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Abstract 11 

 12 

Quantifying soil structural and ecological heterogeneity is crucial for understanding their interactions 13 

and their relationships to the resilience and health of the wider ecosystem. However, a clear 14 

understanding of how structural heterogeneity affects soil biodiversity is still emerging. Previous 15 

work has primarily used expensive, often laboratory-based methods to quantify soil pore network 16 

structure, and typically separated study of structural and biological dimensions. Here, we test 17 

whether standard network metrics can be used to quantify structural heterogeneity in soil pore 18 

networks, and how this network structure, along with characteristics of the consumer and resource 19 

populations, affects the heterogeneity of a population of consumers. Specifically, we extract 20 

simplified soil pore networks from digital photographs of soil profiles and apply established metrics 21 

from network science and transport geography to quantify and compare the networks. The 22 

networks are also used as the medium for an agent-based model of generalised consumers, to 23 

analyse the effects of consumer and resource parameterisations and network structure. Combining 24 

network analysis and simulation modelling in this way can provide insights on the structure, 25 

function, and diversity possible in the soil, as well as avenues for exploring the impact of future 26 

structural or environmental changes. 27 

Keywords: soil networks; soil structure; digital soil morphometrics; agent-based model; network 28 

analysis; ecological heterogeneity. 29 
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1. Introduction 31 

The distribution of energetic resources in an ecosystem plays a key role in determining the 32 

complexity, quantity, and behaviour of organisms that it can support (e.g. Giller, 1996; Tews et al., 33 

2004; Roshier, Doerr and Doerr, 2008; Stevens & Tello, 2011). To understand these systems more 34 

fully, and inform actions to protect those relying on them, we must understand how resource 35 

distribution networks develop and function. For example, resource location and movement can 36 

create heterogeneity that allows species to specialise and differentiate (e.g. Bardgett, Yeates and 37 

Anderson, 2009; Tews et al., 2004; Stevens & Tello, 2011), as well as cause inequality among 38 

individuals of the same species, topics that are relevant for both biologists and ecologists.  39 

The soil provides a unique and diverse ecosystem in which to study resource distribution, and its 40 

effect on organisms. Soil structure can be defined as the collection of soil particles and pore space 41 

among them (Oades, 1993). This pore space provides access to nutrients stored on the surface of soil 42 

particles, allows for preferential flow of water through the soil matrix, and serves as the resource 43 

distribution network through which micro-, meso-, and macrofauna (soil biota) forage. As this 44 

structure determines how air, water, and soil biota move through the soil, it allows or impedes the 45 

foraging of organisms, regulates the air and water balance in the soil matrix, and affects chemical 46 

signals used in foraging, such as those of bacterial decomposition (Young and Ritz, 2009). 47 

Furthermore, crevices and niches along soil pores provide habitats for smaller microbes to avoid 48 

predation, and the overall spatial and temporal heterogeneity of the soil environment allows for 49 

resource partitioning and habitat specialisation that limits the effect of competitive exclusion 50 

(Bardgett, Yeates and Anderson, 2009). This is similar to the hypothesised effect of heterogeneity in 51 

aboveground habitats (e.g. Tews et al., 2004; Stevens and Tello, 2011).  52 

Soil biota in turn can increase the porosity of soil, through burrowing and consuming organic matter, 53 

and releasing gases during decomposition, which create or expand soil pores (Kravchenko and 54 

Guber, 2017). Additionally, there is evidence of feedbacks between the soil biota and aboveground 55 

plant communities (e.g. Baer et al., 2005; Wijesinghe, John and Hutchings, 2005; García-Palacios et 56 

al., 2012), which alter soil structure as their roots burrow in pore networks, and roots and hyphae 57 

bind and stabilise soil particles (Vezzani et al., 2018). Through regulating movement and diffusion of 58 

water and energy resources, gases, and fauna in the soil matrix; providing habitat; and mediating 59 

biological feedbacks; soil structure is the foundation of all earth systems. 60 

Past efforts to quantify and model soil structure have primarily focussed on measuring the stability 61 

of soil, by utilising soil aggregate size distribution as a measure of structure. While this does 62 

represent the spatial distribution in the soil, it is not a complete representation of physical 63 

properties (see e.g. Young, Crawford and Rappoldt, 2001). Methods for visualising the pore network 64 

within a soil sample include CT scans and X-ray tomography, NMR, and SPECT scanning, mostly for 65 

the purposes of measuring solute flow and transport processes (see review in Young, Crawford and 66 

Rappoldt, 2001). Gas diffusion and solute flow have also been examined with modelling approaches, 67 

including neural networks, Boolean models, and cellular automata. Additionally, fractal modelling 68 

has also been used successfully to quantify the degree of connectivity, tortuosity, and heterogeneity 69 

of the soil pore network (Crawford, Ritz and Young, 1993), three characteristics that have also been 70 

associated with a higher level of heterogeneity of resource distribution in generalised networks 71 

(Davis et al., 2020).  72 

Overall, past work has highlighted the important connections between soil function and structure, 73 

especially of the pore network. Much of this work has been done from a geometric or hydrological 74 

perspective, however, rather than an energetic one, leading to criticisms of unrealistic separation of 75 



soil physics and biology, and emphasis on the importance of integrating these spatially explicit 76 

approaches in future soil ecology research (Bardgett, Yeates and Anderson, 2009). Additionally, 77 

much of the imaging equipment required for the techniques above is large and expensive, requiring 78 

soil samples to be brought back to the laboratory. Even if disruption to the soil structure during 79 

extraction and transport is minimised, these methods are more suitable for intensive analyses of 80 

individual samples and smaller areas. 81 

In contrast, some previous work has focussed on quantifying the structure of soil networks through 82 

image morphology techniques applied to a photograph of a sample, in order to extract the relevant 83 

network (e.g. Velde, Moreau and Terribile, 1996; Gargiulo, Mele and Terribile, 2013; Hartemink and 84 

Minasny, 2014). This method will not reveal the network at the same level of detail as CT scans or X-85 

ray tomography, and may require use of resins and dyes to highlight the underlying structure 86 

(Hartemink and Minasny, 2014). Good arguments have also been raised regarding the importance of 87 

analysing soil structure from a three-dimensional perspective, as it reveals considerably more about 88 

the habitat of the soil (Young and Ritz, 2009). However, if rotational invariance is assumed, 89 

connectivity and structure of a two-dimensional sample can be assumed representative of any 90 

random two-dimensional plane taken through the system. This inference does not consider lateral 91 

flow, which would undoubtedly play an important influence in sloping areas by transporting 92 

nutrients laterally through the soil. In areas where the surface is flat and lateral flow effects are 93 

negligible, standard network metrics could usefully approximate soil structure and provide insights 94 

into its effect on biotic and abiotic processes within an environment.  95 

Moreover, the two-dimensional techniques are considerably more portable and feasible than the 96 

three-dimensional techniques, and processing time can be significantly faster. Image analysis 97 

methods, particularly those that can be performed entirely in the field, could potentially be 98 

incorporated into software for use by farmers and researchers who may otherwise not have access 99 

to the equipment necessary for the more costly and lab-intensive methods of quantifying structure 100 

(e.g. Aitkenhead et al., 2016). These methods could also act as preliminary investigations to highlight 101 

potential areas of future exploration using more intensive analyses. 102 

In this paper, we test whether standard network metrics can be used to quantify structural 103 

heterogeneity in soil pore networks, and how this network structure, along with characteristics of 104 

the consumer and resource populations, affects the heterogeneity of a population of consumers. 105 

Specifically, we develop a method for extracting approximate soil networks from digital photographs 106 

using image morphology techniques, then apply metrics from network science and transport 107 

geography to quantify and compare the networks. The networks are also used as the medium for an 108 

agent-based model (ABM, which in ecology is more typically known as an individual-based model, 109 

e.g. Grimm et al., 2006), where the agents represent generalised consumers who explore the 110 

network and consume food resources. The variation in population size and resource consumption is 111 

compared across simulations, to evaluate how both the network structure and simulation 112 

parameters affect outcomes of the biotic community. This methodology is applied to a case study 113 

using soil images from two test sites in Aberdeenshire, United Kingdom. 114 

115 



2. Methods 116 

2.1 Soil image collection 117 

Images were taken at two field sites in Aberdeenshire, United Kingdom. The first site had a brown 118 

forest soil, or Cambisol (Fig A1a); photographs were taken from seven locations in both forested and 119 

converted agricultural areas. The second site had a sandy beach soil, or Arenosol (Fig A1b); 120 

photographs were taken at five locations across a dune area, with sparse grass and shrub cover. 121 

Neither Cambisols nor Arenosols are highly developed, but Cambisols have some diagnostic features, 122 

while Arenosols are lacking diagnostic features and are defined only on the basis of being coarse 123 

