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Abstract

A hidden target needs to be found by a searcher in many real-life situations, some of
which involve large costs and significant consequences with failure. Therefore, efficient
search methods are paramount. In our search model, the target lies in one of several
discrete locations according to some hiding distribution, and the searcher’s goal is
to discover the target in minimum expected time by making successive searches of
individual locations.

In Part I of the thesis, the searcher knows the hiding distribution. Here, if there is
only one way to search each location, the solution to the search problem, discovered
in the 1960s, is simple; search next any location with a maximal probability per unit
time of detecting the target. An equivalent solution is derived by viewing the search
problem as a multi-armed bandit and following a Gittins index policy.

Motivated by modern search technology, we introduce two modes—fast and slow—
to search each location. The fast mode takes less time, but the slow mode is more
likely to find the target. An optimal policy is difficult to obtain in general, because it
requires an optimal sequence of search modes for each location, in addition to a set of
sequence-dependent Gittins indices for choosing between locations. For each mode,
we identify a sufficient condition for a location to use only that search mode in an
optimal policy. For locations meeting neither sufficient condition, an optimal choice of
search mode is extremely complicated, depending both on the hiding distribution and
the search parameters of the other locations. We propose several heuristic policies

motivated by our analysis, and demonstrate their near-optimal performance in an
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extensive numerical study.

In Part II of the thesis, the searcher has only one search mode per location, but
does not know the hiding distribution, which is chosen by an intelligent hider who
aims to maximise the expected time until the target is discovered. Such a search game,
modelled via two-person, zero-sum game theory, is relevant if the target is a bomb,
intruder, or, of increasing importance due to advances in technology, a computer
hacker. By Part I, if the hiding distribution is known, an optimal counter strategy for
the searcher is any corresponding Gittins index policy. To develop an optimal search
strategy in the search game, the searcher must account for the hider’s motivation to
choose an optimal hiding distribution, and consider the set of corresponding Gittins
index policies. However, the searcher must choose carefully from this set of Gittins
index policies to ensure the same expected time to discover the target regardless of
where it is hidden by the hider. As a result, finding an optimal search strategy, or
even proving one exists, is difficult.

We extend several results for special cases from the literature to the fully-general
search game; in particular, we show an optimal search strategy exists and may take
a simple form. Using a novel test, we investigate the frequency of the optimality of a
particular hiding strategy that gives the searcher no preference over any location at

the beginning of the search.
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Motivation

There are many real-life situations involving a hidden target which needs to be found
by a searcher. Examples include a bomb or landmine by a bomb squad, a survivor
of a disaster by a rescue team, an intruder by a patroller, and the remains of a ship
or plane by a salvage team. A recent, famous example of the latter is the Malaysia
Airlines Flight 370 that went missing in the Indian Ocean in early 2014. The search
need not be a physical process, however; the target could be a hacker of a computer
system, or a bug in some programming code.

In all of these applications, there is a lot at stake. Huge costs may be involved
in conducting the searches; for example, the search for Flight 370 is estimated to
have cost between $130 and $160 million dollars (Australian Transport Safety Bu-
reau, 2017). Also, there may be significant consequences if the search is unsuccessful;
valuable equipment could be forfeited or damaged, personal data could be breached
or, even worse, human life could be lost. Therefore, efficient search methods are
paramount, either to end the search in a minimal amount of time, or to give the
searcher the best chance of finding the target before a deadline.

Any mathematical formulation of a problem where a searcher looks for a target
hidden in some region, called the search space, is called a search problem. Search
problems can broadly be split into two categories depending on the number of entities
able to make decisions, called decision makers. In a one-sided search, the searcher
is the only decision maker, choosing how to traverse the search space to look for the

target. Among the aforementioned examples, a salvage team searching for the remains

XVI
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of a ship or a plane and a programmer looking for a bug are one-sided searches. Stone
(1975) is a monograph on one-sided search.

In a two-sided search, there is a second decision maker who controls the position
of the target in the search space. The addition of the second decision maker creates
an extra layer of complexity, since their actions affect the best course of action for the
searcher. Therefore, game theory, the study of interaction between intelligent decision
makers, is often used to model a two-sided search. Of the aforementioned examples, in
the case of the intruder and the hacker, the target itself is the second decision maker,
whilst in the case of the hidden bomb or landmine, the second decision maker is a
third party who hides the target. In both situations above, the second decision maker,
called the hider, wants the target to remain hidden, either for as long as possible to
maximise damage caused in the case of the intruder or the hacker, or until a known
detonation deadline in the case of the hider of the bomb or landmine. Such scenarios
involving a searcher and hider with directly conflicting objectives are a particular type
of two-sided search called a search game. Alpern and Gal (2003)) is a monograph on
search games, in which two-person, zero-sum game theory plays a key part.

Our final example involves a rescue team looking for a survivor. Whilst the sur-
vivor is an intelligent entity, their situation affects how the search is modelled. If the
survivor cannot move, possibly trapped under rubble after an earthquake, then they
are not a decision maker, and the search is one sided. Otherwise, the survivor is a
decision maker, and the search is two sided. However, unlike the hider, the survivor
does not want to remain hidden; the searcher and survivor have identical objectives.
Such problems fall into a class of two-sided search called rendezvous search, a topic
also covered in |Alpern and Gal (2003)).

Whilst a survey of the search literature will be provided, this thesis will focus
on extensions to the following classic one-sided, discrete search problem. The target
is an inanimate object hidden in one of several discrete locations according to some

known probability distribution. The searcher aims to discover the object in minimum
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expected time by making successive searches of individual locations. The searcher
must conduct a full search of a location before moving on to another one. Each location
has a known, fixed time it takes to search that location, and a known, fixed probability
with which the object, if hidden there, is found upon searching that location.

A simple solution is derived and reported in several papers from the early 1960s,
some using direct computation and others dynamic programming methods (Norris|
1962; Bram), |1963; Matula, 1964} Black, [1965). A comment by Kelly in |Gittins (1979))
notes that the problem is equivalent to a tractable version of the well-known multi-
armed bandit problem (MAB). First proposed by Thompson (1933), the MAB prob-
lem has many applications, including to clinical trials and web design, and takes its
name from slot machines in casinos called one-armed bandits. When a player plays a
one-armed bandit, they are allocated a reward typically drawn from some unknown
distribution; the MAB problem presents the player with several of these one-armed
bandits and asks in which order should they be played to maximise the player’s total
reward. Kelly views each location as a one-armed bandit played whenever the location
is searched. The celebrated work Gittins and Jones| (1974) finds a remarkably simple
solution to a version of the MAB where the reward from playing a bandit depends
entirely upon a known state that the bandit is in. Kelly applies the solution of (Git-
tins and Jones| (1974)) to the classic search problem to corroborate the aforementioned
results from the early 1960s.

This PhD has two aims. The first, tackled in Part I of the thesis, is to add a second
speed to the classic search problem, so the searcher may search each location either
at a fast speed or a slow speed. A fast search takes less time, but the slow search
has a higher probability of finding the object, leading to a trade-off between speed
and effectiveness. Two or more search speeds for each location are often available in
real-life search problems. Firstly, there may be a choice of several search devices; for
example, a search for a bomb down a stretch of road could be conducted travelling

quickly in a vehicle with sensors, or travelling slowly on foot with trained sniffer dogs.
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The vehicle travel, analogous to the fast search, covers the road more quickly, but
the chance of missing a hidden bomb will increase. Being on foot with the trained
dogs, corresponding to the slow speed, will take more time to cover the same distance,
but may well detect a hidden bomb with a larger probability. Secondly, of increasing
importance due to advances in technology, for a search device such as a robot, there
may be multiple settings on the travel speed or sensor mode.

Despite this increased relevance, two-speed problems have received little atten-
tion in the academic literature. To our knowledge, only |Shechter et al. (2015) and
Alpern and Lidbetter| (2015) investigate search problems involving two search modes.
However, neither account for the searcher overlooking the object at the slow speed,
a key part of our model. The former also permits no overlook of the object at the
fast speed, with the objective to avoid damage to both the object and the searcher.
Kadane| (2015)) allows an arbitrary number of search modes per location in the classic
search problem, but the simple solution presented in Section 3 of [Kadane (2015) is
not correct.

In the classic search problem with only one speed per location, the searcher only
needs to choose which location to search at which time. In the two-speed extension,
the searcher must also choose at which speed to search a selected location. Therefore,
the multi-armed bandit framework is no longer directly applicable, with the problem
now equivalent to an extension to the MAB coined a family of alternative superpro-
cesses by |Gittins et al.[(2011). For such problems, a simple solution is not guaranteed
to exist. A key research question is the following. For a single location, is it always
better to search at one speed than another, or does the best speed depend on the
wider progress of the search process? |[Kadane| (2015) concludes the former is true, but
we disagree, finding an optimal choice of speed to be complicated in some scenarios.

The second aim of this thesis, tackled in Part II, is to develop the existing literature
on a two-sided extension of the classic (one-speed) one-sided problem in which the

target, rather than an inanimate object, is a hider who aims to remain hidden for a
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maximum expected time. Such an extension is a search game, which, unlike the one-
sided problem, is far from being solved by the existing literature. Most current work
is either limited to the case where each location takes the same time to search (Bram,
1963; (Gittins and Roberts, |1979), or additionally limited to two locations (Roberts
and Gittins| [1978; Gittins, [1989)). Norris (1962) makes some preliminary findings in
the general search game with arbitrary locations and search times, but few theoretical
results have been proven.

Due to advances in technology, intruders, in particular computer hackers, are
becoming more and more sophisticated. Further, in this progressively digital age,
personal information stored on computer systems is becoming more and more valuable.
Therefore, we believe the search game is an increasingly important problem which
warrants further study. We aim to extend some of the aforementioned work to the
general search game, in particular the existence of an optimal search strategy shown
by Bram| (1963) and the existence of a simple optimal search strategy derived by
Gittins (1989).



Outline of Thesis

This thesis is split into two parts labelled Part 1T and Part II. The former concerns
one-sided search where a searcher looks for an inanimate target; the latter regards
two-sided search, specifically search games where a searcher seeks an intelligent hider
who actively tries to avoid being found. Whilst both types of search share some
common features, their mathematical modelling differs significantly; therefore, each
part contains its own literature review, background knowledge, conclusions, further
work, and appendices. Some concluding remarks relevant to both parts and a shared
bibliography are at the end of the thesis.

The outline of Part I is as follows. Chapter[IJreviews the one-sided search literature
with a focus on searches in discrete locations. Particular attention is paid to problems
solved by an index policy, where a real number (index) is calculated for each location
and a location with a maximal index chosen to search next.

Chapter 2| describes a special type of Markov decision process called a multi-armed
bandit, known to be optimally solved by a Gittins index policy of |Gittins and Jones
(1974). We elaborate on a comment of Kelly in Gittins| (1979), which shows that a
classic search problem in discrete locations introduced in Chapter [If can be modelled
as a multi-armed bandit and hence solved by a Gittins index policy. Whilst the classic
search problem was solved in the literature for special cases before the discovery of
a Gittins index policy, the Gittins index approach has the advantage of solving the
problem in its full generality, useful for the following novel classic-search-problem

extension formulated in Section [2.3.2] The searcher is given a choice of two modes

XXI
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when searching any location, a fast mode and a slow mode. A search with the fast
mode takes less time, but is more likely to overlook the target sought by the searcher,
leading to a trade-off between speed and effectiveness that substantially complicates
the problem.

Chapter [3, an extended version of [Clarkson et al| (2020), studies the two-mode
extension, determining conditions on a location for only one of its modes to be used
in an optimal search policy. Alongside a Gittins index policy, these conditions solve
the problem in many cases, otherwise simplifying it. Insight into the different types of
benefit to searching a location is used to design heuristic policies, which consistently
deliver near-optimal performance in a thorough numerical study.

Chapter 4] summarises Part I and suggests several extensions of the two-mode
search, specifically to more than two search modes per location, and the placing of
locations onto a network structure.

The outline of Part II is as follows. Since a search game involves two players
(searcher and hider) in direct conflict, two-person, zero-sum game theory is relevant;
an introduction is given in Chapter

Chapter [0 reviews the search-game literature, which has mainly focused on prob-
lems where the searcher always discovers the hider when their paths cross. Models
allowing the searcher to overlook the hider are less common; the latter part of Chapter
[6] summarises the literature’s development of a simple search game with overlook in
discrete locations, often limited to special cases.

Chapter [7| studies the discrete-location search game in full generality, proving that
an optimal search strategy exists and may take a simple form. A simple test for the
optimality of a strategy for the hider is developed and used to investigate the rate of
optimality of a particular hiding strategy in an extensive numerical study.

Chapter [8| summarises Part II and proposes the addition of a second search mode

to the search game of Chapter [7] in a combination of Parts I and IL.



PART I: One-Sided Search

Dreaming about the day when you wake up and find that what you’re looking
for has been here the whole time.

— Taylor Swift



Chapter 1

Literature Review

Search theory is one of the oldest branches of operational research with origins in
World War II. In 1942, the US Navy set up the Anti-Submarine Warfare Operations
Research Group to explore techniques for quick location of enemy submarines and
ships. The group’s work laid the foundations of search theory, with the main con-
tributor being an American mathematician called Bernard Koopman. After the war,
Koopman recorded his results in a book called ‘Search and Screening’ (Koopman,
1946)). The book was declassified by the US Navy in 1958, which motivated a boom
in research into search theory. Many bibliographies (Benkoski et al., [1991; |Dobbie,
1968; Enslow Jr., |1966; [Hohzaki, 2016|) and surveys (Alpern and Gal, 2003} Stone,
1975, 2004; [Stone et al., |2016; [Washburn, 2002) have since summarised and collated
the extensive literature on the topic.

What follows, aided by the aforementioned bibliographies and surveys, is a litera-
ture review of one-sided search, the topic of Part I of this thesis. The literature review
of two-sided search is deferred to Part II.

In any one-sided search problem, the sole decision maker is a searcher who seeks a
target hidden in some search space. The searcher does not know the target’s precise
location, yet does have some knowledge of the target’s whereabouts expressed using

a probability distribution, called the target distribution, defined on the search space.
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A search policy guides the searcher through the search space either until the target
is found or, if one exists, until a search deadline. The searcher may be free to move
instantaneously from one point in the search space to another, or may be constrained
in some way by the geography of the search space. The target is found according
to a known detection function dependent on the target’s location and the time the
searcher spends there. The aim of the searcher is to optimise a search objective, some
measure of the success of the search.

The search space can be discrete or continuous, and the target stationary or mov-
ing. This survey will briefly consider continuous search spaces in Section [I.1] before
presenting a more thorough exposition of discrete search spaces in Section In
the latter, there is a particular emphasis on problems solved or partially solved by an

index policy, since such policies are key to the work later in this thesis.

1.1 Continuous Search Spaces

Early continuous-search-space work focuses on a stationary target with no constraints
on the movement of the searcher. The most common search objective in such prob-
lems, maximising the probability of finding the target for a fixed amount of search
effort E, is first studied in [Koopman| (1957), one of three excerpts from |Koopman
(1946) to be published in the journal Operations Research. A search policy is a dis-
tribution of the effort E over the search space. If x effort is applied at point y in the
search space, a known detection function determines the probability of finding the
target at y given it is located there. Koopman| (1957) finds an optimal search policy
when the detection function is exponential. de Guenin| (1961) extends Koopman’s
work to a more general class of detection functions, and Dobbie| (1963)) additionally
solves the problem of minimising the total search effort to attain a given probability
of finding the target.

In the problem of Koopman| (1957)) and its extensions above, the order that search
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effort is made does not matter, as the searcher is only interested in maximising the
probability of finding the target once all the allocated effort E has been made. How-
ever, if /' is unknown or uncertain, more important parts of the search space should
be searched first. |Arkin| (1964) lets a search policy be a distribution of £ over both
the search space and time. With search space R™, |Arkin| (1964) derives conditions
for the existence of a uniformly optimal search policy, a search policy optimal for any
amount of effort E. In other words, if a uniformly optimal search policy was stopped
after any amount of effort EF had been made, the probability of finding the target
with F effort available would have been maximised.

A moving target was introduced into the problem of Koopman (1957)) in the 1970s.
Since the target moves, the searcher’s position at a given time is now important, so
Arkin’s definition of a search policy as a distribution of effort over time and space
must be assumed. The target’s motion can be modelled as stochastic, or deterministic
given some stochastic parameter. The latter is first studied in [Stone and Richardson
(1974), with a parameter vector in R” with known distribution. A detection function
maps a parameter value & € R™ and a search policy to a probability of detection
conditional on the target moving according to 8. For a general detection function,
Stone and Richardson| (1974) finds uniformly optimal search policies. Stone| (1977)
and Pursiheimol (1977)) independently generalise the space of the parameter to allow
both the target’s initial position and velocity to be random.

When the target moves according to a stochastic process, a sample path of the
process replaces the parameter argument @ in the detection function. All assuming an
exponential detection function, Hellman (1970, 1971) consider the target moving via
a diffusion process and [Saretsalo| (1973)) via a more general Markov process. Stone
(1979) provides necessary and sufficient conditions for an optimal policy, allowing
any concave detection function and the target to move according to a wide range
of stochastic processes. Stone’s results apply to both a target moving in discrete or

continuous time and to a discrete or continuous search space.
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Constraints are first added to the searcher’s motion in Beck (1964, 1965) in the
following linear search. The target is hidden in R according to a known distribution,
and the searcher, starting at the origin, must follow a continuous path in R, detecting
the target with probability 1 when passing it. The objective is to minimise the
expected time until the target is found. Early results in Beckl (1964, 1965) find
conditions on the target distribution required for an optimal policy to exist. Franck
(1965)) independently derives these conditions, additionally solving the problem in
simple cases and providing an algorithm to estimate an optimal policy in the general
case. With increasingly inventive titles, Anatole Beck continued to study linear search;
for example, Beck and Warren| (1973) consider a non-linear objective where searching
becomes more expensive over time, and Beck and Beck (1984) consider particular
target distributions (e.g uniform).

Foley et al.|(1991)) studies linear search with Koopman’s objective, maximising the
probability of detection with a fixed amount of search effort. More recently, Jotshi
and Battal (2008)) extends linear search to a network structure, a finite collection of
points in R? (nodes) and lines of various lengths (edges) which join some pairs of
nodes. A heuristic search policy is proposed for the case where the target distribution
is uniform across the network. [Jotshi and Batta (2009) allows two targets to be hidden
uniformly on a network, with the objective to minimise the time to find both. Search
on a network is far more common in the two-sided search with an intelligent hider
discussed in more detail in Part IT of this thesis.

In the wider literature, there are many extensions of the groundbreaking continuous-
search-space work described above. However, we now proceed to a survey of the focus

of the work in this thesis, a discrete search space.
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1.2 Discrete Search Spaces

A discrete search space is partitioned into n subareas called ‘boxes’, ‘locations’ or
‘cells’ in the literature; here we use ‘boxes’. The following describes the classic search
problem in discrete time and space. The position of the target within a box is not
important, only which box the target lies in; therefore, the target distribution is
p = (p1,...,pn), where p; is the known probability that the target is located in box i,
1 =1,...,n. The target is stationary throughout the search. The searcher finds the
target by consecutively searching individual boxes, so a search policy is an ordered
sequence of boxes to search.

Fori =1,...,nand k € ZT = {1,2,...}, the kth search of box i takes known
search time t;(k) > 0 to complete, and finds the target, if in box i, with known
detection probability q;(k) € (0,1). It is assumed that the t;(k) do not degrade to 0
as k — oco. Fori =1,...n, ¢; and t; may be viewed as functions with domain Z*
and respective ranges (0,1) and RT. If these functions are constant for each box, in
other words, we may write ¢; = ¢;(k) and t; = t;(k) for k € Z*, i =1,...,n, then the
problem is time independent; otherwise, the problem is time dependent.

A similar model allows searches to be made in continuous time; in other words, the
searcher is free to spend any length of time searching a box before moving to another.
A search policy is, therefore, an ordered sequence of boxes alongside a corresponding
list of search lengths. Detection probabilities are determined by functions Q; : RT —
(0,1), where Q;(x) is the probability of having detected the target after a total of z
time units of search in box ¢, given the target is in box i, ¢ = 1,...,n. For examples
of such models, see Onagal (1971)), [Wegener (1981)), Nakai| (2004) and Chapter 2 of
Stone| (1975)).

The following survey, however, will concentrate on the classic search problem in
discrete time and its extensions, with a particular focus on problems where an index

policy plays a part in the solution. A variety of search objectives have been studied
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in the literature, split by subsection throughout the rest of this survey.

1.2.1 Minimising the Expected Search Time

Whilst for continuous search spaces the early work maximised the probability of find-
ing the target with a fixed amount of search effort available, in the discrete case,
the early work minimised the expected time until the target is found, or ezpected
search time. Since all detection probabilities are strictly less than 1, after no number
of searches can the searcher guarantee finding the target, so, with this objective, a
search policy is an infinite, ordered sequence of boxes.

Blachman| (1959)) solves one of the earliest time-independent search problems found
in the literature. However, unlike the classic problem, whilst p still determines which
box will contain the target, the target does not lie in this box from the beginning of
the search, rather appearing after a random, uniformly-distributed length of time.

The classic time-independent problem, where the target is present from the start of
the search, was solved in the years following. A policy which minimises the expected
search time is as follows. If m; unsuccessful searches have already been made of box
1,1 =1,...,n, the next search is of any box with a maximal value of

pi(l — C]z‘)miqz" (1.2.1)
t;
The above is an example of an index policy, where an index, in this case, is
calculated for each box, and any box with a maximal index is searched next.
If m,; failed searches have been made of box i, then, by Bayes’ theorem, p, =

pi(1 — q;)™ /k is the posterior probability that the target is in box i, i = 1,...,n,
where k=37, p;j(1 — g;)™. Therefore, an equivalent index policy to (1.2.1)) uses

/ .
Bk (1.2.2)
L;
as the index of box i, with p’ = (p, ..., p!,) representing the current posterior target

distribution. Note that, given the target has not been found, plg; is the probability of
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finding the target on the next search of box 7, so (1.2.2)) is the probability of detection
per unit time. Therefore, a policy optimal in the classic time-independent problem
picks a box with a maximal probability of detection per unit time on its next search
and hence is myopic.

Several authors independently proved the optimality of (and hence also
(1.2.2). |Norris (1962)), a technical report at MIT focused on a two-sided search
where the target is an intelligent hider, uses a direct approach, showing that, at any
point during the search, any arbitrary search policy may be improved by instead
choosing a box using (1.2.1)). Bram| (1963)), which also studies a two-sided search,
proves the result when ¢t; = 1 for i = 1, ..., n (known as unit search times) by a short,
direct approach exploiting the one-to-one correspondence between the finishing times
of individual searches and the positive integers. Matula| (1964]) reports that Blackwell
derived the result using dynamic programming in 1962 in some unpublished notes.
Black (1965) provides an intuitive graphical proof and, years later, Ross (1983) a
simple argument involving an interchange of consecutive searches.

In addition to reporting Blackwell’s proof, Matulal (1964) shows that if and only if
log(1 —g;)/log(1 —¢;) € Q for all 4, j € {1,...,n} does there exist an optimal index
policy which, after an initial transient period, is periodic, in other words, in which
some fixed, finite sequence of boxes is repeated indefinitely. In this case, a closed-form
expression can be found for the optimal expected search time.

The remainder of this subsection discusses extensions to the classic time-independent
problem, many of which are either solved by some variation of , or have

play a part in their solution.

Small Adjustments to the Objective An extension in Norris| (1962)) assumes a
penalty is incurred for a failed search, and the searcher minimises the total expected
penalty incurred until the target is discovered. Unlike a search time, the penalty

of a failed search depends on the target’s true location as well as the box searched.
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Specifically, if box j is searched whilst the target is in box ¢, the penalty is p;t; for
some known p; > 0. Norris| (1962)) shows that is optimal if the index of box 7
is multiplied by p;.

In Sweat| (1970]), the searcher receives a fixed, known reward upon finding the
target, but, if m; searches are made of box i before the target is found, i = 1,... n,

the reward is discounted by [], 5;"* for known §; € (0,1). |Sweat| (1970) shows

(1.2.1) maximises the expected reward if ¢; is replaced by 1 — f;.

Time Dependence Chapter 4 of the monograph |Stone| (1975) studies the classic
time-dependent search problem. If m; unsuccessful searches have been made of box
i,i=1,...,n, an index analogous to (1.2.1]) is

pigi(mi + D L2 (1 — ai(k))

(1.2.3)

If is decreasing in m; for i = 1,...,n, then, by extending the method of Black
(1965)), [Stone| (1975)) proves the optimality of any index policy with index ([1.2.3]).
Further, under the same condition, by adapting a general result of Degroot| (1970),
Stone, (1975) shows that such index policies are the only optimal search policies.

It is unsurprising that must be decreasing in m,; for the corresponding
index policy to be optimal. Like , the index in ((1.2.3) is proportional to the
probability of detection per unit time on the next search of box i, so is a measure of
how appealing the (m; + 1) search of box i is to the searcher. Therefore, like ,
any index policy with index ([1.2.3]) is myopic. Suppose, for some j € {1,...,n},
is not decreasing in m;, and the (m; + 2)"® search of box j is more appealing
to the searcher than the (m;+1)*. Suppose m; failed searches have been made of box
i,17=1,...,n. In order to make the appealing (m; + 2)1d search of box j as soon as
possible, it could be optimal to search box j next even if the current index of box j is
not maximal. In other words, if searches of a fixed box may become more appealing
with time, the searcher’s optimal behaviour is no longer myopic. [Kadane and Simon

(1977) and Wegener| (1980) both construct an algorithm to compute an optimal policy
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in the time-dependent case without assuming is decreasing in m;. The former
assumes some finite number of searches of each box will guarantee a detection, an
assumption relaxed by the latter. A comment by Kelly in|Gittins (1979) finds a closed-
form solution to the fully-general classic time-dependent problem; Kelly’s solution will

be discussed in detail in Chapter [2|

Random Detection Probabilities With time-independent search times, Hall| (1976),
1977) replace ¢;(k) with a random variable @;(k) with a known distribution, i =
1,...,n, k € Z*. Immediately after the kth search of box ¢ is made, the realisation of
Qi(k) used in that search is revealed to the searcher. Therefore, it is possible for the
searcher to follow the index policy in ((1.2.3]) with ¢;(m; 4+ 1) replaced by the expecta-
tion of Q;(m; + 1). Hall (1976) shows that, when the @Q;(k) are independent, such an
index policy is optimal under the decreasing condition of Stone (1975)). [Hall (1977)
extends this result to dependent Q;(k).

With unit search times, Kelly| (1982) assumes the detection probability of any
search of any box is a realisation from the same random variable ) with known
distribution. However, past realisations of () are not known by the searcher, so, if
m; failed searches have been made of box i, only p; E[Q(1 — Q)™i] can be calculated,
an index shown to be optimal. [Kelly| (1982)) also investigates the behaviour of an
optimal index policy as the number of failed searches tends to infinity. Like Matula)
(1964)), there is periodic behaviour; however, unlike Matulal (1964), the nature of the

behaviour depends on the target distribution p.

Multiple Targets |Smith and Kimeldorf (1975) considers K hidden targets in the
classic time-independent problem, where K is a random variable with a known distri-
bution. Each target is hidden according to the target distribution p. The objective
is to minimise the expected time until the first target is found. [Smith and Kimeldorf
(1975)) shows an optimal policy exists no matter the distribution of K.

The main result of |Smith and Kimeldorfl (1975) is the following. For n > 3,
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an optimal index policy exists if and only if K has a positive Poisson distribution
(Poisson conditional on K > 1). In this case, the optimal index policy, deduced
in the following, is based on the myopic indices in (1.2.1]) and known to be
optimal when P(K = 1) = 1. Recall the numerator pg; of is the probability
that the next search of box ¢ ends the search. In Smith and Kimeldorf (1975)), the
search ends if at least one of the targets is found. If box ¢ is searched, any given
target is found with probability p.g;; therefore, if there are k targets, the probability
of finding at least one target is 1 — (1 — pig;)*. Suppose m; failed searches have been
made of box i so far. Since p; is the probability that any given target was placed in
box i at the start of the search, and each target in box i is found with probability g;
independently of any other targets, by Bayes’ theorem, we have p; o p;(1 — ¢;)™ as
in the classic problem with one target.

Since the number of targets is a random variable K, the searcher can only estimate
the true number of targets using F[K]. Finding no targets in a box changes the
searcher’s beliefs not only about p, but also about K; therefore, the expectation is
taken over the current posterior for K, also simply updated by Bayes’ theorem. It

follows that the myopic index of |[Smith and Kimeldorf (1975) is given by

1 — Br [(1—pill — ¢:)™q:)"]
t; '

(1.2.4)

For K with positive Poisson distribution with parameter A > 0, an equivalent index
policy replaces the numerator of with 1 — exp(=Ap;(1 — ¢;)™q;). Also, as
expected, note that if P(K = 1) = 1 and the classic time-independent model is
recovered, then reduces to (|1.2.1]).

Assaf and Zamir| (1987) studies the two-box problem with generally-distributed K,
showing that is not always optimal, but log( E[K*]) being concave for z € [0, 1]
is sufficient for the optimality of , a condition satisfied by any positive binomial
or positive Poisson distribution, but not every geometric distribution. |Sharlin/ (1987))
presents an algorithm to find an optimal policy for a two-box problem for K with any

distribution.
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Assaf and Zamir| (1985)) assumes the number of targets k is known, but the target
distribution P = (Py,..., P,) with which each target is hidden is random with a
known distribution. A myopic index is similar to ([1.2.4)), but with expectation taken

over the current posterior for P, namely

1—Ep [(1-P(1—q)"aq)"]
t; '

(1.2.5)
When k =1, reduces to (1.2.1) with p; replaced by E[P;]; Assaf and Zamir
(1985)) shows such an index policy is optimal for P with any distribution. Further,
when n = 2, is shown to be optimal for any k and distribution on P, contrasting
Assaf and Zamir| (1987) where the number of targets was random but the target
distribution known.

Kimeldorf and Smith (1979)) studies the model of Smith and Kimeldorf (1975,
but minimises the expected time until all targets are found. It is assumed that the
searcher is unaware of how many targets have been found until the search is over.
The main result of Smith and Kimeldorf| (1975) is shown to still hold: for n > 3,
an optimal index policy exists if and only if K has a positive Poisson distribution.
The optimal index policy is similarly adapted from as follows. if m; searches
of box ¢ have been made, i = 1,...,n, and there are k£ targets remaining, then the
probability of ending the search by finding all k& targets on the next search of box i is
proportional to (p;(1 — ¢;)™iq;)*. Therefore, the optimal index is

Ex [(pi(1 — qi)miqz-)K'}
t; ’

(1.2.6)

where K’ is the random variable representing the number of targets remaining. At the
start of the search, K’ = K, with the distribution of K’ updated throughout the search
by Bayes’ theorem. For K with positive Poisson distribution with parameter A > 0, an
equivalent index policy replaces the numerator of with exp(Ap; (1 —¢;)™q;) —1;

note the comparison to the result of |[Smith and Kimeldorf (1975). Also, as expected,

note that if P(K' =1) =1, (1.2.6), like (1.2.4)), reduces to ((1.2.1]).
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Kimeldorf and Smith (1979)) also draws comparisons with the discounted reward
model of Sweat| (1970). If C is the time until all targets are found, it is shown
that with ¢; replaced by exp(t;) — 1 is optimal if the objective is to minimise
E[1 —exp(—C)].

False Detections Kress et al.| (2008]) considers a time-independent search with the
usual detection probabilities and search times made by a sensor which may falsely
detect the target in box ¢ with probability r; < ¢;, ¢ = 1,...,n. After a reported
detection in box 7, a team with perfect detection verifies the sensor’s findings, which
takes time ¢;. Since there are more outcomes to each search, calculating the posterior
p’ is more complicated than in the classic search problem, but still possible using
Bayes’ theorem. In particular, if the faultless verification team are sent to some box
1, then either the target is found or box i is removed from consideration. |Kress et al.
(2008) shows that the myopic index policy in is optimal if ¢;r;, the expected
time wasted by the verification team on a false detection in box i, is added to the
denominator.

Kress et al.| (2008)) also considers the case where the verification process is either
long or risky. Here, an appropriate alternative objective maximises the probability

that the first detection by the sensor is a true detection. In this case, it is shown that

(1.2.2)) is optimal with ¢; replaced by r;.

Travel Times |Gluss (1961)) studies the unit-search-time problem with perfect de-
tection (¢; = 1 for ¢ = 1,...,n), meaning a search policy is some permutation of
{1,...,n}. The boxes lie in a line, and it takes the searcher time |i — j| to travel from
box i to box j, fori,7 € {1,...,n}. Gluss (1961) was the first to consider travel times
between n boxes, where the objective is to minimise the combination of (expected)
search and travel time. Unlike the previous problems in this section, there is no sim-
ple, optimal index policy, and |Gluss| (1961) only finds a solution for a uniform target

distribution.
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Lossner and Wegener| (1982) generalises |Gluss (1961) with an arbitrary travel time
from box ¢ to box j; an interpretation is a search on a network structure with the
target hidden at one of the nodes. [Lossner and Wegener| (1982)) derives necessary and
sufficient conditions for an optimal policy to be periodic as in Matula (1964). Under
these conditions, an optimal policy must belong to a finite set of search policies.
Solving the travel-time problem without such periodic behaviour was later shown to

be NP-hard in \Wegener| (1985)).

1.2.2 Maximising the Probability of Detection by a Deadline

Chew| (1967)) is the first to study the classic discrete search problem with the objective
of [Koopman! (1957)), namely, maximising the probability of finding the target before a
fixed deadline, d > 0. Since (if it lasts that long) the search will end at time d whether
the target has been found or not, a search policy is a finite sequence of boxes which
ends when the next desired search would take the cumulative search time over d.
Further, since the precise detection time of the target before d does not matter, only
the number of searches of each box in a search policy is important; therefore, a search
policy can be simplified to a list aq,...,a,, where a; is the number of times box 7 is
to be searched, and > | a;t; < d. However, due to the interest in uniformly optimal
search policies, which, recall, are optimal for any choice of deadline, it is useful to
continue to think of a search policy as an ordered sequence of boxes of indeterminate
length.

