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Abstract

Despite its vast proliferation, the blockchain technology is still evolving, and witnesses

continuous technical innovations to address its numerous unresolved issues. An example

of these issues is the excessive electrical power consumed by some consensus protocols.

Besides, although various media reports have highlighted the existence of objectionable

content in blockchains, this topic has not received sufficient research. Hence, this work

investigates the threat and deterrence of arbitrary-content insertion in public blockchains,

which poses a legal, moral, and technical challenge. In particular, the overall aim of this

work is to thoroughly study the risk of manipulating the implementation of randomized

cryptographic primitives in public blockchains to mount kleptographic attacks, establish

steganographic communication, and store arbitrary content.

As part of our study, we present three new kleptographic attacks on two of the most

commonly used digital signatures: ring signature and ECDSA. We also demonstrate our

kleptographic attacks on two real cryptocurrencies: Bytecoin and Monero. Moreover,

we illustrate the plausibility of hijacking public blockchains to establish steganographic

channels. Particularly, we design, implement, and evaluate the first blockchain-based

broadcast communication tool on top of a real-world cryptocurrency. Furthermore, we

explain the detrimental consequences of kleptography and steganography on the users and

the future of the blockchain technology. Namely, we show that kleptography can be used

to surreptitiously steal the users' secret signing keys, which are the most valuable and

guarded secret in public blockchains. After losing their keys, users of cryptocurrencies

will inevitably lose their funds. In addition, we clarify that steganography can be used

to establish subliminal communication and secretly store arbitrary content in public

blockchains, which turns them into cheap cyberlockers. Consequently, the participation

in such blockchains, which are known to store unethical content, can be criminalized,

hindering the future adoption of blockchains.

After discussing the adverse effects of kleptographic and steganographic attacks on

blockchains, we survey all of the existing techniques that can defend against these attacks.

Finally, due to the shortcomings of the available techniques, we propose four counter-

measures that ensure kleptography and steganography-resistant public blockchains. Our

countermeasures include two new cryptographic primitives and a generic steganography-

resistant blockchain framework (SRBF). This framework presents a universal solution

that deters steganography and practically achieves the right to be forgotten (RtbF) in

blockchains, which represents a regulatory challenge for current immutable blockchains.
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Chapter 1

Introduction

1.1 Overview

Since the inception of Bitcoin [Nak08] in 2009, the blockchain, Bitcoin's underlying

technology, has proliferated various sectors [lUJ17], such as the energy sector [MNB+17],

finance [Tap17], healthcare [AEVL16, Med20, MCAF20], logistics [KHD17], and the

field of cryptocurrencies [Nak08, eth20, MGGR13]. Cryptocurrencies represent the first

realization of the blockchain technology and remain to be the most popular blockchain

applications.

The blockchain technology is a type of distributed ledger technologies (DLT), which

eliminate the need for a trusted central authority by storing a digital ledger in a distributed

manner. Any change in the data of a distributed ledger will result in simultaneously up-

dating the ledger in all of the participating machines [DSLG17]. In contrast, blockchains

are DLT's, which consist of an append-only ledger that is represented as chained blocks,

which are sequentially and cryptographically linked using cryptographic hash functions.

Blockchains are generally categorized according to their access permission to permis-

sioned and permissionless blockchains, and according to their accessibility to private and

public blockchains. Participation in public blockchains is available to anyone, whereas

participation in private blockchains is governed by one or more parties. On the other

1



Chapter 1: Introduction Overview

hand, permissionless blockchains permit any party that joins the blockchain to transact,

create new blocks, and change the state of the ledger. On the contrary, permissioned

blockchains restrict the parties that can transact and change the ledger [PCAP19].

Typically, the participating nodes in a blockchain application create signed transac-

tions and broadcast them through their peer-to-peer (P2P) network. These transactions

are later grouped in blocks that are appended to the chain by the miners who are

nominated according to the used consensus protocol. The consensus protocol is essential

to maintain a shared global view of the blockchain and ensure that the same ledger is

replicated in all participating nodes. Examples of the different consensus protocols include

the Proof-of-Work (PoW) protocol, where miners are randomly sampled in proportion

to their computational power, and the Proof-of-Stake (PoS) protocol, where miners are

nominated in proportion to their stake or wealth [Qua11]. In the following, for simplicity,

we describe the process of generating transactions and blocks in the blockchain when

using the PoW consensus protocol.

Blockchain users broadcast their data as transactions that propagate through the

blockchain P2P network according to specific diffusion protocols [FV17a, FV17b]. The

P2P nodes check the validity of the transactions and broadcast them to their neighbouring

nodes. Eventually, the transactions are received by the miners who compete to solve

a computational puzzle in the PoW consensus protocol. The miner, who wins the

competition, groups several transactions into a block and appends it to the end of the

ledger. A block is a collection of transactions, and each transaction contains one or more

cryptographically signed inputs. For example, a Bitcoin transaction usually contains

multiple inputs, and each input is signed using the ECDSA signature with the owner's

private key(s) [NBF+16].

As shown in Table 1.1, most cryptocurrencies use randomized signature schemes

to sign their transactions. Namely, 17 out of 20 cryptocurrencies that we surveyed

use ECDSA and ring signature [RST01], which are randomized, i.e. non-deterministic,

cryptographic signatures. This observation is central to this thesis. In particular, this

thesis explores the risk of using randomized cryptographic primitives in public blockchains

2
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Anonymity Technique

T \#
crypto-
currency

+CT (1) ECDSA
EdDSA

ring
signature

mixers commitments ZKP (2) bullet-
proofs

stealth
addressing

P
se
u
d
o
-a
n
o
n
y
m
it
y

1 Bitcoin \checkmark 
2 Ethereum \checkmark 
3 Ethereum Classic \checkmark 
4 Bitcoin Cash \checkmark 
5 Bitcoin Diamond \checkmark 
6 Litecoin \checkmark 
7 Cardano \checkmark 
8 IOTA WT(5)

9 Dogecoin \checkmark 
10 NEM \checkmark 
11 Nano \checkmark 
12 Lisk \checkmark 
13 Waves \checkmark 
14 Tether \checkmark 
15 USD Coin \checkmark 

S
A

(3
) 16 Dash \checkmark 

17 Bytecoin \checkmark \checkmark 
18 Monero \checkmark \checkmark \checkmark \checkmark 

F
A

(4
)

19 Zerocoin \checkmark \checkmark \checkmark 
20 Zcash \checkmark \checkmark \checkmark 

Table 1.1: Categorization of 20 cryptocurrencies and protocols according to their tier of privacy
(T) and used techniques. (1) Confidential transactions. (2) Zero-knowledge proofs.
(3) Set anonymity. (4) Full anonymity. (5) Winternitz signature. Note, although
these 20 cryptocurrencies do not necessarily have the biggest market capitalization,
they have been selected because of the accessible technical information about their
transactions' signature schemes.

and their vulnerability to kleptography and steganography. These two types of attacks,

as demonstrated in this thesis, might lead to mass-scale theft of cryptocurrency coins

and facilitate the malicious dissemination and storage of arbitrary content. We focus on

permissionless public blockchains for the following four reasons. Firstly, most, if not all,

known cryptocurrencies, such as Bitcoin [Nak08] and Ethereum [eth20], are permissionless

and public. Secondly, permissionless public blockchains represent a more lucrative target

for distributing malicious content because they have a wider reach, compared to private

blockchains. Thirdly, the organization(s) governing a private blockchain can prevent

a known malicious node from joining the blockchain. Fourthly, the organization(s)

governing a permissioned blockchain can restrict the ability of a dishonest node from

altering the state of the ledger. For these reasons, we mainly consider permissionless

public blockchains as they represent a more accessible and more fruitful target for

saboteurs to launch kleptographic attacks and establish steganographic channels.

Gus Simmons, the pioneer of the field of steganography [Sim84], stated that `the

3
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realization that cryptography can be exploited to achieve malicious ends as easily as it

can to achieve beneficial ones is a novel and valuable insight - to both designers and

counter-designers of information security and integrity protocols' [YY04]. Although

Simmon's finding may no longer be novel, it is still relevant today, especially in public

blockchains, which are commonly open-source and cryptographically complex, in which we

demonstrate how the very means of security can also be abused to endanger the security

of the users and jeopardize the technology itself. Therefore, the main goals of this thesis

are to study the threat of maliciously manipulating randomized cryptographic primitives

in public blockchains to mount kleptographic attacks and implement steganographic

channels, and design kleptography and steganography-resistant blockchains.

In the following, we describe the motivations behind this research, its aims, and

objectives in Sec. 1.2. Then, we summarize the significant contributions of this work in

Sec. 1.3. Finally, Sec. 1.4 illustrates the structure of this thesis.

1.2 Motivations, Aims, and Objectives

The threat of kleptography on randomized cryptographic primitives has received significant

research [YY96, YY97a, BPR14, BJK15, AMV15]. The subject recently attracted more

scrutiny due to some revelations of state-sponsored mass-surveillance [BBG13, BPR14,

BJK15]. Kleptography studies the covert mis-implementation of secure cryptographic

primitives to exclusively and subliminally steal the user's secrets while avoiding detection

in the black-box setting [YY97b]. Nonetheless, despite the known and plausible threat of

kleptography on cryptographic primitives, it has not been rigorously studied in public

blockchains despite the following attributes that collectively make it more feasible in

public blockchains as compared to other applications. First of all, the sheer cryptographic

complexity in blockchains requires specialized expertise to scrutinize a given application

for possible kleptographic backdoors. This complexity may obstruct the detection of

unintentional flaws and intentional backdoors. Besides, it has been reported that the

development of public blockchain applications is highly centralized with very few code

contributors [AMM18], which facilitates bias. Furthermore, users tend to trust their
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software and the underlying operating systems [Sch19]; they download and use pre-

compiled executables, such as closed-source cryptocurrency wallets, without necessarily

inspecting them for plausible mis-implementation. Therefore, the first aim of this thesis

is to explore the threat of kleptography on public blockchains. To achieve this aim, we have

the following research objectives. (1) Design new kleptographic attacks on commonly used

randomized cryptographic primitives in public blockchains. (2) Implement these attacks

in real-world blockchain applications. (3) Demonstrate how these attacks can lead to

the secret exfiltration of the users' signing keys, which represent the users' most-guarded

secret.

Furthermore, blockchains permanently store their content organized in chained blocks

of data, and content can not be deleted except with newer copies of the ledger, i.e.

hard forks [PDC17]. Although permanent storage is suitable for specific applications,

such as cryptocurrencies, this feature infringes with the right-to-be-forgotten (RtbF)

as required by law, e.g. the European General Data Protection Regulation [Eur16].

On the one hand, arbitrary-content insertion in the blockchain is the basis for certain

benign applications, such as Tithonus [RC19] and Catena [TD17], which are censorship-

circumvention and consensus agreement applications, respectively. Both Tithonus and

Catena depend on inserting data in Bitcoin transactions. Also, R3C3 [MMSK18] is

a censorship-bootstrapping tool that inserts non-financial data in Zcash [zca20]. On the

other hand, the adverse effects of arbitrary content in blockchains outweigh its advantages.

For example, malicious users may target blockchain platforms to store and disseminate

objectionable content, as discussed by various media reports [S. 18, H. 18, BBC19, Sky18].

For instance, the BBC reported that egregious unethical images are stored in some

cryptocurrencies, and highlighted the difficulties of identifying and removing such content

from blockchain applications [BBC19]. Besides, Matzutt et al. reported that 0.8\% of

146 million Bitcoin transactions store content on the blockchain or use non-standard

scripts [MHH+16]. Later, Matzutt et al. surveyed the methods used to store non-financial

content in Bitcoin [MHH+18]. They discovered that 1.4\% of all Bitcoin transactions

contain non-financial data, and retrieved over 1600 files, some of which contain immoral
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content.

Intuitively, a user seeking to insert arbitrary content in blockchains can replace the

redundant parts of a given transaction, such as the unused parts of the scripts in Bitcoin

transactions [NBF+16]. However, this is detectable, as the redundant components have

a known syntax while the user-inserted content is either human-readable if clear or

random if encrypted. Also, specific to Bitcoin, a user can use certain Bitcoin transactions

that are meant to be used for logging, non-financial communication, and storing content

in the Bitcoin network [MHZ+18]. Nonetheless, this approach burns funds, offers limited

bandwidth, and is economically infeasible. A user can alternatively insert arbitrary

content using provably-secure subliminal techniques. This approach makes it hard to

identify the embedded content, not to mention the infeasibility of removing it from the

blockchain.

Moreover, it is widely known that randomized cryptographic primitives consume

random input seeds or coins, and these coins can be replaced, in principle, by pseudo-

random strings. This explains why randomized cryptographic primitives are considered to

be the primary enabler of kleptography attacks [YY96, YY97a, BPR14, BJK15, AMV15].

Since these strings are embedded in a computationally-undetectable manner, they can also,

intuitively, be used to establish steganographic communication [Sim84, And96, AP98].

Therefore, randomized cryptographic primitives that are used in blockchains present

a plausible paradigm for storing arbitrary content. However, the extent of the threat

that this paradigm represents has not received attention from the research community.

Consequently, this thesis's second aim is to study the threat of steganographic arbitrary-

content insertion in public blockchains by maliciously manipulating their randomized

cryptographic primitives. We attempt to achieve this aim by focusing on the exploitation

of randomized signature schemes in public blockchains. However, our findings are

analogously applicable, beyond signatures, to similar randomized primitives. These

include the commonly used non-interactive zero-knowledge proofs (NIZK). Note that

randomized signature schemes present a lucrative target for content-insertion since they

are extensively used in blockchains compared to other protocols such as IPsec or Transport
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Layer Security (TLS), where signatures are mainly used in the authentication stage.

Whereas, in blockchains, multiple signatures are usually used in every transaction. For

example, a cryptocurrency transaction with several inputs typically contains a signature

for each of the inputs [HAZ17].

As shall be demonstrated in this thesis, kleptography can be used to maliciously

implement blockchain applications to surreptitiously leak the users' keys, which, in the

context of cryptocurrencies, inevitably leads to mass-scale stealing of coins. Whereas,

steganography can be used to secretly store arbitrary content in blockchains, and turn

public blockchains into cheap cyberlockers. Since storing unethical content in blockchains

can motivate regulators to criminalize the participation in such blockchains, stegano-

graphic channels represent a threat not only to the users but may also jeopardize the

future adoption of the technology itself.

Given the aforementioned adverse effects of steganography and kleptography on

blockchains' users and the future of the blockchain technology, it is vital to research

new cryptographic schemes and blockchain designs that are resistant to kleptography

and steganography. Consequently, the third aim of this thesis is to investigate the

current techniques that can resist steganography and design new steganography-resistant

blockchains. To meet this aim, we have the following two objectives. (1) Investigate

and assess all of the available techniques that have been proposed in the literature to

counter kleptography and steganography. (2) Overcome the shortcomings of the current

techniques, if any, by proposing new efficient countermeasures.

1.3 Contribution

The contributions of this thesis can be summarized by the following four contributions.

1. New kleptographic attacks on public blockchains. In Chapter 3, we demon-

strate the threat of kleptography in public blockchains. We show, for the first time,

that kleptography can be used for mass-scale theft of users' keys, causing the users

to lose their identity and cryptocurrency funds. In particular, we present three

new kleptographic attacks on two of the most commonly-used signatures schemes in
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cryptocurrencies: a kleptographic attack on the random numbers of the ring signa-

ture [RST01] and two kleptographic attacks on the ECDSA signature. These three

kleptographic attacks can be used to subvert cryptocurrency wallets to steal the users'

secret signing keys clandestinely. Notably, all of these attacks have the following

properties:

(i) Passive attacks. After the victim user downloads and installs the subverted

wallet, the attacker does not need to interact directly with the victim's wallet.

The communication channel between the subverted wallets and the attacker is

through the posted blockchain transactions.

(ii) Undetectability. The transactions generated by the subverted wallets are compu-

tationally indistinguishable from the honestly generated ones. Therefore, there is

not any probabilistic polynomial-time (PPT) watchdog, which can detect these

attacks in the black-box setting.

(iii) Interoperability. The subverted wallets transact seamlessly with normal wallets,

i.e. they can send to and receive from other wallets regardless of whether other

wallets are subverted.

(iv) Subtlety. Following the definition of kleptography, we consider our attack exclu-

sively in the black-box setting. However, if optimized, the difference between

a subverted wallet source code and the original code is only about ten lines of

code in two functions. This subtlety makes it difficult for technology-savvy users

to review and detect the kleptographic attack even if the subverted wallet is

open-source.

Additionally, we implement and evaluate our attack on the ring signature in two real-

world cryptocurrencies: Bytecoin (v 3.3.3) [Byt18] and Monero (v 0.12.0.0) [Mon18].

Besides, we implement and evaluate our attacks on ECDSA on an implementation

of the signature rather than a blockchain application, because we lack funds for any

cryptocurrency that uses ECDSA, such as Bitcoin, and other applications that use

this signature are not open-source.

2. The first blockchain-based broadcast communication tool. In Chapter 4, we
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demonstrate the plausibility of hijacking public blockchains to communicate stegano-

graphically through the exploitation of randomized signature schemes. Specifically,

we design, implement, and evaluate the security and performance of the first-ever

blockchain-based broadcast-communication application that we refer to as Skywhisper.

With its provable security, high throughput per transaction, and low transaction fees,

Skywhisper also facilitates storing arbitrary content in public blockchains and turns

them into hidden cheap and uncensorable cyberlockers. At the time of submission,

persistently storing 1GB of data on Skywhisper costs less than \$11.51.

3. Surveying and assessing all of the existing techniques to defend against

kleptography and steganography in public blockchains. We present in Chap-

ter 5 all of the previously proposed cryptographic techniques and new blockchain

designs, and assess their effectiveness as countermeasures against kleptography and

steganography. We specifically assess the existing techniques according to three met-

rics: their efficiency as protection against kleptographic stealing of secret information,

their ability to prevent steganographic communication, and their ability to resist the

persistent storage of arbitrary content.

4. Proposing efficient countermeasures. Due to the shortcomings of the existing

techniques, we propose in Chapter 6 four new countermeasures, including two new

cryptographic primitives and a generic steganography-resistant blockchain framework.

The newly proposed countermeasures ensure the resistance of public blockchains to

kleptographic and steganographic abuse. Our countermeasures can be used as the

basis for future steganography-resistant blockchain designs.

Besides, since our kleptographic and steganographic attacks mainly exploit primitives

that are used to achieve anonymity, we surveyed in [AZ19a] the various anonymity

guarantees in cryptocurrencies. Notably, we presented a novel three-tier categorization

of anonymity in cryptocurrencies and public blockchains in general. Our categorization

approach is based on two factors. (1) The ability of the used anonymity scheme to

break any possible linkage between transactions. (2) The ability of the used scheme

1 The cost is based on the price of Bytecoin (BCN) as shown on https://coinmarketcap.com/ on
26/June/2020 .
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Figure 1.1: Thesis roadmap

to hide users' identities. Considering these two factors, we defined the following three

tiers of anonymity in cryptocurrencies: (1) pseudonymity, (2) set anonymity, and (3) full

anonymity. Also, there is a very notable feature that is used by some cryptocurrencies

in conjunction with these three levels of anonymity, which we refer to as confidential

transactions. This feature ensures the transacted amounts are hidden. Table 1.1 shows

20 cryptocurrencies categorized according to the aforementioned tiers of anonymity. This

table also clarifies the techniques that each cryptocurrency employs to meet its anonymity

guarantees. These techniques are mainly the following six techniques: (1) ECDSA/EdDSA

signature, (2) ring signatures, (3) mixers, (4) commitments, (5) zero-knowledge proofs,

and (6) stealth addressing. Importantly, 17 cryptocurrencies of the 20 surveyed currencies

use randomized signature schemes. A detailed description of our survey on the privacy

in cryptocurrencies [AZ19a] is available in Appendix A.

1.4 Thesis Structure

Fig. 1.1 illustrates the structure of this thesis. Chapter 2 defines the notations used in

this thesis, introduces some preliminary concepts, and discusses the related work. Since

randomized cryptographic primitives are susceptible to subversion attacks in the form

of kleptography [YY97a] and steganography [Sim84], and since most of the anonymity

techniques in public blockchains are randomized, as demonstrated in Table 1.1 [AZ19a],

Chapter 3 introduces three kleptographic attacks on two of the most widely used digital

signatures in cryptocurrencies. Additionally, Chapter 3 demonstrates the realization

of our attacks in two real cryptocurrencies: Monero [Mon18] and Bytecoin [Byt18].

These attacks illustrate the extent of the threat that kleptography poses to users' secret

information and cryptocurrency funds.

After that, Chapter 4 explains the adverse effects of blockchain-based steganographic
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communication on the users and the technology, and illustrates how public blockchains

can be hijacked to establish subliminal communication. In particular, we present a new

broadcast communication application on top of the real-world cryptocurrency of Byte-

coin [Byt18]. The proposed application, called Skywhisper, is provably secure, economi-

cally efficient, and has a broadcast channel of up to 64 subscribers.

After demonstrating kleptography and steganography on public blockchains and

discussing their detrimental effects, Chapter 5 presents all of the current techniques that

can be used as deterrence against kleptography and steganography. Besides, we assess

the effectiveness of the surveyed techniques as a defence against the attack scenarios in

Chapters 3 and 4. Due to shortcomings in the available techniques, Chapter 6 proposes

four efficient countermeasures, including a generic framework for future steganography-

resistant blockchains. Finally, Chapter 7 concludes this thesis and discusses directions

for future work.
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Chapter 2

Background

This chapter describes background information that is relevant to understanding the

work of this thesis. Sec. 2.1 explains the used notations throughout this document. After

that, Sec. 2.2 discusses some preliminary concepts, such as the notion of cryptocurrencies

and cryptocurrency wallets. Finally, Sec. 2.3 discusses the related work to this thesis:

kleptography, steganography, and content-insertion in blockchains.

2.1 Notations

In the following, we describe some of the notations that are relevant to understanding

the content of this thesis. If s is a string, then we use | s| to denote its length, and use

s[a,b] to denote a subset of this string starting from the ath bit to the bth bit. Also, if \scrS is

a set, then | \scrS | represents the size of the set, i.e. the number of elements in \scrS . We use

\BbbZ p and \BbbZ \ast p to denote a group of prime order p and a group of prime order p without 0,

respectively. When an element s is randomly picked from a set \scrS we use s
\$\leftarrow \scrS . We also

use \{ 0, 1\} \ell to represent a set of binary strings of length \ell , and \{ 0, 1\} \ast to represent the

set of all binary strings of arbitrary length.

We denote by poly(\cdot ) a polynomially-bounded function and by negl(\cdot ) a negligible

function. If A is used to denote an algorithm, then b\leftarrow A(a) represents that A outputs b

when given a as input. If A is a randomized algorithm, then b \leftarrow A(a; r) denotes that
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A outputs b when given a and randomness r as input. We say that an algorithm A

runs in probabilistic polynomial-time (PPT) if it is a randomized algorithm and for any

input a, r \in \{ 0, 1\} \ast , the execution of A(a; r) terminates in at most poly(| x| ) steps. If an

algorithm A is a PPT algorithm, e.g. an attack, then A is also said to be efficient. When

A represents a keyed algorithm, such as encryption and decryption algorithms, then Az(x)

denotes that A operates on the string x under the key z. For example, ENCz(x) denotes

an encryption algorithm ENC that encrypts x under the key z. Similarly, we use A(1\lambda )

to denote that A takes as input a security parameter of length \lambda .

2.2 Preliminary Concepts

In the following subsections, we provide an overview description of the preliminary

concepts that are relevant to the content of this thesis.

2.2.1 Cryptocurrencies

Various forms of digital cash had been proposed before the current cryptocurrencies. For

example, Chaum described blind signatures for untraceable payments in 1983 [Cha83]

and later proposed untraceable electronic cash in which a central entity, i.e. a bank,

actively participates to issue cash, ensure the validity of transactions, and prevent double-

spending [CFN90, MLS+15]. However, cryptocurrencies were initiated more recently in

2009 after the inception of Bitcoin [Nak08], which has become the basis for numerous

other cryptocurrencies, such as Ethereum1 and Litecoin2. In the following, we describe

cryptocurrencies by the example of Bitcoin.

Unlike Chaum's cash, Bitcoin is a decentralized cryptocurrency where nodes in the

P2P network create their transactions, broadcast, validate, group them into blocks, and

mine new blocks according to the consensus protocol without the need for any third

party. Nodes create their public-private key pairs and transact with each other using

their pseudo-anonymous addresses that are associated with their public keys. These

1 https://ethereum.org
2 https://litecoin.org
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public keys are published in the Bitcoin network, allowing the public verification of all

transactions that are signed using the corresponding private keys [Nak08].

An essential aspect of Bitcoin's design is the so-called `Nakamoto Consensus'. Namely,

Bitcoin solves the Byzantine generals problem [LSP82] and prevents double-spending

through the `Nakamoto Consensus' [lUJ17, Nak08], which relies on the Proof-of-Work

protocol and the `longest-chain win' rule. The latter rule means that nodes choose the

longest ledger, i.e. choose the ledger with more mined blocks, when more than one ledger

exists. In the proof-of-work protocol, the miners compete against each other to solve

a computationally-intensive puzzle by randomly choosing a nonce number so that the

cryptographic hash value is less than or equal to a predefined value. The miner who

succeeds in solving the puzzle is rewarded with a mining reward, which represents how

new coins are minted in Bitcoin [NBF+16]. Since Bitcoin is fully decentralized and miners

are sampled in proportion to their computational power, Bitcoin relies on the assumption

that honest participants correspond to at least 51\% of the total computational power in

the P2P Bitcoin network [MLS+15].

2.2.2 Cryptocurrency wallets

A cryptocurrency wallet is an abstraction of the object where the cryptocurrency's

credentials reside. Usually, these credentials are in the form of the user's private key(s) and

their corresponding public keys. Cryptocurrency wallets are generally categorized into the

following categories according to how the keys are managed [Gur18]. (1) Software wallets

are applications that store the public-private keys and manage the user's transactions. If

the keys are stored at the client-side, then the wallet is said to be a client-side wallet.

When the keys are stored at a trusted third party and accessed online, it is called

a web-based wallet. Software wallets can also be stored in air-gapped machines to further

protect the keys such as Ellipal cold wallet [Ell20]. (2) Hardware wallets store the

keys in dedicated and trusted Swiss-Army-like off-line hardware modules, which are

usually PIN-protected and provide USB connectivity. Examples of such wallets include

Tezor [Sat20] and Ledger wallets [Led20]. (3) Paper wallets store the keys on a printed
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paper, usually in the form of alphabetical strings or QR code. Paper wallets are similar

to brain wallets in which users are required to memorize some mnemonic corresponding

to their keys [Gur18].

2.2.3 Pseudo-random functions (PRF)

Let us define a function F that takes as input a key k \in \scrK and a string x \in \scrX , and

outputs y \in \scrY . \scrK is the key space, \scrX is the input space, and \scrY is the output space, i.e.

F : \scrK \times \scrX \rightarrow \scrY or simply y = Fk(x). Also, let us denote by \scrF \{ \scrX ,\scrY \} the set of all functions

f 's that map inputs from \scrX to \scrY . F is said to be a pseudo-random function (PRF) if

its output is computationally indistinguishable from the output of a randomly-sampled

function f
\$\leftarrow \scrF \{ \scrX ,\scrY \} [LR86, AMV15]. More specifically, assume an oracle \scrO flips a coin

to randomly choose b
\$\leftarrow \{ 0, 1\} , then:

\bullet if b = 0, \scrO randomly chooses a key k
\$\leftarrow \scrK , and executes r \leftarrow Fk(x), and

\bullet if b = 1, \scrO randomly chooses a function f
\$\leftarrow \scrF \{ \scrX ,\scrY \} , and executes r \leftarrow f(x).

In addition, assume that a PPT adversary \scrA is given access to the oracle \scrO and is

challenged to guess b. In particular, \scrA chooses x \in \scrX , and queries \scrO . \scrA is then given r

and asked to generate a bit \'b representing his guess. F is considered to be a secure PRF

if there does not exist any PPT adversary that can distinguish between the two outputs

except for a negligible probability \epsilon , i.e. the following is valid: Pr[b = \'b] - 1/2 \leq \epsilon .

2.2.4 Collision-resistant hash functions (CRH)

A hash function H is a function that maps a message of arbitrary length x \in \scrX to an

output of fixed length that is called the hash value or the message digest y \in \scrY , i.e.

H : \scrK \times \scrX \rightarrow \scrY , where \scrK is the key space. A collision happens if two different messages

m1 and m2 hash to the same value, that is, H(m1) = H(m2), such that m1 \not = m2. Usually,

the size of the domain | \scrX | is larger than the size of the range | \scrY | ; hence, collisions are

unavoidable. However, H is said to be collision-resistant if it is computationally hard to

find a collision. In other words, if H is a collision-resistant hash (CRH) function, then

a PPT adversary \scrA can not find two distinct messages that hash to the same value except
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for a negligible probability \epsilon , i.e. Pr[(m1,m2)\leftarrow \scrA \wedge m1 \not = m2 \wedge H(m1) = H(m2)] \leq \epsilon .

Secure hash functions should also satisfy the following two properties. Pre-image

resistance, also called one-wayness, implies that given a hash value h, it should be

computationally infeasible to find a message m, such that H(m) = h. Whereas the other

property, second pre-image resistance means that given a message m, there does not exist

any computationally-bounded adversary that can find a different message \'m that hashes

to the same value as m.

2.2.5 Encryption algorithms

An (asymmetric) encryption scheme consists of three algorithms (KeyGen,Enc,Dec) as

follows [ADR02]:

\bullet (PK,SK)\leftarrow KeyGen(1\lambda ) is a key generation algorithm that takes as input a security

parameter 1\lambda and outputs a pair of public and secret keys (PK,SK).

\bullet ct\leftarrow EncPK(m) is a probabilistic encryption algorithm that takes as input a public

key PK, and a message m from the message space \scrM , and outputs a ciphertext ct.

\bullet m\leftarrow DecSK(ct) is a decryption algorithm that takes as input a secret key SK, the

ciphertext ct, and outputs the corresponding plaintext message m.

It is required that, except for a negligible probability, m \leftarrow DecSK(EncPK(m)). In

this work, we frequently refer to the notion of semantic security of encryption schemes,

or indistinguishability of ciphertext under chosen-plaintext attack (IND-CPA). This

notion means that there does not exist any PPT adversary \scrA , who is given a randomly-

generated public key PK and can distinguish with a non-negligible probability between

the encryption of two messages m0 and m1 that are chosen by \scrA . In other words, a given

encryption scheme is IND-CPA secure if it satisfies the following statement, where negl(\lambda )

is a negligible function in the security parameter \lambda [ADR02].

Pr

\left[ 
  b = \'b

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

(PK,SK)\leftarrow KeyGen(1\lambda ), \{ m0,m1\} \in \scrM \leftarrow \scrA (PK),

b
\$\leftarrow \{ 0, 1\} , ctb \leftarrow EncPK(mb),\'b\leftarrow \scrA PK(ctb)

\right] 
   - 1

2
\leq negl(\lambda )
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2.2.6 Digital signatures

In the following, we use Pointcheval and Stern's definition of generic signature

schemes [PS96]. A user with a public-secret key pair (PK,SK) can sign a message

m with his secret key SK to generate a signature \sigma . The signature \sigma can be verified

publicly by any party using the signer's public key PK. However, it is hard for any other

party to forge a user's signature on m without his SK, which is kept secret by the user.

More formally, a signature scheme \scrS is a tuple of three algorithms (KeyGen, Sign,Verify)

as follows:

\bullet (PK,SK)\leftarrow KeyGen(1\lambda ) is a key generation algorithm that takes as input a security

parameter 1\lambda and outputs a pair of public and secret keys (PK,SK).

\bullet \sigma \leftarrow Sign(SK,m) is a signing algorithm that takes as input a secret key SK, and

a message m, and outputs a signature \sigma .

\bullet b \leftarrow Verify(PK,m, \sigma ) is a verification algorithm that takes as input the signer's

public key PK, the signed message m and the signature \sigma , and outputs b = 1 if \sigma 

is valid.

It is required that for any m in the message space: Verify(PK,m,Sign(SK,m))\rightarrow 1.

Also, a signature scheme is considered secure if it achieves existential unforgeability

under chosen-message attack (EUF-CMA) [GMR88, ADR02, BB04]. EUF-CMA means

that there does not exist any PPT adversary \scrA , who can forge a valid signature except

for a negligible probability. \scrA 's probability in forging a valid signature \sigma \scrA is defined

according to the following security experiment. \scrA is given a public key PK and access

to a signing oracle to sign q messages \{ m1, . . . ,mq\} . After the query phase, \scrA is

challenged to generate a signature \sigma \scrA for a message m\scrA that has not been queried to

the signing oracle, i.e. m\scrA /\in \{ m1, . . . ,mq\} . \scrA wins in this experiment if \sigma \scrA is valid,

i.e. 1\leftarrow Verify(PK,m\scrA , \sigma \scrA ) [ADR02]. In the following two subsections, we describe two

signature schemes that are particularly relevant to the work in this thesis: the ECDSA

signature, and the ring signature.
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KeyGen(param):

\bullet Pick random s
\$\leftarrow \BbbZ q;

\bullet Set S = gs = (Sx, Sy);
\bullet Output (PK = S,SK = s);

Sign(s,m):

\bullet Pick random r
\$\leftarrow \BbbZ q;

\bullet Set R = gr = (Rx, Ry);
\bullet Set w = (hashp(m) + s \cdot Rx) \cdot r - 1 (mod q);
\bullet Output \sigma = (Rx, w);

Verify(S,m, \sigma ):
\bullet u1 = hashp(m) \cdot w - 1 (mod q) and u2 = Rx \cdot w - 1 (mod q);
\bullet Compute P = gu1Su2 = (Px, Py);

\bullet Output valid if and only if Px
?
= Rx (mod q);

ECDSA (KeyGen,Sign,Verify)

Figure 2.1: ECDSA signature scheme: g is a generator of the curve, and hashp is a secure
collision-resistant cryptographic hash function

2.2.6.1 ECDSA

The ECDSA signature is a randomized-signature scheme over the NIST elliptic curves that

has been widely used in blockchains, particularly among pseudo-anonymous currencies

(Table 1.1), such as Bitcoin, Ethereum, etc. ECDSA is a tuple of three algorithms

(KeyGen, Sign,Verify), and is based on the elliptic curve discrete-logarithm problem. An

illustration of the ECDSA signature is depicted in Fig. 2.1.

2.2.6.2 Ring signature

Ring signatures were introduced by Rivest et al. [RST01], extending the idea of group

signatures that was proposed by Chaum and van Heyst [CH91]. In a group signature,

there is a trusted group manager who constructs the signature and can de-anonymize

the other members. On the contrary, ring signatures do not have managers, and any

signer can sign on behalf of the group. A ring signature scheme consists of a tuple of

four algorithms \scrS = (Setup,KeyGen, Sign,Verify) as follows:

\bullet param\leftarrow Setup(1\lambda ) is a setup algorithm that takes as input a security parameter

1\lambda and outputs a system parameter param.
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\bullet (PK,SK)\leftarrow KeyGen(param) is a key generation algorithm that takes as input the

setup parameter param, and outputs a pair of public and secret keys (PK,SK).

\bullet \sigma \leftarrow Sign(\scrP ,SK, \ell ,m) is a signing algorithm that takes as input a set of public

keys \scrP = \{ PK1, . . . ,PKk\} , which corresponds to the k ring members, i.e. the

possible signers, the secret key SK of the actual signer, an index \ell such that SK

is the secret key of the \ell th member, and a message m, and outputs a signature \sigma .

