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A Semi-Supervised Deep Rule-Based Approach
for Complex Satellite Sensor Image Analysis
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Abstract—Large-scale (large-area), fine spatial resolution satellite sensor images are valuable data sources for Earth observation
while not yet fully exploited by research communities for practical applications. Often, such images exhibit highly complex geometrical
structures and spatial patterns, and distinctive characteristics of multiple land-use categories may appear at the same region.
Autonomous information extraction from these images is essential in the field of pattern recognition within remote sensing, but this task
is extremely challenging due to the spectral and spatial complexity captured in satellite sensor imagery. In this research, a
semi-supervised deep rule-based approach for satellite sensor image analysis (SeRBIA) is proposed, where large-scale satellite
sensor images are analysed autonomously and classified into detailed land-use categories. Using an ensemble feature descriptor
derived from pre-trained AlexNet and VGG-VD-16 models, SeRBIA is capable of learning continuously from both labelled and
unlabelled images through self-adaptation without human involvement or intervention. Extensive numerical experiments were
conducted on both benchmark datasets and real-world satellite sensor images to comprehensively test the validity and effectiveness of
the proposed method. The novel information mining technique developed here can be applied to analyse large-scale satellite sensor
images with high accuracy and interpretability, across a wide range of real-world applications.

Index Terms—deep rule-based system, deep learning, satellite sensor image analysis, semi-supervised learning.
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1 INTRODUCTION

R EMOTELY sensed satellite sensor images provide de-
tailed Earth observations, and play an instrumental role

in many real-world applications, such as urban planning,
precision agriculture, and environmental management [1],
[2]. Large-scale (large-area), fine spatial resolution satel-
lite sensor images present a mosaic of geometrical struc-
tures and spatial patterns that can be highly complex and
heterogeneous [3]. These images are often composed of
sub-regions of different land-use categories, and multiple
land cover features can be observed within the same sub-
region. Analysis of such large-scale satellite sensor images
by human experts is labour-intensive and time-consuming
due to the large volume, huge complexity and variability
[4]. Moreover, characterizing high-level land-use semantics
from satellite sensor images is considered as a challenging
task for the machine learning communities, thus, requiring
the development of novel techniques to classify land-use
categories accurately.

To date, many approaches have been developed for
remotely sensed aerial scene classification, and they can be
categorized broadly into three major classes: 1) methods
based on low-level features, which attempt to distinguish
aerial scenes based on low-level visual characteristics ex-
tracted from the images [5], [6], [7]; 2) methods based on
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middle-level information, which encode low-level visual
features extracted from local regions of images into middle-
level representations (e.g., bag of visual words) [8], [9]; 3)
methods based on high-level feature representations, which
are often learned through deep neural networks, such as
deep convolutional neural networks (DCNNs) [10], [11],
[12]. Compared with the first two categories, high-level
methods are the most suitable for land-use scene classi-
fication, with state-of-the-art results achieved in the com-
puter vision and machine intelligence domains [13], [14],
including remote sensing. High-level land-use semantics
are learned effectively from DCNNs with highly accurate
classification results obtained for aerial scenes. Nonetheless,
those DCNN-based approaches lack transparency, and the
reasoning process of DCNNs is hidden as a black box that
is not interpretable for humans. Besides, DCNN methods
are computationally expensive, requiring a huge volume
of labelled images to train the DCNNs and for parameter
tuning.

The common practice of aerial scene classification is to
label each image into a specific land-use category [3], [6],
[9]. This is not a critical issue because existing research deals
mainly with small-size aerial images [8], [11], [15], [16] with
simple geometrical structures, and the patterns are easy to
interpret. However, small area aerial scene classification is
insufficient for exploiting the extensive details covered by
large-scale fine spatial resolution satellite sensor images,
thus, resulting in a significant loss of valuable information.
In contrast, an alternative and potentially preferable solu-
tion is to analyse these large-scale images locally and classify
each sub-region into different land-use categories [17], [18].

Most existing aerial scene classification approaches are
trained using a wealth of labelled images such as to learn
the predictive model in a fully supervised manner [1], [10],
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[11], [12], [19], [20]. However, labelled images are scarce and
expensive to capture, whereas unlabelled images are plenti-
ful. Supervised approaches are unable to utilize unlabelled
images for training purposes. In contrast, semi-supervised
approaches incorporate both labelled and unlabelled images
to build stronger classification models by exploiting the rich
information from unlabelled images to a greater extent [21],
[22], [23], [24]. As semi-supervised approaches overcome the
labelling bottleneck and exhibit greater classification perfor-
mance with less human labour, they have been increasingly
explored for aerial scene classification problems [25], [26],
[27], [28].

Semi-supervised deep rule-based (SSDRB) system is a
recently proposed generic approach for image classification
[29], which pioneers the fusion of traditional fuzzy rule-
based (FRB) systems to achieve explainable DCNNs [30].
SSDRB is designed to offer a high level of transparency
and a human-interpretable decision-making process, typical
characteristics of FRB systems, and it also exhibits high
classification accuracy benefiting from DCNNs. By exploit-
ing the idea of “pseudo labelling”, the SSDRB system can
perform semi-supervised learning from unlabelled images
and gain new land-use categories autonomously when new
data patterns appear in real time.

To mine the valuable information in large-scale fine
spatial resolution satellite sensor images that exists abun-
dantly, but remains to be exploited, a Semi-supervised deep
Rule-Based approach for satellite sensor Image Analysis
(SeRBIA) is proposed in this paper. SeRBIA can analyse au-
tonomously the local semantic content of large-scale satellite
sensor images and classify local regions of these images into
multiple land-use categories that are most relevant. Further-
more, this approach is capable of self-updating and self-
improving the knowledge base “on the fly” without human
involvement during the analysis process, and it recognizes
unseen data patterns autonomously and updates itself to
produce refined results throughout the process. This demon-
strates the strong ability of SeRBIA to self-develop and learn
continuously from satellite sensor images. Moreover, SeR-
BIA can represent visually its learned knowledge to users
in a human-interpretable form through a set of prototype-
based IF. . . THEN rules. This enables clear understanding
of how a decision has been made and how to improve if
a specific mistake occurs, coinciding with the current move
toward the development of explainable artificial intelligence
(xAI) systems.

Main contributions of this paper are: 1) a novel chunk-
by-chunk semi-supervised learning technique to learn from
unlabelled streaming images; 2) a systematic approach that
can analyse large-scale fine spatial resolution satellite sen-
sor images autonomously and classify subregions of these
images into one or multiple land-use labels based on high-
level semantics observed locally; 3) the utility of the human-
interpretable IF. . . THEN rules is tested through the applica-
tion of large-scale satellite sensor imagery; 4) the capability
to learn life-long (continual learning and self-adaptation to
non-stationary environments) from satellite sensor images
without human expert involvement, and the continuous
extension of the knowledge base to incorporate novel data
patterns in real time.

The remainder of this paper is organized as follows.

