Borer, Elizabeth T. and Harpole, W. Stanley and Adler, Peter B. and Arnillas, Carlos A. and Bugalho, M.N. and Cadotte, Marc W. and Caldeira, Maria and Campana, S. and Dickman, Chris R. and Dickson, T.L. and Donohue, Ian and Eskelinen, A. and Firn, Jennifer and Graf, P. and Gruner, Daniel S. and Heckman, Robert W. and Koltz, A.M. and Komatsu, K.J. and Lannes, L.S. and MacDougall, Andrew S. and Martina, J.P. and Moore, J.L. and Mortensen, Brent and Ochoa-Hueso, Raul and Olde Venterink, H. and Power, S.A. and Price, J. and Risch, Anita C. and Sankaran, Mahesh and Schütz, Martin and Sitters, J. and Stevens, Carly and Virtanen, R and Wilfahrt, Peter and Seabloom, Eric W. (2020) Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 11: 6036. ISSN 2041-1723
Full text not available from this repository.Abstract
Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs (‘consumer-controlled’). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food (‘resource-controlled’). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.