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Abstract 55 

Tropical forest ecosystems are undergoing rapid transformation as a result of changing environmental 56 

conditions and direct human impacts. However, we cannot adequately understand, monitor or simulate 57 

tropical ecosystem responses to environmental changes without capturing the high diversity of plant 58 

functional characteristics in the species-rich tropics. Failure to do so can oversimplify our understanding 59 

of ecosystems responses to environmental disturbances. Innovative methods and data products are 60 

needed to track changes in functional trait composition in tropical forest ecosystems through time and 61 

space. This study aimed to track key functional traits by coupling Sentinel-2 derived variables with a 62 

unique data set of precisely located in-situ measurements of canopy functional traits collected from 2434 63 

individual trees across the tropics using a standardised methodology. The functional traits and vegetation 64 

censuses were collected from 47 field plots in the countries of Australia, Brazil, Peru, Gabon, Ghana, and 65 

Malaysia, which span the four tropical continents. The spatial positions of individual trees above 10 cm 66 

diameter at breast height (DBH) were mapped and their canopy size and shape recorded. Using geo-67 



3 
 

located tree canopy size and shape data, community-level trait values were estimated at the same spatial 68 

resolution as Sentinel-2 imagery (i.e. 10 m pixels). We then used the Geographic Random Forest (GRF) to 69 

model and predict functional traits across our plots. We demonstrate that key plant functional traits can 70 

be measured at a pantropical scale using the high spatial and spectral resolution of Sentinel-2 imagery in 71 

conjunction with climatic and soil information. Image textural parameters were found to be key 72 

components of remote sensing information for predicting functional traits across tropical forests and 73 

woody savannas. Leaf thickness (R2=0.52) obtained the highest prediction accuracy among the 74 

morphological and structural traits and leaf carbon content (R2 = 0.70) and maximum rates of 75 

photosynthesis (R2 = 0.67) obtained the highest prediction accuracy for leaf chemistry and photosynthesis 76 

related traits, respectively.  Overall, the highest prediction accuracy was obtained for leaf chemistry and 77 

photosynthetic traits in comparison to morphological and structural traits. Our approach offers new 78 

opportunities for mapping, monitoring and understanding biodiversity and ecosystem change in the most 79 

species-rich ecosystems on Earth. 80 

Keywords: Plant traits, Sentinel-2, Tropical forests, Random Forest, Pixel-level predictions, Image texture 81 

1. Introduction 82 

Some of the most urgent questions in ecology and ecosystem science today focus on how communities 83 

of organisms respond to global environmental changes (Naeem et al., 2009), how biodiversity and 84 

ecosystem changes across the world can be consistently mapped and monitored (Navarro et al., 2017), 85 

and how spatial, temporal and taxonomic variability in biodiversity influences ecosystem resilience to 86 

climate change (Oliver et al., 2015). In terms of Earth system science, we need to understand and model 87 

how the terrestrial biosphere will respond (and already is responding) to global environmental change, 88 

and whether there are critical thresholds or “tipping points” beyond which major biomes may not be able 89 

to recover. Nowhere is the challenge more urgent than in the species-rich tropical forest and woody 90 

savanna biomes, which together are home to more than half of global biodiversity and over 60% of 91 

terrestrial productivity (Beer et al., 2010). There is evidence that atmospheric change may have effects on 92 
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tropical forest productivity and tree functional composition (Esquivel‐Muelbert et al., 2019, Hubau et al., 93 

2020). These effects may include a stimulation of productivity (perhaps due to rising CO2) and/or a 94 

degradation or dieback, possibly caused by increased seasonality and incurred intensity of extreme 95 

drought events (Malhi et al., 2008, Malhi et al., 2018). Such events are partly responsible for the increased 96 

tree mortality and decreased carbon residence time in tropical forests worldwide (McDowell et al., 2018). 97 

However, to adequately understand such responses we need to capture and map the high diversity of 98 

plant ecosystem function in the species-rich tropics and savannas. 99 

Species functional traits are defined as the morphological, physiological or phenological attributes 100 

which determine the fitness of organisms, their response to changes in the environment and their 101 

influence on ecosystem functions (Kissling et al., 2018, Díaz & Cabido, 2001). Functional traits provide 102 

tangible and mechanistic means of assessing the ability of communities to adapt to climate change 103 

(Pacifici et al., 2015) and play a major role in determining ecosystem productivity, functioning and notably 104 

nature’s contribution to people (e.g. water and wood availability) (Díaz et al., 2019, Carmona et al., 2016). 105 

Any tools or methods that facilitate quantification of functional traits across large spatial scales and at 106 

high spatial resolution would be invaluable for quantifying ecosystem functioning and ecological 107 

responses to disturbance at scales relevant for policy and management (Kissling et al., 2018). However, it 108 

is still challenging to map functional trait diversity in tropical regions given the lack of plant trait data 109 

available for most of those locations (Jetz et al., 2016). Additional challenges come from different and 110 

often incompatible trait collection protocols and the lack of systematic high spatial, spectral and temporal 111 

resolution remote sensing imagery that coincides with data for functional traits at the canopy level and 112 

the lack of geo-located tree stems at the plot level. Thus, there is a need for spatially-explicit methods to 113 

map and quantify plant functional traits at high spatial resolution in tropical forest and woody savanna 114 

ecosystems.  115 

Tracking functional traits can shed light on differences in ecosystem functioning across broad 116 

spatial extents and therefore aid policy and decision making, e.g. for creating adequate biodiversity 117 

conservation policies or for providing early warning of directional shifts in ecosystems. The key challenges 118 
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of any functional trait approach are scalability and monitoring: how can functional shifts in highly diverse 119 

tropical forests and woody savannas be monitored and tracked over large spatial extents? Intensive field 120 

sampling of plant functional traits at a pantropical scale is time-consuming and economically unviable. 121 

There are large gaps in the availability of plant trait data globally, and the largest gaps are in the tropics 122 

(Jetz et al., 2016). Large plant trait datasets aim to overcome this issue and have advanced our ability to 123 

carry out plant functional trait analysis in an unprecedented way (Kattge et al., 2020, Gallagher et al., 124 

2020). However, as with any database, the plant trait values from such databases will represent the local 125 

trait-environment relationships for the site where they were collected, which may not be the area of 126 

interest. A key assumption in trait-based ecology is that the environment is filtering for an optimal set of 127 

trait characteristics so that the resulting communities are adapted to the environment where they are 128 

distributed (Fell & Ogle, 2018, Lebrija-Trejos et al., 2010, Lortie et al., 2004). Hence, we might expect an 129 

optimal set of trait characteristics for a given location, which when analysed over time could quantify the 130 

dynamics of community trait distributions or shifts in functional composition relating to environmental 131 

changes (Enquist et al. 2015).  132 

Recently, there has been an increasing investment into mapping plant functional trait 133 

distributions given economic and data availability constraints such efforts have mostly focused on 134 

hyperspectral imagery at local (Schneider et al., 2017) to regional scales (Asner et al., 2015, Asner et al., 135 

2016). However, high resolution hyperspectral imagery is not widely available (Clark, 2017, Szabó et al., 136 

2019). Landsat-8 imagery at coarser spatial (30 m pixel), spectral and temporal resolution than Sentinel-2 137 

imagery has been used to map four traits over small (20 × 20 m) vegetation plots covering small spatial 138 

extents (Wallis et al. 2019). The spatial mismatch between site-level trait sampling and the spatial 139 

resolution of pixels may partly affect overall model predictions (Wallis et al. 2019). Other studies restricted 140 

to European forests (Ma et al., 2019) show how Sentinel-2 imagery could be used to map functional trait 141 

diversity in the comparatively low tree diversity forests of Europe (Ma et al., 2019) and to retrieve specific 142 

leaf area from Landsat-8 imagery (Ali et al., 2017). However, the tropics present a different set of 143 

challenges, such as the high species richness, low accessibility and comparatively low availability of trait 144 
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data, plus the low coverage of remote sensing data because of persistent high cloud cover. These 145 

challenges have hampered developments in mapping plant functional trait distributions across most 146 

tropical areas. 147 

Satellite imagery with high spectral, spatial and temporal resolution is particularly needed in the 148 

wet tropics (Asner et al., 2017), where clear days can be infrequent and several images may be required 149 

to construct a cloud-free composite. The  Copernicus mission from the European Space Agency’s (ESA; 150 

www.esa.int) aids in the improvement in this area. The Sentinel-2 multispectral imager satellites are part 151 

of the Copernicus programme, which has the potential to provide new opportunities to evaluate canopy 152 

traits remotely. Sentinel-2 has 13 spectral channels covering the visible, near-infrared, and short-wave 153 

infrared, a spatial resolution of 10 m for visible and near-infrared, 20 m for short-wave infrared, revisit 154 

period of 5 days and it provides open  data availability. The improved spectral sampling (13 bands, 10 155 

excluding the 60 m atmospheric bands) and fine spatial resolution of the Sentinel-2 images have the 156 

potential to elucidate leaf chemistry, morphology, photosynthesis and water content at the pixel-level, 157 

although this remains largely untested. Multispectral sensors do not provide the rich information available 158 

from hyperspectral sensors, which have been used in numerous studies to map functional traits at small 159 

spatial extents (Townsend et al., 2003, Laurin et al., 2016, Asner et al., 2015, Martin, M. E. et al., 2008). 160 

