inputs more attractive for rural farmers, whereby an improved quality of road networks 

can additionally reduce sediment supply to the streams. 
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The use of leguminous cover crops is another way of strengthening and protecting the soil 

from runoff and retaining nutrients through N2-fixation (Matheus et al. 2018). However, as 

crop yields are low, farmers are required to harvest a marketable crop each season. Scarcity 

of land due to high population density limits the use of leguminous cover crops on fallow 

land. This means replacing a crop with soil conservation through the fallow system with 

leguminous cover crops will be challenging. In addition, intercropping systems with 

leguminous may only increase yields in the long-term and would increase labour needs for 

weeding, which is inappropriate in the short-living cycle. The financial restrictions would not 

allow the purchase of seeds other than crop seeds (Rusinamhodzi et al. 2011; Franke et al. 

2018). Vegetated buffer strips cultivated with Napier grass, mulching or mechanical 

structures such as fanya juu terracing to recover soil organic matter due to reduced soil 

erosion, as mentioned in Chapter 5, might also be economically inefficient due to 

competition for water, nutrients and space with crops on limited land or increased investment 

of labour (Rusinamhodzi et al. 2011). To trap eroded soil from hillslopes there is need to 

rehabilitate and revegetate the riparian buffer of 30 m along streams in agricultural 

catchments, as pre-described by the Kenya’s Water Act (Republic of Kenya 2012). However, 

land scarcity hinders the compliance of this act.  

Although rural farming systems tend to be limited in financial or labour resources, they have 

a strong collective knowledge through networking. They pass on indigenous knowledge 

using inexpensive technologies and labour-saving practices to adapt technologies to their 

local needs (Stocking 2003). As a positive perspective, population pressure does not always 

equally lead to land degradation. If people are the problem for land degradation, they can 

also become the solution. As Tiffen et al. (1994) has shown that more people equals to less 

erosion. Capital and security, technological knowledge, economic incentives and market 

access might contribute to a sustainable agricultural performance. Growth of population can 

also mean an increase in labour force and agricultural intensification (Tiffen et al. 1994). 

7.4 Limitations and recommendations for future research 

Despite the valuable findings of the thesis, some limitations should be taken into account 

when interpreting the results, which could be addressed in future research. The four-year 

sediment time series of Chapter 4 is based upon a one-time ex situ turbidity-sediment 

calibration curve. Due to possible changes in sediment source contributions or in catchment 

geomorphology, a calibration curve for each year would have been the best-case scenario 

based on a combination of automatic sampling and manual event-based sampling over the 

range of storm events during a year. However, the remoteness of the catchments did not 

allow fast and frequent access to the sites, which restricted manual storm sampling and the 
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frequent collection of the samples collected by automatic samplers. Therefore, the peak of a 

storm event was generally not covered resulting in a lack of samples for the maximum 

turbidity of the stream. Therefore, the best approach for such catchments under challenging 

environments was to set up an ex situ rating curve, which allowed the simulation of a storm 

event. Despite having made every attempt to increase the accuracy of the adapted sediment 

calibration procedure (e.g. removal of coarse material, sampling of instream suspended 

sediments or of source sediments in direct vicinity to the outlet), over- or underestimation of 

suspended sediment concentrations may have increased the uncertainty in the sediment 

yield calculated. In addition, despite having established a site-specific calibration, the 

calibration curves for each site were combined to one calibration equation to increase the 

size of the dataset (n=50) for a more robust relationship. Before combining to one calibration 

equation, the differences in the slopes were tested for significance to justify using one 

equation for three catchments. The hydrological modelling in Chapter 4 was an opening for 

future work. Having provided field measurements to build the sediment rating curve, another 

step might be to model suspended sediment concentrations based on rainfall or discharge 

data. 

The particulate macronutrient analysis in Chapter 6 was constrained by the low sampling 

frequency of suspended sediment and also to the delayed onset of the rainy season in 2019. 

Due to limited flexibility in the planned field sampling campaign, the prolonged dry season 

restricted the sampling to the start of the rainy season in contrast to the long rainy season in 

2018. This may have led to missing important storm events, which could have contributed to 

a further understanding of the temporal distribution of particulate macronutrient fluxes. In 

addition, a higher sampling frequency may have provided the opportunity to apportion 

particulate nitrogen to the biweekly sampled dissolved nitrogen concentrations. This could 

allow answering the question of how much of the total nitrogen is of particulate and dissolved 

origin. To strengthen the empirical evidence and to estimate the extend of nutrient losses 

from agricultural soils in the smallholder agriculture catchment, a targeted soil sampling 

campaign on the soil nutrient status of the topsoil layer (0-30 cm) would further add to the 

knowledge of the impact of land use and management. 

During the sediment fingerprinting analysis conducted for Chapter 5, it was not possible to 

differentiate cropland and grassland as two separate source areas with the tracers used. In 

the smallholder agriculture catchment, grasslands cover a large proportion of the catchment 

area. Therefore, grasslands might have been an important significant individual source area, 

as degraded grasslands areas were observed during field work. Based on this observation, 

grasslands are thought to be important sediment contributors to the stream network. 
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Although the selected tracers in the sediment fingerprinting supported the differentiation 

between subsurface and surface sources, they could not differentiate clearly between the 

different land uses. To address this constraint, the use of isotopic signatures (e.g. δ13C and 

δ15N) may support the differentiation of surface sources among land use systems in the 

future.  

