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Abstract  6 

1. The decline of bees and other invertebrate pollinators is cause for global concern, with 7 

modern intensive agriculture identified as a key driver. Government-run agri-environment 8 

schemes (AES) have the potential to restore the local landscape to benefit bees.  9 

2. Bee abundance, species richness and foraged plants were surveyed over a season on 18 farms 10 

in Shropshire, UK, classified into three treatment groups for comparison: Conventional, Entry-11 

Level Stewardship AES (ELS), and Higher-Level Stewardship AES (HLS). 12 

3. Bee abundance and species diversity were significantly higher on AES-compliant farms: there 13 

were only small or non-significant differences between ELS- and HLS-compliant farms.  14 

4. ELS and HLS farms had higher diversity of floral foraging resources than conventionally 15 

managed farms. Cirsium, Heracleum sphondylium, and Rubus fruticosus were important 16 

resources for bees through the season.  17 

5. Synthesis and applications. These results highlight that key ELS actions, such as set-aside of 18 

uncultivated field margins, hedgerow restoration, late-cut meadows and sowing of nectar-rich 19 

flower mixes, are effective AES options to improve the landscape for bee communities. Many 20 

plants considered agricultural weeds are important forage resources for bees.  21 
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1. Introduction  25 

The intensification of agriculture over the past 50 years has led to the drastic decline of wildlife 26 

associated with British countryside (Kremen et al. 2002; Rundlof et al. 2008). Up to 50% of species 27 

within Europe depend on agricultural ecosystems at some level, including threatened species (Stoate 28 

et al. 2009). The trade-off between local biodiversity and increases in yields has resulted in a ten-fold 29 

decline in economically and environmentally valuable taxa, many directly beneficial to agricultural 30 

production (Klein et al. 2007).  31 

 Two factors drive this decline: habitat loss and fragmentation (Rundlof et al. 2008; Bartlett et 32 

al. 2016), and the extensive use of agrochemicals (Carvell et al. 2007; Fijen et al. 2019). At field scales, 33 

farmland biodiversity is directly affected by alterations to farming practice, e.g. large fast-moving 34 

machinery, crop-rotation cycles and tillage systems (Holzschuh et al. 2006). With farmland making up 35 

more than 70% of the UK landmass (DEFRA, 2017: ), an increase in monoculture, lack of non-crop 36 

habitats and reductions in connectivity between semi-natural land have all contributed to drastic 37 

landscape alterations (Garrett et al. 2017).  38 

 Agriculture relies on ecosystem services to function and be productive. Such services that are 39 

provided by and contribute towards healthy, productive ecosystems include soil maintenance, 40 

nutrient cycling and pollination (Power, 2010). Intensive farming for high crop yields trade-off with 41 

ecosystem well-being, since it degrades the environment and associated services through increased 42 

soil erosion, nutrient removal and runoff, greenhouse gas emissions and environmental toxicity 43 

(Pamminger et al. 2018). Although ecosystem services are the underlying driver to production and 44 

environmental regeneration in agricultural systems, research suggests a significant lack of 45 

understanding from farmers about how directly land management can manipulate ecosystem services 46 

(Teixeira et al. 2018).   47 

 The UK Agri-Environment Schemes (AES), first implemented in the 1980s, aim to increase the 48 

recruitment of farmers into “wildlife-friendly” farming, encouraging alterations to management 49 



activities, reducing production intensity and promoting set aside of land (Pywell et al. 2006; Marja et 50 

al. 2019). Setting aside land should not be confused with abandonment; set-aside requires 51 

management to increase biodiversity (Firbank et al. 2003). The two main levels of Countryside 52 

Stewardship AES are administered by Natural England, Department for Environment Food and Rural 53 

Affairs (DEFRA), and the Rural Payments Agency. Entry-level Stewardship (ELS) is a widespread and 54 

flexible scheme (this scheme was replaced with the Mid-Tier scheme during 2018). Higher-level 55 

Stewardship (HLS) is a more complex scheme, targeting specific natural elements within farmland 56 

landscapes and requiring stronger commitment to changing land management methods and losing 57 

cultivatable land (Baker et al. 2012). Farmer obligations within these schemes encompass adherence 58 

to wildlife-friendly and environmentally friendly actions aimed at promoting species diversity, 59 

restoring wildlife populations and enhancing/maintaining natural resources (Carvell et al. 2007; 60 