However, high resolution open-access hyperspectral imagery is not currently available from space. 161 

Although Landsat images have been used to predict a few functional traits at a local scale (Wallis et al., 162 

2019), the extended spectral, spatial and temporal capabilities of the state-of-the-art sensors onboard the 163 

Sentinel-2 satellites provide greater potential for mapping functional trait diversity in tropical forest 164 

ecosystems at large extents. 165 

Here, we employ a unique and large dataset of in-situ plant canopy traits and vegetation census 166 

data collected with a standardised protocol at multiple sites across the tropics to calibrate and validate 167 

Sentinel-2 imagery for predicting community leaf trait composition. The data provide 14 standardized 168 

measurements of in-situ collected plant functional traits, precisely geo-located and delineated individual 169 

tree crowns and vegetation censuses from Australia, South East Asia, Africa and South America to model 170 

http://www.esa.int/
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and predict functional trait composition at the pixel-level. We investigate how functional traits of tropical 171 

forests vary within and between these different tropical regions and whether Sentinel-2 spectral data in 172 

conjunction with climatic and soil information provide sufficient information to predict such pixel-level 173 

trait composition in long-term vegetation plots across the tropics. We hypothesised that there would be 174 

differences in trait variation among sites and regions given the range of climatic and soil conditions across 175 

the tropics. Given the high spectral and spatial resolution of Sentinel-2 imagery we further hypothesised 176 

that raw spectral bands and textural information will prove to be key predictors of functional trait 177 

distributions across the tropics. The very high spatial resolution and local origin of the input plant traits 178 

and census dataset, which represent traits adapted to local environments, plus the use of the Sentinel-2 179 

data will allow us to accurately predict plant functional trait distributions that are potentially generalisable 180 

across the tropical forest biome. 181 

2. Methods 182 

2.1 Vegetation plots 183 

We collected vegetation census data from 47 permanent vegetation plots that are part of the Global 184 

Ecosystems Monitoring network (GEM; www.gem.tropicalforests.ox.ac.uk). These plots encompass wet 185 

tropical forests, seasonally dry tropical forests, and tropical forest-savanna transitional vegetation. The 186 

sampled vegetation plots have an area ranging from 0.1 to 1 ha, with most (61%) being 1 ha. The plots 187 

used are located across four tropical continents and specifically in the countries of Australia, Brazil, Gabon, 188 

Ghana, Malaysian Borneo (from here onwards referred to as Malaysia) and Peru (Table 1). In each plot all 189 

woody plant individuals with a diameter ≥ 10 cm at breast height (DBH) or above buttress roots were 190 

measured and their exact geographic location was recorded (see the ‘Individual tree crowns’ section 191 

below for more details). In two plots (NXV-01 and NXV-10) in Nova Xavantina, here onwards referred to 192 

as Brazil-NX, the DBH was measured near ground level as is standard in savanna monitoring protocols.  193 

2.2 Functional traits 194 
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We collected plant functional trait measurements from all woody plants located in each of the 47 195 

vegetation plots mentioned above (Table 2). All traits were gathered from the GEM network and were 196 

collected following a standardized methodology across plots. Forest inventory data were used to stratify 197 

tree species by basal area dominance, a proxy for canopy area dominance. The tree species that 198 

contributed most to basal area abundance were sampled with 3-5 replicate individuals per species, with 199 

a goal of sampling 60-80% of basal area across the sampling region. Eighty percent of basal area was often 200 

achieved in low diversity sites (e.g. montane or dry forests) but only around 60% was achieved in some 201 

high diversity sites (lowland humid rainforests). For each selected tree a sun and a shade branch were 202 

sampled and in each branch 3-5 leaves were used for trait measurements. We only included the sun 203 

exposed branches in our analysis because we were interested in the branches that could potentially be 204 

receiving direct sun radiation  and thus show direct spectral reflectance. This represented a total sample 205 

of 2434 individual trees across the tropics (Table 1). The plant functional traits collected were those 206 

related to photosynthetic capacity at both saturating CO2 concentration (2000 ppm CO2; Amax) and 207 

ambient CO2 concentration (400 ppm CO2; Asat); leaf chemistry (nitrogen, phosphorus, carbon, calcium, 208 

potassium and magnesium content); and leaf morphological and structural traits (area, specific leaf area, 209 

thickness, dry mass, fresh mass and water content). An overview of the methods for individual leaf 210 

functional trait measurements is provided in the Supplementary Information (see full traits collection 211 

protocol section). Further details of measurements for the Peruvian Andes campaign are given in Martin 212 

et al. (2020) and Enquist et al. (2017), for the Malaysian campaign in Both et al. (2019), and for the Ghana 213 

and Brazil campaigns in Oliveras et al. (2020) and Gvozdevaite et al. (2018). 214 

Some individuals in the plots lacked functional trait values. To assign representative trait values 215 

to unsampled individuals we did the following: 1) individuals from which traits were measured kept their 216 

original trait information, 2) for individuals with no trait information we randomly sampled trait values 217 

from other individuals from the same species present in the same plot, 3) if the species was not sampled 218 

in the given plot then we randomly sampled an individual from the same species that had trait information 219 

in other plots from the same region (Table 1). This protocol for trait value allocation allowed us to work 220 
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with the existing range of trait values at the species level and avoided to create average values per species 221 

(Cadotte et al., 2011, Schneider et al., 2017). We did not assign trait values to the remaining individuals 222 

belonging to species from which no trait collection was obtained at the regional level. 223 

2.3 Individual tree crowns 224 

Tree crown locations and structural attributes were recorded for each tree, where crown area and shape 225 

were measured by direct crown field measurements in the case of plots in Malaysia and Peru (see protocol 226 

below), or by means of regional level allometric equations developed by Shenkin et al. (2019) (all other 227 

plots). In the latter case, the crown’s shape was assumed to be circular. The direct field crown 228 

measurements were as follows: all trees ≥ 10 cm DBH ( i.e., 1.3 m from the ground) were mapped using a 229 

ground-based Field-Map laser technology (IFER, Ltd., Jílové u Prahy, Czech Republic) (Hédl et al., 2009). 230 

The Field-Map technology was based on a combination of Impulse 200 Standard laser rangefinder (with 231 

in-built tilt sensor for measuring vertical angles), MapStar module II electronic compass (both Laser 232 

Technology Inc., Colorado, USA), and the specialized mapping software Field-Map v. 11 (IFER, Czech 233 

Republic). The technology was used to record spatial positions of tree stems in three-dimensional space 234 

(x, y, z-coordinates) as well as to map individual horizontal projections of tree crowns in the plots. The 235 

horizontal crown projection of every tree was obtained by measuring spatial positions (x and y-236 

coordinates) of series of points (ranging from 5 to 30 points depending on the size of the crown) at the 237 

boundary of a crown projected to the horizontal plane. The shape of crown projection was subsequently 238 

smoothed using the “smooth contour line” feature of Field-Map software v. 11. Heights of all trees with 239 

DBH ≥ 10 cm were measured by the Impulse and TruPulse 360 R laser rangefinders (both Laser Technology 240 

Inc., Colorado, USA). Thus, each individual crown was accurately geolocated rendering information about 241 

its shape and vertical and horizontal position.  242 

2.4 Calculating pixel-level trait composition 243 

We calculated the community weighted mean of each trait for each 10 × 10 m subplot (matching the 244 

highest pixel spatial resolution of the Sentinel-2 imagery) based on the mass ratio hypothesis, which 245 
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states that the most dominant species drive the ecosystem processes by means of their functional traits 246 