Section 2 describes the methodological details of SeRBIA.
The main procedure of large-scale satellite sensor image
analysis by SeRBIA is described in Section 3. Extensive
numerical experiments are presented in Section 4. Section
5 concludes the paper.

2 PROPOSED SERBIA
SeRBIA is a new approach designed for large-scale satellite
sensor image analysis. The proposed approach first self-
organizes its system structure and meta-parameters, and
initiates its knowledge base from benchmark aerial image
sets through a supervised learning process. It then learns
continuously from large-scale satellite sensor images to self-
expand its knowledge base in a semi-supervised manner
without human expert involvement and performs analysis
on the semantic contents of these images locally.

Different from the original SSDRB proposed in [30],
SeRBIA performs semi-supervised learning from unlabelled
images (or image segments) on a chunk-by-chunk basis [31].
The chunk-by-chunk semi-supervised learning mechanism
allows SeRBIA to interpret the data patterns better while
aligning closely to the idea of online learning, giving SeRBIA
the ability to handle new data patterns effectively and effi-
ciently in image streams. This ability is of paramount impor-
tance for real-world applications, particularly, for satellite
sensor image analysis.

Technical details of SeRBIA are presented as follows.

2.1 General Architecture

The proposed SeRBIA method is illustrated in Fig. 1, and the
zoomed-in structure inside the grey dash-line box is given in
supplementary Fig. 1. The algorithmic procedure of SeRBIA
is detailed in the next section.

As shown in Fig. 1, SeRBIA is composed of four compo-
nents:

1) pre-processing module;
2) ensemble feature descriptor;
3) massively parallel IF. . . THEN rule base, and;
4) semantic content analyser.

 

Fig. 1: Diagram of SeRBIA.

The pre-processing module consists of the following four
sub-layers: i) segmentation layer; ii) flipping layer; iii) mean
subtraction layer; and, iv) scaling layer. During the super-
vised priming process with benchmark aerial image sets,
the segmentation layer crops each training image into five
sub-images/segments, namely, the centre and four corners,
to increase generalization ability and reduce over-fitting
[10], [32]. During the semi-supervised learning process with
large-scale satellite sensor images, the segmentation layer
employs a sliding window to partition large-scale images
into non-overlapping local regions, which enables SeRBIA
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to learn the semantic contents of large-scale images locally.
The flipping layer, then, flips the obtained segments hori-
zontally to effectively augment the images with increased
generalization capability. The mean subtraction layer, which
is the third layer of the pre-processing layer, centralizes the
R, G, B channels of the image segments around zero mean
by subtracting each segment from its mean. This operation
accelerates the feature extraction process by the DCNN
models since the gradients act uniformly for the three chan-
nels. The final layer re-scales the segments of the large-scale
image to the sizes required by feature descriptors. In this
framework, it rescales the segments to 227× 227 pixels size
if the AlexNet model [32] is connected or to 224×224 pixels
size if the VGG-VD-16 model [33] is concatenated. Details of
both DCNN models are given in supplementary section 2.

The second module of SeRBIA is an ensemble of pre-
trained DCNN models for feature extraction [34]. In accor-
dance with our previous research [35], both the AlexNet
[32] and VGG-VD-16 [33] models are employed to create an
ensemble feature descriptor. This is because this particular
combination has demonstrated stronger descriptive abilities
and results in a higher accuracy in classifying aerial images
compared with other benchmark approaches. In this paper,
the pre-trained models are used directly without further
tuning. The 4096 × 1 dimensional activations from the first
fully-connected layer of the DCNN models are used as the
feature vectors. For a particular image segment denoted as
s, its feature vectors extracted by the two DCNN models
are fused together by addition into a more discriminative
representation, x [36]:

x =
DR(s)

||DR(s)||
; DR(s) =

AN(s)

||AN(s)||
+

VN(s)

||VN(s)||
; (1)

where AN(s) and VN(s) represent the 4096 × 1 dimen-
sional feature vectors extracted by the AlexNet and VGG-
VD-16 models, respectively; ||x|| denotes the L2 -norm of
x. However, it should be highlighted that, one can use any
types of feature descriptor to create an ensemble, which can
be low-level, for example, scale-invariant feature transform
(SIFT) [38] and histograms of oriented gradients (HOG) [37],
or high-level, for example, ResNet [39] and VGG-VD-19 [33].
Alternatively, one may also train a DCNN from scratch for
feature extraction to boost the classification accuracy.

The third and most important module of SeRBIA is the
massively parallel IF. . . THEN rule base [29], [30], which is
composed of a set of prototype-based zero-order IF. . . THEN
rules. Each IF. . . THEN rule consists of a (possibly large)
number of human-understandable prototypes identified di-
rectly from segments of images of the corresponding land-
use category through a “one pass”, nonparametric, non-
iterative learning process. These prototypes are the most
representative samples and they represent local peaks of the
multimodal distribution of the data. As a consequence, they
represent intuitively the knowledge learned from data that
are always meaningful.

Assuming there are N different aerial scene land-use
categories, SeRBIA will identify N prototype-based mas-
sively parallel IF. . . THEN rules (one rule per category) from
training images in the following form (n = 1, 2, . . . , N ):

Rn : IF (s ∼ Pn,1) OR (s ∼ Pn,2) OR ... OR (s ∼ Pn,Ln
)

THEN (Categoryn)
(2)

where “∼” represents similarity, which can be interpreted as
a fuzzy degree of membership; s denotes a particular image
segment with x as the discriminative representation; Pn,i
represents the ith prototype of the nth category with pn,i
as the discriminative representation; Ln is the number of
identified prototypes from the observed images of the nth

category.
Prototypes of each massively parallel IF. . . THEN rule

(equation (2)) category are connected by a local decision-
maker that follows the “nearest prototype” principle. Dur-
ing operation, for each segment, s of a particular unlabelled
image, I, the local decision-maker will produce a confidence
score by identifying the most similar prototype, denoted by
Pn,j∗ to s:

λn(s) = max
l=1,2,...,Ln

(e−||x−pn,l||
2

) = e−||x−pn,j∗||
2

; (3)

where x is the discriminative representation of s extracted
by equation (1); pn,j∗ is the discriminative representation of
Pn,j∗; n = 1, 2, . . . , N .

The final module of SeRBIA analyses the semantic con-
tents of the satellite sensor image locally. This procedure is
based on the respective confidence scores that the IF...THEN
rules assign to each segment of the image.

In the following two subsections, the supervised learn-
ing and semi-supervised learning processes of SeRBIA are
described in detail.

2.2 Supervised Learning
SeRBIA self-organizes an IF. . . THEN rule base from labelled
training images for initialization. Each IF. . . THEN rule is
identified separately in a supervised manner and the identi-
fication process of the nth (n = 1, 2, . . . , N ) rule is described
in this subsection as an example. The supervised learning is
performed based on the labelled training images (or, image
segments). The same principles apply to all other rules in
the rule base [30]. For better illustration, a flow diagram of
the main procedure is depicted in supplementary Fig. 2.

Supervised Learning Algorithm
For each labelled training image (assuming the kth one)

of the nth category denoted by sn,k , the algorithm firstly
extracts its semantic representation by equation (1) as xn,k.