Hardman et al. 2016a).  61 

 Assessing the effectiveness of AES is difficult due to complex interactions between biotic 62 

environmental components, landscape heterogeneity and differing land management practices 63 

among sites (Scheper et al. 2013; Holland et al. 2015; Marja et al. 2019). Since the introduction of such 64 

schemes, several reviews have quantified effectiveness. The results are mixed but suggest an overall 65 

increase in biodiversity (Whittingham, 2011; Batary et al. 2015). Agri-environment schemes are 66 

beneficial to farmland birds (Kleijn et al. 2011; Westbury et al. 2017), plants (Carvell et al. 2007; van 67 

Klink et al. 2017), mammals (Broughton et al. 2014) and some invertebrate groups (Fuentes-68 

Montemayor et al. 2011; Hof & Bright, 2010).  69 

 With pollination becoming prominent in conservation efforts in recent years (Larson et al. 70 

2017; Wilson, Forister & Carril, 2017), specific actions have been introduced to the AES to benefit 71 

pollinators. Set-aside of uncultivated land is known to produce significant benefits to insect pollinators 72 

(bees, flies, and butterflies: Raymond et al. 2014; Hardman et al. 2016b), promoting the abundance 73 

and diversity of perennial plants and increasing flower densities (Stoate et al. 2009). Additional 74 



pollinator-specific actions include mixes of nectar-rich flower species, creation of low-input grasslands 75 

(Scheper et al. 2013), enhanced grassland buffer strips, non-rotational grassland strips, and 76 

creation/preservation of species-rich grasslands (Wood et al. 2015; Hardman et al. 2016a). These 77 

actions highlight the need for landscape heterogeneity and a variable habitat matrix to provide 78 

seasonal support for pollinators (Stoate et al. 2009; Breeze et al. 2014). The current demand for crop 79 

pollination surpasses the abilities of domesticated Apis mellifera and Bombus terrestris, and thus the 80 

pollination efforts of wild bees have become increasingly important (Breeze et al. 2014; Hardman et 81 

al. 2016a). A recent study found that honeybee presence has a negative influence on wild bee 82 

abundances through transmission of diseases and direct competition for floral resources (Fijen et al. 83 

2019). Holzschuh et al. (2012) conclude that wild bees can be more efficient at pollinating certain 84 

crops than honeybees. This difference could be down to solitary bees and bumblebees having efficient 85 

pollen deposition (e.g. buzz pollination), different physiology and phenology, and greater pollen 86 

exchange. 87 

 Apis mellifera and several common Bombus species are well studied, but these make up a 88 

small percentage of the total British bee fauna: most bees are solitary and relatively poorly studied 89 

(Wood, Holland & Goulson, 2017). Unlike Apis mellifera, bumblebees and solitary bees do not store 90 

pollen and nectar for extended periods of time, and thus can suffer greatly from gaps in resources 91 

over time (Carvell et al. 2015). Management options reduce such gaps are positive aspects of the AES 92 

(Rundlof et al. 2008; Wood et al. 2015).  93 

 For wild bees, the abundance, timing, and diversity of floral resources are significant factors 94 

limiting densities (Scheper et al. 2013; Carvel et al. 2015; Hardman et al. 2016a). Holzschuh et al. 95 

(2016) comment on the need for knowledge of the temporal dynamics of bee communities, 96 

specifically regarding insect-pollinated crops, highlighting the differences in crop prices, subsidies and 97 

rotation methods. Many of the traits and niches of wild bees are little understood, but there are 98 



marked differences among species in foraging range, season length, nesting position and tongue 99 

length - a crucial indicator of the feeding niche (Goulson & Darvill, 2004; Wood et al. 2015).  100 

This study investigates the effectiveness and viability of agri-environment schemes in terms 101 

of pollinator conservation and resource provisioning. The following directional hypotheses are tested; 102 

i) AES-compliant farms have significantly higher bee abundance and support a greater number of bee 103 

species, ii) AES-compliant farms supply significantly greater flowering plant diversity to act as forage 104 

resources. The focus is on bee and flower communities found within field-margin habitats in 105 

agricultural landscapes. The study compares Apis, Bombus and solitary-bee species among 106 

Conventional farms and the two levels of AES, identifying any specific actions within the AES levels 107 

that provide benefits to local bee communities. 108 

2. Methodology  109 

2.1. Study sites  110 

18 farms were surveyed between April and September 2018 in Shropshire, England. All were based 111 

within or around the Shropshire Hills Area of Outstanding Natural Beauty (AONB: see Fig. 1). Farms 112 

were chosen to fit one of three treatment categories: Conventional (C: seven farms selected), Entry-113 

