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Summary

An important tool to evaluate the performance of a dose finding design is the non-parametric

optimal benchmark that provides an upper bound on the performance of a design under a given

scenario. A fundamental assumption of the benchmark is that the investigator can arrange doses in

monotonically increasing toxicity order. While the benchmark can be still applied to combination

studies in which not all dose combinations can be ordered, it does not account for the uncertainty

in the ordering. In this work, we propose a generalization of the benchmark that accounts for this

uncertainty and, as a result, provides a sharper upper bound on the performance. The benchmark

assesses how probable the occurrence of each ordering is, given the complete information about

each patient. The proposed approach can also be applied to trials with an arbitrary number of

endpoints with discrete or continuous distributions. We illustrate the utility of the benchmark

using recently proposed dose finding designs for Phase I combination trials with a binary toxicity

endpoint and Phase I/II combination trials with binary toxicity and continuous efficacy endpoints.
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1. Introduction

There has been growing interest in combination dose finding trials of several agents administered

simultaneously. Whilst co-administration can induce improved activity, designing such trials is

more challenging compared to single-agent ones. Many single-agent dose finding designs are based

on the assumption that toxicity increases monotonically with the dose. However, in a combination

study, there are combinations that cannot be ordered with respect to increasing toxicity. As a

result, many novel model-based (see reviews by Riviere and others, 2015; Hirakawa and others,

2015, and references therein) and curve-free methods (e.g. Mozgunov and Jaki, 2019, 2020) were

proposed to relax this assumption. Similar to single-agent designs, the performance of these

methods is conventionally assessed by simulation studies. These studies use combination-toxicity

relationships, scenarios, which are chosen by the researchers themselves which adds subjectivity

to the assessment as the performance depends on the chosen scenario.

The problem of selecting the scenarios is of relevance in the dose-finding trials generally.

To reduce the subjectivity, O’Quigley and others (2002) proposed an evaluation tool, the non-

parametric optimal benchmark, that provides a scenario-specific evaluation of the performance in

terms of the proportion of correct selections (PCS) of single-agent designs. When no strong prior

information is used, the benchmark provides the highest PCS a design can achieve under the given

simulation scenario. Occasionally, dose-finding methods can result in PCS that exceeds the PCS

provided by the benchmark under certain scenarios. This is known as super-efficiency (Paoletti

and others, 2004) and might be an indication of the design favouring particular doses (either due

to the prior information or design specification) which the benchmark can reveal.

The benchmark was proposed under the assumption of monotonically increasing toxicity which

typically holds in single-agent trials. Whilst the original benchmark can be also applied to dose
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finding studies with unknown orderings (Mozgunov and others, 2020), the obtained upper bound

for the PCS is expected to be less sharp compared to the setting when the monotonicity assump-

tion holds. To illustrate this, consider a hypothetical setting of a dual-agent combination study

without early stopping. Assume that there are 3 increasing doses of agent A denoted by a1, a2, a3

and 3 increasing doses of agent B denoted by b1, b2, b3. Denote the combination of two doses ak

and bl by dkl where the first index refers to the kth dose of agent A, and the second index refers

to the lth dose of agent B. There are nine drug combinations in the trial.

Assume that the toxicity of combinations increases within each agent. This corresponds to

at least one of the subscripts in dkl increasing. However, some of the combinations cannot be

ordered, e.g. it is unknown whether d12 is more or less toxic than d31 as the dose of A is increased

while the dose of B is decreased. Due to this uncertainty, there are 42 complete orderings of these

combinations (see Supplementary Materials) that satisfy the monotonicity assumption within

each agent. We will call the orderings satisfying this assumption the feasible orderings. The term

“complete” refers to the feasible orderings of all nine combinations with respect to increased

toxicity. The term “partial ordering” will refer to an ordered subset of combinations that could

be arranged in increasing toxicity order (Wages and others, 2011).

Consider a binary toxicity endpoint – occurrence of a dose-limiting toxicity (DLT). The toxi-

city of dkl is characterised by toxicity probability pkl, k, l = 1, 2, 3. Suppose that the objective is

to find the combination with the toxicity probability closest to 30% and assume a sample size of

n = 36 patients. We would like to evaluate a design under the two scenarios given in Table 1.

The distance between the probabilities closest to the target is nearly the same under both

scenarios, although the locations of the target combinations are different. Under Scenario 1,

the target combinations are d12 and d21. Following the monotonicity assumption, one of these

combinations must be in the second position in any feasible complete ordering. Under Scenario 2,

there are more possibilities of the location of the target combinations. Combination d13 can be
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in the third, fourth, fifth, sixth, or seventh positions of the complete orderings, while d22 can be

in the fourth, fifth, and sixth positions (Table 6 in Supplementary Materials). Therefore, one can

expect that it is more challenging to find the target combinations under Scenario 2. However,

the original benchmark (implemented by Wages and Varhegyi, 2017) disregards the uncertainty

in the ordering and treats these scenarios similarly providing nearly the same PCS (Table 1).

In this work, we propose an extension of the benchmark for studies with unknown ordering.

The novel benchmark accounts for both the uncertainty in the target combination locations within

each feasible ordering and distribution of these orderings. We show that, compared to the original

benchmark, the proposal can provide a sharper bound on the performance of dose finding designs

relaxing monotonicity assumption while capturing the whole distribution of selections. In contrast

to the recent benchmark proposal for dual-agent combination dose-finding trials by Guo and Liu

(2018), the novel approach uses the original concept of complete information by O’Quigley and

others (2002), which assumes that outcomes of each patient can be observed at all combinations.

The benchmark, therefore, uses all available information about each patient, while accounting for

the fact that combinations that cannot be ordered carry limited information about each other.

In line with extensions of the original benchmark to categorical and continuous endpoints (Che-

ung, 2014; Mozgunov and others, 2020), the proposal allows for an arbitrary number of endpoints

having either discrete or continuous distributions. We demonstrate how the novel benchmark can

be applied to a Phase I/II dual-agent combination study evaluating a binary toxicity endpoint

and a Phase I/II combination study with binary toxicity and continuous efficacy endpoints.