Even though the objective is no longer to minimise the expected search time,
the index policies in and still play a key part in optimal solutions.
Chew| (1967) shows that, in the classic time-independent problem with unit search
times, is uniformly optimal. [Kadane| (1968)) extends this result to the classic
time-dependent problem with unit search times under the same condition ((1.2.3)) is
decreasing in m;) as Chapter 4 of [Stone (1975)) discussed in Section [1.2.1] Therefore,
with unit search times and decreasing in m;, using (1.2.3) as an index both
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minimises the expected search time and maximises the probability of detection before
any deadline.

The same cannot be said for general search times. In this case, Chapter 4 of
Stone| (1975)) shows that maximises the probability of finding the target before
any deadline which coincides with the end of a search of some box under .
For any other deadline, may not be optimal. The following simple example
demonstrates why this is the case. Suppose n = 2 and (k) = 1, t5(k) = 5 for all
k € Z". Suppose the index in is larger for box 2 at the start of the search,
so any index policy £ using as its index will search box 2 first. If the deadline
d belongs to [1,5), the probability of finding the target before d under & is 0, as the
first search cannot be completed before d. Yet, under any policy which searches box 1
first, the same probability is non zero, showing that £ is suboptimal. In other words,
at the start of the search, a search of box 2 has a greater probability of detection per
unit time than box 1, but cannot be finished before the deadline, so is suboptimal.
Clearly such conflicts cannot happen in the unit-search-time problems of Chew| (1967))
and Kadane| (1968). Wegener| (1982)) both proves the existence of and constructs an
algorithm to find an optimal search policy for general, time-dependent search times.

The remainder of this subsection discusses the use of index policies in extensions

to the time-independent model of |Chew| (1967)).

Multiple Targets and False Detections In addition to minimising the expected
search time, two papers discussed in Section also maximise the probability of
detection before a known deadline for unit search times, thus extending the model of
Chew| (1967). In both, it was shown that remained uniformly optimal. The first
is the model of Kress et al. (2008), where the searcher may falsely detect the target
with a known, box-dependent probability. The second is the model of |Kimeldorf and
Smith| (1979), where the number of targets is a random variable. Kimeldorf and Smith

(1979) shows that ([1.2.1)) is uniformly optimal regardless of how many targets need
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be detected before the deadline and whether or not the searcher is told how many

targets have been found throughout the search process.

Multiple Searchers In the classic time-independent problem with unit search
times, [Song and Teneketzis (2004) allows = searchers who can search for the tar-
get simultaneously. Whilst detection probabilities may vary from box to box, each
searcher has the same detection probability for a fixed box. Only one searcher is
allowed in a box at any time; therefore, it is assumed that x < n or the problem is
trivial. A simple extension of the index policy in (1.2.1)) is to search the x boxes with
the z largest indices in the next time period. However, it is shown by counter example
that this myopic policy is not always optimal. An optimal policy does use (1.2.1)),
but must look ahead until the deadline d, calculating with m; =0,1,...d -1
for i = 1,...,n and collecting the largest xd indices into a set L. For i =1,...,n,
if m of the d indices calculated for box ¢ are in £, then an optimal policy makes m
searches of box ¢ before the deadline d. Since only the probability of detection by
d is important, the total of xd searches can be made in any order provided multiple
searchers do not enter the same box at the same time.

Ding and Castanon| (2017) extends the model of Song and Teneketzis (2004) by
allowing heterogeneous searchers. Each searcher s has the same detection probability
for each box, but has their own budget b, and their own subset of boxes Bs. Searcher s
cannot make more than by searches in total, and cannot search any box not in B,. The
objective is to maximise the probability of finding the target once each searcher has
used up their budget. An optimal index policy no longer exists; Ding and Castanon
(2017) formulates a minimum-cost network flow problem and derives an algorithm
to find an optimal policy. An extension where the detection probability in any box
depends on the choice of searcher is formulated; however, comparison to the weapon-
allocation problem of |Ahuja et al| (2007) shows the extension to be NP-hard, and

only approximate algorithms are provided.
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1.2.3 A Moving Target

As for a continuous search space, study of a moving target began in the 1970s. Both
search objectives of the previous two subsections have been studied. Henceforth, for
brevity, we refer to these objectives as MinT (minimising the expected search time)
and MazP (maximising the probability of detection before a known deadline).

Pollock]| (1970)) is the first to add a moving target to the classic time-independent
problem, analysing the simple case with two boxes and unit search times. As usual,
the target’s starting box is determined by the target distribution; yet, at the end of
each search of a box, the target, unseen by the searcher, switches boxes with a known
probability. The switching probability depends only on the target’s current box, so
target movement can be modelled using a discrete-time Markov chain with a known
Markov transition matrix M.

In the stationary-target problem, the searcher uses their history of failed searches
to calculate the posterior probability p’ that the target is in box 1. With a moving tar-
get, M also provides information about the target’s location, making the calculation
of p’ more complicated and the problem harder to solve. For both MinT and MaxP,
Pollock| (1970) shows that the optimal policy is a threshold policy; in other words, for
some p* € (0,1), search box 1 if and only if p’ > p*. However, the value of p* depends
on the objective, and a closed form is only found in special cases. [Schweitzer| (1971)
investigates recursive procedures to calculate p* for MinT.

Ross (1983)) conjectures that, in the two-box model of [Pollock| (1970) with general
search times, there exists an optimal threshold policy for MinT. Note that, in Ross’
extension, the movement of the target no longer coincides with Z*, and is dependent
on the policy of the searcher. While [White, (1992) shows Ross’ conjecture is true for
a wide range of parameters, and Weber| (1986) proves the conjecture if searches are
made in continuous time, in full generality with discrete-time searches, the conjecture

remains unproven to this day.
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A recent extension to the unit-search-time, two-box model of [Pollock| (1970)) is
studied in [Flesch et al.| (2009). The searcher has perfect detection, and, at each
unit-time step, alongside searching either box, has a third option available: wait
and search no box. So the searcher is not penalised for waiting, the objective is to
minimise the expected cost to find the target rather than time, with a search of either
box incurring cost 1. To avoid waiting forever being optimal, the searcher receives a
prize upon finding the target, which is subtracted from the incurred cost. With the
prize available, the searcher may wish to make a search when the posterior target
distribution contains less uncertainty; i.e., p’ is close to 0 or 1. Indeed, [Flesch et al.
(2009) shows that a two-threshold policy of the following form is either optimal or
optimal within any € > 0. For 0 < p; < p,, < 1, search box 2 for p’ € [0, p;], wait for
P € (p1, pu), and search box 1 for p’ € [py, 1].

Kan| (1977) extends the model of Pollock (1970)) to n boxes and general search
times, but solves the problem only in special cases. For example, the case where
every row of the transition matrix M is equal to some fixed v is solved. Here, after
every search, the posterior target distribution p’ is v, so the history of failed searches
gives the searcher no information about the target’s location. Therefore, for all but
the first search, it is optimal to search the same box. For MinT, an optimal box j*
is any with a maximal value of with p} = v;, i = 1,...,n. An optimal box to
search first is determined by a separate index dependent on j* and the original target
distribution p. In the unit-search-time case, for MazP, it is optimal to search box j*
in every search.

Due to the difficulty in solving the models of [Pollock| (1970) and Kan| (1977), the
majority of moving-target problems in the literature allow searches to be made in
continuous time, as in [Weber| (1986)). [Dobbie| (1974) considers a target moving via a
continuous-time Markov process, but in most work the target moves via a discrete-
time Markov chain. Famous examples include Brown| (1980) and Washburn (1983));

for a recent survey, see Stone et al. (2016).
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1.2.4 Information-Based Objectives

All search objectives discussed so far concern finding the target. However, the searcher
may instead be interested in learning as much as possible about the target’s location.
In the classic time-independent problem, Mela, (1961) is the first to consider maximis-
ing the expected information gained about the target’s location before a deadline d
(MazxI'), measuring information gain by the difference in entropy between the original
target distribution and the posterior target distribution p? at time d. Using simple
two-box examples, Mela| (1961) shows that optimal policies for MazP and Maxl with
the same deadline do not always coincide. This section will consider two common

search objectives involving some degree of information gain.

Whereabouts Searches The first objective is also considered by |Mela, (1961)),
namely, maximising the probability of correctly guessing (at d) the target’s location
(MazG). Maz@ is realistic if a major rescue operation for a hostage is planned at time
d, but a sensor may make preliminary sweeps of the search space to determine where
the hostage is located. If the target is found before the deadline d, then the searcher
will guess correctly with probability 1. Otherwise, the searcher clearly optimally
guesses the box j with the largest posterior probability in p? = (p¢,...,p%), and
is correct with probability p;l. A further three-box example in [Mela| (1961) shows
that an optimal policy for MazP does not always coincide with an optimal policy for
MaxG. Therefore, for MaxG, it is not always optimal to simply maximise the chance
of finding the target before d, then make the best guess possible if the target remains
undiscovered; some thought must be given to reducing the uncertainty in p?.

The literature has since studied MazG further; Tognetti (1968)) is the first, coining
the term whereabouts search. A policy for a whereabouts search involves two quanti-
ties: a sequence of boxes to search up to time d (of which the order is unimportant)
and a box to guess if the search is unsuccessful. Tognetti (1968)) consists of a single

example, a generalisation of an example of Mela| (1961) to n boxes. The target dis-
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tribution is uniform, and the boxes are identical with search time 1. By the result of
Chew] (1967), if d = n, for MaxP, the problem is optimally solved by following
and hence searching each box once. However, if the target is not found, p? is uni-
form, leading to maximum uncertainty and the worst possible situation for guessing.
Tognetti (1968) shows that, for general d € Z*, any optimal policy for MazG never
searches the box it guesses.

Kadane, (1971)) generalises Tognetti’s result to the classic time-dependent problem
with MaxG. Further, it is shown that, given the optimal box j* to guess, determining
the optimal sequence £* of boxes to search is simply the problem with objective MazP
and box j* removed from consideration. Therefore, by [Kadane (1968), if all search
times are unit, the index policy (with box j* ignored) determines &*.

Kadane (1971) shows that if all boxes are identical, then j* is the mode of the
target distribution, a natural choice, since it leads to the mode of p? being maximised.
However, such a choice is not always optimal for non-identical boxes, since the box
with largest probability in the target distribution may be searched very efficiently,
allowing a lot of information to be gained in a short space of time by searching that
box. In general, j* can only be determined by solving n problems with objective
MaxP, each corresponding to a different guessed box - a result generalised by |Stone

and Kadane (1981) to a target moving in either discrete or continuous time.

Search and Stop In the second type of problem, search times are considered as
search costs with the objective to minimise the expected cost. However, information
on the target’s location is more valuable than in a MinT problem since, after any
search of an individual box, for a known penalty cost ¢, the searcher has the option
to stop the search before finding the target. The stop option may be appealing to the
searcher if uncertainty about where to optimally search next is high, or if there is a

strong chance that the target lies in a box with an inefficient or useless search mode.



Part I. Chapter 1. Literature Review 20

Chew| (1967) was the first to allow stopping with penalty ¢, adapting the classic
time-independent problem with unit search costs. |Chew| (1967) assumes that one box,
say box n, is unsearchable with detection probability 0; therefore, if the target lies
in box n it cannot be found, so any optimal policy must stop after a finite number
of searches. The index policy in again is key; (Chew| (1967) shows that any
optimal policy either searches a box with a maximal index or stops the search.

Ross| (1969)) studies the problem of |Chew| (1967) with general search times, but
neither an unsearchable box nor a cost for stopping the search. Yet, there is a reward
r; for finding the target in box i, and the objective is to minimise the expected cost
minus the expected reward. Ross| (1969) shows that his objective is equivalent to that
of Chew| (1967) with c=7r;,i=1,... n.

Ross (1969) shows an optimal policy exists, but only that the result of |(Chew (1967)
(that it is optimal to choose a box using or stop) holds when r; is constant
over all boxes. In other words, Ross (1969) extends the result of |Chew| (1967)) to
general search times, but not to a box-dependent reward structure. However, for box-
dependent rewards, Ross| (1969)) shows that if it is ever suboptimal to search a box i
with a maximal index, it is never optimal to search box ¢ at any point in the search
process. Unlike (Chew| (1967)), the absence of an unsearchable box means it may never
be optimal stop searching; Ross| (1969)) shows that this is the case and is optimal
if > ti/qir; < 1. Chapter 5 of Stone| (1975) extends the results of Ross (1969) to
time-dependent detection probabilities and search times under the same assumption
as Sections and , that is decreasing in m; fori =1,... n.

The above shows that, under certain assumptions, a simple, myopic index policy
tells the searcher an optimal box to search next. However, it is not so easy to know
when to optimally stop searching. |Chew| (1967)) bounds the region of the state space
where it is optimal to stop, and |[Ross (1969)) and |Chew| (1973)) both approximate an
optimal stopping rule. Further, Chew| (1973), which studies the model of Chew| (1967)

with general search times, shows that if cg; > Z?Zl tj(2—gq;) for i =1,...,n, where



Part I. Chapter 1. Literature Review 21

c is the stopping cost, then it can be determined whether it is optimal to stop or not
by looking n searches ahead using .

Finally, before this chapter optimally stops, we consider an example of |Kan| (1974])
with two boxes. Let p be the probability that the target is in box 1. Note that equality
in (1.2.1), attained by some py € (0, 1), maximises uncertainty about where to search
next. Therefore, similarly to the waiting model in [Flesch et al.| (2009)), it is intuitive
that there would exist p; < p, such that it is optimal to stop for p € (p;, p.), to search
box 1 for p > p, and to search box 2 for p < p;. However, Kan| (1974) shows by
counterexample that such p;, p, do not always exist. The conjectured reason is that,
whilst the uncertainty in which box to search next grows as p moves closer to pg, so
does the information that the searcher gains from carrying on with the search. This

idea will be revisited in Chapter [3] of this thesis.



Chapter 2

Search and Multi-Armed Bandits

In this chapter, a multi-armed bandit (MAB) will be introduced, and, in Section [2.1]
it will be shown that both the classic time-independent and time-dependent search
problems discussed in Chapter [I] can be formulated as an MAB. In Section [2.2] the
Gittins index policy which optimally solves the search MAB will be derived and shown
to agree with (and generalise in the time-dependent case) the classic-search-problem
solutions from the literature from Chapter [I Finally, Section introduces the
focus of Chapter [3], a search problem with two search modes, reviewing the relevant
literature, and discussing to what extent Gittins index theory still applies. For the
latter discussion, the generalised time-dependent solution obtained by a Gittins index
policy in Section is crucial.

The MAB problem, first studied by [Thompson (1933)), takes its name from slot
machines in casinos called one-armed bandits. When a one-armed bandit is played,
the player receives a reward; in the MAB problem, multiple one-armed bandits (called
arms) are available, and the player can choose one arm to play at each time period.
The aim is to maximise the total reward received over a known period of time.

Several different assumptions can be made about the generation of rewards. As
in [Thompson| (1933)), each arm may have its own unknown reward distribution from

which its rewards are drawn. Each play provides information about the corresponding

22
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arm’s reward distribution; therefore, the MAB problem becomes a trade-off between
exploring unfamiliar reward distributions and using prior knowledge to exploit more-
lucrative arms. There is a vast literature on such bandits, particularly within the last
15 years; for a recent overview, see Slivkins| (2019).

Alternatively, each arm may move through a set of states, with its reward de-
pendent entirely upon its current state which is known to the player. The player
maximises the total reward over an infinite length of time, with rewards discounted
as time progresses to make those received near the start more valuable. Since there is
no new information to be gained about each arm, the focus is entirely on exploiting
the largest rewards at the earliest time possible. Such bandits, which are a special
type of Markov decision process (MDP), will be the focus of this chapter. |[Puter-
man| (2014) provides a comprehensive study of MDPs; however, for the purposes of
this thesis, any background knowledge of MDPs is not required. The solution to any
MDP-based MAB, discovered in the 1970s, will be discussed further in Section
The following formulates an MDP-based MAB with the aid of |Gittins et al.| (2011)), a
monograph of such bandit problems.

At any time, a one-armed bandit B is in a known state within a known state
space E. Any time d € {0,1,2,...} is a decision time at which the player selects
either a freeze or play action. Freezing B at time d leaves its state unchanged until
the next decision time d + 1 and accrues no reward. Playing B at time d accrues an
immediate, known, discounted reward 0%r(x(d)), where 6 € (0, 1) is a known discount
factor, z(d) is the known state of B at time d, and r is a known function from F to R.
Under the play action, the state of B at time d+ 1 is determined by known transition
probabilities dependent only on z(d); therefore, only the current state of B affects its
future, so the Markov property is satisfied.

An MAB presents the player with n one-armed bandits By,..., B,, each with
the same discount factor #, but different known state spaces Fi,..., F, and reward

functions r1,...,7,. Bandit B; is referred to as the ith arm of the MAB. At each
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decision time d € {0, 1,2, ...}, the player chooses one arm to play and n — 1 arms to
freeze. Write x;(d) € E; for the state of arm i at time d € {0,1,2,...}, so the state of
the MAB at time d is (z1(d),. .., z,(d)), and the state space is E; X --- X E,. If arm
i is played at decision time d, the reward is 0%;(x;(d)), with the aim of the player to

maximise the total reward over an infinite horizon.

2.1 Search Problems as Multi-Armed Bandits

An MAB formulation has been used to tackle many problems, such as clinical trials
in [Thompson! (1933), experimental design in Robbins (1952), and web design in many
more recent papers. MDP-based bandits have been applied to job-scheduling prob-
lems; see |Jacko (2010)) for a survey. Search was added to the list of MAB applications
when a comment by Kelly in |Gittins| (1979), a celebrated work on MDP-based ban-
dits discussed further in Section [2.2] showed how the classic time-dependent search
problem introduced in Chapter [I] can be formulated as an MDP-based MAB. In this
section, like Kelly, we derive the MAB for the classic time-independent problem with
unit search times, then generalise to the classic time-dependent problem.

Recall, in the classic time-independent problem, the target is located in box ¢
with known probability p;, with a search of box ¢ taking known search time ¢; > 0
and finding the target, if in box 4, with known detection probability ¢; € (0, 1),
1 =1,...,n. In the unit-search-time problem, ¢, =1 for ¢ = 1,...,n. The aim of the
searcher is to minimise the expected search time by consecutively searching boxes.
A search policy is, therefore, an infinite, ordered sequence of boxes to search. Write
V() for the expected search time under search policy £, so an optimal search policy
minimises V (§).

For ¢« = 1,...,n, write V;(§) for the expected search time under £ conditional on

the target being in box ¢, so

V(¢) = me@.
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Write ¢;¢(m) for the time at which the mth search of box i ends following &, i =
1,...,n,m € Z* ={1,2,...}. If the target is in box ¢, detection must occur at time
¢;¢(m) for some m € Z*. To be found at time ¢; ¢(m), the first m — 1 searches of box i

must fail and the mth succeed, which occurs with probability ¢;(1 — ¢;)™!; therefore

Z Cz,{ QZ 1 - %) 7

and hence
= n (Z cig(m)gi(1 — Qi)m1> :
i=1 m=1
Since
1 — geiem)
1—9 = 1+9+92+‘“+0q’§(m)—1 —>ci,§(m) as 6 — 1, (211)

for 6 close to 1, we have

szz ]_—QCl; q(l_q»mfl
eczg(m

Z 9 Z QZ Z Z Z szz - q»mjl. (212)

i=1 m=1

Since the first term in does not depend on &, and 1 — @ is constant, minimising
over all search policies £ is equivalent to maximising
n oo
Z Z 6% pigi(1 — ;)™ . (2.1.3)
i=1 m=1
We may view as a discounted sum of rewards from playing the following
MAB. Each arm represents a box, with a play of an arm equivalent to a search of
its corresponding box. Since search times are unit, the decision times correspond
with N = {0,1,...}. The state of each arm is the number of previous searches
of its corresponding box. Therefore, the state space is N and state transitions are
deterministic, namely, after an unsuccessful search of any box, its arm’s state increases
by 1. For i =1,...,n, the reward function r; : N — R satisfies r;(m) = p;q;(1 — ¢;))™

for all m € N. In other words, the reward before discounting obtained by searching
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box i for a (m 4 1)* time is the probability of finding the object on the (m + 1)
search of box 7. The discount factor # comes from the approximation in (2.1.1f), with
the original search problem retained by letting § — 1. Since the target’s discovery
may only occur at the end of a search of some box, unlike the classic formulation of
the MDP-based MAB, the reward from the arm played at decision time d is actually
attained at decision time d + 1 when the search of the corresponding box finishes.
However, as will be seen in Section this adjustment does not affect the relevance
of the MAB theory.

Maximising is also equivalent to minimising the expected search time when
search times are arbitrary. However, in the associated MAB, the decision times no
longer correspond with N; the gap between successive decision times d and d’ depends
on the box 7 searched at d, with d' = d +t;. As a result, the MAB is no longer an
MDP but a semi-Markov decision process (SMDP) which, in its full generality, allows
the gaps between decision times to be random variables. For a general formulation of
a SMDP, see [Baykal-Giirsoy| (2010)), but such knowledge is not required here.

In his comment in |Gittins| (1979)), Kelly also discusses the classic time-dependent
problem where, recall, the kth search of box i takes known search time ¢;(k) > 0
and finds the target, if in box i, with known detection probability ¢;(k) € (0,1),
i=1,...,n, k € Z*. Tt is assumed that the ¢;(k) do not degrade to 0 as k — oo.

Where ¢; ¢(m) is again the time at which the mth search of box ¢ ends following search

policy £, i =1,...,n, we may express V (§), the expected search time under &, as
Zpl (Z cie(m)g(m H (1 —q(k ) : (2.1.4)
k=1

Repeating the analysis for the time-independent case, it follows that minimising the
expected search time in (2.1.4)) is equivalent, as # — 1, to maximising

ZZ(QCI& pigi(m nﬁl—qz ) (2.1.5)

i=1 m=1 k=1

the time-dependent version of (2.1.3)), which may also be viewed as a discounted sum

of rewards from a similar MAB.
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2.2 The Gittins Index for a Search Problem

A policy for an MAB is a rule which decides which arm, if any, to play at any decision
time, with an optimal policy maximising the total, expected discounted reward over
an infinite horizon. In 1974, John Gittins, alongside Jones, found an index policy
optimal for any MDP-based MAB, a major breakthrough in the area. An index
policy calculates a real number, called an index, for each arm dependent only on the
arm’s current state. The index summarises the value of playing the arm in that state,
so the index policy plays any arm with a maximal index. The formula for the index
derived by Gittins, later coined the Gittins indezx, was first presented and proven to be
optimal in|Gittins and Jones (1974). In the following years, Gittins, Glazebrook, Jones
and Nash explored the breadth and significance of the result in solving previously-
intractable problems (for example, see Nash| (1973)), Glazebrook! (1976alb), |Gittins and
Glazebrook (1977), Gittins and Jones (1979)); the celebrated Gittins (1979) collated
these works. Many elegant alternative proofs have since shown the optimality of
the Gittins index. Among the most notable are the dynamic-programming approach
of Whittle| (1980), the fair-charge reasoning of [Weber| (1992), and the interchange
argument of |Tsitsiklis (1994)).

This section will first derive the Gittins index for the classic time-independent
search problem, showing its equality to the index policy in found independently
to be optimal by Blackwell (reported in Matula (1964))), [Norris (1962), Bram| (1963)
and Black| (1965). Second, the Gittins index derivation will be adjusted to the classic
time-dependent search problem, allowing a generalisation of the index policy of Stone
(1975)) in previously restricted to a special case. For a derivation of the Gittins
index for a general MAB, see Chapter 2 of |Gittins et al.| (2011)).

Gittins Index for the Time-Independent Search Problem Consider an MAB

with two arms and discount factor . The first arm, sy, is parameterised by A > 0
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and has just one state. If s, is played at decision time d, a discounted reward 4+ )\
is received at the next decision time d + 1. As described in Section [2.1] the second
arm B corresponds to searching a box with detection probability ¢, search time ¢ and
probability p of containing the target. Therefore, B moves through states in N which
represent the number of previous searches, and, if played at decision time d in state
m € N, discounted reward 69 pg(1 — q)™ is received at the next decision time d + .
The following derives the Gittins index for B in a given state.

As usual, at each decision time, the player must choose one arm to play whilst
freezing the other. Since sy has only one state, once it becomes optimal to play s)
and freeze B, it remains optimal to play s, forevermore. Therefore, an optimal policy
will play arm B until some retirement time 7 when it first becomes optimal to play
sx, then play s, eternally. For an arbitrary second arm with stochastic changes of
state, 7 is a random variable. However, since the state changes of our second arm B
are deterministic, 7 is also deterministic.

Suppose the player has not yet retired and B is in state m € N; therefore, the
current time is mt. If the player retires immediately, the total future sum of rewards

is given by

o0 L \gmttt
;Aemtﬂ =T (2.2.1)
On the other hand, if the player does not retire immediately, and instead retires at
the future decision time that will maximise the total reward, the total future sum of
rewards is given by

m+b 9]
sup { > pgl—qy T+ 9<m+b>t+m}

beZt | o1 j=1

0 Hipg(1 — )" (1= 0"(1 — q)") | A
1—-60'(1—q) 1-6 '

= sup (2.2.2)

beZt
The Gittins index for B in state m is the value of the parameter \ such that the

player is indifferent between playing B in state m (retiring at some future decision

time) and playing s, (retiring now), in other words, the value of A that equates (2.2.1))
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and (2:22), given by

sup
beZt

(1 — H)Qt_lpq(l _ q)m<1 . 9bt<1 . q)b)
{ (1 —6%)(1— 611 — q)) } - (2.2.3)

To calculate the supremum, we may remove multiplicative terms which do not depend

1— (0(1 - q))"
o {1 ) 224

To evaluate (2.2.4), note that

1—x> (I—a)(@ a2+ 4a+1) 1-—2
l—y = (I—y)yt+yr 2+ +y+1) 1—y

upon b, leaving

for any b € {2,3...} and 0 < z <y < 1. Taking y = 0" and x = 0*(1 — ¢) shows that

(2.2.4), and hence also (2.2.3)), is always attained at b = 1 for any 0 < ¢,0 < 1 and
t > 0. Therefore, the Gittins index for B in state m in (2.2.3)), which we will denote

v(B,m), satisfies
(L—0)0""pg(1 — g™
1—6 '

To interpret the Gittins index, we split (2.2.5)) into a ratio of two terms. The first

v(B,m) = (2.2.5)

term is 0'pg(1 — ¢)™, the discounted reward received after the next ((m + 1)) search
of the box if the current time mt is reset to 0. For ¢t € Z", the second term satisfies

0(1—60)
g -2
j=1

interpreted as the discounted time from 0 until a search of the box is completed at time
t. Therefore, since both terms in the ratio are discounted, may be interpreted
as the undiscounted, average rate of reward from time 0 to ¢ received by playing B,
with such an interpretation still valid for a general ¢ > 0. The undiscounted, average
rate of reward from s, over any time interval is A, satisfying our interpretation that
setting A = v(B, m) makes the player indifferent between playing B in state m and
playing s,.

Now consider the MAB associated with the classic time-independent search prob-

lem with n arms, By,...B,, corresponding to n boxes, where box ¢ has detection
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probability ¢;, search time t;, and contains the target with probability p;. Suppose B;
is in state m; € N, so m; searches have been made of box i, ¢ = 1,...,n. Then, first
shown to be optimal by |Gittins and Jones (1974), a Gittins index policy next plays
any arm j satisfying

j = arg maxv(B;, m;), (2.2.6)

i=1,...n
with v(B;, m;) the Gittins index of arm B;, i = 1,...,n, taking the form in (2.2.5).

Recall the classic time-independent search problem is retained by letting 6§ — 1.
By , under this limit, the Gittins index policy in (2.2.6)) next searches any box
j satisfying

. pi(1 — i)™ q;
] = argmax ——————

)
i=1,...,n tz

equivalent to the optimal index policy in discovered by multiple authors in
the 1960s. As discussed in Chapter |1, the index is myopic as it selects a box with
a maximal probability of detection per unit time for its next search, equivalent to a
maximal average rate of reward in the associated MAB.

For a general MAB, the Gittins index is not necessarily myopic; in other words,
(2.2.3)) is not always attained by b = 1, so the average rate of reward that forms an
arm’s Gittins index may look ahead more than one play of the arm into the future.
In this instance, Gittins indices can be difficult to calculate. The supremum in ([2.2.3))
is always attained at b = 1 for the search bandit B since the undiscounted reward
received from B decreases monotonically (by a multiplicative factor of 1—¢) with each
search. Therefore, the average rate of reward looking ahead for any b € {2,3,...}
consecutive searches of a box will always be smaller than looking ahead just one

search.

Gittins Index for the Time-Dependent Search Problem Recall from Section
2.1]that the classic time-dependent search problem may also be formulated as an MAB
and hence is also optimally solved via a Gittins index. If B corresponds to searching

a box whose kth search takes time ¢(k) and has detection probability ¢(k), k € Z*,
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then the time-independent derivation of the Gittins index is adjusted as follows.
If the player has not yet retired and B is in state m € N, the current time is

a=Y_" t(v). Similarly to (2.2.1)), retiring immediately accrues total future reward

)\(ga—i-l
1—-0

(2.2.7)

Retiring at the future decision time that maximises total future reward accrues

AT W) ) m+b ) . w1

1
bezZt u=m++1

v=1
the time-dependent version of (2.2.2)). The Gittins index for B in state m is the value
of X equating (2.2.7)) and ([2.2.8)), namely

oy L L O S 07 () [T} — ()
beZ+ 0 (1 __923332+INU)>

Therefore, in the time-dependent search problem with n boxes retained as § — 1,
after m; € N searches of box ¢ have been made, its Gittins index is given by

{ Zum:ijnbiﬂ qi(u) Hﬁi(l - qi(v)) }

i+b
ZUm:j‘r_‘Lri-l tz (U’)

p; sup (2.2.9)

beZ+
1=1,...,n.

The supremum in (2.2.9) is attained at b = 1 if the undiscounted reward from
the arm associated with box ¢ decreases monotonically with each search. Unlike the
time-independent problem, decreasing rewards are not guaranteed for boxes in the
time-dependent problem. If the (m; + 2)"¢ search of box 4 is more appealing to the
searcher than the (m; + 1)** because of a superior detection probability and search
time combination, then the Gittins index for box ¢ in state m; may look ahead more
than one search. Otherwise, substituting b = 1 into gives

pigi(mi + DL (1 — g(v))

?

precisely the optimal index in ([1.2.3) derived by |Stone| (1975) under the condition

that (|1.2.3) is decreasing in m; (equivalent to monotonically-decreasing rewards from
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box 7). Therefore, the Gittins index in extends the result of [Stone (1975) to
the fully-general time-dependent search problem.

The Gittins index solution to the time-dependent problem is useful in the next
section, where a second search mode is introduced to the classic time-independent

problem.

2.3 Search Problems with a Choice of Search Mode

This section extends the classic time-independent search problem to allow the searcher
a choice of two search modes, fast or slow, when searching any box. A search with
the fast mode takes less time, but the slow mode has a greater chance of finding the
target, creating a trade-off between the accuracy and speed of the search.

Search problems with multiple search modes are of increasing importance due to
advanced technologies resulting in several ways to conduct searches. There may be
several choices of search agents, such as humans, animals, and robots. For exam-
ple, a search squad can use a dog (fast mode) or a metal detector (slow mode) to
locate a hidden bomb. Further, for any one such agent, for example a robot, there
may be multiple settings on the travel speed or the sensor mode. Notwithstanding
this increased relevance, such problems have received little attention in the academic
literature. The limited literature is reviewed in Section [2.3.1] before Section [2.3.2
introduces the two-mode search problem and discusses immediate connections to the

classic single-mode problem.

2.3.1 Literature Review

Search problems with adjustable or multiple search modes in the literature are few
and far between. The three papers described below model search in continuous time;
in other words, the searcher may switch the location of their search effort at any time.

In |Posner, (1963) and [Persinger| (1973)), the objective is to minimise the expected
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search time. |Posner| (1963) studies a search for a satellite in the sky using a radar
beam. The sky is discretised into ‘cells’; and a preliminary search highlights cells most
likely to contain the satellite to be prioritised for further investigation. During the
preliminary search, the searcher may examine multiple cells at once by adjusting the
width of the radar beam at the cost of less information gain per cell. A preliminary
search with the narrowest possible beam width is found to be best. In |[Persinger
(1973), the target is hidden in a subset of R™. The searcher has two sensors available,
but can only use one at each point in time. The searcher can switch between sensors
instantaneously, with the choice of sensor affecting the speed and detection capabilities
of the searcher. An optimal search plan is found for a specific example in R?. In|Nakai
(1987)), the objective is to maximise the probability of finding a target hidden in n
boxes before a known deadline d. However, at any time, the searcher can either
allocate search effort, or improve the detection rate in one or more of the boxes.
Nakai| (1987) shows it is optimal to improve detection rates up until some time d’ < d
and thereafter concentrate solely on allocating search effort.

More recently, Alpern and Lidbetter| (2015)) studies a search on a network with
a fast and a slow mode, with the latter’s perfect detection simplifying the analysis.
However, the search is two sided; in other words, the target is an intelligent hider who
actively avoids detection. Therefore, the game-theoretic methodology used does not
apply to one-sided search, so discussion of Alpern and Lidbetter| (2015) is deferred to
Part II of this thesis, which focuses on two-sided search.