The ring signature is said to be of size k.

\bullet b\leftarrow Verify(\scrP ,m, \sigma ) is a verification algorithm that takes as input a set of public

keys \scrP , the signed message m and the signature \sigma , and outputs b = 1 if and only if

the signature is valid.

Besides the general soundness and completeness properties of digital signatures, ring

signature guarantees signer-ambiguity, where a verifier should not be able to identify

the actual signer with probability greater than 1/k. Besides, as explained by Rivest

et al. [RST01], ring signatures are `set-up free' in the sense that the signer does not

need the consent nor the participation of the other members to include them in the

ring signature. The signer only needs to know the members' public keys. Since their

introduction, ring signatures have evolved in three directions: (1) threshold ring signa-

tures [BSS02], (2) linkable ring signatures [LWW04, ACST06, LW05], and (3) traceable

ring signatures [FS07, Fuj11]. As ring signatures are particularly pertinent to the work

in this thesis, we clarify below the usage of ring signatures in the CryptoNote protocol

and in Monero's RingCT.

The use of ring signatures in CryptoNote. CryptoNote3 is an open-source frame-

work that is implemented by various cryptocurrencies, such as Bytecoin [Byt18]. As

shown in its whitepaper [Sab13], CryptoNote's signature uses a slightly modified version

of the traceable ring signature scheme proposed by Fujisaki et al. [FS07]. According

to this protocol, the payer generates a one-time public key R = gr and computes the

address T = (g\sansh \sansa \sanss \sansh p(A
r) \cdot B). In this case, the payee can compute the corresponding

one-time private key as t = hashp(Ra) + b. Note that the one-time ring signature scheme

3 https://cryptonote.org
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Sign(\{ PKj\} kj=1,SK\ell , \ell ,m):
\bullet Set I = hashg(PK\ell );

\bullet For j \in [k], pick qj
\$\leftarrow \BbbZ p;

\bullet For j \in [k], j \not = \ell , pick wj
\$\leftarrow \BbbZ p;

\bullet For j \in [k]:
-- Set Lj = gqj if j = \ell ;

Set Lj = gqj \cdot PKwj

j if j \not = \ell ;
-- Set Rj = (hashg(PKj))

qj if j = \ell ;
Set Rj = (hashg(PKj))

qj \cdot Iwj if j \not = \ell ;
\bullet Set c = hashp(m,L1, . . . , Lk, R1, . . . , Rk);
\bullet For j \in [k]:

-- Set cj = wj if j \not = \ell ;

Set cj = c - \sum k
j=1 cj if j = \ell ;

-- Set rj = qj if j \not = \ell ;

Set rj = q\ell  - c\ell SK\ell if j = \ell ;
\bullet Return \sigma = (I, c1, . . . , ck, r1, . . . , rk).

Verify(\{ PKj\} kj=1,m, \sigma ):
\bullet For j \in [k]:

-- Set L\prime j = grj \cdot PKcj
j ;

-- Set R\prime j = (hashg(PKj))
rj \cdot Icj ;

\bullet Check if
\sum k

j=1 cj
?
= hashp(m,L

\prime 
1, . . . , L

\prime 
k, R

\prime 
1, . . . , R

\prime 
k)

CryptoNote Ring Signature

Figure 2.2: CryptoNote ring signature: signing and verification algorithms

is transformed from the OR-composition of Schnorr's identification Sigma protocols. Also,

the protocol has an LNK algorithm to link any two signatures produced by the same

signing key, which is essential to prevent double-spending. In particular, let PK\ell = gSK

be the signer's public key, and define I = (hashg(PK\ell ))
SK as a `key image' as part of the

signature. The ring signatures signed by the same secret key would have an identical key

image; therefore, double-spending can be defeated efficiently by simply checking if the

key image has already been used. For clarity, CryptoNote's ring signature is shown in

Fig. 2.2. The signing algorithm takes as input \scrP = \{ PKj\} kj=1 which is a set of public

keys, the signer's secret key SK\ell , index \ell \in [k], and the message m to be signed. As seen

in Fig. 2.2, the verifier does not know any information beyond the fact that 1 out of the

possible k signers generated the signature \sigma .
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Borromean ring signature in Monero's RingCT. Monero4 is a popular cryptocur-

rency that was initially based on CryptoNote, and Borromean ring signature is a 1-out-of-n

signature invented by Maxwell and Polestra [MP15] that is an optimization of the AOS

ring signature by Abe et al. [AOS02]. Borromean ring signature is used in Monero's ring

confidential transactions (RingCT) to generate rangeproofs by creating a ring signature

for each digit of the committed amount. This effectively hides the committed amount

a while proving its range a \in [0, 231  - 1]. If an amount a is encoded in 16 base-4 digits

d0d1d2 . . . d15, the sender chooses 16 blinding factors xi and generates 16 commitments,

one for each digit as follows:

Ci = xiG+ aiH

where ai = (415 - i \ast di) , i \in [0, 15] and di \in [0, 3]. After that, the sender generates 4

public keys Ci,d for each digit di corresponding to the 4 possible values d \in \{ 0, 3\} as

follows:

Ci,d = Ci  - (415 - i \ast d)H

This will generate four public keys Ci,d for each ring signature of which the signer/sender

knows one private key, xi corresponding to the public key that was generated for the

actual committed value of the digit. For example, if the 3rd most significant digit of the

base-4-encoded a has a value of 1, that is d2 = 1, then the signer would know the private

key x2 corresponding to the second public key in the 3rd ring: C2,1 because:

C2,1 = C2  - (415 - 2 \ast 1)H

C2,1 = (x2G+ (415 - 2 \ast 1)H) - (415 - 2 \ast 1)H = x2G

By choosing the blinding factors x0, x1, . . . , x15 so that they add up to x, which is the

blinding factor used for the overall commitment C, any party can publicly verify that

C = C0 +C1 + \cdot \cdot \cdot +C15. However, no one can know which of the possible four values each

commitment corresponds to, nor can they know which value in the range is committed

to.

4 https://monero.org
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2.3 Related Work

The work in this thesis is closely related to the topics of kleptography, steganography, and

arbitrary-content insertion in blockchains. The relevant literature review of each of these

three topics is presented respectively in Sec. 2.3.1, Sec. 2.3.2, and Sec. 2.3.3.

2.3.1 Kleptography

In 1996, Young and Yung introduced the notion of kleptography [YY96, YY97a], which

has also been referred to as Algorithm-Substitution Attacks (ASA) [BPR14, BJK15], and

Subversion Attacks (SA) [AMV15].

Besides pioneering the topic of kleptography, Young and Yung laid the foundations

for the study of the malicious implementation of cryptography in a series of publica-

tions [YY96, YY97a, YY97b, YY98, YY03, YY05b, YY05a, YY05c, YY06, YY07, YY10,

YY04]. In [YY96], the authors shed light on the risk of using cryptographic schemes as

black boxes and presented the notion of Secretly-Embedded Trapdoor with Universal

Protection (SETUP). A SETUP attack is when the manufacturer or developer of these

schemes maliciously implements them to exclusively get the user's secret in an undetectable

fashion in the black-box setting, without the need for explicit subliminal channels. They

described a set of SETUP attacks on specific primitives, such as the RSA key generation

algorithm, El-Gamal, and DSA. They also presented some recommendations to mitigate

the effects of SETUP attacks like controlling the randomness, cascading independently-

developed cryptographic systems, and checking the integrity of cryptographic software.

In [YY97a], Young and Yung referred to this new area of threats as kleptography and

introduced new definitions for their SETUP attacks. They defined a weak SETUP as

an attack that is not detectable except for the attacker and the owner of the subverted

hardware or software who owns his private key. In contrast, a strong SETUP is when

the attack is only detectable to the attacker even if the users who own the secret key

reverse-engineer the subverted system. They also showed a new kleptographic attack

on the Diffie-Hellman key exchange protocol based on the discrete-logarithm problem.

Besides, they strengthened their previous attack on RSA by using a technique called
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`probabilistic bias removal' to ensure the uniform distribution and the indistinguishability

of the cryptographic elements that are kleptographically-leaking the RSA private key to

the attacker. After that, Young and Yung showed broader applicability of their SETUP

attacks and the general vulnerability of discrete-log problem (DLP)-based cryptosystems

to kleptography. In particular, they described a generic kleptographic attack on the

discrete-log problem, and then applied it to multiple DLP-based cryptosystems, such

as the ElGamal encryption and signature algorithm, DSA, and the Schnorr signature

algorithm [YY97b].

Unlike their previous work, which focused on designing kleptographic attacks on

public-key cryptosystems, Young and Yung attempted to design kleptographic attacks

on secret symmetric ciphers in [YY98, YY03, YY05c]. In [YY98], the authors presented

a new deterministic and symmetric block cipher called `Monkey', whose specifications are

secret, i.e. not publicly available, to highlight the risk of trusting black-box block ciphers.

To learn the user's symmetric key k, Monkey requires that the attacker, i.e. the malicious

designer, obtains a sufficient number of ciphertexts under the same key k, each containing

one known plaintext bit. Monkey was improved later in [YY03], which describes a new

secret symmetric cipher called Black Rugose that, unlike Monkey, eliminates the need

for known plaintext and leaks more than one bit of the user's key in each ciphertext c.

The number of ciphertexts needed to leak an n-bit key in Black Rugose is ((n log n)/b),

where b is the number of leaked bits in each ciphertext. Note, both Monkey and Black

Rugose are secret ciphers and are in direct violation of Kerckhoffs' principle, which states

that the security of a cryptosystem should be based on the difficulty of determining the

secret key and not from the secrecy of the algorithm itself [PP10]. Besides, Young and

Yung presented the first general-purpose subliminal channel that is built into a secret

symmetric cipher in [YY05c]. Their subliminal channel is unique in two regards. Firstly,

it is built onto a deterministic function, unlike previous subliminal channels, which were

built onto probabilistic cryptosystems. Secondly, the subliminal channel described in

their work is atypical as both the sender and the receiver know beforehand the subliminal

message ms, and the sender subliminally and randomly transmits a bit b in each cipher
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to the receiver who knows some private key. This uniqueness can limit the practicality of

the presented subliminal channel.

Young and Yung also revisited their attack on RSA key generation [YY96, YY97a]

in [YY05a, YY06, YY10]. In [YY05a], the authors focused on improving the undetectabil-

ity of their attack on RSA key generation that was first presented in [YY96, YY97a].

Motivated by the fact that their previous attack on RSA [YY96] is no longer secure since

the embedded attacker's public key is 512 bits, and RSA-576 has been factored [Wei03],

Young and Yung proposed in [YY06] a new attack on RSA-1024 key-generation algorithm

using a pair of twisted elliptic curves. Their attack is premised on employing elliptic

curve Diffie-Hellman (ECDH) key exchange between the subverted RSA device and

the attacker to allow him to factor the RSA modulus, and using point compression for

space efficiency. Their key-recovery mechanism can also be used to enable legitimate

escrow authorities to recover users' private keys. In [YY10], Young and Yung further im-

proved on their previous work on RSA [YY06, YY07] by presenting a new space-efficient

information-hiding algorithm called `covert key exchange', which they used to minimize

the information needed to be leaked and reduce the error probability. They used this

algorithm to implement the first asymmetric kleptographic backdoor in the standard

model, as opposed to the oracle mode, in RSA key generation. They also pointed out

other possible applications of this algorithm, such as designing a kleptographic backdoor

in SSL.

In light of the recent revelations regarding the use of algorithm-substitution attacks

(ASA) [BBG13], i.e. kleptography, for mass surveillance, Bellare, Paterson, and Rogaway

(BPR) [BPR14] formally studied the resistance of symmetric encryption algorithms

against such attacks. They formalized the two security goals of the attacker who mounts

ASA attacks: undetectability and surveillance resistance. The former indicates the ability

of passive observers to distinguish ciphertext that is produced by the corrupted algorithm

from that produced by the original algorithm. In contrast, surveillance resistance reflects

the ability of the `big brother', i.e. the attacker, who possesses the kleptographic secret key,

in making this distinction. They presented two types of attacks: IV-replacement attacks
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that apply to algorithms that surface the IV, and biased-ciphertext attacks, which are more

generic and can be mounted on any stateless randomized cipher with enough entropy. BPR

concluded that randomized stateless schemes are vulnerable to kleptography; whereas,

deterministic stateful algorithms, such as unique-ciphertext encryption algorithms, are

resistant against kleptography. Later, Bellare, Jaeger, and Kane (BJK) [BJK15] extended

the work of BPR to attack stateful algorithms and introduced the notion of strong

undetectability. Also, Degabriele et al. [DFP15] refined the security definitions presented

in BPR and relaxed the requirement for perfect decryptability. Moreover, Bellare and

Hoang [BH15] presented secure public-key encryption schemes that are resistant to the

subversion of random number generators.

This thesis is particularly related to the topic of kleptography in signature schemes,

which we describe in the following. The work of Ateniese et al. [AMV15] showed that ran-

domized signature schemes are inevitably susceptible to subversion attacks, i.e. kleptogra-

phy. Besides, they showed that schemes with unique signatures are kleptography-resilient.

The authors also suggested the use of trusted cryptographic reverse firewalls [MSD15] to

sanitize re-randomizable signature schemes.

Goh et al. [GBPG03] added an undetectable key-recovery mechanism to the imple-

mentation of SSL/TLS [DA99] and SSH2. The premise of their attack is that a malicious

implementer, or escrow agency according to their terminology, can replace the random-

looking text in these protocols by encryption of the session key. Since the output of

semantically-secure encryption algorithms is indistinguishable from the pseudo-random-

looking text, the output of the subverted protocols cannot be distinguished from the

output of standard protocols except for the malicious implementer who possesses the

recovery key. Another attack on SSL/TLS is presented by Go\lebiewski et al. [GKZ06].

Also, a set of symmetric backdoored designs for RSA were presented by Cr\'epeau and

Slakmon [CS03] to secretly establish a subliminal channel in the public modulus (n, e) so

that the attacker can factor n to compute the private modulus d. The authors employ

the Coppersmith's algorithm [Cop96] to minimize the amount of the information to be

leaked and speed up the process.
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Examples of other kleptographic attacks include attacks on pseudo-random gener-

ators [DGG+15], DL-based signatures [Te\c s19], and DSA [BSKC19]. Te\c seleanu [Te\c s19]

described a threshold kleptographic attack on the generalized ElGamal signature that

can be extended to similar DL-based signatures. They also listed some of the techniques

proposed in the literature to defend against kleptography. Dodis et al. [DGG+15] formally

studied how to subvert the Dual EC pseudo-random generators (PRG) and backdoored

PRGs, generally. Besides, they studied how to immunize potentially subverted PRGs.

Also, Hartl et al. [HAZ17] showed the existence of a subliminal channel in the EdDSA

signature [BDL+11], explained its applicability in three scenarios, and discussed three

possible mitigation and detection techniques. However, they concluded that none of

their countermeasures are viable in network protocols. Besides, the work of Schnier et

al. [SFKR15] provides a categorization of cryptographic techniques that are used secretly

to weaken cryptography.

Rijmen and Preneel [RP97] presented constructions for backdoored block ciphers

with hidden structures, called trapdoors. These backdoored ciphers look secure to any

party, who does not know about the trapdoors, while allowing the attacker(s), i.e. the

malicious designers, to obtain information about the key by using a small number of

plaintexts. Their work helps demonstrate the possibility of such structures even in known

algorithms, and the need to justify the design of pseudo-random generators. Later, the

security of these trapdoored ciphers was broken in [WBDY98].

To thwart kleptography, several techniques have been proposed [YY96, BPR14,

AMV15]. Young and Yung proposed the use of trusted external randomness sources,

cascading independent cryptosystems, and checking the integrity of the cryptographic

software [YY96]. Whereas, Bellare et al. argued that randomized schemes are inevitably

susceptible to kleptography, while deterministic cryptographic schemes are resistant to

such threat [BPR14, BJK15]. Furthermore, the integrity of the process of randomness

generation can be checked using verifiable random functions [MRV99] and the controlled

randomness technique proposed by Hanzlik et al. [HKK17].

In the context of subversion-resistant signatures, Zhang et al. [ZLLZ13] proposed
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a subliminal-free variant of the Schnorr signature [Sch91] using an honest-but-curious

interactive warden. Likewise, Bohli et al. [BGVS07] proposed a subliminal-free vari-

ant of ECDSA that requires non-interactive wardens. Besides, Ateniese et al. [AMV15]

proposed the use of reverse firewalls to re-randomize the output of possibly sabotaged

signature schemes. In addition, Russell et al. [RTYZ16a] modelled and proved that a full

domain hash-based signature scheme achieves subversion resilience. Recently, Russell et

al. [RTYZ16b, RTYZ17] proposed the use of a splitting-randomness technique to secure

a randomizable IND-CPA public-key encryption. Furthermore, Fischlin and Maza-

heri [FM18] proposed a novel technique that proactively defends against kleptographic

attacks assuming initial temporary trust, i.e. subversion happens after a period of an hon-

est initial phase. Using this initial phase of trust, they provided kleptography-resistant

constructions for homomorphic public-key encryption, symmetric-key encryption, signa-

ture schemes, and physically unclonable function PUF-based key exchange. For more

details, Chapter 5 discusses all of the existing techniques that have been proposed as

countermeasures against kleptography in cryptographic schemes.

2.3.2 Steganography

The concept of steganography was introduced by Simmons' prisoner's problem [Sim84].

Simmons discussed the problem where two prisoners want to exchange secret information,

an escape plan, without being detected by the prison's warden. The warden carefully

inspects the exchanged messages and will throw any suspicious communication. In this

context, the problem of steganography is the ability of the two prisoners to communicate

secret information by embedding it in normal warden-inspected messages, known as cover

text, without being caught by the warden. Cover texts that contain steganographically-

hidden information are known as stegotexts.

Anderson et al. [And96, AP98] formally defined steganography and discussed the

difficulty associated with formalizing a general proof of security for steganography in

practice. Several works [Cac98, OME98, Mit00] provided information-theoretic treatment

of steganography security and robustness. Cachin [Cac98] used information theory and
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hypothesis testing to model the security of a stegosystem against a passive attacker as the

relative entropy between the distribution of innocent cover text and that of stegotexts.

According to this model, a steganographic system is said to be perfectly secure against

passive adversaries if this relative entropy is zero, and \epsilon -secure if the value is less than or

equal to \epsilon . Similarly, Ettinger [Ett98] used game theory to model active attackers on

steganographic systems.

Unlike prior information-theoretic work that defined the security of steganographic

systems based on hypothesis testing [Cac98], Z\"ollner et al. [ZFK+98] used information

theory to model the security of stegosystems by the relative entropy of the hidden message,

the entropy of the stegotext, and the entropy of the cover text. In particular, they argued

that a stegosystem is information-theoretically secure if there is not any party that can

learn any information about the hidden message by scrutinizing the stegotext and cover

text. Z\"ollner et al. concluded the following two requirements for secure stegosystems:

(1) the stegosystem key should be kept secret, and (2) the cover text should be unknown

by sampling random cover texts.

Furthermore, Mittelholzer [Mit00] attempted to present a general model to assess

the security and robustness of steganographic systems using information theory and

based on mutual information. Namely, according to Mittleholzer's model, the security of

a given steganographic system is assessed by the mutual information between the secret

hidden message and the stegotext in which it is contained. Whereas, the robustness

of a steganographic system is assessed by the mutual information between the secret

message and the modified stegotext.

More recently, Hopper et al. provided a cryptographic formalization of steganographic

security and robustness [HLvA02, HvL09]. The authors argue that information theory is

limited when addressing security in steganography just as it is limited when addressing

security in cryptography. Hence, Hopper et al. [HLvA02, HvL09] used cryptography and

complexity-theory techniques to define symmetric-key steganographic systems that are

secure against a passive adversary in terms of the computational indistinguishability of

stegotext from the cover text. The authors also defined robustness in steganography as
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the ability to resist the changes that are introduced by the adversary, i.e. the warden in

this case, to the stegotext.

Katzenbeisser and Petitcolas presented a different approach to define security in the

steganographic system [KP02]. Motivated by the work of Moskowitz et al. [MLC01], the

authors argued that prior information-theoretic definitions, [ZFK+98, Cac98, Mit00], may

not be appropriate to model the security of practical steganographic systems. Therefore,

they defined the security of a given steganographic system \scrS \scrT based on a probabilistic

game between the attacker and a judge. Namely, according to their model, \scrS \scrT is

considered secure if the attacker, after a query phase, can not distinguish between

a stegotext and an innocent cover text better than random. The authors also introduced

the notion of `conditional security' in steganographic systems.

The work of Petitcolas et al. [PAK99] gives an overview of the topic of steganography,

explains relevant terminologies, and describes some of the used techniques and their

respective known attacks. In addition, steganography has been applied in various media.

Early steganography transmitted information by embedding it directly into the text,

e.g. in music scores [PAK99]. Also, images [MBR99] and audio/video [Gop03, CXT06]

can be used as cover texts to communicate steganographically. However, the work in

this thesis is mainly related to steganographic attacks on cryptographic protocols where

information is hidden in subliminal channels in these protocols [HAZ17].

2.3.3 Content insertion in blockchains

Metzutt et al. [MHH+16] provided insight regarding the various ways that could be

exploited to store, possibly illegal, content in the Bitcoin blockchain. They listed four

methods for embedding content in Bitcoin transactions: (1) including up to 100 bytes

of arbitrary content in coinbase and OP RETURN transactions, which offer an intended

mechanism to augment Bitcoin transactions with arbitrary text, (2) replacing the public

key (hash) in pay-to-pubkey (pay-to-pubkey-hash), (3) attaching up to 83 bytes in

nulldata transactions, and (4) using non-standard scripts by, e.g. adding non-effective

lines to the script. Furthermore, using some heuristics to analyse the plaintext of 146
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million transactions, the authors of [MHH+16] reported that 0.8\% transactions store

non-financial content in the blockchain or use non-standard scripts. Later, Matzutt et

al. [MHH+18] attempted to analyse the non-financial content in Bitcoin's blockchain.

They surveyed the methods and services that are used to store non-financial content

and provided a general categorization of the objectionable content that could be found

in Bitcoin's blockchain. They discovered that 1.4\% of all Bitcoin transactions contain

non-financial data, and retrieved over 1600 files, some of which contain objectionable

content. Nonetheless, some benign applications rely on content insertion in Bitcoin.

For example, Tithonus [RC19] offers a Bitcoin-based censorship-resistant system, and

Catena [TD17] is an application that uses Bitcoin OP RETURN transactions to establish

consensus among users on an application-specific log. The more recent work of Minaei

et al. [MMSK18] presented a Zcash-based censorship-bootstrapping tool and explored

content insertion techniques in Bitcoin, Zcash, Monero, and Etheruem.5

The work of Frkat et al. [FAZ18] showed how to insert arbitrary content in Bitcoin's

transactions by replacing the ephemeral randomness in each transaction's ECDSA signa-

ture. The authors demonstrated their technique in the context of botnets, where a central

bot, or botmaster, communicates commands subliminally to other bots in the botnet.

Their model suffers a severe security vulnerability represented in the inability of the

botmaster to generate the same command twice. Otherwise, the botmaster's private key

can be computed by any observer. Besides, a watchdog can detect this steganographic

communication when the botmaster communicates the same message more than once, i.e.

their scheme is not secure against chosen plaintext-attack. Namely, a warden can detect

the steganographic communication by repeating a message twice.

Moreover, Sawrd et al. surveyed some Bitcoin content-insertion techniques [SVS18].

They focused on replacing different parts of the various transaction scripts, such as

replacing the public key with arbitrary data in the pay-to-public-key (P2PK) script and

replacing the hash string in the pay-to-public-key-hash (P2PKH) script.

5 [MMSK18] describes a technique to embed content steganographically in Monero's transactions'
signatures that is similar to our technique. However, we note that an earlier version of this part of our
work, which was eventually published in IWQoS'20, was submitted to USENIX'18 on 8th Feb. 2018
before the publication of [MMSK18].
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While there is a relatively significant body of research on content insertion in Bitcoin's

blockchain [HvL09, MHH+16, MHZ+18, Shi14], Partala [Par18] was the first to discuss

the use of steganography to covertly communicate in Bitcoin's blockchain. However, due

to its limitation, Partala [Par18] considers their attack to be a proof of concept rather

than a practical attack, as shall be seen in detail in Chapter 4.

Several techniques have been proposed to achieve long-term sustainability and min-

imize storage in blockchains; however, some of these techniques are also useful as

deterrence against arbitrary content storage, and can effectively thwart malicious content.

For example, various emerging blockchain frameworks store balances rather than the

full transactions, e.g. PascalCoin [MS17] and Cryptonite [Min18]. Also, redactable

blockchains [AMVA17] can be used to rewrite and remove malicious content from the

blockchain.

Moreover, Matzutt et al. [MHZ+18] proposed three complementing countermeasures

to fight arbitrary content insertion in blockchains. Their first countermeasure is to use

content filters to detect and reject unwanted content, e.g. rejecting a transaction if

its 20-byte destination address has 18 printable characters. The second approach is to

increase the transaction fee, which renders content insertion economically infeasible for

large transactions. The third approach is to substitute addresses in Bitcoin's transactions

with self-verifying address commitments. For example, instead of sending an address a,

ca is sent in the transaction, where ca = (Ga, r,Sign(Ga| | r, a)), r = CRC32(t1| | . . . | | ti),

and ti is the transaction corresponding to the ith input.
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Kleptography in Blockchains

This chapter introduces the concept of kleptography and explains its significance in

blockchains in Sec. 3.1, and Sec. 3.2, respectively. Then in Sec. 3.3 and Sec. 3.4, we

describe three kleptographic attacks on two of the most widely used signature schemes

in blockchains: CryptoNote's ring signature, and ECDSA. After the description of our

kleptographic attacks, we explain the adverse scenarios of these attacks. In particular,

Sec. 3.5 illustrates how these kleptographic attacks can secretly steal the users' confidential

information. Finally, Sec. 3.6 demonstrates the realization of our attacks in two real

cryptocurrencies, Bytecoin and Monero, and on an implementation of ECDSA.

3.1 Kleptography

Young and Yung first introduced the notion of kleptography in 1996 [YY96, YY97a].

Kleptography is defined as the malicious act of secretly replacing a secure algorithm

with a sabotaged algorithm that surreptitiously leaks the user's confidential information

exclusively to the attacker while avoiding detection in the black-box setting. Since its

introduction, kleptography has also been referred to as Algorithm-Substitution Attacks

(ASA) [BPR14, BJK15] and subversion attacks (SA) [AMV15]. Subsequent work demon-

strated the possible use of kleptography in mass surveillance, and the susceptibility of

all randomized symmetric encryption schemes to such attacks [BJK15, BH15]. Another

demonstration of kleptographic attacks is found in the work of Goh et al. [GBPG03],
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Figure 3.1: Kleptography: specification G\sansS \sansP \sansE \sansC takes as input a message m and a secret s,
and outputs c. The malicious implementation G\sansI \sansM \sansP takes the same inputs as the
specification algorithm G\sansS \sansP \sansE \sansC ; however, it outputs a subverted ciphertext \'c, which
can leak some secret sec exclusively to the attacker who knows z. The leaked secret
sec can be the user's secret key s or any other confidential information.

Figure 3.2: IV replacement [BPR14] is an example of kleptographic attacks. The randomly-
generated initial vector IV of a CBC-mode encryption algorithm \scrE is replaced in the
subverted implementation \widetilde \scrE by an encipherment of the victim's secret information;
IV = ENCz(k). The adversary can extract k by intercepting IV and decrypting it;
k = DECz(IV).

which presented practical hidden key-recovery attacks against the SSL/TLS and SSH2

protocols by modifying the implementation of the OpenSSL library. For consistency, we

henceforth use the term kleptography instead of subversion attacks and ASA.

Informally, in kleptogrpahy, an adversary maliciously tampers with the implemen-

tation of a cryptographic algorithm G\sansI \sansM \sansP and changes it from its specification G\sansS \sansP \sansE \sansC 

algorithm. The kleptographic implementation G\sansI \sansM \sansP aims to: (i) subliminally and ex-

clusively leak the user's secret information to the adversary, and meanwhile (ii) evade

detection in the black-box setting by producing subverted output \'c that is computationally

indistinguishable from normal output c. As in Fig. 3.1, the kleptographic implementation

G\sansI \sansM \sansP of the algorithm G\sansS \sansP \sansE \sansC allows the adversary, given their secret key z, to detect

the subverted ciphertext \'c and extract the user's secret sec. Kleptographic attacks are

significant due to their undetectability in the black-box setting and their detrimental
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effects on the confidentiality of the users.

A basic example of kleptographic attacks is the IV-replacement attack proposed by

Bellare et al. [BPR14] in the context of mass surveillance. In a simplified form, the

adversary in this attack replaces a symmetric encryption system \scrS \scrE = (\scrK , \scrE ,\scrD ) by

a subverted implementation \widetilde \scrS \scrE = (\scrK , \widetilde \scrE ,\scrD ), where \scrK is a key-generation algorithm,

\scrE is an encryption algorithm, and \scrD is a decryption algorithm. Assuming that \scrS \scrE 

operates in the Cipher Block Chaining (CBC) mode, as shown in Fig. 3.2, then the

attacker can maliciously implement \scrE so that it replaces the random initial vector IV

by encryption of the user's secret sec under the attacker's secret key z; IV = ENCz(sec).

Hence, the attacker can intercept the ciphertext and decrypt IV with their secret key

z to reveal the user's secret sec, i.e. sec = DECz(IV). If the leaked secret is the user's

symmetric encryption key k, then by obtaining k, the attacker can decrypt all of the

ciphertexts. Bellare et al. have also shown that the subverted IV in this example attack is

computationally indistinguishable from randomly-generated IV, given that the attacker's

encryption algorithm ENC is a secure pseudo-random function PRF [BPR14].

Kleptographic attacks on signature schemes. As the work in this chapter is

particularly related to kleptographic attacks on signature schemes, in the following, we

explain kleptography in the context of signatures. Young and Yung [YY97b] showed

that DSA signature schemes could be subverted to leak secret information. Another

kleptographic attack was proposed by the work of Te\c seleanu [Te\c s19], which describes

a threshold kleptographic attack on the generalized ElGamal signature that can be

extended to similar discrete log-based signatures.

Since randomized cryptographic primitives are susceptible to kleptography as con-

cluded by Bellare et al. [BPR14], theoretically, all algorithms (Setup,KeyGen,Sign,Verify)

in a signature scheme \scrS , except Verify, which is usually deterministic; can be subverted to

leak secret information. However, in practice, most blockchain platforms do not generate

their setup parameters themselves; instead, widely trusted setup parameters, such as in

the ED25519 curve, are adopted. Therefore, we do not consider kleptographic attacks on

the Setup algorithm. Also, KeyGen algorithms are usually based on a one-way function,
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Expt\sansS \sansU \scrW (1\lambda )

1. \scrC picks b
\$\leftarrow \{ 0, 1\} ;

2. \scrC sends (PK,SK) to \scrW ;
3. For j \in \{ 1, . . . , k\} , \scrW queries \scrC for signature on mj \in \scrM and obtains

\circ \sigma j \leftarrow Sign(SK,mj) if b = 0;
\circ \sigma \ast 

j \leftarrow Sign\ast (SK,mj) if b = 1;
4. \scrW outputs a bit b\prime ;

6. \scrC returns b
?
= b\prime ;

Kleptography security experiment

Figure 3.3: Kleptography security experiment on subverted signatures between a challenger
\scrC and a watchdog \scrW , who wins in this security game when b = b\prime . The
kleptographically-subverted algorithm Sign\ast is said to be secretly undetectable if
given (PK,SK), the probability that \scrW distinguishes between genuine signatures
and subverted signatures is negligible. If\scrW is only given the public key (PK) in step
2 of this experiment, then the subverted scheme is said to be publicly undetectable.

and it is possible to leak O(log \lambda ) bits through rejection sampling. Nevertheless, for

most signature schemes, this will not provide sufficient bandwidth1. Therefore, this work

focuses on the kleptographic attacks on the Sign algorithms of randomized signature

schemes. As a result, we use the following definition of undetectability that is based on

the definitions presented by Ateniese et al. [AMV15].

Public and secret undetectability. A kleptographic attack is said to be undetectable

if there does not exist any PPT watchdog \scrW that can win the security experiment

in Fig. 3.3 with a non-negligible probability. In other words, a kleptographic attack

is undetectable if there is not any PPT watchdog \scrW , who can distinguish whether

a signature is produced by a subverted signing algorithm or the genuine one, except for

a negligible probability.

Definition 3.1. Let \scrS = (Setup,KeyGen, Sign,Verify) be a signature scheme. Let\scrM be

the message space. We say a subverted Sign\ast algorithm is secretly undetectable if for any

PPT watchdog \scrW , all \{ PK,SK\} output by KeyGen(param), and any integer \lambda \in \BbbN , the

advantage of \scrW in winning the security experiment in Fig. 3.3 is negligible, i.e.:

Adv\sansS \sansU \scrW (1\lambda ) =

\bigm| \bigm| \bigm| \bigm| Pr
\Bigl[ 
Expt\sansS \sansU \scrW (1\lambda ) = 1

\Bigr] 
 - 1

2

\bigm| \bigm| \bigm| \bigm| = negl(\lambda )

1 See leakage resilient signatures in [KV09, BSW11] for more discussion.
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We say a subverted Sign\ast algorithm is publicly undetectable if \scrW only receives \{ PK\} in

step 1 of Fig. 3.3.

3.2 Significance of Kleptography in Blockchains

Before delving into the details of our kleptographic attacks on blockchains, it is essential

to note that kleptographic attacks merit scientific research and should be carefully

considered when designing and implementing cryptographic schemes, and that `dismissing

kleptography as far-fetched is na\"{\i}ve' [BPR14]. Likewise, despite the common open-source

nature of public blockchains, kleptographic attacks are practically plausible and have

severe repercussions on blockchains. Their plausibility and significance in blockchains are

better seen in the light of the following attributes.

Firstly, cryptocurrencies, and blockchains in general, have very complex

cryptographic primitives and mathematical structures, which may lead to

unseen kleptographic attacks. In particular, this sheer complexity means very few

experts are competent enough to assess their implementation [BL17], which may result in

undetected flaws. As noted by Young and Yung [YY05a], despite the intuitive assumption

that kleptographic attacks may only apply to black-box cryptography, it is uncommon

for code, even when made available, to be sufficiently inspected. As an example of their

argument, Young and Yung stated that in Eurocrypt 2004 a major implementation bug

was revealed in an open-source signature scheme, in which obtaining a single signature

is enough to reveal the secret signing key [Ngu04]. Moreover, the infamous Debian's

flawed pseudo-random number generator [SFKR15] is an example of the, probably honest,

flaws in the implementation of cryptographic primitives. This flaw was not detected

for two years despite its open-source code. Another example of such flaws is shown by

Knockel et al. [KRC18], who stated that the Tencent's QQ browser was using the so-called

schoolbook RSA algorithm with no padding, which is well-known to be semantically

insecure as it is a deterministic encryption scheme [PP10]. This is further demonstrated

by Luu et al. [LCO+16], who noted that over 1/3 of the open-source smart contracts

contain at least one bug, and some of them are maliciously embedded and can be
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triggered later by the attackers in a similar manner to the widely-known Ethereum

DAO hack [Sie16]. In addition, while experimenting with Bytecoin [Byt18], which is

an open-source cryptocurrency, we noticed that the transactions' signatures diverge

from their specifications in a way that can severely cripple the users' anonymity. This

discovered bug is explained in more detail in Appendix B.

Secondly, although blockchain applications employ standard and well-

established cryptographic schemes, adversaries may circumvent the se-

curity by resorting to secretly weakening these schemes through mis-

implementation. This makes kleptography a viable alternative for attackers.