We review the benchmark by O’Quigley and others (2002) in Section 2. The construction

of the benchmark for partial ordering in the combination setting with a single binary endpoint

is given in Section 3, and extended to trials with multiple endpoints in Section 4. Section 5

demonstrates applications of the proposed benchmark before we conclude with a discussion.
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2. The Benchmark for Single-Agent Studies with Binary Endpoint

Consider a Phase I clinical trial with a binary toxicity outcome, DLT or no DLT, n patients and

M increasing doses of a drug, c1, . . . , cM . Let Y
(i)
j be a Bernoulli random variable taking value

y
(i)
j = 0 if patient i has experienced no DLT at dose cj and y

(i)
j = 1 otherwise. This distribution

of Y
(i)
j is characterised by probability pj such that pj = P

(
Y

(i)
j = 1

)
for j = 1, . . . ,m and any

i. The goal of the trial is to find the maximum tolerated dose (MTD) defined as the dose having

the probability of toxicity closest to the target level, γ, typically between 20% and 35%.

The benchmark uses the concept of complete information. For a given patient, the complete

information consists of the vector of outcomes (DLT or no DLT) at all doses (in contrast to an

actual trial, in which patients can only be assigned to one) assuming that p1, . . . , pm are known.

Formally, the information about the DLT of patient i at each dose is summarised in a single value,

u(i) ∈ (0, 1), which is drawn from a uniform distribution, U(0, 1), and is known as a toxicity profile

of patient i. The variable u(i) is transformed to response y
(i)
j = 0 for doses with pj < u(i) and

to y
(i)
j = 1 otherwise. The procedure is repeated for n patients, which results in the vector of

responses for each dose level yj = (y
(1)
j , . . . , y

(n)
j ), j = 1, . . . ,M . Note that the procedure is not

sequential – responses for previous patients are not required to compute the complete information

for the next ones. Therefore, there is no assignment criterion used by the benchmark.

Let R(yj , γ) be a summary statistic for the dose cj , upon which the decision about the

MTD selection is based. For example, in many Phase I trials with binary outcomes, R(yj , γ) =∣∣∣∑n
i=1 y

(i)
j

n − γ
∣∣∣ is a conventional choice. Therefore, cj , for which R(yj , γ) is minimised among

all j = 1, . . . ,M , is declared as the MTD in a single trial. The procedure is repeated for Z

simulated trials. For each dose, the proportion of simulated trials that choose this dose as the

MTD is computed. This proportion is the benchmark’s estimate for the upper bounds of the

PCS. Importantly, the benchmark is an evaluation tool and is not obtainable in actual trials. It

can however be used at the planning stage to evaluate the performance of a dose finding design.
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3. Benchmark for Phase I Combination Studies with Binary Endpoint

3.1 Setting

Using the notations above, consider a Phase I dual-agent trial with a1, . . . , aK doses of drug A,

b1, . . . , bL doses of drug B, their combinations dkl, and a binary toxicity outcome, DLT or no DLT.

Similarly to the single-agent setting, let Y
(i)
kl be a Bernoulli random variable taking value y

(i)
kl = 0

if patient i has experienced no DLT at combination dkl and y
(i)
kl = 1 otherwise, k = 1, . . . ,K, l =

1, . . . , L. The distributions of Y
(i)
kl are characterised by probabilities pkl = P

(
Y

(i)
kl = 1|dkl

)
that

increase with the dose of each compound. The goal is to find the maximum tolerated combination

(MTC), the combination corresponding to a risk of toxicity closest to the target value γ. We use

the following example throughout this section to demonstrate the novel benchmark construction.

Example 1. Consider the simplest dual-agent trial with 2 doses of drugs A and B with a1 < a2

and b1 < b2, and four combinations, d11, d12, d21, d22, and suppose the target toxicity is 20%.

There are two complete orderings satisfying the monotonicity assumption within each agent

(a) d11 → d21 → d12 → d22 and (b) d11 → d12 → d21 → d22. (3.1)

Then, the partial orderings are d11 → d12 → d22 and d11 → d21 → d22.

To provide an upper bound for the PCS, the benchmark for unknown ordering proposed in

this work answers two questions: (i) “What is the probability of finding the true MTC if the

ordering is known?”, and (ii) “What is the probability of an ordering being identified as a correct

one?”. The original benchmark answers the first question only, and hence, provides a less accurate

PCS upper bound. The general construction of our proposal is outlined below.

• Assuming the true ordering is known, obtain the patients’ responses at each combination;

• Fixing these responses but not using the information about the true ordering, compute the

probability that these responses were obtained from a given ordering;
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• Under the given ordering, find the combination selected and assign the corresponding prob-

ability of this ordering being identified as a correct one to this combination selection.

3.2 Construction: Generating Responses

To address the first question, we start by following the original benchmark. Assume that pkl

is known for all k, l. We will refer to these probabilities as the true scenario. In the simulation

setting, this sequence is known.

As before, assume that the toxicity profile of patient i is summarised in a single value u(i) ∼

U(0, 1) meaning that patient i can tolerate combinations dkl with pkl < u(i) and would experience

a DLT if given combinations dk′l′ associated with pk′l′ > u(i). Then, the patient’s response can

be written as y
(i)
kl = 1 for pkl > u(i) and as y

(i)
kl = 0, otherwise. Assume that there is a sample of

n patients with tolerances u(1), . . . , u(n) and denote the number of DLTs for these n patients at

each combination by xkl =
∑n

i=1 y
(i)
kl , k = 1, . . . ,K, l = 1, . . . , L. Estimates of the probabilities

of toxicity at dkl can then be found as p̂kl = xkl

n . Note that the patient outcomes are generated

using the true scenario and, hence, a true ordering.

Example 1 (Continued). Assume that the true probabilities of toxicity pkl for d11, d12, d21, d22

are given by p11 = .10, p12 = .30, p21 = .20, p22 = .40.[
0.10 0.30
0.20 0.40

]
implying that the ordering (a) in Equation (3.1) is correct. Assume that n = 10 patients with

toxicity profiles u(1) = 0.59, u(2) = 0.01, u(3) = 0.29, u(4) = 0.28, u(5) = 0.81, u(6) = 0.26, u(7) =

0.72, u(8) = 0.31, u(9) = 0.95, u(10) = 0.11 were generated. This corresponds to the following

numbers of DLTs at each combination x11 = 1, x12 = 5, x21 = 2, x22 = 6.