(Grime, 1998). We first geolocated the vegetation plot, with its already mapped tree crowns (see 247 

protocol above), to the Sentinel-2 imagery based on the corner coordinates of the plots. This is an 248 

important step as geolocation errors between the vegetation plot and the correct location in the 249 

satellite image could represent a large proportion of a given plot depending on the plots’ area. Then for 250 

each of the traits, t, and pixels, p, we calculated their community level weighted mean (CWM) using the 251 

individual tree crown horizontal area as the weighting factor (Fig. 1) as follows: 252 

𝐶𝑊𝑀𝑡𝑝 =
∑𝑁𝑖=1 𝐶𝐴𝑖𝑝 × 𝑡𝑖𝑝

𝐶𝐴𝑝
 253 

(Eq. 1) 254 

Where CAip is the crown area of individual i in pixel p, tip is the trait value of individual i in pixel p, 𝑁 is the 255 

total number of individuals per pixel and CAp is the crown area of pixel p. The crown contribution to the 256 

CWM was weighted by its proportional cover of the corresponding pixel. The total number of pixels used 257 

in our calculations are 403 for Australia, 449 for Brazil -NX (Nova Xavantina), 302 for Brazil -ST (Santarem),  258 

464 for Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru. 259 

 260 
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Figure 1. Diagram summarising the steps followed to assign trait values per Sentinel-2 pixel. 1) First the 261 
vegetation plots are defined based on the GEM (Global Environmental Monitoring) dataset and 2) from 262 
each vegetation plot the corner coordinates are extracted. 3) From each vegetation plot the XY position 263 
of each stem ≥10 cm DBH is extracted and 4) the crown horizontal area is calculated based on the protocol 264 
described in the methods section. 5) Then the Sentinel-2 imagery for the study area is processed to level 265 
2A using the ESA SNAP toolbox and 6) the vegetation plot is overlaid in the Sentinel-2 image based on its 266 
corner coordinates. In this last step (6) each pixel defines a ‘subplot’ which is the unit used to calculate 267 
the trait community weighted mean based on the crown area of the trees that are contained by that pixel.  268 
In 6) n refers to a given tree in a given pixel, trait i represents a given trait and x and y are values for that 269 
trait. The image used as an example in step (1) was taken by Jesus Aguirre-Gutierrez over a vegetation 270 
plot using a multispectral ALTUM camera mounted on an Inspire 1 drone.” 271 

 272 

2.5 Sentinel-2 data, vegetation indices and canopy texture parameters 273 

We gathered Sentinel-2 imagery that was closest in time and season to the sampling dates of functional 274 

traits and vegetation census across the tropics for each of the study locations (Table S1). The Sentinel-2 275 

imagery was first selected using the European Space Agency (ESA) ScienceHub (scihub.copernicus.eu) 276 

choosing images with high pixel quality and low cloud cover (<10%). Atmospheric, radiometric and 277 

topographic corrections were applied to the selected imagery (Level 1C) using the Sen2Cor algorithm in 278 

the Sentinel SNAP toolbox (step.esa.int). Our overlapping imagery with the vegetation plots appeared free 279 

of clouds and cirrus effects. The above-mentioned steps allowed us to obtain level 2A imagery with surface 280 

reflectance values. We then resampled the 20 m bands to 10 m spatial resolution using bilinear 281 

interpolation. The Sentinel-2 60 m resolution bands (B01, B09, B10) were not used as these are designed 282 

for cirrus, water vapour and cloud detection (Table 3). Band 8A was not used as it covers an overlapping 283 

spectral window with band 8 and has a lower spatial resolution. Since vegetation indices may increase 284 

prediction accuracy when modelling community weighted traits (Wallis et al., 2019), we calculated three 285 

of them (Table 3) which we hypothesised to inform trait distributions given their association with 286 

chlorophyll and nutrient levels in the leaves and their use of the visible-to-red edge spectral bands.   287 

Canopy structure may play an important role in separating different vegetation types and 288 

differences in canopy spectral composition. To characterize canopy structure, we calculated the Grey 289 

Level Co-Occurrence Matrix (GLCM) based texture features (Haralick et al., 1973).  The desired texture 290 

metrics are computed from a grey tone matrix that is spatially dependent. The co-occurrence matrix 291 

https://scihub.copernicus.eu/
https://step.esa.int/
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depends on the angular relationship and distance between two neighbouring pixels and depicts the 292 

number of occurrences of the relationship between a pixel and its neighbour. After trials with smaller 293 

windows size (5 x 5) we opted to use a 9 x 9 pixel kernel window which was sufficient to render enough 294 

canopy contrast information during the modelling step (see section 2.7 below) without taking large 295 

periods of time for its calculation. The texture results obtained with the used kernel window was highly 296 

correlated to the smaller kernel window (Cor = 0.94, P =< 0.0001). Based on the GLCM we calculated two 297 

variables that are least correlated with each other, the Entropy and Correlation, for each of the vegetation 298 

indices. While Entropy measures the homogeneity level for a given area, the Correlation measures 299 

probability of occurrence of the specified pixel pairs across the image (Haralick et al., 1973, Wallis et al., 300 

2019). All remote sensing analyses related to the generation of vegetation indices and texture metrics 301 

were carried out using the Sentinel SNAP toolbox (step.esa.int) and the R statistical environment (R 302 

Development Core Team, 2014) with the ‘Sen2R’ package.  303 

2.6 Environmental and soil data 304 

Climatic, topographic and soil characteristics may vary across regions and could at least partly determine 305 

the region’s vegetation and intrinsic trait composition. We obtained information on these three 306 

components for each sampling location. The three components were grouped as belonging to 307 

environmental (climate) or soil-terrain (texture, pH, cation exchange capacity and topography) drivers 308 

(Table 3).  309 

For climate and for each sampling location we gathered gridded data on the mean annual climatic 310 

water deficit (MCWD), which is a metric of drought intensity and severity, mean annual maximum 311 

temperature (MATmax), solar radiation (SRAD) and soil moisture (SM) (Table 3). All climatic data with a 312 

spatial resolution of ~4km were obtained from the TerraClimate gridded climate product (Abatzoglou et 313 

al., 2018). To characterise the climatic conditions for each location we used a climatology of 30 years 314 

(1986-2015) as suggested by the World Meteorological Organization (WMO; 315 

www.wmo.int/pages/prog/wcp/ccl/faqs.php). We used the terrain slope to characterise the plot’s 316 
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topography, as it has been shown that topography may shape the composition and structure of tropical 317 

forests (Jucker et al., 2018) and may affect the vegetation spectral reflectance by modifying soil water and 318 

nutrient availability. Terrain slope was calculated using a high-resolution digital elevation model, ~30m 319 

pixel size at the equator, from the Shuttle Topography Mission (Farr et al., 2007). At most sites soil data 320 

were sampled locally, and analysed to a standardised protocol in labs in either INPA, Manaus, Brazil or the 321 

University of Leeds, UK, following the RAINFOR soil protocol (Quesada et al., 2012). From these data we 322 

summarised plot level soil data averaged over the first 30 cm for texture (Sand% and Clay%), cation 323 

exchange capacity (eCEC) and pH-H2O (pH). Plot level texture data were not available for plots in Australia 324 

and the NXV-10 plots and were thus derived from the SoilGrids dataset at 250m pixel spatial resolution 325 

for those plots only (Hengl et al., 2017). 326 

2.7 Comparing community level trait distributions across regions 327 

We tested if and to what extent the community-level trait distributions differed among regions. We 328 

square-root transformed the trait value to improve normality and applied an analysis of variance 329 

(ANOVA). We then applied a Tukey's Honest Significant Difference (Tukey HSD) test to investigate the 330 

significance of the differences between the means of the community weighted mean (CWM) trait values 331 

among locations. The ANOVA and Tukey test were carried out using the ‘stats’ package for R (R 332 

Development Core Team, 2014).   333 

2.7 Relating pixel-level trait composition to spectral reflectance, environment and soil conditions 334 

We modelled the community weighted mean (CWM) of each trait at the pixel-level (10×10 m) as a function 335 

of the Sentinel-2 remote sensing, environmental and soil covariates (Table 3) using a ‘spatial’ version of 336 

the machine learning Random Forest (RF) algorithm (Breiman, 2001) named Geographic Random Forests 337 

(GRF) (Georganos et al., 2019). RF is a nonparametric algorithm that has been shown to be robust to 338 

overfitting and variable inputs thanks to the bagging process and its random feature selection (Hastie et 339 

al., 2009). Moreover, it has been extensively used to model and predict ecological and remote sensing 340 
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data within and across ecosystems (e.g. Asner et al., 2016, Van der Plas et al., 2018). In contrast to RF, 341 

