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Abstract 9 

An analytical expression is proposed to simulate the effects of pH and redox potential (E) on 10 

the sorption of uranium onto model inorganic particles in aquatic environments instead of 11 

following an experimental approach providing a list of empirical sorption data. The expression 12 

provides a distribution coefficient (Kd) as function of pH, E and ligand concentration (complex 13 

formation) applying a surface complexation model on one type of surface sites (>SuOH). The 14 

formulation makes use of the complexation and hydrolysis constants for all species in solution 15 

and those sorbed at the surface, using correlations between hydrolysis constants and surface 16 

complexation constants, for the specific sorption sites. The model was applied for the sorption 17 

of uranium onto aluminol, iron hydroxide and silanol sites, mimicking respectively ‘clean’ clay 18 

or ‘dirty’ clay and ‘clean’ sand or ‘dirty’ sand (‘dirty’ referring to iron hydroxide 19 

contaminated), in absence or presence of carbonates in solution. The calculated distribution 20 

coefficients are very sensitive with the presence or absence of carbonates. The Kd values 21 

obtained by applying the model are compared with values reported in the literature for the 22 

sorption of uranium onto specific adsorbents. It is known that in surface water, U(VI) and its 23 
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hydroxides are the primary stable species usually observed. However, reduction to U(IV) is 24 

possible and may be simulated during sorption or when the redox potential (E) decreases. 25 

Similar simulations are also applicable to study the sorption of other redox sensitive elements.  26 

 27 
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 32 
Reactions in SOLUTION and at the SORBENT interface that must be considered to derive the 33 
model as Kd = f(pH,E,[L],d,{>SuOH},∆) for the redox couple Mz+/M(z-n)+ , with ions 34 
complexed by hydroxyl (OH-) and ligand (L) onto surface sorbing group (>SuOH) of 35 
density ∆ on particles of size d at a given pH and for redox potentials E. 36 
 37 
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 39 

1. Introduction 40 

 41 

Issues associated with the environmental behaviour of uranium has been the topic of numerous 42 

studies e.g. Selvakumar et al (2018); Gavrilescu et al (2008). The release of uranium from a 43 

contaminated sediment and its local retention are governed by biochemical reactions including 44 

factors such as acidity, redox potential, presence of ligand (inorganic, organic and bioorganic) 45 

of the water e.g. Ulrich et  al (2009). The sorption of uranium on specific sediment components 46 

is consequently a relevant issue to investigate.  47 

 48 

The sorption of actinides onto selected inorganic model alumina and goethite colloidal particles 49 

has already been reported by Degueldre et al. (1994) and by Ulrich et al. (2006). Recently 50 

specific studies were also carried out on magnetite (Fe3O4) by Singhal et al. (2017), on titanium 51 

oxide (TiO2) by Lefèvre et al (2008) and by Li et al. (2019), on zircon by Lomenech et al. 52 

(2003), on clayeous materials such as smectite by Chisholm-Brause et al. (2004), muscovite by 53 

Richter et al. (2016) and zeolite (Na2Al2Si3O10.2H2O) by Su et al. (2018). Most of these 54 

sorption studies are empirical and a formal approach of distribution coefficient (Kd) 55 

determination is missing.  56 

 57 

In sorption studies, analytical expressions based on the relation of the distribution coefficient 58 

(Kd) and the thermodynamic properties of the phases has been applied since the formula 59 

derived in the pioneered work of Degueldre et al. (1994). The sorption includes surface 60 

complexation with one type of sorbent surface site (>SuOH). The model has been completed 61 

for redox effects considering the redox potential in solution for all hydrolysed species in 62 

solution and on the surface. Complexation with ligands was also included in the formulation as 63 



 4 

carbonate, or total inorganic carbon (TIC), which is expected to affect significantly the 64 

speciation and the sorption of metal ions in waters at quasi neutral pH values. The sorption of 65 

metal ions onto particles is affected by many parameters such as pH, redox potential (E), 66 

sometime called Eh, ligands concentration, e.g. [TIC], or sorption kinetics. The influence of pH 67 

in sorption is well established, but the effort made in studying the influence of redox potential 68 

is limited, as reported for other actinide elements e.g. Degueldre & Bolek (2009).  69 

The study of the redox potential effect in the sorption is especially relevant in environmental 70 

science. However, it can be difficult to study the effect experimentally (Grenthe et al, (1992)). 71 

Fortunately, solutions (e.g. working electrode in-line polishing) have been suggested by 72 

Degueldre et al. (1999).  73 

 74 

The objective of this study is to calculate the distribution coefficient as a function of pH, redox 75 

potential concentration of ligand and nature of the sorbent. This approach has been applied to 76 

the sorption of uranium, a redox sensitive actinide, onto three selected inorganic model 77 

particles (Al2O3, FeOOH and SiO2). These model particles could mimic clean clay (Al2O3), 78 

‘dirty’ clay or sand (surface contamination with FeOOH) and clean sand (SiO2) some key 79 

components of the terrestrial environment. Organic material shall be considered in a separate 80 

study. 81 

The ultimate aim of this work is to develop a more multipurpose model of material sorption, as 82 

part of the strategy suggested by Degueldre et al. (2019) to upgrade the nuclear fuel cycle 83 

through regenerative extraction of uranium to become a renewable resource. 84 

 85 

 86 

2. Modelling species occurrence and their sorption properties 87 

 88 
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The sorption process involves reactions ranging from ‘inner sphere’ complex formation with 89 

active surface sites to ion exchange. It is usually described by the distribution ratio, which at 90 

equilibrium yields a distribution coefficient (Kd) as given by Equation (1): 91 

 
[ ]
[ ] [ ]partM
MKd

solution

sorbed 1
=      (1)  92 

where [part] is the particle concentration (e.g. in g⋅mL-1) and [M] is the concentration of the 93 

element sorbed on the particles or present in solution (both in: mmol⋅mL-1). The inclusion of 94 