This is evident in the widely-publicized Snowden's revelations, which shed light on the

fact that even resourceful organizations, such as the NSA, may not be able to break the

security of standardized schemes except through secret trapdoors [BL17]. Adversaries

may also resort to manipulating the standardization processes, as is the case with the

Dual EC DRBG [SFKR15]. Hence, the existence of such trapdoors should be investigated

and thwarted by devising new kleptographic-resistant cryptographic primitives.

Thirdly, many cryptocurrencies are marketed as decentralized projects,

yet studies have found that the development of many blockchain applications

is highly centralized. Although there is not any evidence of malpractice, nor

is the intention to make unsubstantiated accusations, this high centralization

may cause bias and introduce intentional and unintentional flaws. An example

of this highly-centralized development is that 30\% of the source files in Bitcoin are written

by a single author, and 7\% of the code is contributed by the same author [AMM18].

Similarly, 20\% of the source code in Ethereum is attributed to the same author [AMM18].

The fourth reason is that most end-users lack the ability and the means

to check the conformity of executable applications, such as cryptocurrency

wallets, with their reference source code. Hence, detecting implementation

discrepancies is practically impossible. Besides, there is not any known methodology

for a closed-source implementation to prove to the end-users that it follows specifications.

As argued by Goh et al. [GBPG03], who implemented a hidden key-recovery mechanism
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in the SSL/TLS protocol, it is not feasible for a black-box implementation to prove to the

outside world that it honestly follows the original protocol and does not implement their

key-recovery mechanism. In fact, in some platforms, such as iOS devices, users can not

directly access the binary files without jailbreaking their devices, which paradoxically is

not advisable and may render the device unsafe to run a cryptocurrency wallet. Also, it is

uncommon for users to compile the source code of any application by themselves; instead,

they usually rely on downloading readily-compiled executable applications. The difficulty

of examining the implementation of a cryptocurrency wallet is even more pertinent to

hardware wallets, such as the various Swiss-army-knife-like hardware wallets [Giz17].

It is practically impossible to audit the integrity of their implementation through the

standard functionality `correctness' test by observing input/output pairs in a black-box

manner. Nonetheless, users are expected to blindly trust these wallets.

The fifth reason is the ease of distributing a kleptographically-sabotaged

blockchain application, making the attack practically feasible. For example, an

attacker can implement a kleptographic attack in an open-source wallet and market

it as a closed-source wallet under a new name. The attacker can make his subverted

wallet more appealing to unsuspecting users by making it user-friendly. Alternatively, an

attacker can infect the victim users with some malware that replaces the user's wallet with

the kleptographically-modified wallet. Such malware infection is plausible as Kaspersky

Lab reported that there were over one million Bitcoin-wallet-stealing malware infections

every month in 2013 [Lab14].

The sixth reason is attributed to the broadcast nature of the P2P

blockchain network; hence, an attacker does not need to spoof the network

actively. The attacker passively receives all transactions as all other nodes.

On the contrary, Goh et al.'s hidden key-recovery in SSL/TLS requires the attacker

to continuously spoof the network traffic [GBPG03]. Therefore, kleptographic attacks

are evidently more attainable in the context of blockchain applications. Likewise, the

seventh reason is the ability of the attacker to stay anonymous due to the

robust anonymity techniques in blockchains, as demonstrated in Table 1.1.
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Anonymity guarantees may encourage more attackers to mount kleptographic attacks to

ensure avoiding detection and thus evading any legal prosecution.

Furthermore, the eighth reason for the significance of kleptographic at-

tacks stems from their severe ramifications on the users of blockchains. The

least repercussion could be the de-anonymization of the victim user(s). However, users

can also lose their most-guarded secret in blockchains, their signing keys. In the context

of cryptocurrencies, losing the secret keys will inevitably lead to the theft of the users'

crypto funds, i.e. coins.

Due to the plausibility above and the potential threat of kleptographic attacks on

blockchains, this chapter describes three new kleptographic attacks on public blockchains.

In particular, we present attacks on two of the most commonly-used randomized signature

schemes in blockchains: the ring signature and the ECDSA signature scheme.

3.3 Kleptographic Attack on Ring Signature

Many cryptocurrencies use ring signatures to protect users' privacy. For example, the

CryptoNote framework [Sab13], which is adopted by around 20 cryptocurrencies2, uses

ring signatures [RST01]. In this section, we present a new kleptographic attack on

CryptoNote's ring signature. This attack demonstrates how the uncontrolled randomness

in ring signatures can be maliciously exploited to kleptographically leak the user's secret

information, like their secret signing key. Note that the same principles apply to any

other uncontrolled randomness in blockchain primitives.

As explained in Sec. 2.2.6.2, the CryptoNote protocol uses ring signatures. Mainly,

it uses the ED25519 twisted Edwards curve, and the group order is a 253-bit prime p.

The long term secret key of a user consists of two group elements a, b \in \BbbZ \ast p. However, in

practical implementations, a is commonly derived from b, where a = hashp(b). Therefore,

the long term secret key of a CryptoNote account is effectively 253 bits. As part of the

one-time linkable ring signature, a one-out-of-many non-interactive zero-knowledge proof

is included. More specifically, for a ring of size k, the format of the ring signature is

2 https://cryptonote.org/
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Figure 3.4: Generic kleptographic attack on CryptoNote: format of one pair of subverted
random numbers (cj , rj) with 376 bits of leaked confidential information sec =
(Payload 1\| Payload 2). To ensure computational indistinguishability, the most
significant bits, b1 and b2, are sampled according to the real distribution of cj and
rj .

\sigma = (I, c1, . . . , ck, r1, . . . , rk). Suppose the sender's public key is PK\ell , \ell \in [k], then for

all j \in [k] and j \not = \ell , the components cj and rj are random group elements in \BbbZ p and can

be abused maliciously. Hence, our attack is premised on kleptographically exfiltrating

the secret user's secret key in the ring signature's random numbers (cj , rj)'s.

In our attack, the attacker's encryption key is the same as the decryption key, which

is a simple 128-bit random key denoted as z. This key is a shared secret between the

subverted wallet and the attacker. In the following, we detail the proposed attack as

a three-step process: (1) leaking the victim's secret information, (2) identifying subverted

transactions, and (3) extracting the hidden secret. These steps are carried out by two

parties: an oblivious victim sender called Alice and an attacker called Carol, who has

distributed the subverted CryptoNote wallet.

Step 1: leaking Alice's secret information sec (Leak). The most significant bit of

a random \BbbZ p element does not have uniform distribution; it is more biased to 0. Hence,

to ensure computational indistinguishability between the subverted random numbers,

denoted by sr, and innocuous random elements (cj , rj) \in \BbbZ p, Alice's subverted wallet hides

her secret information sec in the least significant 252 bits of cj and rj . The most significant

bits, b1 and b2, are sampled according to the real distribution of cj and rj . As depicted in

Fig. 3.4, the rest of the bits consist of a 128-bit IV, 124-bit Payload 1, 252-bit Payload 2.

Let F : \{ 0, 1\} 128 \times \{ 0, 1\} 128 \mapsto \rightarrow \{ 0, 1\} 128 be a block cipher that takes as input a 128-bit

plaintext and a 128-bit key, and outputs a 128-bit pseudo-random ciphertext. Besides,
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Figure 3.5: Ciphertext stealing CTS (CTR mode): CTS is used in our abstract kleptographic
attack on CryptoNote because it ensures the length of the resulting ciphertext
(C1,C2,C3) is the same as the length of the plaintext (m1,m2,m3).

Alice's wallet uses synthetic initial vector IV to allow Carol to efficiently identify which

transactions on the blockchain contain Alice's subverted randomness sr. In particular,

IV = Fz(rand\| 00 . . . 0), where rand is a 64-bits random string, and 00 . . . 0 is a 64-bit

string of 0's. As a result, to check if a signature contains any sr, Carol can simply try to

decrypt a suspected IV, obtaining d = F - 1z (IV). If the least significant half of d consists

of 64 bits of 0's, then this signature contains sr.

In this attack, Payload 1 and Payload 2 are jointly used to convey a 376-bit hidden

secret (sec = Payload 1\| Payload 2). This can be used to leak Alice's 253-bit secret key

s along with 123 extra bits, which can be used for integrity checks. The payloads are

encrypted via a semantically secure symmetric encryption under Carol's secret key z

and using IV. Also, to handle arbitrary-length hidden messages and ensure the resulting

ciphertext has the same length as the message, the subverted wallet can use Ciphertext

Stealing (CTS) [Dwo10]. Hence, our generic kleptographic attack on CryptoNote's ring

signatures uses the ciphertext stealing technique in counter mode (CTR), where the last

encryption block is truncated to fit the message length. For further clarity, the proposed

encryption algorithm CTS-Encz(IV, sec) is depicted in Fig. 3.5. More information on CTS

and operation modes can be found in Dworkin's textbook [Dwo10].

Step 2: identifying signatures with subverted randomness sr. Before attempting

to extract any leaked information from a subverted transaction, Carol should first identify
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KeyGen(1\lambda ):

\bullet Pick random: z
\$\leftarrow \{ 0, 1\} 128;

\bullet Return z;
Leak(z, sec):

\bullet Pick random: rand
\$\leftarrow \{ 0, 1\} 64;

\bullet IV = Fz(rand\| 00 . . . 0);
\bullet \^m = CTS-Encz(IV, sec);
\bullet Payload 1 = \^m[0:123];
\bullet Payload 2 = \^m[124:375];

\bullet Sample random: c
\$\leftarrow \BbbZ p, and r

\$\leftarrow \BbbZ p;
\bullet c[1:128] = IV;
\bullet c[129:252] = Payload 1;
\bullet r[1:252] = Payload 2;
\bullet Return (c, r);

Extract(z, (c, r)):
\bullet \alpha = F - 1z (c[1:128]);
\bullet If \alpha [64:127] \not = (00 . . . 0): Return \bot ;
Else: IV = c[1:128];
\bullet Payload 1 = c[129:252];
\bullet Payload 2 = r[1:252];
\bullet sec = CTS-Decz(IV,Payload 1\| Payload 2);
\bullet Return sec;

A Generic Kleptographic Attack on CryptoNote's Ring Signature

Figure 3.6: Pseudo-code for a generic kleptographic attack on CryptoNote's ring signature.
The functions (KeyGen, Leak,Extract) covertly exfiltrate a 376-bit secret sec by
embedding it in one pair of innocuous-looking random numbers (c, r) of the ring
signature, where the security parameter \lambda = 128.

if the transaction under inspection contains subverted randomness sr. To accomplish

this, Carol parses IV from the first two cj 's of the ring signature \sigma in the transaction and

checks whether the decryption of IV contains 64 bits of 0's, as shown in Fig. 3.4. Note

that Leak exfiltrates the secret sec in one of the first two pairs of (cj , rj). If c1 does not

yield the identifying pattern, then Alice's secret index i must be 1, and Carol moves on

to decrypt c2, which must contain the IV; otherwise, the signature does not contain sr.

Step 3: extracting the hidden secret (Extract). Once a subverted ring signature is

successfully identified, Carol uses the Extract algorithm to extract Alice's secret infor-

mation sec. Carol collects Payload 1 and Payload 2, as depicted in Fig. 3.4, and uses her

secret key z to decrypt the payloads, obtaining sec = CTS-Decz(IV,Payload 1\| Payload 2).
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The pseudo-code in Fig. 3.6 further clarifies the generic kleptographic attack on

CryptoNote's ring signature. Note that, in practice, the IV and Payload can be encrypted

under two different keys derived from a single master key z. However, for notation

simplicity, we use the same key here.

3.3.1 Security of kleptographic attack on ring signature

The security of the proposed kleptographic attack on CryptoNote is examined for

undetectability under the security game in Fig. 3.3. Informally, if there is not any

PPT watchdog \scrW that can distinguish between the output of the subverted signing

algorithm and that of the original, except for a negligible probability, then the proposed

kleptographic attack is undetectable and is said to be secure.

Theorem 3.1. If F and CTS-Enc, as shown in Fig. 3.6, are a secure pseudo-random func-

tion and a semantically secure encryption algorithm, respectively, then the kleptographic

attack described in Fig. 3.6 is secure, i.e. undetectable by any PPT \scrW .

Proof. We prove Theorem 3.1 using hybrid proofs and reduction. We show that if there

is a PPT watchdog \scrW that can detect our kleptographic attack on the ring signature

with a non-negligible probability, i.e. \scrW can distinguish between subverted signatures

and normal signatures, then there must exist another PPT adversary \scrA who can, with

a non-negligible probability, break the PRF security of F or the semantic security of the

encryption algorithm CTS-Enc. The security proof of Theorem 3.1 is presented in detail

in Appendix C.

3.4 Kleptographic Attacks on ECDSA

In the following subsections, we present two new kleptographic attacks on the ECDSA

signature. The first is a stateful attack that mainly targets hardware wallets; it leaks

the entire signer's secret key over two consecutive signatures. In comparison, the second

attack is stateless with lower throughput and can be used to leak arbitrary information.
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Sign(1)(s,m1):

\bullet Pick random r1
\$\leftarrow \BbbZ q;

\bullet Set R\prime = gr1 = (R\prime x, R
\prime 
y);

\bullet Set w1 = (hashp(m1) + s \cdot R\prime x) \cdot r - 11 (mod q);
\bullet Output \sigma 1 = (R\prime x, w1);

Sign(2)(s,m2, r1):
\bullet Set r2 = hashp(Z

r1);
\bullet Set R = gr2 = (Rx, Ry);
\bullet Set w2 = (hashp(m2) + s \cdot Rx) \cdot r - 12 (mod q);
\bullet Output \sigma 2 = (Rx, w2);

Recover(\sigma 1, \sigma 2,m2, z):
\bullet Parse (R\prime x, w1)\leftarrow \sigma 1, and (Rx, w2)\leftarrow \sigma 2;
\bullet Set R\prime \leftarrow map(R\prime x);
\bullet Set r\prime 2 = hashp((R

\prime )z);
\bullet Output s = (w2 \cdot r\prime 2  - hashp(m2)) \cdot (Rx) - 1;

Kleptographic attack-1 on ECDSA: synthetic randomness

Figure 3.7: Kleptographic attack-1 on ECDSA: synthetic randomness. Sign(1) is the same as
the original ECDSA algorithm; however, it stores the ephemeral randomness r1 in
volatile memory. Sign(2) generates r2 using r1 and the attacker's public key Z. r2
is used by the attacker to recover the secret signing key s.

3.4.1 Kleptographic attack-1 on ECDSA: synthetic randomness

Our first proposed subversion attack on ECDSA leaks the secret key over two consecutive

signatures. It depends on the synthetic-randomness generation of the second signature's

ephemeral randomness r. Our attack can be viewed as a more succinct version of the

attack proposed in [ME10]. In more details, let z \in \BbbZ p be the adversary's secret key, and

set the corresponding public key as Z = gz. Let R\leftarrow map(Rx) be a mapping function

that takes as input the x-coordinate of a point and outputs the corresponding point on

the curve. To leak the entire signing key s over two consecutive signatures, the subverted

ECDSA scheme runs two signing algorithms Sign(1) and Sign(2) consecutively. Sign(1)

is identical to the original signature algorithm; however, the subtle difference is that

Sign(1) stores the ephemeral key r1 in a long-term memory, which can be accessed during

the next signature invocation. Sign(2) is also similar to the original signature algorithm

except that it deterministically generates r2 = hashp(Z
r1), where Z is hardcoded in the

subverted implementation.
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Sign(s,mi, sec):
\bullet Repeat the following process:

-- Pick random r
\$\leftarrow \BbbZ q;

-- Set R = gr = (Rx, Ry);
-- Compute (j, b)\leftarrow PRFz(Rx);
-- If sec[j] = b, break the loop;

\bullet Set w = (hashp(mi) + s \cdot Rx) \cdot r - 1 (mod q);
\bullet Output \sigma i = (Rx, w);

Recover(\sigma 1, . . . , \sigma \ell , z):
\bullet Init an array \scrS = \emptyset ;
\bullet For i \in [\ell ], do:

-- Parse \sigma i as (Rxi, wi);
-- Compute (ji, bi)\leftarrow PRFz(Rxi);
-- Set \scrS [ji] = bi;

\bullet Output \scrS ;

Kleptographic attack-2 on ECDSA: rejection sampling

Figure 3.8: Kleptographic attack-2 on ECDSA: rejection sampling. The signatures are selectively
chosen so that each signature leaks one bit b corresponding to the jth-bit of
the signer's secret information sec. The attacker can recover the leaked bits by
intercepting the signatures and using the pseudo-random function PRF with his key
z.

Once the adversary obtains two consecutive signatures \sigma 1 and \sigma 2, he can use his

secret key z to recover the victim's signing key s. First, he parses \sigma 1 to (R\prime x, w1) and \sigma 2

to (Rx, w2). Then, the attacker finds the point on the curve corresponding to R\prime x by using

R\prime \leftarrow map(R\prime x). After that, the attacker computes r\prime 2 = hashp((R\prime )z). Note, the attacker

can verify the correctness of r\prime 2 by computing R\prime \prime = gr
\prime 
2 = (R

\prime \prime 
x, R

\prime \prime 
y), and checking if R

\prime \prime 
x

is equal to Rx. The secret key can be extracted as s = (w2 \cdot r\prime 2  - hashp(m2)) \cdot (Rx) - 1.

In this attack, the entire signing key s is leaked exclusively to the adversary over two

signatures. For more clarity, the subverted ECDSA algorithm is shown in Fig. 3.7.

While this kleptographic attack has a high throughput, it has few drawbacks. First

of all, it is stateful, so it is not suitable for every scenario, especially for software

wallets. Furthermore, this attack can exclusively leak the signing key s and not arbitrary

confidential information sec. Note, most cryptocurrency wallets can avoid the re-use of

the address and signing keys. Thus, the leaked signing key in this attack may never be

used again, even if the signing algorithm is executed twice with the same signing key.
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Nevertheless, for most wallets, all the one-time signing keys are derived from a master

key, which represents a more favourable target for attackers.

3.4.2 Kleptographic attack-2 on ECDSA: rejection sampling

To overcome the shortcomings of our first kleptographic attack on the ECDSA signature,

our second attack on ECDSA is stateless and is designed to exfiltrate arbitrary information

sec. As depicted in Fig. 3.8, the subverted signing algorithm takes as input the signing

key s, the message mi, and the secret sec \in \{ 0, 1\} n to be leaked. The signing algorithm

leaks a random bit of sec per signature. Let PRF : \{ 0, 1\} \ast \times \{ 0, 1\} \lambda \mapsto \rightarrow \{ 0, 1\} \mathrm{l}\mathrm{o}\mathrm{g}(n)\times \{ 0, 1\} 

be a pseudo-random function that takes as input an arbitrary-length message and the

\lambda -bit PRF key, and outputs a random number of log(n+ 1) bits. The first log(n) bits

is interpreted as an index j, and the last 1 bit is viewed as b. The subverted signing

algorithm performs rejection sampling to find a random point R = (Rx, Ry) such that

(j, b) \leftarrow PRFz(Rx) and sec[j] = b. The rest of the signing process is identical to the

original signature algorithm. Note that the rejection-sampling technique is efficient, and

the expected number of repetitions per signature is 1.5 repetitions.

To recover the leaked secret sec, the adversary needs to obtain a collection of the

signatures generated by the subverted algorithm. We emphasize that when the secret

is a master key that can be tested for correctness, it is not necessary to leak the entire

key in practice. Assuming the master key is 256 bits, to obtain 50\% distinct key

bits, the expected number of signatures is bounded by approximately 256 signatures.

Asymptotically, to obtain n secret bits, we need \theta (n log n) signatures. The number

of signatures needed to leak n secret bits can also be viewed as an instance of the

coupon-collector problem [Fel57].

3.4.3 Security of attacks on ECDSA

In our first attack on ECDSA, the first signature's random number r1 is picked randomly

from \BbbZ p, and \sigma 1 is generated using the original algorithm. In comparison, the second

signature's randomness is not picked randomly from \BbbZ p, but instead synthetically com-
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puted using r1 and the attacker's public key Z; r2 = hashp(Z
r1). Consequently, for any

watchdog \scrW inspecting the algorithm in black-box, i.e. \scrW does not know Z, r2 will

be computationally-indistinguishable from elements randomly drawn from \BbbZ p. Also, in

our second attack on ECDSA, the rejection-sampling process randomly draws r from

\BbbZ p in the same manner as the original algorithm, and the rest of the two algorithms,

the subverted and original algorithms, are the same. Therefore, despite its intuitive

longer execution time, our rejection-sampling attack on ECDSA has the same security

as the original ECDSA algorithm. Hence, both of our kleptographic attacks on ECDSA

are kleptographically secure, i.e. no PPT watchdog can distinguish with a non-negligible

probability between the kleptographically-created signatures and normal signatures, as

required by the security game in Fig. 3.3.

3.5 Kleptographic Attack Scenarios

As illustrated by our kleptographic attacks on CryptoNote's ring signature and ECDSA,

the attacker can leak any of the victims' secret information by surreptitiously and

maliciously manipulating the randomness within the generated signatures. The least that

an attacker can achieve is to tag the generated transactions, which contain subverted

signatures, to de-anonymize the senders. Although there could be various kleptographic

scenarios, this section presents the attack scenario with the most severe consequences on

the users of cryptocurrency wallets, which can result in stealing the users' funds. This

scenario applies to open-source blockchain applications due to their complexity; however,

it is more applicable to closed-source and hardware cryptocurrency wallets.

In this scenario, as in kleptography in general, the victimized sender is oblivious to

the attack and can not detect it in the black-box setting. To steal the victims' funds, the

saboteur implements an open-source cryptocurrency wallet with a kleptographic key-

recovery mechanism. Since the attacker receives all broadcast transactions as the nature

of blockchains entails, a hidden key-recovery attack is more plausible in blockchains as

opposed to key recovery in other schemes, where the attacker needs to continuously spoof

the network traffic, such as the attack on SSL/TLS and SSH2 by Goh et al. [GBPG03].
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Figure 3.9: Kleptography attack: stealing victims' private signing keys

As depicted in Fig. 3.9, in this scenario, Alice is an innocent victim using a wallet

that is maliciously implemented and distributed by a third party, Carol. In particular,

Carol used a kleptographic attack to modify the wallet using one of the attacks explained

in Sec. 3.3 and Sec. 3.4, so to leak the signer's private key, while evading detection in

the black-box setting. Alice may have downloaded the sabotaged wallet, or her wallet

may have been replaced by a sabotaged wallet using malware. Such malware infection is

possible since, as reported by Kaspersky [Lab14], over one million bitcoin-wallet-stealing

malware infections occur every month. In either case, whether downloaded by Alice

or replaced by malware, whenever Alice posts any transaction to the blockchain using

her subverted wallet, Carol can detect and extract the secretly leaked information as

described in the previous sections. Once Carol has Alice's entire private key, she can

impersonate Alice and steal all of her funds.

3.6 Realization of Kleptographic Attacks

This section demonstrates the realization of our kleptographic attack on CryptoNote's

ring signatures, Sec. 3.3, on two real-world cryptocurrencies: Bytecoin and Monero. These

two example cryptocurrencies have been chosen among other currencies for the following

three reasons. (1) Both of these cryptocurrencies are based on the CryptoNote framework.

(2) Their source code is publicly available. (3) We had access to some Monero coins that

were essential for our demonstration to generate some transactions, and Bytecoin can
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easily be mined to generate the needed coins. Besides, although Monero is based on the

CryptoNote protocol, it uses the Borromean ring signature, which is different from the

ring signature used in the CryptoNote protocol, as previously described in Sec. 2.2.6.2.

Nevertheless, our generic attack in Sec. 3.3 is still applicable to Monero. Realizing the

same kleptographic attack on Monero emphasizes that the same attack principles can be

extended to all public blockchain applications with randomized cryptographic primitives.

In addition, this section demonstrates our attacks on the ECDSA scheme, as explained

Sec. 3.4. We apply the two attacks on an implementation of the ECDSA signature rather

than on any cryptocurrency that implements this scheme. We follow this approach

because we do not have access to cryptocurrency coins for any of the cryptocurrencies

that use ECDSA, such as Bitcoin. Also, other blockchain applications that may use

the ECDSA signature do not offer open-source code nor proper or publicly-available

documentation.

3.6.1 Kleptographic attack on Bytecoin

Bytecoin is an open-source cryptocurrency [Tea18] that has a market cap of around

\$42 millions3. Bytecoin follows the CryptoNote framework [Sab13], and hence uses the

ED25519 twisted Edwards curve and CryptoNote's linkable ring signature to sign its

transactions. As previously shown in Sec. 2.2.6.2, this signature has sufficiently many

uncontrolled random numbers, which are highlighted in grey in Fig. 2.2. These random

numbers could be exploited to communicate arbitrary information covertly.

Since Bytecoin closely follows the specifications of the CryptoNote framework, it can

be directly attacked using the kleptographic attack described in Sec. 3.3. However, for

code simplicity and clarity of demonstration, ciphertext stealing (CTS) is not used, and

AES128 encryption is used because it is available in Bytecoin's source code. Also, as

a proof of concept, instead of leaking a 376-bit secret sec, our subverted Bytecoin wallet

leaks a shorter secret of 16 bytes. Similar to the description of the generic attack in

Sec. 3.3, we have implemented our attack on the Bytecoin wallet (v 3.3.3) in the following

3 https://coinmarketcap.com/currencies/bytecoin-bcn/ on 12/July/2020.
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Figure 3.10: Bytecoin: leaking a 16-byte secret sec in one pair of (cj , rj) in the transaction's
ring signature. If sec is used to indicate the signer's secret index, this pair (cj , rj)
can be used as a preliminary packet. Hence, more secret information can be leaked
in a single ring signature by embedding them in subsequent random numbers
(cj , rj)'s where j \not = \ell and \ell is the signer's secret index.

three steps4.

Step 1: secretly leaking a 16-byte secret sec and generating a signature that

contains sr. To embed 16 bytes in a pair of random numbers (cj , rj), Alice's subverted

wallet generates a synthetic initial vector; IV = AESz(rand\| 00 . . . 0), where rand is a 64-

bit random string, 00 . . . 0 is a 64-bit string of 0's, and z is the attacker's symmetric key.

Alice's wallet then places IV as the most significant 16 bytes of cj and sets the rest of

cj randomly. After that, Alice's wallet uses this IV along with z to generate sr that is

embedded in the most significant 16 bytes of rj ; sr = AESz(sec \oplus IV). The format of

(cj , rj) containing sr is illustrated in Fig. 3.10.

Furthermore, to implement this step of the attack, the Bytecoin wallet's source code

is changed by mainly modifying one source file: crypto.cpp. The modified wallet simply

alters the random numbers in the transaction's ring signature(s) by producing one pair

of (cj , rj) as aforementioned. Note that j \not = \ell where \ell is the signer's secret index within

the ring. The changes introduced to crypto.cpp affect the following two functions within

the source file:

\bullet generate ring signature(). This function is slightly modified to pass a counter to the

random scalar() function.

\bullet random scalar(). This function is modified by including an additional parameter

in its input to specify the counter. When this counter is 0 and 1, random scalar()

generates cj and rj , respectively, which are subverted random numbers that hide

4 Although the attack is described with respect to Bytecoin wallet (\sansv \sansthree .\sansthree .\sansthree ), we confirm that the same
principles are applicable to the latest release (\sansv \sansthree .\sansfive .\sansone ).
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a 16-byte message, as depicted in Fig. 3.10. When the counter has different values,

the function generates random scalars as per normal.

After generating the subverted signature, the transaction is sent as per usual over the

blockchain. The attacker does not need to modify other parts of the wallet's source code.

Step 2: identifying signatures containing subverted randomness sr. To identify

signatures containing sr, Carol checks every new transaction added to the ledger. To

implement this step, the Bytecoin's wallet source file named BlockChainState.cpp is

KeyGen(1\lambda ):

\bullet Pick random z
\$\leftarrow \{ 0, 1\} 128;

\bullet Return z;
Leakz(sec):
crypto.cpp:
generate ring signature():
\bullet If((j \not = \ell )\&(j == 0)):

-- cj = random scalar(0);
-- rj = random scalar(1);

\bullet Else: process as per normal;
random scalar(n):

\bullet rand
\$\leftarrow \BbbZ p;

\bullet if(n == 0):
-- IV = rand[0:63]| | zeros;
-- IV = AESz(IV);
-- rand[0:127] = IV;

\bullet if(n == 1): rand[0:127] = AESz(sec\oplus IV);
\bullet Return rand;

Extractz(c, r):
BlockChainState.cpp:
add transaction(tx):
\bullet for(j = 0; j < 2; j++)

-- IV\prime = AES - 1z (cj,[0:127]);
-- if(IV\prime [64:127] == zeros):

\ast sec = AES - 1z (rj,[0:127])\oplus cj,[0:127];
\ast Return sec;

\bullet Return 0; \% No hidden message

Pseudo-code: kleptography attack on Bytecoin wallet

Figure 3.11: Pseudo-code for the implementation of a kleptographic attack on the Bytecoin
wallet. Two files are slightly changed crypto.cpp and BlockChainState.cpp to leak
a 16-byte secret sec. z is the adversary's secret key, and \ell is the signer's index
within the ring signature. The security parameter \lambda = 128.
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\bullet Block height: 1671177
\bullet Transaction id: 52caba6ef4e4716ac8a25681eb3f380d3d1fee057ada7eb62d687a
f36f1a44ff

\bullet Sender's address: 26c6Y mZmLJZY xnV At56kRraBhxiEUt8yoJR3V V 4UV 5
V cRM9Pzs5qV 7KStQHaa7xkAHej3WTTxtAc1KHbCSPoZ2ms3bdUsY 6.

\bullet Receiver's address: 26c6Y mZmLJZY xnV At56kRraBhxiEUt8yoJR3V V 4U
V 5V cRM9Pzs5qV 7KStQHaa7xkAHej3WTTxtAc1KHbCSPoZ2ms3bdUsY 6.

\bullet Mixin count (ring size): 6

Demo Bytecoin Transaction

Figure 3.12: An example of a kleptographically-generated Bytecoin transaction.

slightly modified to check each signature by decrypting each pair of (cj , rj) numbers.

Carol uses her key z to decrypt the most significant 16 bytes of cj to check if it contains

64 bits of zeros, as in Fig. 3.10. If she detects such a pattern, Carol identifies the existence

of subverted randomness and sets IV as the most significant 16 bytes of cj . If, however, no

such pattern is detected, then the signature does not contain any subverted randomness.

Step 3: extracting hidden secret sec. After identifying the existence of sr, Carol

decrypts the most significant 16 bytes of rj to extract sec, that is sec = AES - 1z (rj,[0:127])\oplus 

(cj,[0:127]).

To further demonstrate our kleptographic attack on Bytecoin's wallet, Fig. 3.11

provides a pseudo-code describing the implementation of the attack on Bytecoin. Also,

Fig. 3.12 presents a demo transaction included in the block at height 1671177 that contains

a 16-byte hidden message. To extract and verify the existence of the kleptographically-

leaked information, we provide a tool that can be downloaded from our GitHub repository5.

The repository also contains the actual transaction binary in tx.txt and a pair (c, r) of

random numbers containing a 16-byte secret in cr.txt. The transaction hash in Fig. 3.12

can be seen in any Bytecoin explorer6, and the provided transaction binary should hash

to the same hash value.

Note that the same attack can be easily extended to leak longer secret information.

Notably, the subverted randomness sr in the first pair of (cj , rj), as shown in Fig. 3.10,

can be used as a preliminary packet that specifies the length of the leaked information and

5 https://github.com/NaLancaster/hash\.and\.extract
6 An example of such explorers is: https://minergate.com/blockchain/bcn/blocks
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the signer's index within the ring. Hence, more information can be leaked in subsequent

subverted random numbers (cj , rj)'s, where j \not = \ell and \ell is the signer's secret index.

3.6.2 Kleptographic attack on Monero

Monero is a cryptocurrency that has a market cap of over \$1 billion7. Similar to Bytecoin,

Monero is based on the CryptoNote framework; however, it has had adopted the use of

the Borromean ring signature [MP15] explained in Sec. 2.2.6.2, instead of CryptoNote's

ring signature. Our demonstration kleptographic attack on Monero exploits the random

numbers within the Borromean ring signature. Note that as of October 2018, Monero

(v 0.13.0.0) has replaced Borromean ring signatures, that are exploited by our attack, by

succinct zero-knowledge proofs called Bulletproofs [BBB+18], which are not covered by

this work. Consequently, all of our discussion concerning Monero is regarding previous

versions of the source code, (v 0.12.0.0) and older, that use Borromean ring signatures.

Monero has a very complex cryptographic structure and ring signature scheme in

particular. The core of Monero's wallet involves the Multilayered Linkable Spontaneous

Anonymous Group Signature (MLSAG) and the Borromean ring signature [MP15].

MLSAG is similar to the 1-out-of-n ring signature that is used as part of the CryptoNote

protocol; however, rather than using a ring signature on a set of n keys, MLSAG uses

a ring signature on a set of n-key vectors. Using MLSAG, the signer proves to know all

the private keys corresponding to one column in the public keys' matrix. Despite the

massive one-time secret key, the long-term secret key is still a single group element in

\BbbZ p. Borromean ring signature [MP15], which is a generalization based on the 1-out-of-n

signature [AOS02], is used to mask the transferred amount while enabling the receiver to

know how much they have received by revealing the mask [Max].

In our experiment, we chose to exploit the Borromean ring signature because it offers

higher throughput and is similar to CryptoNote's ring signature. Nevertheless, though

with lower throughput, different primitives could also be exploited to mount kleptographic

attacks. Although longer secrets can be leaked, for simplicity, our demonstration attack

7 https://coinmarketcap.com/currencies/monero/ on 12/July/2020.
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Figure 3.13: Monero: exfiltrating a 32-byte secret in a pair of subverted random numbers within
the Borromean ring signature. s0,1 contains IV, the index of s0,2 within the ring,
and an identification pattern of 15 zeros. s0,2 contains the leaked information
sec = (sec1| | sec2).

on Monero leaks a 32-byte secret sec in the randomly generated si,j numbers as part of

the Borromean ring signature [MP15].

Specifically, two vectors of si,j numbers are generated by the genBorromean() function:

s0,j and s1,j . Besides, s0,j 's are randomly generated when the jth bit commitment is 1.

Two of these randomly generated s0,j 's are used to hide sec, as shown in Fig. 3.13. In

a similar manner to our attack on Bytecoin, we use AES128 encryption because it is

already available in the source code. The attack is mounted on Monero's wallet according

to the following three steps between a sender, Alice, who is unknowingly using a wallet

that is kleptographically implemented by an attacker, Carol.

Step 1: leaking a 32-byte secret sec and generating a signature that contains

sr. Alice's wallet is modified to covertly exfiltrate a 32-byte secret sec in the randomly

generated si,j numbers of the Borromean ring signature. In particular, the subverted

randomness sr containing the secret string sec is embedded in two s0,j numbers, where

the jth bit commitment is 1. For simplicity, we use s0,1 and s0,2 to denote the first two

randomly generated numbers in the s0,j vector, although they might not necessarily

correspond to j = 1 and j = 2, respectively.

Fig. 3.13 shows the two subverted numbers. The first number, s0,1, includes 16

bytes of random IV concatenated with 1 byte representing the index of s0,2 and 15 bytes

of zeroes. The least significant 16 bytes of s0,1 are encrypted using AES128 in the

CBC mode. The second subverted random number, s0,2, contains the leaked secret sec

encrypted using AES128 under Carol's key z.