We now fix the number of DLTs obtained and find how likely is that they were drawn from

each of the feasible orderings.
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3.3 Construction: Identifying the Probability of Each Ordering

Fixing the values of the true toxicity probabilities and the number of DLTs at each combination,

consider now S complete feasible orderings for these values. We assume that the values of toxicity

probabilities are known but we do not know which probability goes with which combination.

Denote the probability of DLT given dkl under ordering s by q
(s)
kl , and let s? be a correct ordering.

Consequently, q
(s?)
kl = pkl for all k, l. Probabilities q

(s)
kl are constructed as all possible permutations

(with respect to the complete feasible orderings) of the true probabilities pkl.

Example 1 (Continued). There are two feasible orderings in the considered example, S = 2.

Consequently, q
(s)
kl , s = 1, 2 are

q(1) =

[
0.10 0.30
0.20 0.40

]
, q(2) =

[
0.10 0.20
0.30 0.40

]
where the values corresponding to the uncertainty in the monotonic ordering are underlined.

The second question to be answered by the benchmark can be reformulated as “How likely it

is that the the sequence of q
(s)
kl (also refered to as ordering s) is a correct one, given the observed

responses xkl?”. Using the data generated for all n patients, the proposed benchmark computes

P
(
Pkl = q

(s)
kl |xkl

)
, s = 1, . . . , S (3.2)

for all dkl. Note that the probability of toxicity, Pkl, is now considered as a random variable itself,

which can take a discrete number of values which are defined by the true toxicity probabilities

that are feasible at the position (ak, bl).

Using Bayes Theorem, the probability (3.2) is proportional to the likelihood of observing Xkl

given the DLT probability Pkl = q
(s)
kl , which equals

P
(
Xkl = xkl|Pkl = q

(s)
kl

)
= Bin

(
xkl, n, q

(s)
kl

)
=

(
n

xkl

)
q
(s)
kl

xkl
(

1− q(s)kl

)n−xkl

where Bin (·) is the density function of the binomial random variable. Let tkl be the number of

values Pkl can take, and let h
(s)
kl = P

(
Pkl = q

(s)
kl

)
be a prior probability that the toxicity proba-
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bility at dkl under ordering s is q
(s)
kl such that

∑S
s=1 h

(s)
kl = 1. If all feasible values corresponding

to combination dkl are apriori equally likely then h
(s)
kl = 1

tkl
. Then, the posterior probability that

the DLTs at dkl were obtained from the probability q
(s)
kl given DLTs xkl is proportional to

P
(
Pkl = q

(s)
kl |xkl

)
∝
(
n

xkl

)
q
(s)
kl

xkl
(

1− q(s)kl

)n−xkl

× h(s)kl . (3.3)

Using these posterior probabilities for each combination corresponding to some ordering s′, we

find the probability of this ordering to be identified as a correct one. We allow for different

importances of the contributions of various combinations to the posterior probability of the

responses to be obtained from ordering s′. Specifically, we assume that it is proportional to

P (s = s′|x11, . . . , xKL) ∝
∏
k,l

[(
n

xkl

)
q
(s′)
kl

xkl
(

1− q(s
′)

kl

)n−xkl

×h(s
′)

kl

]wkl

(3.4)

where wkl is a weighting parameter corresponding to combination dkl. The RHS in Equation (3.4)

is the power likelihood with parameter wkl > 0 used in Bayesian analysis to control the learning

rate of Bayesian update (Holmes and Walker, 2017). Values 0 < wkl < 1 give less prominence

to the data than the Bayesian model. In the context of the study with uncertainty in monotonic

ordering, the weights wkl represent different contributions the combinations provide about the

probability of complete ordering. Intuitively, one learns about the combinations within the same

partial ordering more than about combinations that cannot be ordered. Then, the probability of

ordering s′ can be written as

P (s = s′|x11, . . . , xKL) =

∏
k,l

[
Bin

(
xkl, n, q

(s′)
kl

)
×h(s

′)
kl

]wkl

∑S
s=1

∏
k,l

[
Bin

(
xkl, n, q

(s)
kl

)
×h(s)kl

]wkl
. (3.5)

Below, we consider the following form of the weight function

wkl = (1 + #{combinations that cannot be ordered wrt dkl})−1 (3.6)

corresponding to a higher weight if one has less uncertainty about the toxicity probability of

combination dkl with respect to other combinations. Note that the form of the weight function
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above is an arbitrary choice and other forms of the weight function that reassemble the idea of

assigning less weight to combinations carrying less information can be used.

Example 1 (Continued). Under 1, 5, 2, 6 DLTs observed at combinations d11, d12, d21, d22, the

probabilities of observing these responses xkl under q(1) and q(2) in n = 10 patients are

Bin
(
x11 = 1, P11 = q

(1)
11 = q

(2)
11 = .10

)
≈ .39, Bin

(
x22 = 6, P22 = q

(1)
22 = q

(2)
22 = .40

)
≈ .11,

Bin
(
x12 = 5, P12 = q

(1)
12 = .30

)
≈ .10, Bin

(
x12 = 5, P12 = q

(2)
12 = .20

)
≈ .03,

Bin
(
x21 = 2, P21 = q

(1)
21 = .20

)
≈ .30, Bin

(
x21 = 2, P21 = q

(2)
21 = .30

)
≈ .23.

The weight values for each combinations (3.6) are equal to w11 = w22 = 1 and w12 = w21 =

1
2 . The weight w11 represents that the responses at d11 and d22 provides information for all

four combinations, while the responses d12 and d21 do not provide information about each other.

Assume that apriori any of the probability values specified in the true scenario at the anti-diagonal

elements of the combination-toxicity matrix are equally likely, h
(1)
12 = h

(2)
12 = h

(1)
21 = h

(2)
21 = 1

2 .

Then, the probabilities of each ordering can be found as P(s = 1|·) = .69 and P(s = 2|·) = .31.

Note that the posterior probabilities of the orderings in Equation (3.5) should not be used to

select a single correct ordering to base further inference on. Instead, these probabilities will define

each ordering’s contribution to the selection probabilities obtained by the novel benchmark.

3.4 Construction: Computing the Proportion of Selections under the Benchmark

Once the probability of each ordering s = 1, . . . , S is found, the benchmark proceeds as follows.