[part] in this ratio is intended to generalise the more classical distribution coefficient 95 

formulation: Kd = C(M)part/[M]sol  (with C(M)part in mmol.g-1) to one where the sorbent is in the 96 

liquid matrix (suspension). 97 

 98 

2.1 Particles and sorption sites 99 

 100 

In this work metal ions e.g. M(OH)i
(z-i)+ are sorbed onto monodentate sites >SuOH, where Su 101 

represents the substrate material available at the surface of particles (part). The distribution 102 

coefficient in a Langmuir model is directly proportional to [>SuOH]/[part], with [>SuOH] the 103 

site concentration (e.g. mol mL-1). In a simplified approach, if the particles are supposed to be 104 

spherical and monodispersed, the volume of one particle is given by V = (4/3) π r3 with r the 105 

particle radius (cm or nm according to context). The particle mass (M) is consequently given by 106 

M = ρ V  with ρ the density of the particle material and the number of particle per volume unit 107 

(N) is given by N = [part]/M. The particle surface (S) is given by S = 4 π r2  and if the particle 108 

surface is covered homogeneously by sites with the density ∆  given in nm−2. The number of 109 

site per particle (ns) can be defined as and be easily calculated as ns = ∆ S .  From this, the 110 

number of site per suspension volume Nsv = ns Ν  and consequently [>SuOH] =  ∆ S N/NAv 111 

where NAv is the Avogadro constant.   112 

This allows the [>SuOH]/[part] ratio to be evaluated as [>SuOH]/[part] = 3 ∆ NAv /(ρ r). 113 
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The [>SuOH]/[part] ratio may also be derived experimentally using the specific surface 114 

provided by BET measurements. The specific surface is given by 3/ρ r in the case of ideal 115 

spherical particles. This value may be affected by the particle porosity and the fractal of its 116 

interface. 117 

 118 

2.2 Impact of site reactivity 119 

 120 

Protonation and deprotonation of the >SuOH sites could modify the sorption properties. These 121 

specific reactions {1} and {2} can be written: 122 

>SuOH2
+  >SuOH +  H+     {1} 123 

>SuOH   >SuO- +  H+   {2} 124 

The acid/base constants (Kai) associated to the sites are: 125 

[ ][ ]
[ ]+

+

>
>

=
2

1 SuOH
HSuOHKa

     (2) and     [ ][ ]
[ ]SuOH

HSuOKa >
>

=
+−

2
 (3) 126 

The total site concentration equals:  127 

 [ ] [ ] [ ] [ ]−+ >+>+>=> SuOSuOHSuOHSuOH Tot 2    (4) 128 

which gives:  129 

 [ ] [ ]
[ ] [ ]( )++ ++

>
=>

HKKH
SuOH

SuOH
aa

Tot

/1/ 21

    (5) 130 

Further to these protonation/deprotonation reactions, leaching effects due to dissolution of the 131 

structure become significant at pH around the respective pKa values. The reactions follow the 132 

hydrolysis then deprotonations series:  133 

             H+    H+ 134 
 >Su+  +  H2O    >SuOH2

+    >SuOH    >SuO-      {3} 135 
In reality, these effects are limited by solubility of Su in water e.g. with the soluble forms of 136 

>Su+  and of >SuO-. Consequently the reactivity of >SuOH sites is accounted below. 137 

 138 
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2.3  Complexes formation in the redox range 139 

 140 
The methodology follow the approach suggested earlier e.g. Degueldre (1997). The hydrolysis 141 

stability constants of both redox species (Ki,k for oxidising and Kj,l for reducing species) can be 142 

obtained on the basis of the stepwise reactions {4} and {5}. This notation is intended to include 143 

both oxo and non-oxocation species. Metal complexation reactions involving k-ligands or l-144 

ligands (L-p) (e.g. carbonates) were also considered. The limits on all indices are fixed by the 145 

co-ordination properties of the appropriate element. 146 
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  {5} 148 

The redox couple MOx
(z-2x)+/MOy

(z-n-2y)+ reaction (where MOx
(z-2x)+ is the oxidised species and  149 

MOy
(z-n-2y)+ the reduced one), is described according to reaction {6}. 150 

 MOx
(z-2x)+ +  ne-  +  (2x-2y)H+        MOy

(z-n-2y)+  +  (x-y) H2O                {6} 151 

The surface complexation for the hydrolysed (and complexed) species is described (reactions 152 

{4} and {5}) considering the neutral sites >SuOH. The surface complexation constants are Ks,i,k 153 

for the oxidising species and Ks,j,l for the reducing species. Their values are estimated by 154 

correlation with the hydroxo-complex constants (see Section 3.2) using a simple linear 155 

relationship:  156 

 .log Ks,i  =  A  +  B log Ki    (6) 157 

With A and B site specific constants. The indices k and l refer to the appropriate co-ordination 158 

number of the metal ions with the selected ligand. Effects of the redox potential in water and at 159 

the surface are also taken into account (reactions {7} and {8}). 160 
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 161 

 162 

When the reactions are written in terms of free metal Mz+, the cumulative constants (hydrolysis) 163 

are βi and βj respectively (βi = Π Ki). 164 

The ratio between the concentrations of both redox species can be written as a function of the 165 

redox potential (E) applying the Nernst equation (2) for Reaction {7}.  166 

E = E° + (2x-2y + i - j)·RT·(nF)-1 ln [H+] +RT·(nF)-1ln{[MOx
(z - 2x)+]·[MOy

(z - n - 2y)+]-1} (7) 167 
where the standard apparent redox potential is    E’° = E° + (2x-2y + i - j)·RT·(nF)-1ln [H+] in 168 
water . A similar apparent redox potential at the sorbent/water interface E’° may be defined for 169 
Reaction {8}. 170 
The Kd, considering surface complexation and including complexation with ligands as 171 

formulated in the above-mentioned equations and reactions, can be written in terms of the redox 172 

potential (Eq. 7). 173 

174 
 (8) 175 

[part] 
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where 
( )

T
nEEA

o

R
F' ⋅−

=  and [>SuOH] is the free site concentration that can be expressed in 176 

terms of the total surface site concentration [>SuOH]T and the (de)protonation acid dissociation 177 

constants. The free ligand concentration [L] also has to be written in terms of the total ligand 178 

concentration.  179 

The formulation (i.e. Eq. 8) implies linear adsorption isotherms and no saturation effects. No 180 

electrostatic effects and no activity corrections were considered at this stage.  181 

 182 

 183 

3.  Simulation results for uranium speciation and sorption onto particles. 184 

 185 

3.1 Revisiting uranium speciation in solution 186 

 187 

Prior sorption modelling, it is necessary to perform speciation modelling before to draw the 188 

uranium pH – E diagrams without and with carbonate. 189 

The diagrams are drawn considering all the possible redox couples of U, namely, U(III)/U(IV), 190 

