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ABSTRACT
In this study, we consider the dynamic and stochastic resource-constrained multi-
project scheduling problem where projects generate rewards at their completion,
completions later than a due date cause tardiness costs, task duration is uncer-
tain, and new projects arrive randomly during the ongoing project execution both
of which disturb the existing project scheduling plan. We model this problem as
a discrete-time Markov decision process and explore the performance and compu-
tational limitations of solving the problem by dynamic programming. We run and
compare five different solution approaches, which are: a dynamic programming al-
gorithm to determine a policy that maximises the time-average profit, a genetic
algorithm and an optimal reactive baseline algorithm, both generate a schedule to
maximise the total profit of ongoing projects, a rule-based algorithm which priori-
tises processing of tasks with the highest processing durations, and a worst decision
algorithm to seek a non-idling policy that minimises the time-average profit. The
performance of the optimal reactive baseline algorithm is the closest to the optimal
policies of the dynamic programming algorithm, but its results are suboptimal, up
to 37.6%. Alternative scheduling algorithms are close to optimal with low project
arrival probability but quickly deteriorate their performance as the probability in-
creases.

KEYWORDS
dynamic; stochastic; resource constrained project scheduling problem; dynamic
programming; reactive scheduling; genetic algorithm; scheduling policies;
DSRCMPSP

1. Introduction

Many factors may bring uncertainty to the project execution plan, such as new projects
arriving after the plan has begun requiring a re-evaluation of the execution order.
Project management is a very challenging enterprise in that only 40% of projects are
completed within their planned time, 46% of projects are completed within their pre-
dicted budget and only 36% of projects realise their full benefit APM (2018). Many
sectors suffer from the uncertainty ignored by traditional project management such
as engineering services, software development, IT services, construction and R&D. In
this paper, we propose a comprehensive model to project scheduling under uncertainty
for the dynamic and stochastic resource-constrained multi-project scheduling problem
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(RCMPSP) which includes random project arrival and stochastic task duration un-
certainties.

We model the problem as an infinite-horizon discrete-time Markov decision process
(MDP) with the objective to maximise the expected time-average profit. We extend the
research of Satic, Jacko, and Kirkbride (2019) by considering stochastic task durations
and use their problems in our comparisons by adding early, normal and late task
completion probabilities.

The resource-constrained project scheduling problem (RCPSP) and its multi-project
equivalent RCMPSP generally consider a static environment. The RCMPSP is a gen-
eralisation of the RCPSP, which is an NP-hard optimisation problem; thus, RCMPSP
and the other generalisation of RCPSPs are also categorised as NP-hard. (Gonçalves,
Mendes, and Resende 2008). In the literature, the generalisations of RCPSP and RM-
CPSP with uncertainty in task durations are called the stochastic RCPSP (SRCPSP)
and the stochastic RCMPSP (SRCMPSP) respectively. The common goal of determin-
istic problems is minimising the total completion time (Browning and Yassine 2010),
while the common goal of stochastic problems is to minimise the expected comple-
tion time (Rostami, Creemers, and Leus 2018). These static environment problems
are extensively studied in the literature. The literature review of Ortiz-Pimiento and
Diaz-Serna (2018) shows that Meta-heuristic methods such as GA, particle swarm
optimisation, Tabu search, Bee Colony, Ant Colony, Greedy Algorithms, Simulated
annealing and Distribution Estimation Algorithm; Exact Methods such as Branch and
Bound, Dynamic Programming and Stochastic programming; Special Procedures such
as Priority Rules-based, Simulation Process-based or Stage-by-Stage Analysis based;
Critical Chain Methods are some of the applied solution methods in the literature.
The Critical Chain Method is used for stochastic RCPSP with buffer sizing method
as in Zarghami et al. (2019). Also, an approximate dynamic programming method
is used for stochastic RCPSP by Li et al. (2020). The literature review of (Karam
and Lazarova-Molnar 2013) on recent approaches shows that the majority of the new
approaches are hybrid forms of previously mentioned methods.

All the models we have described until this point were static, where the data of
project arrival times and their type are known before the scheduling begins. Despite
the vast number of studies in the static field, many companies accept new projects
during the processing of ongoing projects (Herbots, Herroelen, and Leus 2007). That
deviates from the project plan and leads to missed due dates and associated tardiness
costs (Capa and Kilic 2015). So, instead of focusing only on completion times, projects
are more generally modelled with completion due dates, completion rewards released
as the outcome of project completion, and penalties or loss of prestige and goodwill
which are collectively called the tardiness costs incurred if projects are completed after
their due dates. The aim then becomes to find optimal schedules or scheduling policies
that maximise some function of profit, which is the difference between the completion
rewards and tardiness costs. In general, there are three standard objective functions
for non-static problems: (i) the expected total profit over a finite horizon (to the best of
our knowledge, this has not been used in projects scheduling literature for non-static
problems), (ii) the expected total discounted profit over a finite or infinite horizon
(e.g., Parizi, Gocgun, and Ghate 2017), or (iii) the expected time-average profit over an
infinite horizon (e.g., Wang et al. 2015). The RCMPSP with uncertain project arrivals
and deterministic task durations is called dynamic RCMPSP (DRCMPSP). Two main
approaches are available for the DRCMPSP; (1) reactive baseline scheduling (e.g.
Pamay, Bülbül, and Ulusoy (2014)), an approach which generates a baseline schedule
and updates it at each project arrival which allows usage of the static RCMPSP
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methods such as the GA for the DRCMPSP and (2) computation of optimal policies
using approximate dynamic programming (ADP) (e.g. Parizi, Gocgun, and Ghate
(2017)). Satic, Jacko, and Kirkbride (2019) applied both methods to DRCMPSP and
evaluated their performances.