Level (ELS: five farms selected) and Higher-Level schemes (HLS: six farms selected). All management 114 

techniques implemented on farms enrolled in AES adhered to DEFRA guidelines and complied with 115 

Natural England environmental regulations (full details are in Table S1). The weather in the 2018 116 

survey season was unusually hot and dry during midsummer, and this may have influenced bee activity 117 

and the longevity of floral resources.  118 

 Farms within treatment groups were separated into two approximately equal sets to be 119 

surveyed on alternate weeks. Due to differences in landscape heterogeneity and phenological 120 

differences, it was not possible to match farms into triplets, one of each treatment. Instead, farms 121 

were selected to represent the land-management composition within the region to try to represent 122 

farming practices and habitats across the AONB. Four farm types were included: arable (cereal/bean), 123 



livestock-arable mixed, livestock-based (cattle and sheep) and dairy. However, farms were not 124 

specifically selected based on type, resulting in slight differences among treatment groupings. 125 

Livestock-based and livestock-arable mixed were the most frequent farm types, with six livestock-126 

based farms (four conventional, two HLS), and seven livestock-arable mixed farms (two conventional, 127 

four ELS and one HLS). There were three arable farms (one ELS, two HLS), and two dairy farms (one 128 

conventional, one HLS) (see Table S1).  129 

 A questionnaire was supplied to all landowners and tenants to collect information about the 130 

management and environment of each farm (for full answers see Table S1).  131 

2.2. Bee surveys 132 

Bombus, Apis mellifera and solitary bees were surveyed utilising a transect method adapted from 133 

standard butterfly surveys (Pollard, 1977). A total of one kilometre of belt transects was established 134 

along typical field-margin habitats (hedgerow, stream, or ditch) of two to three fields on each farm. 135 

Fields were selected to be as far apart as possible (greater than 5 km) to reduce population overlap, 136 

but at smaller farm locations this remained a slight possibility. Start points were selected along field-137 

margin habitats with margins internal to the farm, not along roadsides, and excluding the first 10 138 

metres from the field entrance. Transects were approximately two metres wide, including the field-139 

margin habitats (estimated to be one metre) and one metre of uncultivated field margins (or cultivated 140 

land where there were no margins in place). Observations/captures were made up to a height of two 141 

metres, between 10.00 and 17.00 on days with acceptable weather conditions (local air temperatures 142 

above 13°C, minimum 60% clear sky and no rainfall: Pywell et al. 2006). Each farm within the three 143 

treatment groups was selected at random to be surveyed within specific time slots, rotating morning 144 

(10:00-12:00), early-afternoon (12.30-14:30) and late-afternoon (15:00-17:00) to reduce the effect of 145 

any potential fluctuations in bee abundance over the day.   146 

 Two sampling techniques were implemented, taking approximately 60 minutes to complete. 147 

Visual encounter surveying along the belt transect recorded all bees, with no separation between 148 



queens, workers, or males. To minimise multiple recordings of specimens, bees identified to species 149 

on sight were monitored until they left the transect. Bees that could not be immediately identified 150 

were caught in a net, identified, and released (these bees left the transect as a result), or caught and 151 

retained for identification. Following the transect survey, a sweep net survey was conducted along the 152 

same belt transect, specifically to target solitary bee species, sweeping horizontally across the ground 153 

of the field margins and vertically along the vegetation face of the margin habitat itself. Specimens 154 

were identified at the end of the survey using the keys in Falk (2015) and verified using the local atlas 155 

(Jones & Cheeseborough, 2014). The bee names follow Falk (2015), except Bombus terrestris and 156 

Bombus lucorum agg., which were recorded collectively as B. terrestris/lucorum agg. because reliable 157 

identification of workers in the field is not possible. When any bee was seen feeding on any flowering 158 

vegetation, the flower species were recorded to genus or species level where possible.  159 

2.3. Data analysis 160 

 The summary data were the counts of the number of individuals of each bee species summed 161 

for each farm and for each treatment group, together with some summaries at generic level (Andrena, 162 

Bombus, Lasioglossum, and Nomada). The flower species used by bees were recorded, together with 163 

the numbers of each bee species seen foraging on them.  164 

 To test the effect of the AES schemes on bee abundance and species diversity, for each survey 165 

the total abundance of all bees, and the three standard indices of diversity (Hill numbers: Chao et al. 166 

2014) were calculated: H0 is simply species richness, which emphasizes rare species because these 167 

count however rare they are; H1 is the average number of common species because it is weighted by 168 

abundance; H2 is the average number of abundant species because it puts even more weight on 169 

relative abundance. These three indices capture much of the relative abundances of the community 170 

