Inner Magnetospheric Response to the IMF B_y Component: Van Allen Probes and Arase Observations

N. A. Case¹, D. P. Hartley², A. Grocott¹, Y. Miyoshi³, A. Matsuoka⁴, S. Imajo³, S. Kurita⁵, I. Shinohara⁶, and M. Teramoto⁷

¹ Department of Physics, Lancaster University, Lancaster, UK
² Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
³ Institute for SpaceEarth Environmental Research, Nagoya University, Nagoya, Japan
⁴ Graduate School of Science, Kyoto University, Kyoto, Japan
⁵ Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
⁶ Ins <u>titute</u> of Space and Astronautical Science, JAXA, Japan
⁷ Kyushu Institute of Technology, Kitakyushu, Japan
⁷ Institute of Space and Astronautical Science, JAXA, Japan ⁷ Kyushu Institute of Technology, Kitakyushu, Japan

Key Points:

1

2

3

12

13	•	The influence of IMF B_y is observed throughout the inner magnetosphere, using
14		Van Allen Probes and Arase observations
15	•	The median ratio of the change in observed B_y to IMF B_y is ~ 0.33, though a
16		clock angle dependence is found
17	•	We find a consistent effect across both hemispheres, all MLT sectors, and all ra-

18 dial distances

Corresponding author: N. A. Case, n.case@lancaster.ac.uk

19 Abstract

We utilise 17 years of combined Van Allen Probes and Arase data to statistically anal-20 yse the response of the inner magnetosphere to the orientation of the IMF B_y compo-21 nent. Past studies have demonstrated that the IMF B_y component introduces a simi-22 larly oriented B_{y} component into the magnetosphere. However, these studies have tended 23 to focus on field lines in the magnetotail only reaching as close to Earth as geosynchronous 24 orbit. By exploiting data from these inner magnetospheric spacecraft, we have been able 25 to investigate the response at radial distances of $< 7R_E$. When subtracting the back-26 ground magnetic field values, provided by the T01 and IGRF magnetic field models, we 27 find that the IMF B_{y} component does affect the configuration of the magnetic field lines 28 in the inner magnetosphere. This control is observed throughout the inner magnetosphere, 29 across both hemispheres, all radial distances, and all MLT sectors. The ratio of IMF B_{y} 30 to observed B_y residual, also known as the "penetration efficiency", is found to be ~ 0.33. 31 The IMF B_z component is found to increase, or inhibit, this control depending upon its 32 orientation. 33

³⁴ 1 Introduction

The presence of a non-zero y-component in the interplanetary magnetic field (IMF B_y) has been shown to modify the topology of the magnetic field in Earth's magnetosphere. First observed by Fairfield (1979), a positive IMF B_y component increases the y-component of the background magnetospheric field whilst a negative IMF B_y component results in a net decrease.

It has been reported that this effect is not uniform throughout the magnetosphere. 40 Instead, the exact amount by which a non-zero IMF B_{y} component contributes to the 41 local magnetic field in the magnetosphere has been shown to vary by location, dipole tilt 42 and the sign of IMF B_z . For example, Fairfield (1979) found an average "penetration 43 efficiency" of the IMF B_y component of 0.13, using data from IMP-6 spacecraft recorded 44 between $-20R_E$ and $-33R_E$ downtail. That is to say that the change in the local B_y 45 component is 0.13 times the value of the IMF B_y component. Numerous subsequent stud-46 ies, from different regions of the magnetosphere, have been undertaken showing a broadly 47 similar result but with different penetration efficiencies. For example, Cowley and Hughes 48 (1983) and Nagai (1987) both used data from geostationary satellites (ATS 6 and GOES 49 6) and found penetration efficiencies of 0.28 and 0.3, respectively. Wing et al. (1995), 50 however, showed that the penetration efficiency at geosynchronous orbit was much higher, 51 varying between 0.52 and 0.60 depending if the data were recorded in the dayside or night-52 side magnetosphere. A study by Kaymaz et al. (1994), using IMP-8 data, found the "av-53 erage perturbation" of the local B_y field to be 0.26 times the concurrent IMF B_y strength 54 in the $-25R_E < X_{GSM} < -40R_E$ and $|Z_{GSM}| < 8R_E$ region. Studies from the plasma 55 sheet region of the magnetosphere have observed penetration efficiencies around 0.50-56 0.60 (e.g. Lui, 1984; Petrukovich, 2009). 57

Particularly with more historic studies, the determination of the background lo-58 cal B_y field value was problematic. In most cases, it was simply determined using an av-59 erage of the spacecraft data recorded during geomagnetically "quiet" conditions (i.e. when 60 both the solar wind speed and IMF strength were low). More recent works utilise sophis-61 ticated magnetic field models to determine the background field, for example Tsyganenko 62 and Andreeva (2020) implement the radial basis function model of Andreeva and Tsy-63 ganenko (2016) to determine the background field. In that work, data from an array of 64 spacecraft missions were compared to determine the effect of IMF B_y at radial distances, 65 $r > 5R_E$. The penetration efficiency was found to depend both on location and on the 66 strength and orientation of IMF B_z . 67

⁶⁸ We note that, despite being widely used in the historical literature, the term "pen-⁶⁹ etration efficiency" is likely inaccurate or, at least, not wholly appropriate. Stemming

from earlier studies, such as Cowley (1981), the term implies that the change in the lo-70 cal field topology is the direct result of the IMF field lines themselves making their way, 71 or "penetrating", into the magnetosphere, i.e. through the Dungey Cycle (Dungey, 1961). 72 The timescale for this process would be several hours, yet more recent results have sug-73 gested that a B_{y} component can be imparted onto closed field lines over significantly shorter 74 timescales (e.g. Khurana et al., 1996; Tenfjord et al., 2015, 2017) though the issue of tim-75 ing remains an open question (e.g. Case et al., 2018, 2020). It is for this reason, that later 76 studies have tended to refer to the IMF "inducing", or "transferring", a B_y component 77 onto the magnetospheric field lines - particularly in the region of closed field lines. 78