(sandy) textured (FAO, 2015). The known difference between the two soils therefore provides a 124 

basis for preliminarily evaluating the methodology. Additionally, both soil types can be assumed to 125 

show limited profile variation with depth on the scale of the observed soil profile sections under 126 

study (FAO, 2015), such that a uniform network extraction method and analysis can be applied 127 

across the image. The specific sampling sites were also chosen as they provided easy access to 128 

multiple sampling locations for both soil types. As this work is an exploratory proof-of-concept, an 129 

exhaustive sampling regime across different soil, land use, and geographic regions was not 130 

undertaken. 131 

The methodology for taking pictures was replicated from Aitkenhead et al. (2016). In summary, the 132 

photographs were taken of the soil profile of shallow (30 cm) pits in flat areas, using an angle that 133 

provided maximum natural light and minimum shadow (Fig A1a, b). No artificial lighting was 134 

required during photography. Additionally, each photograph included a 10 cm x 6 cm colour 135 

correction card within the frame. Colour correction has been used in past work (e.g. Aitkenhead et 136 

al., 2016) to correct colour variation in ambient lighting. However, in this work we were only 137 

interested in overall intensity, rather than light balance, so the cards were inserted into the image to 138 

provide a spatial scale reference for future work.  139 

In Fig A1a and A1b, the white area is an excised section of the image that is larger than the 140 

correction card. The imaging was taken with the card viewed straight on, without distortion, so the 141 

image distortion and impact on length of edges is not an issue. Extracting an area larger than the 142 

correction card also attempted to eliminate shading effects around the card. This may not have been 143 

done sufficiently to eliminate all the shading, possibly introducing some additional dark pixels and 144 

error into the network metric calculations. However, taking multiple pictures within the same profile 145 

can provide some robustness against this. Future work should attempt to remove this effect from 146 

near the correction card. 147 

In total, seven Cambisol profiles and five Arenosol pits were used for each soil type, with several 148 

images taken of the profile of each pit. In taking multiple images from each soil pit, we moved the 149 

camera slightly to present different viewing angles and thus generate different images. This was 150 

done to compare the robustness of extracted networks from each pit (see Section 2.2), and 151 

replication within pit was considered in all statistical analyses. 152 

2.2 Network extraction 153 

To extract the approximate soil network structure from the photographs, the photographs were 154 

converted to text files containing the red, green, and blue (RGB) triplet values for each pixel. All non-155 

soil pixels were then identified as those whose triplet values exceeded the ranges expected for soil 156 

particles, based on the average of the rest of the image. Using the average to determine this 157 

threshold customised it slightly for each image, so that outliers such as roots and rocks specific to 158 

that sample were captured, but samples having an overall more reddish tone were not stripped 159 



completely. The identified non-soil particles were removed, and variations in brightness across the 160 

remaining pixels were standardised using the mean pixel intensity.  161 

As soil structure and porosity are only loosely related, soils of the same porosity can have different 162 

structural properties. A common assumption made is that soils, unless compressed/compacted, 163 

have up to 50 % pore space. As the pixel resolution of the images here is between 0.3 – 0.5 mm, and 164 

therefore much higher than the smallest pore space possible (sub-micron scale), it follows that the 165 

pore space actually visible is less than this 50 %. An evaluation of the distribution of pixel values 166 

showed that for soil profile images used in this study, the greatest change in the distribution 167 

occurred around a pixel intensity where 30 – 40 % of the pixels were below this value (Fig A2). We 168 

have therefore assumed that 30 % of the soil is ‘void’ (i.e. dark pixels). Therefore, the darkest 30 % of 169 

the soil pixels were retained as pores, and the image was inverted to convert these darker pixels to 170 

white, and vice versa (Fig A1e, f). The images from the same profile were visually compared after 171 

thresholding and showed a high degree of agreement in the pores identified (e.g. Fig A3). Network 172 

outlines were then drawn through a process known in image morphology as ‘skeletonization,’ where 173 

lines of white pixels were iteratively stripped down until they were all one pixel in width (Fig. A1g, h). 174 

We then mapped the networks to a list of links, which were series of pixels that were more than one 175 

pixel long, and nodes, defined as junction points between two or more links. Redundant links 176 

between nodes were removed.  177 

For simplicity, all links in the final networks were represented with straight lines along the shortest 178 

distance between two nodes. This lost some of the details of the topology, such as pore size and 179 

shape. However, this work intended to create an abstraction of the network taken from the soil, 180 

rather than replicate and analyse the exact soil structure itself. This emphasised overall soil 181 

structural characteristics and heterogeneity, rather than modelling how specific transport processes 182 

and biological activities would occur. Replicating the exact soil network would also have markedly 183 

increased the computational burden, as link lengths would have had to be calculated through pixel-184 

counting rather than the Euclidean geometry measuring shortest distances. As many of the links as 185 

represented were quite short (see Results), the difference between the true link length and the 186 

shortest distance between nodes was assumed to be negligible. Currently, we assume that the 187 

method requires further validation and improvement to provide a measure of soil structure that can 188 

be used in soil science or pedological characterisation of the soil. We also assume however, that the 189 

method, while not perfect in its current form, provides sufficient quality of network data to allow 190 

simplified networks to be extracted and analysed, and used as the basis for simulations. 191 

The process of rendering the network also identified which sections of the network were fully 192 

connected, and which nodes were part of disconnected subnetworks (Fig. A1i, j). An outline of the 193 

image morphology process, and images of each step, are available in Appendix 1.  194 

2.3 Network analysis 195 

Two types of analysis were used to quantify the heterogeneity present in the soil network images. 196 

The first involved applying metrics adapted from network science and transport geography to 197 

measure structural characteristics of the abstracted networks, which allows for easy comparison 198 

among soil types. These were calculated using R v4.0.2 (R Core Team, 2020), including the packages 199 

igraph, qgraph, and sp (Pebesma and Bivand, 2005; Csardi and Nepusz, 2006; Epskamp et al., 2012; 200 

Bivand, Pebesma and Gomez-Rubio, 2013). All additional data analysis and visualisations were also 201 

done in R, using the packages ARTool v0.10.7 (Kay and Wobbrock, 2020; Wobbrock et al., 2011), 202 

emmeans v1.5.0 (Lenth, 2020), lmerTest v3.1.2 (Kuznetsova, Brockhoff, and Christensen, 2017), 203 

dunn.test v1.3.5 (Dinno, 2017), rcompanion v2.3.25 (Mangiafico, 2020), dplyr v1.0.0 and ggplot2 204 



v3.3.2 packages (Wickham, 2016; Wickham et al., 2019). The scripts for calculating network metrics 205 

are available at (Davis, 2020). 206 

A brief description of each of the metrics chosen is given in Table 1. These were chosen to measure 207 

the size, connectivity, and structural heterogeneity of the networks from a range of node-centric, 208 

link-centric, and global perspectives, to obtain a broad picture how the networks may differ. The 209 

metrics chosen also minimised assumptions about inaccessibility of the soil matrix between pores: 210 

for example, the convex hull area was chosen over the concave hull area as the former is a more 211 

generous estimate of the spatial area.  212 

Table 1. The name and description of the metrics used to analyse the soil networks.  213 

Metric name Description Type of 
measure 

Reference 

Mean and standard 
deviation (SD) of link 
length 
 

Quantifies the typical length and variability 
of lengths included within the network. 

Size N/A 

Beta index 
 
 

The ratio of links to nodes. Connectivity Rodrigue, 
2017 

Gamma index 
 
 

Number of observed vs. possible links: 
nLinks / (nNodes * (nNodes – 1)) 

Connectivity Rodrigue, 
2017 

Diameter The length of the longest geodesic (shortest 
path between two nodes) in the network – 
the shortest path between the two most 
distant nodes. 
 

Size Rodrigue, 
2017 

Node count The number of nodes in the network. Size Barabási, 
2016 
 

Edge count The number of edges (links) in the network. Size Barabási, 
2016 
 

Mean node degree Mean number of links per node.  Connectivity Barabási, 
2016 
 

Cost The total length of the network measured in 
real transport distances. 

Size Rodrigue, 
2017 
 

Global reach 
centrality (GRC) 

The difference between the maximum and 
average local reach centrality (LRC), where 
the LRC is the nodes that a given node can 
connect to, weighted by distance (here, 
spatial distance). 
 

Structure, 
connectivity 

Adapted from  
Mones, 
Vicsek and 
Vicsek (2012) 
 

Mean convex hull 
area 

The area of a polygon that minimally 
encompasses every node in the network.  

Size, 
connectivity 

Rockafellar, 
1970 

Network density The ratio of the number of nodes to the 
convex hull area. 