(Chao et al. 2014).  The Hill numbers formed the response variables in generalised linear mixed models 171 

(due to the use of repeated measures [random factors] of individual farm and survey date) to be able 172 

to see the influence of the AES treatments on bee abundance and species diversity. Residuals were 173 



checked and the default normal errors were appropriate for all analyses. All models included random 174 

factors of farm and date, and the fixed predictors of AES group, farm type, and the AES x type 175 

interaction, tested by ANOVA. A priori contrasts were applied within each ANOVA, predicting that 176 

Conventional farms would have lower bee abundance and species diversity than farms managed 177 

under either AES (C < ELS + HLS) and that ELS farms would have a lower bee abundance and species 178 

diversity than HLS farms (ELS < HLS). In addition, data for bumblebee species were analysed 179 

separately. All analyses were conducted with R version 3.5.1 (R Core Team, 2018) using the package 180 

lme4. 181 

Data for the genus Bombus were analysed separately due to the large amount of information 182 

collected, including the subgenus Psithyrus. Some Bombus species were present on all surveyed farms, 183 

including both common and rare species, as well as generalist and more specialised species, making 184 

this sub-analysis worthwhile. Bombus species are now actively being utilised and manipulated as 185 

commercial crop pollinators (e.g. B. terrestris), and hence a greater insight into the effect of farm 186 

management may promote better monitoring and conservation.  187 

  Floral diversity was estimated by counting the flowers utilised by foraging bees; means were 188 

used to allow for differences in sample sizes among treatment groups. Summing over all transects, the 189 

flower x bee matrix of total numbers of visits was formed, and the interactions plotted as community 190 

network diagrams using the bipartite package in R (Dormann, Gruber & Fruend, 2008). The time-191 

course of the most-used flowers across the survey season highlighted any temporal gaps in forage. 192 

3. Results  193 

3.1. Bee abundance and diversity 194 

A total of 4234 individual bee sightings were recorded over the study period (674 Apis mellifera, 2130 195 

Bombus spp. and 1430 solitary bees). 1055 bee sightings occurred on Conventional farms, 1407 196 

sightings on ELS and 1772 sightings on HLS (Fig. 2a). 65 species of 12 genera were identified, with a 197 

combined total of 44 species identified on Conventional farms, 47 on ELS and 50 on HLS (Fig. 2b; 198 



Supporting information Table S2). The records included species locally scarce to Shropshire, such as 199 

Melecta albifrons and Lasioglossum malachurum. Overall species richness differed between farm 200 

treatments; Conventional farms ranged from 16 to 24 species between farms, ELS farms between 26 201 

and 33, and HLS farms between 19 and 35.  202 

 The 15 most common species (Fig. 3) included seven Andrena spp., six Bombus spp., Apis 203 

mellifera and Halictus rubicundus. In terms of total sightings, the most species-rich genera were 204 

Andrena (16 species), Lasioglossum (14 species), Bombus (11 species) and Nomada (11 species). The 205 

genera with the greatest abundances were Bombus (2130 sightings), Andrena (933) and Apis (674). 206 

The most abundant Andrena were A. nigroaenea, A. haemorrhoa, and A. chrysosceles; for 207 

Lasioglossum they were L. calceatum and L. leucopus; for Bombus, B. terrestris/lucorum agg., B. 208 

lapidarius and B. pascuorum; and for Nomada, N. goodeniana and N. lathburiana. The three most 209 

common species overall (See Fig. 3 and Fig. 4) were Apis mellifera (674 sightings), B. terrestris/lucorum 210 

agg. (632 sightings), and B. lapidarius (606 sightings). A total of 11 Bombus species out of the 18 211 

recorded in Shropshire (Jones & Cheeseborough, 2014) were identified across all the study farms. Five 212 

species were present on every farm; Bombus terrestris/lucorum agg., B. lapidarius, B. pascuorum, Apis 213 

mellifera, and Andrena haemorrhoa.  214 

 Bee phenology varied amongst species: Bombus spp. and Apis mellifera were present 215 

throughout the entire study period, appearing in every week of surveying in varying abundances (Fig. 216 

4a, b, c). Bombus (Psithyrus) spp. were present only on farms where the associated host was present, 217 

appearing in low numbers during April – May and throughout August. Andrena spp. appeared early on 218 

in relatively high numbers (Fig. 4d), but these started to drop in late July, with no sightings into August. 219 