In this study, we extend the historical literature to determine the response of the 79 inner magnetosphere $(r < 7R_E)$ to the IMF B_y component. To date, the effect of the 80 IMF B_u component on the large-scale local magnetic field in this region, particularly within 81 $5R_E$, has not yet been statistically documented. As described in Section 2, we utilise a 82 multi-mission data set spanning 7 years (17 spacecraft years), as well as an empirically 83 driven magnetic field model, to statistically analyse how the local B_y component changes 84 as a result of the IMF B_y component. In Section 3, we compare the spacecraft measure-85 ments, with a model background field subtracted, to the IMF B_y for a range of differ-86 ent IMF conditions and find the average "penetration efficiency" to be 0.33 across the 87 entire inner magnetosphere. 88

⁸⁹ 2 Data and Methodology

For the purposes of this study, data are used from the Electric and Magnetic Field 90 Instrument Suite and Integrated Science (EMFISIS) fluxgate magnetometer (Kletzing 91 et al., 2013), which is housed on board the dual satellite NASA Van Allen Probes (for-92 merly Radiation Belt Storm Probe, RBSP) mission (Mauk et al., 2013). The EMFISIS 93 tri-axial fluxgate magnetometer measures the 3D magnetic field vector at a rate of 64 94 samples per second. This data set is available in full resolution, or with a downsampled 95 cadence of both 1 s and 4 s. The following analyses incorporate all available magnetic 96 field observations from both Van Allen Probes spacecraft spanning the full mission du-97 ration, from launch on 30 August 2012, to mission end on 18 October 2019 for RBSP-98 A, and 19 July 2019 for RBSP-B. 99

Also included in this study are data from the Japanese geospace exploration project 100 Arase satellite, formerly the Exploration of energization and Radiation in Geospace satel-101 lite (ERG) (Miyoshi, Shinohara, et al., 2018) which launched on 20 December 2016. The 102 Arase Magnetic Field Experiment (MGF) (Matsuoka et al., 2018) measures the magnetic 103 field at a sampling rate of 256 vectors per second, but data are also provided at 64 vec-104 tors per second and spin (8s) resolution. The accuracy of the MGF data is dependent 105 upon which sampling mode the instrument is in, with lower accuracy for higher dynamic 106 ranges. In this study, we utilise Arase MGF data spanning the period from 13 March 107 2017 to 31 August 2019, with an accuracy of at least ± 1.25 nT. These data are combined 108 with observations from the Van Allen Probes to provide high levels of data coverage across 109 all regions of the inner magnetosphere. 110

Due to the statistical nature of the following analyses, and to temporally align the 111 spacecraft data with upstream IMF conditions, all spacecraft data are resampled to 1 112 minute resolution. The IMF data are obtained from the high-resolution (1 min) OMNI-113 web database (King & Papitashvili, 2005). These data are recorded by several upstream 114 observers and then time-shifted to the bowshock nose. Although there are inherent un-115 certainties in undertaking such a shifting process, especially when the upstream observer 116 is not close to the Sun-Earth line, the approach is statistically valid (e.g. Mailyan et al., 117 2008; Case & Wild, 2012). Since we are investigating the magnetic field in the inner mag-118 netosphere, spacecraft data are presented in the solar-magnetic (SM) coordinate system 119

so that they are aligned with Earth's magnetic dipole. IMF data are presented in the
 geocentric solar magnetospheric (GSM) coordinate system.

The spatial data coverage of both the Van Allen Probes and Arase missions is pro-122 vided in Figure 1 in SM coordinates. Data coverage for Van Allen Probes is shown in 123 panels a and b, Arase in panels c and d, and the combined data set in panels e and f. 124 In panels a, c, and e, data coverage is plotted by location in the X and Y plane, and each 125 bin is $1R_E$ by 1 hour in Magnetic Local Time (MLT) in size. In panels b, d, and f, data 126 coverage is plotted by location in the XY (i.e. $\sqrt{X^2 + Y^2}$) and Z plane, and the bins are 127 $1R_E$ square. The bin fill colour represents the total number of 1 min data points con-128 tained within it. 129

For both missions, data coverage is approximately homogeneous in MLT, due to 130 the long duration of the data and the orbital precession of the spacecraft. The greatest 131 number of observations are available between 5 and 6 R_E for both satellite missions, due 132 to their similar apogee altitude. The larger orbital inclination of Arase (31°) provides 133 greater coverage in the Z_{SM} direction than is possible solely from Van Allen Probes ob-134 servations (10.2° inclination). We note that the Van Allen Probes mission contributes 135 significantly more data to this study than the Arase mission simply due to its dual-spacecraft 136 nature and longer period of operation. 137

2.1 Magnetospheric models

138

In the following analyses, the Van Allen Probes and Arase in situ magnetic field data are compared against modelled background field values to determine what effect the IMF B_y component has on the magnetic field in the inner magnetosphere. In this region, the background field is a radially-dependent combination of an internally-driven component (i.e. the terrestrial quasi-dipolar field) and an externally-driven component (i.e. the solar wind/IMF shaped magnetosphere).

To determine the internal component of the background field, we utilise the latest version of the International Geomagnetic Reference Field (IGRF 13) (Thébault et al., 2015). The IGRF is derived from magnetic field data recorded by magnetic observatories, ground surveys, and low Earth orbiting satellites and is regularly updated to account for the latest variations in the Earth's magnetic field. It is independent of any upstream solar wind or IMF conditions.