If sn,k is the very first image of this category (namely,
k = 1), the nth IF. . . THEN rule, Rn is initialized with its
global meta-parameters set by equation (4):

Ln ← 1; µn ← xn,k; (4)

where Ln is the current number of available training images
that belong to the nth category; µn is the global mean of the
corresponding semantic representations. Meta-parameters
of the first cluster, Cn,Ln

are initialized by sn,k as follows.

Cn,Ln ← {sn,k}; Pn,Ln ← {sn,k}; pn,Ln
← xn,k;

Sn,Ln
← 1; rn,Ln

← ro;
(5)

where Pn,Ln is the visual prototype of Cn,Ln ; pn,Ln
is the

corresponding semantic prototype; Sn,Ln is the cardinality
of Cn,Ln ; rn,Ln is radius of the area of influence of pn,Ln

; r0
is a constant for stabilizing new-born clusters, and, in this
paper, r0 =

√
2(1− cos(30o)) is used, as in [30]. After this,

Rn is initialized in the form of equation (6).

Rn : IF (s ∼ Pn,Ln) THEN (Categoryn). (6)
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Otherwise (namely, k > 1), the algorithm firstly calcu-
lates data density values of sn,k and the previously identi-
fied prototypes, Pn,i (i = 1, 2, . . . , Ln) using equation (7):

D(Z) =
1

1 + ||z−µn||2
1−||µn||2

; (7)

where Z = sn,k,Pn,1,Pn,2, ...,Pn,Ln
and z =

xn,k,pn,1,pn,2, ...,pn,Ln
.

The prototype, which is the nearest to sn,k, denoted as
Pn,j∗, is then identified based on the similarity between
their corresponding semantic representations as:

j∗ = arg min
i=1,2,...,Ln

(||pn,i − xn,k||). (8)

Then, Condition 1 is checked to evaluate the potential of
sn,k to become a new prototype:

Cond. 1: If (D(sn,k) > max
i=1,2,...,Ln

(D(Pn,i)))

Or (D(sn,k) < min
i=1,2,...,Ln

(D(Pn,i)))

Or (||pn,j∗ − xn,k|| > rn,j∗)

Then (Add a new prototype)

(9)

If Condition 1 is satisfied, a new cluster is added to the
system (Ln ← Ln + 1) with sn,k as its visual prototype.
Meta-parameters of this new cluster are initialized by equa-
tion (5).

If sn,k fails to satisfy Condition 1, meta-parameters of
the nearest cluster, Cn,j∗ are updated with sn,k as follows:

Cn,j∗ ← Cn,j∗ ∪ {sn,k}; pn,j∗ ←
Sn,j∗pn,j∗ + xn,k

Sn,j∗ + 1
;

Sn,j∗ ← Sn,j∗ + 1; rn,j∗ ←

√
r2n,j∗ + (1− ||pn,j∗||2)

2
;

(10)

Afterwards, Rn is updated in the same form as equation
(2), and the algorithm starts a new learning cycle for the
next labelled training image (k ← k + 1) or is terminated if
requested by the user.

2.3 Semi-Supervised Learning
The semi-supervised learning mechanism of SeRBIA is de-
scribed as follows. In addition, a flow diagram is given
in supplementary Fig. 3 to summarize the overall semi-
supervised learning process.

Without losing generality, the learning process is per-
formed on the hth (h = 1, 2, 3, ...) chunk of unlabelled
training images (or, image segments), denoted as {s}h =
{sh1 , sh2 , ..., shW }; W is the chunk size. There are two user-
controlled parameters for the semi-supervised learning,
namely, ϕ and γ. Both parameters carry a clear meaning.
ϕ determines the degree of rigour in pseudo-labelling of
SeRBIA. γ controls its sensitivity to unfamiliar data patterns
in unlabelled images.

Semi-Supervised Learning Algorithm
Given a new image chunk, {s}h, the algorithm firstly

extracts the semantic representations, denoted by xhk (k =
1, 2, ...,W ) of all unlabelled images within this chunk by
equation (1).

Then, confidence scores for each unlabelled image, shk
(shk ∈ {s}h) are produced by the IF. . . THEN rules within

the rule base using equation (3), denoted as: λ(shk) =
[λ1(shk), λ2(shk), . . . , λN (shk)]T (k = 1, 2, ...,W ), and Condi-
tion 2 is checked to identify the unlabelled images from
{s}h where SeRBIA is confident about the categories they
belonging to (s ∈ {s}h):

Cond. 2: If (λ1stmax(s) > ϕλ2ndmax(s))

Then (s belongs to Category1stmax)
(11)

where λ1stmax(s) and λ2ndmax(s) are the highest and sec-
ond highest confidence scores assigned to s by the massively
parallel IF. . . THEN rules. All the unlabelled images satisfy-
ing Condition 2 are denoted as {s}h0 ({s}h0 ⊆ {s}h).

Each image within {s}h0 is then used for updating the
corresponding IF...THEN rule that gives the highest con-
fidence score using the Supervised Learning Algorithm as
described in Section 2.2. Then, {s}h0 is removed from {s}h:
{s}h ← {s}h/{s}h0 , and the confidence scores of the remain-
ing images are updated. After this, the algorithm continues
to identify more unlabelled images from {s}h that satisfy
Condition 2 and use them to self-expand the knowledge
base. The same process repeats until no unlabelled image
within {s}h that can satisfy Condition 2 any more, namely,
{s}h0 = ∅.

For the remaining unlabelled images within {s}i, the
algorithm is much less confident about the categories they
belong to, some of which may belong to some unknown
categories. Here Condition 3 is used to identify such images.
sj∗ is firstly identified from {s}h by equation (12) as the
image that the algorithm is the least confident with:

sj∗ = arg min
s∈{s}h0

(λ1stmax(s)). (12)

Condition 3 is then examined to see whether sj∗ can
represent a new category:

Cond. 3: If (λ1stmax(sj∗) < γ)

Then (sj∗ belongs to a new category)
(13)

If sj∗ satisfies Condition 3, it belongs to a new cate-
gory that has not been identified beforehand. Thus, a new
IF. . . THEN rule corresponding to the new category RN

(N ← N+1) is initialized in a similar form as equation (6) by
sj∗ and added to the rule base. Global meta-parameters of
RN are initialized by equation (4). Meta-parameters of the
first cluster, CN,LN

of the new category are then initialized
by equation (5), sj∗ is removed from {s}i.

After RN has been initialized by sj∗, the algorithm uses
Condition 4 to identify more images from {s}h that belong
to this new category.