Fix the ordering s′ and find the estimates of the toxicity probabilities at combination dkl, q̂
(s′)
kl

under this ordering using the toxicity profiles u(1), . . . , u(n) generated before and computed as

q̂
(s′)
kl =

∑n
i=1 I

(
u(i)<q

(s′)
kl

)
n . Under ordering s′, the MTC is selected using

R(q̂
(s′)
kl , γ) =

∣∣∣q̂(s′)kl − γ
∣∣∣. (3.7)
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The combination which minimises criterion (3.7), is selected with the probability that the ordering

s′ is selected, P (s = s′|·). Using the same toxicity profiles, the procedure is repeated for all S

orderings. The resulting estimates are the probability of selection of each combination.

Example 1 (Continued). If ordering s = 1 is selected, then the estimates of the toxicity proba-

bilities are q̂
(1)
11 = .10, q̂

(1)
12 = .50, q̂

(1)
21 = .20, q̂

(1)
22 = .60. Targeting the toxicity probability of 20%,

the combination d21 is selected using criterion (3.7). As ordering s = 1 is selected with probability

.69, then d12 is also selected with probability .69. Similarly, if the ordering s = 2 is selected, then

the estimates are q̂
(1)
11 = .10, q̂

(1)
12 = .20, q̂

(1)
21 = .50, q̂

(1)
22 = .60, and d12 is selected with probability

0.31. Therefore, the probability of combinations d11, d12, d21, d22 being selected in this simulated

trial with the observed DLTs are (0.00, 0.31, 0.69, 0.00), respectively.

Finally, by generating Z simulated trials (each with n new toxicity profiles), the probability

of each combination selection can be found in every simulated trial; the mean probability over Z

simulations will be the benchmark’s estimate of the combinations’ selections. These proportions

of each combinations’ selections are used to obtain the proportion of correct selections (PCS) for

a given definition of a “correct” combination set by the clinicians in a trial.

A step-by-step guide on how the benchmark for studies with unknown ordering and a binary

endpoint can be constructed based on Z simulated trials is given in Algorithm 1.

An application of the proposed benchmark to evaluate a dose finding design for a Phase I

dual-agent combination study is provided in Section 5.1.

4. Benchmark for Combination Studies with Multiple Endpoints

We now extend the proposed benchmark to accommodate a growing number of combination

studies evaluating more than a single toxicity endpoint. For example, there are several novel

designs for Phase I/II combination studies evaluating binary toxicity and binary or continuous

efficacy simultaneously (Hirakawa, 2012; Wages and others, 2014; Yuan and others, 2016). For
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Algorithm 1 Computing a partial ordering benchmark for a single binary outcome

1. Specify S feasible complete orderings and toxicity probabilities pkl for all combinations,

k = 1 . . . ,K, l = 1 . . . , L.

2. Generate a sequence of patients’ profiles {ui}ni=1 from U(0, 1), transform ui to y
(i)
kl = 1 if

pkl > ui and store xkl =
∑n

i=1 y
(i)
kl , k = 1 . . . ,K, l = 1 . . . , L, X = [x11, . . . , xKL].

3. Compute the probability of ordering s′ being selected, P (s = s′|X), s′ = 1, . . . , S.

4. For each ordering s′, s′ = 1, . . . , S, compute estimates q̂
(s′)
kl , the criterion R(q̂

(s′)
kl , γ), and

find the target combination dk?l? under ordering s′ and set Qk?l?(z) = P (s = s′|X) .

5. Repeat steps 2-4 for z = 1, . . . , Z simulated trials.

6. Use Q̂kl =
∑Z

z=1Qkl(z)/Z as the selection proportion of dkl, k = 1 . . . ,K, l = 1 . . . , L.

this, we build on the benchmark for continuous endpoints (Mozgunov and others, 2020).

Consider a Phase I/II trial with toxicity outcome T
(i)
kl and efficacy outcome E

(i)
kl with CDFs

Ft,kl and Fe,kl, respectively, at dkl for patient i. Assume that Ft,kl and Fe,kl are parametrized by

θt,kl and θe,kl, respectively, and ft,kl(·), fe,kl(·) are the density functions.

For patient i, the toxicity profile is given by u
(i)
t ∈ (0, 1) and the efficacy profile is given by

u
(i)
e ∈ (0, 1). Then, following Mozgunov and others (2020), the toxicity and efficacy responses,

t
(i)
kl and e

(i)
kl , patient i would have at combination dkl can be found as t

(i)
kl = F−1t,kl

(
u
(i)
t

)
, and e

(i)
kl =

F−1e,kl

(
u
(i)
e

)
. Repeating the procedure for n patients, one can obtain the vectors tkl =

(
t
(1)
kl , . . . , t

(n)
kl

)
,

ekl =
(
e
(1)
kl , . . . , e

(n)
kl

)
for each dkl.

Fixing the values of the toxicity and efficacy parameters, θt,kl, θe,kl, and the toxicity and

efficacy responses tkl, ekl, consider now, St orderings of the values of θt,kl, and Se orderings of

the values of θe,kl. We assume that the values of parameters θt,kl, θe,kl are known, but similar to

the setting above, we do not know which parameters go with which combination. For example,

in the setting with binary toxicity and efficacy responses, these parameters are probabilities of

toxicity and efficacy, respectively. Denote the toxicity parameter associated with combination dkl
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under ordering st by λ
(st)
t,kl , the efficacy parameter associated with combination dkl under ordering

se by λ
(se)
e,kl , and let s?t , s?e be the true orderings (true scenario). Consequently, λ

(s?t )
t,kl = θt,kl

and λ
(s?e)
e,kl = θe,kl for all k, l. As before, parameters λ

(st)
t,kl , λ

(se)
e,kl are constructed as all possible

permutations of the true parameter values θt,kl, θe,kl, respectively.