The externally-driven component of the background field is determined using the 151 empirically-derived T01 model of the inner magnetosphere (Tsyganenko, 2002a, 2002b). 152 T01 was developed using in situ observations from a range of spacecraft missions (see 153 Figure 1 of Tsyganenko (2002b) for mission and temporal coverage) and is driven by a 154 variety of upstream parameters, including the solar wind speed and the IMF B_y and B_z 155 components, as well as their time history. We note that the Van Allen Probes and Arase 156 missions were not part of the T01 empirical data set and so their data are independent 157 of the modelling data. 158

The IMF B_y component is utilised as a parameter in the T01 model in the calcu-159 lation of the IMF clock angle and external magnetic pressure. IMF B_y contributes, for 160 example, to the determination of the model's penetration efficiency term - which is clock 161 angle dependent (Equation 10 in Tsyganenko (2002b)). It is therefore expected that the 162 effects of the IMF B_{y} component on the inner magnetosphere would be hidden when com-163 paring the in situ data with the model output. As such, we also compare the in situ ob-164 servations with a version of T01 in which we set both the instantaneous and historical 165 IMF B_y to zero. This removes the IMF B_y influence on the modelled B_y field compo-166 nent but ensures that other contributions, such as spacecraft location and dipole tilt an-167 gle, are accounted for. We note that the external magnetic pressure exerted on the mag-168

Figure 1. Data coverage for (a and b) Van Allen Probes, (c and d) Arase, and (e and f) both missions combined. Coverage in panels a, c, and e is given in the X-Y plane and bins are $1R_E$ by 1 hour MLT in size. In b, d, and f coverage is in the XY-Z plane and bins are $1R_E$ square in size. Bins are coloured by the number of 1 min resolution data contained within them (1 day = 1,440 data points). Data are in SM coordinates.

¹⁶⁹ netosphere $\left(\text{i.e. } \frac{B_t^2}{\mu_0}, \text{ where } B_t = \sqrt{B_y^2 + B_z^2}\right)$ will therefore likely be underestimated, ¹⁷⁰ however, this is a relatively small systematic offset that does not significantly affect the ¹⁷¹ responses seen (e.g. Tenfjord et al., 2017).

In the subsequent results and discussion, "model" is the modelled field calculated 172 by the addition of the IGRF and T01 field contributions, including IMF B_{y} as a driver, 173 and $B_{y(mod)}$ is the y-component of this field. "Model*" is the modelled field calculated 174 by the addition of the IGRF and T01, with IMF $B_y = 0$, and $B_{y(mod^*)}$ is the y-component 175 of this field. The field measured by the spacecraft is referred to as the "observed" field 176 and $B_{u(abs)}$ denotes the y-component of this field. Although not the primary aim of this 177 study, comparing the "observed" data to "model" allows us to verify that the combina-178 tion of models we use is working well for our data intervals. 179

The spacecraft data are also sorted by hemisphere, i.e. either side of the neutral 180 sheet which separates the oppositely directed magnetic lobes. Since the neutral sheet is 181 not necessarily located on the $Z_{SM} = 0$ plane, we use both the spacecraft location and 182 the in situ measured field to determine which hemisphere the spacecraft is located in at 183 any given time. Data are defined as being sampled from the Northern Hemisphere when 184 $Z_{SM} > 0 R_E$ and $B_i < 0$, where $B_i = (B_x \cos \theta + B_y \sin \theta)$ and $\theta = \tan^{-1} \left(\frac{Y_{SM}}{X_{SM}} \right)$. Conversely, data are defined as being sampled from the Southern Hemisphere when $Z_{SM} < 0$ 185 186 $0 R_E$ and $B_i > 0$. Given the reasonably steady nature of the solar wind (e.g. Milan 187 et al., 2010), the median IMF B_y is calculated for each spacecraft data point simply us-188 ing the preceding 30 min of IMF B_y data, neglecting any propagation time from the bow-189 shock to the magnetopause or magnetospheric response time. 190

¹⁹¹ 3 Results

Figure 2 shows data recorded in the Northern Hemisphere. In the top row, are the median $B_{y(obs)}$ values per bin for (left) IMF $B_y < -2$ nT, (centre) $|B_y| < 1$ nT, and (right) $B_y > 2$ nT. As with Figure 1, the data bins are $1R_E$ in the radial direction and 1 hour in MLT in size. The colour of the bin represents the median value.

In the middle row of Figure 2 are the median $B_{y(obs)} - B_{y(mod^*)}$ values. The IMF 196 $B_y < -2$ nT panel is clearly dominated by blue coloured bins, i.e. $B_{y(mod^*)} > B_{y(obs)}$. 197 By contrast, the IMF $B_y > 2$ nT is predominantly red, i.e. $B_{y(obs)} > B_{y(mod^*)}$, but 198 with a sizeable collection of blue coloured bins particularly around the dusk sector. We 199 note too that the IMF $|B_u| < 1$ nT state appears to be dominated by blue bins, sug-200 gesting an offset in which model^{*} systematically overestimates the local B_{y} field. The 201 median absolute relative percentage of the IMF $B_y = 0$ offset to the $B_{y(obs)} - B_{y(mod^*)}$ 202 value for the two non-zero states is 45.0% - though it does vary across MLT and radial 203 distances. To remove this systematic offset, in the bottom row of Figure 2, we plot the median $B_{y(obs)} - B_{y(mod^*)}$ minus the corresponding offset observed for the IMF $|B_y| <$ 205 1 nT state. In both the IMF $B_y > 2$ nT and $B_y < -2$ nT cases, the previously men-206 tioned trends become clearer across almost all radial and MLT bins once this offset is 207 removed. 208

²⁰⁹ Data recorded in the Southern Hemisphere are plotted in Figure 3, in the same for-²¹⁰ mat as Figure 2. We find a similar response in the Southern Hemisphere as in the North-²¹¹ ern Hemisphere, with a clear dependence of the observed B_y component on the IMF B_y ²¹² component.