Cond. 4: If (λN (s) > ϕ max
n=1,2,...,N−1

(λn(s)))

Then (s belongs to CategoryN )
(14)

where s ∈ {s}h; λN (s) is the confidence score assigned by
RN . The collection of images satisfying Condition 4 is de-
noted as {s}h1 ({s}h1 ⊆ {s}h). {s}h1 is used for updating RN

using the Supervised Learning Algorithm. Subsequently,
{s}h1 is removed from {s}h: {s}h ← {s}h/{s}h1 and the
confidence scores that RN give to {s}h are recalculated.
Then, the algorithm repeats the same process by identifying
more images from {s}h to update RN until no image can
satisfy Condition 4.
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At the end, the algorithm continues to find the next
unlabelled image that may initialize a new IF...THEN rule
by equation (12). If Condition 3 is satisfied by this image,
the IF...THEN rule base is further expanded with another
new rule, and the same process as for RN is performed for
updating the meta-parameters of this new rule. However, if
sj∗ fails to satisfied Condition 3, it indicates that no more
new rules will be added to the rule base and thus, the
current learning cycle enters the final phase.

Finally, after the IF...THEN rule base has been fully
expanded with the unlabelled images of the current chunk,
the algorithm will compare each new rule that represents
a new category, denoted as Rj with the original rules that
represent the known categories using Condition 5.

Cond. 5: If (Λk∗(Rj) > ϕ max
n = 1, 2, ..., N∗;

n 6= k∗

(Λn(Rj))

Then (Rj is merged into Rk∗)

(15)

where j = N∗ + 1, N∗ + 2, ..., N ; N∗ is the number of
categories in the labelled training set; 0 ≤ k∗ ≤ N∗; and
Λn(Rj) is the average confidence score that Rn assigns to
the Lj prototypes of Rj :

Λn(Rj) =
1

Lj

Lj∑
l=1

λn(Pj,l); (16)

and there is: λn(Pj,l) = maxt=1,2,...,Ln
(e−||pj,l−pn,t||

2

). If
Condition 5 is satisfied, the prototypes of Rj share very
high similarity with the prototypes of Rk∗ and, meanwhile,
are distinctive from prototypes of other categories. Thus, it
is expected that the jth category is the same as the category
represented by Rk∗ . As a result, Rj is merged into Rk∗ by
updating Rk∗ with Pj,1,Pj,2, ...,Pj,Lj

using the Supervised
Learning Algorithm.

On the other hand, if Condition 5 is not met, Rj is kept
in the rule base for the next learning cycle, and the algorithm
continues to check the next IF...THEN rule.

After all the IF...THEN rules representing new categories
have been examined by Condition 5, the current learning
cycle is completed, and the algorithm begins a new learning
cycle to process the next available image chunk (h← h+1).

Note that although SeRBIA is able to recognize images
of land-use categories with semantic features that are dis-
tinctive from the labelled training set, it is not able to
assign semantic labels to these new categories. Therefore,
SeRBIA will name them automatically as “New Category1”,
“New Category2”, “New Category3”, etc. Optionally, hu-
man experts can be involved to examine the newly learnt
IF. . . THEN rules and assign meaningful labels to them
accordingly.

3 SERBIA FOR COMPLEX SATELLITE SENSOR
IMAGE ANALYSIS

In this section, the operation mechanism of SeRBIA for
complex satellite sensor image analysis is presented.

To start with, SeRBIA is primed with a benchmark image
set using the Supervised Learning Algorithm (see Section
2.2). After this, for a given satellite sensor image, the pre-
processing module of SeRBIA crops the image into K seg-
ments, denoted as {s}K = {s1, s2, ..., sK}: each segment

represents a sub-region of the whole image. Each sk ∈ {s}K
is further flipped horizontally to create a mirror image, s′k
for augmentation, and the augmented set is re-denoted as
{s}′K = {s1, s′1, s2, s′2, ..., sK , s′K}. SeRBIA then organizes
{s}′K into chunks and performs the Semi-Supervised Learn-
ing Algorithm (see Section 2.3) on a chunk-by-chunk basis
to update its massively parallel IF. . . THEN rule base from
these image segments.

After completing the semi-supervised learning pro-
cess, SeRBIA is able to analyse the sub-regions of the
satellite sensor image. Given a particular image segment,
sk ∈ {s}K , the IF. . . THEN rule base of SeRBIA pro-
duces two sets of confidence scores using (3) on both
the segment itself and the corresponding mirror image,
namely, λ(sk) = [λ1(sk), λ2(sk), . . . , λN (sk)]T and λ(s′k) =
[λ1(s′k), λ2(s′k), . . . , λN (s′k)]T , respectively.

Both λ(sk) and λ(s′k) are, then, passed to the semantic
content analyser to generate the overall confidence score:

λ̂(sk) = λ(sk) + λ(s′k). (17)

Based on λ̂(sk), the analyser identifies one or multiple
land-use categories sharing distinctive high-level semantic
features with sk using Condition 6 (n = 1, 2, ..., N ):

Cond. 6: If (ϕλ̂n(sk) ≥ λ̂1stmax(sk))

Then
(

sk possesses distinctive
semantic features of Categoryn

) (18)

where ϕ is the same parameter used in Condition 2 (see
Section 2.3). The rationales of Condition 6 and Condition
2 are the same. The land-use category corresponding to
λ̂1stmax(sk), denoted as Category1stmax is the dominant
land-use category that sk belongs to. If there are other land-
use categories satisfying Condition 6, one can expect that
sk is highly likely to have the most distinctive semantic
features of these land-use categories as well.

For Mk land-use categories satisfying Condition 6, de-
noted as Category∗l (l = 1, 2, ...,Mk), the likelihoods (the
ratios of the importance of different semantic contents) of
the Mk most relevant categories that appear in sk are given
by:

`∗l =
λ̃∗l (sk)∑Mk

j=1 λ̃
∗
j (sk)

; (19)

where `∗l is the likelihood of Category∗l ; λ̃∗l (sk) is the
corresponding confidence score standardized by the mean

υk and standard deviation δk of λ̂(sk): λ̃∗l (sk) =
λ̂∗
j (sk)−υk
δk

.
Thereafter, SeRBIA analyses the next segment (k ← k+1)

by repeating the same procedure from equations (17) to (19).
After all the sub-regions of the image have been analysed,
SeRBIA moves on to process the next satellite sensor image.

The main procedure of SeRBIA is summarized by the
following six steps and a flow diagram is given as supple-
mentary Fig. 4 for better illustration.

Step 1. Perform the Supervised Learning Algorithm to
prime the massively parallel IF. . . THEN rule
base with a benchmark dataset;

Step 2. Crop a large-scale satellite sensor image into
segments, {s}K using the sliding window and
rescale them to the required sizes;
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Step 3. Update the system structure and meta-
parameters using the Semi-Supervised Learning
Algorithm with {s}′K chunk-by-chunk;

Step 4. Calculate the overall confidence scores λ̂(sk)
for each segment, sk ∈ {s}K using equation
(17) and identify the Mk most relevant land-use
categories to sk using equation (18) ;

Step 5. Estimate the likelihoods of the Mk land-use cat-
egories associated with each segment, sk (sk ∈
{s}K ) using equation (19);

Step 6. Go back to Step 2 and start the analysis process
for the next large-scale satellite sensor image.