GRF disaggregates the underlying data in geographic space, in this case based on the spatial coordinates 342 

of the Sentinel-2 pixels, building global and local sub-models (plot level), making the modelling framework 343 

thus spatially explicit. The explicit inclusion of the spatial component (XY pixel location) in the models, 344 

which are sequentially fitted with different sets of the training data (the bagging process) may contribute 345 

to the observed reduced spatial autocorrelation of GRF in comparison to the common RF (Georganos et 346 

al. 2019). In the GRF a global model is built as in other RF applications. However, GRF also generates a 347 

local RF for each location, which includes a specified number of nearby observations, here defined by all 348 

pixels in the vegetation plot (mostly 1 ha; Table 1), called ‘neighbourhood’, obtaining in this way metrics 349 

of local and global model predictive power and variable importance. For model predictions, a fusion 350 

between the global model (that uses more data) and local models (with low bias) can be applied, 351 

weighting the contributions of the global and local models based on the parameters that increase the 352 

predictive accuracy and decrease the model’s Root Mean Square Error (RMSE). We used the spatial GRF 353 

to fit a global model for each functional trait and also fit a specific model for each region (Australia, Brazil 354 

-ST, Brazil -NX, Gabon, Ghana, Malaysia and Peru) using the SpatialML package in R. 355 

We performed an extensive set of model optimization and regularization procedures to reduce 356 

over-fitting. For the CWM models we selected the number of trees to fit by 10-fold cross-validation 357 

analysis with number of trees ranging between 500 and 1500 and the number of variables randomly 358 

sampled as candidates at each split (mtry) ranging between 1 to 10, using in the final model the 359 

combination of terms that generated the lowest RMSE. All covariates included in the models had pairwise 360 

Pearson correlation coefficients r ≤ 0.82 (Table 3). For the final global and local models, we used 80% of 361 

the data for model fitting and the remaining 20% for model evaluation. Variable importance for each 362 

model was computed as the decrease in node impurities from splitting on the variable, averaged over all 363 

trees and derived from the Out of Bag (OOB) error. Then the resulting importance was standardised to a 364 

0–1 scale for comparison purposes.  365 
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We carried out all analyses stated above with the full set of tree individuals present in each 366 

vegetation plot with functional traits assuming that the contribution of small individuals to the trait CWM 367 

value, and thus to the community reflectance at the pixel-level, would be minimal given the weighting 368 

factor used (i.e. the individual’s crown area). However, to underpin this we carried out all analyses on two 369 

smaller datasets, one where the 25th and other where the 50th percentile of the smallest trees per region 370 

were removed. All analyses were carried out in the R statistical environment with the ‘caret’, ‘tidyverse’ 371 

and ‘SpatialML’ packages. 372 

3. Results 373 

3.1 Variation in trait composition across tropical forests 374 

Most leaf functional traits exhibited significant differences across the tropics (Fig. 2) including wide trait 375 

range variation within the same region (Fig. S8), with leaf fresh mass and leaf thickness being on average 376 

less variable among locations (Table S2).  377 



16 
 

 378 

Figure 2. Comparison of trait distributions across tropical regions. The boxplots are based on the pixel-379 
level (10×10 m) community trait values for each trait and region (n=403 for Australia, 449 for Brazil-NX, 380 
302 for Brazil-ST,  464 for Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru). Horizontal lines in 381 
each boxplot show the median value and vertical lines are the whiskers that extend to the largest value 382 
or not further than 1.5 times the inter-quartile range. For some locations information for all traits was not 383 
available. For full details in significant differences in mean trait values among locations see Table S4. Brazil 384 
-NX: Nova Xavantina; Brazil -ST: Santarem. 385 

Leaf chemistry and photosynthetic capacity (Amax and Asat) often showed significant differences 386 

among locations (Table S2). Drier locations as in Nova Xavantina (Brazil -NX) displayed trait adaptations 387 

to seasonal rainfall and temperature with on average thicker and smaller (30 ± 0.05 mm and 56.2 ± 24.7 388 

cm2 respectively) leaves at the community level, with some of the highest community-level leaf nitrogen 389 

concentration (2.2 ± 0.3 %) and highest photosynthetic capacity (mean Amax= 21.9 ± 4.3 μmol m−2 s−1, and 390 

Asat= 8.3 ± 2.5 μmol m−2 s−1). In contrast, wetter regions such as Malaysia displayed on average some of 391 
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the biggest (113.5 ± 55 cm2) and thinnest (0.25 ± 0.05 mm) leaves with high leaf water content (59.1 ± 5 392 

%). The Peruvian altitudinal transect showed large variation in community-level traits values, which often 393 

overlapped with trait values from all other sampled locations across the tropics (Fig. 2). For most nutrients, 394 

leaf nutrient concentration was often highest in forests found in Ghana (e.g. K% = 0.97 ± 0.27 and Mg% = 395 

0.33 ± 0.1) and Malaysia (K% = 1.05 ± 0.27 and Mg% = 0.27 ± 0.1). Australian forests showed on average 396 

some of the lowest community-level N (1.3 ± 0.21 %) and P (0.07 ± 0.01%) leaf concentrations. 397 

3.2 Pantropical and local community level functional trait models 398 

The analyses carried out with the full dataset and the dataset where the 25th and 50th percentile of the 399 

smallest trees per region were removed gave similar results for the global (R2 = 0.95 and R2 = 0.97 400 

respectively; Table S3) and local (R2 = 0.81 and R2 = 0.80 respectively; Table S4) models of plant trait 401 

distributions. Therefore, in the following we only present the results for the models carried out with the 402 

full vegetation dataset. 403 

The accuracy of the pantropical prediction of functional traits ranged between a minimum of R2 = 404 

0.26, for leaf fresh mass, and a maximum of R2 = 0.70 for leaf carbon content (C%) based on the out-of-405 

sampled (testing) data across the tropics (Table 4). The predictive accuracies of leaf chemistry and 406 

photosynthetic traits were often higher than for morphological and structural traits such as leaf dry mass 407 

(R2 = 0.27) and leaf area (R2 = 0.43) (Fig. 3). At the pantropical level, the highest prediction accuracy was 408 

obtained for leaf thickness (R2 = 0.52) for morphological and structural traits, for leaf Ca (Ca%; R2 = 0.64) 409 

and leaf K (K%; R2 = 0.63) for the chemical traits other than carbon. Leaf N and P concentrations were also 410 

predicted with high accuracy (R2 = 0.59). Leaf photosynthetic capacity traits, Amax and Asat, showed some 411 

of the highest prediction accuracies ranging from R2 = 0.55 to 0.67, respectively. Model spatial predictions 412 

for several traits and locations are shown in Fig. 4 and others can be seen in Fig. S1-Fig. S7. 413 

Models built for each tropical region and trait uncovered marked differences in prediction 414 

accuracy among them (Fig. 5; Table 5 and Table S5). Leaf area prediction accuracy ranged from R2 = 0.04 415 

(Brazil -ST) to 0.35 (Australia), and that of specific leaf area (SLA) ranged from R2 = 0.06 for Malaysia to 416 
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0.54 for Brazil -NX (Table S5). The local models showed a higher accuracy for predicting local level leaf 417 

chemical nutrients (up to R2 = 0.68), especially for P, Ca, and N concentrations in comparison to 418 

morphological (e.g. leaf area and SLA) traits (Table 5; Fig. 5). Traits related to photosynthetic capacity 419 

showed an overall better prediction accuracy than leaf area and SLA with prediction values ranging 420 

between 0.36 (Peru) to 0.49 (Ghana) for Amax and up to 0.52 for Asat (Brazil -NX; Fig. 5). On average the 421 

highest prediction accuracy across regions for a given trait were reached for leaf P concentration (R2 = 422 

0.47) and Amax (R2 = 0.44) and the locations with the highest average prediction accuracy across traits were 423 

the Nova Xavantina savanna (Brazil -NX, R2=0.40) and the Peru elevation gradient (R2 = 0.38; Table 5), both 424 

sites encompassing strong gradients in vegetation morphology and structure. 425 

 426 

Figure 3. Model predictions to the 20% test data from the general model which was fitted with 80% of 427 

the trait data from across the tropics. Grey dots are the observed against predicted trait values of the 428 

pixel-level (10 × 10 m) community weighted mean traits from the test dataset. The black line shows the 429 

1:1 relationship between observed and predicted values. Model prediction accuracy is shown in the top 430 

left. Full model results are shown in Table 4. 431 
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 432 