MLT sector and hemisphere dependencies are also investigated, with results shown in Figure 4. Plotted are (panels a and d) the median $B_{y(obs)}$ values, (b and e) median $B_{y(obs)}-B_{y(mod^*)}$, and (c and f) $B_{y(obs)}-B_{y(mod)}$ values as a function of their respective 30 min (a to c) IMF B_y and (d to f) clock angle averages. To determine if the response of the observed field is different between hemispheres, or between the dusk and

Figure 2. Van Allen Probes and Arase data sampled from the Northern Hemisphere are shown for (left) IMF $B_y < -2$ nT, (centre) IMF $|B_y| < 1$ nT, and (right) IMF $B_y > 2$ nT states. (Top) Data bins are coloured by median local B_y , (middle) the median difference between the local B_y and the modelled B_y value, and (bottom) the median difference between the local B_y and the modelled B_y value with the corresponding median values from the IMF $|B_y| < 1$ state further subtracted. Data bins span $1R_E$ in the radial direction and 1 hour in MLT.

Figure 3. Van Allen Probes and Arase data sampled from the Southern Hemisphere are presented in the same format as Figure 2.

Figure 4. Plotted in (a) are the median $B_{y(obs)}$ values for specific local time and hemispheric sectors, as a function of the upstream IMF B_y and (d) clock angle. In (b and e) the medians of the $B_{y(obs)} - B_{y(mod^*)}$ values are shown whilst in (c and f) the medians of the $B_{y(obs)} - B_{y(mod^*)}$ values are shown. In all panels, the medians from data sampled in the Northern Hemisphere between 01 and 11 MLT are plotted in blue, and between 13 and 23 MLT in red. Medians from data sampled from the Southern Hemisphere between 01 and 11 MLT are plotted in green and between 13 and 23 MLT in orange. The median of all data is plotted in black.

dawn sectors, data are separated into the following regions: Northern Hemisphere 01-11 MLT (blue) and 13-23 MLT (red), and Southern Hemisphere 01-11 MLT (green) and 13-23 MLT (orange). The medians of all regions combined (i.e. all data) are plotted in black. Additionally, for every region, in each panel, a line of best fit is plotted. For the IMF B_y plots (a to c) the line of best fit is linear, for the clock angle (d to f) plots the line of best fit is a third order polynomial.

In Figure 4, panels a and d, it appears that $B_{y(obs)}$ does not respond to the IMF By component. As previously mentioned, however, this is simply because the background field is much larger than the IMF B_y component. When we subtract the background model* field, in panels b and e, the relationship becomes clear. As shown in panel b, there is a clear linear dependence between the IMF B_y component and $B_{y(obs)}-B_{y(mod^*)}$. All MLT regions exhibit a similar response, with the line of best fit equation for all data (black line) being: $B_{y(obs)}-B_{y(mod^*)} = 0.33 \times \text{IMF} B_y -$ 0.41nT. We note that the negative intercept of this line of best fit is consistent with the negative (blue) offset observed in the middle panel of Figure 2.

In Figure 4e, third order polynomial fits between the IMF clock angle and $B_{y(obs)}$ -233 $B_{y(mod^*)}$ are shown. Again these fits are broadly similar for all MLT regions. The turn-234 ing points of the various fits are all offset from $\theta = \pm 90^{\circ}$ (i.e. IMF $B_z = 0$). For the 235 all data medians (black line), the maximum and minimum occur at $\theta = 97^{\circ}$ and $\theta =$ 236 -109° respectively. Both of these turning points demonstrate that whilst the clock an-237 gle must be dominated by the IMF B_y component contribution, it must also contain a 238 relatively small southward B_z component to maximise the influence of the IMF B_y com-239 ponent on the inner magnetosphere. 240

We note that the absolute difference between the maximum and minimum clock angles and $|\theta| = 90^{\circ}$ is 7° and 19° respectively. This indicates that there is a small asymmetry between the required relative contribution of IMF B_y and B_z for the two IMF B_y orientations. This result suggests that for IMF B_y to be most effective in the inner magnetosphere for $B_y < 0$, a more strongly negative IMF B_z component is required compared to when IMF $B_y > 0$.

In Figure 4, panels c and f, $B_{y(obs)} - B_{y(mod)}$ is compared against the IMF B_y component and clock angle. There is no clear trend in either panel that is apparent across all MLT sectors, and we note that the residuals are small - generally less than 1nT.

To investigate any radial dependencies in the data, we split the data by location in MLT and then bin by radial distance from the Earth. One representative example of this binning is shown in Figure 5, where data are sampled from the Northern Hemisphere in the 01-11 MLT sector. The lines of best fit plotted in the figure are the medians of the data from this MLT sector, binned by radial distance from the Earth.

The results in Figure 5 are very similar to those in Figure 4. There is a clear lin-255 ear response at almost all radial distances when $B_{y(obs)} - B_{y(mod^*)}$ is plotted against 256 IMF B_y , and a third order polynomial response when plotted against IMF clock angle. 257 In panel b, the gradients of the IMF B_y linear fits are broadly similar as with the MLT 258 sectors (~ 0.3). The third order polynomial fits to the clock angle (panel e) follow sim-259 ilar patterns as before with the maxima and minima, for all fits, occurring at $\theta \sim 95^{\circ}$ 260 and $\theta \sim -110^{\circ}$ respectively. We note the $6 \leq r < 7R_E$ bin is an exception to this 261 which we attribute to the relatively small number of data points in this bin - as appar-262 ent in Figure 1e. 263

To determine the degree to which the IMF B_y influences the observed B_y compo-264 nent across the whole of the inner magnetosphere, we compute linear lines of best fit for 265 $B_{y(obs)} - B_{y(mod^*)}$, and $B_{y(obs)} - B_{y(mod)}$, as a function of IMF B_y for all MLT-r sec-266 tors. The gradients of these fits, are plotted in Figure 6. Data is recorded in (panels a 267 and d) the Northern Hemisphere, (b and e) the Southern Hemisphere and (c anf f) both 268 hemispheres combined. The gradients of the fits are computed separately for data in each 269 $1R_E$ and 1 hr MLT bin. The color of the bins represents the gradient of the fits for the 270 data in that bin. Gray bins indicate limited data (where there was not data for every 271 IMF B_y bin) or poor fits (where the unreduced chi-square goodness-of-fit statistic was 272 greater than 1). 273

Panels a-c show the fit gradients range from ~ 0.2–0.5 throughout the inner magnetosphere, though there appears to be no particular pattern to this distribution and there is little discernible difference between hemispheres. The gray bins are predominantly due to limited data in the outer radial bins (i.e. $6 \le r < 7R_E$). The result is much more

Figure 5. In a similar format as Figure 4 but with the medians of data by radial distance, for the Northern Hemisphere 01-11 MLT sector, as a function of (panels a-c) IMF B_y and (panels d-f) clock angle.