This step of the attack is achieved by slightly modifying two functions: genBorromean()

and skGen() in two source files: rctSig.cpp and rctOps.cpp, respectively. genBorromean()
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\bullet Block height: 1502164
\bullet Transaction id: e4b7982b081a17892525f1b1d3011ec06a0820cbf451d3a64f8ea99

8104a753c
\bullet Sender's address: 455Bu1zXzgXEeXxrjzRSsEifP8WgtLTKY LreQ7RrA1
fcF i2UKjgtc2UBapB9AcDaitdY 7SdWGFsEZRELL8A1nMnEFRV Zg47.

\bullet Receiver's address: 42F5itWciY Ag5QJxZEqWz5hrQNFaySUbxfxsjcdp8F
nrRM68c8Nzujm3UqfscV C6r2c2GwuiP4sRsQv3ZZUc1spjUHuDHsx.

\bullet Mixin count (ring size): 5

Demo Monero Transaction

Figure 3.14: An example of a kleptographically-generated Monero transaction

is modified to pass two extra parameters to skGen(). The first parameter is a counter that

indicates which of the two random numbers is to be generated. The second parameter

represents the index of the jth bit corresponding to the position of the second number

s0,2 within the s0,j vector. When the value of the counter is 0 or 1, skGen() generates

random numbers according to Fig. 3.13, and executes as normal otherwise.

Step 2: identifying signatures containing subverted randomness sr. To identify

transactions containing sr, the source file blockchain.cpp is modified to check the random-

ness within each new transaction and identify subverted signatures. Carol tests each

number in the s0,j vector by looking for a random IV that decrypts the second half of

the tested number to a similar pattern to s0,1 in Fig. 3.13. Once this pattern is detected,

Carol concludes that this signature contains sr and retrieves the index of s0,2 from the

16th byte of s0,1.

Step 3: extracting the leaked secret sec. When a subverted signature is detected,

Carol retrieves the index of s0,2. Then, she extracts the hidden secret by decrypting s0,2

using her key z with AES128. As a further demonstration, Fig. 3.14 shows a Monero

transaction that has been subverted according to this attack and has been successfully

posted to the Monero blockchain.

3.6.3 Demonstration of kleptography on ECDSA

Lacking access to the needed coins for any of the cryptocurrencies that use the ECDSA

signatures, and not being able to find easy-to-read open-source ECDSA-based blockchain
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Number of Signatures to Leak Key Bits

Exp. \# 32 64 96 128 160 192 224

1 35 71 117 173 227 314 520

2 33 73 119 189 253 344 485

3 32 74 120 170 230 339 471

4 34 70 114 179 238 335 491

5 32 69 119 189 280 385 552

6 32 76 122 170 233 333 526

7 36 76 120 180 262 400 576

8 32 71 127 197 259 368 566

9 33 72 115 162 242 348 528

10 32 71 121 177 243 363 498

11 31 70 121 180 246 345 524

12 35 76 120 181 260 386 563

13 33 69 124 190 251 352 506

14 32 72 121 180 255 353 518

15 33 78 124 178 246 355 539

16 34 72 113 168 232 331 522

17 35 72 111 162 228 340 512

18 31 79 125 201 281 378 544

19 37 76 122 174 243 329 475

20 34 75 121 175 260 369 570

Average 33.3 73.1 119.8 178.8 248.4 353.4 524.3

Std. dev. 1.6 2.9 3.9 10.2 15.2 21.6 30.5

Table 3.1: Number of signatures needed to obtain 32, 64, 96, 128, 160, 192, and 224 bits out of
the total 256 key bits. This experiment was run 20 times to record the number of
needed signatures to leak some bits of the secret key. As seen in this table, the
average number of signatures that should be intercepted by the attacker to retrieve
50\% of the key, i.e. 128 bits, is about 179 signatures.

applications, we have chosen to demonstrate our two kleptographic attacks on ECDSA

directly on an implementation of the signature. As such, we have successfully implemented

both attacks from Sec. 3.4 on an open-source ECDSA library [ecd14]. The source code of

the kleptographically-implemented ECDSA scheme with both attacks can be found in

our public repository in GitHub8.

As demonstrated by the source code, when using the synthetic-randomness attack

described in Sec. 3.4.1, the adversary leaks the entire signer's key over two consecutive

signatures. Also, using the same source code, we have demonstrated the efficiency of

the rejection-sampling attack on ECDSA by experimenting with the needed number of

signatures to leak 32, 64, 96, 128, 160, 192, and 224 bits out of the total 256 secret key

bits s. This experiment was run 20 times to record the number of needed signatures to

8 https://github.com/NaLancaster/ecdsa\.klepto\.attacks
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leak some bits of the secret key. As shown in Table 3.1, the average number of signatures

that should be intercepted by an attacker to retrieve 50\% of the key, i.e. 128 bits, is

about 179 signatures, which confirms the theoretical computation bounds explained in

Sec. 3.4.2.

3.7 Summary

In this chapter, we described the notion of kleptography and its plausibility in public

blockchains. After that, we proposed three new kleptographic attacks on two commonly

used signature schemes in blockchains: ring signature and ECDSA. We also explained the

attack scenario with the most severe consequences, which is to implement kleptographic

key-recovery schemes in cryptocurrency wallets. This scenario is dangerous as it leads to

secretly stealing the users' signing keys and eventually stealing their cryptocurrency funds.

All of the three attacks are passive, where the attacker does not need to interact with

the subverted wallets actively, interoperable since modified wallets transact seamlessly

with normal wallets, and undetectable in the black-box setting. Moreover, we described

how we had realized our kleptographic attack on the ring signature in two real-world

cryptocurrencies: Bytecoin and Monero. Finally, due to the lack of access to any crypto

coins of any well-documented open-source cryptocurrency that uses the ECDSA signature,

such as Bitcoin, we demonstrated both of our kleptographic attacks on ECDSA on an

open-source ECDSA implementation rather than on a real cryptocurrency.
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Steganography in Blockchains

In the previous chapter, we demonstrated the susceptibility of randomized signatures

in public blockchains to kleptographic attacks, which can lead to mass-scale stealing

of users' funds in cryptocurrencies. In this chapter, we show that steganography rep-

resents another plausible threat to public blockchains. Sec. 4.1 introduces the notion

of steganography, its security definitions, and its properties. After that, in Sec. 4.2,

we explain the current state of steganography in blockchains, clarify the relationship

between undetectable kleptographic attacks and secure steganographic communication,

and discuss the repercussions of steganography abuse on the users and on the blockchain

technology itself. Then, Sec. 4.3 demonstrates a scenario in which public blockchains

are abused for covert broadcast communication. In particular, we design, implement,

and evaluate a broadcast communication tool called Skywhisper on top of a real-world

cryptocurrency. Besides, we show that Skywhisper presents a robust and provably-secure

steganographic broadcast channel.

4.1 Steganography

The concept of steganography was introduced by Simmons' prisoner's problem [Sim84].

Steganography refers to the techniques that allow the covert transmission of a message

over a communication channel so that the mere presence of the hidden message is not

detectable to a warden who monitors the channel [HvL09, DIRR09]. Modern steganog-
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raphy techniques can be applied to various media, such as images, audio, HTML files,

etc. [PAK99].

More formally, let \scrC be a channel on the alphabet \Sigma with length \ell , which can

be viewed as a function that maps the channel history \scrH \in (\Sigma \leq \ell )\ast to a probability

distribution upon \Sigma \leq \ell . Denote the probability distribution of a given channel by \scrC \scrH .

A stegosystem on a family of channels C = \{ \scrC \lambda \} \lambda \in \BbbN consists of three PPT algorithms

\scrS \scrT = (KeyGen,Embed,Extract) as follows:

\bullet (ek, dk)\leftarrow KeyGen(1\lambda ) is a key generation algorithm that takes as input a security

parameter 1\lambda , and outputs an embedding key ek and an extraction key dk.

\bullet st \leftarrow Embed
\scrC \lambda \scrH 
\sanse \sansk (m,\scrH ). Given an embedding key ek, a message m, and a channel

history \scrH , Embed generates a stegotext message st. Note that Embed has sampling

access to \scrC \lambda \scrH .

\bullet m\leftarrow Extract\sansd \sansk (st). Extract takes as input an extraction key dk and a stegotext st,

and outputs the hidden message m \in \{ 0, 1\} \ast .

Stegosystem security. The stegosystem's goal is to communicate a hidden mes-

sage covertly by concealing the mere existence of the secret communication. There-

fore, a stegosystem, denoted as \scrS \scrT , is considered to be computationally secure if

a computationally-bounded observer or warden, who knows the channel history \scrH 

Expt\sansC \sansH \sansA \scrA (1\lambda )

1. \scrA (1\lambda ) outputs a message m;
2. \scrO : (ek, dk)\leftarrow KeyGen(1\lambda );

3. \scrO : b
\$\leftarrow \{ 0, 1\} ;

4. If b = 0: st\leftarrow Embed
\scrC \lambda \scrH 
\sanse \sansk (m,\scrH );

Else: st
\$\leftarrow \scrC \lambda \scrH ;

5. \scrO passes st to \scrA ;
6. \scrA (c) outputs a bit b\ast ;

7. \scrO : returns b
?
= b\ast ;

Stegosystem CHA-Experiment

Figure 4.1: Stegosystem CHA-security experiment between a challenger oracle \scrO and an adver-

sary \scrA . \scrO returns st\leftarrow Embed
\scrC \lambda 
\scrH 

\sanse \sansk (m,\scrH ) if b = 0 and returns st
\$\leftarrow \scrC \lambda h if b = 1.
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and the hidden text m, is not able to distinguish the stegotext st from objects randomly

picked from the channel distribution \scrD [HvL09]. The security of a stegosystem is defined

by a chosen hidden-text attack (CHA) security experiment, as shown in Fig. 4.1. Accord-

ing to this security experiment, we say a stegosystem \scrS \scrT = (KeyGen,Embed,Extract) is

CHA-secure if the advantage of an adversary Adv\sansC \sansH \sansA \scrA ,\scrS \scrT in distinguishing a steganographic

text st \leftarrow Embed
\scrC \lambda \scrH 
\sanse \sansk (m,\scrH ) from innocent random text st

\$\leftarrow \scrC \lambda h is negligible. In other

words, \scrS \scrT is CHA-secure if there is not any PPT adversary who can win this security

experiment with a non-negligible probability.

Definition 4.1. Based on the security experiment shown in Fig. 4.1, we say a stegosystem

\scrS \scrT is indistinguishable chosen-hidden text-attack (IND-CHA) secure if the advantage

for all PPT adversary \scrA in winning the experiment, denoted as Adv\sansC \sansH \sansA \scrA ,\scrS \scrT , is negligible,

i.e. the following statement is valid:

Adv\sansC \sansH \sansA \scrA ,\scrS \scrT (1\lambda ) =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
Pr

\left[ 
  

(ek, dk)\leftarrow KeyGen(1\lambda ); b\leftarrow \{ 0, 1\} ;

b\ast \leftarrow \scrA \scrO (b,m,\scrH )(1\lambda ) : b = b\ast 

\right] 
   - 1

2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq negl(\lambda )

\scrO (b,m,\scrH ) is an oracle that returns st\leftarrow Embed
\scrC \lambda \scrH 
\sanse \sansk (m,\scrH ) if b = 0 and returns st

\$\leftarrow \scrC \lambda h
if b = 1.

Stegosystem correctness, efficiency, and robustness. For a stegosystem \scrS \scrT to be

useful, it has to be correct. Correctness implies that if Embed is used to hide a message

m with the key ek and channel history \scrH , then, except for a negligible probability

negl(\lambda ), Extract should be able to retrieve the hidden message m given the key dk and

the corresponding stegotext st [HvL09].

Definition 4.2 (Correctness). We say a stegosystem \scrS \scrT = (KeyGen,Embed,Extract) is

correct if for all (ek, dk)\leftarrow KeyGen(1\lambda ) we have: Pr
\Bigl[ 
m\leftarrow Extract\sansd \sansk (Embed

\scrC \lambda \scrH 
\sanse \sansk (m,\scrH ))

\Bigr] 
\geq 

1 - negl(\lambda ) .

Besides security and correctness, the following two properties are also important for

stegosystems. (1) Reliability/efficiency indicates the probability that an embedded
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message is extracted when the stegosystem does not achieve perfect correctness. (2) Ro-

bustness measures the inability of a warden to alter the sender's communication transcript,

that contains the hidden message(s), and prevent the receiver from recovering the hidden

message(s). For more definitions of steganography, please refer to [HvL09, DIRR09].

4.2 Steganography in Blockchains

Although not focused on steganographically embedded content, there have been multiple

media reports of arbitrary objectionable content that is found stored in blockchains [S. 18,

H. 18, BBC19, Sky18]. Besides these reports, there has been a significant body of

academic research on this topic. For example, Matzutt et al. reported that 0.8\% of

146 million Bitcoin transactions store content on the blockchain or use non-standard

scripts [MHH+16]. Later, Matzutt et al. surveyed the methods that are used to store

non-financial content and discovered that 1.4\% of all Bitcoin transactions contain non-

financial data. They also retrieved over 1600 files, some of which contain immoral

content [MHH+18].

Content insertion in public blockchains has enabled the realization of some new

innovative applications [FHBS19], such as censorship-circumvention tools [AZ19b, RC19],

consensus agreement [TD17], pseudonymous identities [FWB15], name services1, and

timestamping2. For example, Tithonus [RC19] and Catena [TD17] are censorship-

circumvention and consensus agreement applications, respectively, that depend on in-

serting data in Bitcoin transactions. Also, R3C3 is a censorship-bootstrapping tool that

is built on top of Zcash [MMSK18]. However, although the absence of a central censor

makes blockchains appealing in some use cases, the increasing amount of illicit content

posted to the blockchains poses a regulatory challenge [STW+16]. Also, as reported

by Matzutt et al. [MHH+18], some countries may prosecute individuals for the mere

possession of specific digital content.

Subsequently, to deter the insertion of arbitrary content in blockchains, several

1 https://www.namecoin.org/
2 https://opentimestamps.org/
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techniques have been discussed to either filter out unwanted content before it is added

to the ledger [MHZ+18] or remove content from the blockchain [PDC17, AMVA17].

However, all of the proposed countermeasures can only be effective if the malicious

content attached to the transactions is detectable. Naively, one can attempt to avoid

detection by encrypting the malicious content and attaching its ciphertext to a transaction.

However, it is noticeable to the public that there is suspicious data attached. Nonetheless,

as seen in the rest of this chapter, detection is not feasible if data is steganographically

hidden into standard transactions in blockchains.

4.2.1 Steganography from kleptographic attacks

The relationship between kleptography and steganography is well known. For example,

Russell et al. described techniques to destroy steganographic channels in randomized

algorithms and consequently deter kleptographic attacks [RTYZ16b]. Nonetheless, Berndt

and Li\'skiewicz were the first to formally prove the connection between kleptography and

steganography. They concluded that undetectable kleptographic attacks correspond to

secure stegosystems on certain cryptographic primitives and vice versa [BL17].

Motivated by the proven correspondence between kleptography and steganogra-

phy [BL17], in this chapter, we demonstrate how the kleptographic attacks presented in

Chapter 3 can be used to realize steganographic systems in public blockchains. However,

it is worth noting that due to their different attack assumptions, a protection mechanism

may be efficient against kleptography and totally ineffective against steganography, as

shall be seen in more detail in Chapter 5 and Chapter 6. This difference necessitates dis-

tinguishing between steganography and kleptography and justifies the separate treatment

of the two types of attacks on blockchains.

Chapter 3 clarified the plausibility of kleptographic attacks on blockchains in the

black-box setting, and attributed their significance and plausibility to eight reasons:

(1) blockchains' complex software, (2) the adversaries mis-implementations of well-estab-

lished schemes to curtail their security, (3) the counter-intuitive highly centralized

development of many blockchain applications, (4) the inability of the end-users to inspect
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(\bfa ) Kleptography: the watchdog scrutinizes the
subverted wallet in the black-box settings,
and examines all generated transactions.

(\bfb ) Steganography: the user is willingly par-
ticipating in the attack, and the warden
monitors the channel.

Figure 4.2: The main informal difference between kleptography and steganography is the role
of the end-user, who is an oblivious victim in the former and a complicit party in
the latter.

the authenticity of open-source blockchain applications, (5) the ease of distributing klep-

tographically-modified blockchain applications, (6) the broadcast nature of blockchains,

(7) the secure anonymity techniques, which help the attackers avoid de-anonymization,

and (8) the detrimental consequences on the victims' funds and privacy. By comparison,

steganography is even more plausible due to its different assumptions. In kleptography,

the sender, Alice, is an oblivious victim of the attack and should not be able to detect

any discrepancies when executing her subverted wallet. In contrast, in steganography,

Alice is complicit, and the attack is considered successful if the crafted transactions

carrying the hidden information are undetectable by any PPT watchdog scrutinizing the

channel rather than the wallet itself. In this sense, informally, the difference between

kleptography and steganography in blockchains can be viewed as the difference in the

complicity of the end-user, as depicted in Fig. 4.2.

As such, the kleptographic attacks on CryptoNote's ring signature and ECDSA

described in Sec. 3.3 and Sec. 3.4 can be used to realize secure steganographic systems in

blockchains. However, due to the different assumptions, the attack scenarios differ from

those in Chapter 3. Also, and as a result of the different assumptions, the corresponding

countermeasures are different, as shall be discussed later in Chapter 5 and Chapter 6.

Despite the well-known relationship between kleptographic and steganographic at-

tacks, before our work, there had been only one suggestion to mis-implement blockchains

to establish steganographic communication [Par18]. Partala presented a proof-of-concept

attack on Bitcoin to steganographically embed one bit into the standard Bitcoin trans-
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action's recipient address without being distinguished from an innocuous transaction

and without burning any funds [Par18]. According to their attack, to covertly send

a hidden message m, the sender sends \alpha = \delta | | m\prime , where m\prime is the symmetric cipher of m

encrypted under the key k, i.e. m\prime = Enck(m), and \delta is a starting pattern known to both

the sender and the receiver(s). In addition, the string \alpha is sent bit by bit through the

rejection-sampling of the transaction address a. The least significant bit of the selectively

chosen address a is the same as the ith bit of \alpha , i.e. a[LSB] = \alpha [i]. Only one bit is sent

in every transaction, and, to maintain order, only one transaction is sent in each block.

Therefore, with 10 minutes to add a new block in Bitcoin, the sender needs more than

24 hours to send a message of 20 bytes. Moreover, the receiver continuously checks the

payments generated by the sender, and if he ever detects \delta , he retrieves m\prime bit by bit and

decrypts it to reveal m; m = Deck(m\prime ). Notably, because the receiver needs to know the

sender's identity, this method does not apply to blockchains where the sender's identity

is anonymous, e.g. Zcash.

Our work in this chapter extends the study of steganography in blockchains in two ways.

Firstly, it presents a more practical and higher-throughput steganographic communication

in blockchains in Sec. 4.3. Secondly, it practically demonstrates the correspondence

between undetectable kleptographic attacks on signatures and the existence of secure

steganographic channels in these signatures.

4.2.2 Repercussions of steganography on blockchains

It remains to clarify the actual adverse consequences of exploiting public blockchains

to establish steganographic communication on both the users and the technology itself.

Malicious users who communicate objectionable data do not only pose a potential ethical

threat but may also hinder the future of public blockchains. This is due to the fact

that most public blockchains permanently store their transactions and store replicas in

the host machines of all the participating P2P nodes. Hence, if any of the transactions

contain malicious content, all participating users will have the same content in their

machines. Thus, from a moral standpoint, users may refrain from participating in such
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blockchains, which may jeopardize the future adoption of the blockchain technology.

Although the immutability of the ledger is seen as a necessary feature for many

applications, such as cryptocurrencies, it contradicts the users' right to be forgotten (RtbF)

defined by the European General Data Protection Regulation (GDPR) [Eur16, PCAP19].

The RtbF entails that users should be able to delete their own digital personal records when

certain conditions are met. On the contrary, if any personal information is uploaded to the

blockchain, it will not be technically possible to erase the information without a hard fork

of the chain [PDC17]. Likewise, inaccurate data that is generated by a corrupted user-side

application, e.g. a modified cryptocurrency wallet, and added to the blockchain will remain

inaccurate until corrected by a hard fork [ZBA18]. The situation is exacerbated if the

information represents immoral content [MHH+16, MHH+18]. For example, Matzutt et

al. listed some of the arbitrary content that has been found in blockchains: `(1) copyright

violations, (2) malware, (3) privacy violations, (4) politically-sensitive content, and

(5) illegal content' [MHH+18].

Furthermore, unlike other systems, such as social media platforms, blockchains store

data irrevocably, and all blockchain data is downloaded and locally stored by the users.

Therefore, if a public blockchain is known to the authorities to be abused for covert

communication or storage of malicious content, then authorities in any given country may

criminalize the mere participation in such blockchains [MHH+18]. As such, out of fear

of prosecution, many users may resort to the following two options. The first possible

option is that users may simply choose not to participate in public blockchains, which

will obstruct the adoption of immutable public blockchains. The second option is that

users may choose not to store the full ledger, which defeats the purpose of decentralized

blockchains. This behaviour leads to a more centralized setting, where fewer users

actively participate in the consensus protocol. Besides, this behaviour may facilitate Sybil

attacks [Dou02], where malicious parties use multiple identities to control more power in

the consensus protocol, which will lead to a biased consensus that can be used to mount

double-spending attacks, denial-of-service attacks, and privacy attacks [CSLR18].

In short, steganography has adversarial effects on public blockchains as it allows the
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Figure 4.3: Covert broadcast communication on public blockchains. Only the receivers who have
the broadcast encryption key K can detect broadcast-communication transactions
and successfully extract the message M.

abuse of blockchains to store and disseminate arbitrary objectionable content. This abuse

will inevitably lead to the criminalization of public blockchains that are known to the

authority to store such content. Besides, steganographically-embedded content may lead

users to abandon public blockchains, which will endanger the future adoption of the

technology.

4.2.3 Steganographic attack scenarios

Besides its above-mentioned threat to the users and the technology itself, steganography

can be used in blockchains in two particular scenarios: (i) to establish covert broadcast

communication, and (ii) to secretly and persistently store arbitrary content.

Steganography scenario 1: covert broadcast channel. Conventional stegano-

graphic techniques typically assume that covert communication is between two parties:

a sender and a receiver. On the contrary, we demonstrate in Sec. 4.3 how public

blockchains can be abused to realize covert broadcast communication, i.e. one sender and

multiple receivers, as depicted in Fig. 4.3. We show how a single Bytecoin transaction of

4 inputs and 10 public keys can steganographically transmit more than 2KB and costs

about \$0.0000215, given the price of a single Bytecoin coin (BCN) is \$0.000215, and
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the minimum transaction fee is 0.1 BCN3. The feasibility of this attack and the high

throughput demonstrate the severity of this scenario, especially if abused by outlaws for

illicit communication.

Steganography scenario 2: covert data storage and distribution. Data storage

can be viewed as a communication channel between the user and the user himself in the

future. Unlike covert communication, covert persistent storage requires the uploaded

content to be permanently stored and available on the blockchain. Given the cost of

securely transmitting 2KB in Bytecoin is \$0.0000215, the cost of covertly storing 1MB is

about \$0.011. Consequently, an adversary can use Bytecoin as a cyberlocker and abuse

the P2P network of Bytecoin as a persistent content-distribution network (CDN). For

example, a blockchain could be used to store pirated movies, WikiLeaks documents, etc.

A hypothetical example that shows the threat of this scenario is blackmailing. An

adversary can covertly store some private information about a victim, and may even

demonstrate this to the victim by sharing the key and the extraction tool with him. The

malicious user can then threaten the victim that she can make the information public by

revealing the key to everyone. The victim will face difficult options due to the absence

of any central authority, which may be able to remove the content, and the permanent

storage of transactions in public blockchains.

4.3 Covert Broadcast Communication in Blockchains

In this section, we describe an example implementation of scenario 1, i.e. implementing

covert broadcast communication on public blockchains. We modify the kleptographic

attack on CryptoNote's ring signature presented in Sec. 3.3, and in particular the attack

realization on Bytecoin as described in Sec. 3.6.1, to demonstrate our implementation of

the world-first covert broadcast communication application on blockchains. For brevity,

we henceforth refer to our application as Skywhisper.

3 Price as shown on https://coinmarketcap.com/ on 26/June/2020.
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Figure 4.4: Skywhisper layers.

4.3.1 System requirement

As demonstrated in Chapter 3, all public blockchains with randomized signatures are

susceptible to various kleptographic attacks. Also, since undetectable kleptographic

attacks correspond to secure steganography channels [BL17], in principle, all public

blockchains with randomized signatures can be abused to establish covert broadcast

communication. However, the available bandwidth per transaction depends on the

specific signature scheme. In our example implementation, we take advantage of the

random numbers within the ring signature(s) of each transaction in Bytecoin. The

available bandwidth per transaction allows sending key-management commands in a single

transaction. The size of the biggest command in our particular implementation is

1237 bytes, that is used to manage a broadcast channel of 64 users, as described later in

Table 4.1. Public blockchains with randomized signatures that offer less bandwidth can

send these commands over multiple transactions, which is less efficient as compared to

Bytecoin and, generally, cryptocurrencies that use ring signatures. Therefore, all public

blockchains with randomized primitives can be exploited to realize steganographic systems;

however, their actual implementation depends on the used cryptographic primitives.

4.3.2 System architecture

Skywhisper is a covert broadcast communication system that can, in theory, be deployed

on any existing blockchain platform with randomized cryptographic primitives. The

prototype is developed and tested on the real-world Bytecoin blockchain (v3.3.3). Its
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Broadcast Packet: subscription-request

Field Length (Bytes) Description/Value

CMD 1 0x02

Id 1 Id \in \{ 1, . . . , 63\} 
R 32 random string

Hash 2 2 LSB's of Hash(Hash(di)\oplus R)

Broadcast Packet: new-Hdr

Field Length (Bytes) Description/Value

CMD 1 0x01

Auth 64
Each ith byte is the LSB of the

corresponding Hash(Hdr| | di) where
di is the private key of the ith user.

SL 8

This is a binary encoded representation
of the subscribers' list. If the ith

bit is set, then the corresponding ith

user is a subscriber

Hash 12 12 LSB's of Hash(K)

Hdr 1152
length = (A+ 1) \ast 128,
and for 64 users, A = 8.

Broadcast Packet: broadcast-msg

Field Length (Bytes) Description/Value

CMD 1 0x04

Encrypted msg \leq 200
The length of the encrypted message is
arbitrary in principle, but for ease of

implementation, it is \leq 200.

Table 4.1: Structure of Skywhisper broadcast packets.

general objective is to override Bytecoin and use it for secure covert communication

and persistent storage. As illustrated in Fig. 4.4, Skywhisper consists of three layers:

(1) Skywhisper broadcast encryption, (2) Skywhisper Bytecoin wallet, and (3) Bytecoin

P2P network. The third layer is responsible for providing anonymous connectivity among

the users and comprises the normal Bytecoin P2P network. Notably, to run a Skywhisper

node, users do not require any additional infrastructure or hardware as long as they have

a Skywhisper-modified Bytecoin wallet. The following two sections describe the first two

layers of Skywhisper.

4.3.3 Skywhisper broadcast encryption

The core building block of this layer is broadcast encryption pioneered by Fiat and

Naor [FN94]. Broadcast encryption is a type of encryption where one ciphertext is

transmitted in a broadcast channel to all n users in a group \scrU . However, only privileged
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users \scrS can correctly decrypt it using their respective private keys. Where \scrS is any subset

of \scrU , i.e. \scrS \subseteq \scrU . More specifically, we use Boneh et al.'s [BGW05] broadcast encryption

scheme \scrB \scrE , which is a tuple of three algorithms: \scrB \scrE = (Setup,Enc,Dec), as follows:

\bullet (\{ d1, . . . , dn\} ,PK)\leftarrow Setup(n). The setup algorithm takes the number of users n

as input, and generates one public key PK and a set of n private keys \{ d1, . . . , dn\} .

\bullet (Hdr,K) \leftarrow Enc(\scrS ,PK). The encryption algorithm takes as input a subset of

privileged users \scrS \subseteq \scrU and a public key PK. It is run by the master node to

generate a new header Hdr and a symmetric encryption key K. Hdr is shared with

subscriber nodes so that they can generate the symmetric key K, which is used,

with a secure encryption algorithm, to encrypt and decrypt any broadcast message.

\bullet K\leftarrow Dec(Hdr,\scrS , i, di,PK). \forall i \in \scrS , any subscriber with index i and private key di

can compute the symmetric broadcast encryption key K.

\scrB \scrE satisfies correctness if the following is true: \forall \scrS \subseteq \scrU and \forall i \in \scrS , if

(\{ d1, .., dn\} ,PK)\leftarrow Setup(n) and (Hdr,K)\leftarrow Enc(\scrS ,PK), then K\leftarrow Dec(Hdr,\scrS , i, di,PK).

Moreover, \scrB \scrE is said to be collusion-resistant if all non-privileged users in \scrT , where

\scrT \subseteq \scrU and \scrT \nsubseteq \scrS , can not recover the broadcast secrets even if they collude with each

other. The semantic security of \scrB \scrE is formally proved by Boneh et al. [BGW05].

As seen in Fig. 4.4, the Skywhisper broadcast encryption layer mainly consists of the

following three algorithms. (1) Broadcast Key-Encapsulation Mechanism (BKEM), which

is a modified version of an open-source C-library [G\"un12] that implements Boneh et

al.'s broadcast encryption protocol [BGW05]. According to this protocol, let n be the

total number of users in a broadcast channel, then the size of the public key PK and the

header Hdr is O(
\surd 
n), and the size of the private keys di's is just a single group element.

Whenever the subscribers' list is modified, the master node generates a new Hdr and

derives a new symmetric encryption key K from the updated Hdr. (2) AES encryption,

which is included in the Bytecoin wallet source code. It is used to encrypt broadcast

messages under the symmetric broadcast key K in the CBC mode. (3) SHA-3 is used to

hash the different Skywhisper commands to ensure authenticity and integrity.

The output of the broadcast encryption component is a broadcast packet, denoted
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Figure 4.5: Embedding a broadcast packet CT. First generate a synthetic IV =
AESz(rand\| CMD\| Length\| \ell \| 0000) and embed it in c0. Then generate a stegotext
st = AESz(CT), and embed up to 31 bytes of st in each random number cj and rj .

as CT, that is either one of the following three commands: (i) subscription-request,

(ii) new-Hdr, and (iii) broadcast-msg. The detailed syntax of the three types of CT

packets is shown in Table 4.1. After executing Skywhisper's broadcast encryption, the

generated CT is passed to the second layer, i.e. the Skywhisper Bytecoin wallet, which

secretly embeds CT into innocuous-looking transactions.

4.3.4 Skywhisper wallet

This layer consists of a modified version of the Bytecoin wallet (v3.3.3)4. Bytecoin is an

open-source cryptocurrency project [Tea18], and it uses the ED25519 twisted Edwards

curve and the CryptoNote linkable ring signature to sign its transactions. As shown in

Sec. 2.2.6.2, this signature has sufficiently many uncontrolled random numbers. For a ring

of size k, i.e. k public keys, the format of the ring signature is \sigma = (I, c1, . . . , ck, r1, . . . , rk).

For all j \in [k], where j \not = \ell and \ell is the signer's index, the components cj and rj are

uncontrolled random group elements in \BbbZ p. These elements can be abused to establish

subliminal channels into which the broadcast communication is secretly embedded. The

Skywhisper wallet achieves steganographic communication according to the following

three steps.

Step 1: embedding a broadcast packet CT in a transaction's signature. To

covertly embed CT in signature's random elements \{ (cj , rj)\} , the modified wallet generates

a synthetic IV = AESz(rand\| CMD\| Length\| \ell \| 0000). Here z is a 128-bit channel key shared

4 Although slightly different, we have confirmed the same principles are still applicable, and Skywhisper
can be implemented with subtle modifications in Bytecoin's latest release (\sansv \sansthree .\sansfive .\sansone ).
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among all n users, rand is a 64-bit random string, CMD signifies one of the three packets

in Table 4.1, Length is the length of CT, \ell is the signer's secret index within the ring

signature, and 0000 is a 32-bit string of 0's. Then IV is placed in the least significant 16

bytes of c0, and the rest of c0 is set randomly. After that, using AES-128-CBC, z, and IV,

the broadcaster generates a steganographic text st by encrypting CT; i.e. st = AESz(CT).

Then, as illustrated in Fig. 4.5, the broadcaster places parts of up to 31 bytes of st in all

subsequent random numbers until the end of st. Finally, the transaction that contains st

is sent as per normal over the blockchain.

Step 2: identifying transactions containing stegotext st. To identify the transac-

tions containing stegotext st, receivers check every new transaction added to the ledger

by decrypting the first two pairs of (cj , rj) in the attached signature. A receiver uses

the channel key z to decrypt the least significant 16 bytes of cj and checks if it contains

32 bits of zeros. If the receiver detects such a pattern, he identifies the existence of

a stegotext and extracts IV from the least significant 16 bytes of cj . The receiver also

extracts the broadcast command CMD, the packet's length Length, and the secret index

\ell . If, however, no such pattern is detected in any of the first two pairs of (cj , rj), then

the signature is ignored.

Step 3: extracting broadcast packet CT. After identifying the existence of st, each

receiver extracts st from all random numbers. In particular, according to Length, the

receiver re-constructs st by reading up to 31 bytes from all random numbers except when

j = \ell . Finally, the receiver recovers the broadcast packet CT by decrypting st using

AEC-128-CBC, the channel key z, and IV; CT = AES - 1z (st).

The changes introduced to the normal Bytecoin wallet affect three source files:

crypto.cpp, BlockchainState.cpp, and oaes lib.c. For further clarity, the pseudo-code of the

Skywhisper Bytecoin wallet is shown in Fig. 4.6. Also, the source code for Skywhisper is

available in GitHub5 along with instructions on how to compile it and execute Skywhisper's

different operations.

5 https://github.com/NaLancaster/skywhisper
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KeyGen(1128):

\bullet Pick random z
\$\leftarrow \{ 0, 1\} 128;

\bullet Return ek = dk = z;

Embedz(CT):
generate ring signature():
\bullet counter = 0;
\bullet if(j \not = \ell ):

-- cj = random scalar(\ell , counter++);
-- rj = random scalar(\ell , counter++);

\bullet Else:
-- process as per normal;

random scalar(\ell , counter):

\bullet rand
\$\leftarrow \BbbZ p;

\bullet if(counter == 0):
-- IV = Encryptz(rand[0:63]| | CMD| | Length| | \ell | | zeros);
-- st = Encryptz,\sansI \sansV (CT);
-- rand[0:127] = IV;
-- sent = 0;

\bullet if(counter > 0):
-- if(sent < Length):
\ast rand[0:247] = up to 31 bytes of st;
\ast sent = sent + (up to 31);

\bullet Return rand;

Extractz(c, r):
\bullet pattern found = 0;
\bullet for(j = 0; j < 2; j++)

-- IV\prime = Encrypt - 1z (cj,[0:127]);
-- if(IV\prime [96:127] == zeros):

\ast CMD = IV\prime [64:71] Length = IV\prime [72:87] \ell = IV\prime [88:95] ;
\ast pattern = 1, index = j;

\bullet if(pattern):
-- for(j = 0; j < k; j++)

if(j \not = \ell \& j \not = index): CT = CT + Encrypt - 1z,\sansI \sansV (cj , rj);
-- Return CT;

\bullet Return 0; \% No broadcast message

Bytecoin stegosystem pseudo-code

Figure 4.6: Pseudo-code for the implementation of the stegosystem \scrS \scrT in the Skywhisper's
modified Bytecoin wallet. k denotes the size of the ring signature, \ell is the signer's
index within the ring, and z is the steganographic channel key.
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(\bfa ) User subscription

(\bfb ) User revocation

(\bfc ) Broadcast communication

Figure 4.7: Skywhisper operations: user subscription and revocation, and broadcast communi-
cation. RN\sansT \sansX denotes the random elements in the ring signature.
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4.3.5 System operation

To fully achieve its objectives, Skywhipser offers the following three functionalities:

(1) user subscription, (2) user revocation, and (3) broadcast communication. In the

following, we describe each of these three operations.