Figure 4. Spatial predictions of trait distributions for a selected subset of plant traits and locations. 433 

The map (middle) shows the locations of vegetation plots that were used during the modelling 434 

framework. The spatial predictions (top and bottom rows) were obtained using the general models 435 

(Table 4) for each of the traits and locations at a 10 × 10 m pixel resolution. The approximated location 436 

of each vegetation plot used is shown as a white square within each spatial prediction map (for 437 

visualisation purposes white squares are not scaled to the plot’s real size). Spatial predictions for other 438 

traits can be found in Fig. S1-S7. 439 

 440 

Figure  5. Models predictions to the 20% test data from the regional models fitted with 80% of the trait 441 

data from each region across the tropics. Each colour represents an individual regional model and the 442 

coloured symbols are the observed against predicted trait values of the pixel-level (10 × 10 m) community 443 

weighted mean traits from the test dataset. The black line shows the 1:1 relationship between observed 444 

and predicted values. Model prediction accuracy is shown in Table 5. Full model results are shown in Table 445 

S5. Brazil -NX: Nova Xavantina; Brazil -ST: Santarem. 446 
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3.3 Importance of spectral remote sensing, climatic and soil data for mapping trait distributions 447 

We included Sentinel-2 band derived reflectance values, vegetation indices, their canopy texture 448 

parameters, climatic and soil variables in the general trait models to predict community level traits at the 449 

pixel-level (Table 3). The importance of these variables for predicting traits depended on the specific trait 450 

being addressed (Fig. 6). In the global model, the remote sensing texture parameters were the first or 451 

second major contributor for predicting nine of the functional traits across the tropics (Fig. 6 and Fig. S9). 452 

Raw spectral variables were the second most important group for predicting four of such functional traits 453 

but often lower in importance than the textural parameters. In the global model, soil and terrain factors 454 

were on average some of the most important for predicting photosynthetic traits and foliar P 455 

concentration. On average, climatic variables were important for predicting 11 out of 14 functional traits 456 

but their contribution was lower for predicting leaf dry and fresh mass and leaf water content (Fig. 6). 457 

However, it is evident that a combination of textural, spectral, climatic and soil information is required to 458 

obtain the best general model predictions across functional traits and no single variable appears as the 459 

most important across all traits (Fig. S9).  460 

The local models provided a site-specific view of the most important remote sensing derived 461 

variables, environmental and soil conditions for deriving community level traits composition (Fig. S10). 462 

Sentinel-2 remote sensing related variables were more important for detecting leaf morphology and 463 

nutrient values than environmental and soil related variables in 88% of the trait models (in 75 out of 85 464 

possible traits by region combinations). Eighty-one percent of the time (69 location by trait combinations) 465 

the canopy texture parameters were more important than the raw spectral reflectance factors. In 5.9% 466 

and 4.7% of the possible trait and region combinations, climatic or soil-topography related variables 467 

respectively were the most important for detecting community traits (Fig. S10). 468 
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 469 

Figure  6. Group median variable importance of spectral remote sensing, environmental and soil 470 

related variables for determining functional trait predictions in the global model. Variable importance 471 

(Y axis) ranges from 0 (no importance) to 1 (highest importance) and represents the decrease in node 472 

impurities from splitting on the variable, averaged over all trees and derived from the Out of Bag error, 473 

the resulting value has been standardised to a 0-1 scale for comparison purposes. The spectral group (S2 474 

-Spectral) contains the select raw bands from the Sentinel-2 and the vegetation indices; Texture 475 

parameters (S2 -Texture) contain the Correlation and Entropy metrics from the grey level co-occurrence 476 

matrix obtained from the vegetation indices; Climate contains all climatic variables; Soil-Terrain contains 477 

all soil characteristics and slope. All variables are described in Table  478 

4. Discussion 479 

To the best of our knowledge, this is the first study evaluating the ability of Sentinel-2 satellite data to 480 

map plant functional traits across tropical ecosystems. Tropical forest trait mapping is fundamental for 481 

understanding of plant responses to global change, and notably the plant functional traits we predict in 482 

this study are relevant to plant species responses to a changing environment (Both et al., 2019, Nunes et 483 
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al., 2019, Soudzilovskaia et al., 2013, Aguirre‐Gutiérrez et al., 2019). We have demonstrated that accurate 484 

pixel-level (10×10 m) predictions of tropical forest functional trait distributions across the tropics can be 485 

generated by making use of extensive in-situ collected plant functional traits, geo-located canopy 486 

structure, vegetation censuses and high spectral and spatial resolution remote sensing data from the 487 

Sentinel-2 satellites.  488 

4.1 Tropical forest trait distributions 489 

Plant functional traits are characteristics that aid species to thrive in their environment or adapt to new 490 

conditions. Given such adaptations to specific environments it might be expected that trait variation 491 

would be higher in regions that encompass more varied environmental conditions (Enquist et al., 2015). 492 

Environmental adaptation is exemplified by the strong variation in values for most traits in Peru and 493 

Malaysia. In Peru, the data represent a climatic and altitudinal gradient ranging from the lowland Amazon 494 

in the Tambopata National Park at an elevation of 200-225 masl to plots in Acjanaco at above 3000 masl. 495 

In Malaysia, the vegetation plots are distributed across a land-use gradient ranging from undisturbed to 496 

heavily logged forests (Both et al., 2019). Environmental adaptation may be also shown by the observed 497 

differences in trait distributions between different regions across the tropics (e.g. Australia and Gabon; 498 

see also Fig. 2). The pixel-based community trait values in the Peruvian transect often extend across much 499 

of the range in trait values observed in other locations (Fig. 2). We detected an overall significant 500 

difference among locations in terms of morphological, chemical and photosynthetic traits (Table S2). This 501 

wide variation in traits suggests the presence of local biotic and abiotic controls of trait distributions and 502 

plant species adaptations that may differ among tropical regions. Such differences in trait composition 503 

highlight the importance and the challenge of sampling as fully as possible the functional trait diversity 504 

across different tropical forests. This is of pivotal importance when comparing forest responses to 505 

changing environments across multiple regions. We thus suggest that further field trait survey campaigns 506 

across the tropics are needed to improve pantropical trait predictions. As for the local biotic and abiotic 507 

controls of trait distributions, for instance, it is widely known that African tropical forests are in general 508 

less species diverse than their Asian and South American counterparts but that they have some of the 509 
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highest biomass carbon storage capacity per unit area (Sullivan et al., 2017). Tropical forests in West Africa 510 

are in general drier in comparison to Amazonian tropical forests (Parmentier et al., 2007) and some African 511 

regions such as Gabon have experienced increases in temperature and decreases in precipitation over the 512 

last 30 years (Bush et al., 2020). Thus, such changes in climatic conditions as those observed in West 513 

African tropical forest may also underlie variations in species composition and the locally observed 514 

functional trait pool as shown in this study. It is also worth noting that two caveats of the community-515 

weighted mean trait approach may account for part of the unexplained trait variation. First, it makes the 516 

assumption of a unique functional optimum in a given environment, while multiple optimal strategies – 517 

potentially corresponding to contrasting trait values – could coexist (Laughlin et al., 2018). Secondly, it 518 

does not account for the dynamic nature of communities, so that a community weighted mean at a given 519 

time point might not encompass the optimum at equilibrium (Laughlin et al., 2018). 520 

Morphological and structural traits such as leaf area, fresh and dry mass, leaf thickness, SLA and 521 

LWC, represent trade-offs between energy acquisition, consumption and survival and form a main part of 522 

the global spectrum of plant functioning (Díaz et al., 2016). Besides investigating the predictability of such 523 

plant structural traits, we further analysed the potential for predicting leaf chemistry (C, K, Mg, Ca, N, P) 524 

and photosynthesis related traits (Amax and Asat). Mapping chemical and photosynthetic traits at a 525 

pantropical scale has the potential for increasing our understanding of how photosynthetic capacity shifts 526 

across tropical regions and on possible impacts of a changing environment on tropical forests productivity 527 

(Guan et al., 2015, Mueller et al., 2014).  528 

4.2 Sentinel-2 remote sensing for mapping community level trait distributions across the tropics 529 

In their pioneering work with hyperspectral imagery and simulated multispectral Sentinel-2 data over 530 

Ghana, Laurin et al. (2016) demonstrated that Sentinel-2 imagery could be used to discriminate tropical 531 

forest types and map plant functional types. The authors argued that the full band set and vegetation 532 

indices derived from the Sentinel-2 would be advantageous for accurately mapping plant functional guilds 533 

in the tropics. By using functional trait data collected in situ across tropical forests and modelling at high 534 