Nomada spp., kleptoparasites of Andrena, also appeared early on alongside their host species, with 220 

sightings occurring from April until June (Fig. 4f).  Halictus and Lasioglossum were present sporadically 221 

until July when their abundances increased until the end of the survey period. Numbers of H. 222 

rubicundus increased during August (Fig. 4e), after appearing in low abundance throughout the survey 223 



period. The numbers of Sphecodes spp. fluctuated in association with their hosts (Andrena, Halictus, 224 

and Lasioglossum), appearing when their various host abundances peaked. An individual Melecta 225 

albifrons was identified, but its host, Anthophora plumipes, was not recorded, although common in 226 

gardens throughout the local area.  227 

3.2. Differences among AES treatments 228 

Bee abundance and diversity per survey were found to be significantly related to land management 229 

under AES (Fig. 5; Supporting information Table S3). Using either AES treatment had a significant 230 

positive influence compared to Conventional farms on the number of bees and all the measures of 231 

diversity, H0, H1, and H2. The first contrast (C < ELS+HLS) was always highly significant (p << 0.001: 232 

see Supporting information Table S3). Compliance with either AES showed the greatest influence on 233 

abundance (Fig. 5a) and species richness (Fig. 5b), indicating that the largest effect was on rare species. 234 

The smallest effect was found on H1 (Fig. 5c), which emphasizes common species. The second contrast 235 

(ELS < HLS) was not in the predicted direction for any of the Hill numbers (and hence not significant), 236 

but there was a small increase in overall bee abundance for HLS (Fig. 5; Supporting information Table 237 

S3). Farm type showed no significant effects on any of the response variables (Supporting information 238 

Table S3). However, there were significant or near-significant interactions between AES and farm type 239 

for all response variables (p = 0.011 - 0.019: see Supporting information Table S3; Fig. S1). Species 240 

richness (H0) showed the most significant response to the AES x farm type interaction (Supporting 241 

information Fig. S1), where the difference between Conventional and HLS farms is smaller in Livestock-242 

based farms than in other types of farm.  243 

 For just the bumblebees, the AES treatment had significant effects on abundance and H0 244 

(species richness), but not H1 or H2, both of which place emphasis on common species (Supporting 245 

information Table S4).  For abundance and H0, again there was a highly significant first contrast (C < 246 

ELS+HLS; p << 0.001), but no effect for the second contrast (ELS < HLS). Farm type and the interaction 247 

between AES and farm type showed no significant influence on the bumblebee community.  248 



3.3. Community use of floral resources  249 

Bees were recorded utilising 62 flowering plant species across all study sites throughout the season, 250 

with 36 used on Conventional, 40 on ELS and 39 on HLS farms. Mean counts showed species diversity 251 

remained highest in ELS-compliant farms (see Fig. 6). Species counts on conventional farms ranged 252 

from five to 16 species, from 14 to 18 on ELS-compliant farms, and 10 to 18 on HLS-compliant farms. 253 

The most dominant flowers being used included Crataegus monogyna, Taraxacum spp., Heracleum 254 

sphondylium, Trifolium pratense, Trifolium repens, Rubus fruticosus and Cirsium spp (Fig. 7). Impatiens 255 

glandulifera (Himalayan Balsam, an aggressive invader) occurred on two farms where it acted as a 256 

significant late-season nectar source (Supporting information Fig. S2), attracting many foraging 257 

Bombus spp. and Apis mellifera.  258 

4. Discussion  259 

Both Entry-level and Higher-level stewardship AES were found to influence significantly the 260 

abundance and species diversity of bees, with higher numbers of bees and greater species diversity 261 

seen on AES-compliant farms. This difference in bee abundance and diversity cannot solely be 262 

attributed to AES due to the differences between farming landscapes, although general inferences can 263 

be made from the results. Conventional and AES-compliant farms alike produce the environmental 264 

conditions to support common species, such as the six common bumblebees (including B.terrestris, B. 265 

lapidarius and B. pascuorum) and Apis mellifera (Hanley & Wilkins, 2015). Fijen et al. (2019) show that 266 

floral visits are dominated by a small number of species with the ability to exploit mass flowering crops 267 

and make a significant contribution to crop pollination. This would suggest that the small collection of 268 

species consistently found on all farms, including Conventional, could provide most crop pollination 269 

services. Although, each visit should not be considered a successful pollination event, it is likely that 270 

more bees lead to more flower visits, which equates to a greater pollination services.  271 