User subscription. As illustrated in Fig. 4.7a, when a user requests a subscription to

Skywhisper's broadcast channel, the following steps occur. (1) A broadcast packet CT

is created containing 1 byte indicating the subscription-request command, the user's Id,

a 32-byte random string R, and 2 LSB's of Hash(Hash(di) \oplus R) where di is the user's

private key. (2) After that, the Skywhisper's Bytecoin wallet covertly embeds CT into

a transaction along with a known pattern and broadcasts it through the blockchain.

(3) When the master node's wallet detects the known pattern, it extracts the broadcast

packet CT. (4) Then, the master node's broadcast encryption layer authenticates the

subscription request by xoring the received R with the user's secret key di and checking

the result hash value with the received hash. If successfully authenticated, the user

is added to the subscribers' list, and a new Hdr is generated6. (5) The master node

generates a broadcast packet containing 1 byte indicating the new-Hdr command, some

authentication data Auth, the new subscribers' list SL, 12 bytes of the hash of the new

encryption key K, and the new Hdr. (6) CT is secretly embedded into a transaction and

transmitted through the blockchain. (7) The user node's wallet detects a transaction

containing a broadcast packet and extracts CT. (8) After extracting CT, the user checks

its data, and if it is successfully authenticated, the user generates a new K using the

received Hdr. Finally, the user verifies the correctness of K by comparing its hash to the

received hash value.

User revocation. Fig. 4.7b shows the process of revoking the subscription of a given

user. The master node initiates this process by removing the user's index from the

6Remark: the size of \sansH \sansd \sansr is proportional to the number of users n. \sansH \sansd \sansr contains A+1 elements, where
n = AB. It is stated in [BGW05] that setting B = \lfloor 

\surd 
n\rfloor gives both public key \sansP \sansK and \sansH \sansd \sansr of size of

about
\surd 
n elements. Also, the algorithm will set up A = \lceil n

B
\rceil . In our implementation of Skywhisper, we

have n = 64, A = 8, and B = 8, which gives \sansH \sansd \sansr of 9 elements. Since each element is 128 Bytes, the
size of \sansH \sansd \sansr is 1152 Bytes. After updating the subscribers' list, Skywhisper does not only broadcast \sansH \sansd \sansr 
to users but sends a broadcast packet \sansC \sansT = (\sansC \sansM \sansD \| \sansA \sansu \sanst \sansh \| \sansS \sansL \| \sansH (\sansK )\| \sansH \sansd \sansr ), which is 1237 bytes as further
illustrated in Table 4.1
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Throughput and Cost

Tool BW (byte/Tx) Tx Fee (coin) Price/coin Tx Fee (\$) Cost 1 MB(\$)

Skywhisper 2 K 0.1 BCN 0.000215 0.0000215 \approx 0.011

Tithonus 1650 10 - 8 BTC/byte 9305.01 0.153532665 \approx 97.6

R3C3 1168 0.0001 ZEC 56.09 0.005609 \approx 5

Table 4.2: Comparison between Skywhisper, Tithonus [RC19], and R3C3 [MMSK18] in terms of
bandwidth per transaction (BW) and cost of transmitting 1MB, assuming a Bytecoin
transaction with 4 inputs and ring size 10.

subscribers' list and generating a new Hdr. After that, the same process is executed as

steps (5)-(7) of the user subscription scenario. However, in this case, the revoked user

receives a hash value for K that is different from the hash value he computes; hence, the

user concludes that his subscription has been revoked.

Broadcast communication. As illustrated in Fig. 4.7c, any subscriber, including the

master node, can send a broadcast message M to all other subscribers according to the

following steps. (1) The broadcaster constructs a message M. (2) The message M is

encrypted under the broadcast encryption key K, and a broadcast packet CT is generated.

(3) The sender's Skywhisper wallet encrypts CT under the channel key z, embeds it

into the transaction's signatures' random numbers RN\sansT \sansX , and broadcasts the crafted

transaction as per usual through the blockchain P2P network. (4) Each receiver's client

detects a new transaction and checks if its randomness contains the known pattern. If

the pattern is found, using the channel key z, the client extracts the received broadcast

ciphertext CT and passes it to the broadcast encryption layer. (5) After that, CT is

decrypted using the broadcast encryption key K. (6) Finally, the receiver correctly

recovers the broadcast message M.

4.3.6 Performance and security of Skywhisper

Performance. The available bandwidth BW in a Bytecoin transaction, and equally in

a CryptoNote transaction, is given as BW = 32(y(k  - 1)2) bytes, where y is the number

of inputs in the transaction, and k is the number of public keys in each ring signature.

Hence, as detailed in Table 4.2, in one transaction of 4 inputs and 10 public keys,

Skywhisper can transmit more than 2KB of covert data, which, given the current price

of Bytecoin is \$0.000215 [Coi18], costs \$0.0000215. Therefore, the cost of transmitting
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1MB of data via Skywhisper is approximately \$0.011. This is much lower compared to

other blockchains-based applications such as Tithonous [RC19] and R3C3 [MMSK18],

where transmitting 1MB through Tithonous costs \approx \$97.6, and \approx \$5 in R3C37. Note

that neither Tithonous nor R3C3 is a broadcast communication tool, and they are rather

censorship-circumvention tools.

Security and robustness. To prove that Skywhisper is a secure stegosystem, it should

be proven that there is not any PPT observer that can distinguish between its stegotext

and innocent cover text better than random, i.e. can win the security game in Fig. 4.1.

However, as stated by Katzenbeisser and Petitcolas [KP02], it is difficult to prove this

property. They argue that one can, instead, base the security proof of the steganographic

system \scrS \scrT on another problem \scrP that is known to be secure, e.g. some intractable

cryptographic primitive, and construct a reduction from \scrP to \scrS \scrT .

Similarly, the security of Skywhisper depends on the semantic security of the broadcast

encryption scheme \scrB \scrE , as defined in Sec. 4.3.3, and the indistinguishability of the

stegosystem \scrS \scrT implemented in the modified Bytecoin wallet to covertly embed broadcast

packets CT in transactions' ring signatures. The proof of the former one can be found

in [BGW05]. Whereas, the security of the proposed stegosystem \scrS \scrT is examined for

undetectability under the chosen hidden-text attack (CHA) security game depicted in

Fig. 4.1. We remark that other content-insertion techniques that use non-standard Bitcoin

scripts or exchange the public key with an arbitrary string containing printable characters

can be detected [MHH+16, MHH+18]. However, Skywhisper's \scrS \scrT replaces random

group elements in the ring signatures with pseudo-random ciphers, which, by definition of

semantic security, are computationally indistinguishable from each other. More formally,

we model the underlying encryption scheme Encrypt of Fig. 4.6 as a pseudo-random

function (PRF), and we have the following theorem.

Theorem 4.1. If Encrypt is a secure pseudo-random function, then the stegosystem

\scrS \scrT = (KeyGen,Embed,Extract), as shown in Fig. 4.6, is CHA secure.

7 Comparison is based on the prices of the related cryptocurrencies quoted on 26/06/2020 from [Coi18].
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Proof. In Appendix C (Sec. C.2), we use reduction to prove Theorem 4.1. We show that

if there is a PPT adversary \scrA that breaks the security of Skywhisper with respect to the

CHA security experiment Expt\sansC \sansH \sansA \scrA (1\lambda ) in Fig. 4.1, then there must exist another PPT

adversary \scrB who can break the PRF game for Encrypt, i.e. \scrB must be able to distinguish,

with a non-negligible probability, between the pseudo-random text generated by the PRF

and randomly-selected text, as explained in Sec. 2.2.3.

By contrast, Frkat et al. [FAZ18] showed how to insert arbitrary content in Bitcoin's

transactions by replacing the ephemeral randomness r in each transaction's ECDSA

signature with the ciphertext of the hidden message. The authors demonstrated their

technique in the context of botnets, where a central bot, or botmaster, communicates

commands subliminally to other bots in the botnet. Nonetheless, their model suffers

a severe security shortcoming represented in the inability of the botmaster to generate

the same command twice; otherwise, the botmaster's private key can be computed by

any observer. Besides, a warden can detect this steganographic communication when

the botmaster communicates the same message more than once. In other words, their

scheme is not secure against chosen hidden-text attack, where the warden can detect the

steganographic communication by repeating a message twice.

In terms of robustness, as defined in Sec. 4.1, unlike image steganography, the stegotext

embedded in the signatures can not be removed without nullifying the functionality of

the signatures and the transactions in general. Therefore, Skywhisper is robust against

any warden who attempts to alter the stegotext. Remarkably, other content-insertion

approaches that replace segments of the transactions, as done in Tithonus [RC19] and

Catena [TD17], are susceptible to policy changes where certain transactions, or scripts,

become conspicuous or are no longer accepted, forcing the adoption of alternative

techniques.

Advantages and disadvantages of Skywhisper. Skywhisper can be used as

a censorship-circumvention tool to avoid the shortcomings of other proxies. Partic-

ularly, state-of-the-art censors can discover censorship-resistant proxies, e.g. Tor bridges,

and block them. On the contrary, it is provably secure that no censor can distinguish

78



Chapter 4: Steganography in Blockchains Summary of Steganography in Blockchains

steganographically-subverted blockchain transactions. Hence, censors can not launch

any targeted DoS attack against Skywhisper unless they blacklist the whole blockchain

network, which might have other financial ramifications.

Besides its security and robustness, Skywhisper offers the following advantages.

By utilizing public blockchains, Skywhisper eliminates the need for dedicated private

blockchains for lightweight communication applications. It makes use of well-established

public blockchains, which are backed by many nodes that participate in the consensus

process incentivized by the already-available cryptocurrency. Also, Skywhisper delegates

computation to outside the blockchain. This delegation removes the need for a Turing-

complete programming language for the blockchain platform, uses well-tested and widely-

known programming languages, and speeds up processing. Besides, Skywhisper offers

interoperability where Skywhisper master and subscribers transact seamlessly with other

clients in the blockchain.

On the other hand, the main disadvantage of Skywhisper is the fact that it can

be used by outlaws to abuse public blockchains for illicit communication and storage.

Specifically, they can exploit steganographic communication in blockchains to circumvent

legal censorship, and secretly store and disseminate objectionable content. This potential

threat necessitates the research of countermeasures to deter the steganographic exploita-

tion of blockchains, as demonstrated by Skywhisper, and prevent kleptographic attacks

on cryptocurrencies as previously described in Chapter 3.

4.4 Summary of Steganography in Blockchains

Ateniese et al. [BL17] have shown that kleptographic attacks correspond to secure

steganography on specific randomized cryptographic schemes. The work presented in

this chapter demonstrates this correspondence on randomized signature schemes in

public blockchains. In this chapter, we have shown that our kleptographic attack on

Bytecoin's ring signature, described in Chapter 3, can be used to realize steganographic

communication in Bytecoin. We have demonstrated how to use this steganographic

communication to implement the first blockchain-based covert broadcast communication
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tool, called Skywhisper. This tool presents a robust provably-secure stegosystem, with

a broadcast network of 64 users, and can transmit 1MB of data for about \$0.011.

Although steganography in public blockchains can help realize innovative benign

solutions on top of existing blockchains, such as Skywhisper, we have clarified that

steganography has severe adversarial effects. Namely, steganographic communication

in public blockchains enables the covert storage and dissemination of objectionable

content. Such abuse of public blockchains will motivate regulators to criminalize the use

of blockchains that are known to store unethical content. Besides, users will inevitably

entirely abandon the use of blockchains or opt-out of the participation in the consensus

protocol. Consequently, steganography in blockchains hinders the future adoption of the

technology. Therefore, new blockchain designs should actively prevent steganographic

abuse of public blockchains.
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Existing Countermeasures

Previous chapters have highlighted the potential threat of exploiting the randomness

in public blockchains' cryptographic primitives. In particular, we demonstrated the

threat of kleptographic and steganographic attacks on blockchains in Chapters 3 and

4, respectively. Besides, we illustrated how these attacks could be used to maliciously

subvert blockchain applications, communicate covertly, and irrevocably store arbitrary

data in blockchains. Besides, we clarified the adverse repercussions on the unknowing

users of kleptographically-subverted wallets, who are inevitably vulnerable to losing

their secret signing keys and, consequently, their funds. We have also shed light on

the regulatory challenge posed by storing arbitrary, and possibly unethical, content in

blockchains. Also, we discussed how storing malicious content might lead to the legal

criminalization of the mere participation in blockchains, which are known to contain such

content.

Given the aforementioned threats, it is necessary to investigate possible counter-

measures to deter the kleptographic subversion of blockchain applications, prevent

steganographic communication, and actively remove arbitrary content before it is added

to the ledger. The latter objective of any efficient countermeasure does not only defend

against the permanent storage of malicious data but also practically achieves the `Right

to be Forgotten' (RtbF), which is required by regulators, such as the European General

Data Protection Regulation (GDPR) [PCAP19].
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To investigate possible countermeasures, we survey in this chapter all the state-of-the-

art techniques that are proposed as deterrence against kleptography and steganography

in general, and particularly in blockchains. We assess the efficiency of each of the

surveyed techniques using the following five metrics. (1) The ability of the technique to

thwart the kleptographic subversion of blockchain applications. (2) The ability of the

technique to defend against steganographic communication. (3) The efficiency of the

technique in deterring the persistent storage of arbitrary content. (4) The resistance of

the technique against input-triggered attacks. (5) The technique's practical applicability

in the context of blockchains. We denote by input-triggered attacks the scenarios where

the maliciously-implemented cryptographic algorithm behaves honestly, i.e. as per

specifications, except when triggered by a specific input chosen by the attacker. Also,

we use practical applicability to indicate the feasibility of practically implementing the

described countermeasure in the context of public blockchains.

Sec. 5.1 lists all of the previously proposed countermeasures, describes each one of

them, and assesses their effectiveness with respect to the above-mentioned metrics. After

that, Sec. 5.2 discusses some of the new blockchain design trends and assesses them

in light of their effectiveness as countermeasures. Finally, Sec. 5.3 presents an overall

summary of all the surveyed techniques.

5.1 Kleptography-Resistant Techniques

5.1.1 De-randomization of algorithms

As demonstrated in Chapters 3 and 4, kleptographic and steganographic attacks on

cryptographic primitives exploit the uncontrolled randomness within these primitives.

Thus, the first intuitive countermeasure, as proposed by Young and Yung [YY96], is

to de-randomize the random algorithm by splitting it into two parts: a deterministic

algorithm and an external random-number-generator algorithm. This approach allows

the users to choose their random parameters, e.g. seeds, and make the random algorithms

82



Chapter 5: Existing Countermeasures Kleptography-Resistant Techniques

publicly available. Consequently, users can compare the output of their de-randomized

algorithms with the output of the corresponding trusted implementation, given the same

input parameters are used in both.

Although this approach is theoretically possible, it fails to address input-triggered

kleptographic attacks. A user-side implementation can act honestly for most inputs

except when the input is equal to some trigger value that is specified by the implementer.

Besides, the de-randomization of algorithms is not effective against steganography, where

the user willingly chooses to bypass the randomness generation algorithm and knowingly

replaces it with pseudo-random-looking stegotext.

5.1.2 Cascading cryptosystems

Another measure proposed by Young and Yung to counter kleptography is to cascade

independently-developed cryptosystems [YY96]. The use of multiple cryptosystems avoids

the unreasonable trust of a single cryptosystem in the black-box setting and thwarts

kleptography in principle. However, it is not practical in the context of blockchain

applications. Also, this approach will likely increase the computational time, and users

will need to use multiple applications or hardware devices to establish the needed level of

trust. Like the previous technique in Sec. 5.1.1, this technique is not effective against

steganography.

5.1.3 Software integrity

Young and Yung recommended checking the integrity of cryptographic software as

a countermeasure against kleptography [YY96]. To achieve this, deterministic compilation,

also known as reproducible builds [rep20], and tools such as Gitian [Cup20], can be used

to ensure the same source code compiles into the same binary even if compiled in different

environments. Kleptography can be prevented if the used software successfully passes

sufficient integrity checks, or if the binary is deterministically compiled from trusted source

code. However, deterministic compilation can not deter steganography in blockchains, as

users knowingly choose to use steganography-enabled software.
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5.1.4 Synthetically-random cryptographic primitives

As identified by many researchers [YY96, YY97a, BPR14, BJK15], the root cause for

kleptographic attacks is the uncontrolled randomness. As such, an intuitive solution is to

use deterministic cryptographic primitives [BPR14, BJK15, BH15, DFP15]. Concerning

signature schemes, one can replace the randomized ECDSA signature scheme, for example,

by the synthetically-random EdDSA signature [BDL+11]. In fact, the ECDSA signature

can be changed to use synthetic randomness as proposed by RFC 6979 [Por13]. Likewise,

Ateniese et al. [AMV15] have proved that signature schemes with unique signatures are

subversion-resilient against attacks that meet a basic undetectability requirement.

Indeed, if implemented according to specifications, the use of synthetically-random

primitives effectively thwarts kleptography and steganography abuse; however, synthetic

randomness can be exploited using hidden triggers. Namely, assume a signature algorithm

consumes n random coins, denoted as r1, . . . , rn. Without loss of generality, suppose the

signing algorithm takes as input the signing key s and the message m. We can generate

the needed random coins synthetically as ri = hash(s,m, i). Based on the heuristics

property and onewayness of the hash function, ri is unpredictable due to the entropy of

s. On the other hand, this tweak allows offline watchdogs, i.e. verification algorithms, to

compare an implementation with its specification.

Nevertheless, no probabilistic polynomial-time black-box verification mechanism can

ensure an implementation exactly matches its specification. This is because a malicious

functionality may be triggered by a specific input, and it is computationally infeasible

to verify that an implementation behaves as expected for all inputs. For instance,

a synthetically-random signing algorithm can be implemented so that it behaves honestly

for all the inputs, except when the input message m = m\ast the signing algorithm switches

to its malicious behaviour, where m\ast is a hidden trigger that has a high entropy. Hence,

the use of synthetically-random signature schemes is not a practical countermeasure

against kleptography because of possible hidden triggers. Also, such signatures can not

defend against steganography since the synthetic randomness can be bypassed without it

being detected by any warden who is scrutinizing the generated signatures.
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5.1.5 VRFs and controlled randomness

Verifiable Random Functions (VRF), introduced by Micali et al. [MRV99], are random

functions that non-interactively prove the correctness of their outputs. A function F

is a VRF if there exists a tuple of three algorithms (Generate,Prove,Verify) with the

following characteristics. On the input of certain security parameter(s), Generate outputs

a pair of keys: a secret key sk and a public key PK. On input of sk and a value x,

Prove outputs (y, \pi ), where y = Fsk(x) and \pi is the corresponding proof of correctness,

such that VerifyPK(x, y, \pi ) verifies successfully only if y = Fsk(x) [DY05]. A similar

approach was suggested by Bohli et al. [BGVS07], who proposed a subliminal-free variant

of ECDSA that requires non-interactive wardens.

Similarly, Hanzlik et al. [HKK17] presented a deterministic approach to verify the

output of a pseudo-random number generator (PRNG) that is installed as a black-box by

the manufacturer. In their approach, the user provides the PRNG with a blinding factor

U = gu, where u is kept secret by the user. Each time the PRNG generates a random

number r, it also outputs a witness (\'r, i), which can be used with u to verify the honest

generation of r.

Both VRFs [MRV99] and the controlled randomness approach [HKK17] have two

obvious shortcomings when considered as countermeasures against kleptography and

steganography in cryptographic primitives. The first shortcoming is their susceptibility

to rejection sampling. For example, in VRFs, the output y can be biased by trying

different x values. Besides, some primitives, such as ring signatures [RST01], contain

some elements that are generated randomly, and other elements that are generated

pseudo-randomly, and both types of elements should not be distinguishable by any

probabilistic polynomial-time algorithm, which is not attainable when using VRFs or

the controlled randomness approach. In addition, the controlled randomness approach

by Hanzlik et al. [HKK17] is specifically useful in combating kleptography. However,

a user can bypass this approach entirely and generate random numbers with hidden

steganographic content. Hence, although these two approaches may decrease the available

bandwidth for kleptography and steganography, and increase their computational cost;
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still, due to the previous shortcomings, they are not practical to thwart kleptography

and steganography on cryptographic primitives.

5.1.6 Split-program model

The split-program model, proposed by Russell et al. [RTYZ16a], attempts to make

a general randomized algorithm G resistant to kleptography by breaking G into two

algorithms (RG, dG), and adding a deterministic immunizing algorithm \phi , such as a public

hash function. Russell et al. used this kleptography-resistant randomized algorithm G to

establish security in the kleptographic settings for several primitives, such as one-way

permutations (OWP), trap-door one-way permutations (TDOWP), and signature schemes

based on their kleptography-resistant TDOWP [RTYZ16a]. As argued by Russell et

al. [RTYZ16b], the split-program model in [RTYZ16a] is used in the construction of

very specific primitives and does not provide protection against arbitrary kleptographic

attacks.

To address the shortcomings of the split-program model in [RTYZ16a], this model

was further developed in subsequent work [RTYZ16b, RTYZ17] by decomposing each

randomness-generation function RG into two separate components RG\sanszero and RG\sansone , executing

them independently, and amalgamating their output using a public immunizing function \phi 

to generate the final random number. Although not in the split-program model, a similar

concept of immunizing functions was also proposed by Dodis et al. [DGG+15] to sanitize

the output of backdoored pseudo-random generators.

As emphasized in [RTYZ17], the practical implementation of such splitting necessitates

the independent execution of the separate components, which can be achieved by executing

them in separate environments, e.g. by running them in different virtual machines or

containers like Docker [DI18]. Importantly, this technique is not effective against input-

triggered attacks and does not immunize randomized schemes against steganography

since the user can bypass the split-program model.
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5.1.7 Interactive warden

To defeat subliminal-channels in Schnorr signatures, Zhang et al. [ZLLZ13] proposed

a subliminal-free variant of the Schnorr signature [Sch91] using an honest-but-curious in-

teractive warden with whom the signer exchanges a total of six messages. The existential

unforgeability of their signature is proven under the computational Diffie-Hellman as-

sumption. Also, the difficulty of embedding subliminal channels in the created signatures

is shown to be equal to solving the discrete-logarithm problem.

As criticized in [HAZ17], although this scheme can deter kleptographic and stegano-

graphic attacks on blockchains, this scheme's main shortcomings are its large number of

exchanged messages and the computational cost incurred on the signer and the warden.

Besides, this scheme is impractical in public blockchains as it defeats their decentralized

design and requires the existence of trusted wardens, which is not attainable in current

blockchains.

5.1.8 Reverse firewalls (RF)

The concept of a cryptographic reverse firewall (RF) was introduced by Mironov and

Stephens-Davidowitz [MSD15] to immunize cryptographic schemes against kleptographic

attacks. An RF is a third party that sits between the possibly-subverted algorithm

and the outside world. Suppose Alice is a user who is running a possibly corrupted

algorithm. An RF can be used to prevent Alice's algorithm from undermining her

security by sanitizing her outgoing transactions. Importantly, an RF must use public

information only, preserve security, maintain functionality, and prevent the exfiltration

of any information. Equally important, Alice's algorithm should not place any trust with

regard to security or functionality on the reverse firewall and should work seamlessly

regardless of the existence or not of such an RF [MSD15, DMSD16].

Furthermore, Ateniese et al. [AMV15] used an untamperable reverse firewall (RF)

with re-randomizable signature schemes to construct kleptography-resistant signatures.

In this context, RF sits between the possibly subverted signature scheme and the outside

world. The RF takes as input a message and its signature \sigma , and verifies that \sigma is valid
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using public parameters. If the signature \sigma is valid, the RF re-randomizes \sigma , and outputs

a new signature \'\sigma . Although this technique is effective against kleptography attacks

and steganography abuse of randomized signatures in blockchains, it requires an active

firewall and works only on re-randomizable signatures. Therefore, it is not suitable for

the decentralized censor-less nature of blockchains, and it does not offer a universal

immunization for all randomized primitives.

5.1.9 Self-guarding protocols

Recently Fischlin and Mazaheri [FM18] proposed a novel technique that proactively

defends against kleptographic attacks assuming an initial temporary trust, i.e. subversion

happens after a period of an honest initial phase. Using this trusted initial phase, they

provided kleptography-resistant constructions for homomorphic public-key encryption,

symmetric-key encryption, signature schemes, and physically unclonable function PUF-

based key exchange. In general, their constructions are divided into two phases: a sampling

phase and a challenge phase. In the sampling phase, or honest initial phase, a sample

of ciphers, in the case of encryption, or signatures, in the case of signature schemes, is

honestly generated. These samples are stored and used in the second phase to obfuscate

ciphers/signatures and detect possible kleptographic attacks.

To further illustrate this technique, Fig. 5.1 presents a simplified pseudo-code for the

construction of a self-guarding signature scheme \scrS sg = (KeyGensg, Signsg,Verifysg) from

an underlying deterministic signature scheme \scrS = (KeyGen, Sign,Verify) [FM18]. As seen

in this figure, the key generation algorithm KeyGensg, given a security parameter (1\lambda ),

generates a list of \lambda key pairs (ski, pki), and sets the private key sksg = (sk1, . . . , sk\lambda ) and

the public key pksg = (pk1, . . . , pk\lambda ). As part of the trusted sampling phase, Sample(sksg)

is executed to generate a queue of \lambda pairs of randomly generated messages mr,i's and their

corresponding signatures \sigma r,i. When signing a message m with the possibly subverted

signing algorithm Sign, the self-guarding signing algorithm Signsg does the following.

For each i = \{ 1, . . . , \lambda \} , Signsg randomly picks bi
\$\leftarrow \{ 0, 1\} , and executes the original

signing algorithm Sign twice, once to sign mr,i and another time to sign (mr,i \oplus [m| | \sigma r,i]).
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KeyGensg(1\lambda ):

\bullet For i = 1 . . . \lambda : (ski, pki)
\$\leftarrow \scrS .KeyGen(1\lambda );

\bullet (sksg, pksg) = ((sk1, . . . , sk\lambda ), (pk1, . . . , pk\lambda ));
\bullet Return (sksg, pksg);

Sample(sksg):
\bullet Empty \scrQ ;
\bullet For i = 1 . . . \lambda :
mr,i

\$\leftarrow \{ 0, 1\} \ell ;
\sigma r,i = Sign(ski,mr,i); //Sign underlying signature scheme is honest in
initial phase.
Store (mr,i, \sigma r,i) in \scrQ ;
\bullet Return \scrQ ;

Signsg(sksg,m,\scrQ ):
\bullet if \scrQ is empty: Return \bot ;
\bullet For i = 1 . . . \lambda :

Retrieve (mr,i, \sigma r,i) from \scrQ ;

bi
\$\leftarrow \{ 0, 1\} ;

if (bi = 0): (m0,m1) = (mr,i,mr,i \oplus [m| | \sigma r,i]);
else: (m0,m1) = (mr,i \oplus [m| | \sigma r,i],mr,i);
\sigma 0 = Sign(ski,m

0); \sigma 1 = Sign(ski,m
1); //Sign underlying signature

scheme, which can be potentially subverted.
if (\sigma bi \not = \sigma r,i): Return \bot ;
\sigma i = \sigma (1 - bi);
\bullet \sigma = (mr,1, \sigma r,1, \sigma 1, . . . ,mr,\lambda , \sigma r,\lambda , \sigma \lambda );
\bullet Return \sigma ;

Verifysg(pksg,m, \sigma ):
\bullet result = true;
\bullet For i = 1 . . . \lambda :
result = result \wedge Verify(pki,mr,i, \sigma r,i);
result = result \wedge Verify(pki, (mr,i \oplus [m| | \sigma r,i], \sigma i);
\bullet Return result;

\scrS sg(KeyGensg,Sample,Signsg,Verifysg)

Figure 5.1: Self-guarding signature \scrS sg from an underlying signature scheme \scrS =
(KeyGen,Sign,Verify). \scrQ represents a queue of pairs of random messages mr,i

and their honestly-generated signatures \sigma r,i, \lambda is a security parameter, and \ell is the
message and signature space length. Other sanity checks have been omitted for
simplicity, for more details refer to [FM18].

The order of which is signed first is determined by the value of bi, and each time the

generated signature for mr,i is compared with its previously and honestly generated

signature \sigma r,i. This is done to ensure detecting any possible corruption with probability

1/2. If any discrepancy is detected, Signsg aborts, otherwise returns the signature
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\sigma = (mr,1, \sigma r,1, \sigma 1, . . . ,mr,\lambda , \sigma r,\lambda , \sigma \lambda ). The verification Verifysg is carried out by re-

constructing the string (mr,i \oplus [m| | \sigma r,i]) for each i = \{ 1, . . . , \lambda \} , and calling the original

verification algorithm Verify twice, to verify each \sigma i and \sigma r,i. If all signatures are valid,

Verifysg returns true, and false otherwise.

Fischlin and Mazaheri [FM18] have proved the unforgeability of the self-guarding

signature scheme \scrS sg if the underlying signature scheme \scrS is a deterministic and un-

forgeable signature. However, they have not shown the applicability of their construction

to randomized signatures. Besides, assuming an initial trusted state is not practical in

blockchain applications where a client can be kleptographically-corrupted since the time

it is first used by the end-user. Moreover, this technique does not provide any assurance

against the steganographic abuse of blockchain applications.

5.2 Current Blockchain-Focused Techniques

In this section, we focus on new trends in the design of blockchains; lightweight, prunable,

and redactable, and discuss their susceptibility to kleptography and steganography. Also,

Sec. 5.2.4 explains some practices that have been recommended to combat the insertion

of arbitrary content in blockchains.

5.2.1 Lightweight blockchains

Lightweight blockchains represent a new design trend that aims to solve issues related

to blockchain sustainability and scalability. In general, lightweight blockchains either

store parts of the transactions off-chain or drop blocks that are older than a certain

point. Lightweight blockchains are essential in countering permanent storage. Politou

et al. [PCAP19] suggested that storing data in off-chain storage or encrypted storage

bypasses the inherent immutability of blockchains and makes them comply with the right

to be forgotten (RtbF) as required by the European General Data Protection Regulation

(GDPR) [Eur16].

An example of lightweight blockchains is PascalCoin [MS17], which is a cryptocurrency

that does not keep the full history of transactions. PascalCoin maintains the latest 100
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blocks in its ledger, and stores the actual account balances in another cryptographic

structure called the SafeBox. A very similar approach is used in the mini-blockchain

scheme [J.D17], which is implemented by the Cryptonite cryptocurrency [Min18]. The

mini-blockchain scheme stores the actual balances in a structure called the account tree,

which is updated by the transactions in the blockchain. Because new transactions reference

the account tree and not previous transactions in the blockchain, transactions in older

blocks can be discarded. Note, older block headers are still kept in the mini-blockchain.

Lightweight blockchains are mainly proposed to solve scalability issues; however, they

can also be used to deter permanent storage of malicious content. Nevertheless, they

are not immune against kleptographic attacks, and they are still susceptible to covert

steganographic communication.

5.2.2 Prunable blockchains

Florian et al. [FHBS19] presented an approach to enable node operators, i.e. clients,

to locally erase the content of given transactions, that they deem unwanted, and avoid

storing it locally. According to their approach, if a future transaction references previously

erased content, the transaction is deemed invalid unless the future transaction is confirmed

and added to a mined block. This approach is promising and does not require changes to

the blockchain. Nonetheless, it is presented in a particular context; to erase the content of

the transactions' output in UTXO-based blockchains. In addition, this approach assumes

the ability of the clients to identify unethical content, which is not feasible in the case of

steganography. Even if the identification of such content is possible, and this approach is

successful in removing data from persistent storage, this method is not efficient against

steganographic communication, nor is it efficient as deterrence against kleptography.

Another example of prunable blockchains is the Rollerchain presented by the work of

Chepurnoy et al. [CLO16].
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5.2.3 Redactable blockchains

Unlike prunable blockchains where data is locally erased, redactable blockchains glob-

ally delete previously added content, i.e. mined content, without the need for hard

forks [FHBS19]. The Redactable blockchain proposed by Ateniese et al. [AMVA17]

uses Chameleon hash [KR00, CDK+17] \scrC , instead of the conventional collision-resistant

hash function \scrH , to chain mined blocks. Chameleon hash \scrC enables a trusted central

node, or a group of nodes, which possess \scrC 's secret trapdoor key tk to efficiently find

a collision, which allows to rewrite, remove, and insert new blocks in the blockchain. For

example, a block whose content is x and hash is (h, δ) can be re-written by a new content

\'x, then using \scrC and the secret key tk, a collision can be computed (h, \'δ) so that the

hash value stays the same, where h is the hash value and δ is a check string. Similarly,

\mu chain [PDC17] proposes a mutable blockchain that is based on consensus where users

can issue mutability request transactions.

Redactable blockchains are designed mainly for decentralized services and applications

other than cryptocurrencies, also known as Bitcoin 2.0. They may not apply to cryptocur-

rencies, whose ledger should contain the full history of transactions [AMVA17]. Thus,

even if the critical question of who possesses the trapdoor key tk is resolved [PCAP19],

for example, through consensus-based voting [DMT19], redactable blockchains are not

generic for all blockchain applications. Moreover, redactable blockchains can remove/re-

write malicious content only if it is known to the holder(s) of tk. However, if such content

is kept confidential, redactable blockchains will not be effective. Besides, redactable

blockchains do not stop malicious data from propagating in the P2P network, and thus

do not thwart kleptography nor steganographic communication. Similar shortcomings

apply to \mu chain [PDC17] and generally to all blockchains that seek to alter content after

being added to mined blocks.

5.2.4 Fees, filters, and self-verifying addresses

Matzutt et al. [MHZ+18] proposed three techniques to foil the insertion of arbitrary

content in blockchains: (1) increasing the transaction fee, (2) using content filters, and
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(3) using self-verifying addresses. Increasing the transaction fee may not be advisable

for promoting blockchains among users, and can unfairly penalize users who rely on

large transactions, e.g. exchange services. However, minimum mandatory fees have been

proposed as a countermeasure to render content insertion economically infeasible for

large transactions [MHZ+18].

Content filters target human-readable strings to detect and reject unwanted content,

e.g. rejecting a transaction if its 20-byte destination address has 18 printable charac-

ters [MHZ+18]. Nonetheless, these filters are not effective against kleptographically-leaked

secrets or steganographic communication.

The goal of self-verifying addresses is to deter content insertion in Bitcoin by using

arbitrary addresses. Matzutt et al. [MHZ+18] suggested that instead of sending an address

a, ca is sent in the transaction, where ca = (Ga, r,Sign(Ga| | r, a)), r = CRC32(t1| | . . . | | ti),

and ti is the transaction corresponding to the ith input. A similar approach is to limit

the address space. For example, PascalCoin [MS17] has a finite address space, and

accounts are limited but can be associated with any public key. These two approaches

can deter the arbitrary manipulation of transactions' addresses. However, it is not

a generic countermeasure against kleptographic and steganographic abuse of cryptographic

primitives in blockchains.