Structure N/A 



As introduced, the imaging method and metrics used here are two-dimensional (2D), and we have 214 

been unable to find literature describing characterisations of three-dimensional (3D) soil structure 215 

metrics based on two-dimensional imaging. Aitkenhead et al. (1999) derived 3D models of soil pore 216 

systems based on 2D metrics but did not compare the two sets of structural metrics. Future work 217 

would be necessary to determine the extent to which 3D variation in soil structural metrics 218 

correlates to the variation seen in 2D. Here, we are assuming that it does correlate, and that this 219 

allows 2D imaging to provide structural metrics representative of different soil types.  220 

We calculated each metric for each of the networks, which contained all nodes and links in the 221 

image, hereon called ‘main networks.’ We also calculated each metric for each of the disconnected 222 

subnetworks within the main networks, hereon called ‘subnetworks.’ As the distributions of metrics 223 

in the main soil networks had similar variance across soil types and relatively normal distributions, 224 

these were compared with nested ANOVA, using profile ID as a random effect to account for 225 

replication. The distribution of metrics across the subnetworks did not meet the assumptions for 226 

classical ANOVA, so non-parametric Aligned-Ranks Transformation (ART) ANOVAs were used instead, 227 

also with profile ID as a random effect.   228 

2.4 Agent-based model overview 229 

The second analytical method used a simulated population of consumers to explore each network, 230 

using the resulting heterogeneity in consumer resource stocks to further elucidate the heterogeneity 231 

of the network. This provided a more functional perspective, alongside the structural quantification 232 

of the network metrics. The purpose was to investigate the structure’s generalised impact, rather 233 

than test the precision of this model in predicting outcomes for real species. Therefore, rather than 234 

using parameterisations that reflected specific species or groups, five generic model species with 235 

different sets of values for each trait were used, similarly to e.g. Polhill and Gimona (2014).  236 

The same approach was taken for resources, with three sets of resource bases of different 237 

combinations of maximum capacity and maximum growth rates. Resources were assumed to be 238 

located at nodes within the network, as identified during the extraction process (see Section 2.2). 239 

Food resources in real soil networks are located throughout the soil matrix, but are often 240 

concentrated in ‘hotspots’ such as those created by plant roots and decomposition processes 241 

(Ettema and Wardle, 2002), which would be represented in the networks here as nodes. As 242 

exploring the effect of size of the generic species was not in scope for the work here, only the most 243 

accessible areas of the network were treated as potential resources. 244 

A brief description of the model purpose, variables, and processes is presented below, following the 245 

Overview, Design concepts, and Details (ODD) protocol (Grimm et al., 2006, 2010). The full ODD 246 

document, including description of design concepts, initialisation, input data, and sub-models, is 247 

available in Appendix 2. The model source code, written in NetLogo 6.1, is available in the Modelling 248 

Commons repository as “Soil network simulation” (Davis and Polhill, 2020). 249 

2.4.1 Overview section of Overview, Design Concepts, and Details (ODD) 250 

I. Model purpose 251 

a. The model is designed to be an analytical tool to explore the heterogeneity in 252 

resource supply potential of a network by populating it with idealised energy-253 

consuming agents, and to quantify the effects of consumer, resource, and network 254 

characteristics on resulting consumer population outcomes. 255 

II. Entities, state variables, and scales 256 

a. Consumer entities 257 



i. State variables 258 

Property  Description  

Location The resource on which the consumer is located 

Target location The resource to which the consumer will move next 

Active? Whether a consumer is active (or dead) 

ii. Parameters 259 

Property  Description  

Basal metabolism How much resource an agent needs per day to stay alive 

Active metabolism How much resource an agent uses with each step 

Resource stock How much resource an agent has consumed but not metabolised 

Consumption rate Maximum number of resource units that an agent takes from a resource it 
visits, per timestep 

Spawn energy How much energy an agent requires to spawn (depletes this quantity from 
stocks and passed to offspring as starting quota) 

 260 

b. Resource entities 261 

i. State variables 262 

Property  Description  

Current supply The current quantity of resource at this point 

 263 

ii. Parameters 264 

Property  Description  

Resource capacity How much energy is stored in a resource when it is full 

Regrow rate The amount the resource regrows each timestep 

 265 

c. Link entities 266 

i. State variables 267 

Property  Description  

Length The length of the link - determines energy and time required to traverse it 

 268 

d. Scales 269 

Property  Description  

Timestep A single unit of time in the model, defined as that which is required for 
consumers to move 1 pixel (approximately 0.3 – 0.5 mm), and for which they 
require basal-metabolism units of energy.  

World size 400 x 500, determined by the size of the soil networks used as the 
environment. 

 270 

III. Sequence of events 271 



a. Consumers start on random nodes around a pre-specified network, where nodes are 272 

resource patches. 273 

b. Consumers move around the network randomly following links. If they find a 274 

resource patch, they consume as much as they can from it, and the patch depletes. 275 

i. Consumers require basal-metabolism units of resource per timestep. If 276 

they do not consume this resource, they die.  277 

ii. Consumers can stay put on a resource and consume it (consumption-278 

rate units consumed per timestep), but it depletes, and if there is no more 279 

resource there then they move on. 280 

iii. Consumers metabolise active-metabolism units of resource per patch 281 

of link that they cross. 282 

iv. If there is more than one agent on a resource patch, they each take 283 

consumption-rate units per timestep, or split the remainder if there is 284 

not enough resource remaining for them to each get consumption-rate 285 

units. 286 

c. If consumers have twice as much energy as the set spawn-energy, they can 287 

spawn new consumers (who take the same amount of resource-stock from 288 

their parent that the parent started with, so now parent and offspring both have the 289 

same resource-stock). 290 

d. Resources regrow at a constant rate (regrow-rate) per timestep, up to their 291 

maximum capacity (resource-capacity).  292 

2.4.2 Sensitivity analysis 293 

To determine the sensitivity of the ABM to input parameters, and the robustness of any emergent 294 

patterns of heterogeneity, we performed an extensive sensitivity analysis following 295 

recommendations in the agent-based modelling literature. This is detailed in Appendix 3. Table 2 296 

shows the final parameter values used for the consumer populations, resource populations, and 297 

general model. In the actual simulation runs, each combination of the five consumer parameter sets, 298 

and three resource parameter sets, was tested against each network architecture, resulting in 8700 299 

total runs including replicates. 300 

Table 2. Final values for (a) consumer, (b) resource, and (c) general simulation parameters. 301 

a. Consumer parameters 302 

 Consumer type 
Parameter High 

metabolism, 
high 

consumption, 
high spawn 

energy 
(HHH) 

Low 
metabolism, 

low 
consumption, 

low spawn 
energy  

(LLL) 

Low 
metabolism, 

moderate 
consumption, 

low spawn 
energy (LML) 

Low 
metabolism, 

moderate 
consumption, 

moderate 
spawn energy 

(LMM) 

Moderate 
metabolism, 

moderate 
consumption, 

moderate 
spawn energy 

(MMM) 

Basal metabolism 3 1 1 1 2 
Active metabolism 3 1 1 1 2 
Consumption rate 10 5 7 7 7 
Spawn energy 100 50 50 75 75 
Initial resource stock 30 30 30 30 30 

 303 

b. Resource parameters 304 



 Resource type 

Parameter High capacity,  
low growth 

(HL) 

Moderate capacity, 
moderate growth 

(MM) 

Low capacity, high 
growth 

(LH) 

Maximum resource capacity 50 35 20 
Maximum regrow rate 10 15 20 

 305 

c. General parameters 306 

Parameter Value 

Initial population size 500 consumers 
Length of simulation 2000 timesteps 

 307 

2.4.3 Analytical method 308 

At each time step, the ABM calculated five metrics (Table 3), including measures of centre and 309 

spread of consumer resource stocks, the final population size, and two additional inequality metrics: 310 

the Gini coefficient and a modified form of the Shannon entropy. The latter estimates the 311 

differential entropy of a continuous variable, by discretising the distribution into bins (Appendix 4). 312 

These metrics were chosen to include measures of absolute and relative inequality, and a measure 313 

of evenness common to ecology. As the distributions of each metric across the soil types did not 314 

meet assumptions of most parametric tests, mixed-effects ART ANOVAs with profile ID as a random 315 

effect were again used to quantify how the outcome metrics differed, for each combination of 316 

resource and consumer population parameters and soil type. As the final population size and the 317 

entropy of consumer resource stocks both showed variance not fully explainable by consumer or 318 

resource population parameters, these were also tested with Kruskal-Wallis tests comparing them 319 

across profile IDs and soil types. The significantly different pairs of profiles were identified with Dunn 320 

post-hoc analysis.  All data processing, analysis, and visualisation was done in R, using the packages 321 

listed previously, as well as the entropy v1.2.1 (Hausser and Strimmer, 2014) and ineq v0.2.13 322 

packages (Zeileis, 2014).  323 

324 



Table 3. The name and description of outcome variables calculated for the agent-based model 325 

(ABM). 326 

Variable name Description 

Mean consumer 
resource stock 

The mean of the resource stocks held by all active consumers. Units are 
the same as those of the quantity measured. 
 

Standard deviation 
consumer resource 
stock 

The square root of the sum of squared absolute differences between 
each observation and the mean, normalised by the number of 
observations (minus one, to allow for sample estimation). Units are the 
same as those of the quantity measured. 

𝑠 =  √
 ∑  |𝑥𝑖 − �̅�|2

𝑛 − 1
 

 
Gini coefficient 
consumer resource 
stock 

Measures the deviation of a population from perfect equality. 
Mathematically, it can be calculated as half the relative mean absolute 
difference, or half the average absolute difference between all pairs of 
the population, divided by the average of the population to normalise. 
Unitless. 
 