The RCMPSP with both random project arrivals and uncertain task durations
is called the dynamic and stochastic RCMPSP. Only a limited number of research
considered both the dynamic project arrivals and stochastic task durations together.
The main approaches for this problem are processing networks (e.g. Adler et al. (1995);
Cohen, Golany, and Shtub (2005)), computation of optimal policies using approximate
dynamic programming (ADP) (e.g. Melchiors (2015); Choi, Realff, and Lee (2007)) and
reactive baseline scheduling (e.g. Fliedner et al. (2012); Capa and Kilic (2015)).

We contribute to the literature by (i) developing a dynamic and stochastic RCMPSP
model considering multi-task project types, extending the work of Melchiors et al.
(2018) who only considered single-task projects, (ii) developing an efficient implemen-
tation of the value iteration algorithm in Julia programming language to solve our
model with up to 4 project types, (iii) comparing the (exactly) optimal policy of value
iteration with the policies of GA, rule based algorithm and optimal reactive baseline
algorithm to evaluate the performance gap between solution approaches, and (iv) il-
lustrating that even in simple problems with 2 or 3 project types, the suboptimality
gap of benchmark policies commonly used in practice (genetic algorithm and longest-
task-first rule) which ignore possibility of new project arrivals is remarkable.

This paper is organized as follows: In section 2, we describe the problem setting, the
MDP model. In section 3, we describe the compared algorithms and discuss comparison
results in subsection 4.2. In section 5, a conclusion is presented.

2. Methodology

2.1. The problem setting

The dynamic and stochastic RCMPSP comprises J project types, and the system
capacity for each project type is limited to one. All projects of type j share the same
characteristics such as arrival probability (λj), number of tasks (Ij), project network,
resource usages (bj,i), task duration distribution (γj,i), minimal possible completion
time (tminj,i ), normal possible completion time (tj,i), maximal possible completion time
(tmaxj,i ), project due date (Fj), reward (rj) and tardiness cost (wj).

A project may arrive to the system at any point during the time unit, which is the
duration between two decision epochs. Only one project for each type may arrive per
unit time with probability λj for a project of type j. Projects are stored in the system
until the end of unit time. Then in the next decision epoch, if the system capacity for
newly arrived project type is not full, it will get accepted to the system. Otherwise, it
will get rejected.

A type j project consists of Ij tasks. In this problem, tasks are connected sequen-
tially with a successor-predecessor relationship, which defines the project network.
Processing task i of project type j requires completion of its predecessor tasks (Mj,i)
which have an earlier place in the project network. An example project network is
shown in Figure 1.

Processing task i from project type j also requires allocation of bj,i amount of
resources during its processing. Only one type of resource is defined in this problem
and the amount available is represented by B. The total number of allocated resources
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Figure 1. A project network

cannot be higher than B. The resources are assumed renewable which means they
become reusable after completion of a task to which they were assigned. The number
of resources which are not allocated for task processing is called free-resources (Bfree

s ).
After the completion of a task, its allocated resources return to the free resources.

Task processing is considered as a stochastic process in which tasks can be completed
early, normal or late according to its completion distribution (γj,i). The distribution
γj,i is assumed to be discrete, with the longest (respectively, shortest) processing time
with a non-zero probability of completion denoted by tmaxj,i (respectively, tminj,i ).

Task processing is also assumed to be non-preemptive; thus, it cannot be paused
or cancelled, i.e., once a task has begun processing, it does not leave processing until
completed.

Projects are completed when all of their tasks are processed, and a project reward
rj is earned. Projects have a due date (Fj) which represents the maximum unit of time
which can be spent for project completion to obtain its full reward rj . If the due date
is exceeded, the tardiness cost wj is applied only once, after the project is completed.

2.2. Modelling Framework

We model the problem as an infinite horizon Discrete Time Markov Decision Process
(DT-MDP) which is defined by five elements: time horizon, pre-decision state space,
action set, transition function and profit function. Figure 2 illustrates this process.

In a DT-MDP, a decision epoch is the time where a decision is taken for a pre-
decision state. Decision epochs occur as fixed intervals and the period between two
consecutive decision epochs is the time unit. During a time unit, projects are processed
according to the decisions made at the previous decision epoch, and the new events
occur such as project arrivals and tasks completions may occur. Then the system
enters a new decision epoch.

The pre-decision state (s) represents the system information relevant to the decision-
making process at each decision epoch. In this research, the pre-decision states consists
of the information regarding the remaining task processing times (xj,i) to the late
completions and the remaining due dates (dj) for all projects. More details about the
pre-decision state are provided in subsection 2.3.

The decisions available in a given pre-decision state s is called action (a). At a
decision epoch, the decision maker selects an action a which starts the processing of
the selected pending tasks. All actions must fulfil these two conditions; the available
free-resources can not be exceeded, and predecessor tasks should be completed. The
action is described in detail in subsection 2.4.

After the selected action a is applied in the pre-decision state s, system information
is represented by the post-decision state ŝ := (s, a). The post-decision state is a virtual
state before the stochastic processes begin, and it is assumed there is not any time lag
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Figure 2. Discrete-time Markov Decision Process

between pre-decision state and post-decision state. The post-decision state is explained
in subsection 2.5.