An illustrative example of the end-product of SeRBIA
is given in Fig. 2, where the window size of the sliding
window is 200 × 200 pixels and the step size is 200 pixels.
In this example, the AID dataset [3] is used to train SeRBIA.
An image from WHU-RS dataset [16] is used for validating
the proposed approach. Details of the two datasets involved
for this example are provided in supplementary section 3.
For visual clarity, the maximum value of Mk is set to be 5
throughout this paper.

 

SeRBIA 

Fig. 2: Illustrative example of SeRBIA.

4 NUMERICAL EXAMPLES AND DISCUSSION

In this section, numerical examples are presented to demon-
strate the ability of SeRBIA for understanding the seman-
tic content of large-scale satellite sensor images. Initially,
quantitative analysis is performed on benchmark datasets
to justify the validity and effectiveness of the proposed
approach for classifying land-use categories from aerial
sensor images. Numerical experiments are, then, performed
on large-scale satellite sensor images obtained from Google
Earth (Google Inc.) to demonstrate the proposed concept
and principles.

In this section, the following six popular benchmark
datasets for quantitative analysis are used to evaluate the
performance of SeRBIA.

1) Singapore dataset [15];
2) UCMerced dataset [8];
3) WHU-RS dataset [16];
4) RSSCN7 dataset [11];
5) AID dataset [3];
6) NWPU45 dataset [40].

Details of the six benchmark datasets are given in sup-
plementary section 3. Note that, NWPU45 is currently the
largest benchmark dataset for aerial scene classification.
All the reported numerical results were obtained after 15
Monte-Carlo experiments to allow a certain degree of ran-
domness.

4.1 Quantitative Results on Benchmark Datasets

In the numerical experiments presented in this subsection,
the segmentation and flipping layers of the pre-processing
module create M0 new segments from each aerial image,
sk for both training and validation purposes (M0 = 10,
namely, five cropped from the original image plus another
five created by horizontal flipping). A 4096× 1 dimensional
representation of the image is obtained as the average of the
discriminative representations of the 10 segments [10]:

xk =
1

M0

M0∑
j=1

xk,j =
1

M0

M0∑
j=1

DR(sk,j)

||DR(sk,j)||
; (20)

where sk,j is the jth segment of sk.
For each validation image sk, the IF...THEN rule base

produces N confidence scores, λn(sk) (n = 1, 2, ..., N ).
Based on this, the semantic content analyser determines the
dominant land-use category as the unique land-use label of
s based on the “winner-takes-all” principle:

Category(sk)← Categoryi∗; i∗ = arg max
n=1,2,...,N

(λn(sk)).

(21)
During the semi-supervised learning process, SeRBIA is able
to learn new categories and gain new IF. . . THEN rules. To
calculate the accuracies of the classification results obtained
by SeRBIA, during the validation process, the dominant
land-use category of each image segment associated with
the newly gained IF. . . THEN rules are used as the true
semantic labels of these new rules.

Firstly, the influence of ϕ, γ and W on classification ac-
curacy and system complexity of SeRBIA were investigated
using the Singapore, UCMerced, WHU-RS and RSSCN7
datasets. For each dataset, 10% of the images per class were
randomly selected as the labelled set and the remaining im-
ages were used as the unlabelled set. In the first example, the
influence of ϕ on the system performance was investigated,
where the value of ϕ varied from 1.05 to 1.25, and γ and
W were set to be 0.75 and 400. The classification accuracy
rates (Acc) on the unlabelled set and the average numbers
of IF...THEN rules (NoR) after the semi-supervised learning
process with different values of ϕ were depicted in Fig.
3(a). In the second example, the influence of γ on the
performance of SeRBIA was investigated, where the value
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of γ varied from 0.6 to 0.8, ϕ and W were set to be 1.1
and 400. In the third example, the influence of W was
investigated, where its value varied from 100 to 800, and ϕ
and γ were set to be 1.1 and 0.75, respectively. The results of
the second and third examples were presented in Fig. 3(b)
and (c), respectively. The obtained numerical results were
also tabulated in supplementary Tables 2 and 3 for clarity.

It can be observed from Fig. 3, supplementary Tables
2 and 3 that, given a fixed γ, a smaller value of ϕ allows
SeRBIA to identify more prototypes from unlabelled images
by Condition 2 and less new land-use categories, but may
introduce more pseudo-labelling errors and decrease the
overall classification accuracy. A greater value of ϕ leads
to less prototypes being identified, but may also lower the
overall classification accuracy because SeRBIA cannot make
full use of the unlabelled images leading to the loss of valu-
able information. In contrast, a greater value of γ increases
the sensitivity of SeRBIA to capture unfamiliar data pat-
terns during the semi-supervised learning process, resulting
greater performance and higher system complexity (more
new categories being identified by Condition 3). Consid-
ering the trade-off between the classification accuracy and
system complexity, the recommanded value ranges of ϕ and
γ are [1.1, 1.2] and [0.60, 0.75], respectively. Comparing with
ϕ and γ, the value of W has a minor influence on both the
classification accuracy and system complexity of SeRBIA.
In general, a smaller value of W allows SeRBIA to react
quickly to unfamiliar data patterns with the price of higher
system complexity. The recommanded value range of W is
[400, 600].

 

 
      (a) Influence of φ on classification accuracy and system complexity

 
      (b) Influence of γ on classification accuracy and system complexity 

 
      (c) Influence of W on classification accuracy and system complexity 
 

Fig. 3: Investigation of influence of ϕ, γ and W on the
performance of SeRBIA.

An illustration of the IF. . . THEN rule base of SeRBIA
during one particular experiment (ϕ = 1.1, γ = 0.6 and

W = 400) was given in supplementary Fig. 6, where one
can see that SeRBIA self-organizes nine massively parallel
IF. . . THEN rules from labelled training images during the
supervised learning stage. After the semi-supervised learn-
ing process, two new IF. . . THEN rules were identified, and
the knowledge base of the previous nine IF. . . THEN rules
were expanded largely by using unlabelled training images.

In the following example, the performance of SeRBIA
was compared with the eight benchmark approaches under
the same experimental protocol based on the Singapore,
UCMerced, WHU-RS, RSSCN7 and AID datasets:

1) Deep rule-based classifier (DRB) [30];
2) k-nearest neighbor classifier (kNN) [41];
3) Support vector machine (SVM) [42];
4) Anchor graph regularization with kernel weights

(AnchorK) [24];
5) Anchor graph regularization with local anchor em-

bedding weights (AnchorL) [24];
6) Local and global consistency (LGC) [43];
7) Greedy gradient Max-Cut (GGMC) [22] , and;
8) Laplacian SVM (LapSVM) [23].