Entropy consumer 
resource stock 
(Shannon index) 

Measures the amount of information that would be needed to 
represent the state of the system. Specifically, it is the negative sum of 
the probability of a consumer’s resource stock occurring within a given 
range,  and the log of that probability, normalised by the maximum 
value (log n). This is the discretised formula for entropy. The units 
depend on the base of the log: here we use base 2 (units: bits). 

𝐻(𝑋) =  
− ∑ 𝑓(𝑥𝑖) log2

𝑓(𝑥𝑖)
𝑤(𝑥𝑖)

𝐻𝑚𝑎𝑥
 

 
Final population size Count of currently active (‘alive’) consumers.  

327 



3. Results 328 

3.1 Network metrics 329 

The network metrics showed several significant differences between the Cambisols and Arenosols, 330 

with the Cambisols having higher values for most metrics measuring size and structure. These are 331 

summarised in Table 4 and Fig 1. 332 

Table 4. (a) Estimated marginal means, standard errors, and outcomes for mixed-effect nested 333 
ANOVAs comparing network metrics between Cambisol and Arenosol main soil networks, and (b) 334 
medians and 95 % confidence intervals and results of mixed-effect nested Aligned-Ranks 335 
Transformation (ART) ANOVAs comparing Cambisol and Arenosol subnetworks. Shown in (a) are 336 
the Type II Wald Chi-square statistic and p-values for models comparing each network metric across 337 
soil types. Profile ID was included as a mixed effect; its log-likelihood ratio test (LRT) statistic and p-338 
value are also shown. Both the Chi-square and LRT used one degree of freedom to compare soil 339 
types. Estimated marginal means and standard errors were calculated from ANOVAs. In (b) ART 340 
ANOVAs were used as the data were non-normal; profile ID was also included as a mixed effect. 341 
Shown are Type III Wald F tests with Kenward-Roger degrees of freedom. The asterisks designate 342 
level of significance: p < 0.1: ·, p < 0.05: *, p < 0.01: **, p < 0.001: ***. Descriptions of the metrics are 343 
in Table 1.344 



a. Main networks 345 

 346 

 

Arenosols 
(n = 25) 

Cambisols 
(n = 25) Soil type Profile ID (random effect) 

 
Est. marginal 

mean SE 
Est. marginal 

mean SE 
χ2  p LRT p 

No. of nodes 2670.000 9.570 3326.000 10.070 
7.809 0.005 ** 21.384 < 0.001 *** 

No. of links 4225.000 344.000 5581.000 293.000 
9.058 0.003 ** 19.280 < 0.001 *** 

Mean node degree 3.140 0.055 3.350 0.047 
9.098 0.003 ** 9.005 0.003  ** 

Mean link length 3.570 0.023 3.700 0.022 
17.667 0.000 *** 0.414 0.520       

SD link length 2.110 0.025 2.210 0.025 
9.815 0.002 ** 0.000 1.000 

Gamma index 0.001 0.000 0.001 0.000 4.838 0.028 * 20.231 < 0.001 *** 

Beta index 1.570 0.028 1.680 0.024 
9.098 0.003 ** 9.005 0.003 ** 

Diameter 154.000 11.100 201.000 10.700 
10.017 0.002 ** 0.141 0.708 

Cost 15180.000 1257.000 20600.000 1072.000 
10.840 0.001 *** 16.153 < 0.001 *** 

Global reach 
centrality 0.002 0.000 0.002 0.000 

0.049 0.825 10.923 < 0.001 *** 

Convex hull area 166940.000 2949.000 167086.000 2514.000 
0.001 0.970 11.730 < 0.001 *** 

Network density 0.016 0.001 0.020 0.001 
8.037 0.005 ** 16.547 < 0.001 *** 

No. of subnetworks 163.000 3.382 158.000 3.236 
0.009 0.924 6.302 0.012 * 

 347 

348 



b. Subnetworks 349 

 350 

 

Arenosols 
(n = 3906) 

Cambisols 
(n = 3834) 

ANOVA 

 Median Lower CI Upper CI Median Lower CI Upper CI F p 

Number of nodes 11.000 11.000 11.000 11.000 11.000 11.000 F(1, 8.614) = 1.542 0.247 

Number of links 15.000 14.000 15.000 15.000 15.000 16.000 F(1, 8.443) = 3.793 0.085 · 

Mean node degree 2.670 2.640 2.670 2.710 2.670 2.750 F(1, 7.971) = 9.239 0.016 * 

Mean link length 3.190 3.170 3.220 3.250 3.230 3.280 F(1, 7.011) = 11.322 0.012 * 

SD link length 1.620 1.600 1.640 1.670 1.640 1.690 F(1, 8.334) = 3.648 0.091 · 

Gamma index 0.132 0.127 0.136 0.133 0.128 0.136 F(1, 8.720) = 0.355 0.567 

Beta index 0.133 0.132 0.133 0.136 0.133 0.138 F(1, 7.971) = 9.239 0.016 * 

Diameter 19.000 18.600 19.500 19.300 18.800 19.700 F(1, 7.957) = 1.664 0.233 

Cost 46.700 45.200 48.700 49.200 47.500 51.600 F(1, 8.161) = 4.717 0.061 · 

Global reach centrality 0.058 0.057 0.059 0.058 0.057 0.059 F(1, 7.645) = 0.554 0.479 

Convex hull area 63.500 59.800 67.000 62.500 58.500 66.000 F(1, 8.132) = 0.385 0.552 

Network density 0.171 0.167 0.176 0.172 0.168 0.179 F(1, 8.117) = 0.013 0.913 

351 



a.  352 
353 



b.  354 

Figure 1. The distribution of each network metric by soil type, for (a) main soil networks and (b) 355 
subnetworks. The point and error bars in (a) represent the estimated marginal mean and standard 356 
error for that network type and soil type, as determined by the ANOVAs (Table 4a), and the point 357 
and error bars in (b) represent the median and upper and lower 95 % confidence intervals, 358 
respectively. Descriptions of the network metrics are in Table 1.  359 

 360 

361 



At the main network level, the networks extracted from the Cambisols had significantly more nodes 362 

and links, a larger mean node degree and standard deviation of link length, and longer mean link 363 

length (Table 4a).These networks also had a higher beta index, higher cost, and higher density. While 364 

the main networks of the two soil types had significantly different gamma indexes, the absolute 365 

difference in the estimated marginal means  between the two soil types was negligible (< 10-3) (Table 366 

4a, Fig 1a). At the subnetwork level, Cambisol networks had longer mean link length, and higher 367 

mean node degree and beta index (Table 4b). While not significant, Cambisol subnetworks also had 368 

noticeably larger number of links and standard deviation of link length, and higher cost (Fig 1b).  369 

To control for the effect of replication on the significance, the profile ID was included in the ANOVAs 370 

as a mixed effect. This was significant for all metrics except mean and standard deviation of link 371 

length and diameter. Most profiles within each soil type at the main network level showed low 372 

absolute variation across the networks extracted from each however, and noticeably higher metric 373 

values for Cambisols than Arenosols (Fig A7a). At the subnetwork level, the distributions were quite 374 

similar across all profiles, but the Cambisol profiles showed more frequent and higher outliers. 375 

3.2 Agent-based model 376 

The ABM results showed significant differences across the different combinations of 377 

parameterisations and soil types, summarised in Tables 5 and 6 and Fig 2. The simulations run on the 378 

Cambisol networks had significantly higher final population sizes (Tables 5 and 6, Fig 2b), and 379 

interactions between soil type and consumer and resource parameterisation were significant for 380 

several outcome variables (Table 6).  381 

 382 

Table 5. The medians, first and third quantiles for agent-based model (ABM) outcome variable 383 
values across the two soil types. These values represent the overall results across all consumer and 384 
resource parameterisations. Descriptions of the variables are in Table 3. 385 

 Arenosols (n = 375) Cambisols (n = 375) 

 Median 1st Quantile 3rd Quantile Median 1st Quantile 3rd Quantile 

Mean resource stock 69.970 47.086 71.391 69.940 47.077 71.397 

SD resource stock 33.266 22.262 34.123 33.300 22.276 34.112 

Entropy resource stock 0.956 0.955 0.958 0.957 0.956 0.958 

Gini resource stock 0.271 0.268 0.273 0.271 0.268 0.274 

Final population size 4049.728 1967.921 5102.043 4890.158 2279.1560 5842.834 



a.  386 



b.  387 

Figure 2. Distributions of (a) each agent-based model (ABM) outcome variable, grouped by 388 
resource parameterisation (columns, labelled at top) and consumer parameterisation (x axis 389 
within columns), across both soil types, and (b) ABM outcome variables that were significantly 390 
affected by soil type (represented by colour), grouped by resource parameterisation (columns) 391 
and consumer parameterisation (x axis within columns). The three-letter consumer 392 
parameterisation codes refer to the metabolism, consumption rate, and spawning threshold, 393 
respectively, where H is high, M is medium, and L is low. Descriptions of the resource and consumer 394 
parameterisations are in Table 2, and descriptions of the outcome variables are in Table 3.  395 