The transition function describes how the system evolves from one state to another
as a result of decisions and information (Powell 2011). The transition function is
illustrated in Figure 3 and described in detail in subsection 2.6. During the transition
period; the ongoing tasks are processed for one time unit, some tasks are completed
according to their completion distribution γj,i and new projects may arrive according
to arrival probabilities λj . Conversely, the probability of no arrival from a project of
type j is 1− λj . If a project arrival occurs it will be accepted into the system if there
is no project of the same type in the system or, if there is, that active project will
complete processing in this time period. Otherwise the new project arrival will be
rejected. Hence, between 0 and J project arrivals may occur in a single time unit. We
assume that the arrival of projects are independent and identically distributed random
variables. The above arrival process is a Bernoulli arrival process, with geometrically
distributed inter-arrival times Tj with mean λ−1

j and probability mass function P (Tj =

k) = (1− λj)k−1λj ; k = 1, 2, . . ..
In this discrete-time process, due to the memoryless property of the geometric dis-

tribution, the probability of an arrival of a type j project within the current time
period P (T = 1) = λj regardless of the number of time periods since the last arrival.
This is the discrete-time analogue of exponentially-distributed inter-arrival times in
continuous time models.

Hence, a stochastic arrival process is employed to model the arrival of new projects.
However, for the tractability of solutions via dynamic programming we utilise a finite
buffer such that a maximum of one project of each type may be present in the system
at any point in time.

The profit function of a post-decision state calculates the reward of the completed
project minus any tardiness cost paid to its latest possible completion at the end of
the transition. The profit calculation is expressed in subsection 2.7.

2.3. Pre-Decision State

The pre-decision state (s) is the system information available at a decision epoch.
Pre-decision states where the resource limitations are not exceeded and predecessor
tasks were completed before their successor tasks are called feasible and the set of all
feasible pre-decision states is called as the state space S. Elements of a pre-decision
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Table 1. State Matrix

Tasks Remaining due date
Project type 1 : x1,1 x1,2 x1,3 d1
Project type 2 : x2,1 x2,2 x2,3 d2

state are project states (P j) for all project types:

s = {P 1,P 2 . . . ,P J} (1)

A project state consists of task states (xj,i) and the remaining due date state (dj):

P j = (xj,1, xj,2, . . . , xj,Ij , dj) (2)

A task state represents the status of a task. If a task is pending for processing, its
value is taken as −1. If a task is finished, its value is represented by 0. If a task is in
processing, its value is the remaining processing time from its late completion duration
(tmaxj,i ). In a pre-decision state, xj,i = tmaxj,i − 1 represents the task processing began at
the previous decision epoch.

xj,i ∈ {−1, 0, 1, 2, . . . , tmaxj,i − 1} (3)

The remaining due date state dj represents the number of remaining time units from
the current time epoch to complete the project j without paying any tardiness cost.
When a due date is exceeded, its value becomes 0 and it expresses that the tardiness
cost will be incurred at the project’s completion. A newly accepted project has the
highest remaining due date state value which is its due date Fj .

dj ∈ {0, 1, 2, 3, . . . , Fj} (4)

When a type j project is completed or there is no type j project in the system, all
task states (xj,i = 0, ∀i) and remaining due date state (dj = 0) of project type j are
represented by 0:

P j = (0, 0, . . . , 0, 0) (5)

When a new type j project arrives, all its task states are set to −1 (xj,i = −1, ∀i) and
its remaining due date state is represented by its due date Fj (dj = Fj):

P j = (−1,−1, . . . ,−1, Fj) (6)

An example state matrix with two project types and three tasks is shown in Table 1.
Here, rows of the matrix represent each project type j. The columns represent the
task numbers but the last column of the matrix represents the due date state (dj).

A pre-decision state determines its free resources (Bfree
s ) which is used as a constraint

for the available decisions. Free resources are the remaining resources available after
the resource allocation to ongoing tasks has been accounted for:

Bfree
s = B −

J∑
j=1

Ij∑
i=1

bi,jI{xi,j > 0} (7)
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Table 2. Action Matrix

Actions
Project type 1 : a1,1 a1,2 a1,3
Project type 2 : a2,1 a2,2 a2,3

Here, B is the total amount of resource, bi,j is the resource amount allocated for
processing of task i from type j project, I

{
.
}

is an indicator function that takes the
value 1 if the condition in parentheses is true and takes the value 0 otherwise.

2.4. Action Representation

An action a is a function of a pre-decision state s and it holds the processing decisions
of pending tasks. An example action matrix with two project types and three tasks
is shown in Table 2. If the decision includes processing a pending task i of a type j
project (xi,j = −1), the corresponding action element aj,i will take the value of 1 in
the action matrix. Otherwise, aj,i will be 0. The task processing decision can be only

taken if there are enough free resources to allocate (
∑J

j=1

∑Ij
i=1 bi,jI{ai,j = 1} ≤ Bfree

s )

and any predecessor tasks (Mj,i) of task i are completed (
∑

m∈Mj,i
xj,m = 0). Thus,

an action must satisfy both of these conditions.
All the actions which meet both the resource and predecessor limitations, are called

feasible and set of all feasible actions for a pre-decision state s creates the action set
A(s):

A(s) = {0,a′
,a

′′
, . . . } (8)

The action, where all action elements are zero is called ”do not initiate any task”
(0 = (0, 0, . . . , 0)) and it is always a member of the action set 0 ∈ A(s). a

′
and a

′′

represent alternative feasible actions. The number of alternative actions in an action set
depends on the number of free resources (Bfree

s ), the unprocessed tasks (with xi,j = −1)
and the tasks with completed predecessor tasks (with

∑
m∈Mj,i

xj,m = 0).

2.5. Post-decision state

In our model, the post-decision state (ŝ) is used to represent the task state after a
decision is implemented but before any transition time passed. The transition from a
pre-decision state to post-decision is a deterministic process. The post-decision state is
used in this study to reduce computational effort and to store the stochastic transition
outcomes of a pre-decision state and action pair with their occurrence probabilities.