 The treatment group that produced the most variable results was HLS, with species diversity 272 

ranging from 19 to 35 species across the treatment group. This larger variation in species diversity 273 



among HLS sites could be due to management actions on these farms varying greatly. Conventional 274 

farms consistently showed the lowest abundances and lowest species diversity. This highlights the 275 

significant lack of appropriate habitats for feeding and nesting resources. Likewise, AES-compliant 276 

farms supported more flowering plant species recorded as being utilised, providing bees with a greater 277 

variety of forage resources than conventionally managed farms, and suggesting greater habitat 278 

diversity.  279 

The results in number of bees and species diversity mirror the results found in similar research; Woods 280 

et al. (2016) found 105 species across 19 AES-compliant farms with 3km transects, exhibiting a similar 281 

array of groups, including a number of Psithyrus spp. and parasitic solitary species. Similarly, Rundlof 282 

et al. (2008) identified 11 bumblebee species across 12 matched pairs of organic and conventional 283 

farms, finding significantly more species in organic heterogeneous landscapes than conventional.  284 

4.1. Agri-environment schemes and landscape context 285 

HLS farms can often focus actions on specific areas of interest, such as woodland, in conjunction or 286 

instead of field-level actions (i.e. set aside margins). In comparison, one of the most common ELS 287 

actions is land set-aside as field margins (see Table S1). Since ELS farms supported the most diverse 288 

bee communities, this suggests that this is more likely to establish favourable environments. This 289 

highlights the fact that actions spread across the landscape at field-level could be more beneficial than 290 

focusing on specific areas of interest (land sharing vs land sparing; Kremen, 2015). The greater bee 291 

abundance on HLS-compliant farms suggests that these can support the level of resources needed to 292 

allow bee populations to be sustained at high levels. Pollinator abundance and diversity can decrease 293 

with increasing distance from semi-natural habitat (Gill et al. 2016), emphasizing that the spatial 294 

structure and configuration of AES actions across the landscape is essential for bee conservation and 295 

efficient pollination services (Holland et al. 2015). 296 

 Field margins provide foraging resources and refuge habitats at field-level, increasing 297 

connectivity between semi-natural, non-cultivated habitats throughout the local landscape 298 



(Holzschuh et al. 2006). This habitat connectivity within the agricultural landscape specifically benefits 299 

bumblebees and solitary bees through access to seasonally variable forage. In addition to habitat 300 

corridors, hedgerows can act as environmental buffers, reducing the spread of agrochemicals (Carvell 301 

et al. 2007; Hanley and Wilkins 2015). The positive influences derived from the management of non-302 

crop field margins are likely due to the increase in the availability of flowering plant species, which 303 

acts as a key determinant to bee reproductive success (Pywell et al. 2006; Carvell et al. 2015).  304 

4.2. Pollinator-targeted actions 305 

Farms that supported a high abundance and species diversity of bees adhered to several similar AES 306 

actions, such as sowing and management of nectar and pollen-rich flower mixes (see Table S1). These 307 

mixes generally include several legume species and species of tussock grasses, providing both forage 308 

and nesting resources (Carvell et al. 2007; Holzschuh et al. 2012). These mixes flower in late summer 309 

(see Fig. S2), failing to supply resources early in the season when bumblebee colonies begin 310 

establishment. Garibaldi et al (2014) emphasize that creation of set-aside field margin is effective at 311 

providing resources that support bee communities. The success of this option can be dependent on 312 

how long the margin has been established, with the appearance of Cirsium increasing the abundance 313 

of several Bombus spp. (Carvell et al. 2007).  Overspill of pollination services from such margins proves 314 

beneficial to crops (Carvell et al. 2015).  315 

 The option of hedgerow creation and restoration was taken up on several HLS-compliant 316 

farms. Hedgerow restoration and the creation of dense, species-rich hedgerows have been linked to 317 

a marked increase in biological diversity (Staley et al. 2015). Hedgerows are valuable habitats for 318 

pollinators within agricultural landscapes, and their creation and optimal management can increase 319 

pollination services, benefiting crop production (Garrett et al. 2017). Hedgerows provide shelter and 320 

forage resources for bees because they host several woody plants and flowers adapted to woodland-321 

edge conditions not found in grassland habitats and on cultivated land (Wratten et al. 2012). 322 

Management practice is a significant limiting factor to the success of hedgerows in increasing 323 



biodiversity because they need to connect and have structural integrity: both over-trimming and 324 

neglect in management reduce biodiversity (Staley et al. 2015).  325 

4.3. Forage provisioning 326 

The diversity of flowering plants varied amongst the farms, with those managed in compliance with 327 