 396 

The ART ANOVAs showed that measured outcomes all differed significantly across consumer 397 

parameterisation, resource parameterisation, and consumer-resource parameterisation interactions. 398 

Final population size differed significantly by soil type, soil type-resource parameterisation 399 

interaction, and soil type-consumer parameterisation interaction. Mean resource stock also differed 400 

significantly by soil type-resource parameterisation interaction.  401 

402 



Table 6. Overview of Aligned Ranks Transformation ANOVA models of consumer population 403 

outcomes by consumer and resource parameterisation and soil type. The tests were Type III Wald F 404 

tests with Kenward-Roger degrees of freedom. Profile ID was included as a random effect. The 405 

asterisks designate level of significance: p < 0.1: ·, p < 0.05: *, p < 0.01: **, p < 0.001: ***. 406 

Descriptions of consumer and resource parameterisations are in Table 2 and descriptions of 407 

response variables are in Table 3.  408 

Response variable Predictors F  Significance 

Mean consumer 
resource stock 

Consumer population F(4, 710.063) = 3585.924 < 0.001 *** 
Resource population F(2, 710.063) = 2585.400 < 0.001 *** 

Soil type F(1, 9.692) = 0.328 0.560 
Consumer pop. x resource pop. F(8, 710.094) = 998.152 < 0.001 *** 

Consumer pop. x soil type F(4, 710.106) = 1.460 0.213 
Resource pop. x soil type F(2, 710.103) = 3.513 0.030 * 

Consumer pop. x resource pop. x 
soil type F(8, 710.102) = 1.020 0.419 

SD consumer 
resource stock 

Consumer population F(4, 710.185) = 3629.337 < 0.001 *** 
Resource population F(2, 710.292) = 1137.215 < 0.001 *** 

Soil type F(1, 9.212) = 0.555 0.475 
Consumer pop. x resource pop. F(8, 710.233) = 677.837 < 0.001 *** 

Consumer pop. x soil type F(4, 710.315) = 2.164 0.071 · 
Resource pop. x soil type F(2, 710.32) = 0.538 0.584 

Consumer pop. x resource pop. x 
soil type F(8, 710.306) = 1.123 0.345 

Entropy consumer 
resource stock 

Consumer population F(4, 710.030) = 586.700 < 0.001 *** 
Resource population F(2, 710.036) = 59.661 < 0.001 *** 

Soil type F(1, 9.861) = 3.105 0.109 
Consumer pop. x resource pop. F(8, 710.025) = 67.989 < 0.001 *** 

Consumer pop. x soil type F(4, 710.037) = 2.364 0.052 · 
Resource pop. x soil type F(2, 710.037) = 0.241 0.786 

Consumer pop. x resource pop. x 
soil type F(8, 710.037) = 0.949 0.475 

Gini consumer 
resource stock 

Consumer population F(4, 710.677) = 1296.640 < 0.001 *** 
Resource population F(2, 711.086) = 2004.095 < 0.001 *** 

Soil type F(1, 7.791) = 2.445 0.158 
Consumer pop. x resource pop. F(8, 710.847) = 1005.251 < 0.001 *** 

Consumer pop. x soil type F(4, 711.364) = 0.470 0.758 
Resource pop. x soil type F(2, 711.281) = 2.502 0.083 · 

Consumer pop. x resource pop. x 
soil type F(8, 711.287) = 0.614 0.766 

Final population size 

Consumer population F(4, 710.001) = 1361.66 < 0.001 *** 
Resource population F(2, 710.001) = 604.376 < 0.001 *** 

Soil type F(1, 9.998) = 9.239 0.012 * 
Consumer pop. x resource pop. F(8, 710.001) = 33.651 < 0.001 *** 

Consumer pop. x soil type F(4, 710.001) = 41.516 < 0.001 *** 
Resource pop. x soil type F(2, 710.001) = 5.039 0.007 ** 

Consumer pop. x resource pop. x 
soil type F(8, 710.001) = 0.282 0.972 

 409 



The entropy of consumer resource stocks and the final population size both showed considerable 410 

variation in the initial boxplots that was not explained by the consumer and resource 411 

parameterisation (Fig 2a), and the ANOVA results suggested that soil type was influential on final 412 

population size. Therefore, these were further explored with Kruskal-Wallis tests, first with profile ID 413 

as the grouping variable, then soil type (Table 7, also Fig 2b). Significant differences in profile ID were 414 

explored with Dunn post-hoc analysis. This showed that entropy differed significantly between 415 

profiles D and H, which were Cambisol and Arenosol, respectively, while final population size 416 

differed significantly between several pairs of profiles, including both intra- and inter-type profile 417 

pairings. 418 

 419 

Table 7. Results of Kruskal-Wallis tests and Dunn post-hoc analysis comparing entropy of 420 

consumer resource stocks and final population size by soil profile ID and soil type. The degrees of 421 

freedom for the Chi-square statistics were 11 and 1 for profile ID and soil type, respectively. Profile 422 

IDs A – G correspond to Cambisols, while profile IDs H – K correspond to Arenosols. Significant pairs 423 

of profiles were identified at the level of α/2, where α = 0.05. Profile pairings in italics denote inter-424 

type pairs. 425 

Response variable Grouping variable 

Significance Significantly 
different pairs (p < 

0.025) χ2 p 

Entropy consumer 
resource stock 

Profile ID 25.824 p = 0.007 ** D : H 
Soil type 4.965 p = 0.026 * Cambisol : Arenosol 

 
Final population size Profile ID 65.167 p < 0.001 *** A : C, A : H, A : I, A : 

K, A: L, B : H, B: I, B: 
K, D : H, D : I, D : K, G 
: H, G : I, G : K, H : J, I 
: J, J: K 

Soil type 21.974 p < 0.001 *** Cambisol : Arenosol 

 426 

  427 

428 



4. Discussion 429 

4.1 Network analysis 430 

Given the known characteristics of the two soil types, the results of the network analysis suggest 431 

that the methodology developed here captures overall trends of soil structural development. 432 

Cambisols typically have more soil structure, higher porosity, higher levels of biotic activity, and 433 

greater stability than Arenosols (FAO, 2015). Correspondingly, the abstracted Cambisol soil networks 434 

analysed here showed higher values for the metrics measuring size, structure, and connectivity than 435 

the abstracted Arenosol soil networks did.  436 

Specifically, the Cambisol soil networks had significantly more nodes and links, longer mean and 437 

standard deviation of link lengths, and higher total cost, density, and diameter (Table 4). This 438 

suggests more pore-creating activities modifying the soil, and a soil structural matrix that can 439 

support longer pores. This would also lead to higher water holding capacity, and increased internal 440 

drainage, both of which are commonly associated with Cambisols (FAO, 2015). In contrast, the 441 

smaller and less connected Arenosol networks have a low water-holding capacity, and the weaker 442 

coherence of their matrix material prevents longer pores from being stable, making them prone to 443 

erosion (FAO, 2015). Cambisols are also classified as more structurally developed than Arenosols, 444 

and contain more organic matter (FAO, 2015), both of which further validate the increased structure 445 

seen in the Cambisol networks here.  446 

The global reach centrality, gamma index, and convex hull area were not as clearly differentiated 447 

between the Cambisol and Arenosol soil networks, however. The global reach centrality values were 448 

small and functionally identical, with an estimated marginal mean of 0.001 and 0.058 for both soil 449 

types at the main and subnetwork level, respectively (Table 4). Similarly, the estimated marginal 450 

mean gamma index for main networks of both soil types was 0.001. This is likely due to the presence 451 

of a similar number of disconnected subnetworks within each soil network, limiting the total number 452 

of nodes that any given node can reach. The Cambisol main networks also had a slightly smaller 453 

range of convex hull areas, although the opposite trend emerges at the subnetwork level (Fig 1, 454 

Table 4). When this is decomposed by profile, the Cambisols show more variation and outliers across 455 

and within profiles for several metrics, including convex hull area (Fig A7), suggesting that soil type 456 

includes a greater heterogeneity of network sizes and structures. As with the other metrics, further 457 

work is required to establish ranges across different soil types and geographical regions, and to 458 

compare these metrics with those more commonly used in soil analysis. Overall, however, the 459 

differences between the Cambisols and Arenosols as captured in this analysis broadly reflects those 460 

expected, given the known differences in their properties. 461 

The improved profile development and heterogeneity of Cambisols highlights their potential for 462 

agriculture and forestry, and in underpinning the diversity of a range of ecosystems. It is vital to 463 

manage them in a way that preserves and enhances their soil structure, however, to maintain their 464 

porosity and biodiversity, and resulting stability, drainage, and aeration. Similarly, Arenosols should 465 

be managed in a way that minimises their propensity for erosion and soil loss. In both cases, this can 466 

be accomplished through limiting or eliminating tillage (e.g. Young and Ritz, 2000; Helgason, Walley 467 

and Germida, 2010; Kravchenko et al., 2011), and increasing cover crops and native species (e.g. 468 