5.3 Summary

In Sec. 5.1 we listed nine techniques that have been proposed in the literature to counter

kleptography or steganography or both. These techniques are: (1) de-randomizing

random algorithms, (2) cascading independent cryptosystems, (3) inspecting the integrity

of the cryptographic software, (4) deterministic cryptographic primitives, (5) verifiable

random functions (VRF), (6) the split-program model, (7) interactive wardens (8) reverse

firewalls (RF), and (9) self-guarding protocols. Of these nine techniques, there are three

countermeasures, (4), (7), and (8), that can defend against all of the kleptographic

and steganographic attack scenarios of Chapters 3 and 4. However, all of these three

techniques are impractical in public blockchains for the following reasons. The synthetic
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randomness in deterministic or synthetically-random schemes is susceptible to input-

triggered attacks. Whereas, the last two techniques defeat the decentralized design of

blockchains and require the existence of trusted parties in the form of wardens and

firewalls.

After that, we described in Sec. 5.2 three new blockchain design trends: (1) lightweight,

(2) prunable, and (3) redactable blockchains. We clarified that although these new designs

practically thwart the persistent storage of arbitrary content in blockchains, they are

inefficient in countering kleptography and steganographic communication. Finally, we

discussed the effect of increasing the transaction fee, using content filters, and using

self-verifying addresses. All of these three practices are specific solutions and do not offer

generic defence against kleptography and steganography. Finally, due to the shortcomings

of all of the techniques surveyed in this chapter, in the next chapter, we propose new

efficient countermeasures.
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Proposed Countermeasures

All of the existing countermeasures that are surveyed in the previous chapter are ineffi-

cient in countering kleptography and steganography. Hence, in this chapter, we propose

four new countermeasures: (1) re-randomizable cryptographic primitives in Sec. 6.1,

(2) aggregate signatures in Sec. 6.2, (3) randomizable and aggregatable signatures in

Sec. 6.3, and (4) a generic steganography-resistant blockchain framework (SRBF) in

Sec. 6.4. All of these countermeasures are presented to immunize digital signatures in

public blockchains. However, they can be analogously extended to other cryptographic

primitives in blockchains, such as the commonly used zero-knowledge proofs (ZKP). As

part of the countermeasures, we present two new cryptographic schemes: a randomizable

ring signature (RRS) in Sec. 6.1.1, and a randomizable and aggregatable signature (RAS)

in Sec. 6.3. Note that our countermeasures aim to eliminate any steganographic messages

hidden inside the cryptographic components, such as the signatures, of a blockchain

transaction. Nevertheless, the deterrence of general non-steganographic content-insertion

techniques, e.g. inserting arbitrary content in unspendable OP RETURN Bitcoin transac-

tions, is beyond the scope of this work.

6.1 Re-randomizable Cryptographic Primitives

Without loss of generality, we discuss the use of re-randomizable primitives as a coun-

termeasure against kleptography and steganography by the example of re-randomizable
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Given three bilinear groups of type 3: (\BbbG 1,\BbbG 2,\BbbG T ), prime number p, and bilin-
ear mapping: e(\BbbG 1,\BbbG 2) = \BbbG T ;

KeyGen:

\bullet Select \widetilde g \$\leftarrow \BbbG 2, and (a, b)
\$\leftarrow \BbbZ 2

p;

\bullet Compute ( \widetilde A, \widetilde B)\leftarrow (\widetilde ga, \widetilde gb);
\bullet PK = (\widetilde g, \widetilde A, \widetilde B) \in \BbbG 2, and SK = (a, b) \in \BbbZ p;

Sign(m,SK):

\bullet Select h
\$\leftarrow \BbbG 1\setminus 1\BbbG 1 ;

\bullet Return \sigma \leftarrow (h, h(a+bm));
Verify(PK,m, \sigma ):
\bullet Parse \sigma as (\sigma 1, \sigma 2);
\bullet Accept if \sigma 1 \not = 1\BbbG 1 , and e(\sigma 1, \widetilde A \cdot \widetilde Bm) = e(\sigma 2, \widetilde g);

Randomize(\sigma ):
\bullet Parse \sigma as (\sigma 1, \sigma 2);

\bullet Select r
\$\leftarrow \BbbZ \ast p;

\bullet Return \'\sigma \leftarrow (\sigma r1, \sigma 
r
2);

RandomizableSignature(KeyGen,Sign,Verify,Randomize)

Figure 6.1: Pointcheval and Sanders's randomizable signature [PS16].

signatures. The use of re-randomizable signatures coupled with reverse firewalls has

been previously proposed by Ateniese et al. [AMV15] to construct kleptography-resistant

signatures. However, reverse firewalls are not appropriate for the decentralized nature of

public blockchains. Therefore, we propose the use of re-randomizable signatures where

P2P nodes, instead of reverse firewalls, are responsible for re-randomizing the signatures.

An example of re-randomizable signatures is Pointcheval and Sanders's re-randomizable

signature [PS16], which is a short signature that consists of two group elements only, as

explained in Fig. 6.1. The resulted signature is re-randomizable, where given \sigma = (\sigma 1, \sigma 2)

on m, \sigma can be re-randomized by randomly selecting r
\$\leftarrow \BbbZ \ast p, and computing \'\sigma \leftarrow (\sigma r1, \sigma 

r
2).

The new signature \'\sigma is a valid signature on m and can be successfully verified using the

original Verify algorithm.

In the context of blockchain applications, re-randomizable cryptographic primitives

can deter kleptography and steganography if the P2P nodes in the blockchain network are

incentivized to re-randomize the primitives within the transactions before propagating

these transactions. However, if nodes are not incentivized, they may choose not to
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Given: g1 and g2 are generators of groups \BbbG 1 and \BbbG 2 respectively. e : \BbbG 1\times \BbbG 2 \rightarrow 
\BbbG T is a bilinear map, and \psi : \BbbG 1 \rightarrow \BbbG 2 is a computable isomorphism with
\psi (g1) = g2. H : \{ 0, 1\} \ast \rightarrow \BbbG 2 is a full-domain hash function.

KeyGen:

\bullet s \$\leftarrow \BbbZ p and v = gs1;
\bullet Signer's public and secret keys: PKj = vj \in \BbbG 1, and SKj = s \in \BbbZ p;

RingSign(L : \{ PK1, . . . , PKn\} ,m \in \{ 0, 1\} \ast , SK):
\bullet Select randomly \forall i \not = j and i \leq n : ri \leftarrow \BbbZ p;
\bullet Compute h = H(m) \in \BbbG 2;

\bullet Set \sigma j =
\Bigl( 
h/\psi (

\prod 
i \not =j PK

ri
i )

\Bigr) 1/s
;

\bullet Compute \forall i \not = j and i \leq n : \sigma i = gri2 ;
\bullet Return \sigma = \langle \sigma 1, . . . , \sigma n\rangle ;

RingVerify(L : \{ PK1, . . . , PKn\} ,m \in \{ 0, 1\} \ast , \sigma ):
\bullet Compute h = H(m);
\bullet Accept if e(g1, h) =

\prod n
i=1 e(PKi, \sigma i);

BGLSRingSignature(KeyGen,RingSign,RingVerify)

Figure 6.2: Bilinear-pairing-based ring signature [BGLS03].

randomize the transactions, rendering this technique inefficient. Besides, it is important

to note that a randomized signature \'\sigma is computationally indistinguishable from its

corresponding pre-randomized signature \sigma . Therefore, there is not a `computational

evidence' that a given signature has ever been re-randomized after it was generated by

the signer and before it is added to a mined block.

6.1.1 Randomizable bilinear-pairing-based ring signature (\sansR \sansR \sansS )

We present in this subsection a novel randomizable ring signature scheme RRS. This

new primitive signature presents a steganography-resistant substitute to CryptoNote's

ring signature [Sab13, RST01]. RRS destroys subliminal channels in ring signatures in

the context of public blockchains by allowing the P2P nodes to re-randomize the ring

signatures before propagating them to the network.

Based on the BLS short signature [BLS01], Boneh et al. proposed a ring signature

scheme [BGLS03], which we henceforth refer to as BGLSRingSignature, as shown in Fig. 6.2.

As part of the signing algorithm, the signer generates (n - 1) arbitrary random points

ri's, where n is equal to the number of public keys in the ring. These random numbers
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RandomizeRing(L : \{ PK1, . . . , PKn\} ,m \in \{ 0, 1\} \ast , \sigma ):

\bullet Select randomly \forall i \leq n : ri
\$\leftarrow \BbbZ p;

\bullet For (j = 1; j \leq n; j++):

-- mskj = \psi 
\Bigl( \prod n

i=1,i<j PK
ri
i \cdot 

\prod n
i=1,i>j PK

 - rj
i

\Bigr) 
;

-- \'\sigma j = \sigma j \cdot mskj ;
\bullet Return \'\sigma = \langle \'\sigma 1, . . . , \'\sigma n\rangle ;

RRS(RandomizeRing)

Figure 6.3: Randomizable ring signature (RRS).

are not included directly into the generated signature \sigma , and \sigma i \not =j = gri2 are included

instead. Nonetheless, they are still vulnerable to kleptographic attacks through rejection

sampling similar to our rejection-sampling attack on the ECDSA scheme presented in

Sec. 3.4.2. Hence, to prevent kleptography on the signature's random numbers ri's, and

remove any possible subliminal channels, in the following, we present a re-randomizable

version of the BGLSRingSignature scheme.

Our randomized ring signature RRS is based on BGLSRingSignature [BGLS03], and

introduces an additional algorithm, RandomizeRing, which obfuscates all the elements in

the ring signature \langle \sigma 1, . . . , \sigma n\rangle . As shown in Fig. 6.3, each element in the original signature

\sigma j is masked using mskj = \psi 
\Bigl( \prod n

i=1,i<j PK
ri
i \cdot 

\prod n
i=1,i>j PK

 - rj
i

\Bigr) 
, where ri's are random

scalars in \BbbZ p. The verifier of a randomized RRS signature uses the original verification

algorithm of the BGLSRingSignature scheme. The correctness of RRS is premised on two

properties. The first is the bilinearity property of the BGLSRingSignature scheme, which

results in:

n\prod 

i=1

e(PKi, \'\sigma i) =
n\prod 

i=1

e(PKi, \sigma i \cdot mski) =
n\prod 

i=1

e(PKi, \sigma i) \cdot 
n\prod 

i=1

e(PKi,mski)

The second property, on which the correctness of RRS relies, is the way the mask

values are constructed. Namely, mski's are constructed so that
\prod n

i=1 e(PKi,mski) = 1.

Therefore,
\prod n

i=1 e(PKi, \'\sigma i) =
\prod n

i=1 e(PKi, \sigma i).

Security of (RRS): The security of RRS is defined by the advantage of an adversary

\scrA in forging a randomized ring signature \'\sigma , denoted as AdvRRS\scrA . Using a security
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game that further defines this advantage, Appendix C.3 uses reduction to prove that

the security of RRS is equivalent to the security of the underlying BGLSRingSignature

scheme.

When used in public blockchains, RRS enables the P2P nodes to re-randomize the

signatures before relaying them into the network. This re-randomization obstructs any

possible subliminal channels and obfuscates any kleptographically-leaked data. Never-

theless, since a re-randomized signature is computationally indistinguishable from the

original signature, there is not any `computational evidence' that a given signature was

ever re-randomized before it is included in a mined block. To overcome this weakness,

we present in the following section an aggregate signature that provides such evidence.

Given three bilinear groups: (\BbbG 1,\BbbG 2,\BbbG T ), prime number p, and bilinear map-
ping: e(\BbbG 1,\BbbG 2) = \BbbG T ;
KeyGen:

\bullet s \$\leftarrow \BbbZ p and v = gs1;
\bullet Set PK = v \in \BbbG 1, and SK = s \in \BbbZ p;

Sign(m \in \{ 0, 1\} \ast , SK):
\bullet Return \sigma \leftarrow H(m)s, where H : \{ 1, 0\} \ast \rightarrow \BbbG 2

Verify(m \in \{ 0, 1\} \ast , \sigma , PK):
\bullet Accept if e(g1, \sigma ) = e(PK,H(m));

BLS(KeyGen,Sign,Verify)

Figure 6.4: BLS pairing-based short signature [BLS01].

Aggregate(\langle m1, . . . ,mn\rangle , \langle \sigma 1, . . . , \sigma n\rangle ):
\bullet Given that all mi's are distinct, output \sigma a =

\prod n
i=1 \sigma i, \sigma \in \BbbG 2;

AggVerify(\langle m1, . . . ,mn\rangle , \langle PK1, . . . , PKn\rangle , \sigma a):
\bullet Reject if mi's are not distinct;
\bullet \forall i \in [1, n] : compute hi = H(mi);
\bullet Accept if e(g1, \sigma ) =

\prod n
i=1 e(PKi, hi);

BGLSAggregateSignature(Aggregate,AggVerify)

Figure 6.5: BGLS aggregate signature [BGLS03].
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6.2 Aggregate Signatures

In this section, we propose the use of available aggregate signature schemes as a coun-

termeasure to steganography in blockchains. In 2001, Boneh et al. [BLS01] introduced

a short pairing-based signature scheme (BLS) that yields a single group element signature.

In particular, BLS uses the following: (1) two multiplicative cyclic groups \BbbG 1 and \BbbG 2

both of prime order p with g1 and g2 as their respective generators, (2) an efficiently

computable isomorphism \psi from \BbbG 1 to \BbbG 2 such that \psi (g1) = g2, and (3) a computable

bilinear map e : \BbbG 1 \times \BbbG 2 \rightarrow \BbbG T . This bilinear mapping has two properties: (3.i) bi-

linearity : \forall a \in \BbbG 1, b \in \BbbG 2 and r, t \in \BbbZ p, e(a
r, bt) = e(a, b)rt, and (3.ii) non-degeneracy :

e(g1, g2) \not = 1. Besides, BLS uses a full-domain hash function that maps arbitrary points

to \BbbG 2, i.e. H : \{ 0, 1\} \ast \rightarrow \BbbG 2. As shown in Fig. 6.4, the BLS signature is a single element

in \BbbG 2; \sigma = H(m)s \in \BbbG 2.

It can be seen that BLS is vulnerable to subversion attacks through the rejection

sampling of the public keys and, consequently, the generated signature. However,

this problem can be mitigated by allowing miners to aggregate the signatures using

the bilinear-mapping-based aggregate signature proposed by Boneh et al. [BGLS03],

as shown in Fig. 6.5. In this scheme, the messages mi's are required to be distinct.

Nevertheless, as proved by Bellare et al. [BNN07], this limitation can be bypassed by

prepending the signer's public key before the message when generating the signature,

i.e. \sigma i = H(PKi| | mi)
si instead of \sigma i = H(mi)

si . Aggregating signatures according to

the scheme shown in Fig. 6.5 or using its unrestricted variant [BNN07] removes any

subliminally-leaked data in the aggregated signatures \sigma i's. This is attainable because

no PPT adversary can re-construct the member aggregated signatures \sigma i's given the

aggregate signature \sigma a. In Appendix C.4, we formally prove that if an adversary \scrA 

can dis-aggregate an aggregate signature \sigma a, then \scrA can also solve the hard underlying

computational Diffie-Hellman (co-CDH) problem, which is known to be intractable. As

such, we say that Boneh et al.'s aggregate signature, as shown in Fig. 6.5, achieves the

dis-aggregation property, which is necessary to destroy the possible subliminal channels

in the member signatures.
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Practically, in the context of blockchains, the process of aggregating signatures can only

be performed by miners and not other nodes. Thus, using the BGLSAggregateSignature

scheme removes arbitrary data from being permanently stored in the blockchain. However,

it can not prevent the mere propagation of arbitrary information in the blockchain's P2P

network. Consequently, to deter the diffusion of arbitrary content, the blockchain's P2P

nodes should be enabled to re-randomize the transactions' signatures to filter out all

steganographic information before the signatures are aggregated by the miners.

Given three bilinear groups of type 3: (\BbbG 1,\BbbG 2,\BbbG T ), prime number p, and bilin-
ear mapping: e(\BbbG 1,\BbbG 2) = \BbbG T ;

KeyGen:

\bullet Select \widetilde g \$\leftarrow \BbbG 2, and (a, b)
\$\leftarrow \BbbZ 2

p;

\bullet Compute ( \widetilde A, \widetilde B)\leftarrow (\widetilde ga, \widetilde gb);
\bullet PK = (\widetilde g, \widetilde A, \widetilde B) \in \BbbG 2, and SK = (a, b) \in \BbbZ p;

Sign(m,SK):

\bullet Select h
\$\leftarrow \BbbG 1\setminus 1\BbbG 1 ;

\bullet Return \sigma \leftarrow (h, h(a+bm));
Verify(PK,m, \sigma ):
\bullet Parse \sigma as (\sigma 1, \sigma 2);
\bullet Accept if \sigma 1 \not = 1\BbbG 1 , and e(\sigma 1, \widetilde A \cdot \widetilde Bm) = e(\sigma 2, \widetilde g);

 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
Randomize(\sigma ):
\bullet Parse \sigma as (\sigma 1, \sigma 2);

\bullet Select r
\$\leftarrow \BbbZ \ast p;

\bullet Return \'\sigma \leftarrow (\sigma r1, \sigma 
r
2);

 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - 
Aggregate(\langle m1, . . . ,mn\rangle , \langle \sigma 1, . . . , \sigma n\rangle , \langle PK1, . . . , PKn\rangle ):
\bullet \forall i \in [1, n]: parse \sigma i as (\sigma i,1, \sigma i,2);
\bullet Proceed only if \forall i \in [1, n]:

-- All \widetilde gi's are equal, and
-- All Verify(PKi,mi, \sigma i) = true;

\bullet Return \sigma a \leftarrow (\langle \sigma (1,1), . . . , \sigma (n,1)\rangle ,
\prod n

i=1 \sigma (i,2));
AggVerify(\langle m1, . . . ,mn\rangle , \langle PK1, . . . , PKn\rangle , \sigma a):

\bullet Parse \sigma a as (\langle \sigma (1,1), . . . , \sigma (n,1)\rangle , \sigma 2);
\bullet Accept if e(\sigma 2, \widetilde g) =

\prod n
i=1 e(\sigma (i,1),

\widetilde Ai \cdot \widetilde Bmi
i );

RAS(KeyGen,Sign,Verify,Randomize,Aggregate,AggVerify)

Figure 6.6: Randomizable and aggregatable signature (RAS).
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6.3 Randomizable and Aggregatable Signature (\sansR \sansA \sansS )

In Sec. 6.2 we have shown that aggregate signatures, such as the BGLSAggregateSignature

scheme in Fig. 6.5, can be used by miners to aggregate signatures before adding their re-

spective transactions to mined blocks, and consequently, obfuscate subliminally-embedded

content before being persistently stored in the blockchain. Besides, aggregate signatures

save storage space in the ledger, ensure that signatures have been re-randomized, and

minimize the verification computational cost for subsequent verifiers. However, aggregate

signatures do not stop the diffusion of steganographically-communicated information.

Therefore, P2P nodes should be enabled to re-randomize the transactions' signatures

before they are aggregated by the miners.

On the other hand, Sec. 6.1 shows that randomizable signatures, such as Pointcheval

and Sanders's signature in Fig. 6.1, allow the nodes in the P2P network to filter out

malicious content and stop it from propagating in the network. Nevertheless, randomizable

signatures do not guarantee that miners do not add the original non-re-randomized

signatures to their mined blocks, e.g. in the case when a miner receives a signature from

the signer directly.

Therefore, in this section, we present a new randomizable and aggregatable signa-

ture scheme (RAS) that enables the P2P nodes to re-randomize single signatures, while

allowing miners to re-randomize and aggregate the signatures. The RAS scheme con-

sists of six algorithms: (KeyGen, Sign,Verify,Randomize,Aggregate,AggVerify), as shown

in Fig. 6.6. The first four algorithms of RAS are the same as in Pointcheval and

Sanders's randomizable signature [PS16], as previously discussed in Sec. 6.1. The

last two algorithms are inspired by the aggregation in the BGLSAggregateSignature

scheme [BGLS03]. The aggregation algorithm Aggregate takes as input n messages

\langle m1, . . . ,mn\rangle and their corresponding signatures \langle \sigma 1, . . . , \sigma n\rangle under their respective n

public keys \langle PK1, . . . , PKn\rangle . Aggregate starts by parsing each signature \sigma i as (\sigma i,1, \sigma i,2),

then Aggregate verifies each signature \sigma i, and if all are valid, it generates an aggregate

signature \sigma a \leftarrow (\langle \sigma (1,1), . . . , \sigma (n,1)\rangle ,
\prod n

i=1 \sigma (i,2)). When receiving an aggregate signature

\sigma a with its signed messages \langle m1, . . . ,mn\rangle and corresponding public keys, the aggregate
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verification algorithm AggVerify parses \sigma a as (\langle \sigma (1,1), . . . , \sigma (n,1)\rangle , \sigma 2), and accepts the

aggregate signature is valid only if e(\sigma 2, \widetilde g) =
\prod n

i=1 e(\sigma (i,1),
\widetilde Ai \cdot \widetilde Bmi

i ). The correctness of

RAS is given as follows:

e(\sigma 2, \widetilde g) = e(
n\prod 

i=1

\sigma (i,2), \widetilde g) = e(
n\prod 

i=1

h
(ai+bi\cdot mi)ri
i , \widetilde g) =

n\prod 

i=1

e(h
(ai+bi\cdot mi)ri
i , \widetilde g)

=
n\prod 

i=1

e(hrii , \widetilde g(ai+bi\cdot mi)) =
n\prod 

i=1

e(\sigma (i,1), Ai \cdot Bmi
i )

Security of RAS: RAS comprises of two parts. (i) The first four algorithms

(KeyGen,Sign,Verify,Randomize) are the same as Pointcheval and Sanders's randomizable

signature [PS16]. (ii) The last two algorithms are similar to the BGLSAggregateSignature

in Fig. 6.5. As such, the security proof of RAS in Appendix C.5 starts by describing the

proof of Pointcheval and Sanders's re-randomizable signature [PS16], and then we prove

that our aggregated signature scheme is existentially unforgeable under chosen-message

attacks (EUF-CMA) based on the security of Pointcheval and Sanders's signature. Specif-

ically, we use reduction to prove that if there is any probabilistic polynomial-time (PPT)

adversary who can forge a RAS aggregate signature \sigma a with a non-negligible probability,

then there must exist another PPT adversary who breaks the security of Pointcheval and

Sanders's randomizable signature and its underlying security assumption.

User

b2

Miner
b3 b4

(Tx,{PKi},σ)

1. Prepare transaction Tx

3. Sign transaction Tx
σ ← Sign(sk,{PKi},Tx)

2. Collect the PK set {PKi}

4. Broadcast (Tx,{PKi},σ)

2. Generate proof π:
Verify({PKi},Tx,σ’) = 1

1. Verify signature:

3. Include (Tx,{PKi},π) to the next block

b1

⇡  NIZK

⇢
(({PKi}, Tx),�0) :
Verify({PKi}, Tx,�0) = 1

�

<latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw="></latexit><latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw="></latexit><latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw="></latexit><latexit sha1_base64="StRYumc0pv8dMNt0HIbMiF9f/Sw=">AAAChXicdVHbattAEF2plyTqzU0f87LULXUgNZIccimUBvrSEiguxE6o15jVeiQvWa3E7qiNEPqTflXf+jddO05pSzqwcDgzZ2bnTFIqaTEMf3r+nbv37m9sbgUPHj56/KTzdHtsi8oIGIlCFeYi4RaU1DBCiQouSgM8TxScJ5fvl/nzr2CsLPQZ1iVMc55pmUrB0VGzzndWSqYgRW5M8Y2ynOPCps2nj19O2xXPmoAlkEnduApet41qg16PNcPTmWTtHkO4QpM3Z1ft7h6zMsv5q903jAU3ncZgZFq3typ+C95GAQM9X48ImJHZAlk763TDfhTFcXxIw/4gjI+PBg6E4SCOjmnkwDK6ZB3DWecHmxeiykGjUNzaSRSWOHVtUQoFrnFloeTikmcwcVDzHOy0WbnY0peOmdO0MO5ppCv2T0XDc2vrPHGVq93+zS3J23KTCtOjaSN1WSFocT0orRTFgi5PQufSgEBVO8CFke6vVCy44QLd4QJnws2m9P9gHPcj59Xn/e7Ji7Udm2SHPCc9EpFDckI+kCEZEeH5Xs+LvNjf8F/7+/7BdanvrTXPyF/hv/sFTX/EjQ==</latexit>

(Tx,{PKi},π)

P2P node

(Tx,{PKi},σ’)

2. Re-randomize signature σ:
Verify({PKi},Tx,σ) = 1

1. Verify signature:

σ’ ← ReRandSign({PKi},Tx,σ)
3. Broadcast (Tx,{PKi},σ’)

Figure 6.7: Steganography-resistant blockchain framework (SRBF)
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6.4 Steganography-Resistant Blockchain Framework

In this section, we propose a universal steganography-resistant blockchain framework

(SRBF) that can be deployed on any blockchain system. Without loss of generality, we

explain our technique to specifically defend against kleptographic and steganographic

attacks on signature schemes; however, it can be applied analogously to other crypto-

graphic components of the blockchain, such as the non-interactive zero-knowledge (NIZK)

proofs. The SRBF framework operates on the assumption that any sender of a transaction

may be maliciously implemented to exploit the random cryptographic signatures. As

depicted in Fig. 6.7, to immunize blockchains against steganography, the proposed SRBF

introduces two elements in the form of new duties that are assigned to the P2P nodes

and the miners.

Duty of P2P nodes in SRBF. The first element of SRBF is to require P2P nodes to

sanitize and re-randomize signatures. Currently, the P2P nodes in blockchains, e.g. in

Bitcoin [KKM14], check the validity of broadcast transactions and their signatures before

relaying them into the network. In SRBF, P2P nodes also re-randomize the received

signatures before propagating broadcast transactions. This practice filters out any possible

steganographically-embedded data and necessitates the use of re-randomizable signatures

like Pointcheval and Sanders's randomizable signature [PS16]. Besides, this approach

removes the need for reverse firewalls [AMV15] and interactive wardens [ZLLZ13].

Duty of miners in SRBF. The second element of the SRBF framework is to require

the miners to replace the signatures with NIZK proofs. Conventionally, upon receiving

a transaction tx, the miners would check the validity of its associated signature(s) \sigma , using

the signature verification algorithm Verify(PK, tx, \sigma ) = 1. The miners then include the

transaction together with its signature as it is to the next block, which will eventually be

appended to the blockchain. Afterwards, other miners and users can verify the validity of

the transaction as well. However, in the SRBF framework, the miner, instead of showing

the signature, replaces the transaction's signature with a NIZK proof. Informally, the

proof states that `I have seen a valid signature such that Verify(PK, tx, \sigma ) = 1'. More
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precisely, the NIZK proof proves the following relation:

\scrR \sanss \sansi \sansg = \{ ((\{ PKi\} ni=1, tx), \sigma )| Verify(\{ PKi\} ni=1, tx, \sigma ) = 1\} 

Thus, in the SRBF framework, only the transaction tx, its signer(s) public key(s) \{ PKi\} ni=1,

and its NIZK proof \pi will be posted on the blockchain, where \pi is given as follows:

\pi \leftarrow NIZK

\left\{ 
 
 

((\{ PKi\} ni=1, tx), \sigma ) :

Verify(\{ PKi\} ni=1, tx, \sigma ) = 1

\right\} 
 
 

Alternatively, to avoid the computational cost incurred by the use of NIZK proofs,

miners can use aggregate signatures, as previously explained in Sec. 6.2 and Sec. 6.3. For

example, a miner can use Boneh et al.'s aggregate signature [BGLS03] to generate an aggre-

gate signature \sigma a for n signatures on n distinct messages, i.e. (\langle m1, . . . ,mn\rangle , \langle \sigma 1, . . . , \sigma n\rangle ).

The aggregate signature in this specific example is given as \sigma a =
\prod n

i=1 \sigma i.

While the SRBF framework increases the computational effort for miners, it drastically

decreases the effort for others to verify the validity of a given block; hence, mitigating the

verifier's dilemma issue [LTKS15], where multiple transactions' signatures are combined

in one NIZK proof \pi , or aggregated in one aggregate signature \sigma a.

Implementation of the SRBF in cryptocurrencies. On the one hand, implementing

the SRBF in practice faces two challenges. First, it necessitates finding efficient mecha-

nisms to incentivize the P2P nodes to actively participate and randomize the transactions

before propagating them into the network. The second challenge is manifested by the

additional computational effort by the miners to generate the zero-knowledge proofs or

the aggregate signatures.

On the other hand, the SRBF can be implemented gradually in phases and partially

which makes it practically achievable. Gradual implementation of the SRBF implies

that the duty of P2P nodes, as aforementioned, can be implemented and tested before

implementing the duty of the miners. Whereas, the partial implementation allows the

SRBF's features to be introduced in subsets of the nodes and can initially be supported
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concurrently with older features. When the new features are deemed to be stable, the

older features can be redacted and no longer supported. A similar approach of the partial

and gradual introduction of new security features is followed by Monero as illustrated in

Sec. A.2.6 of Appendix A.

Security of the SRBF. P2P nodes obstruct kleptographic attacks and steganographic

communication by re-randomizing the signatures. Additionally, if miners use NIZK

proofs, then the signature \sigma is the witness of the corresponding proof \pi . By NIZK

definition, \pi does not leak any information about \sigma . Therefore, all the steganographic

information that may be hidden in the signatures is filtered out from the blockchain. In

practice, we can use, for example, Bulletproofs [BBB+18] as succinct NIZK instantiation.

On the other hand, when miners use aggregate signatures instead of using NIZK

proofs, given that \sigma a achieves the dis-aggregation property as explained in Sec. 6.2, there

is not any PPT adversary that can re-construct the member signatures \sigma i's. Consequently,

similar to replacing signatures with NIZK proofs, using aggregate signatures effectively

obliterates any possibly steganographic content in the aggregated signatures.
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Technique

Attack Scenarios

Input
Trigger

Practical
in block-
chains

References Section
Kleptography Steganography

Subversion
attacks

Covert
communication

Persistent
storage

Steganography-
resistant
techniques

De-randomized
algorithms

\checkmark χ χ χ \checkmark [YY96] 5.1.1

Cascading
cryptosystems

\checkmark χ χ \checkmark χ [YY96] 5.1.2

Software integrity \checkmark χ χ \checkmark χ [YY96] 5.1.3

Synthetically-
random

primitives
\checkmark \checkmark \checkmark χ χ

[BPR14]
[BJK15]

5.1.4

VRFs and
controlled randomness

χ χ χ \checkmark χ
[MRV99]
[HKK17]

5.1.5

Split model \checkmark χ χ χ χ

[RTYZ16a]
[RTYZ16b]
[RTYZ17]

5.1.6

Interactive warden \checkmark \checkmark \checkmark \checkmark χ [ZLLZ13] 5.1.7

Reverse firewalls \checkmark \checkmark \checkmark \checkmark χ [AMV15] 5.1.8

Self-guarding
protocols

\checkmark χ χ \checkmark χ [FM18] 5.1.9

Current
blockchain-based

techniques

Lightweight
blockchains

χ χ \checkmark \checkmark \checkmark 
[MS17]
[J.D17]

5.2.1

Prunable
blockchains

χ χ \checkmark \checkmark \checkmark 
[FHBS19]
[CLO16]

5.2.2

Redactable
blockchains

χ χ \checkmark \checkmark \checkmark 
[AMVA17]
[PDC17]

5.2.3

Fees, filters
and self-

verifying addresses
χ χ χ χ \checkmark [MHZ+18] 5.2.4

Proposed
countermeasures

Re-randomizable
cryptographic

primitives
\checkmark \checkmark \checkmark \checkmark \checkmark [PS16]\dagger 6.1

RRS \checkmark \checkmark \checkmark \checkmark \checkmark this work 6.1.1

Aggregate signatures χ χ \checkmark \checkmark \checkmark [BGLS03]\dagger 6.2

RAS \checkmark \checkmark \checkmark \checkmark \checkmark this work 6.3

SRBF \checkmark \checkmark \checkmark \checkmark \checkmark this work 6.4

Table 6.1: Effectiveness of proposed and current countermeasures against the three attack sce-
narios (Chapters 3 and 4). (\checkmark ) denotes that the relevant countermeasure is resistant
against the corresponding attack scenario, while (χ) means the countermeasure is
vulnerable to the attack scenario. (Input-trigger) states if the countermeasure is
resistant to `time bombs' or input-triggered malicious behaviour. Finally, (Practical
in blockchains) examines if the corresponding countermeasure is applicable in the
context of blockchains, if it is not likely to produce other security ramifications,
and its robustness against malicious users. \dagger : the cited references proposed these
cryptographic schemes; however, no previous work has suggested their use to deter
kleptography and steganography in the context of blockchains.
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Figure 6.8: Graphical comparison between the proposed countermeasures. Re-randomizable
signatures defeat all three attack scenarios but do not provide a `computational
evidence' that a signature have been re-randomized. Aggregate signatures provide
evidence but fail to deter kleptographic attacks and covert communication. RAS
is efficient in countering all three attack scenarios but it is not universal. SRBF
presents a universal framework that defeats all attack scenarios.
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6.5 Summary of Countermeasures

Chapter 5 surveyed all the cryptographic techniques that have been proposed to defeat

kleptography and subliminal channels, and examined novel blockchain designs in light

of the attack scenarios of Chapters 3 and 4. Notably, as shown in Table 6.1, some

of the existing cryptographic primitives are efficient deterrence against kleptography;

nevertheless, they fail to prevent steganography and vice versa. Nonetheless, three

existing techniques can obstruct all attack scenarios: (1) synthetically-random primi-

tives [BPR14, BJK15], (2) interactive wardens [ZLLZ13], and (3) cryptographic reverse

firewalls [AMV15]. However, all of these techniques are deemed to be impractical in the

context of public blockchains for the following reasons. Synthetically-random primitives

are susceptible to input-triggered attacks. Whereas, the last two techniques defeat the

decentralized design of blockchains, and require the existence of trusted parties in the

form of wardens and firewalls.

Due to the shortcomings of all of the existing techniques, this chapter proposed

four new countermeasures: (1) re-randomizable signatures, (2) aggregate signatures,

(3) re-randomizable and aggregatable signatures, and (4) a generic steganography-resistant

blockchain framework (SRBF). As summarized in Table 6.1, the use of re-randomizable

signatures is effective against kleptography and steganography. However, re-randomizable

signatures do not provide any computational evidence that a signature had been re-

randomized before it is included in a mined block. In contrast, aggregate signatures can

prevent the permanent storage of arbitrary content in blockchain, yet, they can not deter

kleptographic attacks on blockchains, nor can they stop covert communication. To address

the shortcomings of the first two countermeasures, we proposed a new cryptographic re-

randomizable and aggregatable signature (RAS). Finally, we presented SRBF as a universal

framework that thwarts kleptography and steganography in public blockchains regardless

of the specific used cryptographic primitives. For further illustration, Fig. 6.8 presents

a graphical comparison between the proposed countermeasures.
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Conclusion and Future Work

7.1 Conclusion

The blockchain technology has presented a significant paradigm shift concerning the

realization of decentralized applications. Public blockchains are commonly developed as

open-source projects, and their clients can be arbitrarily modified by the end-users while

seamlessly interacting with other unmodified clients. As demonstrated in this thesis, these

modifications may be designed to kleptographically leak the users' secret information.

Also, users may knowingly modify their clients to communicate steganographically or

store malicious content in public blockchains. Nonetheless, public blockchains have

been designed with disregard to the adverse effects of such malicious modifications.

Consequently, this thesis's primary goal is to highlight the threat of kleptographic and

steganographic attacks on public blockchains and research novel ways to prevent them.

About twenty-five years ago, Young and Yung pointed out the danger of trusting

black-box cryptography [YY96, YY97a, YY97b] and coined the term `kleptography'.