Again, in the setting of the benchmark, one would like to answer the question “What is

the probability of identifying correct orderings s?t and s?e among all feasible orderings given the

responses tkl, ekl, k = 1, . . . ,K, and l = 1, . . . , L?”. The probability of ordering st = s′t being

identified as a correct one is

P (st = s′t|t11, . . . , tKL) =

∏
k,l

[
L
(
tkl, λ

(s′t)
t,kl

)
×h(s

′
t)

t,kl

]wkl

∑St

st=1

∏
k,l

[
L
(
tkl, λ

(st)
t,kl

)
×h(st)t,kl

]wkl
(4.8)

where L is the likelihood function L
(
tkl, λ

(s′t)
t,kl

)
=
∏n

i=1 f
(
t
(i)
kl , λ

(s′t)
t,kl

)
and h

(s′t)
t,kl is the prior

probability that θt,kl equals λ
(s′t)
t,kl under s′. Similarly, one can find P (se = s′e|e11, . . . , eKL). Then,

the probability of identifying orderings s′t and s′e simultaneously, is

P (st = s′t, se = s′e|·) =
P (st = s′t|·)× P (se = s′e|·)∑St,Se

u,v P (st = u|·)× P (se = v|·)
.

Note that the weights wkl have the same interpretation as above, and the function in the form

given in Equation (3.6) is studied further.

Under each combination of orderings st and se, using previously generated responses tkl, ekl,

one can find the target combination (TC) that optimizes some decision criterion R(·). Then,

this combination is selected with probability P (st, se|·). The procedure repeats for Z simulated

trials. Algorithm 2 provides step-by-step guidance on how the benchmark for studies with partial

ordering and Q endpoints with discrete or continuous distributions can be constructed.

Note that the construction of the benchmark above concerns a general case of an arbitrary

(and possibly different) number of orderings of toxicities and efficacies. However, there are cases

in which it might be reasonable to assume that the order of toxicities is the same as the order

of efficacies, st = se = s. Then, the construction of the probabilities of orderings for a pair of
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Algorithm 2 Computing a partial ordering benchmark for studies with several endpoints

1. Specify CDFs Fq,kl for q = 1, . . . , Q endpoints and all combinations k = 1 . . . ,K, l = 1 . . . , L.

Specify S1, . . . , SQ orderings for each endpoints, and criterion R(·).

2. Compute profiles u
(i)
q for all patients i = 1, . . . , n and all endpoints q = 1, . . . , Q.

3. Apply the quantile transformation y
(i)
q,kl = F−1q,kl

(
u
(i)
q

)
for i = 1, . . . , n, q = 1, . . . , Q, k =

1, . . . ,K and l = 1, . . . , L, and store yq,kl.

4. Compute the probability (4.8) of ordering sq = 1, . . . , Sq being a correct one, q = 1, . . . , Q.

5. For each combination of orderings (s′1, . . . , s
′
Q), compute the values of the criterion T (·), find

the target combination dk?l? and set Qk?l?(z) = P
(
s1 = s′1, . . . , sQ = s′Q|·

)
.

6. Repeat steps 2-5 for z = 1, . . . , Z simulated trials.

6. Use Q̂kl =
∑Z

z=1Qkl(z)/Z as the selection proportion of dkl for k = 1 . . . ,K, l = 1 . . . , L.

endpoints reduces to the computation of the probability of orderings for a single endpoint but

using both toxicity and efficacy data. Specifically, in case of the toxicity and efficacy orderings

being the same, probabilityn (4.8) can be found as

P (s = s′|·) =

∏
k,l

[
L
(
tkl, λ

(s′)
t,kl

)
× L

(
ekl, λ

(s′)
e,kl

)
×h(s

′)
kl

]wkl

∑S
s=1

∏
k,l

[
L
(
tkl, λ

(s)
t,kl

)
× L

(
ekl, λ

(s)
e,kl

)
×h(s)kl

]wkl

where h
(st)
t,kl = h

(se)
e,kl = h

(s)
kl . Applications of the proposed benchmark to evaluate a Phase I/II dual-

agent design for binary toxicity and continuous efficacy when toxicity and efficacy orderings can

differ is provided in Section 5.2, and an evaluation in the setting of binary toxicity and efficacy

endpoints with coinciding orderings is given in Supplementary Materials.

5. Examples

Below, we provide two examples of how the novel benchmark can be used at the planning stage

of a trial to provide a more accurate evaluation of a design to be used in the study. Specifically,

we consider a Phase I combination clinical trial with a binary toxicity endpoint, and a Phase I/II
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clinical trial with binary toxicity and continuous efficacy endpoints.

5.1 Evaluation of Dose Finding Designs for Combination Studies with Binary Toxicity

The original benchmark for single-agent trials was found to provide an accurate upper bound

for the model-based design, continual reassessment method (O’Quigley and others, 2002, CRM).

Therefore, it is of interest to evaluate how the extension of CRM relaxing the monotonicity

assumption proposed by Wages and others (2011), Partial Ordering CRM (POCRM), performs

compared to the novel benchmark for partial ordering. Additionally, we also evaluate the Bayesian

I2D design by Wang and Ivanova (2005).

5.1.1 Setting Consider a dual-agent combination study with three doses of drug A and five doses

of drug B (resulting in fifteen combinations), n = 60 patients and a binary toxicity endpoint.

The goal of the trial is to identify the MTC corresponding to the target probability of toxicity

γ = 0.30. We consider ten combination-toxicity scenarios (Table 2) considered by Riviere and

others (2015) in their review of dose finding designs for combination studies

On top of the true probabilities of toxicity, one needs to specify the feasible toxicity orderings

to apply the proposed benchmark. The total number of orderings satisfying the monotonicity

assumption within each agent is S = 6006 (see Supplementary Materials for procedures computing

the orderings), and we assume that all orderings are equally likely prior to the trial. Finally, in

line with the objective function of the dose finding designs under evaluation, we consider absolute

distance decision criterion (3.7) for the dose selection.

We evaluate the maximum likelihood (two-stage) version of the POCRM design proposed

by Wages and others (2011) and the I2D design by Wang and Ivanova (2005). The core idea

of the POCRM is to run several CRM models under different orderings and allocate patients

sequentially based on the most likely ordering. The maximum likelihood POCRM requires a
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sequence of initial patients’ allocations to be used until at least one DLT and one non-DLT have

been observed. After this, the combination selection will be governed by the POCRM. The initial

escalation phase as proposed by Wages (2015) is considered. Furthermore, the POCRM requires

specification of a set of orderings that will be tried by the design. We consider six orderings

as proposed by Wages and Conaway (2013); Wages (2015) that were found to lead to good

operational characteristics. The two-stage design is implemented in R-package pocrm (Wages and

Varhegyi, 2013). We also evaluate the I2D design as specified by Riviere and others (2015).