The same due date state is used for a pre-decision state and its following post-
decision state. Since there is not any time lag between the post-decision state and
the previous pre-decision state, the remaining duration of the processing tasks and
the state of completed tasks remains the same while the state of the pending tasks
selected by the processing decision changes from −1 to tmaxj,i . This represents that
these tasks begin processing. Thus the maximum remaining duration of a task in a
post-decision state is tmaxj,i while it is tmaxj,i − 1 in a pre-decision state.

x̂j,i ∈ {−1, 0, 1, 2, . . . , tmaxj,i } (9)
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Figure 3. A state transition diagram (for a j = 1 type project with 3 tasks (i = 1, 2, 3) whose due date is
Fj = 9 and the selected action means do not initialise any task.)

2.6. Transition function

The transition function determines the following pre-decision state. The task comple-
tion probability γj,i(x̂j,i) and the project arrival probability λj affect the transition
probability of the next pre-decision state. In our model a task may complete within tminj,i
and tmaxj,i periods once it has begun processing. With a maximum of x̂j,i periods remain-
ing until task i of project type j’s completion, the task will complete with probability

γj,i(x̂j,i), where γj,i(x̂j,i) = 0 for x̂j,i > 1 + tmaxj,i − tminj,i and
∑1+tmax

j,i −tmin
j,i

x=1 γj,i(x) = 1.
The project arrival probability is considered when it is possible for task Ij to be com-
pleted before the next decision epoch, at which point capacity for a newly arriving
project of type j will become available. The system transition probability is given by

P (s′|s, a) =

J∏
j=1

Ij∏
i=1

P (x′j,i|x̂j,i) (10)
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P (x′j,i|x̂j,i) =



λjγj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmaxj,i − tminj,i , x
′
j,i = −1, i = Ij

(1− λj)γj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmaxj,i − tminj,i , x
′
j,i = 0, i = Ij

γj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmaxj,i − tminj,i , x
′
j,i = 0, i < I

1− γj,i(x̂j,i), for 1 ≤ x̂j,i ≤ 1 + tmaxj,i − tminj,i , x
′
j,i = x̂j,i − 1

λj , for x̂j,i = 0, x′j,i = −1, i = Ij

1− λj , for x̂j,i = 0, x′j,i = 0, i = Ij

1, for x̂j,i = 0, x′j,i = 0, i < Ij

1, for x̂j,i > 1 + tmaxj,i − tminj,i , x
′
j,i = x̂j,i − 1

1, for x̂j,i = −1, x′j,i = −1

In Figure 3 an example transition process has been shown. The transition probability
of the first alternative future pre-decision state, where the last task of type j project is
finished and a new type j project arrived, is P (s′′′|s, a) = λj · γj,i(x̂j,i). The transition
probability of the second alternative future pre-decision state, where the last task type
j project is finished and no project arrived, is P (s′′|s, a) = (1 − λj) · γj,i(x̂j,i). The
transition probability of the third possible alternative future pre-decision state, where
the last task type j project is not finished thus a project arrival is not considered, is
P (s′|s, a) = 1− γj,i(x̂j,i).

2.7. Profit Representation

The profit (Rŝ) of the post-decision state ŝ is the sum of rewards (rj) of completed
projects in the period between current and next decision epoch minus the tardiness
cost of late completions which depend on the remaining due dates.

Rŝ =

J∑
j=1

rjE
[
I
{
x̂j,I > 0∧x′j,I ≤ 0

}]
−

J∑
j=1

wjE
[
I
{
x̂j,I > 0∧x′j,I ≤ 0∧dj = 0

}]
(11)

Here, the first indicator is for project completion and takes the value 1 if a project
completes and is 0 otherwise. The second indicator is for late project completion. It
takes the value 1 if a project’s due date has already passed (i.e., the projects remaining
dues date dj = 0) and is 0 otherwise. Recall that, in post-decision state ŝ, x̂j,I rep-
resents the remaining maximum processing time of the final task of a type j project.
x′j,I is the remaining maximum processing time of the final task of project j at the

future pre-decision state (s′).

2.8. Goal function

The goal of the dynamic and stochastic RCMPSP is to find the policy π that maximises
the long-term average profit per unit time.

g∗ = max
π∈Π

lim
T→∞

1

T

T∑
t=1

Eπ[Rŝ(t)] (12)

Here, Rŝ(t) is the profit function dependent of time epoch t. π is a policy from the set
of all feasible non-anticipating policies (Π) presenting the action set A(s). A feasible
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policy is a sequence of action which considers both the resource limitation and project
network.

2.9. Solution by Dynamic Programming

Dynamic Programming (DP) is a collection of algorithms which calculates optimal
policies from the MDP model of the solution environment (Sutton and Barto 2018).
In this research we used Dynamic Programming Value Iteration. Value Iteration cal-
culates a sequence of value functions (Tijms 1994). The value function approximates
the cumulative reward minus the tardiness cost. The per-period change in the value
function approximates the maximum long-term average profit. The process steps of
the algorithm are below;

For each state ∀s ∈ S, V old(s) = 0
Do

For each state ∀s ∈ S
V (s) = max

a∈A
[Rŝ +

∑
s′∈S p(s

′|s, a)V old(s′)]

End For
Wmax = max

s∈S
[V (s)− V old(s)]

Wmin = min
s∈S

[V (s)− V old(s)]

∆ = Wmax −Wmin

Update for ∀s ∈ S, V old(s) = V (s)
While ∆ > β ×Wmin

Here, V represents the value function of a pre-decision state s. Rŝ is profit function as
explained in subsection 2.7. p(s′|s, a) is the state transition probability. s′ stands for the
future pre-decision state of s. V old(s′) is the value of s′ from next decision epoch. β is
pre-specified tolerance number (0.000001). Wmin and Wmax are respectively minimum
and maximum value changes between two iterations. ∆ is the difference between the
minimum and the maximum value changes. S is the state space which is defined at
subsection 2.3. These processes are repeated until the stopping criteria is met.