Shechter et al. (2015)) and Kadane| (2015)) consider a search for a target in n boxes
with multiple search modes available. In Shechter et al.| (2015)), the modes are fast
and slow, but both modes have perfect detection and unit search time, being instead
differentiated by their probability of a ‘failure’. If a fast search finds the target, the
target may become damaged, resulting in a failure. When making a slow search,
regardless of whether the target is found or not, the searcher may be hit by enemy

fire, which also results in a failure. The searcher’s goal is to minimise the probability
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that the search ends in a failure. [Shechter et al. (2015)) finds an optimal policy begins
by searching boxes with a low probability of containing the target using the fast mode,
before searching those with a higher probability of containing the target using the slow
mode.

Kadane| (2015)) allows an arbitrary number of modes per box, each mode having
its own detection probability ¢ and search time ¢. Maximising the probability of
detection before a known deadline is studied for a single-box problem. To allow the
search to continue right up to the deadline, the last search of a box at a mode with
parameters ¢ and t is allowed to be curtailed at time st with detection probability
1 — (1 — g)® for any choice of s € (0, 1]. Kadane, (2015) shows it is optimal to always
search the box using the same mode, that with the largest value of —log(1 — ¢)/t.
The detection probability and search time for a mode are also allowed to depend
on its number of prior uses, as long as, for each mode, —log(1 — ¢)/t decreases in
the number of uses. Under this assumption, it is optimal to use the mode with the
largest —log(1 — q)/t given its current number of uses, continuing until the deadline
by curtailing the last search. Kadane| (2015)) formulates the use-dependent problem
with an arbitrary number of boxes as a convex optimisation problem.

Returning to a single box, |[Kadane| (2015) describes a branch-and-bound algorithm
to find a solution when the last search cannot be curtailed. As discussed in Section
1.2.2) when the deadline is not guaranteed to coincide with the end of a search of a
box, maximising the probability of detection before the deadline becomes significantly
harder, since it may be optimal to use an inferior mode to minimise time spent not
searching just before the deadline.

The metric —log(1 — ¢)/t, central to Kadane’s deadline results, also appears in
Chapter |3] of this thesis, where the objective is to minimise the expected search time
in Kadane’s use-independent model with two modes per box. Section explains
the difference between the roles of —log(1 — ¢)/t under each objective.

As mentioned in the motivation section of this thesis, Kadane (2015) also con-
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sidered minimising the expected search time, but we believe his conclusions to be
incorrect; more detail is provided in the next subsection, where the two-mode search

problem studied in Chapter [3]is introduced.

2.3.2 A Two-Mode Time-Independent Search Problem

We formulate the two-mode search problem as follows. As in the classic time-independent
problem, the target lies in box ¢ with probability p;, i = 1,...,n, >, p; = 1, and the
aim of the searcher is to minimise the expected search time by consecutively search-
ing boxes. Unlike the classic problem, each box has two search modes, fast and slow.
For every box, each mode has its own detection probability and search time; let the
slow (resp. fast) search time of box i be t; s (resp. t; ), and the slow (resp. fast)
detection probability of box i be ¢; s (resp. ¢; r). The slow mode has a larger detection
probability, but takes longer to complete a search, so ¢; s > ¢; 5 and t; 3 > t; ¢.

The search problem becomes more challenging if two search modes are available
for each box, since, in addition to deciding where to look next, the searcher needs
to choose a search mode. Therefore, the search may no longer be modelled as an
MAB but instead as a superprocess, an extension of an MAB discussed in Chapter
4 of |Gittins et al. (2011) with multiple ways (called actions) to play each arm. In
the superprocess representing the two-mode search problem, each arm represents a
box and has two actions, the fast search and the slow search. However, superprocess
theory is not required in this thesis; Chapter [3| studies the two-mode search problem
via a direct approach, exploiting only the MAB theory in Section as follows.

Suppose, for each box i, a sequence of modes A; = (a;1,a;2,...) is fixed such
that the kth search of box ¢ must be made using mode a;; remaining is a classic
time-dependent problem with ¢;(k) = ¢ a,, and t;(k) = tia,,, i =1,...,n, k € Z".
As shown in Sections and [2.2] the time-dependent problem may be formulated
as an MAB and solved using the Gittins index in . Therefore, the two-mode

problem is reduced to finding an optimal sequence of modes for each box, since, given
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optimal mode sequences, searches of individual boxes are optimally interlaced using
Gittins indices; more detail will be provided in Section [3.2]of Chapter [3] Determining
conditions for the optimal mode sequence of a box to contain just one search mode is
the main topic of Chapter [3]

In Gittins et al| (2011)), a candidate index policy (CI) for a superprocess is pro-
posed, based upon the Gittins index of the MAB recovered if the way to play each arm
(i.e., via which actions) is pre-determined. A sufficient condition for the optimality of
CI is derived in [Whittle| (1980) and shown also to be necessary in (Glazebrook] (1982).
In CI, every arm has an index for each of its actions, with CI choosing a maximal
index over all arm-action combinations.

For the two-mode search problem, CI reduces to the following policy. Suppose
m;, ¢ fast and m; s slow searches have previously been made of box ¢, ¢ = 1,...,n, so
the posterior probability p; that the target is in box i satisfies

= Pl )™ (1 g™
CE (= ) (L gy

For each box, calculate

Pilis and Pills (2.3.1)
Li s ti s

to create 2n indices across all boxes. CI chooses any box-mode combination with an

index maximal amongst all 2n.

Inspection of shows that the value of p, has no bearing on which is the
larger of the two indices. Therefore, CI may be implemented such that only one mode
is ever used to search box i, fast if g; /i > Gis/tis, slow if ¢; r/ti ¢ < ¢is/tis, and
either fast or slow if ¢; ¢/t; r = ¢;.s/t;s- Kadane (2015), which extends the two-mode
problem to an arbitrary number of modes per box, concludes that CI is optimal. If
true, for each box, all but one mode can be optimally discarded, and any multiple-
mode extension to the classic time-independent search problem is no harder than the

single-mode original. However, the analysis in Chapter [3| of this thesis, published in

Clarkson et al.| (2020)), disagrees with Kadane, (2015)), showing that an optimal search
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policy may require both modes of a box, with the optimal choice of mode depending
on the searcher’s current (posterior) beliefs about the target’s location.

Kadane’s proof that CI is optimal attempts to adapt to multiple modes the ar-
gument in Chapter III, Section 5 of Ross| (1983)), a simple proof of the optimality of
the Gittins index in the classic time-independent problem with a single search mode
per box. Ross’ proof shows that any search sequence beginning with a search of box ¢
immediately followed by a search of box j with p;q;/t; < p;q;/t; can be improved by
switching the order of boxes i and j. Therefore, any search sequence can be improved
until the box with maximal index is searched next.

However, in the multiple-mode problem, where an element of a search sequence
must specify both a box to search and a mode at which to search it, there may be
many suboptimal search sequences that cannot be improved by switching consecutive
elements. For example, if every optimal search sequence involves both the fast and
slow mode of box 7, then no search sequence containing only the fast mode for box ¢
can be improved by switching consecutive elements to obtain an optimal sequence. In
the following simple counter example, originally constructed by my supervisor Kyle

Lin, CI is not optimal, and Kadane’s proof shown to fail.

Example 2.3.1 Consider the following two-box problem. Box 1 contains the target
with probability p = 0.6 and has the usual search parameters ¢; = 0.4, ¢, = 0.64,
ty = 1 and t; = 1.64. Box 2 has only one search mode with search time t, = 2.5
and detection probability 1. Clearly any optimal search sequence looks in box 2 only
once, since after a failed search of box 2, the target is certain to be in box 1.

Write f (resp. s) for a fast (resp. slow) search of box 1, and 2 for a search of
box 2. The search sequence under Cl is (f,2, f, f,...), which uses only the fast mode
of box 1 since qy/t; > ¢5/ts, and, by the single-mode result, cannot be improved by
interchanging two consecutive searches. To calculate the expected search time under

(f,2,f,f,...), we condition on the target’s location. If the target is in box 1 (resp.
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box 2), then the expected search time is
Ly
tr+ (1 —qyp) t2+q— =4 (resp.t;+1ty =3.5).
!
Therefore, the expected search time is
0.6 x4+4+0.4x3.5=38.

Now we calculate the expected search time under the search sequence (s,2, f, f,...).
If the target is in box 1 (resp. box 2), the expected search time is
Ly
ts+ (1 —gqs) (ta+ =) =344 (resp.ts +ty =4.14),
ar

so the expected search time is
0.6 x 3.44+40.4 x 4.14 = 3.72.

Therefore, the sequence under CI, namely (f,2, f, f,...), is suboptimal despite no

improvement being possible via an interchange of consecutive elements.

Example 2.3.2 Consider the following two-box problem. Box 1 contains the target
with probability p = 0.6 and has the usual search parameters g5 = 0.4, ¢; = 0.64,
ty = 1 and t, = 1.64. Box 2 has only one search mode with search time ¢, = 3 and
detection probability 1. Clearly any optimal search sequence looks in box 2 only once,
since after a failed search of box 2, the target is certain to be in box 1.

Write f (resp. s) for a fast (resp. slow) search of box 1, and 2 for a search of
box 2. The search sequence under Cl is (f,2, f, f,...), which uses only the fast mode
of box 1 since qs/t; > ¢s/ts, and, by the single mode result, cannot be improved by
interchanging two consecutive searches. To calculate the expected search time under
(f,2,f, f,...), we condition on the target’s location. If the target is in box 1 (resp.

box 2), then the expected search time is

t
tr+(1—qp) (tg + q_f) =4.3 (resp.ty+ty=4).
f
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Therefore, the expected search time is
0.6 x43+04x4=4.18.

Now we calculate the expected search time under the search sequence (s,2, f, f,...).
If the target is in box 1 (resp. box 2), the expected search time is
t
to+ (1 —qs) (tg + —f> =3.62 (resp.ls +ty = 4.64),
ar

so the expected search time is
0.6 x 3.62 4 0.4 x 4.64 = 4.028.

Therefore, the sequence under CI, namely (f,2, f, f,...), is suboptimal despite no

improvement being possible via an interchange of consecutive elements.

Suppose there is only one box containing the target with probability 1. The

minimal expected search time p* satisfies

p* = minfty + 5 (1 — qp), ts + (1 — q5)],

from which it follows that

ty t
/* = min {—f, —} . (2.3.2)
qfr gs

Modelling the number of searches needed to find the object as a geometric distribution
with success probability ¢y (resp. ¢s) shows that always searching fast (resp. slow)
finds the target in expected time t;/q; (resp. t5/qs); it follows from that CI is
optimal.

However, when the box is one of many, it turns out that while it is indeed optimal
to always search the box slow if ¢,/t; > q¢/ty, it is not always optimal to search the
box fast if ¢s/ts < q/ts, so CI can be suboptimal. The CI policy (renamed as the
detection rate heuristic policy) is studied as a heuristic policy in Chapter (3] where

the focus is on the two-mode search problem.



Chapter 3

Fast or Slow: Search in Discrete

Locations with Two Search Modes

The content of this chapter is Clarkson et al.| (2020) with several changes detailed at
the end of this introduction. The aim of this chapter is to study the two-mode search
problem introduced in Section [2.3.2] Throughout this chapter, since the hidden target
is immobile and unintelligent, it will be referred to as the object.

Section formulates the two-mode search problem and, with appeal to Chapter
2], shows that Gittins indices reduce the two-mode problem to the determination of
optimal sequences of search modes for each box. In Section [3.2] we give a sufficient
condition for each mode to dominate the other mode in the same box, such that the
latter need never be used in an optimal mode sequence. This analysis both solves the
problem in some special cases, and yields insightful bounds on the optimal expected
search time in general. Further insight is derived in Section by the study of some
two-box problems in which one box has just one search mode with perfect detection.
Section presents a range of heuristic policies with suboptimality bounds for the
general two-mode problem based on the analyses of Sections and [3.3] Section
demonstrates the performance of these heuristics in an extensive numerical study.

The changes to (Clarkson et al.| (2020), aside from minor changes in wording and

40
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references to Chapters [1] and [2| of this thesis, are as follows. Section 1 (Introduction)
of |Clarkson et al. (2020) is omitted, since its material has already been covered in
Section of this thesis. Section 3.5 (Dominance among Multiple Search Modes)
and Section 5.4 (Heuristic Policies and Suboptimality Bounds for Multiple Search
Modes) of |Clarkson et al.| (2020) are deferred to Chapter |4] of this thesis. Aside from
the proofs in Appendices and of this thesis, all work in the online appendices
of |Clarkson et al.| (2020) has been returned to the main body.

Section [3.1|is a shortened version of Section 2 of (Clarkson et al.| (2020), since most
material has been covered in Sections and of this thesis. Figure is
added to support the introduction of the continuous-sweeping search in Section |3.2.1
The proofs of Lemma and Theorem [3.2.4] are adapted so the latter can specify
when the slow mode of a box is uniquely optimal. Example |3.2.6| and its supporting
Appendix [A] are added to demonstrate a case where the slow mode is not uniquely
optimal. With no change to its proof required, the statement of Theorem [3.2.8| is
strengthened, specifying when the fast mode of a box is uniquely optimal. A more
detailed explanation is provided regarding the lower bounds in Section [3.2.4 Fig-
ure is added to Section to provide a second example of the BT-heuristic
threshold in action. Section 3.4.4l is added to link the immediate and future benefit
introduced in Section to the theoretical results of Section[3.2] Aside from Propo-
sition [3.4.3] which is in Section 5.2 of [Clarkson et al| (2020), the material in Section
3.4.4]is all new. Section [3.5.1]is added to provide more details on the calculation of

expected search time.

3.1 Model and Preliminaries

We formulate the two-mode search problem as a semi-Markov decision process with

the following special features:

1. A single object is hidden in one of n discrete boxes labelled 1,...,n. The
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object is hidden in box ¢ with hiding probability p; > 0 for i = 1,...,n, with

> =1

2. At each decision epoch preceding the object being discovered, a single action is
taken, which specifies both the box to be searched next and the search mode to

be used.

3. A slow (resp. fast) search in box i takes search time t; s (vesp. t; r) to complete,
and finds the object—if it is hidden in box i—with detection probability g; s (resp.
¢i.f)- The search times satisfy 0 < ¢; 5 < t; 5 and the detection probabilities

0< di.f < @is < 1.

4. Decision epochs occur at time 0, and at the completion of each unsuccessful
search, until the object is found. Since the search times vary among boxes and
modes, the times between decision epochs are not constant, so the process is

semi-Markov.

5. Similarly to the search multi-armed bandits of Chapter[2] the state of the system
may be thought of as the number of unsuccessful slow searches and the number
of unsuccessful fast searches in each box to date. Given this history of searches,
the current (posterior) hiding probability for each box may be calculated from
its original hiding probability using Bayes’ theorem (see Remark for details
of the calculation). Therefore, we may also consider the state of the system to
be the current posterior across all boxes. Note that the former choice of state

leads to a discrete state space, while the latter induces a continuous state space.

6. The goal of the analysis is to determine a policy—a rule for choosing actions—to

minimise the expected time to find the object, or expected search time.

Standard theory indicates that there exists an optimal policy which is stationary,
nonrandomised and Markov (Puterman, 2014). In this context, Markov means the

optimal action depends only on the total number of times each action has been taken
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to date (sufficient to calculate the posterior hiding probabilities), and not the order in
which these actions have been interlaced. Nonrandomised means it is not necessary
for the searcher to randomise their action choice in any state to follow an optimal
policy. Stationarity means the optimal action is the same if a state is revisited; whilst
revisiting a state is not possible with the history-state formulation, it is possible with
the posterior-state formulation. Combining the three terms, the conclusion (with
either choice of state) is that prior to discovery the next optimal action will be a
deterministic function of the current state.

Note that the objective in [Puterman (2014) is to minimise the expected total
cost over an infinite horizon, whilst our objective is to minimise total cost until the
object is found. Yet, by creating an additional, no-cost-incurring state inhabited with
probability 1 any time after the object has been discovered, our model can be seen
to be equivalent to an infinite-horizon problem, so the theory of |Puterman (2014)
applies.

Following any optimal policy generates an optimal search sequence of actions to
be taken prior to the object’s discovery. For ¢ = 1,...,n, the condition p; > 0 implies
that any such optimal search sequence must search box i (via some search action)
infinitely often. Any search sequence which does not satisfy this requirement will
have a strictly positive probability of failing to find the object, and consequently an
expected search time which is infinite.

The single-mode version of the above is the classic time-independent search prob-
lem discussed in Chapters [I] and [2] of this thesis. As discussed in Chapter 2| by the
comment of Kelly in |Gittins| (1979)), when there is only one search mode for each box,
a search sequence that minimises the expected search time can be found by imple-
menting a Gittins index policy. The two-mode search problem is substantially more
difficult, as the searcher not only needs to decide where to search next, but also which
search mode to use. To begin our analysis, consider a simpler version of the two-mode

problem, where the searcher needs to decide only which location to search next be-
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cause the choice of search mode is predetermined. Where Z* = {1,2,...}, assume
that, for i = 1,...,n, a within-box subsequence A; = {a;x, k € Z*} is pre-specified,
where a;j is the mode at which the kth search of box 7 is to be made. How do we
then optimally interlace within-box subsequences A = {4;, i =1,...,n} to produce
a search sequence that minimises the expected search time?

To answer this question, recall that Chapter [2|also discussed how Kelly’s comment
shows Gittins indices solve the single-mode problem when the detection probabilities
and search times for each box depend upon its number of prior searches, a problem
coined the classic time-dependent search problem in Chapters [I] and 2 As noted in
Section the two-mode problem with fixed within-box subsequences A is a classic
time-dependent search problem, and hence is optimally solved using Gittins indices.

Consider a situation in which box ¢ has been searched some m; € N times already,
i=1,...,n, where N = {0,1,...}. The Gittins index for box i in the classic time-
dependent search problem is derived in Section of Chapter [2/ and given in ([2.2.9).
Applying to the two-mode problem with fixed A, where the kth search of box

¢ must use mode a; i, the Gittins index for box ¢, ¢ = 1,...,n, is given by
m; m;+b u—1
: 1 Qi (1= qia
Gi(mi, Ai) = pi H (1= Gia,) | sup Zucnis) qwm;n{igvmﬁl( ) - (3.1.1)
k=1 b€Z+ Zu:mﬁ-l tiyai,u

The following theorem summarises.

Theorem 3.1.1 Any search sequence which minimises the expected search time in
the two-mode search problem with fixed set of within-box subsequences A is charac-
terised as follows. At any point at which box 7 has been searched m; € N times, ¢ =
1,...,n, the next search will be of any box j satisfying j = argmax;_, _, Gi(m;, 4;),

and will use search mode a;; 1.

Remark 3.1.2 An equivalent set of indices (in the sense of determining the same

optimal search sequences) can be obtained by dividing all Gittins indices G;(m;, A4;),
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i=1,...,n,in (3.1.1) by the quantity

ij {]j(l - qiﬂj,k)}

j=1 k=1

to obtain new indices which take the form

m;+b u—1
! o u=m;+1 4%,ai .y v=m;+1\+ — Yiaiy
Gi(mi, A;) = p; | sup 2 s {11 (1= Giun)}

b€Z+ Zu:ml+1 izai,u

where p) is the object’s current (posterior) hiding probability for box i. The indices
Gl(m;, A;), i = 1,...,n, are not Gittins indices in the classical sense, not least since
they all change as each (unsuccessful) search is completed and not only the index of

the box just searched.

To summarise, any set of within-box subsequences A is optimally interlaced using
a known Gittins index policy. Therefore, the two-mode search problem is solved by
finding an optimal set of within-box subsequences (optimal under the assumption that

the searcher will use a Gittins index policy).

Suppose A,,..., A, — within box subsequences for boxes 2,...,n — are fixed.
In general, a best within-box subsequence for box 1 to interlace with A,,..., A,
depends on the parameters of boxes 2,...,n and the sequences A,,...,A,. In the

next subsection, we identify sufficient conditions for a box (say box 1) such that its
best within-box subsequence is the same (and consists of only one search mode) no
matter the parameters of the other boxes and their chosen within-box subsequences.
In other words, no matter the other boxes available and the modes we choose to search
them, as long as a Gittins index policy is used to choose between boxes, it is always

best to search box 1 using the same search mode.

3.2 Structural Properties of an Optimal Policy

We begin this section with a numerical example. Consider a pair of two-box problems.

Box 1 has two search modes which are the same in both problems. Box 2 has just
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one search mode which differs between the two problems. For each problem, Figure
shows an optimal search mode for each value of p € (0, 1), where p is the hiding
probability for box 1 (Section will give details of the solution method.) Note
that, in both problems, when it is optimal to search box 1, the optimal choice of mode
depends upon the value of p. Further, a comparison of the two problems shows that

the optimal choice of mode for box 1 is also dependent on the available search mode

of box 2.
Problem 1
o |
p=0 p=1
Problem 2
oo I
p=0 p=1

Figure 3.2.1: Optimal actions for p € (0,1) in a pair of two-box problems. Box 1 is
the same in both problems with parameters ¢; f = 0.4, ¢1, = 0.8, t1 5 =1, t1, = 2.2.
Box 2 has a single search mode with parameters ¢; and t5. In problem 1, ¢, = 0.2 and
to = 2, and in problem 2, g2 = 0.9 and t5 = 9. A thick blue/thin red line indicates a

slow/fast search in box 1; a black dotted line indicates a search in box 2.

Figure [3.2.1] shows that, in some search problems, the optimal choice of search
mode for a box can be very complicated, depending on the object’s current (posterior)
hiding probabilities and the search modes of the other boxes. It would be useful,
however, to identify boxes where one search mode is so much better than the other
that the latter need never be used in an optimal policy, regardless of the search

modes of the other boxes. Sections [3.2.1] and [3.2.2] present sufficient conditions for

such dominance to occur. Based on these findings, Section |3.2.3| introduces a Monte
Carlo method to estimate the optimal expected search time, and Section [3.2.4| presents

a lower bound on it.
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3.2.1 A Sufficient Condition for the Slow Mode to Dominate

We consider the two-mode search problem described in Section [3.1} For any search
mode with detection probability ¢ and search time ¢, we define the detection rate of
the search mode to be the ratio ¢/t. Our first result states that, if the fast mode and
the slow mode for some box have the same detection rate, then an optimal policy uses

the fast mode for that box at most once and, in fact, never needs to use it at all.

Theorem 3.2.1 In the two-mode search problem, if any box j satisfies

1. There exists an optimal search sequence in which box j is always searched slowly.
2. Any optimal search sequence searches box j fast at most once.

Without loss of generality, we prove Theorem for j =1, so assume that

The proof requires the introduction of a variant of the two-mode search problem and
two lemmas. To begin, suppose that we fix within-box subsequences A,, As, ..., A,—
which determine the modes of successive visits to boxes 2,3,... n—and consider
competing choices for the within-box subsequence for box 1. Since our focus will be
primarily on box 1, we shall, for the remainder of the Theorem [3.2.1] proof, omit the
identifying subscript 1 from the notations ¢; and ¢;, but it will assist clarity to retain
it for p;. For box 1, we write A for some arbitrary within-box subsequence and S
for the specific within-box subsequence consisting entirely of the slow mode. In ad-
dition, write T4 for the optimal expected search time under within-box subsequences
A, Ay As, ..., A,, and Ty for the optimal expected search time under within-box sub-
sequences S, Ay, Az, ..., A,. To prove Theorem we will show that Ty < T4, and

when A contains two or more fast modes, Ty < T}y.



Part 1. Chapter 3. Fast or Slow: Search in Discrete Locations with Two Search Modes 48

In order to proceed, we introduce a variant of the two-mode search problem, which
will facilitate a comparison between Ts and T4. In this variant, when searching in
box 1, instead of making fast and slow searches in the usual manner, the searcher
sweeps box 1 continuously as described below.

Imagine box 1 is represented by a line segment [0,ts]. If the object is hidden
in box 1, then its position is distributed uniformly over [0,¢,]. By sweeping box 1
continuously, the searcher moves on this line segment, starting from 0 toward t;
at constant speed 1, and finds the object with probability g, when she meets it,
independent of everything else. Upon reaching the end point ¢4, the searcher jumps
immediately back to 0 and moves toward ¢, again. In addition, at any point z € [0, t,),
the searcher may stop searching box 1 in order to search another box. When she
returns to box 1, her search is resumed from position z, the place where she abandoned
her last search of box 1. See Figure for a diagram representing this continuous-
sweeping search. We write Ty, for the optimal expected search time in this continuous-
sweeping variant of the two-mode search problem where the searcher uses the within-
box subsequences A; for boxes i = 2,...,n and sweeps continuously for box 1.

In the continuous-sweeping variant, suppose that the searcher makes a sweep of
box 1 for time t;, but, instead of starting the sweep at the place she abandoned
box 1 last, selects a random starting point on [0,ts). If it is hidden in box 1, the
searcher passes the object on this sweep with probability ¢;/ts, and hence finds it
with probability

tr

Z'QSZQf-

So, one way to interpret the standard two-mode search problem is that each time the
searcher visits box 1 to conduct a fast search, she sweeps a random subset of [0, t]
of length ¢;, independent of the subsets she has searched before, while to conduct a
slow search she does one complete sweep of the interval. In the continuous-sweeping
variant of the problem, the searcher has an advantage, since each time she visits box 1

she begins by sweeping the subset which has been searched least hitherto. Therefore,
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Searcher searches other boxes Object detected with probability ¢
Sweep 1 ’ \L Sweep 2 \L
! ' 01.' { '
Hject
0 L ts

Figure 3.2.2: A diagram showing the continuous-sweeping search. The object, which
is represented by a green circle, is hidden uniformly on [0, ¢,]. The first sweep of box
1 is from 0 to  and marked by a thin red line. Upon reaching x, the searcher leaves
box 1 to search other boxes. The second sweep of box 2 starts at x and is marked
by a thick blue line. The searcher meets the object on the second sweep, detecting
it with probability ¢,. During the second sweep, the searcher reaches the endpoint of

the interval t,, at which she jumps back to 0 and moves toward ¢, again.

Tw < Ta; the advantage of the sweeping searcher is quantified in the next lemma.

Lemma 3.2.2 If A contains two or more fast modes, then Ty — Ty > pits/2. Oth-

erwise, T4 — Ty > pits/2.

Proof. Consider two searchers. Searcher 1 uses within-box subsequence A for box 1,
while searcher 2 uses continuous sweeping. Both searchers use within-box subsequence
A; for box 1, for i = 2,...,n. Searchers 1 and 2 have optimal expected search times
equal to Ty and Ty, respectively.

An optimal policy for searcher 1 chooses between boxes using Gittins indices, as
detailed in Theorem [3.1.1] Write w4 for an arbitrary optimal policy for searcher
1. Below we describe a feasible policy for searcher 2 which mimics m4. Whenever
searcher 1 searches box 7 # 1 under 74, let searcher 2 search the same box using the
same mode. When searcher 1 searches box 1 using the slow (resp. fast) mode under

T4, let searcher 2 also search box 1, starting at the place she abandoned last time,
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moving toward ¢4 at constant speed 1 for ¢, (resp. ¢¢) time units unless she either finds
the object or reaches the endpoint ¢, before the allotted time expires. In the former
case, the search is over, whilst in the latter case, she jumps back to 0 and moves
toward t, again until the allotted time is exhausted or the object is found. Let the
expected search time for searcher 2 under this mimicking policy be Ty (m4) > Ty .

Suppose searcher 1 follows 74 and searcher 2 mimics 74. If the object is not
hidden in box 1, the conditional expected search time is clearly identical for both
searchers. Now suppose the object is hidden in box 1. First, we examine the expected
time spent in box 1 for each searcher.

To begin, consider searcher 1, who uses the arbitrary within-box subsequence A to
search box 1. By , if searcher 1 were free to choose any within-box subsequence
for box 1, the expected time in box 1 given the object is in box 1 is minimised to
p* = ty/qr = ts/qs. By an argument similar to the derivation of p* in (2.3.2), the

same expected time is maximised to i1 satisfying

fo=max[ty + (1 — qp), ts + (1 — g5)],

from which it follows that

Therefore, u* = p, and hence, given the object is there, the expected time in box 1
for searcher 1 is t;/q; = ts/qs regardless of the choice of A.

For searcher 2, let Y denote the number of times the searcher needs to meet the
object to find it. In other words, searcher 2 sweeps the whole of [0, ¢] a total of Y —1
times in vain, and finds the object on the Y*® sweep. Further, it is plain that Y
follows a geometric distribution with success probability ¢s. Each of the first ¥ — 1
failed complete sweeps takes time t, while the last successful pass takes an expected
time of ¢;/2, since the object’s position is uniformly distributed over [0,%]. Hence,

the expected time spent in box 1 by searcher 2 is

s ts s
tEBY - 1|+ - =—— —.
2 qs 2
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Second, we examine the expected time spent in boxes ¢ = 2, ..., n by each searcher
if the object is hidden in box 1. By comparing the detection probabilities of each
searcher on their £ visit to box 1, we show that this quantity for searcher 2 is no
greater than for searcher 1.

Suppose searcher 1 uses the fast mode on her k™" visit to box 1, so her relevant
detection probability is gr. Correspondingly, searcher 2 will sweep box 1 for ¢; time
units on her k' visit, but her detection probability will depend on the point x € [0, t,)

at which her (k — 1)** unsuccessful visit to box 1 ended. Consider two cases:

1. # € [0,ts — ty]. In this case the probability required is given by

P(object found in (x,x + ;] | object was not found in [0, z])

iy

7 s

I (3.2.1)
]‘_EQS d

2. x € (ts — ty,ts). In this case the probability required is given by

P(object found in (z,t,) or in [0,z + t; — t4] | object was not found in [0, z])

ts— x+tr—ts
() e () 0w

]__
t attp—ts 9
(e ()
]‘_£QS
ty xty 2
t_'qs_t_Q'qS
> b T g 3.2.2
1—Z.q, af (3.2.2)

ls

where the inequality in (3.2.2)) follows since

x(ts —ty) < ts(ts —ty), which implies t(z+ty—1t5) < xty.

Note that, whilst (3.2.2)) is a strict inequality, (3.2.1]) satisfies equality if and only if
x = 0. Therefore, if searcher 1 uses the fast mode of box 1 for a first time, since

searcher 2 will begin her corresponding sweep at x = 0, the detection probabilities of
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both searchers will equal ¢y. However, if searcher 1 uses the fast mode for box 1 for
a second time, searcher 2 will begin her corresponding sweep at x = t; > 0 with a
detection probability strictly greater than g¢;.

Now suppose that searcher 1 uses the slow mode on her k' visit to box 1, so
her relevant detection probability is ¢,. Correspondingly, searcher 2’s k" visit to box
1 takes t, time units, and will discover the object with probability q,, regardless of
where in [0, ¢5) this visit begins.

From these calculations, we conclude that the detection probability for searcher 2
on her k' visit to box 1 is no smaller than the corresponding quantity for searcher 1.
Consequently, if the object is in box 1, the number of searches of box 1 required to find
the object for searcher 2 is stochastically no larger than that for searcher 1. Therefore,
if the object is hidden in box 1, the expected time spent in boxes ¢ = 2,...,n is no
larger for searcher 2 than for searcher 1. Further, we have equality in this expected
search time between the two searchers if and only if searcher 1 makes no more than
one fast search of box 1.

We conclude from the above calculations that if A contains two or more fast modes,

tS ts ts plts
Ty —T; > — | — - = = .
A W(7TA) D1 (qs (qs 2)) 5

Otherwise, Ty — Tw(ma) = pits/2. Since Ty (mwa) > Ty, the proof is complete. m

then

The next lemma shows that the inequalities in Lemma become equalities

when box 1 is always searched using the slow mode.

Lemma 3.2.3 Ts — Ty = pits/2.

Proof. We again consider two searchers. Searcher 2 uses continuous sweeping for
box 1 (as in the proof of Lemma, while searcher 3 always searches box 1 slowly,
namely using the within-box subsequence S. Both searchers use within-box subse-
quences A; for boxes i = 2,...,n. Searchers 2 and 3 have optimal expected search

times equal to Ty and TY, respectively.
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An optimal policy for searcher 3 chooses which box to search next according to
a suitable collection of Gittins indices, as detailed in Theorem [3.1.1] To study an
optimal policy for searcher 2, divide the interval [0, ;] into m equal-length subintervals
1, = [(r = Dts/myrts/m), r =1,...,m — 1, and 1,, = [(m — 1)ts/m,ts]. Think of
these subintervals as m small boxes, and enforce the rule for searcher 2 that she
must search each small box in its entirety without interruption. Denote the optimal
expected search time for searcher 2 under this constraint by 77}, noting that 77} | Ty
as m — oo. Note also that, if searcher 2’s most recent search among the small boxes
was of 1, (i.e., of the box corresponding to that subinterval of [0,]), then her next
search of a small box must be of 1, if r =1,...m — 1, or 1; if r = m. For each

small box, the search time is t;/m and the detection probability is gs.

This means that searcher 2 has regular boxes 2,3,...,n alongside m identical
small boxes 1y, 1s,...,1,,, while searcher 3 has regular boxes 1,2,...,n. For both
searchers, p; is the object’s hiding probability for box ¢, i = 2,...,n. For searcher 2,

p1/m is the object’s hiding probability for each of the small boxes 1,,7 = 1,...,m,
while for searcher 3, p; is the object’s hiding probability for box 1. For searcher 3,
a suitable Gittins index policy determines an optimal search sequence. In fact, this
is also the case for searcher 2 notwithstanding the ordering constraints among the
small boxes, as there exists a Gittins index policy for searcher 2 which guarantees
that those constraints are satisfied. To see this, consider a situation in which the
object has not been discovered and all of the m small boxes have been visited k
times, having corresponding Gittins indices denoted by Gy, (k), r = 1,...,m, which
are plainly equal. Assume also that these m indices are maximal among those for the
n — 1+ m boxes available to searcher 2. A Gittins index policy is free to break ties in
any manner, so we suppose that box 1; is searched next by searcher 2. Following this
search, assumed unsuccessful, the small boxes now have indices Gy, (k + 1) < Gy, (k),
r=2,...,m, and so the small boxes 1,, r = 2,...,m, continue to have the maximal

index. We suppose that searcher 2’s Gittins index policy next chooses box 15 for
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searching and so on. Continuing in this fashion, we see that there is a Gittins index
policy for searcher 2 with the property that, in the absence of any discovery of the
object, once small box 1; is searched, all the remaining small boxes are then searched
in the correct order.