Fernández et al., 2019; Kravchenko et al., 2011). These provide additional organic inputs to the soil 469 

to promote an active and diverse soil biota, and therefore the positive feedback between biota, and 470 

structural development and stability (e.g. Oades, 1993; Young and Ritz, 2009; Crawford et al., 2012). 471 

The feasibility of the measurement and analysis methods presented here could provide a basis for 472 

estimating changes in structure over time and under different management strategies or 473 



environmental changes. This would help inform actions taken to preserve or improve the soil 474 

structure. However, further work is required to standardise the approach and demonstrate its 475 

application over multiple soil types. 476 

As introduced in the Methods, the networks analysed here represent abstractions of the true soil 477 

structure present in the samples. This simplification is reasonable for analysing overall structural 478 

characteristics and heterogeneity and made the computation of the network metrics feasible. 479 

Although the short link lengths (Table 4) suggest that using Euclidean distance is likely negligibly 480 

different than measuring the path through the pixels, it does limit the interpretation of the findings 481 

we present. Specifically, the absolute values of the metrics cannot be taken to characterise the 482 

precise soil structure, but rather suggest general trends in structural development. As the exact size 483 

and shape of the pores was not preserved, many of the finer distinctions between networks may 484 

also be lost. This could cause the magnitudes of differences found between soil samples here to 485 

appear lower than they are. As discussed above, the relatively rapid, low-cost, and lightweight 486 

approach used here for estimating soil structure should be compared against more established 487 

approaches and metrics to determine its effectiveness. This methodology provides simplified and 488 

potentially inaccurate measurements of soil structure, but with further improvement it could be a 489 

suitable approach for rapid assessment of soil structure in the field. The results presented suggest 490 

that the methodology can still capture general known trends of heterogeneity within soil networks, 491 

meriting further refinements and application. 492 

4.2 ABM analysis 493 

The ABM evaluated the effects of and interactions between consumer and resource characteristics, 494 

and the structure of the abstracted soil networks, on the measured consumer outcomes. Overall, 495 

the results showed that the size and energetic heterogeneity of the consumer population was 496 

heavily influenced by the parameterisation of the consumer population and resource base, and their 497 

interactions. Moreover, while outcome variables were less directly affected by soil network 498 

structure, they were more influenced by the interactions between this network structure and 499 

consumer or resource parameterisations.  500 

Across all simulations, measured outcomes varied most strongly across consumer and resource 501 

characteristics, and their combinations as overall consumer and resource parameterisations or types 502 

(Fig 2a, Table 6). Specifically, the mean, standard deviation, and entropy of consumer resource 503 

stocks, as well as the final population size, were most different across consumer types. These 504 

differences in outcome variables resulted from how each consumer population responded to the 505 

provided resource base. For example, the consumer populations with low metabolisms, low 506 

consumption rate, and a low energy requirement for spawning had a lower mean resource stock, 507 

and a higher final population size, for any given resource base. The consumers with high 508 

metabolisms, high consumption rate, and a high energy requirement for spawning had a lower final 509 

population size, but higher mean resource stock. This is similar to the distinction between r-510 

strategists and K-strategists. In these simulations, the threshold for spawning and the active and 511 

basal metabolic rates appeared to have the largest impact on the measured outcome variables (Fig 512 

2a). This is likely due to these parameters balancing one another in determining energy allocation 513 

between maintenance and reproduction (e.g. Brown et al., 2004; Kooijman, 2009).  514 

In addition to consumer and resource characteristics, the soil type, and therefore soil network 515 

structure, also affected population size and diversity (Table 6). Specifically, the mean consumer 516 

resource stock and final population size showed significant differences across resource and soil type 517 

interactions, and final population size also showed significant differences between soil types (Table 518 



5). While the final population size and entropy also differed significantly across profiles (Table 6), 519 

post-hoc analysis revealed that for entropy this was only significant for inter-type profile pairings, 520 

and a slight difference was visible between groups when plotted (Fig 2b). This entropy is also known 521 

as the Shannon Index or Shannon-Wiener Index, and here measures the diversity or ‘evenness’ of 522 

the distribution of consumer resource stocks (Hill, 1973; Spellerberg and Fedor, 2003). Higher 523 

entropy therefore meant that given quantities of resource stock were represented in equal 524 

proportional abundance across the population. This is typically caused by groups of consumers 525 

emerging, where group members each have the same quantity of resource stock, but these 526 

quantities differ among groups. Over time, adaptations in this context could drive the system toward 527 

speciation. In these simulations, the larger populations supported by the larger Cambisol soil 528 

networks were more likely to have higher entropy, through different quantities of consumer 529 

resource stocks represented with equal proportional abundance. 530 

The relatively low Gini coefficients (Table 5, Fig 2a) can also suggest the emergence of distinct 531 

groups of consumers with equal resource stocks, with similar numbers of consumers across the 532 

groups. As the Gini coefficient measures relative inequality, both inequality in resource stocks across 533 

groups, and more groups, cause it to increase. Equal group sizes can somewhat counter this. In both 534 

soil types however, as the consumers in a given simulation had identical characteristics, it is 535 

reasonable that they would have similar outcomes, slightly differing based on the subnetwork in 536 

which they found themselves, and the resource base available to them there. The similarity among 537 

subnetworks of the two soil types (Table 4b) suggests that the heterogeneity between soil types is 538 

more apparent at the main network level. As the consumers in these simulations were unable to 539 

move between subnetworks, they likely did not experience the full range of environmental 540 

heterogeneity between the soil types, which would have limited its effect on the measured 541 

outcomes. 542 

Overall, the simulations highlight the differences in population size and diversity across consumer 543 

and resource parameterisations and interactions, soil and resource type interactions, and to a lesser 544 

extent, soil type on its own. Spatial heterogeneity, through both resource and network structural 545 

heterogeneity, can increase the microhabitat diversity (Anderson, 1978; Giller, 1996; Ettema and 546 

Wardle, 2002; Nielson et al., 2010), which was shown here through the increased evenness of 547 

consumer groups with different resource stocks. Similarly, the heterogeneous habitat of soils can 548 

limit competitive exclusion by providing structural and resource niches for different species 549 

(Bardgett, Yeates and Anderson, 2009), such that more structurally heterogeneous Cambisols have 550 

larger and more diverse populations (FAO, 2015). This was reproduced by the larger populations that 551 

emerged in the Cambisol simulations here, although speciation was not explicitly modelled. As with 552 

the findings of the network analysis, this emphasises the importance of preserving soil structure and 553 

providing adequate substrate for maintaining an active soil biota (e.g. Young and Ritz, 2009; 554 

Crawford et al., 2012; Fernández et al., 2019). 555 

While the parameterisations presented here were limited, they revealed interesting effects of 556 

consumer and resource characteristics and interactions. The programming of the model itself, 557 

however, may also have had an impact on the outcome of consumer populations. For example, 558 

consumers moved randomly among resources rather than following any sort of search strategy, and 559 

there was no energetic penalty imposed for turning, which are simplifying assumptions based on the 560 

limited sensory and processing capabilities of most soil biota. This eliminated free parameters that 561 

would have to be tuned and analysed or sourced from limited data about specific soil biota 562 

metabolism and cognition. It also eliminated any effect that tortuosity of the network would have on 563 

consumer resource stocks, though. This may not be a correct assumption if turning has a higher 564 



burden physically, cognitively, or both. Furthermore, as consumers were not able to extend the 565 

network or move between subnetworks, they were unlikely to experience the full difference 566 

between soil networks, as discussed above. This may have led to a smaller effect of soil type on 567 

measured consumer outcomes. 568 

Additionally, the extraction and simplification process used to create the soil networks may have 569 

affected the outcomes of the ABM. As the details of pore size and shape were not maintained, the 570 

consumers’ ability to forage or hide in crevices was not intended to mimic the true range of 571 

consumer sizes and behaviours. Since predation was not included in the model, however, we did not 572 

intend to explore the hypothesised effect of physical niches on populations by limiting competitive 573 

exclusion and predation. While this would be an interesting future extension, and these changes 574 

could increase the observed effect of the soil network structure on consumer population outcomes, 575 

it would require refining the network extraction process as discussed above, as well as estimating 576 

ranges of consumer sizes and predation dynamics. The model presented here instead focussed on 577 

exploring the overall trends that might emerge in a population of consumers, rather than attempting 578 

to predict how specific populations might evolve. While its design limits the precision of the 579 

implications, it maintains the level of realism and generality assumed within the overall 580 

methodology (Levins, 1966).  581 

 582 

5. Conclusion 583 

This work has explored how analysing abstracted soil networks using standard network metrics, 584 

combined with simulations, can quantify the underlying structural and functional differences 585 

between soil types. We showed that networks derived from a brown forest soil, or Cambisol, were 586 

significantly larger, more connected, and more spatially heterogeneous than the networks derived 587 

from a less developed sandy beach soil, or Arenosol. These larger and more structured networks 588 

were in turn able to support larger populations of simulated consumers in an agent-based model 589 