DRB was used as the baseline for comparing with SeRBIA.
kNN and SVM are both used widely in pre-trained DCNN-
based approaches, and they are able to perform state-of-
the-art classification results. In this paper, the value of k
for kNN was set to be 5. SVM used the linear kernel
function. AnchorK, AnchorL, LGC, GGMC and LapSVM
are popular semi-supervised classification approaches. In
this paper, the user-controlled parameter of AnchorK and
AnchorL, s (number of the closest anchors) was set to be
s = 3, and the iteration number of the local anchor em-
bedding for AnchorL was set to 10 [24]. The user-controlled
parameter α of LGC was set to 0.99 as suggested by [43].
The parameter µ of GGMC was set to µ = 0.99 as suggested
by [22]. Both LGC and GGMC used the kNN graph with
k = 5. LapSVM employed the “one versus all” strategy,
and it used a radial basis function kernel with σ = 10.
The other two user-controlled parameters µI and µA were
set to 1 and 10−6, respectively; the number of neighbours,
k for computing the graph Laplacian was set to 15, as
suggested by [23]. Since the performance of LapSVM is
highly subject to its parameter settings, the following two
alternative experimental settings were considered as well: 1)
σ = 10, µI = 0.5, µA = 10−6, k = 15; and 2) σ = 1, µI = 1,
µA = 10−5, k = 10. Thus, the three LapSVMs with the
respective settings were re-denoted as LapSVM1, LapSVM2

and LapSVM3. In this example, SeRBIA used ϕ = 1.1,
γ = 0.75 and W = 400 for achieving higher classification
accuracy. For fair comparison, all the comparative methods
used the same 4096 × 1 dimensional semantic representa-
tions extracted by SeRBIA for training and validation.

During the experiments, for each dataset, 10% and 20%
of the images per class were randomly selected as the la-
belled training images and the remaining images were used
as the unlabelled training images. Average classification
accuracy rates on the unlabelled sets of the five benchmark
datasets by the 11 approaches were shown in Table 1. A
comparison between the numbers of IF...THEN rules of
SeRBIA and DRB was given in supplementary Table 4.
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TABLE 1: CLASSIFICATION PERFORMANCE COMPARISON ON BENCHMARK DATASETS

Algorithm Singapore WHU-RS UCMerced RSSCN7 AID
10% 20% 10% 20% 10% 20% 10% 20% 10% 20%

SeRBIA 0.9750 0.9883 0.9006 0.9563 0.8871 0.9227 0.8740 0.8946 0.8053 0.8351
DRB 0.9468 0.9673 0.8454 0.8972 0.8025 0.8578 0.8310 0.8683 0.7688 0.8159
SVM 0.9084 0.9582 0.8632 0.9206 0.8211 0.8798 0.8251 0.8563 0.7832 0.8316
kNN 0.9183 0.9550 0.7872 0.8714 0.7740 0.8363 0.8307 0.8689 0.7654 0.8159

AnchorK 0.9589 0.9643 0.8578 0.8956 0.8210 0.8607 0.8302 0.8573 0.7768 0.8169
AnchorL 0.9501 0.9606 0.8600 0.9039 0.8280 0.8690 0.8342 0.8610 0.7804 0.8188

LGC 0.9663 0.9656 0.8931 0.9258 0.8594 0.8844 0.8848 0.8925 0.8290 0.8422
GGMC 0.9669 0.9749 0.8618 0.8904 0.7810 0.8387 0.7538 0.8037 0.7981 0.8203

LapSVM1 0.8322 0.8924 0.8600 0.9284 0.8476 0.8788 0.8351 0.8568 0.6270 0.6731
LapSVM2 0.8802 0.9379 0.8750 0.9303 0.8485 0.8627 0.8429 0.8403 0.6683 0.7027
LapSVM3 0.8633 0.9264 0.8518 0.9225 0.8618 0.8896 0.8480 0.8706 0.6735 0.7395

It is noticeable from Table 1 that there is a significant
increase in terms of classification accuracy of SeRBIA by self-
learning from unlabelled images. Most importantly, SeRBIA
can achieve high classification accuracy (up to 98.83%) sur-
passing the alternatives in the majority of cases. Nonethe-
less, it is important to investigate whether the higher perfor-
mance of SeRBIA over the alternative approaches is of sta-
tistical significance. Therefore, statistical pairwise Wilcoxon
tests between SeRBIA and the 10 alternative approaches
were conducted. The Fisher’s method was employed to
combine the p-values returned from the hypothesis tests on
15 Monte Carlo experiments:

X2 = −2
15∑
j=1

ln(pj); (22)

where pj is the p-value returned from the jth hypothesis
test. The X2 values returned from the pairwise Wilcoxon
tests between SeRBIA and the 10 comparative approaches
were given in supplementary Table 5. Note that the value of
X2 is greater when all the p-values are small, suggesting
that the null hypotheses are not true for all the tests. If
the obtained 15 p-values are all greater than 0.05, X2 is
smaller than −2 × 15 × ln(0.05) ≈ 89.87. From the X2

values returned from the 15 statistical tests one can conclude
that SeRBIA is significantly more accurate than alternatives
across different problems.

In addition, the performance of SeRBIA was further com-
pared with SSDRB, which performs online semi-supervised
learning on a sample-by-sample basis, under the same
experimental protocol based on the five datasets used by
the previous example. Performance comparison in terms of
average classification accuracy rates, numbers of IF...THEN
rules and overall training time consumptions (in seconds, s)
was presented in supplementary Table 6. It can be observed
from this table that in general, the chunk-by-chunk semi-
supervised learning mechanism allows SeRBIA to achieve
higher prediction precision with lower system complexity
on complex problems. Most importantly, the time consump-
tions of SeRBIA is much less than SSDRB, and the difference
becomes even larger with the increase of problem size (it
only takes 5 milliseconds to process each image in AID).
This demonstrates the very strong capability of SeRBIA on
handling unlabelled image streams.

4.2 Comparison with the State-of-the-Art Approaches
In this subsection, the performance of SeRBIA is compared
with the state-of-the-art methods in the literature on WHU-
RS, UCMerced, RSSCN7, AID and NWPU45 datasets under
the commonly-used experimental protocols.

In the experiments presented in this subsection, SeRBIA
uses the same architecture as Section 4.1. However, to max-
imize the strength of SeRBIA, the training and validation
processes are performed based on segments of the aerial
images instead. During the validation process, the semantic
content analyser will receive, in total, M0N confidence
scores for each unlabelled image sk (N scores per segment).
Based on these scores, the dominant land-use category of sk
is determined by equation (23) as its label:

Category(sk)← Categoryi∗; i
∗ = arg max

n=1,2,...,N
(
M0∑
j=1

λn(sk,j)).

(23)
In this example, the following parameter setting was used
ϕ = 1.1, γ = 0.7 and W = 400.

Regarding the splitting of labelled and unlabelled train-
ing sets, common practice is followed [3], [40]. For WHU-RS,
the ratio of labelled training images per category was set to
be 40% and 60%, respectively, and the rest were controlled
as unlabelled. For UCMerced, the ratios were set to be 50%
and 80%. For RSSCN7, the ratios were set to be 20% and
50% per category. For AID, the ratios of labelled training
images per category were set to be 20% and 50%, and the
ratios were set to be 10% and 20% for NWP45.