Now we stochastically couple the location of the object between the two searchers,
such that if the object is in box ¢ # 1 for searcher 3 then it is in the same box for
searcher 2, and if the object is in box 1 for searcher 3, then it is equally likely to
be in any of the m small boxes 1,, r = 1,...,m, for searcher 2. In addition, we
stochastically couple the search outcomes for the two searchers in boxes i = 2,...,n.

At the beginning of the search, it is easy to show that searcher 3’s Gittins index
for box 1 is p1¢s/ts which is equal to G1,.(0), r = 1,..., m, namely searcher 2’s Gittins
indices for her m small boxes 1,, r = 1,...,m. Hence, the two searchers may follow

the same optimal search sequence until one of two things happen:

1. The object is found before searcher 3 searches box 1. Because we stochastically
couple the object’s location and the search outcomes in boxes ¢ # 1, searcher 2

will find the object at the exact same time.

2. Searcher 3 searches box 1 before the object is found. When searcher 3 searches
box 1, the current Gittins index for box 1 must be maximal among boxes i =
1,...,n. Since searcher 2 follows the exact same search sequence, it will follow
that the m small boxes 1,., r = 1,...,m, will all be of maximal index for searcher
2 at this point and by the above discussion will now all be searched in order

before searcher 2 moves on.

When the object is in box 1, we stochastically couple the search outcomes in
box 1 for the two searchers, such that searcher 3 finds the object in box 1 if and
only if searcher 2 finds the object in a single sweep through the m small boxes 1,,
r=1,...,m. With probability ¢s; both searchers find the object on this visit of box

1. In this case, searcher 3’s search ends in a further ¢, time units, whilst the expected
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future search time for searcher 2 is

(2o r) - s (m+1).t5

m2 m

2

?

since searcher 2 does not need to search small boxes 1,.1,1,19,...,1,,, should the
object be found in 1,.

With probability 1 — g,, neither searcher finds the object on this visit of box 1,
and the search continues. At this moment, the current index for searcher 3’s box 1
and those for searcher 2’s m small boxes are identical. Therefore, some optimal policy
for each searcher will henceforth instruct them to follow the same search sequence,
until either finding the object in some box i, i = 2,...,n, or it again becomes optimal

for both searcher 3 to return to box 1 and searcher 2 to return to the boxes 1,,

r=1,...,m. The same argument then repeats.
Consequently, the time spent in boxes ¢ = 2, ..., n is identical for the two searchers,
and the time spent in box 1 (or boxes 1,, 7 = 1,...,m, for searcher 2) is identical for

the two searchers if the object is not hidden there. The only difference between Tg
and Tyy arises in the time spent in box 1 when the object is hidden in box 1. From

the above we conclude that

- m+1\ ts
oo (51 5)

Taking m — oo in the above yields Ts — Ty = pits/2, which completes the proof. m
From Lemmas|3.2.2] and |3.2.3, we can conclude that Ts < T4, with the inequality

becoming strict when A contains two or more fast modes. This completes the proof
of Theorem [3.2.11

It is easy to extend the result in Theorem to boxes where the detection rate
of slow is strictly greater than the detection rate of fast; for such boxes it is never

optimal to use the fast mode.

Theorem 3.2.4 In the two-mode search problem, if any box j satisfies

Qs qﬂ;f,
tis  tif
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then in any optimal search sequence box j is always searched slowly.

Proof. Without loss of generality set j = 1. Let

—~ -t
th = —qu 1s < tl,f: SO % = E]\l—’f (323)
qi,s tl,S tl,f

Suppose now we fix the within-box subsequences to be A, which contains at least
one fast mode, for box 1 and A; for boxes ¢+ = 2,3,...,n, and write T4 for the
corresponding optimal expected search time. Fix the same within-box subsequences
in a new two-mode search problem in which the fast search time of box 1 is reduced
from t; 5 to %\1’]‘, with all other parameters being unchanged. We write T 'y for the
corresponding optimal expected search time. Since tAl,f < t1,y and A contains at
least one fast mode, it is clear that T 'W<Tj4. In addition, by , it follows from
Theorem that 7. 5 < fA, where fg is the optimal expected search time using
within-box subsequences S, Ay, As, ..., A, for the problem with the new search time
%\Lf' However, under within-box subsequence S, box 1 is never searched fast, so
the reduction of ¢; ; to tAl ¢ is immaterial to the computation of T 5. It follows that

Ts = fg < fA<TA, completing the proof. m

We may combine information from Theorems [3.2.1] and [3.2.4] into one result to

identify boxes for which it is optimal to always use the slow mode.

Theorem 3.2.5 In the two-mode search problem, if any box j satisfies

2

s > B (3.2.4)
js  lig

~

then there exists an optimal search sequence in which box j is always searched slowly.

We conclude this subsection by discussing the uniqueness of the optimality of the
slow mode of a box under (3.2.4])). If the slow detection rate is strictly greater than the
fast detection rate for some box (without a loss of generality, box 1), then Theorem
tells us that S, which contains only slow modes of box 1, is the unique optimal

within-box subsequence for box 1. Now suppose the slow and fast detection rates
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are equal for box 1; then Theorem tells us that S is an optimal within-box
subsequence for box 1 but not that S is uniquely optimal. Whilst any within-box
subsequence for box 1 containing two or more fast modes is suboptimal, the following
example presents a search problem where it is optimal to make just one fast search

of such a box 1. Example [3.2.6| is constructed using observations of the proofs of

Lemmas [3.2.2] and [3.2.3} the construction of Example can be found in Appendix
[Al

Example 3.2.6 Consider a search problem with n = 2 boxes. Box 1 contains the
object with probability p, and has two search modes with respective search times ¢

and ¢, and detection probabilities ¢; and g, which satisfy
= == (3.2.5)

Box 2 has just one search mode with detection probability ¢» and search time t,.

Suppose that

(1—¢)=(1—¢q)™ forsome meZ", (3.2.6)
1—q,)k 1-—
and Pas( ; ) = ( tp)(p for some k € Z*, (3.2.7)
s 2
so we have
C]2755

= . 3.2.8
b Q2ts + QSt2<]~ - QS>k ( )

For a numerical example, let ¢y = 0.2,¢; = 0.4, = 1,t; = 2,q0 = 0.64,12 = 2.

Then (3.2.5) clearly holds, and (3.2.6) holds with m = 2. Further (3.2.7) holds with
k=1and p=_8/11.
Write f (resp. s) for a fast (resp. slow) mode of box 1, and consider the following

two within-box subsequences for box 1:
Ar=(f,s,s,...) and S =(s,s,s,...).

Write T4, (resp. Ts) for the optimal expected search time under within-box subse-

quence Ay (resp. S); we show that Ta, =Ts.
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First, we derive the unique optimal search sequence under Ay. By (3.2.7), we have

pgs(1 — qp)(1 —go)F! - (L=p)a> _ pas(1 —q7)(1 - gs)k

ts t2 ts

?

so, under within-box subsequence Ay, it is uniquely optimal for the searcher to make
one fast then k slow searches of box 1 before searching box 2. By , it is next
uniquely optimal for the searcher to search box 1 slowly m times before searching box
2 again and then repeat this cycle indefinitely. To summarise, the unique optimal
search sequence 74, under Ay satisfies

A, = (f,8,...,8,2,5,...,82,5...,82,...),

——

k m m
where 2 represents a search of box 2.

Now we derive an optimal search sequence wg under S. By , under within-
box subsequence 9, it is uniquely optimal for the searcher to begin with k slow searches
of box 1, after which the indices of boxes 1 and 2 are tied. Under any optimal policy,
the next two searches must be of box 1 and box 2 but with the order unconstrained.
Next, by , under S it is uniquely optimal for the searcher to make m — 1
consecutive slow searches of box 1 before the indices are again tied. The same cycle
of m + 1 searches then repeats indefinitely. Let mg be the optimal search sequence

that always searches box 1 first when there is a tie, so we have

Ts = (8,8,...,8,2,8...,82,8...,82,...).

k m m

Note that 74, and mg differ only in the mode of their first search. We now use
stochastic coupling to show that T, = T5s.

First, suppose that the object is hidden in box 2, which occurs with probability

1 — p. Under both 74, and 7g, assuming no prior discovery, the object is found on

any search of box 2 with probability ¢». Therefore, if we stochastically couple the

outcomes of these searches of box 2 under both 74, and 7g, the object will be found

time ¢; — ¢y later under 75 than under 74, .
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Now suppose that the object is in box 1, which occurs with probability p. Under
T4,, the object is found with probability gy on the first search of box 1 and, assuming
no prior discovery, with probability ¢, on any subsequent search of box 1. Under 7g,
assuming no prior discovery, the object is found with probability ¢, on any search of
box 1. This allows us to stochastically couple the outcome of the first search in box

1 under both 74, and 7g in the following way:

1. With probability gy, under both w4, and g, the object is found on the first
search of box 1. In this circumstance, the object will be found time ¢ —t; later

under 7g than under m4,.

2. With probability 1— g, under neither 74, nor g is the object found on the first
search of box 1. Suppose we further stochastically couple the outcomes of all
subsequent searches of box 1 under m4, and mg; then the object will be found

time ¢, — ¢y later under 75 than under 74, .

3. With probability ¢; — ¢y, on the first search of box 1, the object is found under

ms but overlooked under 74,. Then the object is found in time ¢, under g,

and, using (3.2.6)), in expected time t; + t,/qs + t2(1 — ¢5)¥ /g2 under A,

From the above calculations, Ts — T}, is given by

Ts—=Ta; = (1 =p)(ts — ty)

o |l + (L= a)) (b — ) + (g — ) (ts -l #)}

QQts + QSt2<1 - QS)k
dsq2
Substituting in p from (3.2.8)), it follows from (3.2.5)) that Ts — T4, = 0.

Note that, as an alternative to the stochastic coupling argument above, it is not

=t —ty +p(qr — qs)

difficult to calculate Ts and T4, directly by conditioning on the location of the object.
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3.2.2 A Sufficient Condition for the Fast Mode to Dominate

This subsection gives a sufficient condition for a box such that any optimal policy

never uses the slow mode for that box. We first need a lemma.

Lemma 3.2.7 In the two-mode search problem, if any box j satisfies

Qj_,f > qj,s’
tif s

then a slow search of box j followed immediately by a fast search of the same box j

is suboptimal.

The proof of Lemma relies on a simple argument featuring a pairwise inter-

change of consecutive fast and slow searches of box j, and is therefore omitted.

Theorem 3.2.8 In the two-mode search problem, if any box j satisfies

G (1= dis) o s

byt tjs

then in any optimal search sequence box j is always searched fast.

Proof. Without a loss of generality, set j = 1. Fix the within-box subsequence
for box ¢ to take an optimal value Af, for i = 2,...,n. We first suppose that the
within-box subsequence for box 1, namely A; = {aix, k € Z*}, contains some finite,
strictly positive number of slow modes. Thus, for some v € Z* we have A; € 3(v),
the set of within-box subsequences for box 1 with precisely v slow modes. Write r
for the position of the last occurrence of the slow mode within A;. In the absence of
discovery of the object, consider the point in the application of some optimal search
sequence at which box 1 is to be searched for the 7*" time. At this point box 1 has
Gittins index G4(r — 1, Ay), which is maximal among all boxes. Since the last slow
mode within A; occurs at position 7, it follows from that G1(r —1, Ay) is given
by

r—1
Qs Qs Tl —aqis
Gl(r_l,Al):pl{H(l_(h,al,m)} {max (#7 Ls tlli(tlf 1 ),G>},

m=1
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where

G = sup qi,s + QLf(l - qu) + Q1’f(1 — q1,s) . 2221(1 _ qu)u
=1 tl,s + (l + ]->t1,f '

Note that we clearly have

q1.r(1 —q1s) - Gl —qs)(1—q )"
t17f tl,f

for any u € Z*. Combining the preceding with (3.2.9)), it follows that

D1 {H(l — ql,al,m)} <M) > Gi(r—1,A).

m=1 Lf

In addition, note that we have

r—1 !
1 _ u
G1(7"7 Al) =D {H (1 — qlm’m)} (1 _ (]1,5) sup Zuzo qu( Q1,f)

m=1 >0 (l + 1)t17f
r—1
Q1,f(1 - qu)
=D {H (]- - QLaLm)} (T 9
m=1 ’

from which it follows that G;(r, A1) > G1(r — 1, Ay).

Consequently, there exists a search sequence G{ Ay; AZ,i # 1}, optimal for the fixed
within-box subsequences, at which the 7" search of box 1 (which is slow) is followed
immediately by the (r+1)* search of box 1 (which is fast). According to Lemma[3.2.7],
however, G{Ay; AZ,i # 1} would be strictly improved by reversing the order of these
two searches. Denote this new search sequence by G om+ILA - A* i # 1}. Next
write AYHTH) for the within-box subsequence for box 1 obtained by interchanging
the r'" and (r+1)* modes within A;. According to Theorem , the search sequence
GUror+ DL Ar: A7 i # 1} is no better than the search sequence G{AV ™™ A% i £ 1},

Y“"’H) is a member of ¥(v) in which the last

where the within-box subsequence A

slow mode occurs at position r + 1.
The foregoing argument that the search sequence G{A;; Af,i # 1} is strictly worse

than G{AYHTH); A% i # 1} can be repeated to show that the latter is strictly worse

than G{A """ A7 i # 1}, where by A" we mean the within-box subsequence

for box 1 obtained by interchanging the r*® mode (slow) and (r + 2)" mode (fast)
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within A;. This argument repeats to show that G{AYHTM);A;*,@' # 1} is strictly

worse than G{AYHTMH);A;*,@' # 1}, k € N. Now write AY:S_”C) for the within-
box subsequence for box 1 obtained from A; by replacing the slow mode at the r*®
position with a fast mode. If we write E[r(m)] for the expected search time under

search sequence m, we then have

lim B[r(G{AT""™; Ar i £ 1})] = Elr(G{AT* 7, Ar i £ 1)),

k—o00

from which we can further deduce by the foregoing argument that
Elr(G{AT 7 A7 i # 1)) < Elr(G{A; A7, i # 1))

We conclude that the within-box subsequence A; € X(v) is dominated by
A7) ¢ $(y — 1) in the strong sense above. We can repeat this argument a
further v — 1 times to infer that A; € ¥(v) is dominated in the same strong sense by
F € %(0), which consists entirely of the fast mode of box 1.

It is clear that any within-box subsequence—including those having infinitely many
slow modes—can be arbitrarily well approximated by a within-box subsequence in
Y(v) for some v € Z*. Hence, for any € > 0, there exists some v € Z* and A; € X(v)
such that

Elr(G{A; AL i # 1)) =i B[r(G{A; A7, i # 1})] < e,

where the infimum is over all within-box subsequences for box 1. Because A; is

dominated by F', we have that
E[r(G{F;A;,i #1})] — i%fE[T(G {A; A i £ 1})] < e
Finally, since € > 0 is arbitrary, it follows that
Elr(G{F; A}, i #1})] = inf B[r(G{A; A7, 0 # 1})],

which concludes the proof. m
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3.2.3 A Monte Carlo Method to Estimate the Optimal Ex-

pected Search Time

In the two-mode search problem, if each box meets either the condition in Theorem
or in Theorem [3.2.8] then the problem reduces to the single-mode search problem
solved in the literature discussed in Chapter [I} otherwise, an optimal policy remains
unknown. One way to estimate the optimal expected search time is to discretise the
state space (considered as the space of posterior hiding probabilities), and use standard
algorithms for the solution of Markov decision processes, such as value iteration (see
Section 6.3 of [Puterman| (2014)). While this approach produces satisfactory results
for n = 2 (being used to solve the two-box problem shown in Figure , it becomes
computationally intractable for n > 3.

In this subsection, we present a method to estimate the optimal expected search

time based on Monte Carlo simulation. To begin, we classify each box into one of three
types according to Theorems and [3.2.8l If a box’s search times and detection
probabilities satisfy , we say it is a type-S box; if they satisfy , we say it
is a type-F box; otherwise, we say it is a type-H box. For a two-mode search problem
with n boxes labelled 1,2,...,n, let S denote the set of type-S boxes, F the set of
type-F boxes, and ‘H the set of type-H boxes.

Recall from Theorem that, if we fix the within-box subsequence A; for box

7, 1 = 1,...,n, then Gittins indices determine optimal ways to interlace these sub-

sequences to produce a search sequence. According to Theorems [3.2.5 and [3.2.8] no

matter the modes used to search boxes in H, as long as Gittins indices are used to
choose between boxes, then it is optimal to use only the slow mode of boxes in §, and
only the fast mode of boxes in F. For boxes in H, how to choose an optimal mode
is unknown; the letter ‘H’ represents the heuristic approach we shall take to choose
modes at which to search such boxes.

Calculation of Gittins indices for boxes in S and F is straightforward since, if only
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one search mode is used, the supremum in (3.1.1)) is always obtained at b = 1. For
boxes in H, given any subsequence, the index calculation is just as easy, as seen in

the next lemma.

Lemma 3.2.9 If ¢ € #, then for any within-box subsequence A; = {a;x, k € Z"}

and any m € N we have

G( 1_Qza1k qzaszrl'
k=1 tZ yAi,m+1
In other words, the supremum in (3.1.1)) is always obtained at b = 1.

Proof. Since the lemma concerns a single box in ‘H, we omit the subscript 7 in the
proof to simplify notation. With its within-box subsequence fixed at an arbitrary
A=A{a,: keZt}, gives the equation for the Gittins index of the box after
some m € N searches of the box have been made. Consider the supremum in ,

namely

+b
- S o T (1= €a,) }
bez+ S i ta

To prove that (3.2.10)) is attained at b = 1, note that increasing b from 1 adds

Z Qau{ 1:[ (1_Qav)}

(3.2.10)

u=m-+2 v=m++1
to the numerator in (3.2.10)), and Zuernl; +2ta, to its denominator. To complete the
proof, for each u = m + 2,m + 3, ..., it is sufficient to prove the inequality

u—1
Qau Hv:m+l(1 - Qav) < Qam+1
ta, tay,.1

Am+1

where the right-hand term is the value of (3.2.10) with b = 1. Consider two cases.

1. apmy1 = f. Regardless of a,, we have

u—1
Qoo [Tomrmii(1 — da,) _ o U
tau tau - tf

where the last inequality follows since the box is not in S.
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2. apmyq = s. If a, = s, then we have

u—1
qau Hv:m+1(1 - qau) < Qau qs
ta, la,  ts

If a, = f, then we have

u—1
da, Hu:m+1(1 ~ Ga,) < Ga, (1 — Qam+1) _ Qf(l —qs) < 9s
ta, - ta, iy ts

where the last inequality follows since the box is not in F. m

If we are lucky and guess the right subsequence for each box in H, then we recover
an optimal search sequence. This observation motivates a method to estimate the

optimal expected search time as follows.

1. Fix the known optimal subsequence for each box in & and for each box in F.
2. Generate a random subsequence for each box in H.

3. Use Theorem to interlace all subsequences optimally, and compute the

corresponding expected search time.

4. For every subsequence obtained in step 2, replace each element with the other
available search mode to obtain an opposite subsequence for each box in H. For

example, (f,s, f,...) becomes (s, f,s,...). Repeat step 3.

5. Repeat steps 24 a large number of times, and return the minimal expected

search time.

How to practically implement the above method will be discussed in Section [3.5.1]
Since our goal is to estimate the optimal expected search time, it would be a
wasted effort if the within-box subsequences used in one simulation run were identical
to those in a previous run. For a fixed number of runs, we are more likely to obtain
near-optimal subsequences if each run contains a distinct set of subsequences for

boxes in H. Therefore, in step 4, we construct subsequences opposite to those in the
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previous run to improve the diversity of our simulation runs. For example, to obtain
an estimate based on 1000 runs, we generate 500 independent sets of subsequences,

and use both these and the corresponding 500 sets of opposite subsequences.

3.2.4 Lower Bounds on the Optimal Expected Search Time

Write V* for the optimal expected search time. If there are no boxes in H, then V*
can be readily computed. Otherwise, to compute a lower bound on V*, consider box
1 € H. By definition, we have
) 11— 2,8 1,8 7
Gisf(1 = dis) _ Gis _ Gis
li,y lis iy

Suppose that, for each + € ‘H, we decrease the slow search time to

~ i 1 i.s
B, = lls (3.2.11)

qi,f

and write V"’ for the optimal expected search time for this modified search problem.
It is clear that V' < V* since in this modified version, for each box, the search time
of each search mode is less than or equal to its counterpart in the original problem.
In addition, in this modified problem, each box ¢ € H is type-S, as the sufficient
condition (3.2.4) in Theorem is now met. Thus, all boxes in the modification
are either type-F or type-S, so an optimal policy is known, and V'’ can be readily
computed.

Decreasing the slow search time as in for all boxes in H is not the only
way to modify the search problem so that an optimal policy is known. For each box

1 € H, we have up to three additional options:

1. If it does not exceed 1, we may increase the slow detection probability to

Gio = Qi fti s

th > qi,s7

so box ¢ becomes type-S as the sufficient condition (3.2.4) in Theorem is

now met.
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2. Decrease the fast search time to

-~ iptis(l— Gis

£, = Gortisl=6is) (3.2.12)
Gi,s

so box i becomes type-F as the sufficient condition (3.2.9)) in Theorem is

now met.

3. Increase the fast detection probability to

~ . Qi,sti,f )
Qi =M | ————,Gis | > i,
ot (tz,s(l _Qi,s> h ol
so either box i becomes type-F as the sufficient condition ([3.2.9) in Theorem

is now met, or its fast mode dominates by virtue of having the same

detection probability as its slow mode.

However, if both modes (qi7s,t:7s) and (q; s,t;s) are available, since Qi,s/%\i,s = Qis/tis,
it follows from Theorem that it is optimal to use (g s, t;s). Therefore, a tighter
lower bound on V* is obtained by decreasing the slow search time of box ¢ than by
increasing its slow detection probability. A similar argument shows that, if g; r # ¢; s,
the same holds for the fast mode, namely, a tighter bound is obtained decreasing the
fast search time of box 7 than by increasing its fast detection probability. If g; r = ¢; s,
then it is optimal to use (g f,t; f) over (qivs,ﬁs) as t; 5 < avs, so a tighter bound
is obtained by decreasing the slow search time of box ¢ than by increasing its fast
detection probability.

To summarise, one may solely concentrate on lower bounds obtained by decreasing
the slow search time for some boxes in ‘H according to and decreasing the
fast search time for the other boxes in ‘H according to . There are 2% lower
bounds of this kind, and one can choose the largest of these to obtain the tightest

such lower bound.
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3.3 A Special Case with Two Boxes

This section presents an optimal policy for a particular search problem with two boxes,
providing insight into the general two-mode problem. Box 1 has the usual two search
modes with respective search times t; and ¢, and detection probabilities ¢ and g;.

We will assume that neither the condition in Theorem B.2.5] nor the condition in
Theorem applies, so neither search mode dominates and so box 1 is type-H. Box
2 has only one search mode, with search time ¢, and detection probability g, = 1.
Optimal policies for this seemingly simple search problem demonstrate the complexity
of optimal policies in general, and provide insight into the design of effective heuristic
policies for the general two-mode problem with n boxes in Section [3.4]

With only 2 boxes, the state of the search can be delineated by a single number
p, which represents the object’s current hiding probability for box 1. Since ¢ = 1,
after searching box 2 for the first time, the searcher either finds the object, or learns
that the object is in box 1. In the latter case, since g/t > ¢s/ts, it is then optimal
to use the fast mode in box 1 repeatedly until finding the object, yielding a further
expected search time of t¢/qs.

Together with Lemma , we deduce that in any state p € (0,1), it is sufficient

to consider search sequences of the type

fof,o o fyses, o820 f f ..., (3.3.1)
—_—— ——

x y
where f and s represent the fast and the slow mode of box 1, respectively, and 2
represents the sole mode of box 2. In other words, any candidate for an optimal
search begins with x fast searches in box 1, followed by y slow searches in box 1, then
a search in box 2, which is then followed by an infinite sequence of fast searches in
box 1, where x,y € N. We now make further inference on an optimal policy via two

propositions.
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Proposition 3.3.1 Define
t
p = il
ta+ts/qy

An optimal action in state p is to search box 2, if and only if p < P;.

Proof. First, suppose that p < P;, which is equivalent to

1 Qf
1—p)— > p=.
( p)tz_ptf

In addition, as the condition in Theorem does not apply to box 1, it follows that

Invoking Lemma 3.2.9] we conclude that, regardless of the choice of within-box subse-
quence for box 1, the Gittins index of box 2 is greater than that of box 1. By Theorem
it is optimal to search box 2.

Second, suppose that p > P;, which is equivalent to

qs 1
TS 1—p=.
ptf ( p)t2

By computing the expected search time for the search sequence (f,2, f, f,...) and that
for (2, f, f, f,...), one can see that the former is smaller. Therefore, it is suboptimal
to search box 2. m

Now let V;(z,y) denote the expected search time under (3.3.1)) if the object is

hidden in box i, for « = 1,2 and z,y € N. Since ¢ = 1, we have
Vo(z,y) = aty + yts + to.

If the object is hidden in box 1, then we can compute that

x Y
Vilz,y) =Y (L—qp) lar- Git) + (L —qp)" > (1= q.) g - (aty + jts)
j=1 j=1
t
+ (1 =qr)"(1 = ¢5) (xtf +yts+ b+ q—f) :
f

Note that the above is the sum of three terms. The first concerns the chance of the

object being found on one of the first x searches of box 1, which are all fast. The



Part 1. Chapter 3. Fast or Slow: Search in Discrete Locations with Two Search Modes 70

second concerns the chance of the object being found on one of the next y searches of
box 1, which are all slow. The third concerns the chance of the object being found in
box 1 after box 2 has been searched.

After some algebraic work, we see that
t x x
Vi(z,y) = é + (1 =q)' A+ (1 =qr)" (1= ¢)"(t2— A),
where A =t;/q, —ty/qp > 0. In state p, the expected search time is therefore

V(z,y,p) = pVi(z,y) + (1 — p)Va(z,y). (3.3.2)
The next proposition uses (3.3.2) to provide further insight into an optimal policy.

Proposition 3.3.2 Define

t
ts/qs

The unique optimal action in state p is to search fast in box 1, if p > max(P;, P»).

Proof. Consider two cases. First, suppose P; > P», which is equivalent to t, < A.
So, for any fixed x € N and p € (0,1), V(x,y,p) in (3.3.2) is minimised by taking
y = 0. Together with Proposition [3.3.1] it follows that the only optimal action is to
search fast in box 1 if p > P;.

Second, consider the case P; < P, which is equivalent to t5 > A. Compute

V(Ly,p) =V(0,5,p) = (1 =)ty —pgs(A+ (1 = q)* (L2 — A)).
If the preceding is negative for some fixed y € N, or equivalently, if

Ly
> 5
P T A+ (=gt — A))

then the search sequence with y and x = 1 is better than the search sequence with y

and x = 0. Since the right-hand side of the preceding is increasing in vy, if

. ty ty ty/as
> lim = = = D,
D e A+ (- (t—A))  t+gA  tjg
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then for all y € N, the search sequence with y and x = 1 is better than that with y and
x = 0. In other words, if p > P,, then each search sequence that begins with the slow
mode of box 1 is inferior to a search sequence that begins with the fast mode of box 1.
Therefore, it is suboptimal to search box 1 slowly. Together with Proposition [3.3.1
it follows that the only optimal action is to search box 1 fast forp > P,. m

In the case P, > P,, an optimal policy is completely characterised by Proposi-

tions [3.3.1] and [3.3.2] In the case P, < P, however, Propositions [3.3.1] and [3.3.2] only

specify an optimal action for p < P; and p > P5. To determine an optimal action
in state p € (P, P, it is sufficient to compare V(x,y,p) for all z,y € N that are

relevant. Define

_ p(l —qy)
o) = T )

which, assuming the posterior-state formulation, is the new state after a fast search
in box 1 does not find the object, if the current state is p. Suppose we have p = P,

then after k£ consecutive, unsuccessful fast searches in box 1, the state becomes

A (P) =hoho---oh(P).
k

Compute
K =min{k: "M (P) < P},

In other words, if p = P,, then after &’ consecutive, unsuccessful fast searches in box 1,
it is optimal to next search box 2. It then follows that, for p € (Py, P,], it is sufficient
to consider search sequences in for which x +y < K/, since after k' consecutive,
unsuccessful searches in box 1—whether fast or slow—the resulting state will be less
than or equal to P;, where it is optimal to next search box 2. An optimal action in
state p is then the first element in the search sequence that yields a smallest value of

V(z,y,p) among those with x +y < k.
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3.4 Heuristic Policies

We now return to considering a general two-mode search problem with n boxes labelled
1,2,...,n. Recall that we can partition {1,2,...,n} into three subsets S, F and H

using Theorems [3.2.5] and [3.2.8] While Theorem [3.2.5] proves that the slow mode is

optimally designated for boxes in & and Theorem the same for the fast mode for
boxes in F, it is not at all clear which search mode to use when searching a box in H.
We propose two types of heuristic policies for the two-mode problem in Sections
and and derive corresponding suboptimality bounds in Section In Section
links between the heuristic policies and the theoretical results of Section [3.2] are

explored.

3.4.1 Single-Mode Heuristic Policies

A single-mode heuristic policy designates one search mode for each box, then chooses
between boxes using Gittins indices, as detailed in Theorem Clearly we should
only consider policies that designate the slow mode for boxes in S and the fast mode
for boxes in F, but the best search mode to designate for boxes in H is unclear. If we
simply choose the search mode leading to the larger Gittins index, which by Lemma
m is equivalent to the search mode with the larger detection rate ¢/t, then the
designated search mode is fast for any box in H. This heuristic is referred to as the
detection rate (DR) heuristic. Note that DR is equivalent to the candidate index
policy CI for a superprocess discussed in Section of Chapter

Although DR is appealing for its simplicity, it is not always the single-mode heuris-
tic with the smallest expected search time. To find the best single-mode (BSM) heuris-
tic, one has to test 2/l different single-mode policies. The computational effort to
determine BSM grows exponentially in |#|. To overcome this computational burden,

we propose a heuristic based upon the following idea.

From Theorems [3.2.5 and [3.2.8] for each box i € H, there exists 6; € (0,1) that
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satisfies
M _ qi,s
tig  tis(1—qis)%
Solving the preceding yields
qi s/tz S 1
Gizlog( — >>< , 3.4.1
Gif/ti s log(1 — gis) ( )

which we interpret as box i’s relative resemblance to a type-F box compared to a

type-S box, since under some limit where §; — 0 (resp. 1), box i becomes type-S
(resp. type-F).

We propose a heuristic that chooses a parameter 6§ € [0, 1], then designates the
slow mode for box i € H if §; < #, and the fast mode if 8, > 0. Call this heuristic
the adjusted detection rate (ADR) heuristic with parameter §, and note that setting
6 = 0 retains DR, while setting # = 1 designates the slow mode for all boxes in H.

To determine the best parameter for ADR, first relabel the boxes so that 0 < 6; <
0p < - < Oy < 1. For j =1,...,|H| — 1, the application of any 0 € [0;,0;1)
in ADR results in a single-mode heuristic that designates the slow mode for boxes
1,2,..., 7, and the fast mode for boxes j+1,...,|H|. Applying 6 € [0,6;) designates
the fast mode for every box while applying 6 € [03, 1] designates the slow mode for
every box. Since there are only |H| + 1 different single-mode heuristics of this type,
the computational effort to find the best of them—which we call the best adjusted
detection rate (BADR) heuristic—grows linearly in |#].

Figure [3.4.1] shows, for each 6 € [0,1], the percentage of times that ADR with
parameter 6 coincides with BADR for the numerical experiments of Section [3.5] For
each choice of n and |H|, there is a clear bias toward smaller # values, showing that
it is usually better to designate the fast mode unless a type-H box closely resembles a
type-S box. This bias becomes less pronounced as n grows. Throughout all of these
numerical experiments, BADR could always be recovered by taking some 6 < 0.5
within ADR. This observation indicates that the computational effort involved to
find BADR can be reduced by always designating the fast mode for any box 7 € ‘H

with #; > 0.5, with a negligible impact on performance.
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100

Figure 3.4.1: The percentage of search problems generated in Section in which
ADR with parameter 6 coincides with BADR, for 6 € [0,1] and various values of n
and |H|.

3.4.2 A Threshold-Type Heuristic Policy

Recall the special search problem with 2 boxes studied in Section [3.3) where any
optimal policy uses the fast mode of box 1, a type-H box, if the probability that the
object is in that box exceeds a certain threshold. This observation makes intuitive
sense, since if it is very likely that the object is hidden in some type-H box, then an
optimal policy will likely search that box many times before moving on to any other
box. Because, in a type-H box, the fast mode has a larger detection rate than the
slow mode, it is intuitive that these many searches will optimally involve at least one
fast search. It then follows from Lemma that it is optimal to make the fast
searches first. This argument motivates a heuristic that, for each type-H box, fixes
a threshold, then chooses fast if the object’s current hiding probability for that box
exceeds this threshold.

To come up with a reasonable threshold for this heuristic, consider a type-H box
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with the usual detection probabilities gf,¢s and search times t;,¢;. The benefit of
searching this box using some mode comes from two sources: the immediate benefit
and the future benefit. The immediate benefit concerns the possibility of finding the
object on the search, while the future benefit looks at the information gained about
the object’s actual location if the search fails. We use detection rates to measure the
immediate benefit, namely g /t; for the fast mode and g,/t, for the slow mode. For a
type-H box, by definition we have gr/t; > g,/t;s, so we measure the advantage of the
fast mode over the slow mode in immediate benefit by

/
0o Ut

= L (3.4.2)

which is always positive.