We also include the benchmark proposed by Guo and Liu (2018) for trials with a single binary

endpoint. We refer to this benchmark as “GL”. It is based on the critical information introduced

by the authors that is argued to offer a middle ground between the complete information and

data available in actual trial. The GL as specified in the original work is used in the evaluation.

5.1.2 Numerical Results Table 3 shows the PCS for I2D, POCRM, the original benchmark

(Benchmark), the novel benchmark for partial ordering (PO-Benchmark), and the benchmark

by Guo and Liu (2018) (GL). The results of I2D are extracted from Table 2 in the original

review, and the results of POCRM are extracted from Table 1 in the comment by Wages (2015).

Comparing the proposed PO-Benchmark and GL approach under scenarios in which the

target combination is located on a diagonal (Scenarios 1–3), they provide similar PCS. Under

Scenario 4, PO-Benchmark results in 7% higher PCS than the GL approach and performs similar

to the original benchmark as there is little uncertainty in the monotonicity associated with the

target combination. Under Scenario 5, a similar behaviour for the PO-Benchmark is found but

the GL approach now corresponds to higher PCS than both the PO-Benchmark and original

benchmark that employs the monotonicity assumption.

Under Scenarios 6 and 7, while PO-Benchmark implies that it is more challenging to locate

the target combination than, for example, in Scenarios 1–3, the PCS of 65–66% against 73–78%,
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the GL approach suggests otherwise: PCS of 77-89% against 73–75%. This is counter-intuitive

due to fewer target combinations (Scenarios 6) and a more complex interaction mechanism of the

compounds (Scenario 7). Under Scenario 7, the GL approach again results in higher PCS than

the original benchmark.

Finally, differences between the PO-Benchmark and GL approach can be seen under Sce-

narios 8–10 with a single target combination. While the PO-Benchmark suggests that these are

the most challenging scenarios to find the target combination, the GL suggests that it is, in fact,

easier than, for example, Scenario 1 with three target combinations located on the same diagonal.

Once more the GL approach, under Scenarios 8 and 9, results in slightly higher or nearly the

same PCS as the original benchmark. Consequently, the GL approach does not provide as sharp

an upper bound under a number of scenarios, and the PO-Benchmark might provide a more

accurate guidance on how challenging each scenarios is under the uncertainty in the ordering.

Under all considered scenarios, the two dose finding designs result in lower PCS compared

to both the original benchmark and the benchmark for partial ordering. Importantly, the orig-

inal benchmark considered all scenarios with the MTC being not the first or last combination

(scenarios 4 and 5, respectively) as equally difficult with nearly 84% PCS. However, this does

not reflect the true challenges that these scenarios impose as they have a different number of the

MTCs located at different places on the combination grid. The benchmark for partial ordering

recognizes these differences and provides a sharper upper bound for the PCS. Specifically, under

Scenario 1, the POCRM and I2D result in 72.8% and 68.0% PCS, respectively. This corresponds

to the ratios (with respect to the PO-Benchmark) of 72.8/73.8=98.6% and 68.0/73.8=92.1%,

respectively. At the same time, under Scenario 6, both POCRM and I2D result in a much lower

PCS 59.4% and 37.2%. Looking at these values alone (or using the original benchmark) can

result in the conclusion that these designs perform poorer in this case compared to Scenario 1.

However, the ratio of PCS with respect to the PO-Benchmark is 59.4/65.5=90.7% for POCRM
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and 37.2/65.5=56.8% for I2D. Therefore, POCRM still corresponds to a relatively accurate per-

formance, while the I2D design does have potential problems under these scenarios but not as

severe as one might conclude by considering the PCS alone.

Regarding the overall performance, POCRM corresponds to a ratio of PCS (compared to PO-

Benchmark) of at least 88% under 8 out of 10 scenarios. Under the other two scenarios, Scenario 5

and Scenario 7, the ratio is around 75% which is still relatively high. While further calibration

of the model parameters can result in less diverse values of ratios, this is an indication that the

POCRM design under the proposed specification is properly calibrated and results in accurate

selections under many different scenarios. The I2D design results in the ratio above 87% in 6 out

of 10 scenarios. For scenarios 6-7 and 9-10, the I2D design corresponds to ratios of 56.8%, 63.8%,

8.9%, and 23.9%, respectively. This implies that further tuning of the I2D design is required

before the design can be applied to an actual clinical trial.

Overall, the novel benchmark has provided noticeable added value over the original bench-

mark. It leads to the conclusion that the POCRM design results in a good performance in many

different scenarios while I2D requires further attention. We refer the reader to Supplementary

Materials for another example of the POCRM evaluation with three doses of each drug.

5.2 Evaluation of Phase I/II Design for Binary Toxicity and Continuous Efficacy

Below, we evaluate the Phase I/II design for combination trials with binary toxicity and con-

tinuous efficacy endpoints proposed by Hirakawa (2012). We refer the reader to Supplementary

Materials for the evaluation of Phase I/II design for binary endpoints.

Hirakawa (2012) considered Phase I/II cervical carcinoma trial, in which the squamous cell

carcinoma antigen (SCCA) was used as a marker of effect on a continuous scale. Among others,

a combination setting with two compounds (A and B) was considered. There were two doses of

drug A and four doses of drug B. The efficacy outcome was “change in log-transformed SCCA
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levels from baseline and end of treatment”. Consequently, the lower values of the efficacy out-

comes correspond to better performance. It was assumed that the efficacy endpoints has a normal

distribution N (µkl, 1) at combination dkl. The toxicity was evaluated as a binary endpoint char-

acterized by the probability pkl at combination dkl. The goal of the combination trial was to find

the TC defined as the safe and efficacious combination having the highest efficacy. The upper

toxicity bound is φ = 0.3 and the upper efficacy bound is ψ = 0 corresponding to no changes

in SCCA levels. To find the target combination, Hirakawa (2012) proposed a model-based ap-

proach with a four-parameter combination-toxicity model and an Emax-type seven-parameter

combination-efficacy model. The combination selection was based on a Mahalanobis-type dis-

tance representing the trade-off between toxicity and efficacy and computed using the posterior

distribution of the parameters. We will adopt the notation “Emax” for this design.