Figure 6. Plotted in panels a to c are the gradients of the linear line of best fits for IMF B_y against $B_{y(obs)} - B_{y(mod^*)}$ and in panels d to f for $B_{y(obs)} - B_{y(mod)}$. Data in panels a and d are recorded in the Northern Hemisphere, b and e in the Southern Hemisphere and both hemispheres combined in panels c and f. The gradients of the fits are computed for data in $1R_E$ and 1 hr MLT bins. The color of the bins represents the gradient of the fits for the data in that bin. Gray bins indicate limited data or poor fits.

mixed for panels d-f, with gradients ranging between ± 0.2 , though again there is no particular pattern to this distribution.

Since Figures 4 and 5 demonstrate that $|B_{y(obs)} - B_{y(mod^*)}|$ is largest when $|\theta| \sim$ 90 - 110°, we have also performed the same analyses as in Figure 6 for two clock angle dependent states. Specifically, we plot the distribution of gradients for (a) "all data", (b) 90° < $|\theta| \le 135°$, and (c) "other" (i.e. $|\theta| \le 90°$ and $|\theta| > 135°$) in Figure 7.

Figure 7 clearly shows that the distributions for the line of best fit gradients are dependent upon clock angle. The median value is 0.33 for all data, 0.4 for $90^{\circ} < |\theta| \le$ 135°, and 0.3 for "other".

287 4 Discussion

In this study we have collated magnetic field data from two spacecraft missions in the inner magnetosphere, namely the Van Allen Probes and Arase. Utilising the IGRF 13 and T01 magnetic field models to determine the "background field level", we have demonstrated how the IMF B_y component affects the y-component of the magnetic field in the inner magnetosphere.

As shown in Figure 1, our data are recorded in the $R_{XY} < 7R_E$ and $|Z| < 4R_E$ region, in SM coordinates. The Van Allen Probes and Arase missions provide unparalleled coverage in this region, allowing us to undertake comprehensive statistical analyses of the local magnetic field in the inner magnetosphere with respect to the upstream IMF B_y component.

In the top row of Figure 2, we show the median observed B_y component for three 298 IMF B_y states: IMF $B_y < -2nT$, IMF $|B_y| < 1 nT$, and IMF $B_y > 2nT$. Unsurpris-299 ingly, since the total field strength in this region is several orders of magnitude larger 300 than the IMF, there is no discernible difference between the IMF B_y states when the data 301 is presented this way. However, when the background field $(B_{y(mod^*)})$ is subtracted, as 302 in the middle row of Figures 2 and 3, the response to the IMF B_y component becomes 303 clear. There does, however, appear to be some asymmetry in the data. The IMF $B_y <$ 304 -2 nT shows a much clearer response than the IMF $B_y > 2$ nT state and the IMF $|B_y| < 2$ 305 1 nT state appears to be more like a weakened version of the IMF $B_u < -2$ nT state, 306 rather than a true "neutral" (or zero) state. These results suggest that model^{*} B_y is over-307 estimating the y-component of the magnetic field in all cases. The results from Figure 3 308 are broadly similar to their counterparts in Figure 2, indicating there is little-to-no dis-309 cernible difference between the two hemispheres. 310

In Figures 4 and 5 we plot the median $B_{y(obs)}$, $B_{y(obs)} - B_{y(mod^*)}$, and $B_{y(obs)} - B_{y(mod^*)}$ as a function of (a-c) IMF B_y and (d-f) IMF clock angle. In Figure 4 the data are plotted by their location in MLT and in Figure 5 by their radial location. The results of these two figures are similar, and so are discussed together.

In panels a to c, the data are plotted as a function of IMF B_y in the range of $\pm 6nT$. 315 We note that outside this range the amount of data drops off significantly resulting in 316 poor fits (i.e. a large chi-square goodness-of-fit statistic). Once the background field is 317 subtracted (panel b), the effect of the IMF B_y component becomes clear. Using a lin-318 ear least squares fit, we find a direct relationship between the IMF B_y and the $B_{y(obs)}$ -319 $B_{u(mod^*)}$ residual. The gradients, or "penetration efficiencies", are similar for all MLT 320 and r regions, averaging around 0.33. Whilst the the line of best fit offsets do vary, even 321 the largest offset (Figure 5b) is, when normalized to the strength of the background field, 322 small. Though it is interesting to note that almost all offsets are negative, even when 323 taking into account the IMF B_y component in the model (i.e. $B_{y(obs)} - B_{y(mod)}$) - which 324 is consistent with the slightly negative local B_y state observed for IMF $|B_y| < 1$ nT in 325 Figures 2 and 3. 326

Figure 7. The distribution of linear fit gradients is shown for (a) "all data", (b) $90^{\circ} < |\theta| \le 135^{\circ}$ and (c) "other" clock angles. The median (Mdn) and interquartile range (IQR) are also shown for each distribution.