To examine the future benefit, we first consider the probability that the object is
elsewhere after one or more failed searches. If we search fast for any > 0 time units,
then this probability is

l—p

f(z) = P 11 (3.4.3)

where p is the object’s hiding probability for the type-H box before these failed fast

searches. We measure the future benefit by the rate at which the probability in (3.4.3))
grows per unit time when the searches begin. Hence, our measure of future benefit

for the fast mode is
(1 —p)log(l —qy)
ty

and similarly for the slow mode, a term important in the single-box problem of [Kadane

o) ="">

?

(2015) discussed in Section [2.3.1] where multiple modes are available and the objective
is to maximise the probability of finding the object before a deadline.

While, in a type-H box, the immediate benefit is always larger for the fast mode,
the future benefit may go either way. Measure the advantage of the slow mode over
the fast mode in future benefit by

log(1 — gs)/ts B

F= log(1 —qy)/ts

1, (3.4.4)
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which does not depend on p. If 8 < 0 for a type-H box, then both the immediate
and future benefit are larger for the fast mode, and it is reasonable to designate fast
for that box. Otherwise, the immediate benefit is larger for the fast mode and the
future benefit is larger for the slow mode, so there are arguments for using both search
modes for the type-H box.

The strength of these respective arguments depends on p. The immediate benefit,
which concerns rates of detecting the object, only takes effect if the object is hidden
in the searched box. If the object is hidden elsewhere, these detection rates are of no
relevance to the searcher. The future benefit concerns the rate at which the searcher’s
belief that the object is not in the searched box grows, so a larger future benefit leads
to the searcher spending a larger proportion of their time searching elsewhere later in
the search. Therefore, the future benefit only takes effect if the object is not hidden
in the searched box. Consequently, for type-H boxes with 8 > 0, a natural choice
of threshold over which we designate the fast mode is the probability p satisfying

pa = (1 — p)B, which solves to

p
a+ 3

Properties of the threshold will be explored in Section [3.4.4, To demonstrate the

p= (3.4.5)

practical performance of the threshold for type-H boxes with 5 > 0, consider a search
problem with 2 boxes, where box 1 is in ‘H with ¢,y = 0.4, ¢1, = 0.64, t; y = 1, and
t1,s = 1.7. Box 2 has only one search mode, and we vary its detection probability ¢,
between 0.3 and 0.9, and its search time ¢, between 0.5 and 2.5. For fifteen choices of
(qo, t2), Figure m plots the threshold in against an optimal policy estimated
via value iteration, in which the state space [0, 1] is discretised into 10° equal-length
subintervals. It appears that, when it is optimal to search box 1 for p > p = 0.738, the
fast mode is mostly optimal, regardless of the values of ¢, and t,. Hence, our threshold
seems to fit well for a wide range of parameters ¢, and 5. Many further examples with
different choices of a type-H box 1 drew a similar conclusion; Figure [3.4.3| presents

one such example.
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Figure 3.4.2: Optimal actions for p € (0,1) in a two-box problem. Box 1 is type-H
with ¢1 f = 04, q1s = 0.64, t; y = 1 and ¢; ; = 1.7. Box 2 has one search mode with
¢2 = 0.3 (upper line), 0.6 (middle line), 0.9 (lower line), and ¢, € {0.5,1,1.5,2,2.5}.
A blue thick/red thin line indicates a slow/fast search in box 1; no line indicates a

search in box 2. The black dotted line is the threshold p in (3.4.5)).
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Figure 3.4.3: Optimal actions for p € (0,1) in a two-box problem. Box 1 is type-H
with ¢,y = 0.3, ¢15 = 0.5, 1y = 0.4 and ¢, ; = 0.73. Box 2 has one search mode with
¢2 = 0.3 (upper line), 0.6 (middle line), 0.9 (lower line), and ¢, € {0.5,1,1.5,2,2.5}.
A blue thick/red thin line indicates a slow/fast search in box 1; no line indicates a

search in box 2. The black dotted line is the threshold p in (3.4.5)).
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Also seen in Figure [3.4.2] when box 1 is optimally searched for p < p, an optimal
search mode appears to depend heavily on the parameters of box 2. It is more difficult
to incorporate such dependence into a heuristic. Therefore, we define a heuristic as
follows. For each box in H, if 8 < 0, we simply designate the fast mode for that box; if
B > 0, we designate the fast mode for p > p, and try both the policy which designates
the fast mode for p < p and that which designates the slow mode for p < p. For each
box, after choosing a search mode, we simply calculate the Gittins index according
to the chosen mode, then search a box with a maximal index. This method results in
up to 2/"l of these threshold-type policies. We call the one with the smallest expected

search time, found only by testing all 21, the best threshold (BT) heuristic.

3.4.3 Suboptimality Bounds for Heuristic Policies

If |H| = 0, then all of our heuristics are optimal. To bound the suboptimality of our
heuristics when |H| > 1, we first define a quantity to measure the distance of a type-H

box from being a type-S box and a type-F box, respectively. For i € H, let

Qi,s/ti,s _
(1 —qis)Gig/tiy

if /i
5,0 = Gitllir

1. 3.4.6
Qi,s/ti,s ( )

) 5i,f =

Note that 0, s coincides with the measure of the advantage of the fast mode over the
slow mode in immediate benefit for box ¢ in (3.4.2]).
We now present a proposition, which can be used to bound the suboptimality of

our four heuristics in terms of 6; ; and d; ¢ in (3.4.6]).

Proposition 3.4.1 Suppose |H| > 1 and write V* for the optimal expected search
time. Write II for some single-mode policy and Vi for its corresponding expected
search time. For all i € H, let §; = 0; 5 (vesp. 0; ¢) if II designates the slow (resp. fast)

mode for box i. We can bound the suboptimality of II by

Vi — V*
e S o
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Proof. Write Hg C H for the subset of H where the slow mode is designated under
policy I, and Hp = H \ Hs for that where the fast mode is designated. To prove the
result, we modify the search times for boxes in H. For ¢ € Hg, we reduce the slow

search time of box 7 to
~ i 1 i.s
B, = 2ffs g (3.4.7)
qlmf

For i € Hp, we reduce the fast search time of box ¢ to

Qi,fti,s (1 - qi,s)
Gi,s

%;f < ti’f. (348)

In this modified search problem, there are no type-H boxes and I is an optimal policy.
Denote the corresponding optimal expected search time in the modified problem by
Vi}. Tt is clear that V}} < V*, since in the modified problem, for each box, the search
time of each search mode is less than or equal to its counterpart in the original
problem.

In addition, note that modifying search times changes the set of Gittins indices
used by II to interlace searches of different boxes. So, the search sequence generated
by II in the modified problem is different to that in the original. Suppose we apply the
former search sequence to the original problem, and write Vi for the corresponding
expected search time. We then have Vi; < Vi, since both values are yielded from the
same set of within-box subsequences, but Vi1 optimally interlaces these subsequences.
Combining Vi < Vi with V{; < V*, we have that

Vo= V' _ Vi = V4
Ve TV

It is easily shown that the expected search time under any search sequence can be
considered as a linear function of the search times, with positive coefficients that de-
pend only on the prior distribution, the detection probabilities, and the corresponding
search sequence. However, when we compute Vi and V/}, all of these three things are
the same, so the coefficients of the search times are identical. Further, as Vi and V{]

are single-mode policies, only one coefficient per box, which we denote ¢; > 0 for box
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1,7 =1,...,n,is non-zero. Finally, for any box not in H, the search times themselves

are also the same. Consequently, we can conclude that

Vir = Vi Dieng Giltis — tis) + D ien, Ciltiy — tiy)

Vi D iens Citis + D ieny Citiy
- tis—t
< max |max | 22— | max M
i€EHg ti,s i€EHE t’L,f
= max ¢;,
icH

where the last line follows from (3.4.7)) and (3.4.8). =

Corollary 3.4.2 Suppose |H| > 1 and write V* for the optimal expected search
time. Write Vpr, Veabpr, Vesm and Vgt for the expected search time for the heuristics
DR, BADR, BSM, and BT, respectively. We can bound the suboptimality of these

heuristics as follows.

w < max o s (3.4.9)
w < min{rzrgix 52‘75,5%%_[)( dif}- (3.4.10)
w < Izrg_i( min {J; 5, 6; ¢} (3.4.11)
% < r{é%{xéi,f. (3.4.12)

Proof. All bounds are derived from Proposition . The bound in follows
because DR designates fast for boxes in 4. The bound in follows because
BADR compares several single-mode policies, including the one that designates fast
for all boxes in ‘H and the one that designates slow for all boxes in H. The bound in
follows because BSM compares all single-mode policies. Finally, the bound
for BT in follows because DR is one of the candidates for BT. m

Among those in Corollary [3.4.2] the bounds for Vpr and Vgt are the weakest,
while that for Vggy is the strongest. If we consider some limit in which, for all 7 € H,
either 9, s J 0 or 0; y | 0, then BSM approaches optimality. In addition, if J; ; | O for

all e € H or 6; y | 0 for all i € H, then BADR also approaches optimality. Finally, if
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0i ¢ 4 0 for all i € H, then all four heuristics approach optimality. Note that all of the
bounds in Corollary [3.4.2]do not depend on the object’s hiding probabilities at all; they
depend only on detection probabilities and search times. While these bounds provide
analytical insight, they do not necessarily predict heuristic performance well. In the
numerical experiments of Section [3.5], the heuristics consistently and substantially

outperform these bounds.

3.4.4 Links between Immediate/Future Benefit and Theoret-

ical Results

This subsection explores the links between the notions of immediate and future benefit

introduced in Section and the theoretical results of Sections [3.2.1] and [3.2.2]

leading to the discovery of a third source of benefit to searching a box. Further, we
explain the link between our use of future benefit and its role in the optimal solution
of the single-box, deadline-search model of |[Kadane| (2015)).

Firstly, extending the immediate and future benefit definitions to type-S and type-

F boxes provides an intuition for Theorems |3.2.5| and |3.2.8| which detailed when one

mode dominates for a given box.

Proposition 3.4.3 The following hold for any box.

1. The immediate and future benefit are larger for its slow mode if and only if the

box is type-S.
2. The immediate and future benefit are larger for its fast mode if the box is type-F.

Proof. Write g5 and ¢, for the usual detection probabilities and ¢; and t5 for the

usual search times of the box. We prove 1. and 2. separately as follows.

1. The forwards implication is easy to prove; if the immediate benefit is larger for
the slow mode of some box, then ¢,/ts > qs/ty, so the sufficient condition ({3.2.4))
in Theorem is satisfied and the box is type-S.
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To prove the backwards implication, consider a type-S box. By definition, the
sufficient condition (3.2.4) in Theorem [3.2.5]is satisfied, so the immediate benefit
is larger for the slow mode. To show that the future benefit is also larger for its
slow mode, let

l—qfd 1 d
A:/ a B:/ o=t —t;, D=t,.
1 1—qy

—(qs u Uu
Then we have

AtB_ —logll-g) 4 B_Zlosl-gp) (3.4.13)

C+D ts D te

Further, considering the area beneath the curve 1/u for u € [1 — ¢4, 1 — gy] and

u € [1 — gy, 1] shows that we have

A — 1 B 1
E>(q5 qf>_ and —<q—f'

(ts —tf) (1 —qy) D "ty (1—gqp)

However, as the box is type-S, we have ¢;/ts > q/tf, from which it follows that
(gs — q5)/(ts — ty) > qg/ty and hence from the above that A/C' > B/D. We

now infer that
A+ B - B
C+D D’

which, combined with (3.4.13)), completes the proof for a type-S box.

2. Consider a type-F box. By definition, the sufficient condition in Theorem
is satisfied, so the immediate benefit is larger for its fast mode. To show
the future benefit is also larger for its fast mode, we again consider the area
beneath the curve 1/u for u € [1 — ¢5,1 — gf] and u € [1 — gy, 1], which shows
that we have

(s —aqp) 1 B _

é< and — >
C -ty (- DR

Since the box is type-F, it follows that

(1 -6) & (e—a)
ty s (ts —ty)
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which leads to
C D C+D D

Combining the preceding with (3.4.13|) completes the proof for a type-F box. m

Recall a from , the advantage of the fast mode over the slow mode in
immediate benefit, and § from , the advantage of the slow mode over the fast
mode in future benefit. If we extend its definition to all box types, we may also
link the threshold p = /(a + ) used in the BT heuristic policy to the immediate
benefit, the future benefit, and the theoretical results of Sections [3.2.1] and [3.2.2]

These connections, summarised in Table follow from Proposition [3.4.3] and the
following lemma, which shows that, for any type of box, the sign of p depends entirely

on the sign of S.

Lemma 3.4.4 For any box, a4+ 8 > 0.

Proof. Consider a box with ¢; = t; and ¢, = t5. Any such box is clearly type-S, so
by Proposition [3.4.3] its slow mode has the larger future benefit; therefore, for any

0 <gqr <gs <1, we have
qs _ log(1—gs)
gy log(1 —qy)

Now consider a general box with search parameters g¢, gs,ty and t5. Let

S tS
i
qr/ty
1\’ qs/ts qf/tf
(a——) = dslos LU 9 >, (3.4.15)

a) apfty o as/ts
Yet, by (3.4.14]), we have

. log(l - qS)/tS Qf/tf N QS/ts + Qf/tf —9

log(l—q,)/t;  as/ts a/ty  as/ts
which, combined with (3.4.15)), completes the proof. m
By Table[3.4.1] a box is type-S if and only if p > 1, and any type-F box has p < 0.

(3.4.14)

Then

a+f

Recall that, in the BT heuristic, for p > p the fast mode is designated and for p < p
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Table 3.4.1: A summary of the links between the theoretical results of Sections|3.2.1

and [3.2.2] the notions of immediate and future benefit, and the threshold p in (3.4.5)).

Range of p | Larger Immediate Benefit | Larger Future Benefit Box Type
p<0 Fast Fast Type-H or Type-F

0<p<1 Fast Slow Type-H
p>1 Slow Slow Type-S

we try designating both modes. Therefore, if we were to use the threshold for type-S
and type-F boxes, they would both be designated their optimal search mode, showing
that the threshold choice is consistent with the theoretical results of Sections [3.2.1]
and 3.2.2

Further, Table shows that boxes where the immediate and future benefit are
both larger for the slow mode are exclusively type-S. However, the same cannot be said
for the fast mode and type-F; there do exist type-H boxes where the immediate and
future benefit are both larger for the fast mode. An obvious question is the following:
are all such type-H boxes optimally designated the fast mode? The following example

shows that the answer is no.

Example 3.4.5 Consider the two-box problem in Section|3.3 where box 1 has hiding
probability p and the usual search parameters gy, g5, t¢ and ¢, whilst box 2 has only
one search mode with search time ¢, and detection probability ¢, = 1.

Let qf = 0.3, ¢s = 04, t; = 1 and t; = 1.44. Then box 1 is type-H with
B = —0.005; therefore, the fast mode has the larger immediate and future benefit.
Suppose t, = 50. By Proposition [3.3.1} it is optimal to search box 2 first if and only
if p < 1/16. Further, it is easy to verify that for p € [1/16,2/23], after one search of

box 1 using either mode, it is optimal to search box 2. Therefore, by the analysis in
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Figure 3.4.4: For Example[3.4.5, the expected search time under (f,2, f, f,...) (a thin

red line, labelled ‘Fast’) and under (s,2, f, f,...) (a thick blue line, labelled ‘Slow’)
for p € [1/16,2/23]. On this range of p, the sequence with the smaller expected search

time of these two is the optimal search sequence.

Section [3.3] for p € [1/16,2/23], an optimal search sequence is either

(f.2,f, f,...) or (s,2,f f,...), (3.4.16)

where f (resp. s) represents a fast (resp. slow) search of box 1 and 2 represents a
search of box 2. The expected search time under either sequence in (3.4.16) may be
calculated using (3.3.2)); both expected search times are shown for p € [1/16,2/23] in
Figure(3.4.4] Figure|3.4.4]shows it is optimal to search box 1 first using the slow mode
for p close to 2/23 a 0.087, despite the slow mode having the smaller immediate and
future benefit. However, for p = 2/23, where using the slow mode has the biggest
advantage, the percentage increase in expected search time searching box 1 fast first

instead of slow is less than 0.05%.

A Third Source of Benefit Example [3.4.5| shows there must be a third source of

benefit to searching a box, or the slow mode of its box 1 would never be optimal. A few
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other examples, not limited to the special two-box problem in Section (3.3 were found
where it is optimal to use the slow mode of a box despite the fast mode having the
larger immediate and future benefit; all share the following three properties present
in Example 3.4.5] Firstly, for that box, 3 is very close to 0, so the advantage of the
fast mode over the slow mode in future benefit is very small. Secondly, the range of
hiding probabilities where the slow search of the box is optimal is very small. Thirdly,
where the slow mode of the box is optimal, the increase in expected search time from
the optimum if the slow mode is ignored is close to negligible. Therefore, the effect of
this third source of benefit on the expected search time is not very strong compared
to the immediate and future benefits.

A fourth observation across the aforementioned examples reveals the nature of the
third type of benefit, most efficiently explained for the two-box problem in Section
m where, recall, box 1 has hiding probability p and the usual search parameters ¢y,
gs, ty and t5, whilst box 2 has only one search mode with search time ¢, and detection
probability g, = 1.

Recall P, from Proposition by direct computation, it is easy to verify that
the search sequences (f,2, f, f,...) and (2, f, f, f,...) have the same expected search
time if and only if p = P;. By Proposition the latter sequence is optimal when
p = P; it follows that P; is the unique hiding probability at which it is both optimal

to search box 1 fast and search box 2. For m € Z™*, write

tr/ar
P, ;= : 3.4.17
T (=g + /gy ( )

in other words, after m fast searches of box 1, the posterior hiding probability for box
1is P;, and the searcher is indifferent between searching box 1 fast and searching box
2.

Throughout the aforementioned examples where it is optimal to use the slow mode
of box 1 despite a smaller immediate and future benefit, the ranges of p where the
slow mode is optimal centre on P, ; for some m € Z*, particularly for smaller m.

Example demonstrates this effect since Py ; = 2/23 ~ 0.087. This observation is
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explained by no preference of a box to search next being unattractive to the searcher,
a feature prominent in several other works in the search literature. For example, in
the two-box problems of [Flesch et al. (2009) and Kan| (1974) (discussed, respectively,
in Sections and of Chapter [1) where the searcher may stop or delay the
search, the stop or delay option is optimal when the searcher is approximately equally
attracted to both boxes. Further, consider the two-sided search game in n boxes, the
focus of Part II of this thesis, where the object is an intelligent hider who actively
tries to avoid detection by choosing the hiding probabilities. |Gittins and Roberts
(1979) show that equating Gittins indices across all n boxes is often optimal for the
hider, and very close to optimal otherwise. The latter example will be discussed much
further in Part II of this thesis; the key takeaway here is the following. If p = P, s
for some m € Z*, a sequence of m fast searches of box 1 leads to the dreaded p’ = P,
where p’ is the posterior hiding probability in box 1. Therefore, if the advantages in
future and immediate benefit of fast over slow are not too large, it may be optimal
for the searcher to search slow to avoid p’ = P;. The only reason such a situation can
occur is because searches are made in discrete time; in other words, the searcher can
only search box 1 fast (resp. slow) for time mt; (resp. mts) for some m € Z*.

We only see slow optimal with p = P, ; for small m € Z* for two reasons.

(A.) The earlier in the search a posterior p’ is attained, the bigger its effect on the
expected search time, since the probability that the object remains undetected

decreases as time passes.

(B.) The smaller m, the smaller P, , so the smaller the influence of the immediate
benefit if p = P, ;. The immediate benefit is not only larger for the fast mode,
but, since f < 0, by Lemma |3.4.4] we must have o > |f]; in other words, the
immediate benefit favours fast more than the future benefit does. Therefore,

the smaller m, the greater the appeal of the slow mode over the fast mode.

Notice from Table that the same effect never occurs with the modes reversed;
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in other words, there are no search problems where slow has the greater immediate
and future benefit, but it is optimal to use the fast mode to avoid p’ = P;. We offer
the following explanation. When fast has the advantage in both benefits, both
and |(B.) above strengthen the case for using slow when p = P, ; for small m € Z.
Define P, s as in but for the slow mode. When slow has the advantage in
both benefits, still applies and strengthens the case for using fast when p = P,
for small m € Z*. However, is adjusted to the following, which weakens the case

for fast for small m.

(B’.) The smaller m, the smaller P, ,, so the larger the influence of the future benefit
it p = P, s. The future benefit is not only larger for the slow mode, but, since
o < 0, by Lemma[3.4.4] we must have 8 > |al; in other words, the future benefit
favours slow more than the immediate benefit does. Therefore, the smaller m,

the lesser the appeal of the fast mode over the slow mode.

We believe that since and|(B’.)|are at cross purposes when slow has the advantage

in both benefits, it is never optimal to use the fast mode to avoid p’ = P;.

The Use of Future Benefit in Kadane (2015) Recall from Section the
following search problem of Kadane (2015). There is a single box, guaranteed to
contain the object, with an arbitrary number of search modes available. The objective
is to maximise the probability of finding the object before a known deadline d, and,
so the search may continue until time d, the last search of a box at a mode with
parameters ¢ and t is allowed to be curtailed at time st with detection probability
1 — (1 — g)® for any choice of s € (0, 1]. Kadane (2015) shows it is optimal to always
search the box using the same mode, that with the largest value of —log(1 — ¢q)/t,
which in Section [3.4.2] we defined as the future benefit of a search mode.

In our search problem with multiple boxes, using a mode with a larger future
benefit is beneficial since it provides more information about the object’s true location.

Yet, this cannot be the reason that future benefit determines an optimal mode in
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Kadane’s deadline problem, as there is only one box! The following demonstrates the
difference between Kadane’s and our use of the future benefit.

If the searcher uses the slow (resp. fast) mode up until the deadline d, they fail
to find the object with probability (1 — g,)¥* (resp. (1 — q;)¥*). Tt follows that
the searcher has a greater probability of having found the object by d searching slow
rather than fast if and only if

—dlog(1 — gs) - —dlog(1 — qf).
ts ty ’

in other words, slow is optimal in the deadline search if and only if it has the larger
future benefit - as deduced by Kadane.

When the objective is switched to minimising the expected search time, as shown
in the final paragraphs of Chapter [2| for a single-box problem, the immediate benefit
determines the optimal mode. By Table , if the threshold p from (3.4.5)) is
between 0 and 1, it is optimal to search the single box fast even when slow has the
larger future benefit. The reason for the change in optimal mode from the deadline
search is that searching fast gives the searcher a chance of finding the object sooner
due to its shorter search time, relevant to the searcher who minimises the expected
search time. On the other hand, the deadline searcher does not care how quickly the
object is found, as long as it is found before the deadline.

When we add other boxes to the minimising-expected-search-time problem, the
future benefit helps gain information about the object’s location. We can link this
information gain to the optimality of the future benefit in Kadane’s single-box deadline
search in the following way.

Suppose we search a box for a fixed amount of time using some mode. Kadane
shows that, when there is a single box, the larger the future benefit of the mode, the
greater the probability of finding the object by the end of the search. This means, in
our multiple-box problem, if we use a mode with a larger future benefit on our box,
the search is less likely to fail if the object is in our box. Therefore, if the search

does fail, the larger the future benefit, the stronger the evidence that the object is
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elsewhere, which is precisely how we derived the future benefit in Section [3.4.2]

3.5 Numerical Results

This section presents several numerical experiments. To generate search times and

detection probabilities for a box, we first draw
¢s ~U(0.2,09) t;~U(0.1,45) a~U(0.1,1) b~ U(0.1,1), (3.5.1)

and then set ¢y = ags and ts = t;/b. For a search problem with n boxes, we control
the number of boxes in H. If |H| = 0, then the theoretical results of Section
provide an optimal solution. As |H| increases, the extent to which this theory can be
applied decreases, so we want to see how our heuristics perform for different values of

Our sampling plan in satisfies several desirable properties. First, the mea-
sures of immediate benefit ¢, /ts and ¢/t are identically distributed and conditionally
independent given ¢s; and t¢. It can be shown that the probabilities that any drawn
box isin §, F, and H, are 0.5, 0.1727, and 0.3273, respectively. In addition, since the
advantage of the fast mode over the slow mode in immediate benefit, namely a from
(3-4.2), satisfies & = a/b— 1, it follows that a4+ 1 and (1 — ¢5)~* are independent and

both have an upper limit of 10. Hence, rearrangement of the condition of Theorem

13.2.8)in (3.2.9)) shows that any draws of ¢, and ¢; do not preclude a drawn box from

being any of the three box types.

3.5.1 Estimating an Expected Search Time

In this section, we describe a method for estimating the expected search time either in

step 3 of the Monte Carlo (MC) method described in Section [3.2.3] or of a candidate

from a heuristic policy (i.e., one of the 2/ policies evaluated by BT or BSM.)
Theoretically, any heuristic candidate or iteration of MC induces a set of n within-

box subsequences and, using Theorem [3.1.1} a search sequence & which optimally
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interlaces them using Gittins indices. Recall that, with fixed within-box subsequences,
the two-mode problem reduces to the classic time-dependent search problem discussed
in Chapters 1| and . Therefore, may be used to calculate the expected search
time, V' (£), under &.

However, in practice, we cannot generate a random subsequence of modes of infi-
nite length in step 2 of MC, and, for a BT candidate, the next mode in the within-box
subsequence of a box may depend on its current posterior probability. Even for a
single-mode candidate, where each within-box subsequence is known to be (f, f,...)
or (s,s,...), we still could not evaluate the infinite sum in exactly.

We can, however, obtain a lower bound on V' (§) by, for any L € Z™, calculating
the sum of the first L terms of , determining the next mode in each box’s
subsequence on the fly. To obtain an upper bound on V(&) let € be the search
sequence identical to & for the first L searches but, from the (L + 1)th search onwards,
repeatedly cycles through the boxes 1,...,n in that order. To specify the search
modes used by ¢ during these cycles, we split into three cases.

If ¢ is a single-mode candidate, let € cycle the boxes using the same mode for
box i as &, for i = 1,...,n. Therefore, ¢ and € use the same within-box subsequence
for each box. Since ¢ is a Gittins index policy, V(€) is an upper bound on V(£) by
Theorem , and, due to the cyclic, single-mode nature of & from its Lth search
onwards, we may calculate V(€) exactly using the infinite sum in ([2.1.4).

If ¢ is from the MC method, let £ cycle the boxes using only fast modes for boxes
in H and F, and only slow modes for boxes in S. Since the modes in the within-box
subsequences for boxes in ‘H used by ¢ from its Lth search onwards are yet to be
determined, we can assume that they are all fast. Therefore, £ and ¢ use the same
within-box subsequence for each box, and we again conclude that V (£) is a calculable
upper bound on V' (§).

Finally, if ¢ is a two-mode candidate for BT, let £ cycle the boxes using a mode

with detection probability ¢; y and search time ¢; ; for box i € H, and using the same
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mode as £ for boxes in § and F. Suppose we replace the within-box subsequences
of & with those of &, but still cycle the boxes. Then the expected search time will
decrease from V/(€) to some V, since the detection probability and search time of each
replacement mode is no worse than its predecessor. If we now, instead of cycling the
boxes, follow a Gittins index policy, by Theorem [3.1.1] the expected search time will
decrease again, this time from V to V(). Therefore, V(£) is again an upper bound
on V (), again calculated exactly using due to the cyclic, single-mode nature
of € from its Lth search onwards.

As L increases, the probability that the object remains hidden after the first L
searches (when ¢ and ¢ first differ) decreases. Therefore, the percentage increase from
the lower to the upper bound decreases as L increases. We choose L large enough so
that this increase is less than 0.001%, which ensures that our estimate of V' (§), which

we take to be its lower bound, is within 0.001% of the true value.

3.5.2 Estimating the Optimal Expected Search Time via Monte

Carlo Simulation

To assess the effectiveness of the Monte Carlo (MC) method proposed in Section
we compare its output with the optimal expected search time obtained via
value iteration for search problems with 2 boxes, where the latter is computationally
feasible.

With only 2 boxes, assuming the posterior-state formulation, the state of the search
can be delineated by p € [0, 1], namely the object’s current hiding probability for box
1. By dividing the continuous state space [0, 1] into 10° equal-length subintervals, we
formulate a semi-Markov decision process identical to that described in Section [3.1]
but with a finite number of states. At the start of the search, the state is whichever
of the 10° subintervals contains the initial hiding probability p. When a search is
made, we use the midpoint of this subinterval to calculate a posterior p, then take the

new state to be whichever of the 10° subintervals contains the posterior. We continue
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to use midpoints to make further posterior calculations. A value iteration algorithm
computes the optimal expected search time in each state, stopping when the values
in successive iterations are within 107 for all states.

In Section[3.4.4] it was shown that there do exist search problems where an optimal
policy involves the slow mode for a type-H box in which the future benefit is larger
for the fast mode. However, according to numerical results from this value iteration,
such problems are extremely rare, and in those rare cases, the slow mode is optimal
only for a very small subinterval of the state space. Furthermore, if we ignore the
slow mode altogether for such boxes, the increase in expected search time from the
optimum is close to negligible. For these reasons, we improve the efficiency of our
MC method by fixing the within-box subsequence for such boxes to consist of only
the fast mode.

To assess our MC method for search problems with 2 boxes, we first use (3.5.1]
and rejection sampling to generate the search times and detection probabilities of
these 2 boxes such that |H| = 1. We set p equal to 0.5 and run the MC method to
estimate the optimal expected search time, then do the same for p = 0.9. We repeat
the preceding 2000 times to collect data. Finally, we redo the whole procedure with
|#| = 2. The results of the MC method for various run lengths are reported in the left-
hand side of Table[3.5.1] as average percentages over the optimal values obtained from
value iteration (the ‘ensemble method’ in the right-hand side of Table will be
explained in Section [3.5.3). As seen in Table[3.5.1] for || = 2, with 10000 runs (5000
sets of independent subsequences and 5000 sets of opposite subsequences), the MC
method estimates the optimal value on average within 0.12%, and the improvement

with more runs is small.

3.5.3 Performance of Heuristics with n = 2

For search problems with n = 2 boxes, we can evaluate our heuristics against optimal

values obtained via value iteration. Recall that our four heuristics from Section [3.4] are
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Table 3.5.1: Performance of the MC and ensemble (to be explained in Section |3.5.3

methods for search problems with n = 2 boxes, reported as average percentage above

the optimum calculated via value iteration.

MC method Ensemble method

Number H| =1 H| =2 H|=1 |H| =2

ofruns | p=05 p=09 |p=05 p=09|p=05 p=09|p=05 p=09

10K 0.0464 0.0467 | 0.1198 0.1026 0.0002 | 0.0011 0.0011

0.0001 | 0.0009  0.0007

0

100K 0.0310  0.0300 | 0.0725 0.0627 0 0.0001 | 0.0009  0.0008
200K 0.0284  0.0267 | 0.0636  0.0562 0
0

0 0.0008  0.0007

400K 0.0254 0.0238 | 0.0568  0.0497

the detection rate (DR) heuristic, the best adjusted detection rate (BADR) heuristic,
the best single-mode (BSM) heuristic, and the best threshold (BT) heuristic.

To assess our four heuristics, we first fix |H| = 1 and use the same 2000 pairs
of boxes generated in Section [3.5.2] However, for each pair, instead of using only
p = 0.5 and p = 0.9, we take the midpoints of the 10° subintervals used in the value
iteration as our values of p. For each p, the expected search time of each heuristic
is computed using the methods of Section [3.5.1] and then expressed as a percentage
over the corresponding optimal value obtained via value iteration. We then repeat
the procedure for |H| = 2; Table displays the results.

As seen in Table[3.5.2] all four heuristics are close to optimal on average, although
their performance degrades for |H| = 2. The DR heuristic achieves within 0.001% of
optimality for 75% of the search problems with || = 2, which suggests that a large
proportion of boxes in ‘H are optimally designated the fast mode. Recall that, by
definition, the other three heuristics must perform at least as well as DR. As seen in
the last two rows of Table [3.5.2] in the problems where DR is suboptimal, the other

three heuristics show a remarkable improvement on DR, which can perform poorly.
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Table 3.5.2: Performance of heuristics for search problems with n = 2 boxes, reported

as percentage above the optimum calculated via value iteration.

|H| =1 (H| =2
Metric DR BADR BSM BT | DR BADR BSM BT
Mean 0.204 0.017 0.017 0.004 | 0.403 0.036 0.029 0.007
75th Percentile 0 0 0 0 0.001 0 0 0

95th Percentile | 1.11 ~ 0.006 0.006 0.002 | 2.73 0.134 0.096 0.011
99th Percentile | 5.23  0.545 0.545 0.108 | 7.05 1.00  0.839 0.196

Recall that BSM is the best performing among all 2/*I single-mode policies, while
BADR is the best performing among a subset of these of size |H| + 1. The two
heuristics are identical for |H| = 1, but by definition BSM is stronger for |H| > 2.
Yet, for n = |H| = 2, the difference in performance is very small, as in Table m
The BT heuristic is clearly the best performing heuristic, which, even when |H| = 2,
achieves within 0.02% of optimality in 95% of search problems, and within 0.2% of
optimality in 99% of problems.