The proposed benchmark requires all feasible orderings to be specified. Assuming that the

toxicity and efficacy increases with the dose, there are 14 feasible orderings (see Supplementary

Materials). Then, the benchmark as in Algorithm 2 with weight function (3.6) and with the

binomial likelihood for the toxicity endpoints and the normal likelihood for the efficacy endpoint,

assuming that all the orderings are equally likely apriori, can be applied. The following decision

criterion is used by Hirakawa (2012)

R(y1,kl,y2,kl) =

∑n
i=1 y

(i)
2,kl

n
× I
(∫ +∞

0

g2,kl(v|y2,kl)dv < η2

)
× I
(∫ 1

0.3
g1,kl(v|y1,kl)dv < η1

)
.

(5.9)

Three scenarios considered in the original work are given in Table 4, and proportions of each

combination selections by the Emax design and respective benchmarks are given in Table 5.

Under Scenario 1, the original benchmark selects d22 in almost all trials due to the known

ordering of toxicities and efficacies. At the same time, the benchmark for partial ordering selects

the target combination in 88% of trials with d21 having the second largest proportion of selections.

It also selects d12 and d13 with small probabilities. This is in fact in line with the proportion of
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selections by the Emax design. The ratio of PCS with respect to the Po-Benchmark is nearly 80%

against approximately 70% using the original benchmark. Under Scenario 2, both benchmarks

lead to the same evaluation of the design resulting in the conclusion that the unknown ordering

does not cause any additional obstacles for a design to select the target combination. The ratio

of PCS is again nearly 80%. Under Scenario 3, the original benchmark recommends d12 and

d22 in almost 99% of trials, and never selects d21 and d31 as the complete ordering is known.

The PO-Benchmark, however, shows that the unknown ordering makes a correct selection more

challenging, and selects corresponding suboptimal combinations in 6.5% of trials. This, again,

is in line with the Emax design which selects the TC in 44.9% of trials (against 46.8% for the

PO-Benchmark - the ratio of PCS is 95%) and combinations d21 and d13 in 7.1% of trials.

Overall, the evaluation of the Emax design using the novel benchmark provides the conclusion

that the design has high accuracy in all three considered scenarios with the ratio of PCS being

above 80%. At the same time, the original benchmark would reveal some problems with the

design under Scenario 1, while the performance is as good as under Scenario 2.

6. Discussion

A novel benchmark for dose finding studies with unknown ordering is proposed. The novel bench-

mark is a generalization of the original proposal by O’Quigley and others (2002) for the setting

with unknown ordering. The distinguishing feature of the proposal is that it assesses the com-

plexity of scenarios taking into account not only the uncertainty about the parameters but also

the uncertainty about the ordering of these parameters. The proposed benchmark computes the

proportions of each combination selection for a given scenario (that might have several combina-

tions with either the same or close toxicity probabilities). It is found that the novel benchmark

can provide a more accurate evaluation of dose finding designs for combination studies than

the analysis compared to the original benchmark. The novel approach is easy to implement and
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does not require any additional information other than that which is available in a simulation

study. Finally, the proposed benchmark is computationally feasible even under a large number of

orderings as obtaining the benchmark under each ordering has low computational costs.

The proposed benchmark does not select a correct ordering, but in line with the main objective

of many Phase I trials, selects the MTC. Moreover, the probability of the ordering being identified

as a correct one in itself is not necessarily a useful measure of a good procedure for the MTC

selection objective as there may exist multiple orderings that are identical up to the point of the

MTC. Either one of these orderings can result in recommending a correct MTC. Consequently,

the probability of each ordering is used to compute the probability of the selection under this

ordering rather than to select the single ordering and make the inference solely based on it.

Similarly to the original benchmark, the partial ordering benchmark is an evaluation tool

that can be used to comprehensively assess the performance of a design that might be considered

for a trial. Being a theoretical tool, the benchmark should be used at the planning stage of the

trial. Importantly, for the fair and meaningful comparison, the benchmark should use the same

criterion for the combination selection as the design under evaluation. The benchmark can also

stimulate discussions about the sample size (Cheung, 2013). If in some scenarios, one observes a

low PCS under the benchmark, this might indicate that the change in the sample size/number

of doses should be explored. At the same time, low PCS should not be interpreted outside of the

context as the benchmark accounts for the difficulty of the scenarios. The clinical plausibility of

each scenario should be accounted for when interpreting the benchmark’ results. An investigation

of the link between the sample sizes and the benchmark performance is subject to future research.

Exploring the behaviour of the designs under various assumptions on the correlation between

these endpoints and interaction between the compounds might be of interest at the planning stage.

The benchmark includes the correlation in its assessment through the algorithm to generate

the complete information using the pre-specified value of the correlation coefficient. Similarly,
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the interaction is accounted for implicitly via the simulation scenarios themselves by specifying

the toxicity probabilities. In this sense, the proposed benchmark is universal as allows for the

assessment of each of these aspects.

While our examples of the benchmark concerned the setting where each of the orderings is

equally likely apriori, the benchmark construction allows for prior information about each ordering

to be incorporated. As the number of complete orderings can be large, we propose to include this

information through the prior information of each combination location in the complete ordering.

For example, eliciting the information about the second combination in the complete ordering

can be phrased as “What is the probability that the second-lowest dose is d12?”.

The original benchmark provides an upper bound for the proportion of correct selections as

it employs the complete information about each patient. However, it is known that a particular

method can provide a higher PCS than the original benchmark under a given scenario if the

prior information used is strong enough (Paoletti and others, 2004). The same applies to the

benchmark for the partial ordering. Additionally, the proposed benchmark depends on the choice

of weight function, wkl. Whilst we have found that the proposed weight function results in an

accurate upper bound for a dose finding method’s performance in many scenarios, it is possible

that the PCS of the evaluated method is greater than the benchmark due to the choice of weight

function. Nevertheless, the benchmark still provides a basis for standardization of the PCS that

cannot be achieved if analysing PCS alone - if the ratio of PCSs (compared to the proposed

benchmark) is noticeably higher under one scenario than under others, it implies that the design

as specified favours the selection of the target combinations under this scenarios.

Finally, it is important to mention that while the proposed benchmark is a useful tool for

assessing the performance of any given dose finding method for combination studies, similar to

the benchmark for single-agent studies, it does not capture all aspects of the evaluation. For

instance, it does not provide information on the distribution of dose allocation or the average
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number of DLTs. Developments in these directions are of great value for a more comprehensive

assessment of dose finding designs.