In Figures 4 and 5 panels (d-f), the data are plotted as a function of clock angle. 327 Based on the assumption that the fits should have a maximum amplitude when IMF B_y 328 is dominant and zero amplitude when no IMF B_y is present, a third order polynomial 329 is used to fit the data. A third order polynomial, unlike a sine function for example, al-330 lows for an asymmetry in the turning points of the fit, which is particularly evident in 331 panel e of both figures. In Figure 4, for example, the maximum turning point is located 332 at $\theta = 97^{\circ}$ and the minimum turning point at $\theta = -109^{\circ}$. The clock angles for both 333 turning points occur when the IMF $|B_y|$ component is several times larger than the IMF 334 $|B_z|$ component, but the IMF B_z component is non-zero and negative. The maximum 335 and minimum of the fits do not occur at the same $|\theta|$, which demonstrates that the ra-336 tio between the IMF B_y and B_z components required for maximum amplitude is differ-337 ent for the two opposite IMF B_y directions. This result may indicate that one orienta-338 tion of the IMF B_y component more readily facilitates reconnection than the other or 339 that the topology of newly opened flux increases/decreases the efficiency for which the 340 B_{y} component is transferred into the inner magnetosphere. We note, however, that these 341 differences are small and are the maximum and minimum of the fits, rather than the data 342 themselves, and so may be prone to fitting error. Further investigation into this observed 343 discrepancy, perhaps through magnetohydrodynamic modelling, therefore seems warranted. 344

When comparing hourly averaged IMF and observed B_y components in the $X_{GSM} \sim$ 345 -20 to $-30R_E$ region, Fairfield (1979) found a linear relation of ΔB_y (tail) = 0.13 × 346 $B_{y}(\text{IMF}) = 0.30$ nT. This compares to our result, as shown in Figure 4 for all data (black 347 line), of $B_{y(obs)} - B_{y(mod^*)} = 0.33 \times \text{IMF}B_y - 0.41 \text{nT}$. Of course, our data are recorded 348 in a much different region of the magnetosphere than the IMP 6 spacecraft used by Fairfield 349 (1979) and has also had other non-IMF B_{y} related effects removed from it through use 350 of the T01 model. Cowley (1981) noted that, because the Fairfield (1979) result was found 351 in both the tail lobes and the plasma sheet, it directly implied the existence of asym-352 metries on closed field lines. Indeed, all data used in this present study are within $7R_E$, 353 i.e. on closed field lines. Numerous studies that followed on from the Fairfield (1979) in-354 vestigation have found the "penetration efficiency", i.e. the gradient of the lines of best 355 fit, to vary depending on the region of the magnetosphere being studied and IMF con-356 ditions (e.g. Fairfield, 1979; Cowley & Hughes, 1983; Lui, 1984; Nagai, 1987; Kaymaz 357 et al., 1994; Wing et al., 1995; Petrukovich, 2009; Cao et al., 2014). For example, in the 358 T01 model, which is used throughout this study, the penetration efficiency ranges from 359 0.068 for northward IMF to 0.622 for southward, however, it is not location dependent 360 (Tsyganenko, 2002b). In recent work by Tsyganenko and Andreeva (2020), modelling 361 of the neighbouring regions to the one in our study found similar efficiencies of between 362 0.2 and 0.4, with the larger efficiencies occurring during southward IMF. 363

The general relationship of $\Delta B_{y(obs)} \sim 0.33 \times \text{IMF}B_y$ holds throughout the inner magnetosphere. There is, of course, some variation in the gradient of the relation by MLT sector and by radial distance, as can be seen in Figures 4 and 5. However, the median gradient for the 1 hour MLT by 1 R_E bins in Figure 6 is 0.33, with an interquartile range of 0.07, suggesting the general trend holds throughout this region. Again, this is consistent with recent modelling work, e.g. Figure 4 in Tsyganenko and Andreeva (2020).

We note that southward IMF has resulted in a higher penetration efficiency in past 370 studies and, as discussed, we too see this effect in Figures 4e and 5e. We have, therefore, 371 also investigated the effect of southward IMF on our penetration efficiencies. Shown in 372 Figure 7 are the distributions of the penetration efficiency for three clock angle states: 373 "all data", $90^{\circ} < |\theta| \le 135^{\circ}$, and "other". The median penetration efficiencies for these 374 states are 0.33, 0.40, and 0.30, respectively. This result demonstrates that the penetra-375 tion is higher when the IMF B_{y} is dominant but accompanied by a negative B_{z} . This, 376 presumably, is the result of southward IMF driving a larger dayside reconnection rate 377 which, in turn, increases the amount of flux being transferred from the IMF into the mag-378 netosphere. Given that the difference between the median values presented is quite small, 379

we compare the two sample population distributions, using the statistical z-test, finding that difference between the two distributions is highly significant.

Our analyses have also allowed us to compare the in situ magnetic field with the 382 combined modelling of IGRF 13 and T01. Woodfield et al. (2007) compared T01 with 383 two years of perigee Cluster data ($\sim 4R_E$) and found the model performed very well 384 in a global sense. Although such testing was not the main aim of this study, our results 385 agree with this assessment. Thw results of the analyses undertaken, particularly those 386 presented in Figures 4 and 5 (panels c and f), suggest that the T01 model accurately re-387 flects the impact of the IMF B_y on the observed B_y component in the inner magneto-388 sphere, i.e. the line of best fit gradients. Although the offsets of the lines of best fit may 389 sometimes appear large, they represent a small fraction of the total background mag-390 netic field in this region. We note that we are able to attribute this accurate IMF B_u 391 response solely to the T01 model since the IGRF model does not contain any solar wind/IMF 392 inputs. 393