ELS having the highest species diversity, followed by HLS farms. Most field margins managed in ELS 328 

are low-input, self-regenerating margins, with the dominant flowering plant species being Cirsium 329 

arvense, Cirsium vulgare, Heracleum sphondylium and Rubus fruticosus. These species are rapid 330 

colonisers (Pywell et al. 2006) and occurred on farms of all treatment groups. Forage provision acts as 331 

a limiting factor on local bee populations and loss of floral diversity in conventionally managed 332 

agricultural landscapes is a prominent driver in bee declines (Dicks et al. 2015; Carevll et al. 2015). 333 

Marja et al (2019) showed that effective AES focus first on the availability of food resources to enhance 334 

pollinator diversity. Greater amounts of semi-natural habitats aid bees through providing resources 335 

during time between short mass-flowerings of crop (Holzschuh et al. 2012).  336 

 From the data, the intentional sowing of field margins appeared to be successful in increasing 337 

the abundance and diversity of bees. Specific species sown on ELS and HLS farms include Sinapis 338 

arvensis, Phacelia tanacetifolia, Trifolium repens, and Melilotus officinalis, all known to attract bees, 339 

especially Apis mellifera.  340 

 The time-course of foraging bee at flowers (Fig. A2) showed a decline in mid-May, whilst the 341 

abundances of the commonly seen species (Fig. 4) did not reflect this decline in sightings. This suggests 342 

that there is a gap in the diversity of flowering plants used for foraging at this time. Crataegus 343 

monogyna and Taraxacum spp. were the dominant flowering plants initially utilised at the beginning 344 

of the season. Resources at this time in the season are essential for emerging solitary bees and Bombus 345 

queens to begin nesting (Devoto et al., 2013). Alterations to land management methods can help to 346 

alleviate this resource gap via less-intense cutting or not cutting in the previous autumn/winter 347 

selected areas of hedgerows where C. monogyna is dominant. Impatiens glandulifera was identified 348 



as an important late-season nectar source, providing resources when many flowering plant species 349 

have gone to seed. This invasive plant may have displaced native flowers, actually reducing the 350 

diversity of nectar and pollen sources throughout the entire season (Flugel, 2017). 351 

4.4. Implications for agri-environment schemes  352 

This study confirms that the implementation of AES, both at entry and higher levels, could mitigate 353 

the influences of modern intensive farming to allow a larger and more complex bee community to be 354 

supported. The findings specifically highlight the effectiveness of ELS, under which approximately 60% 355 

of UK agricultural land is registered (Carvell et al. 2015), showing that this level of scheme can 356 

effectively supply the resources needed to support more bees of more species than conventional 357 

farming. Encouraging the uptake of low input but effective options could encourage the more 358 

widespread adoption of AES. Research suggests that conservation schemes are most effective in 359 

simple, homogeneous landscapes, and therefore efforts in areas of intensive agriculture have a high 360 

potential for success due to the large ecological contrast (Garratt et al. 2017; Marja et al 2019). Farm 361 

size may also play a role in determining the community composition of bees and floral resources. 362 

Larger AES-compliant farms with high landscape heterogeneity may provide more resources than 363 

smaller similarly managed farms (Rundlof et al. 2008). In this study, HLS farms averaged the largest in 364 

size (340 acres), followed by ELS (180 acres). Integrating a larger farm into an AES may be more 365 

worthwhile in terms of financial compensation and area of land to spare from production. With 366 

conventional farm size averaging around 70 acres, the influence of the wider landscape may be greater 367 

than on larger farms, whether positive through increasing wider landscape heterogeneity, or negative.  368 

Based on the effectiveness of AES shown in this case, the future of agricultural management requires 369 

trade-offs between agriculturally viable land in favour of the preservation of ecosystem services such 370 

as pollination, biocontrol, and nutrient cycling (Hardman et al. 2016a; Marja et al. 2019). Taking 371 

agricultural land out of production does not appear economically advantageous at first, but the 372 

additional pollination services can increase crop pollination through overspill (Carvell et al. 2015). Set 373 



aside of productive land also reduces the area of land exposed to agrochemicals. Herbicides have been 374 

found to impact bees negatively in a myriad of ways, reducing sperm counts and worker survival, and 375 

hindering larval development (Belsky & Joshi, 2020). Glyphosate, a known stressor for honeybee larval 376 

development that reduces bumblebee and solitary bee longevity (Vazquez et al. 2018; Belsky & Joshi, 377 