U(III)/U(V) and U(III)/U(VI), see Silva et al., (1995). In Table 1 the standard redox potentials 191 

reported for these redox couples (Katz et al. (1986), actualized OECD (2001)) are presented. 192 

The diagram calculation requires the stability constants of hydroxo species which are given in 193 

Table 2. Analytical domains are calculated using the data from Table 1 and 2, and an Excel 194 

spreadsheet software. Figure 1a presents the uranium pH – E diagrams calculated for a uranium 195 

concentration of 1 nM without carbonate (< 10-8 M CO3 total) showing the stability domain of 196 

U(IV) and U(VI) in water stability region. The hydroxo- complexes are namely the mono-, di- 197 

and tri- hydroxo complexes for U(VI) and the mono-, di-, tri- and tetra-hydroxo complexes for 198 

U(IV). It is well established that the regions in which the pentavalent oxidation state of U has 199 
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been proposed as a significant species are at pH<5. However, no hydrolysis of UO2
+ would be 200 

expected under these conditions.  201 

Table 1:  Standard redox potentials (E°) for uranium, as recommended by OECD (2001) [20], 202 

Vs SHE. In bold data used in this study. 203 

Redox Couple E° / V 

    UO2
2+/UO2

+ 0.0878   ± 0.0013 
UO2

2+/U4+ 0.2673   ± 0.0012 
UO2

+/U4+ 0.0447 

UO2
+/ U3+ 0.053 

U4+/U3+ -0.553   ± 0.004 
UO2

2+/ U3+ 0.006    

 204 

 205 

Table 2: Equilibrium constants for the hydrolysis of uranium species [M+zOx](OH)i
(z-2x-i)+ for 206 

U(III), U(IV), U (V) and U(VI). Note: the values are given for infinite dilution. 207 

 logKVI, i, 0 logKV, i, 0 logKIV, I, 0 logKIII, i, 0 

logKX  i 0 [UO2
 (OH)i](2- i)+ [UO2

 (OH)i](1- i)+ [U (OH)i] 
(4-i)+ [U (OH)i] 

(3-i)+ 

LogK X, 1, 0 -5.25   ± 0.500 b -11.30 b -0.54  ± 0.060 a -6.80  ± 0.300 b 
LogK X, 2, 0 -6.9 b -12.30 b -0.70 a -7.30  b 
LogK X, 3, 0 -8.10 b  -3.60 a  -11.60 b 

LogK X, 4, 0 -12.15 b  -5.3 ± 0.500 a -14.35 b 

LogK X, 5, 0 -  -13.10 - 
a  Neck & Kim (2001),   b  OECD (2001) 208 
 209 

The data available for the equilibrium constants for the carbonate complexes are presented in 210 

Table 3. Most of the data is based on a semi-empirical model calculation (Neck & Kim (2000)). 211 

The stability constants of carbonato and hydroxo carbonato species are also given in Table 3. 212 

The uranyl (U(VI)) species are mainly carbonate species while U(IV) species remain hydroxo 213 
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species.  Figure 1b presents the uranium pH – E diagrams for 2x10-2 M of CO3 total. Analytical 214 

domains are calculated using the data from Table 1, 2 and 3, and an Excel spreadsheet software. 215 

The pH-E diagram calculated for a uranium concentration of 1 nM.  In Figure 1b the 216 

predominance pH-E diagram reveals that for a carbonate concentration of 2x10-2 M, in the 217 

water stability region, the stable oxidation states are U(VI), U(V) and U(IV). The carbonato 218 

complexes are namely the mono-, di- and tri- hydroxo complexes for U(VI) and the hydroxo 219 

complexes are the mono-, di-, tri- and tetra-hydroxo complexes for U(IV). The U(V) does not 220 

form complexes in the pH domain (2-6) for which it is observed 221 

 222 
Table 3. Stability constants for the formation and hydrolysis species of uranium carbonates. 223 
Data selected for (UO2)+2(OH)i(CO3)j

(2-i-2j)+, [UO2]+(OH)i(CO3)j
(1-i-2j)+, U4+(OH)i(CO3)j

(4-i-2j)+,  224 
U3+(OH)i(CO3)j

(3-i-2j)+. 225 
 226 

logKij U(VI) U(V) U(IV) U(III) 

logK01 9.94 c 5.120 c 13.7 b 6.5 a 
logK11 - - - -5.8  a 
logK21 - - - -7.9 a 
logK02 6.67 c 1.8 c 10.6 b 5.3  a 
logK12 - - - -13.3 a 
logK03 5.23 c -1.895 c 7.6 b 1.6 a 
logK04 - - 3.3 b -3.4 a 
logK50 - - -1.2 b - 

 227 
a Data for Am, Hummel et al., (2002);  b Data from Neck et al., (2000); c  OECD (2003).  228 
 229 

 230 

 231 

 232 

233 
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Fig. 1:  Indicative uranium redox – pH plots for  237 

a   carbonate free   and  238 
b  2x10-2 M carbonate water  239 
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 240 

3.2 Simulation results for uranium sorption onto model particles 241 

 242 

The uranium sorption onto Al2O3, FeOOH and SiO2  has been simulated using Eq. 7. 243 

The equilibrium constants logKi0 for the hydrolysed species ([M+zOx](OH)i
(z-2x-i)+) for the U(III), 244 

(Degueldre et al. (1994), U(IV) (Hummel (2002)),U(V) (Neck et al., (2001)) and U(VI) 245 

(Thoenen (2000)) presented in Table 2 are systematically used for the calculations.     246 

In Table 4 the correlation used for the calculation of the distribution coefficient of U using Eq. 247 

7 for the three selected particulate materials: Al2O3, FeOOH and SiO2, covered with >Al-OH,  248 

>Fe-OH and  >SiOH sites, are given to apply the methodology suggested earlier Degueldre 249 

(1995) and Degueldre (1997). The applied correlations between the surface complexation 250 

constants Ks,i-1,0 and the hydrolysis constants Ki,0 are the link between hydrolysis and surface 251 

complexation. The logKs,i-1,0 - logKi,0 correlations given in Table 4 clearly show that the 252 

sorption on Al2O3, is stronger than on FeOOH and itself stronger than on SiO2. 253 