24 
 

spatial resolution (pixel-level) we show that most of our global trait distribution models present a high 535 

predictive power for most traits analysed, with prediction accuracy on the testing datasets being highest 536 

for predicting leaf chemical and photosynthetic capacity traits. However, we also show that the local level 537 

trait models produced less accurate predictions than the global models, probably as a result of the 538 

narrower range of in plant trait values found at the local region in comparison to across the regions, 539 

something also shown by Wallis et al. (2019). The prediction accuracy obtained from our models using 540 

Sentinel-2 multispectral data is similar and in some cases higher than that shown by recent studies that 541 

make use of hyperspectral imagery and other multispectral sensors to map functional traits (Martin et al., 542 

2018, Asner et al., 2017, Asner et al., 2015). For instance our predictions on test data for leaf nitrogen, 543 

phosphorus and carbon are comparable or higher than those obtained by other innovative studies in 544 

Malaysia (R2 = 0.46, 0.44 and 0.48 respectively; Martin et al., 2018), Peru (R2 = 0.48, 0.39 and 0.44; Asner 545 

et al., 2015) and temperate forests (R2 = 0.55, 0.22, 0.46; Nunes et al., 2017), and closely related to those 546 

obtained by Wallis et al. (2019) with other multispectral sensor for nitrogen and phosphorus (R2 = 0.65 547 

and 0.65). Specially the work of Asner et al. (2017) has shown how such plant trait predictions (with its 548 

inherent accuracies) can be used for other applications such as to guide biodiversity conservation actions. 549 

In our approach we resample the 20m spatial resolution bands from the Sentinel-2 to 10m pixels as to 550 

work with the highest spatial resolution available for most spectral bands. Such resampling could in 551 

principle have an effect on the match between the tree canopies’ reflectance signal and the spectral signal 552 

from the Sentinel-2 pixel and could thus influence the textural parameters, by for instance, detecting 553 

lower heterogeneity. 554 

Some of the leaf chemistry we modelled can be directly related to the reflectance obtained from 555 

the Sentinel-2 remote sensor in the visible, infrared and red-edge regions which capture the leaf 556 

biogeochemistry (Ustin & Gamon, 2010). For instance, it has been shown how carbon and carbon 557 

containing metabolites peak in reflectance at around 550 nm (band 3 in the Senitnel-2) and at the lower 558 

part of the 702–715 nm  (Ely et al., 2019), which would be depicted best by the red-edge band 5 in the 559 

Sentinel-2. such spectral behaviour captured by the Sentinel-2 bands contributed to the high prediction 560 
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accuracy of leaf carbon in our study. Our models show how Sentinel-2 imagery, and especially the canopy 561 

texture parameters derived from it, can be especially useful for mapping traits related to leaf chemistry 562 

(Fig.  2 and Fig. S9). Moreover, our high predictive accuracy for photosynthetic capacity (Amax, Asat) is 563 

consistent with studies carried out in other vegetation types (e.g. agroecosystems; Serbin et al., 2015) 564 

where a strong association was shown between photosynthesis related traits and the red-edge spectral 565 

region. Sentinel-2 has 3 bands over the red-edge spectral region (bands 5, 6, 7) and two over the near 566 

infrared (bands 8 and 8a) with different bandwidths, which as shown by Shiklomanov et al. (2016)  can be 567 

advantageous for detecting foliar nutrients such as leaf N (Schlemmer et al., 2013) , as small differences 568 

in wavelength position in different bands may impact their capacity to retrieve canopy trait 569 

characteristics. Moreover, the strong relationship between photosynthetic capacity and spectral 570 

reflectance can be partly captured from the leaf N signal, as leaf N concentrations are strongly associated 571 

with photosynthetic capacity (Reich, 2012, Vincent, 2001). The N reflectance signal is often best obtained 572 

in wavebands centred between 440 and 570 nm (Ferwerda et al., 2005).  573 

In this study we leverage evidence on covariation among traits to estimate and predict values of 574 

traits that have no clear physical effects on spectral reflectance. There is ample evidence of the existence 575 

of covariation among plant traits, as for instance between leaf N concentration, specific leaf area and leaf 576 

longevity (Walker et al., 2017). Such covariation among traits may in principle also represent covariation 577 

in the spectral reflectance patterns across vegetation types (Ma et al., 2019), especially if such individuals 578 

vary in leaf structural tissue that drive energy scattering and reflectance (Ollinger, 2011). Such covariation 579 

between traits can be helpful for mapping functional trait diversity across large spatial extents that include 580 

diverse vegetation types (Townsend et al., 2003, Both et al., 2019). We show that the spectral reflectance, 581 

image textural parameters (Entropy and Correlation), climate and soil, are highly relevant for modelling 582 

plant trait distributions across the tropics with high prediction accuracy. However, the canopy texture 583 

parameters (Entropy and Correlation) are some of the most important for attaining high trait prediction 584 

accuracies across plant functional traits (Sarker & Nichol, 2011, Wallis et al., 2019) and differences in 585 
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spectral, climatic and soil conditions between different regions are key components for improving model 586 

predictions across broad spatial extents. 587 

Image texture parameters were derived from the vegetation indices that we calculated, which in 588 

turn were derived from the raw spectral bands of the Sentinel-2. Thus, the texture metrics besides taking 589 

advantage of the high spectral resolution of the sensor also take advantage of its high spatial resolution. 590 

Although the raw spectral bands of the Sentinel-2 were not as important for predicting some functional 591 

traits as image texture, it is relevant to consider that texture values tend to differ based on the spatial 592 

resolution of the underlying data on which they are based. A larger pixel (e.g. Landsat’s 30 × 30 m pixels) 593 

may thus mask differences in the landscape that could in principle be captured by the Sentinel 10 × 10 m 594 

resolution texture generated metrics. This therefore highlights the relevance of Sentinel-2 imagery for 595 

functional plant functional trait predictions in comparison to others with lower spectral and spatial 596 

resolution. Image texture parameters can help characterise the upper surface of the vegetation, which in 597 

our study is composed of varied sets of functional trait characteristics that confer them different spectral 598 

responses. When such spectral differences are analysed with grey level co-occurrence matrices, the 599 

generated image texture parameters (e.g. entropy and correlation) can  help differentiate contrasting 600 

vegetation in the landscape. The role of texture parameters for modelling biomass and functional traits 601 

has also been recognised by other studies focusing not only on mapping functional traits along elevation 602 

gradients but also for estimating standing biomass (Wallis et al., 2019). Moreover, such relevance of 603 

texture parameters does not seem to be limited to the spatial resolution of the Sentinel-2 imagery as 604 

shown when using high spatial resolution SPOT imagery for modelling forest aboveground biomass 605 

(Hlatshwayo et al., 2019) and WorldView-3 for tree species identification (Ferreira et al., 2019), or lower 606 

spatial resolution data as that from the Landsat (Wallis et al., 2019). Other added value of the Sentinel-2 607 

in contrast to finer spatial resolution satellites (e.g. SPOT and WorldView-3) is its high revisit period, to 608 

obtain cloud free imagery, and it's free availability. Moreover, soil properties can be informative when 609 

modelling trait distributions across regions in the tropics as they partly drive the plant functional and 610 

species compositional turnover (Prada et al., 2017, Asner et al., 2016). In our study different vegetation 611 
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plots appeared to be on soils with different parent materials resulting in varying cation exchange capacity, 612 

pH and soil texture, and thus including differences between sites contributes to increasing the prediction 613 

accuracy of trait distributions. 614 

Although in the past it was thought not to be possible to map individual plant species or functional 615 

traits (Price, 1994, Ustin & Gamon, 2010), the advent of remotely sensed data with high spectral, spatial 616 

and temporal resolution has made it possible to extract information on the chemical and structural 617 

composition of forest canopies even in highly biodiverse tropical forests. This has been demonstrated with 618 

the use of hyperspectral sensors (Asner et al., 2017, Asner et al., 2015, Jetz et al., 2016), which often 619 

collect hundreds of spectral bands at very high spatial and spectral resolutions but at relatively small 620 

spatial extents and often without temporal replication. More research is needed to disentangle to what 621 

extent hyperspectral data offers more information to that offered by the Sentinel-2 sensors for an 622 

increased mapping accuracy of functional traits of tropical forests. As shown by Laurin et al. (Laurin et al., 623 