Numerical results obtained by the state-of-the-art ap-
proaches on the five datasets were listed in Table 2 for
benchmark comparison. The results obtained by DRB were
also reported in the same table as the baseline. It is clear
from this table that SeRBIA is able to perform highly
accurate classification (94.29% accuracy rate on AID with
20% labelled images and 87.32% on NWPU45 with only10%
labelled images) on unlabelled aerial images surpassing, or
on par with, the state-of-the-art approaches.

4.3 Application to Large-Scale Satellite Sensor Images
In this subsection, numerical examples are given to demon-
strate the general concept and principles of SeRBIA for
application to large-scale satellite sensor images.

10 large-scale satellite sensor images of urban and rural
areas of UK were downloaded from Google Earth (Google



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. **, NO. *, **** 2020 9

TABLE 2: CLASSIFICATION PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART METHODS ON BENCH-
MARK DATASETS UNDER COMMONLY USED EXPERIMENTAL PROTOCOLS

Algorithm WHU-RS UCMerced RSSCN7 AID NWPU45
40% 60% 50% 80% 20% 50% 20% 50% 10% 20%

SeRBIA 0.9757 0.9802 0.9636 0.9786 0.9485 0.9619 0.9429 0.9503 0.8732 0.8811
(0.0060) (0.0054) (0.0041) (0.0099) (0.0037) (0.0057) (0.0020) (0.0025) (0.0017) (0.0014)

DRB 0.9442 0.9536 0.9340 0.9684 0.8780 0.9158 0.8358 0.8769 0.7411 0.7812
(0.0115) (0.0087) (0.0049) (0.0123) (0.0055) (0.0058) (0.0038) (0.0044) (0.0001) (0.0001)

CaffeNet [3] 0.9511 0.9624 0.9398 0.9502 0.8557 0.8885 0.8686 0.8953 - -(0.0120) (0.0056) (0.0067) (0.0081) (0.0095) (0.0062) (0.0047) (0.0031)

GoogLeNet [3], [40] 0.9312 0.9471 0.9270 0.9431 0.8255 0.8584 0.8344 0.8639 0.7619 0.7848
(0.0082) (0.0133) (0.0060) (0.0089) (0.0111) (0.0092) (0.0040) (0.0055) (0.0038) (0.0026)

VGG-VD-16 [3], [40] 0.9544 0.9605 0.9414 0.9521 0.8398 0.8718 0.8659 0.8964 0.7647 0.7979
(0.0060) (0.0091) (0.0069) (0.0120) (0.0087) (0.0094) (0.0029) (0.0036) (0.0018) (0.0015)

BoVW(SIFT) [3], [40] 0.7526 0.8013 0.7190 0.7412 0.7633 0.8134 0.6140 0.6765 0.4172 0.4497
(0.0139) (0.0201) (0.0079) (0.0330) (0.0088) (0.0055) (0.0041) (0.0049) (0.0021) (0.0028)

LLC(SIFT) [3], [40] 0.7332 0.7742 0.6941 0.7117 0.7329 0.7657 0.5636 0.5992 0.3881 0.4003
(0.0213) (0.0185) (0.0114) (0.0209) (0.0097) (0.0077) (0.0068) (0.0063) (0.0023) (0.0034)

SalM3LBP-CLM [20] 0.9535 0.9638 0.9421 0.9575 - - 0.8692 0.8976 - -(0.0076) (0.0082) (0.0075) (0.0080) (0.0035) (0.0045)

salM3LBP [20] 0.8974 0.9258 0.8997 0.9314 - - 0.8231 0.8759 - -(0.0184) (0.0089) (0.0085) (0.0100) (0.0019) (0.0038)

salCLM(eSIF) [20] 0.9381 0.9592 0.9293 0.9452 - - 0.8558 0.8841 - -(0.0091) (0.0095) (0.0092) (0.0079) (0.0083) (0.0063)

TEX-Net-LF [44] 0.9761 0.9800 0.9589 0.9662 0.8861 0.9125 0.9081 0.9296 - -(0.0036) (0.0046) (0.0037) (0.0049) (0.0046) (0.0058) (0.0011) (0.0018)

TSDA-ELM [45] 0.9823 0.9892 0.9697 0.9802 - - 0.9232 0.9458 0.8022 0.8316
(0.0056) (0.0052) (0.0075) (0.0103) (0.0041) (0.0025) (0.0022) (0.0018)

VGG-16-CapsNet [46] - - 0.9533 0.9881 - - 0.9163 0.9478 0.8508 0.8918
(0.0018) (0.0022) (0.0019) (0.0017) (0.0013) (0.0014)

Inc.). Spatial resolutions of these images varies from 30 cm
(Worldview-3) to 30 m (Landsat 8). Due to the limited space
of this paper, a subregion of satellite sensor image 1 is
presented in Fig. 4 as an example. All 10 images are given in
supplementary Figs. 7(a)-7(j). These satellite sensor images
vary greatly in terms of semantic content; for example,
including harbour, parking lots, residential areas, freeways,
commercial and forest areas. The local regions of each image
also demonstrate strong variability. The size of each satellite
sensor image is 800 × 1400 pixels. The 10 satellite sensor
images are challenging with high complexity in geometrical
structures and spatial patterns, and they are, thus, partic-
ularly suitable for testing the performance of SeRBIA. The
scale and step size of the sliding window used by SeRBIA
was set the same as for the example in Fig. 2, and each
satellite sensor image was segmented into 4×7 sub-regions.
Note that the segmentation scale used in this paper was
determined empirically. Alternative segmentation scales can
be considered as well, but one needs to ensure that the scale
and spatial resolution of the segments are similar to those of
the training images.

AID dataset [3] was used to train SeRBIA in a supervised
manner. This dataset was chosen for priming SeRBIA be-
cause this dataset contains aerial images from a wide variety
of land-use categories, which cover most of the commonly
seen categories. The supervised training process followed
the same principles as described in Section 3. The size of the
images was rescaled to 400×400 pixels. The aerial images of
different categories in the AID dataset show a great variety
in scale and, the local features of images of some categories
show very strong similarities with other categories. Thus, 16
of the 30 land-use categories with similar spatial resolutions
and lower inter-class similarity were intentionally selected

to train SeRBIA. The chosen land-use categories were listed
in supplementary Table 7. After the supervised training
process, 16 IF. . . THEN rules were acquired as illustrated in
supplementary Fig. 8(a).

After the above, SeRBIA was used to analyse the 10
large-scale satellite sensor images following the same algo-
rithmic procedure presented in section 3. SeRBIA analysed
the sub-regions of the satellite sensor images one-by-one,
and calculated the likelihoods of the most-likely land-use
categories that each sub-region belongs to. The results for
the 10 satellite sensor images were given in supplementary
Figs. 7(a)-7(j) in the form of a 4 × 7 table containing the
background in white and blue colours. The corresponding
result of the subregion of satellite sensor image 1 was also
given in Fig. 4. During the experiment, SeRBIA used ϕ = 1.1
and γ = 0.6. Each large-scale satellite sensor image was
analysed independently, and all the segments from the same
image were fed to SeRBIA as a single chunk.