 254 
For the sorption, a site density of 3 nm-2  e.g. James & Parks (1982); Villalobos et al (2004), a 255 

particle size of 200 nm (specific surface ~ 10 m2 g-1), a particle concentration of 1.7x10-3 g l-1 256 

and density of 2 g cm-3 (arbitrary value) were used for the calculations. Distribution coefficients 257 

can be calculated (Eq. 8) using other parametric values. The computations were also performed 258 

using Excel spreadsheet software. 259 

 260 

 261 

 262 

Table 4: Literature data used for the correlations between the surface complexation constants 263 
(Ks,i-1,0) and the hydroxo complex stability constants (Ki,0) and surface site (>AlOH, >FeOH and 264 
>SiOH) (de)protonation of the selected particles (Al2O3, FeOOH and SiO2 ). Data from Hachyia 265 
et al (1984) for Al2O3, from Balistieri et al (1981) for FeOOH and from Righetto et al (1991) 266 
for SiO2. . 267 
 268 
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 Al2O3 FeOOH SiO2 

logKs,i-1,0 6.02 + 0.98 log Ki,0 3.75 + 0.75 log Ki,0 2.00 + 0.65 log Ki,0 
pKa1 5 4 - 
pKa2 10 10 7 

 269 

The calculated distribution coefficients for uranium onto Al2O3 particles (without or with 270 

carbonates) at different pH values are presented respectively in Figs. 2, where the solid lines 271 

indicate values inside the water stability region, while the dotted ones are outside of this area. 272 

Data reported at pH 2 and 12 are indicative; they are limited by eventual leaching that amplify 273 

in more acidic or basic media respectively as discussed in Section 2.2. Basically the domain of 274 

model validity should be between pH values from pKa1 to pKa2 when the >SuOH group 275 

predominate (see Table 4).  276 

At pH 2 in a carbonate free system the redox effect of the U(III)/U(IV) couple is only visible 277 

(see Fig. 2a) around -0.75 V; whilst sorption increasingly above due to U(IV). A decrease is 278 

observed around +0.2 V due to U(VI) formation and its weaker sorption ability. At pH 4 the U 279 

sorption has increased and the U(IV) sorption takes place in reducing conditions (below E = 0 280 

V). Hexavalent uranium U(VI) sorbs (weakly) in oxidising conditions. At pH 6 the sorption of 281 

both U(IV) and U(VI) are strong with log Kd around 5. At pH 8 and 10 the situation is similar. 282 

While at pH 12 sorption has decreased due to uranium speciation (U(OH)5
- and UO2(OH)3

-  283 

which species does not sorb for stoechiometric reasons.  284 

 285 

In carbonated system (see Fig 2b), the log Kd vs E plots are marked by the absence of U(IV) 286 

carbonato complexes and the strong formation of U(VI) carbonato-complexes. In reducing 287 

conditions U(IV) sorption reaches log Kd values of 5 for pH 6 to 10 and decreases for pH 12 in 288 

the same fashion as for dicarbonated systems. 289 

290 



 15 

Fig 2 291 
 292 
 293     

-3

-1

1

3

5

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

E (V)

lo
g 

K
d 

( m
l/g

)

pH 12
pH 10
pH 8
pH 6
pH 4
pH 2

a 294 
 295 

-3

-1

1

3

5

-1.00 -0.50 0.00 0.50 1.00 1.50
E (V)

lo
g 

K
d 

( m
l/g

)

pH 12

pH 10

pH 8

pH 6

pH 4

pH 2

b 296 
 297 
Fig 2: Uranium sorption on Al2O3: log Kd as a function of E and pH. 298 

a   carbonate free   and  299 
b  2x10-2 M carbonate water (indicative data for pH<6) 300 
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The sorption of U onto FeOOH particles can be seen in Fig. 3, the nature of sorbed species is 303 

suggested by the redox diagram presented in Fig 1. 304 

At pH 2 in carbonate free system the redox effect of the U(III)/U(IV) couple is only visible (see 305 

Fig 3a) around -0.75 V, sorption increases with the E due to U(IV). A decrease is observed 306 

around +0.2 V due to the increasing presence of U(VI). At pH 4 the U sorption has increased 307 

with the U(IV) sorption taking place in reducing conditions while U(VI) undergoes (weaker) 308 

sorption in oxidising conditions. At pH 6 the sorption of both U(IV) and U(VI) are strong with 309 

log Kd around 4.0 to 4.5. At pH 8 and 10 the situation is similar, differentiated only by a slight 310 

decrease under reducing conditions. At pH 12 sorption has decreased due to the U speciation 311 

(U(OH)5
- and UO2(OH)4

2- which do not sorb. 312 

 313 

In carbonate system (Fig 3b), the log Kd vs E plots are marked by the absence of carbonato 314 

complexes of U(IV) and the strong formation of U(VI) carbonato complexes. The log Kd vs E 315 

plots are marked by the absence of U(IV) carbonato complexes and the strong formation of 316 

U(VI) carbonato complexes. In reducing conditions U(IV) sorption reach log Kd values of 5 for 317 

pH 6 to 10 and decreases for pH 12 is observed for the reason reported above (limit of 318 

validation of our methodology). 319 

320 
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Fig 3: Uranium sorption on FeOOH: log Kd as a function of E and pH. 327 

a   carbonate free   and  328 
b  2x10-2 M carbonate water (indicative data for pH<6) 329 
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 332 

The uranium sorption behaviour onto SiO2 particles is depicted in Fig. 4. The sorbing species 333 

distribution can be guided by the redox diagram presented in Fig 1. 334 

At pH 2 in carbonate free system the redox effect of the U(III)/U(IV) couple is also found (Fig 335 

4a) around -0.75 V, the increase of sorption with E is due to the presence of U(IV). A decrease 336 

is observed around +0.2 V due to U(VI). At pH 4 the U sorption has increased and the U(IV) 337 

sorption takes place in reducing conditions while U(VI) sorbs (weaker) in oxidising conditions. 338 