3. Results and Comparisons

We used two heuristic algorithms and one exact algorithm with reactive scheduling
and one worst decision algorithm to compare their performance to optimal. A reac-
tive scheduling method generates decisions within a deterministic approach without
considering the future uncertainties (Pamay, Bülbül, and Ulusoy 2014). Then, it iter-
atively fixes its first schedule according to random changes and makes the schedules
feasible again (Rostami, Creemers, and Leus 2018). We used a genetic algorithm, an
optimal reactive baseline algorithm and a priority rule algorithm; note that all three
are based on the reactive scheduling method. Both the optimal DP and the worst
decision algorithm are proactive scheduling methods.

3.1. Genetic Algorithm

The GA is one of the search algorithms which searches for the global optimum on
the solution space by improving the search samples at each iteration (Mori and Tseng
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1997). The GA uses bio-inspired operators (e.g. Elitist selection, Crossover and Mu-
tation) to develop the population, which is a solution set, in each iteration. The GA
is the most-used algorithm for project scheduling problems. However, the algorithm
is not suitable for dynamic problems, and a reactive scheduling method is required to
apply GA to a dynamic problem. The reactive scheduling method converts each state
of the dynamic problem to a static problem, and solution methods generate a baseline
schedule for each state. Fliedner et al. (2012) and Capa and Kilic (2015) proposed
reactive scheduling methods based on GA for the dynamic and stochastic RCMPSP.
Thus we included GA to our compared algorithms.

The goal of the genetic algorithm (GA) in this research is maximising the profit. The
algorithm uses the total completion time as tiebreakers between schedules with equal
rewards. If the tie continues, the model prioritises processing of lower project type
numbers and lower task numbers. We adapted GA from Satıç (2014). For each pre-
decision state, random numbers are assigned to unprocessed tasks, and this assignment
is stored as an individual of the population. Individuals are created until the population
number (here, one hundred) is reached. The random numbers represent task processing
priorities and this method called as the random key representation. The random keys
are converted to a schedule using the serial scheduling scheme as Kolisch and Hartmann
(1999) described. Then the population is ordered according to their total profit and
total completion time. So, the first member of the population represents the best
schedule found with highest profit and shortest completion time while the last member
represents the worst schedule.

The first population is iterated one hundred times using the genetic operators. The
best ten percent of the population is transferred to the next population without any
change, and the rest of the next population is created with the crossover operator.
The crossover operator, firstly, selects two individuals from the previous population,
then, copies some random keys from the first individual, after that, copies the rest
from another individual, and finally, creates a new individual. The new individual is
mutated with a fifty per cent probability before joining to the next population. The
mutation operator randomly selects an unprocessed task and re-assigns its random
number. When the new population reaches to one hundred individuals, the random
keys are converted to schedules with the serial scheduling scheme. Then the population
is ordered from the shortest total completion time to longest, and it is ordered again
from the maximum total profit to the minimum. After the one-hundredth generation
is created; the first schedule in the population (the best schedule) is selected as the
baseline schedule. Then the baseline schedule is converted to action.

3.2. Optimal reactive baseline algorithm

The optimal reactive baseline algorithm (ORBA) converts each pre-decision state to
a static RCMPSP with the reactive scheduling method and generates all possible
schedules for the static RCMPSP. The profit and the total makespan of the schedules
are calculated using the serial scheduling scheme. The schedule with highest profit is
selected as the best schedule and converted to action. In case of more than one schedule
with the highest profit, algorithm prioritizes the shortest total makespan between these
schedules. If the tie continues, algorithm randomly selects one schedule. We included
the ORBA to show the best possible result of the reactive scheduling method.
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3.3. Priority rule (Longest task first)

An alternative policy is created with a priority based heuristic algorithm. The algo-
rithm uses a single-pass priority rule called the longest task first rule. Single-pass rules
generate only one action for the given state. The rule based algorithm (RBA) priori-
tises the smallest numbered project type, if two tasks have the same duration, e.g.,
project type 1 is prioritised over type 2 or type 3. For each pre-decision state, the al-
gorithm generates a baseline schedule using the priority rule and the serial scheduling
scheme. Then, the baseline schedule is converted to an action. We included the RBA
to show the performance of a simple heuristic algorithm.

3.4. Worst decision algorithm

A mix of value iteration and priority rule methods are used as the worst decision
algorithm (WDP) which seeks a policy (π′) to get the minimum profit per unit time
(g′). We used this method in our comparison to show the minimum profit of the worst
non-idling policy.

g′ = min
π′∈Π′

lim
T→∞

1

T

T∑
t=1

Eπ′
[Rŝ(t)]. (13)

Here, π′ is a policy from the set of all feasible non-anticipating active policies (Π′)
which does not include the ”do not active any task” (0) actions unless it is the only
possible action in the action set (|A(s)| = 1). Since the reward and tardiness costs
are modelled to be received after project completions, a minimum profit algorithm
without the priority rule (|A(s)| 6= 1 ⇒ 0 /∈ π′) delays project completions infinitely
to halt rewards.

4. Computational results

4.1. Experimental setup

In this section, we will explore the limits of DP on the dynamic and stochastic
RCMPSP, and compare its performance with the two heuristic reactive baseline
scheduling algorithms, the optimal reactive baseline algorithm and the worst deci-
sion algorithm. The DP and the compared algorithms are coded in JuliaPro 1.0.1.1.
All tests are performed on a desktop computer with Intel i5-6500T CPU with 2.50
GHZ clock speed and 32 GB of RAM.