The experimental process was repeated by using the
NWPU45 dataset [40] to initialize SeRBIA. Similarly, 18
land-use categories of the original dataset were selected for
training (listed in supplementary Table 7) and 18 IF. . . THEN
rules of the corresponding classes were obtained after the
supervised training process described in Section 2.2. The
IF. . . THEN rules were visualized in supplementary Fig.
8(b). The pre-trained SeRBIA was applied to the 10 large-
scale satellite sensor images following the same experimen-
tal protocol. The results were also shown in supplementary
Figs. 7(a)-7(j), which were presented in a similar form but
with the background in white and yellow colours.

From Fig. 4 and supplementary Figs. 7(a)-7(j), it is clear
that SeRBIA is able to identify multiple most-likely land-
use categories of the sub-regions of the large-scale satellite
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Fig. 4: Classification result on a subregion of satellite sensor image 1 using SeRBIA.

sensor images accurately in most cases. For a sub-region,
the proposed approach is able to provide a ratio for the
importance of different high-level semantic features of the
most-likely land-use categories within the sub-region. Fur-
thermore, new land-use categories with the data patterns
that did not appear during the supervised training process
are identified and the newly gained knowledge is used for
analysis.

4.4 Discussion and Future Research

The quantitative analysis in Sections 4.1 and 4.2 undertaken
based on the well-known benchmark datasets demonstrates
that SeRBIA is able to perform highly accurate classifica-
tion, surpassing, or on par with, state-of-the-art benchmark
methods. Unlike other approaches, SeRBIA not only learns
from unlabelled training images to update the system struc-
ture and meta-parameters, but also identifies new land-
use categories that show less similarity with the land-use
categories learned previously from labelled training images.
This autonomous semi-supervised learning procedure sig-
nificantly increases the classification accuracy. Numerical
examples on large-scale satellite sensor images presented
in Section 4.3 justify the validity and effectiveness of the
proposed approach. SeRBIA trained either on the AID or
NWPU45 dataset can perform highly accurate analysis on
satellite sensor images with highly complex high-level se-
mantic features. Meanwhile, SeRBIA has the capability of
continuously self-developing through the analysis process
without human intervention, which allows SeRBIA to learn
life-long from new images.

However, the results presented in Section 4.3 also show
that SeRBIA made some incorrect categorizations occasion-
ally, due to similarity amongst high-level semantic fea-
tures shared by different land-use categories. For example,
SeRBIA sometimes confused land-use categories such as
“forest” and “sparse residential”, “port/habor” and “park-
ing/parking lot”, and “pond” and “meadow”. In some
cases, SeRBIA may not be able to produce highly accurate

estimation on the ratios of importance between multiple
land-use categories identified within the same sub-regions
due to similar high-level semantic content across the images
of different land-use categories in the large-scale AID and
NWPU45 remotely sensed scene datasets. For example, sim-
ilar semantic content can be observed in images of land-use
categories “port/habor” and “industrial/industrial area”.
Thus, SeRBIA may potentially miss some land-use cate-
gories in these particular sub-regions where such high-level
semantic content plays a dominant role. This issue could
be addressed in the future by making an automatic pre-
selection on benchmark datasets and removing the less
representative images before training SeRBIA.

One attractive functionality of SeRBIA is the semantic
interpretability offered by the massively parallel IF. . . THEN
rule base. SeRBIA self-organizes a transparent prototype-
based structure by identifying the most representative sam-
ples from data, which resembles the learning process of
human beings. Although there is no off-the-shelf ground
reference to validate the extracted rules and benchmark
comparisons, their scientific credibility and interpretability
are visually consistent with expert knowledge and human
visual interpretation. Through the insights generated by
SeRBIA, users can check the learned knowledge by exam-
ining the prototypes visually and improve the performance
and correctness of the proposed approach by simply adding,
deleting and/or merging prototypes, which is much more
straightforward than parameter fine-tuning for common
“black box”-type DCNNs. This is a very attractive mode
of learning in contrast with DCNNs and shines a light on
a feasible direction for developing the next generation of
explainable artificial intelligence.

This paper, therefore, offers a very promising approach
for analysing autonomously large-scale satellite sensor im-
ages, providing a useful tool for geospatial data scientists
and practitioners. It needs to be stressed that the main
purpose of this paper was to deliver the general concept
and principles of this new method. Therefore, only standard
image pre-processing techniques and pre-trained DCNN
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models are employed. In fact, SeRBIA is a generic frame-
work, where more advanced techniques can be utilized for
pre-processing and feature extraction to further enhance its
performance, but this is beyond the scope of this paper.

Future research should further increase the classification
accuracy of SeRBIA and its utility for a broad range of real-
world applications. To summarize, the future program of
research involves:

1) In this paper, DCNN models pre-trained on natural
images are used for feature extraction. Although these mod-
els have demonstrated great potential in the remote sensing
domain, it can be expected that a DCNN trained specifically
on aerial images can perform feature extraction better.

2) SeRBIA is pre-trained based on benchmark datasets;
however, these datasets might not be the most suitable ones
for priming the system. A more suitable training set com-
posed of images with different levels of scale, illumination
and resolution needs to be considered.

3) The relationship between the neighbouring segments
(in terms of their locations on the original satellite sensor
image) is not taken into consideration in this paper. By in-
corporating this in the decision-making process, the overall
accuracy and utility of SeRBIA can be increased further.

4) The quality of analysis of SeRBIA was judged empiri-
cally due to the lack of a benchmark. There is no convenient
way to capture ground reference land-use labels for real-
world satellite sensor images. In the future, experts in the
geospatial science domain should be involved to collect high
quality ground datasets for rigorous benchmark compari-
son.

5 CONCLUSIONS

In this paper, a semi-supervised deep rule-based approach
for satellite sensor image analysis (SeRBIA) was proposed
for remotely sensed satellite sensor image analysis. Through
the high-level ensemble feature descriptor, SeRBIA was able
to perform high-quality analysis on large-scale satellite sen-
sor images and provide a detailed analysis with the most-
likely land-use category/categories at each local region of
these images. Moreover, SeRBIA was able to perform con-
tinuous self-learning without human intervention and is
capable of learning life-long. Therefore, SeRBIA represents a
promising technique for assisting human experts to analyse
large-scale fine spatial resolution satellite sensor images.
More widely, this is a generic method that could be applied
to single acquisition, fine resolution RGB imagery captured
by unmanned aerial vehicles and airplanes. It also has a
great potential to be implemented for other real-world ap-
plications concerning image stream/video analysis, such as
autonomous driving and surveillance camera. Quantitative
analysis on benchmark datasets demonstrated that SeRBIA
achieved highly accurate results on unlabelled aerial images
surpassing, or on par with, state-of-the-art benchmarks. Nu-
merical examples on large-scale satellite sensor images justi-
fied the proposed approach with both high classification ac-
curacy and high interpretability by users. The results further
demonstrated the utility of the identified IF. . . THEN rules
and the robustness of the learned interpretable knowledge.
As such, the proposed SeRBIA approach can be applied to a
broad range of image classification problems.
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