At pH 6 the sorption of both U(IV) and U(VI) are strong with log Kd around 2.0 to 3.0. At pH 8 339 

and 10 the situation is similar, a slight decrease is observed in reducing conditions. At pH 12 340 

sorption has decreased due to the U speciation (U(OH)5
- and UO2(OH)4

2- which do not sorb. 341 

In carbonate system (Fig 4b), the log Kd vs E plots are marked by the absence of carbonato 342 

complexes of U(IV) and the strong formation of U(VI) carbonato complexes. In reducing 343 

conditions U(IV) sorption reach log Kd values of 5 for pH 6 to 10 and decreases for pH 12 for 344 

the reason reported above. 345 

 346 

347 
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Fig 4: Uranium sorption on SiO2: log Kd as a function of E and pH. 355 

a   carbonate free   and  356 
b  2x10-2 M carbonate water (indicative data for pH<6) 357 
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 361 

 362 

4. Discussion 363 

 364 

The main species that drive the sorption on materials are those found in water and those at the 365 

surface of the sorbing phase. As displayed in the pH-E diagram of U, these are mainly the 366 

U(IV) and U(VI) species that are found in the stability domain of water. The U(III) species may 367 

be observed outside the stability domain of water while  U(V) may be found marginally, as its 368 

concentration in its possible stability domain is low. In practice, the most useful redox 369 

parameter is the standard apparent redox potential E’°, which is defined as the potential at 370 

which in water 50% of the soluble forms are U(VI) and 50%  U(IV), or, for the solid 50% of 371 

the sorption sites are occupied by U(VI) and 50% by U(IV). These issues had to be examined 372 

prior any discussion of the sorption results keeping in mind that the quality of the modelled 373 

speciation results is closely linked to the thermodynamic data as discussed by Mühr-Ebert el al. 374 

(2019). 375 

 376 

4.1 Speciation in TIC free solution and their effect on sorption 377 

 378 

The uranium speciation in aqueous solution plays a relevant role. Under normal saline (e.g. 379 

NaCl waters) conditions, it complexes from UO2
2+ to [UO2(OH)i]2-I according to it pH. 380 

Therefore the pH is an important parameter for the species in solution (see Fig.1) and after 381 

sorption at the surface of the particles. The log Kd increases from acidic to neutral solution for 382 

the 3 model materials and the 200 nm size show that the maximum sorption is observed in the 383 

pH domain 6 to 8 (see Table 5). The maximum log Kd increases from SiO2 2.7 (pH 6, E>0 V) 384 

to 5.0 (pH 6 - 8, E [-0.5 - +0.7] V) for Al2O3 as could be anticipated from the data displayed in  385 

Table 4. 386 
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In contrast, the standard apparent redox potential E’° in solution is less oxidising at pH 2 than 387 

on the substrates because U(IV) sorbes (log Kd>0) while U(VI) does not (log Kd < 0). At pH 6, 388 

all E’° values are comparable, and for higher pH the E’° values on substrates become slightly 389 

more negative than that of the solution due to increasing activity of U(VI) compared to U(IV). 390 

 391 

 392 

 393 

 394 
Table 5: Standard apparent redox potential E’° (V vs SHE) of the U(VI)/U(IV) couple in 395 
carbonate free solution and on the studied substrates as well as the log Kd (Kd’s in mL g-1) 396 
values for U(VI) and U(IV) on these substrates for given pH. 397 

.pH 2 4 6 8 10 12 

E’°/Solution +0.115 +0.026 -0.039 -0.128 -0.295 -0.474 

logKd U(VI) 
E’°/SiO2 

logKd U(IV) 

-0.54 
+0.160 
+1.20 

+1.44 
+0.041 
+2,06 

+2.73 
-0.028 
+2.63 

+2.47 
-0.150 
+1.69 

+0.78 
-0.318 
-0.12 

-0.23 
-0.505 
-0.66 

logKd U(VI) 
E’°/FeOOH 
logKd U(IV) 

-1.32 
+0.163 
+0.83 

+2.36 
+0.051 
+3.14 

+3.94 
-0.051 
+3.90 

+4.49 
-0.143 
+3.94 

+4.37 
-0.296 
+3.68 

+3.33 
-0.490 
+2.82 

logKd U(VI) 
E’°/Al2O3 

logKd U(IV) 

-1.25 
+0.177 
+1.91 

+2.68 
+0.042 
+3.91 

+4.90 
-0.052 
+4.95 

+5.04 
-0.156 
+4.99 

+4.76 
-0.313 
+4.70 

+3.32 
-0.490 
+3.04 

 398 

 399 

4.2 Speciation in TIC solution and their effect on sorption 400 

As for the TIC-free aqueous solution, the uranium speciation in solution plays a central role. It 401 

goes from UO2
2+ to UO2(OH)i]2-i under saline (NaCl) water conditions or [UO2(CO3)3]4- in 402 

solution with NaHCO3, potentially [Ca(UO2)(CO3)3]2- and [Ca2(UO2)(CO3)3] in a Na(Ca)HCO3 403 

water as reported by Moulin et al. (1990). This was confirmed for artificial seawater by Beccia 404 

et al (2017).  405 



 22 

The largest log Kd values for the 3 model materials and the 200 nm size show that the 406 

maximum sorption is observed in the pH domain 4 to 6 (see Table 6). The maximum log Kd 407 

increases from SiO2 2.6 (pH 6, E<0V)  to 5.0 (pH 6, E<0.1V) for Al2O3. Note that for pH < 6 408 

TIC becomes very small and data are sketched, given in grey, for information. 409 

The standard apparent redox potential E’° in solution is less oxidising at pH 2 than on the 410 

substrates because U(IV) sorbes (log Kd>0) while U(VI) does not (log Kd < 0). Below pH 6, 411 

TIC is very low. At pH 6,  E’° values on substrates are slightly more positive than that of the 412 

solution due to larger activity of U(VI) compared to U(IV), and for higher pH the E’° values on 413 

substrates remain slightly more positive up to pH 12. 414 

Table 6: Standard apparent redox potential E’° (V vs ) of the U(VI)/U(IV) couple in 2x10-2 M 415 
carbonated solution and on the studied substrates as well as the log Kd  (Kd’s in mL g-1) 416 
values for U(VI) and U(IV) on these substrates for given pH. Data for pH < 6 are sketched. 417 

.pH 22  44  6 8 10 12 

E’°/Solution ++00..111177  ++00..001111  -0.128 -0.309 -0.468 -0.521 

logKd U(VI) 
E’°/SiO2 

logKd U(IV) 