We will use DRCMPSPs with deterministic task durations from Satic, Jacko, and
Kirkbride (2019) and generate their dynamic and stochastic RCMPSP equivalents
with stochastic task duration by adding early and late completion options to these
problems. For each project in the experiment, a project’s tasks are performed in se-
quential numerical order, i.e., a project starts with task one which is a predecessor of
task two which is a predecessor of task three. See Figure 1.

The model uses the state space as defined in subsection 2.3. The number of states
grows exponentially with the number of tasks in a project, the number of project types,
task durations and due dates, and the large state space becomes computationally
intractable which is called ”the curse of dimensionality” (Sutton and Barto 2018). In
our experiment, a state space for more than five project types with two tasks each
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Table 3. 2 project types and 2 tasks problem.

2 project types and 2 tasks problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 3 1 8 1 2 2
2 2 2

2 10 9 5 1 3 1
2 1 3

Resource capacity = 3

Table 4. 2 project types and 2 tasks problem, differences (percent lower) from optimal results of DP.

2 project and 2 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.008% 0.5% 1.4% 2.3% 3.1% 4.0% 4.9% 6.0% 7.1% 8.3%
GA 0.7% 6.5% 11.7% 15.4% 18.1% 20.0% 21.2% 21.4% 20.4% 17.0%
RBA 2.1% 19.9% 35.2% 46.1% 53.7% 59.3% 63.7% 67.3% 70.4% 72.7%
WDP 2.8% 25.6% 43.8% 55.4% 62.7% 67.3% 70.2% 72.1% 73.5% 75.5%

2 project and 2 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.7% 4.9% 7.4% 9.0% 10.1% 10.9% 11.5% 11.9% 12.3% 12.5%
GA 1.2% 9.3% 15.0% 18.5% 20.6% 21.8% 22.5% 22.8% 22.9% 22.8%
RBA 2.0% 17.5% 30.1% 39.2% 45.8% 50.6% 54.3% 57.0% 59.0% 60.2%
WDP 2.4% 21.0% 35.1% 44.5% 50.8% 55.1% 58.0% 61.0% 63.6% 65.9%

becomes computationally intractable. We limited our problem sizes to four project
types and two tasks.

The problems considered in our experiments vary by number of project types, num-
ber of tasks, resource usages, different reward-tardiness cost settings and lengths of
due dates. We call the difference between a project’s due date and the sum of its
expected tasks durations as slack time. This value also varies for each project in the
problems. The total resource capacity is taken B = 3 for all problems.

The completion times of the deterministic task duration problem are the normal task
completion times (tj,i) of the stochastic task duration problem. Further, we assume
that a task can complete 1 period earlier (tminj,i = tj,i−1) or later (tmaxj,i = tj,i+1) than
normal in the stochastic version. With completion probabilities uniformly distributed
between [tminj,i , tmaxj,i ] when tj,i ≥ 2; and with γj,i(2) = 1/3, γj,i(1) = 2/3 when tj,i = 1.

We test each problem and its versions consecutively from 1% to 90% project arrival
probabilities, increment by 10%. 0% and 100% arrival probabilities are not used in
this comparison, because 0% arrival probability makes the problem static and 100%
arrival probability causes a non-ergodic MDP, e.g., the empty state where no project
has arrived cannot be reachable again from any states. For deterministic task durations
and 100% arrival probability, the system can never be empty and results in a cycle.
Thus the stopping criteria (∆ > β ×Wmin) of the value iteration (subsection 2.9) can
no be reachable, the Wmin value remains as zero, and the Wmax value does not change
after the best policy is found.

4.1.1. 2 project types and 2 tasks problem

The two project types and two tasks problem (see Table 3) is the smallest problem
in our test sample with 1424 states. Since project type two has a higher completion
reward and higher tardiness cost with a smaller slack time. The project type two
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Table 5. 2 project types and 3 tasks problem.

2 project types and 3 tasks problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 12 8 10 1 1 1
2 2 2
3 5 1

2 6 5 15 1 4 1
2 3 2
3 4 1

Resource capacity = 3

Table 6. 2 project types and 3 tasks problem, differences (percent lower) from optimal results of DP.

2 project and 3 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.003% 0.2% 0.4% 0.6% 0.8% 1.0% 1.1% 1.1% 1.1% 0.8%
GA 0.003% 0.2% 0.4% 0.6% 0.8% 1.0% 1.1% 1.1% 1.1% 0.8%
RBA 0.4% 3.0% 5.0% 7.1% 9.7% 13.2% 17.6% 23.2% 30.6% 40.6%
WDP 0.9% 8.1% 13.6% 18.2% 23.8% 30.0% 36.2% 42.3% 48.2% 53.6%

2 project and 3 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.2% 1.0% 1.5% 1.9% 2.2% 2.6% 2.9% 3.1% 3.3% 3.5%
GA 0.2% 1.0% 1.5% 1.9% 2.2% 2.6% 2.9% 3.1% 3.3% 3.5%
RBA 0.5% 3.0% 4.6% 5.8% 6.9% 7.9% 8.8% 9.6% 10.3% 10.9%
WDP 1.6% 11.5% 17.0% 20.3% 22.6% 24.6% 26.3% 27.7% 28.9% 29.9%

contributes larger reward opportunities, however, its late completion is less rewarding
compared to the late completion of the project type one. Resource usage of both types
of projects allow parallel processing of any task of project type one with the first task
of project type two. Thus, the processing decision of the second task of the project
type two or any tasks of the project type one, is a bottleneck for this problem.