Also seen in Table [3.5.2] for either value of ||, one or more of our heuristics
achieve optimality for more than 75% of the search problems in our numerical study.
For these search problems, it is impossible for the MC method of Section to
beat the best of these heuristics. In fact, in many search problems, although the MC
method gets very close to optimality, at least one of our four heuristics gets even closer.
By combining the MC method and our four heuristics, we obtain our best estimate
of the optimal value. The right-hand side of Table shows the performance of
this ensemble method to estimate the optimal value compared with value iteration
for search problems with 2 boxes. Since value iteration is computationally infeasible
for search problems with more than 2 boxes, we will use this ensemble method as our

benchmark to evaluate our heuristics for n > 2.
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3.5.4 Performance of Heuristics with n =4 and n =8

We next present numerical results for search problems with n = 4 and n = 8 boxes.
Since value iteration is computationally infeasible, we evaluate our heuristics against
estimated optimal values from the ensemble method discussed at the end of Sec-
tion m For n = 4, the ensemble estimate is based on 6 x 10° runs. Since the
average improvement in the ensemble estimate is only 0.00015% when the number of
runs increases from 3 x 10° to 6 x 10°, conducting additional runs beyond 6 x 10 is
not likely to improve the accuracy much further. For n = 8, the ensemble estimate is
based on 10° runs for the same reason.

For each n, we first use (3.5.1) and rejection sampling to generate search times
and detection probabilities for n boxes with |H| = n/2. To choose prior distributions
on the object’s location, we consider five different scenarios. Details can be found in
Table|3.5.3] in which the scenarios are ordered roughly according to the entropy of the
prior. For each prior, the expected search time for each heuristic is evaluated using
the methods of Section and expressed as a percentage over the optimal estimate
obtained using the ensemble method. To account for increasing variety in the search
problems as n grows, we repeat the preceding n x 1000 times to collect data. The
whole process is then repeated for |H| = n.

Table displays the results for n = 4. For each |H|, the best performing
heuristic across all five scenarios is BT, which, even with |H| = 4 and in its worst
performing scenario, is within 0.3% of optimality in 99% of search problems. The
performance of the second best heuristic BSM relative to that of BT depends on the
entropy of the prior. Imagine a search problem starting with p close to 1, so the
prior has a small entropy. Typically, an optimal search sequence will begin with a
few searches of box 1 before moving on to search any other box. After this initial
transient period, the posterior probability distribution on the object’s location will

stay in some envelope that centers at the probability distribution that makes each box
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Table 3.5.3: Five scenarios with different prior probability distributions on the object’s

location.

Scenario Prior for n =4 Prior for n = 8
Uniform (0.25,0.25,0.25,0.25) (0.125,...,0.125)
Two Dominate (0.36,0.36,0.14,0.14) | (0.23,0.23,0.09, . .., 0.09)
Evenly Spaced (0.4,0.3,0.2,0.1) (0.195,0.175,...,0.055)

One Dominates Weakly | (0.58,0.14,0.14,0.14) (0.37,0.09,...,0.09)
One Dominates Strongly (0.7,0.1,0.1,0.1) (0.51,0.07,...,0.07)

equally attractive to search next. Generally, the larger the entropy of the prior, the
more likely it is that the posterior stays in this envelope from the very beginning, so the
more likely it is that BT and BSM produce similar or even identical search sequences.
Consequently, the difference in performance between BT and BSM decreases as the
entropy of the prior increases. By similar reasoning, BSM and BT are closer to
optimal when the prior has a larger entropy, as a smaller proportion of the state
space is explored by the posterior.

Recall that DR designates fast for all type-H boxes. Its performance is much
inferior to that of the other three heuristics, becoming worse as the entropy of the
prior increases. The latter effect occurs because, as discussed in Section the
importance of the immediate benefit, which is larger for the fast mode for all type-H
boxes, increases with the size of the hiding probability, and the lower-entropy priors
in Table give one box a high chance of containing the object.

We next increase the number of boxes to n = 8. As seen in Table [3.5.5 the BT
heuristic again performs the best across all scenarios. Patterns on relative performance
between the heuristics in Table 3.5.4] for n = 4 are also observed in Table [3.5.5] for

n = 8&.

By comparing the results in Tables|3.5.4|and|3.5.5] we also see that the performance
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of DR degrades as n increases. To understand this phenomenon intuitively, first
note that as n increases, in general, the entropy of the prior increases, so the future
benefit of a search—how a failed search gains information about the object’s location—
becomes more important. Consequently, the appeal of the slow mode—which was
found to almost exclusively have a larger future benefit in boxes where both search
modes were used in an optimal policy—increases as n increases. Table [3.5.6 provides
empirical evidence of this intuitive argument. Recall that DR corresponds to taking
6 = 0 in ADR. A similar phenomenon can also be seen in Figure|3.4.1|in Section|3.4.1
which shows that the best choice of 6 for ADR increases with n.

Finally, both BSM and BT see their performance slightly improve as n increases,
particularly the former. This phenomenon is again linked to the size of the initial
transient period before the posterior settles into some envelope. In general, the en-
tropy of the prior increases as n increases, so the length of this transient period, and
the probability that the object is found on it, will decrease, meaning it is more likely
that BSM or BT will produce a search sequence that is near optimal.

As n increases, since there are more boxes to search, the expected search time under
any search policy takes longer to calculate. For any search problem, DR evaluates
just one search policy. However, the number of policies evaluated by the other three
heuristics depends on |#|; BADR evaluates |#H| + 1, BSM evaluates 2%l and BT
evaluates up to 27!, Therefore, for both n = 4 and n = 8, we report the average
runtime to compute the expected search time of each heuristic in Table [3.5.

As expected, DR is the fastest, and whilst all four heuristics are quick to calculate
for our range of problems, the runtime of BSM grows rapidly with |#| and may soon
become intractable as n and |H| increase further.

As |H| increases, Table [3.5.7] shows that BADR quickly becomes computation-
ally more efficient relative to BSM, while Tables [3.5.4] and [3.5.5] show its relative

performance degrades only slightly and is still close to optimum. In particular, for

n = |H| = 8, BADR is more than 20 times faster than BSM, while, in their worst
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performing scenario, BADR is on average about 0.1% above optimality compared to
0.02% for BSM.

Note that BT is on average quicker to calculate than BADR, despite the worst
case scenario of BT calculating 2/ policies compared to the |#|+ 1 of BADR. Recall
that, if the future benefit of a box in H is larger for its fast mode, BT heuristically
designates the fast mode to that box, and therefore only needs to try one mode
sequence for it. Hence, for BT to require the evaluation of 2/* policies, the future
benefit must be larger for the slow mode for every box in H; such boxes are reasonably
rare (see Proposition and Section [3.5.5)). Therefore, while it is possible to design
a search problem where BT must evaluate 2/ policies, such problems are rare in
practice, and BT will more commonly evaluate 2% policies where z is an integer less
than half the size of |H].

However, the growth in the number of policies to evaluate is still exponential for
BT and polynomial for BADR; hence, as |H| increases further, we expect BADR to
become much quicker than BT. Therefore, we believe BADR is the heuristic policy to
rely on for both speed and reasonable performance in a search problem with a very

large |H|.

3.5.5 Sensitivity Analysis of Heuristics

This section extends the numerical experiments to investigate how the characteristics
of a type-H box affect the performance of our heuristics. Consider a type-H box with
the usual parameters ¢y, g5, tf and t5, and write 85 € (0, 1) for its relative resemblance
to a type-F box compared to a type-S box, as defined in (3.4.1). Recall §, and d; from
(3.4.6), which measure the distance of a type-H box from being type-S and type-F,
respectively. It is straightforward to show that J, < d; if and only if 0y < 0.5. In
addition, 6y = 0 coincides with d, = 0, and 0y = 1 coincides with ¢y = 0. Finally,
recall # from (3.4.4)), which measures the advantage of the slow mode over the fast

mode in future benefit. The following proposition connects 0, d5, 05 and 3. To
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maintain focus on the numerical results, the proof may be found in Appendix

Proposition 3.5.1 If 6, > dy, or equivalently, 65 > 0.5, then 8 < 0.

While Proposition [3.4.3] shows that § < 0 for any type-F box, Proposition [3.5.1
identifies some type-H boxes for which g < 0.

Proposition [3.5.1] also tells us that if a type-H box is closer to being type-F than
type-S, then both the immediate and future benefit are larger for the fast mode. It
further provides an intuition for the observation in Section that, throughout all
the numerical experiments, BADR could always be recovered by taking some ¢ < 0.5
within ADR. If, for some search problem, BADR was only attainable with 8 > 0.5,
there would be a box in ‘H designated slow by BADR for which 65 > 0.5, so with both
the immediate and future benefit larger for the fast mode. As discussed in Section
problems where it is optimal in any subset of the state space to use the slow
mode of such a type-H box are very rare.

To make inference on the effects of type-H boxes with 6y < 0.5 on the performance
of our heuristics, we focus our analysis on search problems with n = 2 boxes and one
type-H box. We generate 8,000 such search problems using and rejection
sampling. For each we study p = 0.5, 0.7, and 0.9, where p is the object’s hiding
probability for the type-H box. Table presents the performance of our heuristics
as average percentages over optimum, sorted into bins based on the values of p and
O . The table reports results only for 8y < 0.24, because for g > 0.24, the difference
between any heuristic performance and optimal performance is negligible. Because
BADR and BSM are equivalent when |H| = 1, we do not report them separately.

Recall that DR designates the fast mode for the type-H box, and 0y measures the
type-H box’s relative resemblance to a type-F box compared to a type-S box. There-
fore, it is intuitive that DR’s performance improves monotonically as 6y increases, as
seen in Table[3.5.8] The other two heuristics BT and BSM, however, share a different

behaviour. Also seen in Table [3.5.8] both heuristics are near optimal when 8y is close
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to 0, or when 6 exceeds 0.2, but their performance degrades as 0y falls in the range
0.04-0.16. This behaviour is explained by the following.

When 6y is very small, the type-H box is very close to being type-S, so the
single-mode policy II; that designates the slow mode for the type-H box will have
close-to-optimal performance. As BSM chooses among all single-mode policies, BSM
will perform at least as well as II,. Recall that BT can choose a policy that, for the
type-H box, designates slow for p < p from . When 0y is small, p is close to
1, so BT can choose a policy that is very close to Il;, so will also perform close to
optimally. Finally, recall that BSM and BT can also choose DR, whose performance
improves as #p increases. For most problems with 5 > 0.2, DR is optimal, so all

three heuristics coincide with optimal performance.
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Table 3.5.4: Performance of heuristics for search problems with n = 4 boxes in five

scenarios, reported as percentage above the estimated optimum from the ensemble

method.
|H| =2 |H| =4
Scenario Metric DR BADR BSM BT | DR BADR BSM BT
Uniform Mean 0.738 0.010 0.004 0.003 | 1.42 0.040 0.007 0.006
75th Percentile | 0.510 0 0 0 2.11 0 0 0
95th Percentile | 4.33  0.018 0.013 0.009 | 6.59 0.176 0.042 0.034
99th Percentile | 7.98  0.258 0.105 0.087 | 10.2 1.04 0.168 0.153
Two Mean 0.700 0.012 0.007 0.004 | 1.33 0.041 0.012 0.007
Dominate | 75th Percentile | 0.431 0 0 0 1.83 0 0 0
95th Percentile | 4.10  0.037 0.025 0.011 | 6.43 0.240 0.067 0.037
99th Percentile | 8.23  0.325 0.196 0.113 | 10.3 0.868 0.299 0.201
Evenly Mean 0.700 0.013 0.008 0.005 | 1.31 0.039 0.013 0.008
Spaced 75th Percentile | 0.452 0 0 0 1.72 0 0 0
95th Percentile | 4.20  0.035 0.022 0.010 | 6.08 0.219 0.062 0.037
99th Percentile | 8.42  0.389 0.241 0.144 | 10.3 0.951 0.332 0.216
One Mean 0.637 0.019 0.013 0.005 | 1.25 0.050 0.024 0.009
Dominates | 75th Percentile | 0.388 0 0 0 1.73 0 0 0
Weakly 95th Percentile | 3.73  0.070 0.052 0.010 | 5.88 0.325 0.131 0.042
99th Percentile | 7.81  0.546 0.362 0.140 | 104  1.02  0.600 0.237
One Mean 0.569 0.028 0.023 0.005 | 1.09 0.066 0.043 0.010
Dominates | 75th Percentile | 0.320 0 0 0 1.42 0 0 0
Strongly | 95th Percentile | 3.31  0.097 0.064 0.015 | 5.01 0.474 0.271 0.043
99th Percentile | 7.38  0.756 0.638 0.141 | 10.1  1.28  0.995 0.265
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Table 3.5.5: Performance of heuristics for search problems with n = 8 boxes in five

scenarios, reported as percentage above the estimated optimum from the ensemble

method.
|H| =4 |H| =8
Scenario Metric DR BADR BSM BT | DR BADR BSM BT
Uniform Mean 1.14  0.027 0.003 0.003 | 2.24 0.104 0.004 0.004
75th Percentile | 1.77 0 0 0 3.45 0.034 0 0
95th Percentile | 3.43  0.020 0 0 5.43 0.376 0.008 0.007
99th Percentile | 4.66 0.140 0.014 0.013 | 6.70 0.648 0.028 0.026
Two Mean 1.11  0.026 0.004 0.003 | 2.20 0.098 0.006 0.005
Dominate | 75th Percentile | 1.66 0 0 0 3.31 0.034 0 0
95th Percentile | 3.34  0.020 0.001 0.001 | 5.36  0.352 0.011 0.009
99th Percentile | 4.46 0.136 0.016 0.015 | 6.86 0.609 0.034 0.029
Evenly Mean 1.12 0.025 0.003 0.003 | 2.21  0.099 0.005 0.005
Spaced 75th Percentile | 1.61 0 0 0 3.31  0.030 0 0
95th Percentile | 3.44 0.019 0.001 0.001 | 547 0.343 0.010 0.008
99th Percentile | 4.79 0.133 0.016 0.015 | 6.95 0.625 0.032 0.029
One Mean 1.09 0.027r 0.005 0.003 | 2.15 0.100 0.008 0.005
Dominates | 75th Percentile | 1.6 0 0 0 3.20 0.039 0 0
Weakly 95th Percentile | 3.23  0.024 0.001 0.001 | 5.19 0.348 0.012 0.008
99th Percentile | 4.38 0.153 0.020 0.014 | 6.69 0.619 0.040 0.027
One Mean 1.05 0.031 0.011 0.004 | 2.06 0.103 0.017 0.006
Dominates | 75th Percentile | 1.46 0 0 0 2.98 0.051 0 0
Strongly | 95th Percentile | 2.98  0.035 0.004 0.002 | 4.98 0.368 0.023 0.009
99th Percentile | 4.28 0.200 0.031 0.018 | 6.67 0.619 0.080 0.031
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Table 3.5.6: The percentage of type-H boxes to which BSM designates fast in each

numerical study.

n||Hl=n/2]|H|=n

2 91.1% 91.4%
4 83.7% 84.6%
8 79.9% 80.3%

Table 3.5.7: The average time (milliseconds) taken to calculate the expected search
time under each heuristic in a single search problem for n = 4, 8 boxes, and |H| = n/2,

n. Results are shown for the Evenly Spaced prior from Table .

n||H|| DR BADR BSM BT

0.003 0.008 0.010 0.006
0.003 0.013 0.038 0.008

0.009 0.041 0.112 0.023

o oo |~ e
o o T S G Xt

0.011 0.074 1.63 0.056
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Table 3.5.8: Performance of heuristics for search problems with n = 2 and |H| = 1 by

value of 0y, reported as average percentage above the optimum calculated via value

iteration.
On
Heuristic | p | (0,0.04] | (0.04,0.08] | (0.08,0.12] | (0.12,0.16] | (0.16,0.2] | (0.2,0.24]

DR 0.5 2.76 1.11 0.437 0.151 0.037 0.012
DR 0.7 3.09 1.13 0.383 0.126 0.031 0.010
DR 0.9 2.06 0.594 0.204 0.070 0.019 0.006
BSM 0.5 0.008 0.019 0.019 0.018 0.011 0.011
BSM 0.7 0.019 0.085 0.089 0.091 0.030 0.010
BSM 0.9 0.130 0.393 0.198 0.070 0.019 0.006
BT 0.5 | 0.007 0.014 0.010 0.008 0.005 0.001
BT 0.7 0.012 0.032 0.023 0.012 0.003 0.001
BT 0.9 | 0.031 0.053 0.015 0.007 0.002 0.0002




Chapter 4

Conclusions and Further Work

In this chapter, Section reviews Part I of this thesis, and Section suggests

directions for further work.

4.1 Review of Part 1

Search theory is a widely-researched area which the literature review in Chapter
could only touch upon. In the classic time-independent search problem, sequential
searches of discrete boxes for a stationary target are made in discrete time, with the
aim to minimise the expected time until detecting the target. The problem was solved
by several authors using different methods in the 1960s; the solution is wonderfully
simple and intuitive, namely, search the box with the largest probability per unit
time of finding the target on the next search. The solution extends to the classic
time-dependent search problem (where the search parameters of a box may depend
on its number of prior searches) if the probability of a detection on a search of a box
decreases with the number of visits.

First noted by a comment of Kelly in |Gittins (1979), the multi-armed bandit
framework of Chapter [2] provides another way to solve the classic search problem,

namely, using the celebrated Gittins indices of (Gittins and Jones (1974)). The Gittins
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index solution agrees with earlier solutions in the literature, but has the advantage of
solving the classic time-dependent search problem in its full generality.

Chapter , based largely on Clarkson et al.| (2020), extends the classic time-
independent problem to allow a choice between two search modes (fast and slow)
in each box. A fast search of a box is quicker, but a slow search is more likely to find
the target, leading to a trade-off between speed and effectiveness. Despite advances
in search technology increasing the relevance of multiple-mode problems, they are
not well studied in the literature. [Kadane (2015) studies the extension of the classic
time-independent problem to an arbitrary number of search modes per box, but his
results are incorrect.

The Gittins index solution to the fully-general classic time-dependent problem
in Chapter [2| reduces the two-mode problem to determining an optimal sequence of
modes for each box; however, the optimal choice of mode for a box can be very
complicated, sometimes depending on the other boxes available to search and the
searcher’s current beliefs about the target’s location. The main results of Chapter
are simple sufficient conditions on a box such that its optimal mode sequence contains
just one dominating search mode. Under Theorem [3.2.5], the dominating search mode
is slow, and under Theorem the dominating mode is fast.

If all boxes satisfy either Theorem [3.2.5 or Theorem [3.2.8] then the two-mode
problem reduces to a single-mode problem easily solved using Gittins indices. Other-
wise, for the boxes that satisfy neither theorem, heuristic policies are required. Our
main heuristic policy, the threshold policy BT, considers two sources of benefit from
searching a box.

The first, the immediate benefit, is the probability per unit time of finding the
target on a search of a box, well known for its key role in the Gittins index which
solves the single-mode problem. Kadane (2015)) suggests that the optimal multiple-
mode solution is a simple, direct extension of the single-mode solution, but we find

the presence of another type of searching benefit when there are multiple modes per



Part I. Chapter 4. Conclusions and Further Work 109

box, namely the future benefit. In a single-box problem with multiple modes, [Kadane
(2015) finds that always using the mode with the largest future benefit maximises the
probability of finding the target before a deadline. In a problem with multiple boxes
and, therefore, uncertainty about the target’s location, we find the future benefit
takes a new role; the larger the future benefit of a search mode, the more information
gained about the target’s location after an unsuccessful search using that mode. Such
information is pivotal as it allows the searcher to make better box choices later in
the search process. Our BT heuristic involves a novel combination of the immediate
and future benefit, and consistently delivers near-optimal performance in an extensive
numerical study.

In work not included in|Clarkson et al.| (2020)), Chapter [3|also uncovers a third type
of benefit which explains why the slow mode can still, in very rare circumstances, be
optimal when the fast mode has the larger immediate and future benefit. This third
source of benefit, arising from searches being made in discrete time, involves avoidance
of the situation where the searcher has no strong preference over which box to search
next. The effect in the two-mode problem is negligible; however, in Part II of this
thesis, where the target is an intelligent hider actively avoiding detection, the third

source of benefit plays a pivotal role in the hider’s strategy selection.

4.2 Further Work

The remainder of this chapter will discuss avenues for further work. Since the search
literature is so vast but contains little work on multiple-mode problems, there are
plenty of existing search models to which a second search mode would be a novel
addition.

Aside from the single-box problem of |[Kadane| (2015)), there is no work on multiple-
mode problems with objective to maximise the probability of finding the target before

a deadline. Such an objective is beyond the reach of Gittins index theory, which may
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complicate the analysis. Since there is no benefit to finding the target in advance
of the deadline, the superior information gain of the future benefit may take greater
importance than the immediate benefit near the start of the search. However, as the
deadline draws closer, the significance of the immediate benefit may grow. Unless
the final search of a box may be curtailed as in [Kadane (2015), modes with search
times finishing as close to the deadline as possible may become desirable even if their
benefits are inferior to those of other modes.

The multiple-target model of Smith and Kimeldorf| (1975) could allow the searcher
two modes per box. When there are many targets left to find, information about the
targets’ locations may be more valuable, and hence the searcher may prefer a mode
with a superior future benefit. When there are less targets left to find, the immediate
benefit may take greater importance.

A novel set of models is motivated by the following. Because of either budget,
time or demand constraints, search equipment may be of limited use. Therefore, while
multiple search modes may exist, all may not be available throughout the duration
of the search process. This motivates several formulations where the searcher may
choose between multiple modes but only for a limited amount of time.

Firstly, suppose the searcher has a device to aid them; for example, help from an
additional searcher, or use of some equipment. The device can be used in any box
and boosts detection capabilities, yet it can only be used for a limited amount of
time, reflecting real-life either in the scarcity of resources needed for other jobs, or in
budget constraints. On which boxes should the device be used and when? Until the
device runs out, each box has two modes: search with the device or without it.

Secondly, suppose the searcher needs to hire search equipment. Several pieces
are available, yet only one can be hired, accounting for real-life budget constraints.
In such a problem, for each box, the searcher chooses a mode for the entire search
process. Several variations are of interest. If the price of equipment varies, there could

be an initial cost to the searcher to choose a more effective search mode. If the same
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equipment is used for several boxes, mode choices may be dependent across boxes;
e.g., the mode chosen for box 1 may limit the available modes for box 2. Theoretical
results in Chapter |3| may immediately eliminate some available modes in the same
box yet, in the choice-dependent case, comparison of modes across boxes presents a
greater challenge. The single-mode heuristic policies of Chapter [3| may shed light on
such problems.

Two additional ideas for further work will be discussed in more detail in the

following two subsections.

4.2.1 Multiple Search Modes

A natural extension to the two-mode search problem is to allow three or more search
modes per box. As for the two-mode problem, if, for each box, the modes used to
search the box are predetermined, we have a classic time-dependent search problem
solved by Gittins indices as detailed in Chapter Therefore, the multiple-mode
problem is reduced to finding an optimal sequence of modes for each box.

Presented below, a preliminary analysis is made in |Clarkson et al. (2020) which
extends Theorems B.2.5] and B.2.8 to boxes with three or more search modes to find
conditions for one mode to dominate the others.

To start, consider a box with only two modes (¢,t) and (¢/,t'). For fixed (¢,t'),
we consider the values of ¢ and ¢ for which we know that (¢/,¢') is dominant.

First, suppose t < t'. Then (¢, t') is dominant by Theorem if and only if

q < min (q', qt_’lt) = qt_'/t (4.2.1)

Now suppose t > t’. Then (¢, ') is dominant if ¢ < ¢’ by virtue of a larger detection

probability and smaller search time. Otherwise, (¢/,¢') is dominant by Theorem [3.2.§]

if and only if
tq(1—q)

7 , or equivalently, ¢

< < —.
q > _t+t’/q/
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Therefore, when t > t', mode (¢/,t') is dominant by either Theorem or by having

a larger detection probability and smaller search time if and only if

g < max (q', #t’/q’) . (4.2.2)
The maximum in is attained (uniquely) by the right-hand term if and only if
t>t/(1-¢).

Based on the above, for any search mode with detection probability ¢’ and search

time t', we define a function g(t) for t > 0 as follows:

(

(¢ /1) t, ift <t

9(t) =1 ¢, i <t<t/(1—q), (4.2.3)

/(0 )g), i 1/(1q).

In addition, define a set of search modes based on (¢',t’) as follows:
D(q.t) ={(g.t) : >0, ¢ < g(t)}.

By and ([£.2.2), (¢',t) dominates (¢,t) by either Theorem [3.2.5, Theorem
3.2.8, or by a larger detection probability and smaller search time if and only if
(¢.t) € D(¢',t"). Figure [d.2.]illustrates g(t) and D(¢',t) for (¢,¢') = (0.4, 1).

Now consider a search problem with n boxes where, fori =1, ..., n, box ¢ has some
K; € Z* search modes, namely (g; s, t; ) for k =1,..., K;. For some box i, suppose
there exists j € {1,..., K} such that (g x, tix) € D(gij,t:i;) for k=1,..., K;. Then,
since for any k = 1,..., K; the mode (g, j,; ;) dominates (¢;x,t;x) in a box with just
those two search modes, we say mode (¢, ;,t; ;) is dominating for box i. Based on
this definition, each box can have at most one dominating mode, which the following

shows is always an optimal mode choice.

Theorem 4.2.1 In the above multiple-mode search problem, if some box has a domi-
nating mode, then there exists an optimal search sequence in which that box is always

searched using its dominating mode.
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Figure 4.2.1: The black line shows the different parts of the function g(t) for (¢',¢') =
(0.4,1). The set D(0.4,1) is shown by the line alongside the shaded gray areas.

The proof of Theorem [£.2.1] involves similar arguments used to prove Theorems

[3:2.5] and [3.2.8] and is deferred to Appendix
Theorem [£.2.1] extends Theorems [3.2.5] and [3.2.§] from the standpoint of a dom-

inating mode and identifies boxes for which only one search mode is needed in an
optimal policy. Based on Theorem [£.2.1] it is reasonable to conjecture a more general
result—extending Theorems [3.2.5] and [3.2.§] from the standpoint of what we call a

dominated search mode. We say that mode (g;, ;) is dominated in box ¢ if there
exists j € {1,..., K}, with j # k, such that (¢;x,tix) € D(gij,ti;). In a box with
just modes (¢;k, tix) and (g, ;,t; ;) available, we know that the latter dominates. How-
ever, if the latter were replaced by some (g;,t;;) for some [ € {1,..., K;} \ {k,j},
then neither (g, t;x) nor (¢i;,t;;) necessarily dominates.

We conjecture that, if some box has a dominated mode, then there exists an
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optimal search sequence in which that box is never searched using the dominated
mode. If this conjecture is true, then it can substantially simplify a multiple-mode
search problem by enabling the removal of all dominated modes in each box. Whether
this conjecture is true, however, remains an open question, and will be left as future

research. Several attempts to find a counter example have failed; however, preliminary

investigation suggests that the techniques in the proofs of Theorems |3.2.5( and [3.2.§|

cannot easily be adjusted to prove the conjecture, so new methods may be required.

The single-mode heuristic policies DR and BSM introduced in Section [3.4.1| are
easily extended to this multiple-mode setting as follows. Without loss of generality,
label the search modes of box i such that ¢;1 <--- < ¢ k,, for i =1,...,n. For box
i, write m; for the mode with the largest detection probability per unit time ¢/t. The
heuristic DR simply designates mode m; for box i, ¢ = 1,...,n. There are a total of
[T, K; different single-mode policies, and BSM is the one with the smallest expected
search time.

We can also extend the ideas in Section to bound the suboptimality of DR

and BSM in the multiple-mode setting. For any box ¢ and any mode k, define

i/ i i/ i
;) = max ( max {m} ,  max { i/t }) -1 (4.2.4)
i=Lek  Qip/tig ) i=ktleii | (1 — Gij)Gin/tik

If mode k for box ¢ satisfies the condition of Theorem [.2.1], so is dominating for box

7, then the left-hand inner maximisation term is equal to 1, and the right-hand inner
term is no greater than 1, so we have 9, = 0. Otherwise, for any mode j for which
(¢ijstij) & D(qik,tix), the corresponding term in (4.2.4)) is greater than 1, and can
be interpreted as a measure of the distance of mode (g; j,; ;) from the set D(q;x, tix)-
Thus, we interpret ¢;; as the distance of mode £ from satisfying the conditions of
Theorem [4.2.1| and hence dominating for box i.

We next present a version of Proposition for the multiple-mode search prob-
lem, which can be used to bound the suboptimality of DR and BSM in terms of 9,
in (4.2.4]).
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Proposition 4.2.2 Write V* for the optimal expected search time. Write II for the
single-mode policy that designates mode k; for box ¢, and Vj; for its corresponding

expected search time. We can bound the suboptimality of IT by

Vg —V*
——— < max ;.
Vo i=l,..m

Proof. Fori=1,...,n, let
- tin
Fip = — ki
7k’L 57’71{:1 _|_ 1

In the modified search problem where ¢;, is replaced by %\zkz fori=1,...,n, Il is

the optimal policy. The same argument used in the proof of Proposition |3.4.1| can be

applied to the modified and original search problems to show

Vo —V* Liky — tik,
—_— S max |[———— | = max 51 ks
Vi i=1,..n ik i=1,..n

which completes the proof. m

Corollary 4.2.3 Write V* for the optimal expected search time, and Vpr and Visu
for the expected search time for the heuristics DR and BSM, respectively. We can
bound the suboptimality of DR and BSM as follows.

Vor — V*
— < R 2.
e S max di, (4.2.5)
Vesm — V* .
IBSM TV - .
oz < Zgllaxn k:I{unKl i k- (4.2.6)

Proof. Because DR uses mode m; for box i, © = 1,...,n, the bound in
follows immediately from Proposition m The bound in follows from Propo-
sition because BSM compares all single-mode policies. m

The bound for BSM in Corollary is at least as strong as that for DR. For
each i« = 1,...,n, if we consider some limit under which we have 9, | 0 for some
k; € {1,..., K;}, then mode k; becomes dominating for box i and BSM approaches op-
timality. If d;,,, J O for < =1,...,n, then both DR and BSM approach optimality. As
in Corollary [3.4.2] all bounds in Corollary depend only on detection probabilities

and search times; they do not depend on the target’s hiding probabilities.
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Extending the BADR and BT heuristics to multiple search modes is not as straight-
forward, since they both involve a pairwise comparison of search modes. An extension
of the threshold policy BT to a problem with multiple search modes could calculate a
threshold for each pair of modes. The inference in Table in Chapter [3| still holds;
therefore, if the threshold of two modes is less than 0 (resp. greater than 1), then the
faster (resp. slower) mode has the advantage in both immediate and future benefit,
and an extended threshold heuristic could discard the slower (resp. faster) mode. If
the threshold lies between 0 and 1, the faster mode has the greater immediate benefit
and the slower mode the greater future benefit; implementing the threshold in this
case may not be as straightforward, as the following demonstrates.

Suppose there are three modes for a box containing the target with probability
p, with the third mode being ‘medium’ with detection probability ¢,, € (qf,¢s) and
search time ¢, € (t7,t5). Let the three pairwise thresholds be Dy, Dm, s and py r. If
any threshold lies outside [0, 1], then one mode can be discarded by an extended BT
heuristic since its immediate and future benefits are both less than another mode’s.
With only two modes remaining, an extended BT heuristic can choose modes in the
same manner as in the original. Otherwise, suppose all three thresholds lie in [0, 1]
and D, is uniquely the largest threshold. For p € [p; ,1], the obvious choice of
mode is fast, as the greater immediate benefit of fast is more important for larger
p than the greater future benefits of the other two modes. For p below p; r, before
another threshold is reached, the choice of mode is not so obvious. We have p < p ¢,
so slow should be preferred to fast; p > ps.,, so medium should be preferred to
slow; and p > Py, f, so fast should be preferred to medium. In other words, there is
intransitivity in the threshold order and a choice of mode for BT is not clear. An

alternative approach may, therefore, be required.
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Figure 4.2.2: A simple triangular network with three nodes and edges.

4.2.2 A Two-Mode Search on a Network

Another further work idea is a two-mode search on a network structure (points (nodes)
connected by lines (edges) in R?) rather than in discrete boxes. The target is located
on each edge with a known hiding probability. The searcher traverses edges to find
the target, with a slow and a fast speed available for each edge. The searcher’s path
must respect the geography of the network; in other words, the searcher can only
next choose an edge connected to the node at which they finished their previous edge
search. Such an extension is relevant if the geography of the search space prevents
the searcher from moving quickly between any pair of hiding locations, for example,
a target hidden on a structure of roads.

The simplest non-trivial network forms a triangle with three nodes and edges,
shown in Figure Unlike the standard two-mode search problem, a fast search
may be desirable if the searcher wishes to access a currently-unavailable edge. For
example, if the searcher is at node A, edges 1 and 3 are available for the next search,
but the searcher may strongly believe the target to be on edge 2. In this instance, even
if the fast modes of edges 1 and 3 are inferior to their slow modes, a fast search of one of

them may still be optimal to enable a search of edge 2 as soon as possible. Therefore,
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it is important that any index policy over the currently available edges looks ahead
several searches into the future. Such a look-ahead index policy is successfully used
on network structure in Lin et al.| (2013) and Lin et al. (2014), which study a patroller
traversing a network detecting attacks. Unselected indices are viewed as penalties so
the searcher does not delay the search of an attractive edge to wait for its appeal

(index) to rise even further.
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Appendix A

Construction of Example 3.2.6

This subsection constructs Example |3.2.6) a search problem in which it is optimal
to make one fast search of a box with equal slow and fast detection rates. The
construction relies upon several observations from the proofs of Lemmas and
plus the study of optimal policies in the continuous-sweeping variant of the

standard search problem.

Observations from Lemmas [3.2.2| and [3.2.3] Recall the proof of Lemma [3.2.2

considers two searchers; searcher 1 uses arbitrary within-box subsequence A for box

1, while searcher 2 uses continuous sweeping. Box 1 satisfies
L _ 4 (A.0.1)

with identifying subscript 1 dropped for ease of notation. Both searchers 1 and 2 use
within-box subsequence A; for box i, ¢ = 2,...,n, and have optimal expected search
times equal to Ty and Ty, respectively.