--00..5544  
++00..116633  
++11..2200  

++11..3311  
++00..004422  
++22..0066  

-0.19 
-0.081 
+2.62 

-3.16 
-0.233 
+1.68 

-4.72 
-0.419 
-0.12 

-1.04 
-0.500 
-0.66 

logKd U(VI) 
E’°/FeOOH 
logKd U(IV) 

--11..3322  
++00..116666  
++00..8833  

++22..2233  
++00..004411  
++33..1144  

+1.02 
-0.097 
+3.89 

-1.14 
-0.235 
+3.94 

-1.12 
-0.401 
+3.68 

+2.52 
-0.525 
+2.82 

logKd U(VI) 
E’°/Al2O3 

logKd U(IV) 

--22..1133  
00..118855  
++11..9911  

--00..3311  
00..008800  
++33..9911  

+1.98 
-0.080 
+4.94 

-0.59 
-0.225 
+4.99 

-0.74 
-0.375 
+4.70 

+2.28 
-0.500 
+3.01 

 418 

 419 

4.3 Comparison of simulated and experimental sorption data 420 

 421 

In environmental science, sorption has been treated originally as empirical, with data derived 422 

from batch tests and data listed for specific solid and liquid materials e.g. Puls et al. (1989). 423 
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Despite already existing body of works such as (Degueldre et al. 1994) applying actinide 424 

surface complexation for calculation of distribution coefficients, uranium sorption studies have 425 

been reviewed to assess the surface area normalisation for interpreting distribution coefficients, 426 

e.g. Payne et al. (2011) and completed by suggesting guidelines for thermodynamic sorption 427 

modelling in the context of radioactive waste disposal (Payne et al. (2013)).  There have been 428 

some attempts to apply surface complexation for describing the sorption of Am(III) on model 429 

Al2O3 and SiO2 as well as on clay particles, Ref Alonso & Degueldre (2003).  Usually, Am(III) 430 

may be considered as an analogue of U(VI) and Th(IV) of U(IV).  431 

 432 

The comparison of the uranium sorption properties on the studied model particles (e.g. 200 nm) 433 

of sorbent Fig’s 2, 3 and 4 reveals that the uranium sorption onto Al2O3 particles is stronger 434 

(with a maximum of log Kd = ∼5) than onto FeOOH (with a maximum of log Kd = ∼4) or onto 435 

SiO2 particles (with a maximum of log Kd = ∼3), because different semi-empirical correlations 436 

for relating the surface complex constants with the hydrolysed ones (Table 4) were applied 437 

driven by decreasing intercept terms (for log Ks = 0). This is presumed to be due to the 438 

decrease of electronegativity of the matrix surface structural elements within >Su. Each of the 439 

semi-empirical correlations (Table 4), used to evaluate a specific distribution coefficient, 440 

relates the surface constants (unknown) with the hydrolysed ones (known).  The comparison of 441 

experimental sorption data (from the cited literature) with the modelled data using Eq. 8 for the 442 

specific case is reported in Table 7. 443 

 444 

The uranium sorption was found to be strong on alumina particles. The sorption behavior of 445 

uranium was justified by Froideval et al. (2006) on the basis of TRLFS and XAFS spectroscopy 446 

data identifying strong surface complexes. This sorption can be amplified by the synergism 447 

effect of phosphate as reported by Guo et al. (2009) and Galindo et al. (2010). Guo found 448 

U(VI) Kd of 80 mL g-1 (log Kd ~2) for a particle specific surface of 130 m2 g-1  (corresponding 449 

https://www.sciencedirect.com/science/article/pii/S0265931X10000883
https://www.sciencedirect.com/science/article/pii/S136481521300011X
https://www.sciencedirect.com/science/article/pii/S136481521300011X
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to ~50 nm particles) at pH 4.4. This pH is however below the identified log Kd plateau of 450 

U(VI) on alumina but the log Kd value is comparable with its modelled value (Eq. 7). The 451 

americium sorption was found to be strong on alumina with log Kd = 3 for particle sizes ~50 452 

µm and  pH 7- 8  by Moulin et al. (1992). The Am(III) log Kd is around 3 between pH 6 and 8 453 

for specific surface of 0.07 m2 g-1. 454 

The binary and ternary surface complexes (hydroxo- carbonato) of U(VI) on the gibbsite/water 455 

interface were subsequently studied by Gückel et al. (2012) using vibrational and EXAFS 456 

spectroscopy. The U concentration is rather high and uranium dimers complexes are observed. 457 

This work was completed by Müller et al. (2013) investigating by in situ spectroscopy the 458 

surface reactions of U(VI) on γ-Al2O3 up to the transition from surface complexation to surface 459 

precipitation as studied for Th(IV) by Degueldre & Kline (2007) for Th(IV). These reactions 460 

(dimer- polymer- formation and surface precipitation) enhance the Kd values.  461 

The reversibility of uranium and thorium binding on a modified bauxite refinery residue was 462 

investigated Clark et al. (2015). These authors found Kd values of 3000 mL g-1 in the pH above 463 

4 and below 7. Finally, Mei et al. (2015) reported about the effect of silicate on U(VI) sorption 464 

to γ-Al2O3- However this batch study focusing mainly on U EXAFS,  the U(VI) concentration is 465 

quite high (6x10-5 M) for 1 g l-1 γ-Al2O3 colloids (d ~20 nm) which saturates the sites and which 466 

reduces apparently sorption (excess soluble) with an apparent log Kd = 3.3 . 467 

The approach followed for Al2O3 model particles may be applied for the sorption of U onto 468 

montmorillonite and illite particles that have strongly reactive aluminol groups (>AlOH) on the 469 

edges (Degueldre et al, 1994). On montmorillonite, Bradbury & Baeyens (2005) found log Kd = 470 

5.3 at pH 7 for particle sizes <500 nm (e.g. 200 nm) which also is comparable with our 471 

modelling result see Table 7. To complete the picture, Marques Fernandes, et al (2012) studied 472 

the sorption of U(VI) on montmorillonite in the absence and presence of carbonate and 473 

observed that the sorbed U(VI) fraction decreases with the carbonate concentration.  474 

https://www.sciencedirect.com/science/article/pii/S000925411200321X
https://www.sciencedirect.com/science/article/pii/S000925411200321X
https://www.sciencedirect.com/science/article/pii/S000925411200321X
https://www.sciencedirect.com/science/article/pii/S000925411300380X
https://www.sciencedirect.com/science/article/pii/S000925411300380X
https://www.sciencedirect.com/science/article/pii/S000925411300380X
https://www.sciencedirect.com/science/article/pii/S0883292714003102
https://www.sciencedirect.com/science/article/pii/S0883292714003102
https://www.sciencedirect.com/science/article/pii/S1385894715001588
https://www.sciencedirect.com/science/article/pii/S1385894715001588
https://www.sciencedirect.com/science/article/pii/S0016703712002128
https://www.sciencedirect.com/science/article/pii/S0016703712002128
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 475 