7. Software

Software in the form of R code is available on GitHub (https://github.com/dose-finding/

combo-benchmark).

8. Supplementary Material

Additional information including the tables of orderings used by the proposed benchmark and

the examples of the evaluation of POCRM for trials with binary toxicity and efficacy endpoints

is given in Supplementary Materials at http://biostatistics.oxfordjournals.org.
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Table 1. Toxicity probabilities at each combination and corresponding proportions (in %) of each com-
bination selection by the original benchmark based on 104 replications under two combination-toxicity
scenarios with nine drug combinations. The target toxicity level and the selection of the target combina-
tion are in bold.

Toxicity Probability
Drug B Drug B

Scenario 1 b1 b2 b3 Scenario 2 b1 b2 b3

Drug A
a1 0.15 0.30 0.45

Drug A
a1 0.05 0.15 0.30

a2 0.30 0.45 0.55 a2 0.15 0.30 0.45
a3 0.55 0.60 0.65 a3 0.45 0.55 0.60

Selection Proportions
Drug B Drug B

Scenario 1 b1 b2 b3 Scenario 2 b1 b2 b3

Drug A
a1 12.0 36.5 7.3

Drug A
a1 0.0 5.9 36.2

a2 36.3 7.3 0.2 a2 6.0 36.7 7.2
a3 0.3 0.0 0.0 a3 7.4 0.5 0.0
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Table 2. Ten considered combination-toxicity scenarios. The MTC is in bold.

Drug A Drug B Drug B
b1 b2 b3 b4 b5 b1 b2 b3 b4 b5

Scenario 1 Scenario 2
a1 0.05 0.10 0.15 0.30 0.45 0.15 0.30 0.45 0.50 0.60
a2 0.10 0.15 0.30 0.45 0.55 0.30 0.45 0.50 0.60 0.75
a3 0.15 0.30 0.45 0.50 0.60 0.45 0.55 0.60 0.60 0.80

Scenario 3 Scenario 4
a1 0.02 0.07 0.10 0.15 0.30 0.30 0.45 0.60 0.70 0.80
a2 0.07 0.10 0.15 0.30 0.45 0.45 0.55 0.65 0.75 0.85
a3 0.10 0.15 0.30 0.45 0.55 0.50 0.60 0.70 0.80 0.90

Scenario 5 Scenario 6
a1 0.01 0.02 0.08 0.10 0.11 0.05 0.08 0.10 0.13 0.15
a2 0.03 0.05 0.10 0.13 0.15 0.09 0.12 0.15 0.30 0.45
a3 0.07 0.09 0.12 0.15 0.30 0.15 0.30 0.45 0.50 0.60

Scenario 7 Scenario 8
a1 0.07 0.10 0.12 0.15 0.30 0.02 0.10 0.15 0.50 0.60
a2 0.15 0.30 0.45 0.52 0.60 0.05 0.12 0.30 0.55 0.70
a3 0.30 0.50 0.60 0.65 0.75 0.08 0.15 0.45 0.60 0.80

Scenario 9 Scenario 10
a1 0.005 0.01 0.02 0.04 0.07 0.05 0.10 0.15 0.30 0.45
a2 0.02 0.05 0.08 0.12 0.15 0.45 0.50 0.60 0.65 0.70
a3 0.15 0.30 0.45 0.55 0.65 0.70 0.75 0.80 0.85 0.90
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Table 3. Comparison of POCRM and I2D against the benchmark for partial ordering, the original bench-
mark, and the GL benchmark.

Scenario 1 2 3 4 5 6 7 8 9 10
POCRM 72.8 69.2 69.7 81.0 69.6 59.4 50.0 54.6 51.8 54.1
I2D 68.0 73.7 66.9 89.7 83.7 37.2 41.9 50.4 5.1 13.0
Benchmark 84.1 84.0 84.1 91.1 92.3 84.3 84.2 83.1 83.2 83.2
PO-Benchmark 73.8 78.2 75.9 91.1 92.3 65.5 66.3 57.7 56.0 54.4
GL 73.3 75.0 75.1 84.6 94.6 77.7 89.6 83.8 82.2 76.3
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Table 4. True values of (pkl, µkl) for each combination of two agents, A and B. The TC is in bold.

b1 b2 b3 b4

Scenario 1
a1 (0.01, 0.5) (0.10, 0.0) (0.40,−1.5) (0.50,−2.5)
a2 (0.05,−1.5) (0.15,-2.0) (0.45,−3.5) (0.55,−4.5)

Scenario 2
a1 (0.01, 0.0) (0.05,−0.5) (0.15,-3.5) (0.45,−5.5)
a2 (0.45,−1.0) (0.50,−1.5) (0.60,−4.5) (0.90,−6.5)

Scenario 3
a1 (0.01, 0.0) (0.15,-2.0) (0.40,−2.0) (0.50,−2.0)
a2 (0.05, 0.0) (0.20,−2.0) (0.45,−2.0) (0.55,−2.0)
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Table 5. Comparison of the Emax design and the respective benchmark for partial ordering and the
original benchmark

Design b1 b2 b3 b4
Scenario 1

Benchmark
a1 0.0 0.0 0.0 0.0
a2 0.0 99.9 0.1 0.0

PO-Benchmark
a1 0.0 2.2 1.6 0.0
a2 8.1 88.1 0.0 0.0

Emax
a1 0.1 5.1 3.4 0.0
a2 14.8 70.1 4.7 0.0
Scenario 2

Benchmark
a1 0.0 0.0 99.9 0.1
a2 0.0 0.0 0.0 0.0

PO-Benchmark
a1 0.0 0.0 99.9 0.1
a2 0.0 0.0 0.0 0.0

Emax
a1 4.3 11.5 78.6 3.1
a2 0.0 0.1 0.3 0.0
Scenario 3

Benchmark
a1 0.0 50.1 1.2 0.0
a2 0.0 47.7 0.0 0.0

PO-Benchmark
a1 0.0 46.8 2.3 0.0
a2 4.2 47.3 0.0 0.0

Emax
a1 0.9 44.9 2.8 0.0
a2 4.3 45.3 1.8 0.0
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