Searcher 1 follows an optimal policy by choosing between boxes using Gittins
indices. The proof of Lemma uses m4 to denote an arbitrary optimal policy for
searcher 1, and, for any 74, describes a searcher 2 policy that ‘mimics’ w4. It writes
Tw (ma) for the expected search time under this mimicking policy, with Ty (74) > Ty

for any 74. In general, Ty (m4) depends upon the choice of 4. For example, as the

120
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sweeping searcher 2 has an advantage over searcher 1 when visiting box 1, optimal
policies for searcher 1 that always split ties in favour of box 1 will have a lower
expected search time when mimicked by searcher 2 than those that do not.

Let Ay denote a within-box subsequence for box 1 that contains precisely one fast

mode. The proof of Lemma [3.2.2 shows that, for any 74,, we have

TAf - TW(WAf) = p1t5/2. (AO2)

So, when searcher 1 uses Ay as the within-box subsequence for box 1, mimicking any
searcher 1 optimal policy leads to the same expected search time for searcher 2.
Where S is the within-box subsequence for box 1 containing only the slow mode,
Lemmamshows that Ts—Tyw = pits/2. Combined with , we have Ty, = Ts
if and only if Ty (ma,) = Tw for any m4,. By Theorem m Ts is the optimal
expected search time for searcher 1. Therefore, it is optimal to make a fast search
of a box 1 satisfying if and only if, in the continuous-sweeping variant, it is
optimal for searcher 2 to mimic any searcher 1 optimal policy with A = A;. Hence,

we next study optimal policies for searcher 2.

Optimal Policies for the Continuous-Sweeping Searcher The proof of Lemma
also shows that Ts — Ty (7s) = pits/2 for any mg. Combined with the result of
Lemma , this shows that Ty = Tw(mg) for any g, providing a class of optimal
policies for searcher 2, namely, index policies where the index of box 1 is given by
PiGs/ts = Piqs/ts (where p} is the current hiding probability for box 1) and the indices
of boxes 2,...,n are the usual Gittins indices as in (3.1.1)). Whenever the index of
box 1 is maximal, an optimal action is to make a full sweep of [0, ¢s) and update the
index of box 1 by multiplying by (1 — ¢s;). Whenever the index of another box j is
maximal, an optimal action is to search box j for j = 2,...,n (and update its index
as usual). For any optimal policy in this class, whenever searcher 2 visits box 1, they
make a full sweep of the interval [0, ,), so only ever leave box 1 at position x = 0.

Inspection of the proof of Lemma shows that there are optimal policies for
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searcher 2 outside of this class. If the index of box 1 is uniquely maximal, then the
unique optimal action is to sweep the whole of [0, ;) before moving on. Suppose
instead that the index of box 1 and the index of some other box j are both maximal,
and the next mode in the within-box subsequence for box j is a. Then, for the next
ts +t;, time units, for each x € [0,%,) there is a corresponding optimal action given

by the following:
1. Sweep the interval [0, x).
2. Search box j using mode a.
3. Sweep the interval [z, t;).
4. Update the index of box 1 (resp. j) by multiplying by (1 —¢s) (resp. (1 —gja))-

Searcher 2 taking any other action for the next ¢, 41, , time units is suboptimal. Note
that if we choose x = 0 or x = t,, we fall into the class of optimal searcher 2 policies
described in the previous paragraph. Clearly the above situation can be generalised

to an ¢-way tie between indices including box 1, for e =3, ..., n.

Conditions under which a Mimicking Policy is Optimal Finally, we consider
conditions under which a mimicking searcher 2 policy is optimal. If searcher 2 mimics
any m4,, then before the fast mode of box 1 occurs in 74,, searcher 2 follows an
optimal policy and always leaves [0,t5) at = 0. Yet, after the fast mode of box
1 occurs in 74, searcher 2 always leaves [0,t5) at © = t;. Note that, under any
searcher 2 optimal policy, it is optimal for searcher 2 to leave the interval [0,%,) at
some 0 < x < t, to search another box j if and only if, at the moment that the current
pass of the interval [0,¢,) began from x = 0, box j’s index was maximal alongside
box 1’s. So, after the fast mode of box 1 occurs in 74,, the only manner in which
searcher 2 can search another box j without making a suboptimal move is through

another box j’s index being tied with box 1’s index.
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After the fast mode of box 1 occurs 74, searcher 1 must search each box j,
J =2,...,n, an infinite number of times, or the expected search time under 74, for
searcher 1 would be infinite. So, in mimicking 74, searcher 2 will also make an infinite
number of searches of box 7, 7 = 2,...,n. For each of these searches to occur via a
tie with box 1’s index, there must be some cyclic behaviour between box j’s index
and box 1’s index for j = 2,...,n. In other words, for j = 2,...,n, if the fast mode
of box j is used in 74, after the fast mode of box 1, we need (1 — ¢,)™/ = (1 — g 5)
for some m;; € Z*, since only then, after a further m; ¢ full sweeps of box 1 and
one fast search of box j, will the indices of box 1 and box j be tied again. Similarly,
if if the slow mode of box j is used in 74, after the slow mode of box 1, we need
(1 —gs)™= = (1 — ¢j) for some m;, € Z*. Further, we need (p1,...,pn) to be such
that the indices of box 1 and box j tie for the first time before the fast search in 74,,
for j=2,...,n.

Example presents a search problem with n = 2 where these restrictive con-
ditions hold. For simplicity, the fast mode in Ay occurs first and box 2 has just one

search mode. By stochastic coupling, Example proves that Ty, = T.



Appendix B

Supplementary Proofs for Part 1

B.1 Proof of Proposition (3.5.1

Before proving the result of Proposition [3.5.1, we need a few lemmas.

Lemma B.1.1 For any a > 1, we have

log(a)va < a— 1.

Proof. Consider the function h(a) = a —1 —log(a)/a. Since h(1) = 0, it is sufficient

to show that h is a strictly increasing function for a > 1. Taking the derivative of h

yields
, log(a) 4 2
h =1—-(—= B.1.1
(a) ( NG ) (B.1.1)
so h/(1) = 0. For a > 1, we have
d 1 1 d
2 9 =< ——="(2
da (log(a) +2) o * Vva da( va),

so the denominator of the fraction in (B.1.1)) grows faster than the numerator, as a
increases from a = 1. It follows that A'(a) > 0 for all @ > 1, which completes the

proof. m

Lemma B.1.2 For any 0 < x < 1 and 1/2 < ¢ < 1, we have

—log(l —z) < =E
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Proof. Take a =1/(1 — ) > 1 in Lemma|[B.1.1] to obtain the inequality for £ = 1/2.
The result follows because (1 —2) /2 < (1 —z) ¢ forall € € [1/2,1]. =

We are now ready to prove Proposition m Using their definitions in (3.4.1])
and , it is straightforward to show that d; > d¢ is equivalent to 0 > 0.5. We
show that 0, > d; implies 5 < 0.

First, note that we have d; +1 >0, 6 +1 >0, and (6s + 1)(dp+ 1) = (1 — ¢5) .
Hence, we have d, > &; if and only if §, + 1 > (1 — ¢,)~/2. We shall prove the
contrapositive of the result, namely that if 8 > 0, then d; > J,, or equivalently
6o+ 1< (1—q,) 2

If 5 >0, then we have
ts < log(1 — ¢5)

ty = log(1—qp)
Therefore,
t log(1 — ¢,
54— W/t losl—as) ar
gs/ts ~ log(l—qf) gs

To complete the proof, it remains to show the right-hand term is less than (1 —g¢;)

-1/2
Write the right-hand side of the preceding as a function of ¢, namely

log(l - qs) . ﬂ

Hap) = log(1—qr) qs

By L’Hopital’s rule, we can compute

i f(q7) = — 2L ¢

)—1/2
540 qs

1_QS

where the inequality follows from Lemma with x = ¢5 and £ = 1/2. It remains
to show that f is a decreasing function for ¢ € (0,¢;). To do so, take the first
derivative to obtain

log(1 — gs) - (ﬁ—qu + log(1 — qf))
gs - (log(1 —gqy))?

f'lar) =

For g5 € (0, ¢s), the denominator is strictly positive, and the numerator is negative

by Lemma with z = ¢f and £ = 1. Consequently, f'(¢f) < 0 for g5 € (0, gs),

and the proof is completed. m



Part I. Appendices 126

B.2 Proof of Theorem 4.2.1

Suppose that mode (¢;;,t; ;) is dominating for box ¢. Without loss of generality, we
take ¢ = 7 = 1. Since all the discussion below concerns box 1, we will omit the
subscript that identifies box 1 to simplify notation.

Define g(-) for the search mode (¢, ;) according to (4.2.3). For k =2,3,... K,
define g, = g(tx) > qx, where the inequality follows because (g, tx) € D(q1,t1). Con-
sider a modified search problem in which the K — 1 search modes (qz,t2), - . ., (qk, tx)
are also available for box 1, so box 1 now has up to 2K — 1 search modes. We will
first show that in this modified search problem, there exists an optimal within-box
subsequence for box 1 consisting only of mode (q1, 7).

First, it is clear that there exists an optimal within-box subsequence consisting
only of modes (¢1,t1), (q2,t2), ..., (Gx,tK), because (g, tx), k = 2,..., K, has the
same search time as (qx, ), but a smaller (or at best the same) detection probability.
Categorise the K — 1 search modes (2, t2), ..., (¢, tx) into 3 groups based on each
mode’s search time; we say search mode (gx, tx) is in group A if ¢, < ¢, in group B if
t1 <ty <t1/(1 —q), and in group Cif t;, > t1/(1 — q1).

If a within-box subsequence for box 1 contains any search mode in group B, the
subsequence can be improved by replacing the search mode in group B with the search
mode (¢, t1)—which has the same detection probability but a smaller search time.
Therefore, there exists an optimal within-box subsequence consisting only of mode
(q1,t1) and modes in groups A and C.

Next, we show that any search mode in group C is not needed in an optimal
within-box subsequence for box 1. The argument is similar to that in Theorem [3.2.§]
as it first assumes that the within-box subsequence for box 1 contains a finite number
of search modes in group C. The crucial observation is that the last occurrence of a
search mode in group C is followed by a subsequence consisting only of (gi,;) and

modes in group A—each of which has the same ratio between its detection probability
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and search time, namely ¢;/¢t;. This observation allows the interchanging argument
used in the proof of Theorem to go through in a similar fashion. Consequently,
we can show that there exists an optimal within-box subsequence consisting only of
(q1,t1) and modes in group A.

Finally, we adapt the proof of Theorem to show that even search modes in
group A are not needed in an optimal within-box subsequence for box 1. Consider an
arbitrary subsequence that consists of only search mode (g;,¢;) and modes in group
A. Again, compare the standard search problem with the variation in which box 1
is replaced with a line segment of length t; swept continuously by the searcher. The
searcher finds the target with probability ¢; when she meets it, and has the ability to
restart where the previous sweep stopped. The proof of Lemma |3.2.2] goes through
with obvious modification—because all search modes in group A have the same ratio
between their detection probability and search time. The conclusion then follows from
Lemma [3.2.3

We have shown that in the modified search problem with 2K — 1 search modes
for box 1, there exists an optimal within-box subsequence for box 1 consisting only of
mode (q1,t1). Because such a subsequence is feasible for the original problem where

box 1 has K search modes, the result follows. m



PART I1I: Two-Sided Search

You never really understand a person until you consider things from his point

of view... Until you climb inside of his skin and walk around in it.

— Atticus Finch in “To Kill A Mockingbird” by Harper Lee



Foreward

Part II of this thesis concerns two-sided search, where, in addition to the first decision
maker (the searcher), there is a second decision maker who controls the position of the
target. There are two main types of two-sided search, that where the second decision
maker wants the target to be found, called rendezvous search, and that where they do
not want the target to be found, called a search game. Part II focuses on the latter,
relevant to a search for a hidden bomb or landmine, intruder, or computer hacker.
Throughout, we assume that the second decision maker is the target itself, whom
henceforth we shall call the hider.

Unlike the one-sided search of Part I, in a search game, the searcher’s best course
of action depends on the actions of the hider. Therefore, game theory is commonly
used to model search games, in particular, two-person, zero-sum game theory, with
the game zero sum since the objectives of the searcher and hider are in direct conflict.
An introduction to two-person, zero-sum game theory is given in Chapter [} before
the search-game literature is reviewed in Chapter [0

In Part I, a classic one-sided search problem in discrete boxes is extended to two
search modes per box. In Part II, the same classic model is extended to two players,
transforming it into a search game. As will be discussed in Section [6.2.1 such a
search-game extension has been studied in the literature, but never in full generality
with an arbitrary number of boxes and arbitrary search times. The aim of the work
in Chapter [7] to be submitted for publication in 2020, is to provide a comprehensive

theory for the fully-general search-game extension. It will be shown that Gittins index
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policies, optimal in the one-sided problem, still play a key role in an optimal search
strategy in the search-game extension, but which box to search when multiple boxes
have a maximal index, trivial in the one-sided problem, takes great importance in the
search game. Chapter |8 outlines further work.

Recall from Part I that optimal search policies in any one-sided search prefer parts
of the search space either likely to contain the target or that are efficient to search.
By choosing where to hide, the hider will try to remove any such preference, aiming
to leave all areas equally appealing to the searcher. In particular, in the classic time-
independent problem where the Gittins index of a box measures its attractiveness
to the searcher, the hider will aim to equate all Gittins indices. Having no strong
preference of where to search next has already been seen to be unattractive to the

searcher in Part I. In the one-sided two-box problems of [Flesch et al| (2009) and

Kan| (1974) (discussed, respectively, in Sections [1.2.3| and [1.2.4] of Part I) where the

searcher may stop or delay the search, the stop or delay option is optimal when the
searcher is approximately equally attracted to both boxes. Further, in the one-sided,
two-mode search of Chapter 3| of Part I, the searcher may optimally avoid a situation
of no strong box preference by using a search mode with inferior search parameters.
Whilst the effect of this lack of preference is negligible in the one-sided, two-mode

search, Part II will show its influence on the search game is of great significance.



Chapter 5

Two-Person Zero-Sum Games

The following introduction to two-person zero-sum games was constructed with the
aid of Ferguson| (2020)), Blackwell and Girshick| (1954)), Straffin| (1993)) and |Osborne
and Rubinstein (1994)).

As the name suggests, such a game involves two players with one player winning
precisely what the other one loses. Both players have a set of actions which can be
thought of as the moves available to that player in the game. Let the set of actions
for the first player, P1, be X and for the second player, P2, be Y. Each time the
game is played, P1 selects some action x € X and P2 some y € Y with both players
unaware of the other player’s choice. To determine which actions they select, each
player employs a strategy of which there are two kinds, pure and mixed. The former
involves the player taking the same action every time they play the game. The latter
involves the player, each time they play the game, choosing an action at random
with respect to some probability distribution on their set of actions. The distribution
represents the mixed strategy. For example, if X = {a,b}, a pure strategy for P1
would be to always choose a, and a mixed strategy x would choose a with probability
0.6 and b with probability 0.4. Since X is finite, we may represent x as a vector
(0.6,0.4) of length | X|. Note that all pure strategies are mixed strategies, yet with a

degenerate probability distribution.
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Each player’s choice of action determines the payoffs received at the end of that
iteration of the game. Therefore, we represent payoff via a function A from X xY to R.
If P1 selects action x € X and P2 selects y € Y, then A(x,y) is the payoff to P1 and,
since the game is zero sum, —A(z, y) is the payoff to P2. Because of this relationship,
henceforth, we shall refer to the payoff of P1 as the payoff of the game. Note that, if
either P1 or P2 play a mixed strategy, then the payoff is random, and hence we can
only calculate the expected payoff. The aim of P1 (resp. P2) is to maximise (resp.
minimise) the expected payoff. Therefore, each player is not interested in the level
of variance in their actual payoffs; for example, to P1, a guaranteed payoff of 1 is
considered as desirable as a 50% chance of a payoff of 2 and a 50% chance of a payoff
of 0.

The expected payoff depends on both players’ actions; therefore, it is not entirely
clear what an optimal strategy for either player is. Clearly, if P1 knew that P2 would
play mixed strategy y, then P1 optimally selects the pure strategy x € X which
maximises the expected payoff given P2 plays y. Given this knowledge is lacking, P1
could consider ‘playing safe’ in the following way. For any P1 strategy x, there exists
Yx € Y which minimises the expected payoff given P1 plays x. In other words, if
P1 plays x, then the expected payoff is guaranteed to be no less than if P2 counters
with yx. Let a safe strategy x* for P1 be a strategy with the largest such guaranteed
expected payoff, say vj. Similarly for P2, a safe strategy y* guarantees P2 the smallest
expected payoff, say v3, that could possibly be guaranteed. Clearly v7 < v3, and if P1
plays x* and P2 plays y*, then the expected payoff lies within [v}, v3]. The celebrated
theorem of von Neumann (1928), called the minimax theorem, states that, when | X|
and |Y'| are finite (known as a finite game), we have vj = vj.

The minimax theorem provides extra motivation for P1 to play a safe strategy x*
in a finite game. Not only does x* maximise the expected payoff in the worst-case
scenario, it is also the best strategy they can play against any P2 safe strategy y*.

Further, if P1 and P2 play their safe strategies, so the expected payoff is v = v3,
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then any change in strategy from P1 can only decrease the expected payoff, as y*
guarantees P2 at most v3. Therefore, if both players play safe strategies, there is no
motivation for either player to change strategies, and the game is at an equilibrium.
Consequently, safe strategies x* and y* are known as minimax or optimal strategies,
and we define v* = v] = v} as the value of the game, the expected payoff if both

players play optimally. Formally, the minimax theorem states that all finite games

have a value given by

* = in A = mi A 5.0.1
v m}z{mxgg)r/l (x,y) mylngleﬁ}% (z,y), ( )

where A(x,y) represents the expected payoff if P1 and P2 play mixed strategies x
and y, respectively.

In a finite game, it is possible to find the optimal strategies for both players and
the value of the game using linear programming methods (See Chapter 10 of [Ferguson
(2020)). It can be difficult to solve games where |X| and |Y'| are large, yet there are
methods that can reduce the dimensions of such problems. An example of such a
method involves removing a pure strategy if it always produces a worse payoff than

another pure strategy.

5.1 Infinite Games

Now consider infinite games, in which P1 and P2 have an infinite number of pure
strategies, and mixed strategies for P1 (resp. P2) are defined by probability measures
on X (resp. Y). The minimax theorem of von Neumann| (1928)) shows all finite games
have a value; however, the same is not true for infinite games. |Blackwell and Girshick
(1954)) shows that an infinite game has a value if X and Y are compact in Euclidean
space and A is continuous. Several authors have since studied conditions under which
an infinite game has a value (Terkelsen, 1972; (Gal, 1980; |Alpern, (1985} |Alpern and
Gal, [1988).

The value of an infinite game must be defined slightly differently to the finite-game
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definition in ((5.0.1), as, since the strategy sets are infinite, we must take infimums

and supremums. If an infinite game has a value v*, we have

v* = sup inf /A(x, y) f(x)dx = inf sup/A(x, v)g(y)dy, (5.1.1)

fovey 9 zeX

where f(z) (resp. g(y)) represents a density of some probability measure on X (resp.
Y). Yet, unlike that in (5.0.1), the definition in does not guarantee the ex-
istence of an optimal strategy for either player, since the supremums and infimums
may not be attained. Instead, for any € > 0, P1 may only have an e-optimal strategy,
which guarantees an expected payoff of at least v* + €, and, similarly, P2 may only be
guaranteed at most v* — e.

Chapter 13 of [Ferguson| (2020)) shows that in the game of |Blackwell and Girshick
(1954)), with X and Y compact in Euclidean space and A continuous, optimal strate-
gies exist for both players. |Alpern and Gal (1988) derives conditions under which an

optimal strategy exists for the minimising player (P2).

5.2 Semi-Infinite Games

Blackwell and Girshick! (1954) ensures that semi-infinite games (also known as semi-
finite games), in which one player has an infinite number of pure strategies and the
other a finite number, have a much simpler classification than their infinite counter-
parts.

Without loss of generality, assume that X = {1,...,n} and Y is infinite. By
Theorem 2.4.2 of |Blackwell and Girshick (1954)), if the payoff function A is bounded
below, then a semi-infinite game has a value, and P1 has an optimal strategy. Since
the game has a value, P2 must have an e-optimal strategy for any ¢ > 0. Section 2.4 of
Blackwell and Girshick| (1954)) also determines conditions for P2 to have an optimal
strategy by considering the equivalent ‘S-game’, where P2, instead of choosing a

strategy in Y, chooses a vector in

S={(A(1,y),...,An,y)) :y €Y} C R".
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Theorem 2.4.1 of Blackwell and Girshickl (1954) shows that P2 selecting a mixed
strategy is equivalent to choosing a point in S*, the convex hull of S. Recall a mixed
strategy for P2 is a probability density f on Y. If f has finite support given by
supp(f) ={y € Y : f(y) > 0}, then we say f is a mizture of supp(f). Theorem 2.4.2
of Blackwell and Girshick (1954) concludes that if S (or equivalently S*) is closed,
then P2 has an optimal strategy which is a mixture of at most n pure strategies in Y.

The intuitive reasoning behind this result is the following, adapted from Chapter
13 of [Ferguson| (2020)). If s = (s1,...,$,) € S*, then there exists a P2 mixed strategy
which, if P1 plays pure strategy i, achieves an expected payoff s;, i = 1,...,n. It
follows that the value of the game v* satisfies

vt = inf{ max s;:S € S*} . (5.2.1)

i€{1,...,n}

If S* is closed, then the infimum in (5.2.1)) is attained, so there exists s* € S* on the
boundary of S* with max;cqi,..ny s; = v*; it follows that s* is an optimal strategy for
P2. By Theorem 2.2.2 of |Blackwell and Girshick| (1954), since S* is the convex hull
of S, any boundary point of S* can be written as a convex combination of at most n
elements of S, with these elements forming supp(s*). On the other hand, if S* is not
closed, then the infimum in (5.2.1) may not be attained, so there may not exist an
optimal strategy for P2.

Another approach to studying semi-infinite games is taken by Soyster| (1975). The
same conclusions are drawn, but via extending the linear program formulation often
used to solve finite games to semi-infinite games, and then applying duality theorems

over cones.



Chapter 6

Literature Review

This chapter reviews the literature on search games, in which a searcher seeks a hider
who tries to avoid detection. Since the searcher and hider have directly conflicting
objectives, search games are zero-sum, so the theory of Chapter [5|is applicable. Many
types of search game have been explored by the literature, yet all models feature the
following. There is a search space R known to and traversed by both players from
time 0 onwards. A strategy for either player is a path in R to follow, alongside, in
some formulations, corresponding speeds at which to travel. Any strategy needs to
specify a path assuming that the hider is never detected, so a path continuing either
indefinitely or, if one exists, until a search deadline. In most formulations, and unless
otherwise specified, the hider chooses their starting point, but the searcher’s starting
point is fixed.

If the players come within a known detection distance of each other, the search
ends with some known detection probability. Before the search ends, neither player is
aware of the other player’s position. The payoff is some measure of the success of the
search. Common choices are the time until the searcher finds the hider or whether the
searcher finds the hider before a deadline. Note that, with the former choice of payoft,
the searcher minimises the expected length of the search, whilst with the latter, the

hider minimises the probability of detection before the deadline.
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The following survey will be split by the detection capabilities of the searcher. The
detection probability is 1 in Section [6.1 whilst the searcher may overlook the hider

when passing nearby in Section [6.2]

6.1 Perfect-Detection Models

The literature review in this section is aided by Book 1 of Alpern and Gal| (2003)
and Part I of |Alpern et al.| (2013). We review models with detection probability 1; in
other words, the searcher has perfect detection, and the search ends the first time that
the players are within the detection distance of each other. Unless stated otherwise,
the payoff for all models reviewed in this section will be the time the search ends. In
other words, the expected payoff is the expected search time which the searcher aims
to minimise and the hider to maximise. For a general search space R, both players
have an infinite number of pure strategies, and hence the search game is an infinite
two-person zero-sum game. The combined work of |Gal (1980) and Alpern and Gal
(1988, |2003) shows that any perfect-detection search game discussed in this section
has a value, and the minimising player (searcher) has an optimal strategy. The hider,
however, may only have e-optimal strategies.

There is a rich literature on perfect-detection models with R unbounded, motivated
by the search game on the real line of Beck and Newman| (1970)), a two-sided extension
of the one-sided linear search first studied in |Beck| (1964), discussed in the literature
review of Part I of this thesis. For a survey of unbounded search spaces, see Part
Two of Book I of Alpern and Gal| (2003)). Our focus henceforth will be on R bounded
and continuous. Study of such perfect-detection search games was inspired by two
problems presented in |saacs (1965)), themselves motivated by combat scenarios. The
first allows the hider to be ‘mobile’ and take any path in R, whilst the second is a
simplification of the first with an ‘immobile’ hider who must remain stationary in

R. The next two sections discuss the development in the literature of both problems
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individually.

6.1.1 The Mobile Hider

Isaacs (1965) calls the problem with a mobile hider and arbitrary, non-zero detec-
tion distance the ‘Princess and Monster’ (PM). The maximum speed of the searcher
(Monster) is 1 and of the hider (Princess) is w > 0. |Gal (1979) solves PM for convex
R, inspiring many further modifications to PM; for example, (Gal (1980) studies a
non-convex R, and |Garnaev| (1992)) allows detection to be imperfect and depend on
the distance between the two players.

PM is well studied for R a finite network, which consists of a finite collection of
points in R? (nodes or vertices) and lines of various lengths (edges or arcs) which join
some pairs of nodes. It is assumed that there is a path (sequence of edges) between
every pair of nodes; in other words, R is connected. Players may travel down edges
and through nodes, and, since edges and nodes are one-dimensional, the detection
distance is taken to be 0.

The boundary of a circle may be viewed as a network, a case solved independently
in Alpern| (1974)), Foreman| (1974) and Zelikin (1972) under the assumption that w > 1
and, unlike most PM models, both players’ starting points are uniformly distributed.
Alpern and Gal (2003) solves PM on a network Ry consisting of two nodes connected
by some k£ € N unit-length edges. The searcher starts at the origin O, and the hider,
as usual, chooses their starting point. The searcher has an optimal strategy related
to that of |Alpern| (1974), but the hider must settle for an e-optimal strategy. Figure
shows R3 with nodes O and A.

PM becomes harder and remains unsolved on any other network. Even the unit
interval (R;) is hard to solve when the searcher can choose their starting point; |Alpern
et al.| (2009) only conjectures a solution. Yet, Chapter 5 of Alpern et al.|(2013)) remarks
that, if the conjectured solution in |Alpern et al.| (2009)) is true, it may be possible to

extend it to a tree network.
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Figure 6.1.1: R3: Two nodes, O and A, connected by three unit-length edges.

Washburn| (1980) studies a version of PM on a complete network, where every
pair of nodes is connected by an edge. The searcher has unit speed, and the hider
can only hide at nodes. However, with knowledge of the searcher’s current node, the
hider can instantaneously switch nodes just before the searcher leaves their current
node to travel to another. Therefore, the hider is motivated to switch to one of the
nodes furthest from the searcher’s current node. However, the searcher can always
reach any node via a single edge, so always choosing one of the furthest nodes puts
the hider at risk of being too predictable. Thomas and Washburn| (1991)) studies the
model of Washburn| (1980) with the expected payoff the probability that the search
ends before a deadline. Detection is generalised in the sense that, for any nodes i, j,
the searcher may detect the hider in node ¢ whilst searching node j with some known
probability; imperfect-detection models are studied in greater detail in Section [6.2]

The unit interval is the only network where the searcher has a pure strategy in
PM guaranteed to eventually detect the hider. On any other network, if the hider
knew the searcher’s pure strategy, they could choose their path to remain forever
undetected, showing that any optimal search strategy must be mixed. The same
logic is not true in Isaacs’ immobile-hider problem, in which pure search strategies

guaranteed to eventually find the hider play a key part.

6.1.2 The Immobile Hider

Isaacs| (1965) also presents a simpler ‘hide-and-seek’ (HS) version of PM in which the

hider is immobile. A pure hiding strategy in HS is a single point in R, and a mixed
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hiding strategy is a probability measure on R. Since the hider does not move, the
searcher optimally moves as fast as they can, so no generality is lost by assuming the
searcher has fixed, unit speed.

Any search path that passes within the detection distance of each point of R is
guaranteed to find the hider; if such a path is closed (starts and ends at the same
point in R), we call it a tour of R. If there exists a tour of R with length p which does
not cover the same ground twice, then [Isaacs (1965) shows that the value of HS is
(/2. An optimal search strategy is to follow such a tour randomly; i.e., forwards (resp.
backwards) with probability 0.5. An optimal hiding strategy is to hide uniformly in
R.

[saacs’ result motivated the study of HS on a finite, connected network R, the
focus of the remainder of this section. Write u for the sum of the lengths of all edges
of R, and v for the value of the game. Henceforth, we split our survey of HS, first

depending on the starting point of the searcher.

Fixed Searcher Starting Point First, as in Isaacs’ original problem, assume a
fixed starting point for the searcher, which we take to be the origin node O. |Gal (1980))
shows that, as in Isaacs’ problem, hiding uniformly guarantees an expected payoff of at
least j1/2; therefore, v > u/2. A key type of pure search strategy is a Chinese Postman
Tour (CPT), a tour of shortest possible length [, which it follows must satisfy i@ < 2.
Gall (1980) shows that the searcher guarantees an expected payoff of at most /2 by
following a CPT randomly (a RCPT), and hence that /2 < v < i/2 < u. A network
R is Eulerian if = fi, in which case v = /2, and hiding uniformly (resp. a RCPT)
is optimal for the hider (resp. searcher).

For a non-Eulerian network, p < fi < 2u. The upper bound is attained only on a
(rooted) tree with origin the root, where |Gal (1980) shows that a RCPT is optimal
for the searcher. It follows that v = i/2 = p. Hiding uniformly is not a good strategy

on a tree; the hider clearly optimally only hides at leaf nodes, the nodes furthest away
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from the origin. |Gal (1980) derives a distribution on the leaf nodes, later coined the
Equal Branch Density (EBD) by |Gal (2001), which is optimal for the hider on a tree.

Whilst v = p only for trees, the optimality of a RCPT, and hence v = [i/2, holds
for a wider class of networks. A network is weakly cyclic if it can be constructed from
a tree by replacing some nodes with cycles; Reijnierse and Potters (1993) shows a
RCPT is optimal for such networks. [Reijnierse| (1995)) extends the result further to
weakly Fulerian networks. These are networks containing disjoint FEulerian networks
which, when shrunk to a point, leave a tree. (More precisely, these are networks where
the blocks in the bridge-block decomposition of the network are all Eulerian.) In both
cases, an extension to the EBD was shown to be optimal for the hider. (Gal (2001))
strengthens the result of Reijnierse| (1995) by proving a converse, namely that only
on weakly Eulerian networks is a RCPT optimal.

It follows that v < i/2 for non-weakly-Eulerian networks, and hence the searcher
can do better than a RCPT. However, optimal strategies for either player can be very
complicated and finding them is NP hard (von Stengel and Werchner| [1997)). An
example, first posed by |Gal (1980), is HS on Ry shown in Figure [6.1.1] a case where
the network is simple, but the solution, first found by |Pavlovi¢ (1993), is not.

Several recent extensions to HS are as follows. |Alpern| (2010) and |Alpern and
Lidbetter| (2014) study asymmetric networks, where, for any two adjacent nodes i
and j, it may take longer to travel from 7 to j than from j to i. The former uses
recursion formulae to calculate the value of HS on an asymmetric rooted tree. The
latter obtains a closed form for this value which is used to study HS on general
asymmetric networks.

In the find-and-fetch model of [Alpern| (2011), the searcher must return to the
origin O ‘carrying’ the hider before the search completes, and therefore the hider is
motivated to hide far away from O. Two scenarios are considered: the searcher’s
speed carrying the hider may be fast, as they are no longer on the lookout for the

hider, or slow, if the hider is heavy.
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The expanding search of Alpern and Lidbetter (2013)) allows the searcher to ‘jump
back’ immediately to any previously-searched location and resume searching, relevant
to non-physical applications such as trying to solve a mathematical problem, or mining
for coal, where searching new ground takes a lot longer than travelling back through
old ground.

The combinatorial paths of |Alpern| (2017)) only allow the searcher to change direc-
tion at nodes, realistic for search in large vehicles. Only non-weakly-Eulerian networks
are studied, since, by the result of |Gal (2001)), a RCPT, which does not involve chang-
ing direction on any edge, is optimal on any weakly-Eulerian network. For R3 shown

in Figure [6.1.1] a full solution is obtained.

Searcher Chooses a Starting Point Now suppose that the searcher can choose
their starting point to be any point on R, a problem first formulated in Dagan and Gal
(2008) which we call arbitrary-start hide-and-seek (AHS) with value v, < v, where
v is the value of HS on R. As for HS, we deduce v, > p/2 by hiding uniformly; it
follows that v, = v = /2 on a Eulerian network, with identical optimal strategies in
HS and AHS.

Now we consider non-Eulerian networks. Of interest in AHS is a Chinese Postman
Path (CPP), a path of shortest possible length fi, that traverses all edges. Note that
a CPP is similar to a CPT which has length [, yet a path, unlike a tour, does not
need to start and finish at the same place; therefore, u < i, < . As for HS, we
deduce v, < fi,/2 by the searcher following a CPP randomly (a RCPP). However, for
a CPP, we define randomly to be forwards from the start with probability 1/2 and
backwards from the end with probability 1/2, only possible since the searcher can
choose their starting point.

If fi, = p, then clearly v, = p/2, with optimal strategies an RCPP and hiding
uniformly. An example is Rz in Figure which has a CPP starting at O and

finishing at A of length y = 3. However, R3 has no tour of length 3, so whilst AHS on
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R3 has v, = 11/2 and is easy to solve, HS on R3 has v > u/2 and, by [Pavlovi¢| (1993)),
is hard to solve.