(ABM). The ABM also demonstrated how the size and heterogeneity of the simulated population 590 

were significantly different across consumer and resource parameterisations, and interactions 591 

between these parameterisations and soil type.  592 

In conclusion, standard network metrics applied to images can be a useful way to quickly assess the 593 

structure of networks within a soil profile, by capturing the broad structural differences between 594 

distinct soil types, in a way that can suggest functional differences as well. These initial estimates can 595 

be used on their own to survey an area more extensively or affordably, or coupled with more 596 

intensive analyses, such as three-dimensional imaging techniques. Agent-based modelling can also 597 

be used, when seeded with networks obtained from images or scans, to evaluate interactions 598 

between consumer and resource characteristics and network structure, and to quantify the impact 599 

these and other environmental factors have on the outcomes of simulated populations. Overall, 600 

combining network analysis and simulation modelling can provide unique insights on the structure, 601 

function, and diversity of an area of soil, and provide avenues for exploring the impact of future 602 

management, structural, or environmental changes. 603 

 604 
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Appendices 761 

 762 

Appendix 1. Network extraction process 763 

For all images:  764 

1. Convert the image to a text file containing RGB triplets 765 
2. Identify and eliminate all non-soil pixels (set to -1) 766 
3. Calculate mean pixel intensity at all points 767 
4. Adjust pixel intensity to remove variations in brightness across image 768 
5. Threshold the image to retain the darkest 30 % soil pixels 769 
6. Carry out erosion and thinning operators 770 
7. Clean image to produce skeletal pixels 771 
8. Identify networks 772 
9. Remove redundant pathways 773 
10. Calculate distances between nodes 774 
11. Save the network 775 



 776 

Figure A1. Soil image morphology process for a Cambisol (a) and Arenosol (b) profile image. Steps 777 
show include (c-d) colour correction, (e-f) thresholding, (g-h) erosion and thinning operations, and (i-778 
j) subnetwork identification. White areas represent colour correction cards, which were excised. 779 



 780 

Figure A2. The rate of change of mean fraction of pixels for each mean fraction below a given 781 

threshold value. The plot starts on the left with pixel values of 0, with no pixels below this value, and 782 

ends on the right with pixel values of 755 (with correction card removed from image). The y-axis 783 

shows the rate of change of the mean fraction of pixels below each value. 784 

 785 

 786 

Figure A3. Comparison of different images from the same pit after thresholding. The two pairs of 787 
images from each pit are arranged horizontally. The white rectangle is the correction card. The 788 
thresholding process was the same as described in Section 2.2, where the darkest 30 % of pixels 789 
have been retained as pores, and other pixels removed. 790 



Appendix 2. ODD design concepts, initialisation, input data, and submodels 791 

 792 

 793 

Figure A4. A screenshot of the model. The inset at the top left shows an enlarged version of some of 794 
the resource nodes (yellow squares) and agents (red ants). 795 

I. Model purpose 796 

a. The model is designed to be an analytical tool to explore the heterogeneity in 797 

resource supply potential of a network by populating it with idealised energy-798 

consuming agents, and to quantify the effects of consumer, resource, and network 799 

characteristics on resulting consumer population outcomes. 800 

II. Entities, state variables, and scales 801 

a. Consumer entities 802 

i. State variables 803 

Property  Description  

Location The resource on which the consumer is located 

Target location The resource to which the consumer will move next 

Active? Whether a consumer is active (or dead) 

 804 

805 



ii. Parameters 806 

Property  Description  

Basal metabolism How much resource an agent needs per day to stay alive 

Active metabolism How much resource an agent uses with each step 

Resource stock How much resource an agent has consumed but not metabolised 

Consumption rate Maximum number of resource units that an agent takes from a resource it 
visits, per timestep 

Spawn energy How much energy an agent requires to spawn (depletes this quantity from 
stocks and passed to offspring as starting quota) 

 807 

b. Resource entities 808 

i. State variables 809 

Property  Description  

Current supply The current quantity of resource at this point 

Resource capacity How much energy is stored in a resource when it is full 

Regrow rate The amount the resource regrows each timestep 

 810 

ii. Parameters 811 

Property  Description  

Resource capacity How much energy is stored in a resource when it is full 

Regrow rate The amount the resource regrows each timestep 

 812 

c. Link entities 813 

i. State variables 814 

Property  Description  

Length The length of the link - determines energy and time required to traverse it 

 815 

d. Scales 816 

Property  Description  

Timestep A single unit of time in the model, defined as that which is required for 
consumers to move 1 pixel (approximately 0.3 – 0.5 mm), and for which they 
require basal-metabolism units of energy.  

World size 400 x 500, determined by the size of the soil networks used as the 
environment. 

 817 

III. Sequence of events 818 

a. Consumers start on random nodes around a pre-specified network, where nodes are 819 

resource patches. 820 

b. Consumers move around the network randomly following links. If they find a 821 

resource patch, they consume as much as they can from it, and the patch depletes. 822 

i. Consumers require basal-metabolism units of resource per timestep. If 823 

they do not consume this resource, they die.  824 



ii. Consumers can stay put on a resource and consume it (consumption-825 

rate units consumed per timestep), but it depletes, and if there is no more 826 

resource there then they move on. 827 

iii. Consumers metabolise active-metabolism units of resource per patch 828 

of link that they cross. 829 

iv. If there is more than one agent on a resource patch, they each take 830 

consumption-rate units per timestep, or split the remainder if there is 831 

not enough resource remaining for them to each get consumption-rate 832 

units. 833 

c. If consumers have twice as much energy as the set spawn-energy, they can 834 

spawn new consumers (who take the same amount of resource-stock from 835 

their parent that the parent started with, so now parent and offspring both have the 836 

same resource-stock). 837 

d. Resources regrow at a constant rate (regrow-rate) per timestep, up to their 838 

maximum capacity (resource-capacity).  839 

IV. Design concepts 840 

a. Basic principles  841 

i. Consumers attempt to consume as much free energy from a resource as 842 

they are able, to maximise energy reserves for future movement, and 843 

spawning capability. 844 

ii. Conservation equations: energy and matter cannot be created (except at the 845 

start of the simulation) or destroyed. In spawning, this is represented by 846 

consumers transferring some of their energy to their offspring. Consumers 847 

only die when their energy reserves are completely depleted (starvation). 848 

iii. Entropy production: some resource energy is consumed in movement and 849 

cannot be recaptured. 850 

b. Emergence 851 

i. The distribution of consumers in space around the network and the 852 

distribution of resource stocks across the consumers both emerge from the 853 

interactions in the model. 854 

c. Objectives 855 

i. The consumers’ objective is to consume as much resource energy as 856 

possible, allowing them to stay alive, move, and potentially reproduce. 857 

d. Prediction 858 

i. Consumers do not ‘predict’ the results of their course of action per se, they 859 

are random walkers, but they do ‘predict’ that they will die if they stay in a 860 

non-resource patch, or depleted resource patch, so they keep moving. 861 

e. Sensing 862 

i. Consumers can sense if they are on a resource patch or not, and if it has any 863 

resource energy in it. They also know the link-neighbours of the resource 864 

patch that they are currently on. 865 

f. Learning 866 

i. Consumers are random walkers; they do not learn in any capacity. 867 

g. Adaptation 868 

i. The population adapts to fill the network in a way that reflects the density of 869 

resource availability in that area, as consumers will cluster and reproduce 870 

around resources where they can consume what they need. 871 



h. Interaction 872 

i. Consumers interact stigmergically through their consumption of resources. 873 

While they do not interact directly in any meaningful way, their 874 

consumption of resources affects the availability of resources for others to 875 

consume.  876 

i. Collectives 877 

i. There are no collectives present. 878 

j. Stochastic elements 879 

i. Consumers are initialised in random locations and move randomly. 880 

Additionally, resources are all initialised with random maximum capacity 881 

between 1 and maximum-resource-capacity and regrow rates 882 

between 1 and maximum-regrow-rate. 883 

k. Observation 884 

i. Number of currently active (‘alive’) consumers at each timestep. 885 

ii. Mean, standard deviation (SD), Gini coefficient, and entropy of the 886 

distribution of consumer resource stocks at each timestep. 887 

iii. The resource capacity and regrow rate of each resource at the start of the 888 

simulation. 889 

iv. The resource stock and location of each active consumer at 10, 100, 500, 890 

1000, and 2000 timesteps. 891 

V. Initialisation 892 

a. The network was supplied as two Comma-Separated Values (CSV) files: one of 893 

resource node locations and another of the connections between the resource 894 

nodes. The node locations and connections were determined during the process of 895 

extracting the soil network from a soil profile image, as described in the main text 896 

(Section 2.2). The resource and consumer types and parameters were specified in an 897 

Extended Markup Language (XML) file. The models were initialised with 500 898 

consumers located on random resource nodes throughout the network. The 899 

consumers each began with 30 resource units in their resource-stock, and 900 

metabolic rates, consumption rate, and spawn energy thresholds as specified in the 901 