Uranium has also been investigated on iron oxo-hydroxide substrates. Murphy et al. (1999) 476 

reported about the sorption of thorium (IV) and uranium (VI) to hematite in the presence of 477 

natural organic matter. On 9 g l-1 66 nm Fe2O3 they found 50% sorption at pH 4 or a log Kd of  478 

about 2.0 while modelling (with Eq. 7) predicts log Kd = 1.5; the equilibrium is however not 479 

reached in these tests. Similarly, Missana et al. (2003) investigated experimentally and by 480 

modeling the U(VI) sorption on goethite. They found log Kd of 5.2 for goethite needles of 481 

50x50x5000 nm (d ~1000 nm) at pH >5. Similar work was also performed by the same group 482 

(Missana et al. (2003)) with U(VI) sorption on magnetite particles under anoxic environment. 483 

For batch data (pH 4, 100 nm colloids, M/V= 2 g l-1, [U(VI)]= 4x10-7 M) Values of log Kd (3.3) 484 

are calculated from the batch data (pH 4, 100 nm colloids) and compared to the modelled one 485 

(3.2) for  200 nm particles, for sorbed U(VI) the log Kd would be 2.5. This indicates that 486 

reduction can take place during surface complexation.  Wang et al. (2015)  investigated the 487 

sorption of U(IV) on magnetite. Values of log Kd (3.3) are calculated from the batch data (pH 488 

4, 100 nm colloids, M/V= 2 g l-1, [U(IV)]= 10-8 M) and compared to the modelled one (3.2) for 489 

200 nm particles.  490 

Uranium partitioning tests were also performed on ferrihydrite by Hiemstra et al. (2009), by 491 

Foerstendorf et al. (2012) and more recently by Dublet et al. (2017). Dalvi et al. (2014) found 492 

that the Th(IV) / U(VI) Kd ratio was of the order of 17 (±5) between pH 7.78 and 8.42 for 493 

sediment samples. This is very difficult to compare the results gained with the proposed model 494 

at pH 8 (see Fig. 2,3,4) because the calculation results are very sensitive with carbonate 495 

concentration and this data is not fixed in Dalvi et al (2014).  496 

 497 

Finally, sorption work of uranium was also carried on SiO2. Dent et al. (1992) reported on a  498 

EXAFS study of uranyl ion in solution and sorbed onto silica and montmorillonite clay 499 

https://www.sciencedirect.com/science/article/pii/S0927775799001156
https://www.sciencedirect.com/science/article/pii/S0927775799001156
https://www.sciencedirect.com/science/article/pii/S0021979702002461
https://www.sciencedirect.com/science/article/pii/S0021979702002461
https://www.sciencedirect.com/science/article/pii/002197979290267P
https://www.sciencedirect.com/science/article/pii/002197979290267P
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colloids. On 80 nm silica colloids, at pH 4 the experimental log Kd was found to be 2.5 and the 500 

modelled data using Eq.8 gives a log Kd of 2.8 for the data describe earlier and for pH 4. Table 501 

7 presents other results from Dent et al (1992)[55] and the modelled log Kd data for 502 

comparison.  503 

Since Th(IV) can be considered as an analogue of U(IV) one can also report the work of 504 

Östhols (1995) on thorium sorption on amorphous silica to support the data.   Quartz that is less 505 

sorbing that silica was investigated by Froideval et al. (2003). The U(VI) sorption on  silica was 506 

also more recently tested for its effect by complexing anions by Kar et al. (2012). On silica like 507 

on other substrate materials, phosphorous derived groups may act as specific ligand such as 508 

silica-tethered phosphonic acid sorbents for uranium species from aqueous solution as 509 

investigated by Dudarko et al. (2015). 510 

Finally, Stamberg, et al (2003), also studied uranyl ion sorption on silica of mesoporous nature. 511 

They also applied surface complexation modeling to investigate the processes occurring in the 512 

batchs focusing on the effect of carbonate. Without carbonate at pH 7.5, 98.6% uranium sorbed, 513 

while with 0.015 M carbonate the sorption droped to 88.2% on the porous silica. 514 

515 

https://www.sciencedirect.com/science/article/pii/002197979290267P
https://www.sciencedirect.com/science/article/pii/0016703795000407
https://www.sciencedirect.com/science/article/pii/S0927775711007849
https://www.sciencedirect.com/science/article/pii/S0927775711007849
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 516 
Table 7: Comparison of the log Kde (±0.5) experimental and log Kdm (Kd’s in mL g-1) 517 
modelled for the studied sorbing materials (size, particle; density 2 g cm-3, site density 3 518 
nm-2, * clay) and solution of given pH, TIC. 519 

Substrate 
M (g l-1) 

An(X) pH  TIC  
(M) 

Size 
(nm) 

log Kde     Log 
Kdm   

Conditions 

Size (nm) 
References 

Al2O3 U(VI) 4.4 - 50 2.0  2.8 .pH 4 Guo et al (2009) 

Al2O3 Am(III) 6-8 - 50,000 3.0  3.2 20,000 pH 6 Moulin et al (1992) 

Al2O3 U(VI) 6 - (20,000) 3.3  3.0 20,000 pH 6 Clark et al (2015) 

>AlOH* U(VI) 7 - (200) 3.3  3.0 200 pH7 Bradbury et al (2005) 

>AlOH* U(VI) 6 - (200) 3.3  3.0 200 pH 8 Marques et al (2012) 

>AlOH* U(VI) 8 5x10-3 (200) 1.5  0.0 200 pH  8 Marques et al (2012) 

          

FeOOH U(VI) >5 - 1000 5.2  4.5 200 Missana et al (2005)  

Fe3O4 U(VI) 4 - 100nm 3.3  3.2 200 Missana et al (2005)  

Fe3O4 U(IV) 4 - 100nm 3.3  3.2 200 Wang et al (2011) 