Agricultural land is a valuable resource for the rural community for food security and to 

sustain their livelihoods through farming. Therefore, rural farmers are the main stakeholders 

to be engaged on the ground during the development phase for options of sustainable 

agricultural management practices. Therefore, participatory monitoring could be a solution. 

Soil erosion monitoring as an integrative bottom-up approach that engages the rural 

community could be used in the future. The integration of the community in soil erosion 

mapping using simple soil erosion indicators to cover the questions such as which erosion 

features do occur (e.g. rill erosion, sediment on fields or root exposure), where and why (e.g. 

changing depth of rural trackways) does soil erosion occur and how active are they, will raise 

farmer’s awareness what causes soil erosion and why it is important to conserve the soil and 

the problems related to soil erosion. The farmers, possibly together with agencies or 

non-governmental organizations can then build on this newly gained knowledge to 

implement targeted sustainable agricultural management practices using an integrative 

approach. This will help to identify, together with the farmers, feasible ways for soil 

conservation management.  

7.5 Research output and impact statement 

Tropical forests are global hotspots of land use change, and protect the soil from soil erosion 

at the same time with a dense above and belowground biomass. Despite their importance, 

tropical montane catchments, in particular in East Africa, are among the least studied in the 

world. This study has contributed to a unique four-year high-frequency dataset of 

hydrological and sedimentological measurements collected across three catchments under 

different land use (natural forest, tea-tree plantations and smallholder agriculture) for a data 

scarce region in East Africa. It has further produced a database of geochemical element and 

macronutrient concentrations of four sediment source samples (n=248) and target sediment 

(n=35) for a smallholder agriculture catchment and particulate macronutrient concentrations 

(n=101) of three catchments under different land use. This work is relevant not only for 

African tropical montane environments, but it also contributes to the general understanding 

of catchments in the tropics facing the challenge of small-scale disturbances and 

deforestation.  

https://de.wikipedia.org/wiki/%CE%9413C
https://de.wikipedia.org/wiki/%CE%9413C
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In summary, this study demonstrated the impact of agriculture on terrestrial and aquatic 

ecosystems in comparison to natural ecosystems in catchments of the largest remaining 

tropical montane forest of East Africa. By having provided empirical measurements for the 

magnitude of suspended sediments and their depleted macronutrient fluxes of agricultural 

catchments, soil conservation practices should be targeted onto agricultural land. The large 

proportion of agricultural land and the current trend towards agricultural expansion further 

strengthens the need for the application of management strategies. However, in rural areas 

with high poverty rates there is a challenge between food production and the implementation 

of soil conservation strategies, which was discussed in Chapter 7.3. As rural farmers are key 

in the agricultural sector of East Africa, investment and policies in the rural infrastructure can 

help to reduce sediment supply from unpaved trackways or their connecting source areas 

such as agricultural land. Improved quality of roads can further increase market accessibility. 

7.6 Conclusions 

Investments in sustainable land management should protect the long-term viability of 

agricultural soils and some of these practices may even provide an alternative source for 

fodder (e.g. Napier grass) and income to farmers. However, smallholder farmers often have 

no or restricted financial means and face difficulties to access inputs other than crop seeds 

to improve soil fertility or to invest in extra labour. In addition to the lack of financial, labour 

and land resources, land tenure rights in rural areas are often not properly established.  

The design and implementation of policies to invest in roads and associated infrastructure 

would on the one hand reduce transportation costs for e.g. fertilizers to the farmer or 

produce to markets and improve market access for rural farmers. Increased land productivity 

enables rural households to grow enough food to generate a surplus and begin selling, 

which has a positive effect on welfare and poverty reduction. A rise in food supply might 

provide price stability and a competitive environment for the rural farmer to sell their 

products. Increased financial capital could be invested in sustainable soil conservation 

measures. Better engineering of rural trackways could, on the other hand, also have a 

tremendous effect on the reduction of suspended sediment supply, considering the 

importance of unpaved tracks as connecting agents between steep hillslopes and the 

streams (Chapter 5). Chapter 4 showed that a well-engineered road management, as is 

happening in the tea-tree plantation catchment, can lower suspended sediment contributions 

by a third compared to the smallholder agriculture catchment.  

Preventing soil erosion will arguably restore and rebuild soil productivity, which then can lead 

to poverty alleviation due to improved agricultural productivity. When farmers fail to install 
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effective conservation measures, the risk of accelerated erosion is high due to the 

continuous decline in organic matter. Restoring soil organic matter will have a beneficial 

impact on the water quality through reduced soil erosion and finally will protect Lake 

Victoria’s water quality. Through the improvement of land management, increased 

productivity of arable land and grazing land will provide alternative income and sources for 

firewood by the use of cover trees for the rural population. Consequently, this will remove the 

pressure on natural forest ecosystems, thus, further conversion to smallholder farms and the 

encroachment to forest margins.  
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