In this study, the issue of timing, i.e. how long it takes the inner magnetosphere 394 to respond to, and reconfigure based on, the IMF B_y component, has not been investi-395 gated. Instead all spacecraft data were associated with the preceding 30 min average of 396 the IMF B_{y} component. Whilst the response to the IMF B_{y} component was clearly seen 397 on this timescale, this does not necessarily mean that it takes 30 min or less for the IMF 398 B_y component to influence the inner magnetosphere. The IMF B_y component tends to 300 have a long auto-correlation length (e.g. Milan et al., 2010) and so the IMF B_y may have 400 been stable for much longer than the averaging period used. Additionally, it does not 401 mean that the system has completely reconfigured in this time, and so we expect our re-402 sults include a combination of fully reconfigured states as well as newly responding states. 403 We note that work by Tenfjord et al. (2015, 2017), who found the inner magnetosphere 404 responded to changes in IMF B_{y} orientation on timescales of ~ 30 min but took longer 405 to fully reconfigure to the new B_y state. Additionally, this was undertaken using GOES 406 data recorded at geosynchronous orbit $(r \sim 6.6R_E)$. It would therefore be a worthwhile 407 exercise investigate the issue of timing using Van Allen Probes and Arase data to deter-408 mine if their results hold closer to the Earth. Such future work is planned by the authors. 409

410 5 Conclusions

Utilising 7 years (17 spacecraft years) of data from two spacecraft missions, namely Van Allen Probes and Arase, we have rigorously investigated the effect of the IMF B_y component on the inner magnetosphere. We have shown that IMF B_y influences the local field in both hemispheres, all radial distances, and all MLT sectors.

The response of the inner magnetosphere to the IMF B_y component scales linearly in the IMF range analysed ($-6 \leq \text{IMF } B_y \leq +6\text{nT}$). The "penetration efficiency", i.e. the fraction of the IMF B_y component that is imparted onto the background inner magnetospheric field, is largely consistent throughout the inner magnetosphere at ~ 0.33. This result is consistent with previous studies near this region e.g. Tsyganenko and Andreeva (2020).

⁴²¹ The penetration efficiency was found to be clock angle dependent, specifically the ⁴²² maximum efficiency is observed when the clock angle is dominated by the B_y compo-⁴²³ nent but also contains a negative B_z component. Again this is consistent with previous ⁴²⁴ studies from other regions of the magnetosphere. The median penetration efficiency in-⁴²⁵ creased to 0.4 during favourable conditions (90° < $|\theta| \le 135°$) and dropped to 0.3 dur-⁴²⁶ ing unfavourable conditions.

⁴²⁷ Additionally, we have found that, in a statistical sense, the Tsyganenko (2002a, 2002b) ⁴²⁸ model, when combined with the IGRF 13 model (Thébault et al., 2015), accounts for ⁴²⁹ the IMF B_y effect well in the inner magnetosphere.

430 Acknowledgments

Van Allen Probes EMFISIS data may be obtained from http://emfisis.physics.uiowa
.edu/data/index. Science data of the ERG (Arase) satellite were obtained from the ERG
Science Center operated by ISAS/JAXA and ISEE/Nagoya University (https://ergsc
.isee.nagoya-u.ac.jp/index.shtml.en (Miyoshi, Hori, et al., 2018)). The present study
analyzed MGF-L2 v03.03 data (http://doi.org/10.34515/DATA.ERG-06000) and Orbit L3 v02 data. The authors gratefully acknowledge both instrument teams for the collection and production of high quality science data.

The IGRF 13 and T01 field values were computed using the IDL Geopack DLM (v10.6) (http://ampere.jhuapl.edu/code/idl_geopack.html).

NAC and AG were supported during this study by STFC grant number ST/R000816/1.
DPH performed work under the support of JHU/APL contract number 921647 under
NASA Prime contract number NAS5-01072, and JHU/APL contract number 131802 under
der NASA prime contract number NNN06AA01C. YM was supported during this study
by JSPS-KAKENHI grants 15H05815, 16H06286, and 20H01959.

445 **References**

- Andreeva, V. A., & Tsyganenko, N. A. (2016). Reconstructing the magnetosphere
 from data using radial basis functions. *Journal of Geophysical Research: Space Physics*, 121(3), 2249-2263. doi: 10.1002/2015JA022242
- Cao, J., Duan, A., Dunlop, M., Wei, X., & Cai, C. (2014). Dependence of IMF By penetration into the neutral sheet on IMF Bz and geomagnetic activity. Journal of Geophysical Research: Space Physics, 119(7), 5279-5285. doi: 10.1002/2014JA019827
- Case, N. A., Grocott, A., Fear, R. C., Haaland, S., & Lane, J. H. (2020). Convection in the magnetosphere-ionosphere system: A multimission survey of its response to imf by reversals. *Journal of Geophysical Research: Space Physics*, 125(10), e2019JA027541. doi: 10.1029/2019JA027541
- Case, N. A., Grocott, A., Haaland, S., Martin, C., & Nagai, T. (2018). Re sponse of earth's neutral sheet to reversals in the IMF By component.
 Journal of Geophysical Research: Space Physics, 123(10), 8206-8218. doi:
 10.1029/2018JA025712
- Case, N. A., & Wild, J. A. (2012). A statistical comparison of solar wind prop agation delays derived from multispacecraft techniques. J. Geophys. Res.,
 117(A2). doi: 10.1029/2011JA016946
- Cowley, S. (1981). Magnetospheric asymmetries associated with the y-component
 of the IMF. Planetary and Space Science, 29(1), 79 96. doi: 10.1016/0032
 -0633(81)90141-0
- Cowley, S., & Hughes, W. (1983). Observation of an IMF sector effect in the Y
 magnetic field component at geostationary orbit. *Planetary and Space Science*,
 31(1), 73 90. doi: 10.1016/0032-0633(83)90032-6
- Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. *Phys. Rev. Lett.*, 6(2), 47-48.
- Fairfield, D. H. (1979). On the average configuraton of the geomagnetic tail. Journal of Geophysical Research: Space Physics, 84 (A5), 1950-1958. doi: 10.1029/
 JA084iA05p01950
- Kaymaz, Z., Siscoe, G. L., Luhmann, J. G., Lepping, R. P., & Russell, C. T. (1994).
 Interplanetary magnetic field control of magnetotail magnetic field geometry:
 Imp 8 observations. *Journal of Geophysical Research: Space Physics*, 99(A6), 11113-11126. doi: 10.1029/94JA00300
- Khurana, K. K., Walker, R. J., & Ogino, T. (1996). Magnetospheric convection in
 the presence of interplanetary magnetic field by : A conceptual model and sim-