The minimum difference with optimum is seen at the 1% arrival probability for both
version of the problem. The maximum difference is seen at 70% arrival probability for
deterministic task durations and 80% arrival probability for stochastic task durations.

4.1.2. 2 project types and 3 tasks problem

The two project types and three tasks problem (see Table 5) has 16612 states. Most of
the task combination can be processed together, except for second tasks. The project
type one is as twice as much profitable. However the slack time of project type one is
shorter so its due date may easily be exceeded which leads to pay a tardiness cost.

The GA’s results are equal to optimal reactive baseline algorithm’s results and
both algorithm very close to the optimum at this problem for all arrival probabilities
and task duration variations. The RBA’s results are less good as its performance
deteriorates with higher arrival probabilities.

4.1.3. 3 project types and 2 tasks problem

Three project types and two tasks problem (see Table 7) has 212568 states. Three
types of project can not be processed together and this leads to paying tardiness cost
at least for one type of project. A maximum of two project types can be processed at
the same time and only project type one can be processed with others. Project type
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Table 7. 3 project types and 2 tasks problem.

3 project types and 2 tasks problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 8 5 10 1 5 1
2 2 1

2 5 3 8 1 1 2
2 3 1

3 20 19 10 1 2 3
2 7 2

Resource capacity = 3

Table 8. 3 project types and 2 tasks problem, differences (percent lower) from optimal results of DP.

3 project and 2 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.02% 1.7% 6.1% 12.6% 20.0% 26.5% 31.0% 34.1% 36.3% 37.6%
GA 0.1% 4.9% 13.0% 22.0% 31.1% 39.1% 45.6% 51.6% 58.1% 67.2%
RBA 1.5% 15.3% 25.1% 30.1% 32.3% 32.6% 31.1% 28.2% 23.5% 15.4%
WDP 4.1% 34.3% 49.9% 59.0% 66.4% 72.6% 77.1% 80.2% 82.2% 83.3%

3 project and 2 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.3% 4.2% 8.6% 13.2% 18.0% 21.6% 24.4% 26.5% 28.2% 29.5%
GA 0.6% 6.7% 12.8% 19.1% 25.3% 30.3% 33.9% 36.4% 38.0% 38.9%
RBA 1.3% 13.2% 20.4% 23.4% 24.8% 24.8% 24.2% 23.2% 22.1% 21.0%
WDP 3.7% 29.2% 40.6% 45.9% 50.1% 53.3% 55.7% 57.3% 58.3% 59.0%

three has the largest reward and highest tardiness cost.
As it can be seen from Table 8, the algorithms diverge from the optimum rapidly as

arrival probability increases. The GA produced the closest to optimal and to optimal
reactive scheduling results at 1% to 30% percent arrival probabilities. After that the
RBA generates better results than the GA. The RBA processes type one and type two
projects together and delays the processing of type three. Only in this problem, the
RBA has produced better results than the GA.

4.1.4. 4 project types and 2 tasks problem

The four project types and two tasks problem (see Table 9) is the largest problem in
our experiments with 1509132 states. All project types have the same resource usage
and sum of task durations. A first task of any project type can be processed with up
to two first tasks or one second task of other project types, however, a second task can
only be processed with a task one of another project type. The slack times of project
one and two are negative, project three’s slack times is zero and project four’s slack
time is one. This implies that most of the projects will be completed later than their
planned due date and the tardiness payment will be inevitable.

According to results which is shown in Table 10, the GA’s results are close to optimal
reactive scheduling results. Best results of the alternative algorithms are seen at 1%
arrival probability and the worst results are seen at 90% arrival probability.

15



Table 9. 4 project types and 2 tasks problem.

4 project and 2 task problem

Project Reward Tardiness Due Task Normal task Resource
type (j) (rj) cost (wj) date (Fj) no (i) duration (tj,i) usage (bj,i)

1 18 3 4 1 5 2
2 1 1

2 27 4 5 1 4 2
2 2 1

3 18 5 6 1 3 2
2 3 1

4 18 6 7 1 2 2
2 4 1

Resource capacity = 3

Table 10. 4 project types and 2 tasks problem, differences (percent lower) from optimal results of DP.

4 project and 2 task problem with deterministic task durations

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.0003% 0.2% 1.0% 3.2% 4.4% 4.7% 6.4% 10.0% 13.8% 17.8%
GA 0.020% 1.2% 2.9% 5.8% 6.9% 6.8% 8.0% 11.5% 15.4% 19.0%
RBA 0.4% 6.6% 14.6% 21.4% 25.1% 26.8% 28.7% 31.4% 33.9% 36.1%
WDP 1.4% 21.3% 37.8% 46.2% 50.5% 52.8% 54.8% 57.3% 59.4% 61.5% a

4 project and 2 task problem with uniform stochastic task durations (1E 1N 1L)

λj 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ORBA 0.008% 0.4% 1.5% 3.4% 4.8% 5.7% 6.7% 8.1% 9.4% 10.4%
GA 0.021% 0.8% 2.0% 4.1% 5.7% 6.4% 7.3% 8.5% 9.7% 10.8%
RBA 0.3% 5.3% 11.9% 17.4% 21.0% 23.0% 24.5% 26.0% 27.4% 28.6%
WDP 1.1% 19.1% 34.7% 42.3% 46.3% 48.5% 50.1% 51.5% 52.7% 53.7%

a approximate

4.2. Discussion

The results shown in section 4 illustrate that none of alternative algorithms produces
the optimum results as the DP. However, the ORBA and GA produce almost optimal
solutions in 1% arrival probability and close to optimal solutions with the other low
arrival probabilities. The ORBA’s results were from 0.0003% to 37.6% worse than the
optimum results, and they always deteriorate from optimal as the arrival probability
increases.