          

SiO2 Am(III) 6-8 - 50,000 2.5  2.8 200 Moulin et al (1992)  

5000 SiO2 U(VI) 4 - 80 2.5  2.8 200 Dent et al (1992)  

5000 SiO2 U(VI) 6 - 80 4  2.9 200 Dent et al (1992)  

500 SiO2 U(VI) 4 - 30 3.1  2.4 20 Dent et al (1992)  

5000 SiO2 U(VI) 4 - 30 2.8  2.4 20 Dent et al (1992)  

 520 
In the case of composite minerals, the above studied methodology can be applied. This is 521 

confirmed in Manoj et al. (2020) work, log Kd increases up to pH 6 after a plateau it gradually 522 

decreases for higher pH (see data in Tables 5 and 6). Their log Kd values are lower than us 523 

because their particle sizes are larger than our model particles. One important body of work to 524 

note concerning redox reactions of uranium at the surface of inorganic sorbents is the work of 525 

Descorte et al. (2010). It concerns direct reduction in the context of pyrite interaction with 526 

U(VI). In this case data show a maximal cation uptake above pH 5.5. Concentration isotherms 527 
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for U(VI) sorption on pyrite indicate specific behaviours. In the U(VI) case, sorption seems to 528 

occur on two different sites with a total saturation concentration of 4.5 × 10−8 mol g−1. At lower 529 

concentration, uranyl reduction occurs in U(IV), limiting the concentration of dissolved 530 

uranium to the solubility of UO2(s) and the formation of a hyperstoichiometric UO2+x(s). The 531 

results are consistent with a chemistry of the pyrite surface governed by S groups which can 532 

either sorb cations and protons, or sorb and reduce redox-sensitive elements such as U(VI). 533 

To complete this study it must be mentioned that the model presented is unfortunately not 534 

designed to deal with uranium sorption on calcite. This is due to co-precipitation and formation 535 

of specific Ca-UO2-CO3 phases that are identified by advanced spectroscopic techniques such 536 

as EXAFS e.g. Reeder et al. (2004), Elzinga et al (2004). However, Butchins et al. (2006) 537 

found that uranium has a high affinity for calcite over a wide range of initial uranium 538 

concentrations (10-12 to 10-3 M) with 20 < Kd < 90 (ml g-1).  The authors however do not specify 539 

the pH and the particle size of the material. In addition, Sturchio et al (1998) reported on 540 

tetravalent uranium in calcite using XAFS and micro-XAS. 541 

Field studies were conducted by Curtis et al (2004) in an alluvial aquifer at a former U mill 542 

tailings site, by suspending approximately 10 g samples for periods of 3 to 15 months. 543 

Adsorbed U(VI) on these samples was determined by extraction. In situ Kd values calculated 544 

from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL g-1 and 545 

the Kd values decreased with increasing groundwater alkalinity. Curtis et al (2004) found a 546 

good agreement between the predicted Kd’s from surface complexation modeling and from 547 

measured in situ Kd values.  548 

Experimental and modelled log Kd data are comparable. However, the quality of data is 549 

affected by their precision and accuracy. The main factors that are relevant for data calculation 550 

are the site density which may vary from 1 to 10 nm-2, the state of the surface since the bulk 551 

composition (density) may be different from the surface (contaminations by other active groups 552 

than the expected one) and the uncertainty in the reported particle size. Actually, particles are 553 
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seldom mono-dispersed but poly-dispersed and their size distributions are not always accurately 554 

surface weighted.  Particle specific surfaces are currently determined by gas sorption however 555 

these derived data are not provided by ionic sorption.  556 

The model applied considers also the correlation between the stepwise hydrolysis constants and 557 

the stepwise surface complexation constants. It is consequently impossible to calculate the 558 

surface complexation constant for the last hydrolysed species. The lack of surface constants in 559 

the calculations limits the applicability of the model in the high pH range where the last 560 

hydrolysed species is predominant (justifying our pH upper limit to 12), but in spite of this 561 

limitation the model gives satisfactory results in a wide range of conditions. 562 

Uranium contamination of soil has been a major concern with respect to its toxicity and 563 

persistence in the environment, Selvakumar et al (2018). Owing to these problems, remediation 564 

of uranium-contaminated soils has been investigated by various techniques and the authors 565 

hope that this study can help to remediate contaminated sites. 566 

 567 

5. Conclusions 568 

 569 

A model that relates the distribution coefficient with the redox potential was developed for 570 

evaluating the effect of the redox potential on the sorption of uranium onto model substrates. 571 

The model includes surface complexation and complexation with ligands. It also considers the 572 

effect of the redox potential for all the species at the surface and in solution. The model was 573 

applied to uranium, as an important safety relevant redox sensitive element, and the calculated 574 

distribution coefficient values confirmed that the redox potential does affect the sorption of U 575 

in the site stability domain and in the water stability region and outside. The calculated values 576 

are in relative agreement with scare experimental values reported in the literature. This model is 577 

applicable to other redox sensitive elements. 578 

https://www.sciencedirect.com/topics/engineering/remediation
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The sorption analysis so far provides good predictive values for a limited subset of the 579 

experimental data, allowing approximate predictive modelling of the partition coefficients for a 580 

variety of groundwaters. Such data may help to understand the formation of ore deposits (U(VI) 581 

=> U(IV)) or contribute to search a versatile U extraction protocol from seawater. Effect of 582 

organics shall be discussed in a future study. This last target would require to expanding the 583 

variety of absorption substrate being considered.  584 

Finally, work is to be undertaken to represent oxidation/reduction systems within the 585 

modelling, to represent reductive deposition on the surfaces to complete U sorption by UO2 586 

precipitation onto the substrate.  587 

 588 

Appendices 589 

Six “logKd Vs E” EXCEL spreadsheets are included: 3 for carbonate free solutions and 3 for 590 

carbonate solution. They concern Kd calculations for the sorption of U on Al2O3, FeOOH and 591 

SiO2. Each spreadsheet includes sub-sheets for pH: 0, 2, 4, 6, 8, 10 and 12, as well as one 592 

resume. Each pH sub-sheet presents the detailed data calculations. The resumes sub-sheet 593 

present the   “logKd Vs E” graphs for pH 2 to 12 for the substrates and for the carbonated 594 

solution conditions.   595 

 596 
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