481	ulations. Journal of Geophysical Research: Space Physics, 101(A3), 4907-4916.
482	doi: 10.1029/95JA03673
483	King, J. H., & Papitashvili, N. E. (2005). Solar wind spatial scales in and com-
484	parisons of hourly Wind and ACE plasma and magnetic field data. Journal of
485	Geophysical Research: Space Physics, $110(A2)$. doi: $10.1029/2004JA010649$
486	Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B.,
487	Averkamp, T., Tyler, J. (2013). The electric and magnetic field instrument
488	suite and integrated science (EMFISIS) on RBSP. Space Science Reviews,
489	127181. doi: 10.1007/s1121401399936
490	Lui, A. T. Y. (1984). Characteristics of the cross-tail current in the earth's magne-
491	totail. In Magnetospheric currents (p. 158-170). American Geophysical Union
492	(AGU). doi: 10.1029/GM028p0158
493	Mailyan, B., Munteanu, C., & Haaland, S. (2008). What is the best method to cal-
494	culate the solar wind propagation delay? Annales Geophysicae, 26(8), 2383–
495	2394. doi: 10.5194/angeo-26-2383-2008
496	Matsuoka, A., Teramoto, M., Nomura, R., Nosé, M., Fujimoto, A., Tanaka, Y.,
497	Shinohara, I. (2018). The Arase (ERG) magnetic field investigation. Earth,
498	Planets and Space, $70(1)$, 43. doi: 10.1186/s40623-018-0800-1
499	Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy,
500	A. (2013). Science objectives and rationale for the radiation belt storm $a_{1}^{(2)} = \frac{1}{2} \frac{1}{$
501	probes mission. Space Science Reviews, $179(1)$, $3-27$. doi: 10.1007/
502	S11214-012-9908-y
503	mian, S. E., Grocott, A., & Hubert, B. (2010). A superposed epoch analysis of au-
504	notational Possarch: Snaco Physica 115(A5) doi: 10.1020/2010IA015662
505	Miyoghi V Hori T Shoii M Teremete M Chang T E Metaude S Shi
506	nobara L (2018) The EBC science center <i>Earth Planete and Space</i> 70 doi:
507	10 1186/s40623-018-0867-8
509	Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T.,
510	Seki, K. (2018). Geospace exploration project ERG. Earth. Planets and Space,
511	70. doi: 10.1186/s40623-018-0862-0
512	Nagai, T. (1987). Interplanetary magnetic field by effects on the magnetic field at
513	synchronous orbit. Journal of Geophysical Research: Space Physics, 92(A10),
514	11215-11220. doi: 10.1029/JA092iA10p11215
515	Petrukovich, A. A. (2009). Dipole tilt effects in plasma sheet b_y : statistical model
516	and extreme values. Annales Geophysicae, $27(3)$, $1343-1352$. doi: $10.5194/$
517	angeo-27-1343-2009
518	Tenfjord, P., Østgaard, N., Snekvik, K., Laundal, K. M., Reistad, J. P., Haaland, S.,
519	& Milan, S. E. (2015). How the IMF By induces a By component in the closed
520	magnetosphere and how it leads to asymmetric currents and convection pat-
521	terns in the two hemispheres. Journal of Geophysical Research: Space Physics,
522	12U(11), 9308-9384. doi: $10.1002/2015JA021579$
523	Tenijord, P., Østgaard, N., Strangeway, R., Haaland, S., Snekvik, K., Laundal,
524	K. M., Milan, S. E. (2017). Magnetospheric response and recominguration timog following IME By reversels
525	Physics 199(1) 417 431 doi: 10.1002/2016 JA023018
520 527	Thépault E Finlay C C Beggan C D Alken P Aubert I Barrois Ω
527	Zvereva T (2015) International geomagnetic reference field: the 12th genera-
529	tion. Earth. Planets and Space, 67(79). doi: 10.1186/s40623-015-0228-9
530	Tsyganenko N A (2002a) A model of the near magnetosphere with a dawn-dusk
531	asymmetry 1. mathematical structure. Journal of Geophysical Research: Snace
532	<i>Physics</i> , 107(A8), SMP 12-1-SMP 12-15. doi: 10.1029/2001JA000219
533	Tsyganenko, N. A. (2002b). A model of the near magnetosphere with a dawn-
534	dusk asymmetry 2. parameterization and fitting to observations. Journal of
535	Geophysical Research: Space Physics, 107(A8), SMP 10-1-SMP 10-17. doi:

	10 1000 /0001 14 000000
536	10.1029/2001JA000220
537	Tsyganenko, N. A., & Andreeva, V. A. (2020). Magnetospheric penetration of
538	IMF viewed through the lens of an empirical RBF modeling. Journal of Geo-
539	physical Research: Space Physics, 125(1), e2019JA027439. (e2019JA027439
540	10.1029/2019JA027439) doi: $10.1029/2019$ JA027439
541	Wing, S., Newell, P. T., Sibeck, D. G., & Baker, K. B. (1995). A large statis-
542	tical study of the entry of interplanetary magnetic field y-component into
543	the magnetosphere. Geophysical Research Letters, $22(16)$, 2083-2086. doi:
544	10.1029/95GL02261
545	Woodfield, E. E., Dunlop, M. W., Holme, R., Davies, J. A., & Hapgood, M. A.
546	(2007). A comparison of cluster magnetic data with the tsyganenko 2001
547	model. Journal of Geophysical Research: Space Physics, 112(A6). doi:
548	10.1029/2006JA012217