2016), results obtained with simulated Sentinel-2 data are highly comparable to those obtained from 624 

hyperspectral imagery for mapping forest types, dominant tree species and functional guilds. Being able 625 

to monitor functional traits at high spatial and temporal resolution with multispectral data ranging from 626 

the visible to the shortwave infrared across the tropics and with freely available data opens new 627 

opportunities for understanding the effects of environmental changes on biodiversity at a local scale. This 628 

is because functional traits play a major role in determining ecosystem productivity and functioning, e.g. 629 

carbon capture (Díaz et al., 2019, Carmona et al., 2016). Moreover, spatially explicit models of functional 630 

traits shift across the tropics can help decipher how ecosystem functioning varies even among tropical 631 

areas, providing a cost-effective pathway to identifying regions of high conservation value and hence aid 632 

in the creation of locally adequate biodiversity conservation policies. Overall, our findings are of relevance 633 

for informing biodiversity monitoring policies under ecosystem change as we show that accurate 634 

predictions of relevant plant functional traits can be obtained in high biodiversity areas such as the tropics. 635 

Our approach thus facilitates tracking possible shifts in trait distributions and composition across large 636 

spatial extents as a response to environmental changes using the Sentinel-2 satellites. 637 
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5. Conclusions 638 

Tropical forest ecosystems are witnessing a rapid transformation as a result of changing environmental 639 

conditions and direct human impacts (Lewis et al., 2015, Taubert et al., 2018, Aguirre‐Gutiérrez et al., 640 

2019). However, we cannot adequately understand or simulate tropical ecosystem responses to 641 

environmental changes based solely on current ecosystem model approaches as these are unable to 642 

capture the high diversity of plant ecosystem functions in the species-rich tropics. Neglect of functional 643 

biodiversity can oversimplify the simulated response of an ecosystem to an environmental disturbance. 644 

Here we show the high variation in functional traits that exists among tropical regions, which hints at the 645 

different capabilities of such forests to respond to a changing environment. We demonstrate 646 

opportunities for measuring the distribution of key functional traits across tropical forest ecosystems at 647 

the pixel-level using the Sentinel-2 satellites, which if done across time could reveal areas where 648 

functional shifts have occurred and likely where biodiversity conservation/amelioration measures are 649 

needed. Although the Sentinel-2 satellites show high promise for this endeavour, our approach is limited 650 

by the short time interval since they were launched (i.e. 2015) and the lower spectral resolution of 651 

Sentinel-2 imagery in comparison to that derived from hyperspectral sensors. Methods and data products 652 

are needed to track changes in functional composition in forest ecosystems across time and space. We 653 

demonstrate a new approach to develop a rapid monitoring tool for capturing the effects of a changing 654 

environment across the tropics. This new tool has the potential to contribute to a more robust and 655 

evidence-based policy-making for conservation of tropical forest ecosystems. 656 
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List of Figure Captions 922 

Figure 1. Diagram summarising the steps followed to assign trait values per Sentinel-2 pixel. 1) First the 923 
vegetation plots are defined based on the GEM (Global Environmental Monitoring) dataset and 2) from 924 
each vegetation plot the corner coordinates are extracted. 3) From each vegetation plot the XY position 925 
of each stem ≥10 cm DBH is extracted and 4) the crown horizontal area is calculated based on the protocol 926 
described in the methods section. 5) Then the Sentinel-2 imagery for the study area is processed to level 927 
2A using the ESA SNAP toolbox and 6) the vegetation plot is overlaid in the Sentinel-2 image based on its 928 
corner coordinates. In this last step (6) each pixel defines a ‘subplot’ which is the unit used to calculate 929 
the trait community weighted mean based on the crown area of the trees that are contained by that pixel.  930 
In 6) n refers to a given tree in a given pixel, trait i represents a given trait and x and y are values for that 931 
trait. The image used as an example in step (1) was taken by Jesus Aguirre-Gutierrez over a vegetation 932 
plot using a multispectral ALTUM camera mounted on an Inspire 1 drone.” 933 

Figure 2. Comparison of trait distributions across tropical regions. The boxplots are based on the pixel-934 
level (10×10 m) community trait values for each trait and region (n=403 for Australia, 449 for Brazil-NX, 935 
302 for Brazil-ST,  464 for Gabon, 620 for Ghana, 976 for Malaysia and 1280 for Peru). Horizontal lines in 936 
each boxplot show the median value and vertical lines are the whiskers that extend to the largest value 937 
or not further than 1.5 times the inter-quartile range. For some locations information for all traits was not 938 
available. For full details in significant differences in mean trait values among locations see Table S4. Brazil 939 
-NX: Nova Xavantina; Brazil -ST: Santarem. 940 

Figure 3. Model predictions to the 20% test data from the general model which was fitted with 80% of 941 

the trait data from across the tropics. Grey dots are the observed against predicted trait values of the 942 

pixel-level (10 × 10 m) community weighted mean traits from the test dataset. The black line shows the 943 

1:1 relationship between observed and predicted values. Model prediction accuracy is shown in the top 944 

left. Full model results are shown in Table 4. 945 

Figure 4. Spatial predictions of trait distributions for a selected subset of plant traits and locations. 946 

The map (middle) shows the locations of vegetation plots that were used during the modelling 947 

framework. The spatial predictions (top and bottom rows) were obtained using the general models 948 

(Table 4) for each of the traits and locations at a 10 × 10 m pixel resolution. The approximated location 949 

of each vegetation plot used is shown as a white square within each spatial prediction map (for 950 

visualisation purposes white squares are not scaled to the plot’s real size). Spatial predictions for other 951 

traits can be found in Fig. S1-S7. 952 

Figure  5. Models predictions to the 20% test data from the regional models fitted with 80% of the trait 953 

data from each region across the tropics. Each colour represents an individual regional model and the 954 

coloured symbols are the observed against predicted trait values of the pixel-level (10 × 10 m) community 955 

weighted mean traits from the test dataset. The black line shows the 1:1 relationship between observed 956 

and predicted values. Model prediction accuracy is shown in Table 5. Full model results are shown in Table 957 

S5. Brazil -NX: Nova Xavantina; Brazil -ST: Santarem. 958 

Figure  6. Group median variable importance of spectral remote sensing, environmental and soil 959 

related variables for determining functional trait predictions in the global model. Variable importance 960 

(Y axis) ranges from 0 (no importance) to 1 (highest importance) and represents the decrease in node 961 

impurities from splitting on the variable, averaged over all trees and derived from the Out of Bag error, 962 

the resulting value has been standardised to a 0-1 scale for comparison purposes. The spectral group (S2 963 

-Spectral) contains the select raw bands from the Sentinel-2 and the vegetation indices; Texture 964 

parameters (S2 -Texture) contain the Correlation and Entropy metrics from the grey level co-occurrence 965 

matrix obtained from the vegetation indices; Climate contains all climatic variables; Soil-Terrain contains 966 

all soil characteristics and slope. All variables are described in Table 3.  967 
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Table 1. Collection details for vegetation plots and plant functional traits. A total of 2434 individual trees were sampled for 
functional traits. 

Location 
Species sampled 

for traits 
Plot code 

Size 
(ha) 

Centroid coordinates Date of collection 

X Y 
Vegetation 

census 
Traits 

Australia 81 

AEP-02 0.5 145.586 -17.146 

2011 
June-September 

2015 
AEP-03 0.5 145.592 -17.088 

DRO-01 0.9 145.430 -16.103 

ROB-06 1 145.630 -17.121 

Ghana 63 

ANK-01 1 -2.696 5.268 
2013 

October-March 
2015/2016gramm 

ANK-03 1 -2.692 5.271 

BOB-01 1 -1.339 6.691 
2015 

BOB-02 1 -1.319 6.704 

Gabon 41 

LPG-01 1 11.574 -0.174 
2014 February-March 

2017 
LPG-02 1 11.615 -0.216 

MNG-04 1 9.324 0.577 2016 

Brazil -NX 64 

NXV-01 1 -52.352 -14.708 

2015 

March-May 2014 

NXV-02 1 -52.351 -14.701 

VCR-02 1 -52.168 -14.832 

NXV-10-1 0.1 -52.353 -14.713 

2014 

NXV-10-2 0.1 -52.352 -14.713 

NXV-10-3 0.1 -52.351 -14.713 

NXV-10-4 0.1 -52.349 -14.713 

NXV-10-5 0.1 -52.346 -14.713 

NXV-10-6 0.1 -52.349 -14.712 

NXV-10-7 0.1 -52.348 -14.711 

NXV-10-8 0.1 -52.347 -14.711 

NXV-10-9 0.1 -52.347 -14.711 

NXV-10-10 0.1 -52.346 -14.712 

Brazil -ST 136 261-10 0.25 -55.005 -3.019 2014 
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261-9 0.25 -55.015 -3.040 