2020), was a commonly used herbicide. Other pesticides used included Lambda-Cyhalothrin, which 378 

has negative implications on bees learning and memory (Liao et al. 2018), Pyrethroids, which induce 379 

a myriad of detrimental effects on honeybees at tissue and cellular levels (Kadala et al. 2019)  380 

The findings of this study also recommend tolerance of flowers currently considered agricultural 381 

weeds, such as Heracleum sphondylium, Rubus fruticosus, and Cirsium (Gabriel & Tscharntke 2007; 382 

Bretagnolle & Gaba 2015). Preservation of flowering plants in uncultivated habitats supports bee 383 

communities, specifically opportunistic pollinators (Fijen et al. 2019), between periods of mass-384 

flowering of crops, keeping pollinators within the landscape for their services. Understanding crop 385 

economic thresholds for weed tolerance could allow these pollinator-friendly species to be 386 

incorporated into seed mixes without negatively affecting crop yield. They could be the only resource 387 

available at a crucial time of low floral resources and are perhaps not best-suited to the needs of bees. 388 

Genissel et al. (2003) state that Taraxacum has low nutritional value, limiting larval success in Bombus 389 

terrestris and hence resulting in low fitness. However, Wood et al. (2017) showed that sown floral 390 

resources may be not recognised as resources by solitary bees, which instead rely on plants in the 391 

wider environment.  392 

The limitations of this study should be considered when reviewing its results. Agrochemical 393 

applications could not be controlled on these active commercial farms over the period of study, and 394 

may have had an influence on the results. Additionally, as with many bee-related studies, it is difficult 395 

to foresee and control the influence of honeybees on local wild bee populations (Mallinger et al. 2017).  396 

5. Conclusion 397 



The current broad agri-environment schemes do have the ability to produce environmental conditions 398 

that supply the resources needed to promote abundant and diverse bee communities within 399 

agricultural landscapes. Bee abundance and species diversity were positively influenced by AES 400 

options, such as the creation of non-crop field margins, hedgerow restoration, late-cut meadows and 401 

the sowing of nectar-rich flower mixes. The most widely used level of agri-environment scheme, ELS, 402 

has the ability to increase significantly the abundance and diversity of bee species with relatively low 403 

input from farmers. This study also identifies the value of flowers currently considered agricultural 404 

weeds to foraging bees through the year, highlighting the need for a shift in opinion about their 405 

removal. Keeping them will benefit bee communities.  406 
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Fig. 1. Study site locations. a) orange indicates Shropshire county. b) black lines indicate county boundaries, grey hatching 

shows AONB. Colours indicate individual farms; blue=Conventional farms, orange=ELS farms, black=HLS farm. Shapes 

represent farm types; circle=Dairy, triangle=Arable, star=Livestock-based, square=Livestock-arable mixed. Created using QGIS 

3.0.3, data sourced from MAGIC and Ordinance Survey. 
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Fig. 2. Overall totals (blue) and means ± se per survey (grey) of (a) bee abundance, and (b) species richness 

(H0) across the three treatment groups. C=conventional, ELS=entry-level stewardship, HLS=higher-level 

stewardship. 



 

Fig. 3. Total abundance of all species identified throughout the entire study period.  



 

 

 

 

 

Fig. 4. Mean ± se number of sightings through the season of a collection of common species. 

w/c=week commencing. a) Apis mellifera, b) Bombus lapidarius, c) Bombus terrestris/lucorum agg., 

d) Andrena heamorrhoa, e) Halictus rubicundus, f) Nomada goodeniana.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Marginal means ± se per survey for each treatment group. a) bee abundance, b) Hill #0 (species richness), c) Hill #1 (abundant species), d) Hill #2 (super abundant 

species). C=conventional, ELS=entry-level stewardship, HLS=higher-level stewardship.  



 

 

 

 

 

 

 

 

Fig. 6. Overall totals (blue) and means ± se per survey (orange) of floral species diversity across the three treatment groups. C=conventional, ELS=entry-level 

stewardship, HLS=higher-level stewardship. 

 



Fig. 7. Overall interactions between bees and flowers. The widths of orange (bee), blue (plant) and grey (interaction) nodes represent frequencies, and numbers refer to 

the listings in Tables S2 (bees) and S5 (plants). 17=Apis mellifera, 23= Bombus lapidarius, 24= B pascuorum, 27= B terrestris/lucorum agg., f9= Heracleum sphondylium, 

f18= Rubus fruticosus, f21= Cirsium arvense, f27=C vulgare.  



 