Subsequent work has confirmed that randomized cryptographic primitives are inevitably

vulnerable to kleptographic and algorithm-substitution attacks [BPR14, BJK15]. Yet,

this issue has not attracted sufficient research in the context of public blockchains, and

current clients of public blockchain applications seem to have been designed with the
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assumption that users, who can not scrutinize the implementation for themselves, should

blindly trust the cryptography of their clients. Besides, despite the known susceptibility

of randomized channels to steganography, before our work, there had not been extensive

research on the detrimental effects of steganographic communication through public

blockchains.

To shed light on the risk posed by the mis-implementation of the randomized crypto-

graphic primitives in public blockchains, we conducted the following. (1) We proposed

three kleptographic attacks on two commonly used randomized digital signature schemes.

(2) We studied the impact of steganographic communication on public blockchains and

devised an economically-efficient and provably-secure broadcast communication appli-

cation called Skywhisper. (3) We surveyed and assessed all of the possible techniques

that can mitigate kleptography and steganography in public blockchains. (4) Due to the

inefficiency of the current techniques, we proposed four new countermeasures to ensure

steganography-resistant blockchains. In the following paragraphs, we summarize each of

these four points.

To demonstrate kleptographic attacks on public blockchains, we proposed two attacks

on the ECDSA signature and one attack on CryptoNote's ring signature. The first

attack on ECDSA leaks the user's secret signing key over two consecutive signatures.

This is attained by choosing the second signature's ephemeral randomness synthetically

based on the first signature's randomness and the attacker's public key. This attack has

a high throughput; however, it can only be used to leak the signing key and not any

other confidential information. Besides, it is stateful; hence, it can be thwarted if the

software is reset every time a signature is generated. In contrast, our second attack on

ECDSA is a stateless attack based on the rejection sampling of the signature's ephemeral

randomness, and it can be used to leak arbitrary information bit by bit. Also, our attack

on the ring signature offers a high throughput that is proportional to the size of the

signature. Overall, although with varying bandwidth, all of these three attacks can be

used to exfiltrate the users' secret signing key, which is the most valuable secret in public

blockchains, and particularly in cryptocurrencies, leading to the potential theft of the
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users' cryptocurrency funds.

Moreover, we explored the severe ramifications of steganographic communication

on blockchains and clarified that malicious users can abuse public blockchains as un-

censorable covert communication platforms and secure cyberlockers. We argue that

abusing blockchains to persistently store objectionable content does not only infringe

the right to be forgotten (RtbF) but poses a regulatory risk. It can also motivate users

to abandon the blockchain technology or at least opt-out of the participation in the

consensus protocol. To enhance the economic feasibility of steganographic communication

in public blockchains, malicious users can target cryptocurrencies, whose transaction fees

are minimal and offer high throughput per transaction. Given the known rapport between

secure steganographic communication and undetectable kleptographic attacks [BL17], we

used our kleptographic attack on CryptoNote's ring signature to realize a steganographic

broadcast communication tool, called Skywhisper, over the real-world blockchain of

Bytecoin. Skywhisper offers a provably-secure broadcast channel of up to 64 subscribers.

In Skywhisper, a transaction of 4 inputs and 10 public keys can transmit more than 2KB

of covert data and costs \$0.0000215.

To deter kleptographic attacks and prevent steganographic communication on public

blockchains, we investigated all of the available cryptographic countermeasures and new

blockchain designs. Moreover, we assessed the effectiveness of each method in counter-

ing three attack scenarios: (1) kleptographically leaking the users' secret information,

(2) steganographically communicating over public blockchains, and (3) persistently storing

arbitrary content in blockchains. All of the surveyed techniques fail to counter at least one

of the aforementioned scenarios or are deemed impractical in the context of blockchains.

Consequently, to fully immunize public blockchains against kleptography and steganog-

raphy, we presented four countermeasures. The first is to use re-randomizable signa-

ture schemes, which enable the blockchain P2P nodes to re-randomize the transac-

tions' signatures before broadcasting them onto the network. Besides, we presented

a new re-randomizable ring signature (RRS) with provable security. The process of

re-randomizing the signature also filters out any possible subliminal channels. However,
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since re-randomized signatures are computationally indistinguishable from the original

signatures, there is not any computational evidence that a signature has ever been

re-randomized before its respective transaction is added to a mined block. To address

this shortcoming, our second countermeasure is to use aggregate signatures, where miners

aggregate signatures of independent transactions, and only the aggregated signature is

added with the corresponding transactions to the mined block. Nonetheless, aggregate

signatures do not prevent the mere propagation of steganographic communication in

the P2P network. Therefore, we presented our third countermeasure, which is to use

re-randomizable and aggregatable signatures. Additionally, we devised a new crypto-

graphic primitive called re-randomizable and aggregatable signature (RAS). The fourth

countermeasure is a universal steganography-resistant blockchain framework (SRBF),

which ensures steganography resistance in blockchains. The SRBF framework depends on

the use of re-randomizable signatures and either non-interactive zero-knowledge proofs

(NIZK) or aggregate signatures.

This thesis highlights the imminent threat that kleptography and steganography

pose on public blockchains' users and technology. Our aims have been achieved by

designing realistic kleptographic attacks and steganographic channels on two of the most

widely used signature schemes in blockchains. In addition, this thesis has introduced

a set of countermeasures to design steganography-resistant blockchains. Finally, this

thesis opens new research venues and serves to instigate further efforts to immunize

public blockchains against subversion attacks on randomized cryptographic primitives

and design kleptography and steganography-resistant blockchains.

7.2 Future Work

This thesis has explored the threat of kleptography and steganography on public

blockchains, investigated current deterrence techniques, and proposed four novel and

efficient countermeasures. However, this thesis also serves to instigate further interest

in the subject, encourage the blockchain community to consider the adverse effects of

kleptography and steganography, and inspire new steganographic-resistant blockchains.
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As explained in Chapter 4, abusing public blockchains for steganographic communica-

tion and content storage jeopardizes the future proliferation of the blockchain technology.

More specifically, out of fear of legal prosecution or from a moral standpoint, users may

avoid using blockchains that are known to contain malicious content. Users who choose

to participate in such blockchains may refrain from downloading the full ledger, and thus

stop engaging in the consensus protocol, which leads to fewer nodes participating in the

process. Since the consensus protocol is at the crux of the security in public blockchains

and represents the primary defence against adverse attacks such as denial-of-service

and double-spending attacks, more research is required to quantify the effect of such

behaviour on the overall security of blockchains.

Furthermore, this research has proposed two new cryptographic signatures: the

randomizable ring signature (RRS) and the re-randomizable and aggregatable signature

(RAS). However, beyond the proposed cryptographic signatures, this work serves to

encourage the cryptography community to design new steganography-resistant random-

ized cryptographic primitives. Also, more computationally-efficient alternatives can be

considered to realize the SRBF framework instead of using the computationally-intensive

non-interactive zero-knowledge proofs (NIZK) and aggregate signatures.

In addition, theoretically, the proposed countermeasures in this thesis can be applied

to resist steganography and kleptography in other open-source applications beyond

their mere applicability in blockchains. Nonetheless, a thorough security analysis of

each applicable scenario is required to assess their security and evaluate their practical

applicability.

Finally, our proposed steganography-resistant blockchain framework (SRBF) provides

the basis for future steganography-resistant blockchain designs. Nevertheless, further work

is required to implement the SRBF framework on an open-source blockchain platform,

such as HyperLedger1, investigate ways to incentivize nodes to re-randomize signatures,

and practically evaluate the SRBF framework. This effort will help demonstrate the

practical effectiveness of SRBF against kleptography and steganography.

1 https://www.hyperledger.org/
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Appendix A
Privacy in Cryptocurrencies

In Chapter 3 and Chapter 4, we explain kleptographic and steganographic attacks
in blockchains. Both types of attacks are implementation attacks that exploit the
uncontrolled randomness in cryptographic primitives in blockchains. These primitives
are mainly used to achieve privacy in blockchains. Therefore, this appendix presents an
overview of the different tiers of privacy guarantees in cryptocurrencies, and the used
anonymity techniques.

Existing surveys on blockchains consider general security issues and challenges
in Bitcoin and cryptocurrencies without any particular focus on anonymity and pri-
vacy [CSLR18, LJC+17, DSG19, JHW18]. The only existing survey that focuses on
privacy is the work of Khalilov et al. [KL18]; however, it does not provide any classifi-
cation of the different levels of anonymity in cryptocurrencies, nor does it explain the
related anonymity techniques. On the contrary, this appendix, which mainly reflects
our published survey [AZ19a], provides a systematic study on anonymity in blockchains.
The content of this appendix can be summarised as follows. Sec. A.1 presents a novel
categorization for the tiers of anonymity offered in the diverse cryptocurrencies. Sec. A.2
examines the techniques used to achieve the different tiers of anonymity and highlights
their known vulnerabilities and weaknesses. Finally, Sec A.3 compares the anonymity
techniques and attempts to forecast their technological trends.

A.1 Tiers of Anonymity in Cryptocurrencies

The offered anonymity in any cryptocurrency and blockchain application can be assessed
by considering two characteristics: (1) the ability of the used anonymity scheme to break
any possible linkage between transactions, and (2) its ability in hiding users' identities
(senders and receivers). Given these two characteristics, we define the following three
tiers of anonymity in cryptocurrencies: (1) pseudonymity, (2) set anonymity, and (3) full
anonymity. Below we describe each of these tiers:
1. Pseudonymity is the most primitive level of anonymity in cryptocurrencies. In

pseudonymity, the users' identities are hidden using pseudo-anonymous addresses. For
example, this is the level of anonymity guaranteed in Bitcoin.

2. Set anonymity is when the identity of the user is either 1 out of n possible identities.
Set anonymity is achieved by using ring signatures [RST01] where n is equal to the
size of the ring. For instance, the CryptoNote framework and its cryptocurrencies
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use linkable ring signatures to achieve set anonymity. Similarly, mixers provide set
anonymity where n is equal to the number of inputs in the mix.

3. Full anonymity is provided when the sender can be any node/entity in the blockchain,
and the sent note or coin can be any unspent coin. As shall be discussed, this level is
attained by using commitments and zero-knowledge proofs as in Zerocoin [MGGR13]
and Zcash [HBHW18].
Besides, there is a very notable feature that is used by some cryptocurrencies in

conjunction with these three levels of anonymity. We refer to this feature as confidential
transactions that ensures the transacted amounts are hidden. We consider confidential
transactions as an anonymity feature rather than a separate level of privacy since
a cryptocurrency can, for example, guarantee set anonymity while offering confidential
transactions at the same time, as is the case in Monero [mon19]. We emphasize that we
do not limit this feature to Monero's confidential transactions [Max], and include any
approach that hides or obfuscates the transferred amounts to thwarts transaction flow
analysis.

Fig. A.1 shows a pie chart representing the distribution of 20 currencies and imple-
mentations according to their tier of anonymity. Details of these currencies are shown in
Table 1.1 in Capter 1.

75\%

15\%

10\%

Pseudonymity

Set Anonymity

Full Anonymity

Figure A.1: Distribution of 20 cryptocurrencies and protocols according to their tier of
anonymity.

A.2 Privacy Techniques in Cryptocurrencies

To achieve the three anonymity levels and confidential transactions as aforementioned in
Sec. A.1, cryptocurrencies implement numerous anonymity techniques. In this section, we
briefly discuss six major techniques: (1) pseudonymous addressing, (2) ring signatures,
(3) mixers, (4) commitments, (5) zero-knowledge proofs, and (6) stealth addressing.
Besides, we give examples of the cryptocurrencies that implement each of these techniques
and list the known attacks and weaknesses concerning each technique.

A.2.1 Pseudonymous addressing

Pseudonymous addressing aims to preserve privacy by breaking the link between ad-
dresses and their owners' real identities. It is widely known that Bitcoin is an example
implementation of pseudonymous addressing in cryptocurrencies.
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Figure A.2: Representation of clustering attacks on Bitcoin.

Pseudonymity in Bitcoin. Bitcoin is the first cryptocurrency and remains to be
the most successful one with a market value of over \$211 billion1, and more than 9000
participating nodes2. As explained in its whitepaper [Nak08], Bitcoin preservers users'
anonymity through the use of pseudonymous addresses; a user's address is the Base-58
encoding of the following 25-byte binary string:

\epsilon = RIPEMD-160(SHA-256(publicKey))

address = v| | \epsilon | | checksum

Where publicKey is the user's public key, v is a one-byte value indicating the version,
and checksum is the least significant four bytes of the following value: checksum =
SHA-256(SHA-256(\epsilon )) [TS16, Wik18]. Furthermore, although they do not entirely en-
hance anonymity [AKR+13], Bitcoin users are advised to take two protective measures.
Firstly, users can generate a new key pair for each transaction [Nak08]. In practice, a per-
son generating a transaction will also generate a new key pair so that the change address
is not linked to the originating address and is indistinguishable from the destination's
address. Secondly, in every transaction, the sender fully empties one or more accounts,
inputs, and creates one or more accounts, outputs. This approach helps break the linkage
between the user's accounts [But16]. Nonetheless, addresses can still be clustered, and
the real identity of the users can eventually be revealed using the aid of public services,
as demonstrated in many publications [MPJ+13, RH11, RS13, TS16].

Attacks on pseudonymous addressing. Pseudonymous addressing provides a weak
anonymity guarantee. In fact, it is mentioned on Bitcoin's official website that Bitcoin is
not anonymous [bit19b]. Consequently, it is not surprising that various de-anonymization
attacks have been proposed in the relevant literature. Overall, these attacks can be
classified into two broad categories: (1) clustering and Bitcoin blockchain analysis, and
(2) the exploitation of the Bitcoin P2P network and diffusion protocol.

As depicted in Fig. A.2, clustering attacks analyse Bitcoin traffic flow to cluster a given
user's addresses and transactions and link them to a public service, e.g. an exchange
website. These services can then reveal the real identity behind the pseudonymous
addresses. In general, there are two approaches to clustering: analysis of transactions'
inputs and outputs [MPJ+13, RH11, RS13, TS16], and behavioural analysis of attributes
like time, location, and spending habits [AKR+13, RS14, DS15].

The second category of attacks on pseudonymous addressing is through the exploita-
tion of the Bitcoin P2P network. This set of attacks was pioneered by the work of Koshy
et al. [KKM14], who studied the relay patterns of transactions and were able to map

1 https://coinmarketcap.com/ on 08/08/2019
2 https://bitnodes.earn.com/ at 13:22:21 UTC on 08/08/2019.
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between 252 and 1162 Bitcoin addresses to the IP addresses that likely own them. For
more details on these attacks, a summary is included in Table A.1.

Attacks on Pseudonymous Addressing

1) Clustering and Bitcoin blockchain analysis.

As shown in Fig A.2, this attack analyses Bitcoin traffic flow to cluster the user's addresses and
transactions and link them to a public service, e.g. an exchange website. These services can then
reveal the real identity behind the pseudonymous address. In general, there are two approaches
to clustering: (i) analysis of transactions' inputs and outputs, and (ii) behavioural analysis.

Analysing transactions' inputs and outputs. Use two particular heuristics to cluster
transactions: (i) The first heuristic is that inputs in one transaction are likely to be owned by the
same user [Nak08]. Different users can theoretically contribute inputs in the same transaction
but rarely do so. (ii) The second heuristic is that the newer output address can be assumed to
be the change address of the user who generated the transaction [MPJ+13, RH11, RS13, TS16].
These heuristics result in representations of Bitcoin addresses, transactions, and users/entities.
The last step in traffic analysis is to map users from these representations to real-world identities.
This step aims to establish ownership and can be accomplished using the aid of public services,
e.g. online stores and exchange website, which usually have user-identifying information such as
email addresses and even bank accounts [RH11].
To demonstrate the effectiveness of the above heuristics, the authors of [MPJ+13], attempted
to track known Bitcoin thefts to exchange services. In summary, they were able to track 6 out
of 7 thefts from the point of theft to an exchange service. Furthermore, if presented with legal
subpoena, exchange services can reveal the real identities behind the exchange operation. More
importantly, their success in tracking these thefts prove that even privacy-conscious users, who
seek to further hide their identities by sending (or peeling) some of their funds to newly generated
addresses, are prone to de-anonymization using these heuristics.

Behavioural Analysis. In this type of analysis, addresses and transactions are clustered based
on behavioural attributes like their time, location, and amount. Androulaki et al. [AKR+13]
used behavioural analysis to augment their clusters. Namely, they considered the time of the
transactions, the indices of the inputs in a transaction, and the transferred amount. Using
these attributes, they succeeded in unveiling about 40\% of the users in their simulated Bitcoin
network. Similarly, Ron et al. [RS14] used behavioural analysis to link the Bitcoin addresses
that are believed to be related to the Silk Road marketplace [mar19]. Also, Dupont et al. [DS15]
analysed the user's spending habits to reveal the physical location of Bitcoin users. They assessed
their method by collecting 518 known charities' Bitcoin addresses and physical locations, and
comparing this data against their informed guesses, where their initial results show an accuracy
of up to 72\%.

2) Exploiting Bitcoin P2P Network.

This family of attacks exploits the nature of the Bitcoin P2P network to link pseudonymous
addresses to IP addresses. The work of Koshy et al. [KKM14] constitutes the first proposal
to de-anonymize Bitcoin users by studying the relay patterns of transactions, and they were
able to map between 252 and 1162 Bitcoin addresses to the IP addresses that likely own them3.
Similarly, the work in [JSKV18] attempts to develop a probabilistic model to identify transactions'
originators' IP based on monitoring the nodes that first relay a given transaction.

3 Linking Bitcoin pseudonyms to the user's IP does not only cause a privacy breach but may also
allow attackers to launch DoS against that user's IP. This is more relevant if this user is a vendor or
a service provider.
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Table A.1 Continued from the previous page
Moreover, the authors of [BKP14] attempted to de-anonymize Bitcoin clients, even those sitting
behind NATs, by the set of entry nodes they connect to. According to their methodology, the
attacker tries to connect to the majority of servers, and they argue that when the attacker receives
the transaction from 2 to 3 entry nodes, he can map the transaction to a specific client with
a very high probability.4

To strengthen their anonymity, Bitcoin users may choose to use anonymization tools, such as
Tor [tor19]; however, as shown by Biryukov et al. [BP15], combining Bitcoin and Tor introduces
a new attack vector. Biryukov et al. [BP15] explored the exploitation of Bitcoin P2P with
Tor beyond the mere banning of Bitcoin clients from using Tor exit nodes as previously done
in [BKP14]. Their attack depends on: (1) forcing Bitcoin clients to connect to the attacker's Tor
exit nodes or directly to the attacker's Bitcoin peers, and (2) fingerprinting clients by writing
unique, possibly fake, addresses to the target's address table.
In 2015, the Bitcoin community responded to the aforementioned attacks by changing its transac-
tions broadcasting protocol from a gossip-like trickle spreading protocol to a diffusion spreading
protocol [Wui15]. To assess the impact on anonymity, the authors of [FV17a] studied the proper-
ties of the two broadcasting protocols and their effect on user anonymity. They concluded that
the two Bitcoin flooding protocols do not protect user anonymity. Also, Mastan et al. attempted
to de-anonymize Bitcoin users sitting behind Tor by studying the pattern of their sessions and
constructing a session graph, which they were able to perform with a precision of 0.9 [MP18] .

3) Other attacks

Goldfeder et al. [GKRN18] studied the effect of web trackers on Bitcoin users when shopping
online. They concluded that trackers could uniquely identify transactions, link them to the user's
cookie, and reveal the user's real identity. Other tools and frameworks have been proposed for
visual traffic analysis of the Bitcoin blockchain [SMZ14, BDP+15].

Table A.1: Attacks on Bitcoin pseudonymity

A.2.2 Ring signatures

Ring signatures are explained in detail in Sec. 2.2.6.2, and we discuss in the following the
known attacks on ring signatures.

Attacks on ring signatures. Although ring signatures have evolved over time, there
remain some weaknesses that have been exploited to reveal the sender's identity/index.
One of the first attacks on ring signature was the deducibility of the real consumed coin
as a result of referencing outputs that have been provably spent or consumed in 0-mixin
transactions [MSH+18]. More known attacks on ring signatures are listed in Table A.2.

4 A list of current active Tor exit nodes can be found in: https://torstatus.blutmagie.de/
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Vulnerabilities and Weaknesses of Ring Signatures

Weakness Description

Deducibility due to
0-mixin coins.

The authors of [MSH+18] described two weaknesses in Monero's ring
signature. The first weakness is the deducibility of real spent input as
a result of referencing outputs that have been provably spent or consumed
in previous 0-mixin transactions. In other words, 0-mixin transactions do
not only de-anonymize the output they reference but also de-anonymize
other transactions with mixin \geq 1.

Identifying real in-
puts using tempo-
ral analysis.

The second weakness described in [MSH+18] is related to the sampling
of mixins, or decoy coins. Namely, they have found that about 80\% of
the time, the real consumed output is the newest created coin.

Flooding the net-
work with the
attacker-generated
outputs.

The authors of [WLSL18] described two attacks on the Monero ring
signature. The first attack is an extension to the discussion from [NNM14]
and based on flooding the network with outputs that are generated by
the attacker(s) and addressed to their own addresses. Therefore, if these
outputs are referenced as decoy outputs, i.e. mixins, in any ring signature,
the attacker(s), who passively monitors the signatures, can rule out their
outputs and hence decrease the anonymity of the signer. If, for example,
a transaction references k outputs/coins, i.e. has a mixin of size k, and t
of which are generated by the attacker, then the effective mixin size is
reduced to (k  - t).

Subverted sampling
of outputs.

The second attack described in [WLSL18] is an active version of the
previous attack. Namely, the attacker mis-implements wallets to sample
his outputs when generating ring signatures. Therefore, the attacker who
continuously monitors all transactions could de-anonymize the real spent
outputs.

Anonymity reduc-
tion by observing
identical UPID.

The authors of [WLS+18] described an anonymity reduction attack on
Monero transactions by observing identical UPID in different transactions.
Namely, they state that if a transaction Ta has a UPID Ua and generates
some output Oa, and a latter transaction Tb that uses the same UPID
Ua and references Oa as part of its mixins, then Oa is likely to be the
real spent output in Tb and not a mere decoy output.

De-anonymization
by new forks

Wijaya et al. [WLS+19] demonstrated that Monero hard forks could lead
to traceability of the real spent outputs when the user spends the coins
in the original blockchain and the newly forked blockchain.

Time and size Borromean ring signatures, which were used to construct rangeproofs in
Monero RingCT resulted in rangeproofs that are several kilobytes in size
and take milliseconds to verify [Poe18]. Hence, the crypto community has
been looking for a more succinct and faster to verify, which eventually
resulted in devising Bulletproofs [BBB+18] as discussed in Sec. A.2.5.

Table A.2: List of attacks on ring signatures

A.2.3 Mixers

To address the privacy limitations in Bitcoin, there have been multiple proposals to break
any linkage between senders and recipients by mixing users' funds through coin-laundry
services called mixers. These mixers are generally in the following three forms. (1) Trusted
centralized mixers were the 1st-generation of mixers and demand unreasonable trust of
third-party services to mix the user's coins. This approach has a single point of failure,
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Type Examples Disadvantage

Centralized
Mixers

CryptoMixer [cry19]
Bitcoin Fog [bit19a]
BestMixer [bes19]

Mixcoin [BNM+14]
Blindcoin [VR15]

Single point of failure
No deniability against the mix itself [ZGH+15]

No proof of mixing
Unreasonable trust of 3rd party

Possible theft

Obscuro [TLK+18]
Uses trusted execution environments (TEE)

Assumes no mis-implementation by mixer operator
Anonymity set is limited by block size [TLK+18]

Smart-
contract-

like
Mixers

CoinJoin \star [Max13a]
CoinShuffle\dagger [RMSK14]

Coinswap [Max13b]

 \star No anonymity against insiders, i.e. users in the mix
Vulnerable to Sybil attacks

Vulnerable to collusion between users in the mix
Anonymity set = the number of users in the mix [ZGH+15]
\dagger last user determines the outcome of the shuffle [ZGH+15]

Malicious users can disrupt mixing [TLK+18]1

Decentralized
Mixers

CoinParty [ZGH+15]
Longer mixing delay [ZGH+15]

Assumption 2/3 of the peers are honest

Zerocoin [MGGR13]

Anonymity level is related to number of minted
coins (between a coin's mint and its spend)

[MGGR13]

Reveals the number of minted and spent coins [MGGR13]
Reveals transferred denominations [MGGR13]

Table A.3: List of proposed mixers in literature. 1: Users can join mixing and then abort to
disrupt the operation

i.e. the trusted mixer, and does not provide any proof of mixing. (2) Smart-contract-like
mixers in which multiple users agree to create a joint transaction to obfuscate inputs
and outputs, e.g. CoinJoin [Max13a] and CoinShuffle [RMSK14]. In general, these
mixers do not provide anonymity against other users in the mix and are vulnerable to
collusion between users in the mix. (3) Decentralized mixers are trust-free cryptographic
extensions to Bitcoin, e.g. Zerocoin [MGGR13] and CoinParty [ZGH+15, ZMH+18]. It
is important to note that this type of mixers does not represent fully-fledged anonymous
zero-knowledge-proof currencies, which are discussed later in Sec. A.2.5. Instead, this
type represents extensions on top of other currencies, and may not be practical for
day-to-day usage. For example, Zerocoin [MGGR13] is presented as a decentralized mix
that extends Bitcoin; however, its limited functionality and high computational cost do
not allow it to be used for routine transactions. For more details, Table A.3 provides an
up-to-date list of mixers proposed in the literature and their known vulnerabilities.

A.2.4 Commitments

Commitments are widely used as references or pointers to some secret, which allow
the owner of the secret information to demonstrate its properties without revealing
the secret information. For instance, the user could commit the balance of his bank
account, and then use zero-knowledge proofs to show the balance is within a certain
range, e.g. larger than 0. A commitment scheme \scrC \scrS typically consists of three algorithms:
\scrC \scrS = (Setup,Commit,Open), as follows [ADR02]:
\bullet ck \leftarrow Setup(1\lambda ). On the input of a security parameter 1\lambda , the setup algorithm

generates a commitment key ck.
\bullet c\leftarrow Commit\sansc \sansk (m, r). The commitment algorithm takes as input a message m from

the message space \scrM , to which the user is committing, and a random coin r. The
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commitment algorithm Commit outputs a commitment c.
\bullet m\leftarrow Open\sansc \sansk (c, r). The open algorithm reveals the committed message m if provided

with a valid (c, r) pair, and outputs \bot otherwise.
It is required that the statement m \leftarrow Open\sansc \sansk (Commit\sansc \sansk (m, r), r) is true except for
a negligible probability \epsilon . Besides, all commitment schemes should satisfy two security
properties: hiding and binding. Hiding means that the commitment c does not reveal
any information about the message it is committed to, m. In other words, there is no
PPT adversary \scrA , who distinguishes with a non-negligible probability if a commitment
c is a commitment to m0 or m1, where the two messages are provided by \scrA . Whereas,
binding means that it is computationally infeasible for an adversary \scrA to find two distinct
messages m0 and m1 that commit to the same value c [ADR02].

In the context of blockchains, two types of commitment schemes have been used:
(i) additive homomorphic commitments such as Pedersen commitment, and (ii) non-mal-
leable commitments like hash-based commitments.
(Generalized) Pedersen commitment [Ped92] is used in many blockchain platforms,
such as Monero. To make the commitment non-interactive, the commitment key is
typically given as a common reference string. Let (G,H) \in \BbbG 2 be the commitment
key. To commit a message m \in \BbbZ q, the committer picks a fresh randomness r \in \BbbZ q

and outputs the commitment as c = Commit(m, r) = rG + mH. This commitment is
said to be computationally binding and unconditionally hiding. In Monero, the group
is instantiated from the elliptic curve (the secp256k1 curve). In addition, Pedersen
commitments are additively homomorphic, i.e. they preserve addition and commutativity,
which enables the public verification that the sum of the hidden input value(s) is equal
to the sum of the hidden output value(s). For example, disregarding the transaction
fee for simplicity, if a transaction has three inputs a, b, and d, and two outputs e
and g such that a + b + d = e + g, then Commit(a + b + d, r) = Commit(e + g, r) =
Commit(a, r1) + Commit(b, r2) + Commit(d, r3) = Commit(e, r4) + Commit(g, r5), given
r = r1 + r2 + r3 and r = r4 + r5.
Hash-based commitments are used in Zcash due to their efficiency, which enables
fast zk-SNARK. Unlike the Pedersen commitment, hash-based commitments are usually
transparent in the sense that the setup process is a public coin. Hence, unlike common
reference-string-based schemes, the setup process is believed to be subversion resistant.
To commit a message m \in \{ 0, 1\} \ast , the committer picks a random coin r \in \{ 0, 1\} \lambda and
outputs the commitment as c = hash(m, r), where \lambda is the security parameter, e.g, 256.
In Zcash, the hash function was instantiated from SHA-256, and recently switched to
a group-based structure-preserving hash. More details can be found in the Zcash protocol
specification [HBHW18].

A.2.5 Non-interactive zero-knowledge proofs

Typically, the zero-knowledge proofs used in blockchains need to be publicly verifiable,
which means they need to be non-interactive. On the other hand, it is well-known that
non-interactive zero-knowledge (NIZK) proofs cannot be realized in the standard model,
also known as the plain model. Therefore, all of the non-interactive zero-knowledge
proofs require some setup assumptions, such as common-reference string, random oracle,
etc. In general, NIZK proofs have been used to achieve anonymity in cryptocurrencies in
three ways:
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1. Utilizing the existing scripts in current cryptocurrencies to extend these cryptos
and break the linkage between the senders and the receivers. Zerocoin [MGGR13]
is an example of this methodology.

2. Devising new cryptographic structures to replace current inefficient structures. An
example of this type is the use of Bulletproofs [BCC+16] to replace the Borromean
ring signatures in Monero RingCT's rangeproofs.

3. Designing new ZKP-based cryptocurrencies that are fully anonymous like Zcash [zca20],
which is an implementation of the Zerocash protocol [SCG+14].

In the following, we discuss two commonly used NIZK schemes.
zk-SNARK. Succinct non-interactive zero-knowledge argument of knowledge (zk-
SNARK) has two very fundamental properties: (i) succinctness, and (ii) being unbalanced.
Succinctness means that the proof size is less than poly-logarithmic, or constant in this
concrete case, with respect to the witness size. Being unbalanced indicates that the veri-
fier's running time is much less than the statement execution time, i.e. poly-logarithmic.
In blockchains, a zero-knowledge proof needs to be verified by a great number of verifiers;
hence, unbalanced proofs are preferred. However, the cost of the proof generation is
usually very high, which limits its wide adoption.

zk-SNARK is used to achieve full anonymity in Zerocash [SCG+14], which is a digital
currency that is decentralized, privacy-preserving, and efficient. To anonymize the
sender and the receiver, and to mask the transferred amount, Zerocash uses zk-SNARK.
Zcash [zca20] is a cryptocurrency that implements the Zerocash protocol. The Zcash
blockchain contains two sets: a set of all commitments cm, and a set of all created
nullifiers nf. Hence, the Zcash blockchain does not only contain a database of unspent
transactions but a database of all transactions that ever existed. To each note, there
is a cryptographically associated note commitment and a nullifier, i.e. there is a 1:1:1
relation between notes, note commitments, and nullifiers. Computing the nullifier requires
the associated private spending key a\sanss \sansk . It is infeasible to correlate the note commitment
with the corresponding nullifier without knowledge of this spending key. An unspent
valid note, at a given point on the blockchain, is one for which the note commitment has
been publicly revealed on the blockchain prior to that point, but the nullifier has not.

The basis of the privacy properties of Zcash is that when a note is spent, the spender
only proves that some commitment for it have been revealed, without revealing which
one. This implies that a spent note cannot be linked to the transaction in which it was
created. That is, from an adversary's point of view, the set of possibilities for a given
note input to a transaction includes all previous notes that the adversary does not control
or know to have been spent.
Bulletproofs. Bulletproofs are shorter zero-knowledge proofs that were proposed by
B\"unz et al. [BBB+18] and are based on the work of Bootle et al. [BCC+16]. While zk-
SNARK requires the use of bilinear groups and pairing-based cryptography, Bulletproofs
are based on discrete-log computation. Hence, Bulletproofs are suitable for all elliptic-
curve algorithms and can prove arbitrary arithmetic circuit. For the prover's running
time, Bulletproof is much faster than zk-SNARK; however, the verifier's running time is
typically similar to the prover's running time, which is linear in the statement execution.
It means that Bulletproofs cannot be used to achieve verifiable computation sourcing,
as the verifier needs to spend an equal amount of time to verify the proof. In Monero,
Bulletproofs substantially reduce the size of transactions by replacing the Borromean
ring signature [MP15] in generating rangeproofs.
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Disadvantages of zero-knowledge proofs. Zero-knowledge proofs (ZKP) can provide
strong anonymity guarantees, as in Zcash and Zerocoin; however, they suffer from few
disadvantages. First, it is proven that non-interactive ZKPs for general NP language
must require some trusted setup assumptions, such as the security parameter's generation
ceremony in Zcash. Also, the proof generation and verification can be computationally
inefficient. More importantly, the prover's efficiency is far from being practical for
large-scale statement or verifiable computation.

A.2.6 Stealth addressing

Stealth addressing is a technique proposed as part of the CryptoNote protocol [Sab13] to
hide the recipient's identity (or address). In short, the sender, Alice, uses Diffie-Hellman
exchange [DH76] to compute a shared secret and generate a one-time destination address
that can only be identified by the intended recipient, Bob. Specifically, let us assume
that Bob's public key is the pair (A,B) that corresponds to his private key (a, b), such
that A = aG, and B = bG, where G is the base point of the used elliptic curve. In this
case, Alice generates a random number r, and a one-time address P = \scrH s\{ rA\} G+B,
where \scrH s is a collision-resistant cryptographic hash function. Along with P , Alice sends
R = rG as part of the transaction. Bob checks every transaction using his private key
(a, b) and computing P

\prime 
= \scrH s\{ aR\} G+ B. If the transaction is destined for Bob, then

P
\prime 

= P . More generally, the stealth addressing technique can be generalised to any
non-interactive key exchange (NIKE) together with the public key system. Hence, the
above scheme can be easily extended to a post-quantum secure stealth addressing scheme
by replacing the underlying primitives.

Figure A.3: Timeline of Monero privacy enhancements [A. 15, mon19].

A.3 Summary of Privacy in Cryptocurrencies

Summary. Table 1.1 summarizes the tiers of anonymity offered in 20 currencies and the
techniques they implement to achieve privacy and anonymity. As shown in Table 1.1, one
can conclude that ZKP and commitments are used to achieve the highest tier of anonymity,
i.e. full anonymity. However, these two techniques can increase the computational cost
and may require a trusted setup. Therefore, anonymity schemes should not be assessed
only by considering the level of anonymity they provide but by jointly examining three
factors: (1) the level of anonymity provided by using the scheme, (2) the scheme's
computational efficiency, and (3) the extent of the needed trust to use the technique.
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Technology trend. The future technological trend in privacy mechanisms is best
exemplified by Monero's evolution since its inception. As shown in Fig. A.3, Monero
was initially based on the CryptoNote protocol, which uses linkable ring signatures, and
then evolved over time and adapted the use of Bulletproofs to replace the Borromean
ring signature in its RingCT's rangeproofs. This demonstrates the continuous quest for
cryptocurrencies to adapt privacy schemes that: (1) offer a higher tier of anonymity,
(2) require less generation and verification time, (3) produce more succinct proofs, (4) do
not require trusted setup, and (5) possibly, result in lower transaction fees5. The design
of new anonymity schemes should also consider their impact on the forkability of the
cryptocurrency [WLS+19].