August-September 
2015 

363-6 0.25 -54.956 -3.337 

363-3 0.25 -54.963 -3.297 

363-7 0.25 -54.961 -3.321 

Peru 159 

ESP-01 1 -71.595 -13.176 

2013 

April-November 
2013 

PAN-02 1 -71.263 -12.650 

SPD-01 1 -71.542 -13.047 

SPD-02 1 -71.537 -13.049 

TRU-04 1 -71.589 -13.106 

WAY-01 1 -71.587 -13.191 

ACJ-01 1 -71.632 -13.147 

2014 
PAN-03 1 -71.274 -12.638 

TAM-05 1 -69.271 -12.830 

TAM-06 1 -69.296 -12.839 

Malaysia 283 

SAF-01 1 4.732 117.619 

2016 
July-December 

2015 

SAF-02 1 4.739 117.617 

SAF-03 1 4.691 117.588 

SAF-04 1 4.765 117.700 

DAN-04 1 4.951 117.796 

DAN-05 1 4.953 117.793 

MLA-01 1 4.747 116.970 

MLA-02 1 4.754 116.950 

Brazil -NX: Nova Xavantina; Brazil -ST: Santarem; Malaysia: Malaysian Borneo. 
968 
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Table 2. Description of plant functional traits collected across the tropics and their relevance under a changing environment. 

Trait Abbreviation Units Description Relevance References* 

Leaf area Area cm2 
One-sided area of the leaf 

Higher leaf area could result in higher levels 
of light capture and  photosynthetic activity. 

(Walker et al., 
2014, Wright et 

al., 2004, Juneau 
& Tarasoff, 2012, 
Díaz et al., 2016, 

Hawthorne, 1995, 
Chave et al., 

2006, Huang et 
al., 2019)  

Specific leaf area SLA m2 g−1 
One‐sided area of a leaf divided by 
dry mass 

Relevant for photosynthetic capacity, light 
capture, water loss, net assimilation rate, 
leaf life span. 

Leaf thickness Thickness mm Thickness of a fresh leaf 

Trade-off between decreasing water 
transpiration at the expense of higher 
construction investment and probably lower 
photosynthetic efficiency in thicker leaves.  

Leaf nitrogen content N % 

Content per unit dry leaf mass 

Nutrient relevant for metabolic reactions, 
including light capture, related to 
photosynthetic capacity and growth. 
Restricted availability of some nutrients may 
limit plant carbon acquisition and growth.  

Leaf phosphorus content P % 

Leaf carbon content C % 

Leaf calcium content Ca % 

Leaf potassium content K % 

Leaf magnesium content Mg % 

Leaf water content LWC % Amount of water in the leaf 
relative to its dry and fresh mass 

Leaf mass is a proxy of leaf biomass 
investment which may vary depending on 
environmental conditions and phenology of 
species. It has been considered relevant for 
photosynthetic potential.  

Leaf dry mass Dry mass g Mass of a dry leaf 

Leaf fresh mass Fresh mass g Mass of a fresh leaf 

Amax Amax μmol 
m−2 s−1 

Light-saturated maximum rates of 
net photosynthesis at saturated 
CO2 (2000 ppm CO2) 

Indicate the maximum CO2 assimilation and 
are thus indices of leaf photosynthetic 
capacity 

Asat Asat μmol 
m−2 s−1 

Light-saturated rates of net 
photosynthesis at ambient CO2 
concentration (2000 ppm CO2) 

*References are not exhaustive. 
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Table 3. Spectral remote sensing, environmental and soil related variables used during the modelling protocol. All climatic 
variables but slope were calculated using a climatology of 30 years (1986-2015). All soil variables were calculated for the top 
30cm soil layer. Sentinel-2 band wavelengths (nm) are given in parenthesis after the band name. 

Type Variable Description References 

RS 
B2 (490), B3 (560), 
B4 (665), B8 (842) 

Sentinel-2 bands with spatial resolution of 10m 

www.esa.int 
 

B5 (705), B6 (740), 
B7 (783), B11 
(1610), B12 (2190) 

Sentinel-2 bands with spatial resolution of 20m 

 MCARI Modified Chlorophyll Absorption in Reflectance Index (Daughtry et al., 2000)   

 MSAVI2 Modified Soil Adjusted Vegetation Index 2 (Qi et al., 1994)  

 NDRE Normalized Difference Red edge Index (Barnes et al., 2000) 

 
Texture 

Entropy, calculated for vegetation indices 
(Haralick et al. 1973) 

 Correlation, calculated for vegetation indices 

Climate 

MCWD Mean annual climatic water deficit 

(Abatzoglou et al. 2018) 
MATmax Mean maximum annual temperature 

SM Soil moisture as a water balance indicator 

SRAD Downward Solar Radiation 

Soil-
Terrain 

eCEC Cation Exchange Capacity (mmol+ /kg-1)  Plot level soil data from 
the Global Environmental 
Monitoring (GEM) 
database 

pH Soil pH (H2O solution) 

Clay (%) Amount of clay (weight %) 

Sand (%) Amount of sand (weight %) 

Slope Terrain slope (30 m resolution) (Farr et al. 2007) 
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Table 4. Statistical results on the test data (20% of full dataset) for the 
global trait distribution models. The prediction accuracy is shown by the 
R2 score. 

Type Trait MAE RMSE R2 

Morphologi
cal and 

structural 

Area (cm2) 28.32 39.854 0.43 

Dry mass (g) 0.349 0.48 0.27 

Fresh mass (g) 0.799 1.075 0.26 

SLA (m2 g−1) 0.001 0.001 0.50 

Thickness (mm) 0.034 0.046 0.52 

Chemistry 

LWC (%) 3.718 4.886 0.36 

C (%) 1.237 1.615 0.70 

Ca (%) 0.14 0.204 0.64 

K (%) 0.133 0.186 0.63 

Mg (%) 0.055 0.075 0.46 

N (%) 0.23 0.3 0.59 

P (%) 0.015 0.02 0.59 

Photosynth
etic  

Amax (μmol m−2 s−1) 2.89 3.937 0.67 

Asat (μmol m−2 s−1) 1.297 1.734 0.55 

MAE: Mean Absolute Error; RMSE: Root mean square error. 
974 
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Table 5. Prediction accuracy (R2) on the testing data among regions (shaded Region mean R2 column) and functional traits (shaded Trait mean R2 row). Not shaded 
values in the table show the prediction accuracy (R2) on the test data per region and trait.  

Location 
P (%) 

Amax 
(μmol 

m−2 s−1) 
Ca (%) N (%) 

Thickness 
(mm) 

Asat 
(μmol 

m−2 s−1) 
Mg (%) C (%) 

SLA 
(m2 g−1) 

LWC (%) K (%) 
Dry 

mass 
(g) 

Area 
(cm2) 

Fresh 
mass (g) 

Region 
mean R2 

Australia 0.21 - 0.33 0.17 0.21 0.03 0.12 0.34 0.25 - 0.06 - 0.35 - 0.21 

Brazil -NX 0.68 0.42 0.49 0.52 0.66 0.52 0.46 - 0.54 0.07 0.07 0.38 0.08 0.31 0.40 

Brazil -ST 0.47 - 0.15 0.30 0.42 - 0.28 0.07 0.29 0.05 0.29 0.25 0.04 0.18 0.23 

Gabon 0.60 - 0.39 0.50 0.23 - 0.52 0.22 0.15 0.38 0.24 0.22 0.11 0.11 0.31 

Ghana 0.47 0.49 0.53 0.52 0.22 0.36 0.15 - 0.14 - 0.23 - 0.29 - 0.34 

Malaysia 0.34 0.48 0.50 0.27 0.31 0.36 0.31 0.38 0.06 0.24 0.28 0.07 0.11 0.03 0.27 

Peru 0.49 0.36 0.69 0.44 0.64 0.38 0.46 0.47 0.32 0.34 0.30 0.09 0.18 0.20 0.38 

Trait mean R2 0.47 0.44 0.44 0.39 0.38 0.33 0.33 0.30 0.25 0.22 0.21 0.20 0.17 0.17  

- :no data available; Brazil -NX: Nova Xavantina; Brazil -ST: Santarem.  976 
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