The GA’s results are generally closer to optimal reactive scheduling results compared
to RBA for the majority of the considered problems and their task duration variations.
The GA’s results were from 0.003% to 67.2% lower than the optimum results. For the 2
project types and 3 task problem, GA’results are equal to optimal reactive scheduling
results. In two of the problems; the results with the deterministic task durations were
closer to optimum, while in the other two, it was vice versa.

The RBA’s results are between the GA and the WDP for most of the test problem.
The RBA’s results were from 0.3% to 72.7% lower than the optimum results. In three
project types with two tasks problem, the RBA produced better results than the GA
at higher arrival probabilities. However, in most of the cases, its results were closer to
the WDP than the optimum since the RBA might prioritise the less rewarding project
types over others. Thus, it can be said that using a single priority rule usually does
not produce good results unless the given priority rule is designed well for problem
features.

Since the GA, the ORBA and the RBA are reactive baseline scheduling algorithms,

16



they generate their decisions without considering the future uncertainties such as early
or late task completion or new project arrivals. Thus we may accept that the result
of a reactive baseline scheduling algorithm deteriorates compared to the optimum as
problem deviates from the static assumption i.e. no project arrivals. However, some
anomalies were observed for very high arrival probabilities. These anomalies occur
since the tardiness cost is only paid once when a project is completed. In the current
model, high arrival probabilities lead to postponing some project types infinitely. Thus,
they stay in the system without causing a tardiness cost while the other project types
continue processing without causing much tardiness cost.

5. Conclusion

Paper summary. In this paper, we studied the resource-constrained multi-project
scheduling problem with uncertain project arrivals and uncertain task duration. We
modelled the problem as an infinite-horizon discrete-time MDP. We inspected both the
cases where the task durations are deterministic or stochastic. We used the uniform
distribution for the stochastic task durations.

We used DP value iteration to maximise the long-term average profit per unit time.
We tested the limits of the DP on the dynamic and stochastic RCMPSP and generated
four test problems with both deterministic and stochastic task duration variations. Our
approach generates the optimum policies for the dynamic and stochastic RCMPSP and
contributes to literature by extending the work of Melchiors et al. (2018) which only
considered single-task projects. We used two heuristic and one exact reactive baseline
scheduling methods and a worst-decision DP on the same problems and compared
their results with exact results of the DP. We used GA and RBA as heuristic and
ORBA as exact reactive baseline scheduling methods.

According to our findings, a reactive baseline scheduling method with a GA pro-
duced closer to optimal results with and without considering arrivals than the priority
rule heuristic for the most of the test problem with different arrival probabilities and
deterministic or stochastic task durations options. The GA produced the optimal reac-
tive scheduling results for one problem but not for the others even though the setting
for GA were the same. The RBA generally produced results between the GA and the
WDP. Since reactive baseline scheduling does not consider the random changes before
they occurred, the GA’s, ORBA’s and the RBA’s results are closer to optimal at low
arrival probabilities and diverge from optimum at high arrival probabilities. The GA’s
and the RBA’s results are closer to optimal at deterministic task durations than the
stochastic task durations. However, a few exceptions have been observed.

Managerial insights. This study provides a performance comparison of
the methods and give insights to project managers for determination of the
solution method in highly dynamic and stochastic environments. We have
seen that DP suffers from the curse of dimensionality even for the small size problems
and reactive baseline scheduling methods do not produce close to optimum results
at the high arrival probabilities or stochastic task durations. We suggest using DP
for small problems and the reactive baseline scheduling methods such as GA for the
environments with low uncertainties. We don’t recommend using GA or other reactive
baseline scheduling methods in highly uncertain environments since our test results
showed that GA may generate up to 67.2% less average profit per unit time compared
to optimal in these environments. We suggest considering other methods for larger
and more complex problems with high or moderate uncertainties.
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Future research direction. Our work showed that for environments which change
frequently, the most popular method GA and other reactive scheduling methods per-
form poorly, and alternative solution methods should be considered. Future work might
seek other solution methods and compare their performances in these environments.
An ADP algorithm with a well-designed and tuned approximation model is a modern
example of alternative solution methods. See, for example, Melchiors (2015), Choi,
Realff, and Lee (2007), Parizi, Gocgun, and Ghate (2017), which are to the best of
our knowledge the only attempts in this direction for similar problems. An exten-
sion would be to develop an approximate model and/or approximate solution ap-
proach which would not suffer from the curse of dimensionality while also considering
both the uncertainties of new project arrivals and task durations as considered here.
Other important future research topics are to consider additional uncertainties such
as stochastic resource availability or multiple modes of task processing.
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Pamay, M Berke, Kerem Bülbül, and Gündüz Ulusoy. 2014. “Dynamic Resource Constrained
Multi-Project Scheduling Problem with Weighted Earliness/tardiness Costs.” In Essays in
Production, Project Planning and Scheduling, edited by P. Pulat, S. Sarin, and R. Uzsoy,
Vol. 200, 219–247. Springer.

Parizi, Mahshid Salemi, Yasin Gocgun, and Archis Ghate. 2017. “Approximate Policy Iteration
for Dynamic Resource-Constrained Project Scheduling.” Operations Research Letters 45 (5):
442–447.

Powell, Warren B. 2011. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Vol. 842 of Wiley series in probability and statistics. Wiley.

Rostami, Salim, Stefan Creemers, and Roel Leus. 2018. “New Strategies for Stochastic
Resource-Constrained Project Scheduling.” Journal of Scheduling 21 (3): 349–365.
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