Open problem. There are some known intrinsic vulnerabilities concerning anonymity
in cryptocurrencies and blockchains in general. One of these vulnerabilities is leaking
the user's IP address and timestamp whenever a user broadcasts a transaction. This
can be exploited, as demonstrated in many works [KKM14, BKP14, BP15, FV17a],
to de-anonymize the users regardless of the specific blockchain application they are
using. Furthermore, even when using an anonymization tool, like Tor, users can still be
de-anonymized as detailed in Table A.2.

5 Usually, transaction fees are inversely proportional to the size of the proofs. For example, when
Monero adopted the use of Bulletproofs, their average transaction fees decreased by more than 90\%
[O'L19].
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Case study: Bytecoin Wallet Bug

In this section, we explain an implementation bug that we discovered while imple-
menting our kleptographic attack in Bytecoin's wallet. Although this bug is not itself
a kleptographic attack, it highlights how the actual implementation of cryptographic
primitives could diverge from their specifications without being noticed by end-users.
This bug demonstrates the plausibility of unseen kleptographic attacks.

As previously discussed in Sec. 2.2.6.2, CryptoNote-based cryptocurrencies use a link-
able ring signature to enhance the senders' privacy and achieve set anonymity, as explained
in Appendix A. As such, the signer's public key is hidden among a set of randomly
sampled public keys. To obscure the identity of the actual signer, the signer's index
within the ring is kept secret, and the signer's public key should be indistinguishable
from other keys in the ring.

While experimenting with Bytecoin's wallet, we observed a significant discrepancy
between the wallet execution behaviour and the above-mentioned CryptoNote specifica-
tions. Peculiarly, the CryptoNote specifications require the signer's index within the ring
to be randomly picked so that the signer's public key is randomly placed in the ring. On
the contrary, Bytecoin tends to put the signer's public key as the last key in the ring.
This bug effectively nullifies the use of the ring signature.

Table B.1 shows the statistical details of our experiments with the Bytecoin wallet.
The size of the ring k is set to a value between 3 and 10, and in each case, the function
responsible for generating the ring signature, generate ring signature(. . . ), is invoked
10000 times. The table shows the percentages when the secret index \ell is the last in the
ring, i.e. when \ell = k  - 1, also when \ell = k  - 2 and \ell = k  - 3. It can be seen that the
probability of (\ell = k  - 1) increases as the size of the ring decreases. In addition, it can
be observed that the probability is about 98\% that the secret index \ell is greater than or
equal to (k  - 3).

This bug effectively diminishes the set anonymity promised by CryptoNote's ring
signature and facilitates blockchain analysis attacks. Hence, we reported the bug to
Bytecoin's developers, who replied to our report on 10 July 2018 and acknowledged
the issue and their ongoing effort to rectify it. Note that this bug still exists in the
latest version of Bytecoin (v 3.5.1) although the distribution of the secret index is biased
towards the lower values, e.g. given k is 10, we found that \ell \in \{ 0, 1, 2, 3\} in \geq 90\% of
the time.
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Experiments on Bytecoin Wallet

k \ell = k  - 1 (\%) \ell = k  - 2 (\%) \ell = k  - 3 (\%) \ell \geqq k  - 3 (\%)

3 86.61 12.85 0.54 100

4 81.11 17.39 1.45 99.95

5 76.82 20.61 2.45 99.88

6 70.23 25.28 4.15 99.66

7 66.43 27.64 5.31 99.38

8 61.2 30.48 7.17 98.85

9 57.09 33.05 8.24 98.38

10 54.37 33.39 10.07 97.83

Table B.1: Experimenting with Bytecoin wallet (v 3.0.0) with different ring sizes k, and the
percentages show when the secret index \ell is either one of the last indices in the ring.

According to specifications, \ell should be picked randomly, i.e. \ell 
\$\leftarrow [0, k  - 1].

147



Appendix C
Security Proofs

This appendix contains the formal security proofs for some of the kleptographic attacks,
steganographic tools, and cryptographic schemes in this thesis. Sec. C.1 describes the
proof of the security, i.e. computational undetectability, of our kleptographic attack
on CryptoNote's ring signature. Sec. C.2 presents our proof for the undetectability
of Skywhisper based on the pseudo-randomness of its Encrypt function. Moreover, in
Sec. C.3, we prove the existential unforgeability of our re-randomized ring signature
RRS, which is described in Sec. 6.1.1. In Sec. C.4, we show the dis-aggregation property
of Boneh et al.'s aggregate signature [BGLS03] that is mentioned in Sec. 6.2. Finally,
Sec. C.5 proves the existential unforgeability of our re-randomizable and aggregatable
signature RAS proposed in Sec. 6.3.

C.1 Security proof of Theorem 3.1

The security of the proposed kleptographic attack on CryptoNote is examined for
undetectability under the security game in Fig. 3.3. Informally, if there is not any PPT
watchdog \scrW that can distinguish between the output of a subverted ring signature
and that of the original signature except for a negligible probability, then the proposed
kleptographic attack is undetectable and is said to be secure.

Theorem 3.1 states that if both F and CTS-Enc, as shown in Fig. 3.6 are a secure
pseudo-random function (PRF) and a semantically-secure encryption algorithm, respec-
tively, then the kleptographic attack described in Fig. 3.6 is undetectable with respect to
any PPT \scrW .

The advantage of a PPT watchdog \scrW in detecting subverted signatures, and thus his
probability in winning the kleptography security game of Fig. 3.3 is given as follows:

Adv\sansS \sansU \scrW (1\lambda ) =

\bigm| \bigm| \bigm| \bigm| Pr
\Bigl[ 
Expt\sansS \sansU \scrW (1\lambda )

\Bigr] 
 - 1

2

\bigm| \bigm| \bigm| \bigm| = negl(\lambda )

Proof. We prove Theorem 3.1 using hybrid proofs and reduction. In particular, Fig. C.1a
represents a kleptographically-subverted CryptoNote's ring signature, as detailed in
Fig. 3.6, whereas Fig. C.1c is equivalent to the original non-modified CryptoNote's ring
signature. Besides, Fig. C.1b is an intermediate step between Fig. C.1a and Fig. C.1c.
We aim to prove the computational indistinguishability between the kleptographically-
subverted algorithm in Fig. C.1a and the original algorithm in Fig. C.1c. In order to do
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. . .
\sansL \sanse \sansa \sansk (z, \sanss \sanse \sansc ):
\bullet . . .
\bullet \sansI \sansV = Fz(\sansr \sansa \sansn \sansd \| 00 . . . 0);
\bullet \^m = \sansC \sansT \sansS -\sansE \sansn \sansc z(\sansI \sansV , \sanss \sanse \sansc );
\bullet . . .

. . .

(\bfa ) H1

. . .
\sansL \sanse \sansa \sansk (z, \sanss \sanse \sansc ):
\bullet . . .

\bullet \sansI \sansV 
\$\leftarrow \{ 0, 1\} 253;

\bullet \^m = \sansC \sansT \sansS -\sansE \sansn \sansc z(\sansI \sansV , \sanss \sanse \sansc );
\bullet . . .

. . .

(\bfb ) H2

. . .
\sansL \sanse \sansa \sansk (z, \sanss \sanse \sansc ):
\bullet . . .

\bullet \sansI \sansV 
\$\leftarrow \{ 0, 1\} 253;

\bullet \^m
\$\leftarrow \{ 0, 1\} 253;

\bullet . . .

. . .

(\bfc ) H3

Figure C.1: H1 represents the kleptographically-modified CryptoNote's ring signature, which is
shown in detail in Fig. 3.6. H2 represents an intermediate hybrid, and H3 represents
the original non-modified CryptoNote's ring signature. Our goal is to prove Theo-
rem 3.1 by demonstrating that H1 and H3 are computationally-indistinguishable
if F is a secure PRF function, and CTS-Encz(IV, sec) is a semantically-secure
encryption algorithm.

so, we will show that the subverted algorithm in Fig. C.1a is indistinguishable from the
intermediate hybrid algorithm in Fig. C.1b if F is a secure pseudo-random function (PRF).
After that, we will show that Fig. C.1b is indistinguishable from the original algorithm
in Fig. C.1c if CTS-Enc is a semantically-secure encryption algorithm. Consequently,
we conclude that Fig. C.1a and Fig. C.1c are indistinguishable if F and CTS-Enc, as
shown in Fig. 3.6, are a secure pseudo-random function (PRF) and a semantically-secure
encryption algorithm, respectively, which proves Theorem 3.1.
First: proving that H1 and H2, in Fig. C.1a and Fig. C.1b, respectively, are
indistinguishable if F is a secure PRF. We use reduction to prove the indistin-
guishability between H1 and H2. In particular, we assume that there exists a PPT \scrW 
who can distinguish between the output of H1 and H2 with a non-negligible probability.
Then, we construct a PPT adversary \scrA who can break the PRF game of F , i.e. \scrA must
be able to distinguish with a non-negligible probability between the pseudo-random text
generated by F and randomly-selected text, as explained in Sec. 2.2.3.

Let us denote by \scrC the challenger, who randomly picks b
\$\leftarrow \{ 0, 1\} . If b = 0, \scrC executes

H1, i.e. IV = Fz(rand\| 00 . . . 0), and if b = 1, \scrC executes H2, i.e. IV
\$\leftarrow \{ 0, 1\} 253. In

both cases, the generated signature \sigma , which contains IV in its random numbers (c, r)'s
as detailed in Fig. 3.6, is passed to \scrA who is challenged to break the PRF of F by
distinguishing if IV is sampled randomly or generated using F . After receiving \sigma , \scrA 
passes it to \scrW who is challenged to distinguish whether or not \sigma was generated using
H1 or H2. \scrW outputs its guess as b\ast = 0 to indicate \sigma is generated by H1 and b\ast = 1
otherwise. After receiving \scrW 's output b\ast , \scrA outputs its guess b\prime based on b\ast , particularly,
b\prime = b\ast . Since \scrW can distinguish between the output of H1 and H2 with a non-negligible
probability, and b\prime = b\ast , then \scrA 's advantage in breaking the PRF of F , denoted by
Adv\sansP \sansR \sansF \scrA , is also non-negligible. Hence, we conclude that H1 and H2 are computationally
indistinguishable if F is a secure PRF function.
Second: proving that H2 and H3, in Fig. C.1b and Fig. C.1c, respectively,
are indistinguishable if CTS-Enc is a semantically-secure encryption algorithm.
Similar to the first part of the prove, we use reduction to prove the indistinguishability
between H2 and H3. We assume there exists a PPT \scrW , who can distinguish between
H2 and H3 with a non-negligible probability, and construct a PPT adversary \scrB , who
can break the semantic security of CTS-Enc, i.e. \scrB must be able to distinguish with

149



Appendix C: Security Proofs

a non-negligible probability between the pseudo-random ciphertext generated by CTS-Enc
and randomly-selected text.

Let us denote by \scrC the challenger, who randomly picks b
\$\leftarrow \{ 0, 1\} . If b = 0, \scrC executes

H2, i.e. \^m = CTS-Encz(IV, sec), and if b = 1, \scrC executes H3, i.e. \^m
\$\leftarrow \{ 0, 1\} 253. In

both cases, the generated signature \sigma , which contains \^m in its random numbers (c, r)'s,
as shown in Fig. 3.6, is passed to \scrB , who is challenged to break the semantic security
of CTS-Enc by distinguishing if the random numbers (r, s) are sampled randomly or
encryptions generated by CTS-Enc. After receiving \sigma , \scrB passes it to\scrW , who is challenged
to distinguish whether \sigma was generated using H2 or H3. \scrW outputs its guess as b\ast = 0
to indicate \sigma was generated by H2, and b\ast = 1 otherwise. After receiving \scrW 's output
b\ast , \scrB outputs its guess b\prime based on b\ast , particularly, b\prime = b\ast . Since \scrW distinguishes
between H2 and H3 with a non-negligible probability, and b\prime = b\ast , then \scrB 's advantage in
breaking the semantic security of CTS-Enc, denoted by Adv\sansC \sansT \sansS -\sansE \sansn \sansc \scrB is also non-negligible.
Hence, we conclude that H2 and H3 are computationally indistinguishable if CTS-Enc is
a semantically-secure encryption algorithm.

Since H1 and H2 are computationally indistinguishable if F is a secure PRF function,
and H2 and H3 are indistinguishable if CTS-Enc is a semantically-secure encryption
algorithm, then H1 and H3 are indistinguishable if F is a secure PRF and CTS-Enc is
a semantically-secure encryption algorithm. Therefore, no PPT adversary \scrW can win,
with a non-negligible probability, the security game Expt\sansS \sansU \scrW in Fig. 3.3 if F is a secure
PRF and CTS-Enc is a semantically-secure encryption algorithm, which concludes our
proof of Theorem 3.1.

C.2 Security proof of Skywhisper (Theorem 4.1)

In the following, we use reduction to prove Theorem 4.1. Assume there exists a PPT
adversary \scrA who can break \scrS \scrT with a non-negligible advantage Adv\sansC \sansH \sansA \scrA ,\scrS \scrT (1\lambda ) with respect

to the CHA security experiment Expt\sansC \sansH \sansA \scrA (1\lambda ) in Fig. 4.1. We need to construct a PPT
adversary \scrB who can break the PRF game for Encrypt, i.e. \scrB must be able to distinguish
with a non-negligible probability between the pseudo-random text generated by the PRF
and the randomly-selected text, as explained in Sec. 2.2.3.

During the reduction game, \scrB plays as a challenger for \scrA in the CHA game. Upon

receiving m from \scrA , \scrB picks random rand
\$\leftarrow \{ 0, 1\} 64 and sets x = (rand\| 00 . . . 0). \scrB 

then queries x to the PRF game challenger and obtains IV. Subsequently, \scrB queries CT
to the PRF game challenger, and obtains rand. \scrB then computes (c, r) according to the

description shown in Fig. 4.5 and Fig. 4.6. After that, \scrB flips a coin b
\$\leftarrow \{ 0, 1\} , and if

b = 0, \scrB computes a ring signature using (c, r); otherwise, \scrB computes a ring signature
normally. \scrB then sends the resulting signature to \scrA , and \scrA outputs a guess b\ast . Assume
the challenge bit in the PRF game is \beta , i.e. \beta = 0 in the PRF mode and \beta = 1 in the
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random function mode. If b = b\ast , \scrB outputs \beta \ast = 0; otherwise, \scrB outputs \beta \ast = 1.

Pr[\scrB win] = Pr[\beta \ast = \beta ]

= Pr[\beta \ast = 0| \beta = 0] \cdot Pr[\beta = 0] + Pr[\beta \ast = 1| \beta = 1] \cdot Pr[\beta = 1]

= Pr
\Bigl[ 
Expt\sansC \sansH \sansA \scrA (1\lambda )

\Bigr] 
\cdot 1

2
+

1

2
\cdot 1

2

= (Adv\sansC \sansH \sansA \scrA ,\scrS \scrT (1\lambda ) +
1

2
) \cdot 1

2
+

1

4

=
1

2
\cdot Adv\sansC \sansH \sansA 

\scrA ,\scrS \scrT (1\lambda ) +
1

2

Hence, the advtantage of \scrB with respect to the PRF game is

Adv\sansP \sansR \sansF \scrB =

\bigm| \bigm| \bigm| \bigm| Pr[\scrB ] win - 1

2

\bigm| \bigm| \bigm| \bigm| =
1

2
\cdot Adv\sansC \sansH \sansA \scrA ,\scrS \scrT (1\lambda ) .

Since Adv\sansC \sansH \sansA \scrA ,\scrS \scrT (1\lambda ) is non-negligible, we have Adv\sansP \sansR \sansF \scrB is also non-negligible, which
concludes the proof.

C.3 Security proof of \sansR \sansR \sansS 

The security of RRS is defined by the advantage AdvRRS\scrA of an adversary \scrA in forging
a randomized ring signature \'\sigma . This advantage represents the adversary's probability in
winning the following security game:
\bullet Setup: The challenger generates \{ s1, . . . , sn\} \leftarrow \BbbZ n

p and their respective public
keys PKi = gsi1 for 1 \leq i \leq n. \scrC passes the generated public keys to \scrA .
\bullet Query: \scrA can request any ring signature on a message m \in \{ 0, 1\} \ast .
\bullet Output: \scrA generates a forged randomized ring signature \'\sigma \scrA .
\scrA wins this game if \'\sigma \scrA is a valid ring signature of the set on n public keys, and on

a message m that has not been queried before. If there is not any PPT such adversary,
then the RRS scheme is secure against forgeability.

Definition C.1. A forger \scrA (t, q, \rho )-breaks the existential unforgeability EUF of the RRS
scheme if \scrA runs in time at most t, makes at most q queries, forges a randomized
ring signature of n public keys, where n > 1, and his advantage \geq \rho . The scheme is
(t, q, \rho )-secure and existentially unforgeable if no PPT adversary can (t, q, \rho )-break it.

Theorem C.1. The randomizable ring signature scheme RRS achieves the same security
level as the BGLSRingSignature scheme. More precisely, if an adversary (t, q, \rho )-breaks
the EUF of the RRS scheme, then there exists an adversary that can (t, q, \rho )-break the
EUF security of the BGLSRingSignature scheme.

Proof. Intuitively, a randomized ring signature \'\sigma is indistinguishable from the original
signature \sigma to any third party: if RingVerify(L : \{ PK1, . . . , PKn\} ,m \in \{ 0, 1\} \ast , \sigma ) is
valid then so is the verification of its respective randomized signature RingVerify(L :
\{ PK1, . . . , PKn\} ,m \in \{ 0, 1\} \ast , \'\sigma ). Hence, if an adversary \scrA forges a randomized ring
signature \'\sigma , another adversary \scrB can pass it to the challenger \scrC as a forged ring signature
\sigma of the BGLSRingSignature scheme, without further processing or making any extra
queries.
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For completeness, in the following, we explain Boneh et al.'s security proof of un-
forgeability of their BGLSRingSignature scheme [BGLS03]. They define the security
of BGLSRingSignature as the advantage AdvBGLS\scrA of an adversary \scrA in the following
security game:
\bullet Setup: The challenger \scrC generates a set of public keys \{ PK1, . . . , PKn\} for N

users, and these keys are passed to the adversary \scrA .
\bullet Hash Query: \scrA has unlimited access to a hash oracle, which he can query for the

hash of any message m.
\bullet Sign Query: \scrA has unlimited access to a sign oracle, which he can query for the

ring signature corresponding to any message m.
\bullet Output: \scrA outputs a forged ring signature \sigma \scrA using \{ PK1, . . . , PKn\} on m, which

has never been queried in during the Sign Query.
\scrA wins this security game if the forged signature \sigma \scrA is a valid ring signature under

the n public keys \{ PK1, . . . , PKn\} on m that has not been queried before. If there is
not any such PPT adversary, then the scheme is secure against existential forgeability.

Definition C.2. An adversary \scrA (t, \rho )-breaks the existential unforgeability EUF of the
BGLSRingSignature scheme if \scrA forges a valid ring signature under n public keys on
a message m, runs in time at most t, and his advantage AdvBGLS\scrA \geq \rho . The scheme is
(t, \rho )-secure and existentially unforgeable if no PPT adversary can (t, \rho )-break it.

Assumption C.1. The Computational co-Diffie-Hellman (co-CDH) problem is the
following: given g1, g2 are generators for the groups \BbbG 1 and \BbbG 2, respectively, g

a
2 \in \BbbG 2,

and h \in \BbbG 1: compute ha \in \BbbG 1.

Theorem C.2. The BGLSRingSignature scheme achieves existential unforgeability under
the co-CDH computational problem in Assumption C.1. Namely, if an adversary \scrA 
can (\'t, \'\rho )-break the existential unforgeability EUF of the BGLSRingSignature scheme,
then there must exist another adversary who can (t, \rho )-solve the co-CDH problem. t \leq 
2\'t+ 2CG2

(2n+ qH + nqS) and \rho \geq ((\'\rho /e)(1 + qS))2, where \scrA issues at most qS queries
to the sign oracle, and at most qH queries to the hash oracle, and cG2 is the time taken
for exponentiation and inversion on \BbbG 2.

Proof. In the following, we explain Boneh et al.'s proof of their scheme and particularly
Theorem C.2. Their proof shows that if there is an adversary \scrA who forges a ring
signature \sigma \scrA , then there must exist another adversary \scrB who solves the co-CDH problem.
They construct \scrB that given gab2 , ga1 , and a \not = 0, computes gb2. This proof assumes that for
every sign query on message m, \scrA has previously requested a hash on the same message.
Setup: The challenger \scrC generates a, b\leftarrow \BbbZ p and passes gab2 and ga1 to \scrB . The adversary
\scrB generates \{ x2, . . . , xn\} \leftarrow \BbbZ n - 1

p and sets x1 = 1. It sets the public keys as follows:
PKi = (ga1)xi . After that, \scrB passes \{ PKi, . . . , PKn\} to \scrA . Note that the private keys
in this case consists of the set: \{ ax1, ax2, . . . , axn\} .
Hash Query: When receiving a hash query from \scrA on a message mi, \scrB flips a coin,
which is 0 with probability p and 1 otherwise. Let us denote the coin toss result by

c. \scrB picks a random z
\$\leftarrow \BbbZ p. If c is 0, \scrB sets H(mi) = (gab2 )z, otherwise, it sets

H(mi) = \psi (ga1)z. Here \psi is a computable isomorphism from \BbbG 1 to \BbbG 1. \scrB returns H(mi)
and stores the tuple \langle mi, c, z,H(mi)\rangle in HashList.
Sign Query: When receiving a sign query from \scrA , \scrB checks the HashList to find the
coin toss result corresponding to the hash query on this same message. If c == 0, \scrB 
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fails and exists. Otherwise, \scrB has returned H(mi) = \psi (ga1)z. \scrB proceeds by generating

a set of random scalars \{ y2, . . . , yn\} \$\leftarrow \BbbZ n - 1
p , computing y1 = z  - (y2s2 + \cdot \cdot \cdot + ynsn),

and returning the ring signature \sigma = \langle gy12 , . . . , gyn2 \rangle .
Output: \scrA outputs a forged ring signature \sigma \scrA on a message m. \scrB checks the c value
in HashList corresponding to the same message m. If c is 1, then \scrB fails. Else, the
corresponding hash value is H(mi) = (gab2 )z, and \scrB succeeds in solving the co-CDH
problem, where gb2 can be computed as the zth root of \sigma 1\sigma 

x2
2 . . . \sigma xn

n .
Note that \scrB will not fail with probability pqS (1 - p), and it is also shown in [BGLS03]
that this probability is maximum when p = qS/(qS + 1) giving a bound of (1/e)(1 + qS).
To calculate the running time of \scrB : it takes n exponentiations in \BbbG 1 to generate the keys
in the setup phase, one exponentiation for each hash query from \scrA , n exponentiations for
each signature query from \scrA , and n exponentiations in the output phase, so \scrB 's running
time is \scrA 's running time plus cG2(2n+ qH + qS).

In the following, we illustrate the correctness of Boneh at al.'s proof by showing how
\scrB solves the co-CDH problem and successfully computes gb2. Since \scrA is able to forge
a valid ring signature \sigma \scrA , then the signature element corresponding to the signer \sigma j
within \sigma \scrA is given as follows:

\sigma j =

\left( 
 h/\psi (

\prod 

i \not =j

PKri
i )

\right) 
 

1/axj

Therefore, \scrB can compute gb2 as the zth root of the following:

\sigma 1\sigma 
x2
2 . . . \sigma xn

n =
\prod 

i \not =j

\sigma xi
i \cdot \sigma 

xj

j =
\prod 

i \not =j

grixi
2 \cdot (h/\psi (

\prod 

i \not =j

PKri
i ))(1/axj)xj

=
\prod 

i \not =j

grixi
2 \cdot (h/\psi (

\prod 

i \not =j

g
(axi)ri
1 ))1/a =

\prod 

i \not =j

grixi
2 \cdot h1/a/(

\prod 

i \not =j

gxiri
2 ) = h1/a

= g
abz/a
2 = gbz2

C.4 Proof of Dis-aggregation of \sansB \sansG \sansL \sansS \sansA \sansg \sansg \sansr \sanse \sansg \sansa \sanst \sanse \sansS \sansi \sansg \sansn \sansa \sanst \sansu \sansr \sanse 

In this section we prove that no PPT adversary can extract the signatures \sigma i's from their
corresponding aggregate signature \sigma a when using the BGLSAggregateSignature scheme as
explained in Sec. 6.2. We begin by explaining a three-phase dis-aggregation experiment
between a challenger \scrC who generates an aggregate signature and an adversary \scrA who
tries to extract at least one of the member signatures \sigma i's that are part of \sigma a.

\bullet Setup: \scrC generates n random scalars \{ s1, . . . , sn\} \$\leftarrow \BbbZ n
p and computes the cor-

responding public keys \{ PK1, . . . , PKn\} \in \BbbG 1 where PKi = gsi1 . \scrC passes the n
public keys to the adversary \scrA .
\bullet Query: \scrA queries \scrC for an aggregate signature \sigma a of the signatures on n messages
\{ m1, . . . ,mn\} \in \{ 0, 1\} \ast . \scrC checks QueryList to find if any of the messages has been
queried before, in which case the challenger \scrC halts with failure. If \scrC does not
halt, it signs each message mi using the corresponding secret key si to generate
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\sigma i. Then \scrC generates the aggregate signature \sigma a =
\prod n

i=1 \sigma i, \sigma a \in \BbbG 2. \scrC stores the
tuple \langle \{ m1, . . . ,mn\} , \{ \sigma 1, . . . , \sigma n\} , \sigma a\rangle in QueryList structure, and responds to \scrA 
with \sigma a.
\bullet Output: finally, \scrA outputs a single signature \'\sigma i and wins the game if \'\sigma i \subset 

QueryList.

Definition C.3. An aggregate signature scheme achieves `dis-aggregation' if there is not
any probabilistic polynomial-time (PPT) adversary that can win the above dis-aggregation
game with a non-negligible probability.

Theorem C.3. The BGLSAggregateSignature scheme achieves dis-aggregation under
the co-CDH computational problem in Assumption C.1. If a PPT adversary \scrA can win
the dis-aggregation game with a non-negligible probability, then \scrA can also solve the
co-CDH problem with non-negligible probability.

Proof. We prove Theorem C.3 using reduction to show that an adversary \scrA who dis-
aggregates a given aggregate signature \sigma a to reconstruct at least one member signature
\sigma i, is also able to solve the underlying co-CDH problem. After the setup phase, \scrA 
knows n public keys \{ PK1, . . . ,PKn\} , which are equal to \{ gs11 , . . . , gsnn \} . In this proof,
\scrA demonstrates his ability to solve the co-CDH by computing H(mi)

si \in \BbbG 2 given g1, g
si
1 ,

and H(mi). Note, we can assume that the messages mi's are selected by another co-CDH
challenger or sampled from a random oracle, but for simplicity, we let \scrA choose the
messages.

Following the same scenario of the above dis-aggregation game, in the output phase,
the adversary \scrA receives an aggregate signature \sigma a. After that, \scrA dis-aggregates \sigma a
to reveal at least one of the member signatures \sigma i's. Having extracted at least one
signature \sigma j from \sigma a, where 1 \leq j \leq n, \scrA has also solved the co-CDH problem since
\sigma j = H(mj)

sj . \scrA can further check his solution by checking the following equality:
e(PKj , H(mj)) = e(g1, \sigma j). If this equality holds, then \scrA has successfully solved the co-
CDH problem. Also, since \scrA dis-aggregates a given \sigma a with a non-negligible probability,
then \scrA also solves the co-CDH problem with a non-negligible probability.

C.5 Security Proof of \sansR \sansA \sansS 

In this section, we prove that the RAS scheme proposed in Sec. 6.3 is existentially
unforgeable under chosen message attacks (EUF-CMA). As stated in Sec. 6.3, the first
four algorithms of RAS are the same as Pointcheval and Sanders's randomizable signature,
which was proved to be existentially unforgeable EUF-CMA under Assumption C.2 [PS16].

Assumption C.2. Let (p,\BbbG 1,\BbbG 2,\BbbG T , e) a bilinear group setting of type 3, with g a gen-
erator for \BbbG 1 and \widetilde g a generator for \BbbG 2. For ( \widetilde A = \widetilde ga, \widetilde B = \widetilde gb), where a and b are random
scalars in \BbbZ p, we define oracle \scrO (m) on input m \in \BbbZ p that chooses a random h \in \BbbG 1 and

outputs the pair \sigma = (h, ha+mb). Given (\widetilde g, \widetilde A, \widetilde B) and unlimited access to \scrO , no adversary
can efficiently generate a valid \sigma , with h \not = 1\BbbG 1 for a new scalar m\ast that has not been
queried from \scrO .

In the following, we refer to the first four algorithms of RAS as the `single-message
signature', and prove that the aggregability of our RAS scheme is secure against existential
forgeability. The definition of the security of our aggregate signature is adapted from the
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definition of the security of Boneh et al.'s aggregate signature [BGLS03]. The adversary \scrA 
is given n public keys generated by the challenger \scrC . The adversary is allowed unlimited
access to a signing oracle on any of the public keys. The advantage of the adversary
AdvAggSig\scrA is defined as the probability of winning the following security game, which
consists of three phases: (1) setup, (2) queries, and (3) output.

Setup: The challenger \scrC generates a set of n public keys \{ PK1, . . . , PKn\} , and passes
them to the adversary \scrA , where 1 < n \leq N and N is a game parameter.
Query: The adversary can request signatures under any PKi \in \{ PK1, . . . , PKn\} on
unlimited messages m.
Output: The adversary generates an aggregate signature \sigma a on public keys
\{ PK1, . . . , PKn\} on messages \{ m1, . . . ,mn\} .

The adversary wins the game if \sigma a is a valid signature on \{ m1, . . . ,mn\} under
\{ PK1, . . . , PKn\} , and n > 1. Also, it is required that one mj corresponding to the
public key PKj has not been queried by \scrA before, where j \in \{ 1, . . . , n\} . If there is
not any probabilistic polynomial time (PPT) adversary who can win this game with
a non-negligible probability, then the aggregate signature is existentially unforgeable
under chosen message attacks (EUF-CMA).

Definition C.4. An aggregate forger \scrA (t, qG, N, \rho )-breaks an N -user aggregate signature
scheme in the aggregate chosen-key model if \scrA runs in time at most t, makes at most qG
queries, the forged signature is by at most N users, and his advantage AdvAggSig\scrA \geq \rho .
The aggregate signature scheme is (t, qG, N, \rho )-secure and EUF-CMA if no PPT adversary
can (t, qG, N, \rho )-break it.

Theorem C.4. The aggregate signature scheme achieves the EUF-CMA security level
under Assumption C.2. More precisely, if an adversary can break the EUF-CMA of
the aggregate signature scheme with a non-negligible probability \rho , then there exists an
adversary who breaks the EUF-CMA security of the single-message signature scheme with
the same non-negligible probability \rho .

Proof. In the following, we use reduction to prove Theorem C.4. We show that forging
a valid aggregate signature \sigma a is equivalent to successfully forging a valid single signature
\sigma c, which means breaking Assumption C.2. In order to do so, we describe a security
game in which \scrA is an adversary who forges an aggregate signature \sigma a, \scrB is another
adversary trying to forge a single signature \sigma j , and \scrC is the challenger.

Setup: \scrC generates a challenge public key PKc = ( \widetilde Ac = \widetilde gac , \widetilde Bc = \widetilde gbc), and sends
(pp, \widetilde g, PKc) to \scrB where pp denotes public parameters. After receiving PKc , \scrB randomly
generates a set of n public keys \{ PK1, . . . , PKn\} , and randomly picks a value j such

that j
\$\leftarrow [1, n]. \scrB sets the jth public key as the challenge key, i.e. PKj = PKc, and

stores the keys in KeyList. Note that \scrB knows the secret keys corresponding to all the
public keys except for PKj . After that \scrB forwards (pp, \widetilde g, \langle PK1, . . . , PKn\rangle ) to \scrA .
Query: \scrA can request a signature from \scrB on a message m under any public key
PKi \in \{ PK1, . . . , PKn\} . If \scrA requests a signature under PKj , \scrB forwards the query
to \scrC , otherwise \scrB generates the signature itself by executing Sign(m,SKi). In both
cases, \scrB responds to \scrA with \sigma , and stores the tuple \langle qi, (\sigma qi,1, \sigma qi,2),mqi , PKi, SKi\rangle in
a list SignaturesList. qi is a counter, which is used to allow to distinguish between the
multiple queries that are made under the same public key.
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Output: Eventually, \scrA returns to \scrB an aggregate signature \sigma a on n messages
(m1, . . . ,mn) and using public keys (PK1, . . . , PKn), where \scrA has queried \scrB on
all but a single message mi \in \{ m1, . . . ,mn\} . Importantly, \scrB only proceeds if mj

that corresponds to the challenge key PKj has not been queried by \scrA before, i.e.
mj \not \subset SignaturesList, otherwise \scrB restarts the process. If mj corresponding to the
challenge key PKj has not been queried by \scrA , then \scrB considers \sigma a a valid aggregate
signature if it meets the following conditions:
\diamond AggVerify(\langle m1, . . . ,mn\rangle , \langle PK1, . . . , PKn\rangle , \sigma a) == 1, i.e. the forged aggregate sig-

nature is accepted by AggVerify algorithm.
\diamond All public keys (PK1, . . . , PKn) are as stored in KeyList.

If the two conditions are met, \scrB parses the aggregate signature: \sigma a
\sansp \sansa \sansr \sanss \sanse \rightarrow (\langle \sigma 1,1, . . . , \sigma n,1\rangle , \sigma 2).

Next, using the stored \sigma qi,2's in SignaturesList, \scrB extracts the ones that correspond to the
signed messages, i.e. \forall i \not = j : \sigma \ast qi = \langle qi, (\sigma qi,1, \sigma qi,2),mqi , PKi, SKi\rangle when mqi == mi.
After that, \scrB computes the value of \sigma c,2 using \sigma j,2 = \sigma 2 \cdot (

\prod n
i=1,i \not =j \sigma qi,2) - 1. This reveals

the signature corresponding to the challenge key PKc: \sigma j = (\sigma j,1, \sigma j,2). Since \sigma a is
a valid aggregate signature then:

e(\sigma 2, \widetilde g) =

n\prod 

i=1

e(\sigma i,1, \widetilde Ai, \widetilde Bmi
i ) = e(

n\prod 

i=1

\sigma ai+bi\cdot mi
i,1 , \widetilde g) = e(

n\prod 

i=1

\sigma i,2, \widetilde g)

Therefore, the forged single signature corresponding to the challenge key PKc is \sigma j =

(\sigma j,1, \sigma j,2) is equivalent to (\sigma j,1, \sigma 
aj+bj \cdot mj

j,1 ). This concludes our proof that if there is an
adversary \scrA who can break the EUF-CMA security of the aggregate signature and forge
a valid \sigma a, then there must exist an adversary \scrB who can forge a single signature \sigma c
and consequently break Assumption C.2.

As j is randomly picked from [1, n], the probability Prj that mj has not been queried
under the challenge key PKj by \scrA in the query phase, that is, the probability that
mj \not \subset SignaturesList, is 1/n, i.e. Prj = 1/n. Therefore, on average, \scrB will have to repeat
the process n times. Hence, if the running time of \scrA is t, then the running time of \scrB is
n \ast t. However, if \scrA breaks the security of the aggregate signature with a non-negligible
success probability of \rho , then there must exist another adversary \scrB that can break the
security of the single re-randomizable signature with the same non-negligible probability
of \rho . This concludes our reduction security proof of Theorem C.4.
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