Measurement of differential cross sections for νμ -Ar charged-current interactions with protons and no pions in the final state with the MicroBooNE detector

Blake, A. and Devitt, D. and Lister, A. and Nowak, J. and Thorpe, C. (2020) Measurement of differential cross sections for νμ -Ar charged-current interactions with protons and no pions in the final state with the MicroBooNE detector. Physical Review D, 102 (11): 112013. ISSN 1550-7998

[thumbnail of CC1uNp_Phys_Rev_draft_final_resubmission_20Nov2020]
Text (CC1uNp_Phys_Rev_draft_final_resubmission_20Nov2020)
CC1uNp_Phys_Rev_draft_final_resubmission_20Nov2020.pdf - Accepted Version
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

We present an analysis of MicroBooNE data with a signature of one muon, no pions, and at least one proton above a momentum threshold of 300 MeV/c (CC0$\pi$Np). This is the first differential cross section measurement of this topology in neutrino-argon interactions. We achieve a significantly lower proton momentum threshold than previous carbon and scintillator-based experiments. Using data collected from a total of approximately $1.6 \times 10^{20}$ protons-on-target, we measure the muon neutrino cross section for the CC0$\pi$Np interaction channel in argon at MicroBooNE in the Booster Neutrino Beam which has a mean energy of around 800 MeV. We present the results from a data sample with estimated efficiency of 29\% and purity of 76\% as differential cross sections in five reconstructed variables: the muon momentum and polar angle, the leading proton momentum and polar angle, and the muon-proton opening angle. We include smearing matrices that can be used to "forward-fold" theoretical predictions for comparison with these data. We compare the measured differential cross sections to a number of recent theory predictions demonstrating largely good agreement with this first-ever data set on argon.

Item Type:
Journal Article
Journal or Publication Title:
Physical Review D
Subjects:
?? hep-exhep-phnucl-exnucl-thphysics.ins-det ??
ID Code:
149357
Deposited By:
Deposited On:
25 Nov 2020 09:35
Refereed?:
Yes
Published?:
Published
Last Modified:
03 Nov 2024 01:18