XML file. Resources were all initialised with random maximum capacity between 1 902 

and maximum-resource-capacity and regrow rates between 1 and 903 

maximum-regrow-rate and began the simulation at full capacity.  904 

VI. Input data 905 

a. This model has no input data. 906 

VII. Submodels 907 

a. Regrowth of resources: at each timestep, all resources that are less than their 908 

maximum capacity regrow by regrow-rate units.  909 

b. Consuming resources: at each timestep, all consumers currently located on a 910 

resource node check whether there is any resource available at that node. If there is 911 

enough for each consumer to take consumption-rate units, they do, and these 912 

are added to their resource-supply. If there is not enough, each consumer 913 

receives what is at the resource, divided by the number of consumers at the 914 

resource. If there is no resource available at that node, the consumer identifies a 915 

new target-node, selecting randomly from the other resources connected to the 916 

first, and moves to the target-node. 917 



c. Spawning new consumers: at each timestep, consumers check whether they have 918 

twice the amount of energy specified as spawn-energy in their resource-919 

stock. If so, they spawn a new consumer who is an exact clone of themselves. The 920 

new consumer starts with spawn-energy units as their initial resource-921 

supply, and the parent consumer loses spawn-energy units of resource from 922 

their resource-stock.  923 

d. Check consumer resource stocks: at each timestep, all consumers check whether 924 

they have more than resource-requirement units, or their basal metabolism, 925 

of resource in their resource-supply. If they do, they consume resource-926 

requirement units, removing them from their resource-supply, otherwise 927 

they die. 928 

929 



Appendix 3. Sensitivity Analysis 930 

First, a pre-test was conducted to determine the number of time steps for which to run the 931 

simulations, and the number of replicates of each parameter set that were necessary for the outputs 932 

to reach equilibrium (ten Broeke, van Voorn and Ligtenberg, 2016). The first set of 500 runs used 933 

varied parameter values and a fixed network architecture, determined by Latin Hypercube Sampling 934 

from the range of values for global analysis (Table A1). One replicate of each parameter set was run 935 

for 3000 timesteps, and the output variables were plotted to determine whether the model reached 936 

a stable state, and if so, when. As all runs showed stability in output parameters after 500 – 1000 937 

timesteps (Fig. A5), apart from small variations due to stochasticity, the final output variable values 938 

for all future runs were calculated as the mean of the values at timesteps 500, 750, and 1000.  939 

 940 

Table A1. Parameter ranges used for testing to determine length of simulations. Values shown are 941 

the minimum and maximum for that parameter. Latin Hypercube Sampling was used to generate the 942 

values, which were then multiplied by the range plus the minimum, to get the value for the 943 

parameter for testing. 944 

Parameter Value 

Initial population size 50, 1000 
Consumer basal metabolism 1, 3 
Consumer active metabolism 1, 3 
Initial consumer resource stock 20, 50 
Consumer consumption rate 5, 10 
Consumer spawn energy 50, 100 
Maximum resource capacity 20, 50 
Maximum resource regrowth rate 10, 20 

 945 



 946 

Figure A5. Stability plots from testing to determine the length of simulations. Shown are values 947 

averaged for each timestep over 500 runs. 948 

 949 

The second set of pre-test runs used the baseline parameter values for all parameters, and a fixed 950 

network, which we repeated 100 times. We then calculated a rolling coefficient of variation for the 951 

output variables, including progressively more replicates (Fig. A6). The coefficients of variation for all 952 

output variables stabilised around 10 runs. Plotting the distribution of the output variables at that 953 

point show approximate normality, such that the mean value across runs is a reasonable measure of 954 

centre. Therefore, for all future simulations, the mean of the outcome variables across 10 replicates 955 

was used to reduce the effects of stochasticity on the output. As the mean value across replicates 956 

was used, there was no effect from replication on the experimental results.  957 

 958 



 959 

Figure A6. Plots of rolling Coefficient of Variation (CoV) for each outcome variable against the 960 

number of replicates included in its calculation. This was used to determine number of replicates 961 

needed to average across to minimise stochasticity in output variables. 962 

 963 

After the pre-test, we used the One-Factor-at-a-Time methodology to identify which of the control 964 

variables significantly affected the output variables, and which could be held constant. For this test, 965 

the four control variables (initial consumer population, initial consumer resource stock, maximum 966 

resource regrowth rate, and maximum resource capacity) were varied across four levels each, 967 

changing one variable at a time, while holding all other variables constant at middle values for each. 968 

Both the maximum resource regrow rate and maximum resource capacity significantly affected the 969 

output variables, while initial consumer resource stock did not (Table A2). The initial consumer 970 

population size significantly affected all but the standard deviation of consumer resource stock 971 

(Table A2e), but as the magnitude of the effect was quite small, both the initial population size and 972 

initial consumer resource stock were held constant at middle values for the rest of the simulations. 973 

974 



Table A2. Regression results from One-Factor-at-a-Time analysis. This was used to identify which 975 

control parameters could be fixed, and which significantly affected the outcome variables and 976 

needed to be explored. The asterisks designate level of significance: p < 0.1: ·, p < 0.05: *, p < 0.01: 977 

**, p < 0.001: ***. 978 

a. Mean consumer resource stock   
 

  

  
Estimate 

Standard 
error 

 
t value p 

Intercept 54.360 0.100  543.566 0.000 *** 

Initial population size 0.000 0.000  -3.728 0.002*** 

Initial consumer resource stock 0.000 0.001  0.100 0.920 

Maximum resource regrow rate 0.054 0.004  12.874 0.000 *** 

Maximum resource capacity 0.060 0.001  41.088 0.000 *** 

F(4, 251) = 467(p < 0.001) R2 = 0.88     
    

  
b. SD consumer resource stock     

  
Estimate 

Standard 
error t value p 

Intercept 27.110 0.038 711.283 0.000 *** 

Initial population size 0.000 0.000 0.948 0.344 

Initial consumer resource stock 0.000 0.000 0.333 0.739 

Maximum resource regrow rate 0.016 0.002 10.073 0.000 *** 

Maximum resource capacity -0.010 0.000 -17.718 0.000 *** 

F(4, 251) = 104.1 (p < 0.001) R2 = 0.62    
 979 

c. Entropy consumer resource stock     

  
Estimate 

Standard 
error t value p 

Intercept 0.953 0.000 2288.704 0.000 *** 

Initial population size 0.000 0.000 6.500 0.000 *** 

Initial consumer resource stock 0.000 0.000 0.446 0.656 

Maximum resource regrow rate 0.000 0.000 19.891 0.000 *** 

Maximum resource capacity 0.000 0.000 2.891 0.004 ** 

F(4, 251) = 111.6 (p < 0.001) R2 = 0.63    
 980 

d. Gini consumer resource stock     

  
Estimate 

Standard 
error t value p 

Intercept 0.283 0.000 431.434 0.000 *** 

Initial population size 0.000 0.000 3.472 0.001 *** 

Initial consumer resource stock 0.000 0.000 0.154 0.876 

Maximum resource regrow rate 0.000 0.000 -2.267 0.024* 

Maximum resource capacity 0.000 0.000 -38.517 0.000 *** 
     
F(4, 251) = 375.2 (p < 0.001) R2 = 0.85    
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Appendix 4. Calculation of Entropy 991 

The entropy of the consumer resource stocks was calculated as the Shannon index, or Shannon 992 

entropy, of the resource stocks held by consumers. As the Shannon entropy is meant to be applied 993 

to discrete data, the consumer resource stocks were discretised into a fixed number of ‘bins’ using 994 

Sturges’ formula (Sturges, 1926), and the Shannon entropy was calculated for the bins.  995 

Sturges’ formula for the number of bins k for a population of size n is  996 

k=⌈log2 n⌉+1.          Eq. A1 997 

Using a sample of 100 runs from the stability test for run length (Section A3), the normality of the 998 

consumer resource stocks at the sampling timesteps T = 500, T = 750, and T = 1000 was tested. 999 

Additionally, the entropy was calculated for 5, 10, 15, 20, 25, 50, 75, and 100 bins and compared 1000 

with the entropy binned using Sturges’ formula. By normalising the calculated entropy by the 1001 

maximum possible entropy for that number of bins, log(N), the differences in entropy between 1002 

different numbers of bins were < 0.001. As the data were found to be approximately normally 1003 

distributed at the sampling timesteps, the assumptions for Sturges’ formula was met, and it was 1004 

chosen to determine the final bin width.  1005 

1006 

e. Final population size     

  
Estimate 

Standard 
error t value p 

Intercept 
-

2787.749    
188.701 -14.773 

0.000 *** 

Initial population size 2.496 0.118 21.110 0.000 *** 

Initial consumer resource stock 0.589 2.738 0.215 0.830 

Maximum resource regrow rate 191.341 8.038 23.805 0.000 *** 

Maximum resource capacity 61.961 2.738 22.634 0.000 *** 
     

F(4, 251) = 381.2 (p < 0.001) R2 = 0.86    



a.  1007 



b.  1008 

Figure A7. Boxplots showing distributions of network metrics across soil profiles for (a) main 1009 

networks and (b) subnetworks. Profiles A – G correspond to Cambisol soil profiles, and profiles H – L 1010 

are Arenosol soil profiles. Descriptions of network metrics are in Table 1.  1011 