Dagan and Gal| (2008) shows that a RCPP is optimal for a tree, with, similar to HS,
an adaptation of the EBD of |Gal (1980)) optimal for the hider. |Alpern| (2008) shows
that a RCPP is optimal for a tree with Eulerian graphs attached, a subset of weakly-
Eulerian networks. Yet, |Alpern et al. (2008) proves it is impossible to characterise

the networks for which a RCPP is optimal, so there is no result analogous to that of

Gal (2001) for HS and RCPTs.

A Two-Speed Model The model of |Alpern and Lidbetter| (2015) (T-SHS) extends
HS on a network by introducing a second, faster speed (fast) at which the searcher can
travel in addition to the original (slow). When passing the hider’s location, detection
will always occur at the slow speed, but not always at the fast. Two scenarios were
considered, both best suited to a small but exposed hider. In the first scenario, the
fast speed has no chance of detecting the hider and, therefore, is useful only to save
time moving across the network. In the second scenario, solved only on the unit
interval, the fast speed has a detection probability in (0, 1).

In the first scenario, the authors prove T-SHS has a value and an optimal searching
strategy. Further, it is shown that on a Eulerian network the fast speed is never
optimally used, and hence T-SHS reduces to HS. On the other hand, to tour a non-
Eulerian network, the same ground must be covered twice. Since the slow speed has
perfect detection, it therefore must be optimal to use the fast speed on one of the
passes.

A bimodal CPT (BCPT) was defined as a tour of shortest possible length fi which
traverses each edge at least once at the slow speed, and a random BCPT (RBCPT)
follows a BCPT in either direction with equal probability. Similarly to HS, where v
is the value of T-SHS, we deduce v < [i/2 by the searcher following a RBCPT. It

was shown that v = fi/2 for trees and, more generally, for weakly-Eulerian networks.



Part II. Chapter 6. Literature Review 143

Therefore, a RBCPT is optimal for the searcher, and a result similar to that of
Reijnierse| (1995)) for HS holds for T-SHS. It is unknown whether the converse result,
proved by (Gal (2001)) for HS, is true for T-SHS, namely that only for weakly Eulerian
networks is v = f1/2.

The addition of a second speed in Alpern and Lidbetter (2015) has clear links
to Chapter [3| of Part I of this thesis, where a second speed was added to the classic
one-sided, discrete search problem. Yet, the two-sided nature of T-SHS, its network
search space, and the perfect detection at the slow speed result in the methodologies

being unconnected; therefore, T-SHS is discussed only here in Part II.

Hiding at Nodes Now suppose that the hider can only hide at the nodes of a
network. In this formulation of HS (NHS), the hider has a finite number of pure
strategies, so we have a semi-infinite two-person zero-sum game for which, by |Alpern
and Gal (1988), a value and optimal strategies for both players exist. However,
assuming the starting point of the searcher is fixed, NHS is actually more difficult
than HS. Of interest is a Travelling Salesman Problem Tour (TSPT), a closed path
of minimal length /i that visits every node. Finding a TSPT on a general network is
NP hard, whilst a CPT can be found in O(n?) time where n is the number of nodes.
A random TSPT (RTSPT) ensures vy < fi/2, where vy is the value of NHS; yet,
Alpern et al.| (2013)) proves it is not possible to classify networks where vy = fi/2.

An extension of NHS (STNHS) assumes that, upon arrival at a node, it takes an
additional, known (to both players) search time to search the node for the hider. The
searcher may choose to pass the node for no extra time cost, but in doing so forgoes
the chance to detect the hider. The payoff is the sum of the travelling time between
nodes and the search time at nodes before the hider is found.

Kikutal (1990) solves STNHS for equally-spaced nodes with identical search times
which lie on a straight line - the two-sided extension of |Gluss| (1961) discussed in Part I

of this thesis. Kikuta| (1991]) generalises the solution so the distance between adjacent
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nodes need not be constant. Kikuta and Ruckle (1994) solves STNHS on a rooted
tree where every leaf node is connected to the root/origin, and Kikuta (1995)) finds a
solution for a general rooted tree. Recall that, in HS on a tree, the hider optimally
hides only at leaf nodes. Therefore, on a tree, HS and NHS are equivalent; however,
STNHS is different because of the addition of a search time at each node. Kikutal
(2004) studies STNHS on a cyclic network in which all nodes lie on a circle. The
asymmetric networks of |Alpern| (2010)) and |Alpern and Lidbetter| (2014)) are applied
to STNHS by Baston and Kikuta| (2015)); however, in addition to direction-dependent
travel times between nodes, edges where travel is only possible in one direction are
allowed. Baston and Kikutal (2013)) allow the searcher to choose their starting node
in STNHS, bounding the value above in the general case and below when all edges
are of equal length.

Alpern and Lidbetter (2015) note that STNHS has links with their two-speed
model, T-SHS, with passing a node comparable to the fast speed and searching a
node comparable to slow. However, recall that T-SHS allows hiding along edges,

while STNHS does not.

Hiding in Boxes A model named BOX by [Hellerstein et al. (2019) is obtained by
removing travel time from STNHS, equivalent to a search space of n discrete locations
(boxes), all within immediate reach of the searcher, and all with an associated search
time. A pure strategy for the hider is a box to hide in, of which there are n, and a
pure strategy for the searcher is a permutation of {1,...,n}, of which there are n!,
detailing the order in which to search the n boxes. Therefore, BOX is a finite game,
and its solution, presented in |Alpern and Lidbetter| (2013)), is simple. The unique
optimal hiding strategy hides in a box with a probability proportional to its search
cost. There are many optimal search strategies, see Alpern and Lidbetter| (2013) or
Lidbetter (2013)).

Several extensions to BOX considered in the literature are as follows.



Part II. Chapter 6. Literature Review 145

Dresher| (1961) extends BOX with unit search times by, after an unsuccessful
search of box 7, telling the searcher whether the hider’s true box j satisfies j < ¢ or
j > 1. Dresher (1961) solves the problem for n = 3, with |Johnson, (1964)) deriving
properties of optimal strategies and solving the game for n < 11. Recently, |Fokkink
and Stassen| (2011)) provides an algorithm to solve the game for n < 256 and a formula
for the value of the game as n — oo.

Efron| (1964) studies BOX with unit search times and a mobile hider who can
switch boxes between searches. This problem is clearly trivial; all boxes are identical,
so, before each search, both players choose box i to hide/search with probability 1/n.
Efron| (1964) introduces a deadline d € {1,...,n}, with, rather than the search time,
the payoff to the hider 0 if detection occurs within the first d searches and 1 otherwise.
Further, the searcher is not allowed to search a box more than once. By symmetry,
the searcher’s optimal strategy is to randomly choose d boxes from {1,...,n} and
search them in a random order. Despite no restrictions on the hider’s movement,
Efron (1964) shows that the hider’s optimal strategy is identical to the searcher’s.
Efron| (1964)) also considers a payoff dependent on the number of searches required to
find the hider before the deadline and allows the searcher to search multiple boxes at
once.

Both [Lidbetter| (2013) and |Lidbetter and Lin (2019)) consider a searcher looking
for multiple objects hidden by one hider. The former permits only one object per box
and minimises the expected time until all objects are detected. No benefit is found in
changing search plan at any point during the search, no matter how many objects have
thus far been detected. As well as in boxes, Lidbetter| (2013)) also considers search on
a network structure with the expanding searches of the aforementioned |Alpern and
Lidbetter| (2013)) permitted. The game is solved on simple networks, and the value
bounded for a general network, where, unlike search in boxes, changing search plan
midway may be beneficial. [Lidbetter and Lin| (2019) considers two extensions to the

box search of [Lidbetter| (2013)). In the first, multiple objects may share the same box,
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but only one can be found at once, so one box may need several searches. In the
second, the expected regret is minimised, defined as the possible decrease in search
time if the searcher knew where all objects were hidden.

Hellerstein et al. (2019) provides general methods for solving finite games where,
for any player 1 strategy, an optimal counter strategy for player 2 is easy to obtain.
They show how their methods can solve more extensions to BOX, including the ex-
panding search of Alpern and Lidbetter| (2013) and the submodular search of |[Fokkink
et al.| (2019).

Away from the search-game literature, Anderson and Weber| (1990) studies a
rendezvous-version of BOX. Recall that in a rendezvous search, the second decision
maker is not a hider, but a second searcher who aims to find the first searcher as
soon as possible. Therefore, both searchers share the same objective, so the game
is no longer zero sum, but rather a cooperative, coordination game. In Anderson
and Weber| (1990)), the boxes are identical, and both searchers move in discrete time.
The search ends the first time that both searchers occupy the same box, with both
searchers aiming to minimise the expected search time. If each searcher always moves
to box ¢ with probability 1/n, i = 1,...,n, the expected search time is n. |[Anderson
and Weber| (1990) shows such a random strategy is optimal when n = 2, but for n = 3,
the searchers can do better; the optimal expected search time is shown to be 8/3 and
an strategy optimal for both searchers is found. Anderson and Weber| (1990)), in fact,
initiated work on rendezvous search, 14 years after the problem was posed in |Alpern
(1976)), a seminar in Vienna.

An extension to BOX relevant to this thesis has a searcher with imperfect detec-

tion, the subject of the next section.
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6.2 Imperfect-Detection Models

In an imperfect-detection model, when the searcher and hider pass within the detec-
tion distance, the hider is found with a known location-dependent detection proba-
bility strictly less than 1. Models with imperfect detection are less well studied than
their perfect-detection counterparts, not least because of their increased difficulty; for
an immobile hider, unlike a perfect-detection model, a tour of the search space does
not guarantee the hider’s discovery. Further, the result of Alpern and Gal (1988
for perfect-detection models guaranteeing the existence of a value and optimal search
strategy no longer applies.

The simplest model with imperfect detection—referred to as IBOX—is the ex-
tension of BOX where the searcher may overlook the hider when searching the box
containing them. Since development of IBOX is the topic of Chapter [7] of Part II
of this thesis, IBOX and its extensions are the focus of remainder of this literature
review. Note that IBOX itself is the two-sided extension to the classic one-sided,
time-independent search problem studied in Part I of this thesis. As in the classic
problem with the target replaced by a hider, for z = 1,...,n, the hider is located in
box ¢ with hiding probability p;, and a search of box i takes known search time t; > 0,
finding the hider, if in box 4, with known detection probability q; € (0,1). However,
whilst in the classic problem the target distribution p = (py,...,p,) with > "  p; =1
is known to the searcher and determined by Nature, in IBOX, the hiding distribution
p is chosen by the hider and is unknown to the searcher.

Like BOX, IBOX has n pure hiding strategies, each corresponding to a box to hide
in, with a mixed hiding strategy a hiding distribution p. A pure search strategy in
IBOX is a search sequence, an ordered list of boxes to search (referred to as a search
policy in Part I). Since after no number of searches is the hider’s detection guaranteed,
unlike in BOX, a search sequence has infinite length; therefore, the searcher has an

infinite number of pure strategies, and IBOX is a semi-infinite two-person, zero-sum
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game. Since all possible payoffs are positive, as discussed in Section [5.2] by Blackwell
and Girshick (1954)), IBOX has a value and the hider has an optimal strategy.
Recall from Part I that, in the classic one-sided, time-independent search problem
with target distribution p, the expected search time is minimised by the following
Gittins index policy against p. If m; € ZT = {1,2,...} searches have already been
made of box i, 2 = 1,...,n, the next search is of any box with a maximal value of

pi(l —q)™q

6.2.1
2 (6:2.1)

with (6.2.1)) known as the Gittins index of box i. Equivalently, the next search is of
any box with maximal

Pidi

t;

(6.2.2)

where, by Bayes’ theorem, p, = p;(1 — ¢;)™/k is the posterior probability that the
target is in box i, 1 = 1,...,n, k = Z;.L:lpj(l — ¢;)™ . Therefore, if the searcher in
IBOX knew the hider’s mixed strategy p, then any search sequence generated by a
Gittins index policy, called a Gittins index sequence against p, minimises the expected
search time.

As discussed in Part I, several papers from the early 1960s independently prove
the optimality of a Gittins index policy in the classic one-sided, time-independent
search problem. Among these papers are Norris (1962)) and Bram| (1963), the first
two papers to study IBOX. Section discusses the analyses of IBOX by |Norris
(1962), Bram (1963) and others in the literature. Extensions to and variations on

IBOX in the literature are discussed in Section [6.2.2]

6.2.1 IBOX: Hiding in Boxes

We are aware of seven papers that have studied IBOX (Norris|, 1962; [Bram), [1963;
Roberts and Gittins|, [1978; |Gittins and Roberts, [1979; (Gittins, 1989} [Ruckle, 1991}

Lin and Singham) [2015). This subsection discusses any contribution made by each to

different aspects of IBOX.
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Existence and Form of an Optimal Searching Strategy Bram/ (1963) con-
centrates on proving the existence of an optimal search strategy for IBOX with unit
search times. The equivalent S-game is considered (see Section here), and S*, the
convex hull of S, is shown to be closed. Therefore, by Theorem 2.4.2 of Blackwell and
Girshick (1954), IBOX with unit search times has an optimal search strategy which
is a mixture of at most n search sequences.

For IBOX with n = 2 and unit search times, Chapter 8 of |Gittins (1989)) finds
an optimal mixed search strategy n* which, no matter which box the hider hides
in, attains the same expected search time— an equalising strategy. Further, n* is a
mixture of only two search sequences, both Gittins index sequences against an optimal
hiding strategy. Recall when there is a tie for the maximal Gittins index in (6.2.1]), a
Gittins index policy is free to search any box with an index involved in the tie. The
first (resp. second) search sequence in the mixture n* is generated by searching box 1
(resp. 2) whenever there is a tie.

Ruckle (1991)) proves that the pure strategy which searches boxes in the order
1,2,....n,n—1...,1,2,... is optimal for the searcher in the search game with ¢; =
0.5 and t; = 1, 2 = 1,...,n. For a general n-box search game with unit search
times, Ruckle| (1991) shows there exists an equalising pure strategy, which, whilst not
necessarily optimal, attains near-optimal performance.

While Ruckle’s results do not extend to the arbitrary-search-time case, the aim of
Chapter [7]is to extend the results of Bram| (1963) and |Gittins| (1989) to IBOX with
n boxes and arbitrary search times. |Gittins (1989) claims an extension to his method
is not difficult for arbitrary n; however, we find such an extension leads to several

complications, and extend Gittins’ result using a different approach in Chapter

Optimal Strategies in Mobile-Hider IBOX |Norris (1962)) studies links between
IBOX and its extension with a mobile hider who can switch boxes between searches.

Unlike the perfect-detection models of Section [6.1], IBOX becomes easier to solve when
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the hider is mobile since the hider can ‘reset’ the game by hiding anew after every
search. Consequently, mobile-hider IBOX reduces to a succession of identical games
in which only one box is searched. Firstly for n = 2 and t; = ¢, = 1 in Chapter 3 and
then in full generality in Chapter 8, |[Norris (1962) solves IBOX with a mobile hider by
solving this single-search game, a finite two-person zero-sum game where both players
have n pure strategies, each corresponding to a box to hide/search. The solution is
as follows. After each search, independent of all previous actions, the hider optimally

moves to box ¢ with probability

ti/q
Poi =<n 5 7 > (6.2.3)
> i1t/
and the searcher optimally next searches box ¢ with probability
1/q;
L - (6.2.4)
Zj:l 1/q;

1 =1,...,n. The value of the game is
> L (6.2.5)
=1 4
Note that the optimal hiding strategy po = (po.1, - - - Po,n) is the unique hiding strategy
for which the indices in across all n boxes are equal. Since (6.2.2)) measures the
appeal of searching its corresponding box next, when the current hiding distribution
is po, the searcher has no advantage in searching one box over another.

Further, returning to an immobile hider, if ¢; = 1 for « = 1,...,n, so IBOX
becomes BOX, then py hides in box ¢ with probability proportional to ¢;, the unique
optimal hiding strategy in BOX found by |Alpern and Lidbetter| (2013)). Therefore, it
is natural to wonder how widely and how close to optimal pg is in IBOX, a question
examined by Roberts and Gittins| (1978), which studies unit-search-time IBOX for
n = 2 and makes the following observation. In mobile-hider IBOX, by always hiding
anew using pg, the hider optimally ensures equality in indices before every search.
The hider should therefore aim to mimic this behaviour in IBOX, but is restricted to

hiding once at the start of the search. Whilst p, attains equality in indices before the
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first search, subsequent posterior hiding distributions are determined by the history
of searches, which are out of the hider’s control. Intuitively, the best the hider can
do is hide with probability p* such that, when the searcher optimally counters with
a Gittins index sequence against p*, the generating Gittins indices in are as
close to being as equal as possible throughout the search. Since the chance that the
hider remains undetected decreases as time passes, approximating equality in (6.2.1]
earlier in the search takes more importance; therefore, pg, which begins with equality
in , should be a good choice of strategy for the hider in IBOX.

Both [Norris (1962) and Roberts and Gittins| (1978)) show that py is optimal when
n = 2 and the boxes are identical, the latter by simply appealing to symmetry. (Gittins
and Roberts| (1979), which studies unit-search-time IBOX for arbitrary n, extends the
result to n identical boxes, and Ruckle| (1991) adds an optimal search strategy for this
case.

Rucklel (1991)) also solves a two-box problem, where pg may be represented by a
scalar py = po1. Both boxes have search time 1, and box 2 has perfect detection. It
is shown that pg is optimal for ¢; € [0.618,1]; i.e., when box 1’s detection is close
to perfect. Section analyses the connection between Ruckle’s solution and our
numerical study, offering an explanation of Ruckle’s result.

Roberts and Gittins| (1978) further investigates two-box problems with unit search
times where pg is optimal. Without loss of generality, assume ¢; > ¢o. |Roberts and
Gittins (1978) proves that if (1 — ¢;)™ = (1 — g)™*! for some m € Z, then py is
optimal if and only if m < 12. A numerical study of problems with (1 — ¢;)™ =
(1 —q2)™ for my, my € Z* finds that py is more likely to be optimal for larger ¢; and
q2, explained by equality in towards the start of the search taking even greater
importance for ¢; and ¢y large since the hider is likely to be found sooner.

Over their numerical study, Roberts and Gittins (1978) concludes py is a good
heuristic strategy for the hider by examining its suboptimality (the percentage de-

crease in expected search time if the hider plays py instead of an optimal p* and
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the searcher optimally counters using a Gittins index sequence). In particular, in no
problem sampled with (¢1, ¢2) lying between the curves ¢; = ¢ and 1 —¢q; = (1 —g2)™
is the suboptimality of pg more than 0.075% for m = 2 and 3.5% for m = 10, with
the degradation with m explained by moving further away from the identical-boxes
case where pg is optimal by symmetry.

Also via a numerical study with unit search times, |Gittins and Roberts| (1979)
finds a relationship between two-box games with detection probabilities ¢; < ¢, and
four, eight and twelve-box games with detection probabilities in [g;, .|, coined related
games. In particular, if py is optimal in a two-box game, pq is often optimal in any
related, larger game; otherwise, the suboptimality of pg is than 0.2%. Further, for
detection probabilities evenly spread throughout [g;, ¢,], the suboptimality of py in a
related game is almost always smaller than that of py in the original. On the other
hand, when each detection probability is equal to either ¢, or ¢,, (bar the identical-
boxes case) the suboptimality of py grows with n, but even for n = 12, was generally
less than twice as large as the suboptimality of py. It is concluded that pg remains
a good heuristic strategy for the hider for n > 2, with the aforementioned patterns

again explained by the proximity to the identical-boxes case.

Recurrent Regions For n = 2, by definition of py, if the current posterior hiding
probability for box 1 is p’ > py (resp. p’ < po), then any Gittins index policy next
searches box 1 (resp. 2), and, if the search fails, the searcher’s belief that the hider is
in box 1 will decrease (resp. increase). If p’ = py, a Gittins index policy may search
either box 1 or box 2 next; write p’ for the posterior probability that the hider is in box
1 after a single search of box ¢, ¢ = 1,2. Noted by both |[Norris (1962)) and Roberts and
Gittins| (1978), it follows that if the hider plays any strategy p € (0, 1) and the searcher
a Gittins index sequence against p, after some finite number of searches, the sequence
of posterior hiding probabilities for box 1 will enter and henceforth remain in the

interval [p!, p?], coined the recurrent region or recurrent interval. Clearly py € [p', p?];
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Norris| (1962)) shows that any optimal hiding strategy must also belong to the recurrent
region.

By considering (n — 1)-dimensional space, Norris (1962) generalises the recurrent
region to an arbitrary number of boxes n. Note that, by definition of pg, the first n
searches of a Gittins index sequence against pg may be any permutation of {1,...,n}.
For any n, Norris (1962) shows that the recurrent region is generated in (n — 1)-
dimensional space by the 2™ — 2 posterior hiding distributions that could be attained
within the first n — 1 searches if the searcher follows a Gittins index sequence against
po- For n = 3, the recurrent region is an irregular hexagon in 2-dimensional space;
several examples are provided in Norris) (1962)).

By definition, if the hider plays p outside the recurrent region, then, if the searcher
plays a Gittins index sequence against p, after some number of searches a posterior
p’ will lie in the recurrent region. |Gittins| (1989)) declares it is easy to show that p’ is
a better hiding strategy than p and hence that any optimal hiding strategy lies in the
recurrent region, extending the same result of Norris (1962) for n = 2 to arbitrary n.

Recall that the hider wishes the long-term-average posterior hiding distribution to
be close to pg. By following a Gittins index policy, the searcher ensures the sequence
of posteriors remains in the recurrent region centred at pg. |Gittins (1989) notes the
paradox; despite being in direct conflict with the hider, any optimal counter of the

searcher to a hiding strategy provides the hider with exactly what they want!

Calculating an Optimal Hiding Strategy By Blackwell and Girshick (1954),
IBOX is guaranteed to have an optimal hiding strategy. Bram (1963) shows that, in
unit-search-time IBOX, if p* = (p,...,p}) is an optimal hiding strategy, then pf > 0
for 2 = 1,...,n. In other words, every box is optimally hidden in with a non-zero
probability; this result is extended to arbitrary search times in this thesis in Chapter
[

Write v(p) for the expected search time if the hider plays p and the searcher a
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Gittins index sequence against p; an optimal hiding strategy maximises v(p). The
expected search time under any search sequence is linear as a function of p, so v(p) is
the infimum of an infinite number of linear functions and hence is concave. Therefore,
any local maximum must be a global maximum. |[Bram (1963) shows that v(p) is
continuous and attains its maximum value v*.

Recall from Part I that [Matulal (1964)), studying the one-sided search, shows that
if and only if log(1 — ¢;)/log(1 —¢;) € Q for all 4,5 € {1,...,n} does there exist an
optimal search sequence which, after an initial transient period, is periodic; in other
words, some fixed, finite sequence of boxes, or cycle is repeated indefinitely. The

condition of Matula (1964)) is equivalent to

(1—g)™ == (1—gy)™ (6.2.6)

for some coprime integers x;, ¢ = 1,...,n, in which case any cycle contains z; searches
of box i for 4 = 1,...,n. Under (6.2.6), Norris| (1962) shows that v(p) is piecewise
linear on the recurrent region, a fact further discussed in |Gittins (1989) for n = 2.
For any initial hiding distribution p, after such a cycle of searches is made, the
posterior hiding distribution is equal to p. As a result, Matula (1964) claims that
under the optimal expected search time in the one-sided problem has a closed
form; therefore, derived by |Norris| (1962)), v(p) has a closed form in IBOX under
. Since any irrational number can be approximated arbitrarily well by a rational
number, as pointed out by Norris (1962) and Roberts and Gittins (1978, any problem
where does not hold can be approximated arbitrarily well by one where (6.2.6|)
holds. Therefore, the closed for expression for v(p) valid under can be used
to estimate v(p) when does not hold. Otherwise, for any problem, Gittins
and Roberts| (1979)) provides an iterative method to calculate v(p) to any desired
accuracy. The method is presented for unit search times, but may easily be generalised
to arbitrary search times. For two special cases, |Gittins and Roberts (1979)) studies
properties of v(p) which simplify its calculation. In the first case, boxes can be split

into equal-sized groups where all boxes in each group are identical. In the second
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case, each box has either detection probability ¢ or g, which satisfy 1 — ¢ = (1 — )™
for some m € Z™.

To find an optimal p*, Gittins and Roberts| (1979) suggests, starting at pg, making
incremental adjustments to hiding strategies and evaluating v(p), proceeding in a
direction in which v(p) increases until no longer possible. Since v(p) is concave, the
local maximum found will be a global maximum. |Gittins and Roberts| (1979) adjusts
the incremental procedure for the searcher to find a good heuristic strategy. |[Lin and
Singham| (2015]) presents an iterative algorithm which estimates an optimal strategy
for each player by successively calculating tighter bounds on v*. Alongside the work

in Chapter [7] the algorithm will be submitted for publication in 2020.

6.2.2 Extensions to IBOX

This section summarises extensions to IBOX in the literature.

A Reward-Cost Payoff To begin, instead of the total search time, the payoff to
the hider in Norrig (1962) is, in fact, total reward minus total cost, which allows
several new features to be added to IBOX. The hider receives reward 1 for every
unsuccessful search and can switch boxes between searches for a cost of . The cases
pw = 0 and g = oo are, respectively, equivalent to the mobile and immobile-hider
versions of IBOX with unit search times discussed in Section [6.2.1] Norris (1962)
also studies general p. For two boxes, i is found such that the hider never switches
boxes when p > pi. The value of the game is shown to decrease monotonically as
p increases from 0 (mobile-hider IBOX) to i (a game equivalent to IBOX). Norris
(1962) notes that the n-box game for arbitrary p becomes extremely complex. A case
with three identical boxes is partially solved, and methods to approximate solutions
in the general case are discussed.

Norris (1962) studies further generalisations to the reward-cost payoff structure.

In addition to some boxes costing the searcher more to search, the hider may see
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more benefit remaining undetected in some boxes over others. Therefore, the reward
obtained by the hider after an unsuccessful search is allowed to depend on both the box
searched and the box where the hider is currently hidden. Further, the consequence
of being found may vary from box to box; therefore, the hider incurs a box-dependent
detection cost on being captured. Finally, the reward and cost are allowed to depend
on the current length of the search via an exponentially-decaying discount factor. For
p = oo (equivalent to an immobile hider) and general n, Chapter 8 of Norris (1962))
shows that, given knowledge of the hider’s strategy, an index policy similar to (6.2.1))
is optimal for the searcher under the aforementioned extensions.

Neuts (1963)) also considers a reward-cost payoff structure with exponential dis-
counting. The hider receives a reward for each unsuccessful search, which, like Norris
(1962), depends on the box searched but, unlike Norris| (1962)), not on the hider’s
location. Like Norris (1962), there is a detection cost to the hider incurred on their
discovery but, unlike Norris| (1962), the detection cost is not box dependent. Neuts
(1963) first studies the case where the searcher is memoryless, in other words, not
allowed to use the history of failed searches to guide their next search. In particular,
the searcher must choose y = (y1, ..., y,) at the start of the search process and always
use y to select a box for the next search, where y; is the probability of selecting box 4,
1 =1,...,n. Therefore, like mobile-hider IBOX, Neuts’ memoryless problem reduces
to an easily-solved single-search game where both players have n pure strategies, each
corresponding to a box to hide/search. In fact, with no detection cost or discounting,
Neuts’ problem is identical to mobile-hider IBOX. |Neuts| (1963)) acknowledges that a
memoryless searcher is not practical when the hider cannot move, but uses the mem-
oryless solution to study a non-memoryless problem with an immobile hider where
the objective is to minimise the Bayes’ risk to the searcher.

However, Neuts’ memoryless solution is not correct, being corrected in the no-
discounting case in [Sakaguchi (1973). With zero-detection cost, as expected, Sak-
aguchi’s solution coincides with the mobile-hider IBOX solution in (6.2.3)),
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and (6.2.5)) found by (1962)). Further, |Sakaguchi (1973) shows the optimal
hider and searcher strategies in (6.2.3) and (6.2.4), respectively, retain optimality

when the detection cost is non-zero. Hence, the only change to the value in (6.2.5]

is the subtraction of the detection cost. Sakaguchi (1973) extends the solution to al-

low discounting and box-dependent detection costs, showing that adjusted versions of

(6.2.3) and (6.2.4) are optimal. In a model similar to |Thomas and Washburn| (1991)
discussed in Section [6.1] [Sakaguchil (1973) further introduces travel costs between

boxes and a hider aware of the searcher’s current box. Thomas and Washburn| (1991)),

however, allows time-dependent search strategies unlike |Sakaguchi| (1973).

Searches in Continuous Time Roberts and Gittins| (1978), (Gittins and Roberts|

(1979)) and |Gittins (1989) consider a continuous-time version of IBOX. At any time

t, the searcher may split their search effort across the n boxes; let u;(t) represent
the effort in box ¢ at time ¢, >, u;(t) = 1. An exponential detection function is
assumed; specifically, if the hider is in box ¢, the searcher finds the hider by time ¢
with probability 1 — exp(—\;U;(t)), where

Ui(t) = / t wi(s)ds,

=0
and )\; is a known detection rate of box i. (1989) proves that the minimax
theorem holds, the hider optimally hides in box ¢ with probability
/N
Z?:l 1/ >‘j ,
and the searcher optimally sets u;(t) equal to (6.2.7) at any time ¢.

Since \; measures the appeal of box i to the searcher, as noted by (1989),

hiding using (6.2.7]) gives the searcher no preference of any box over another and may

(6.2.7)

be thought of as the continuous-time version of the strategy po in (6.2.3]). Whilst pg
is not always optimal in IBOX, (6.2.7) is always optimal in continuous-time IBOX.
The reason is the following. The searcher’s optimal strategy in continuous-time IBOX

(recall also given by ((6.2.7))) keeps the posterior hiding distribution at (6.2.7) through-
out the whole search, so (6.2.7) never gives the searcher an advantage in searching
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one box over another. As discussed in Section this situation is precisely what
the hider wants. On the other hand, in IBOX, whilst any optimal search strategy
tries to keep posterior hiding distributions as close to py as possible, approximations
must suffice because of the discrete nature of the search. Therefore, some other hiding
distribution may lead to better posterior approximations of py over the course of the

search, and hence be optimal for the hider.

A Deadline Payoff with Unit Search Times IBOX with unit search times has
been studied with a deadline d € Z*, with the payoff to the hider 0 if detection
occurs within the first d searches and 1 otherwise. Therefore, the searcher maximises
the probability of finding the hider before d, a common objective in one-sided search
problems discussed in Chapter [1] of Part I of this thesis.

Subelman| (1981) finds optimal strategies for both players which depend on d,
applicable when d is fixed and known to both players. In Lin and Singham| (2016), d
is not known by the searcher. Therefore, uniformly optimal search strategies, which,
recall from Part I, are optimal for any choice of deadline, are of importance. |(Chew
(1967) shows that a uniformly optimal search policy exists in the classic one-sided,
time-independent problem with unit search times; Lin and Singham| (2016) shows the
same is true in the two-sided extension whether the hider knows the deadline or not.
Further, a uniformly optimal hiding strategy is shown to exist if and only if all boxes
are identical. In this case, the uniformly optimal hiding strategy is pg, namely, hide
in each box with probability 1/n. Recall that, when the boxes are identical, pg is also
optimal in regular IBOX (with payoff the total search time); |Lin and Singham| (2016])
also shows that, when the boxes are identical, their uniformly optimal search strategy
is optimal in regular IBOX.

Berry and Mensch| (1986) adds both a deadline objective and imperfect detection
to[Dresher] (1961)), discussed in Section[6.1] A detection probability ¢ is known to both

players. Suppose the hider is in box j. Upon a search of any box i, with probability
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q, the model is identical to |Dresher| (1961), namely, the hider is found if ¢« = j, and
otherwise the searcher is told whether 7 < ¢ or 5 > i. With probability 1 — ¢, the
searcher is told j < 7 regardless of the truth. Suppose a search does not find the hider.
If told j > i, the searcher knows this is the truth and can rule out boxes {1,...,i}.
Otherwise, the searcher is told j < 4, but cannot rule out boxes {i+1,...,n}as j <i
could be a lie. [Berry and Mensch) (1986) solves the game for n = 2 and arbitrary
deadline d € Z*, and partially solves the game for arbitrary n and d = 2.

Nakai (1986b) considers a deadline objective in a problem with a mobile hider
and infinite number of boxes ordered numerically. The hider starts in an arbitrary
box. After each unsuccessful search, the searcher learns the position of the hider. The
hider may then, unseen by the searcher, either move to a neighbouring box or not
move at all. The detection probability on the next search depends on whether the
hider just switched boxes or not, and not on the hider’s current location. There is
also a box 0 or ‘home’” which cannot be searched; once the hider reaches box 0 they
will optimally stay there until the deadline. Box 0 is clearly attractive to the hider,
but always moving towards box 0 is predictable behaviour. [Nakai| (1986b)) solves the
game using recursive methods. As expected, the nearer the hider is to box 0, the
greater the probability they should head towards it.

Stewart| (1981) considers a similar model to Nakai (1986b]) with an unsearchable
box 0 but only two boxes. The hider starts in box 2 with their position henceforth
unknown to the searcher. The detection probability depends both on the box searched
and on whether the hider is about to move. The hider receives payoff 1 if they reach
box 0 undetected and payoff 0 otherwise. Stewart| (1981) considers both a searcher
making searches in discrete and in continuous time.

More recently, |Gal and Casas| (2014) considers a deadline version of IBOX where
the hider is ‘prey’ and the searcher a ‘predator’. The deadline d € {1,...,n} is
interpreted as the predator becoming tired and needing rest. The predator may not

search a box more than once, with the detection probability interpreted as a ‘capture
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probability’; i.e., the predator always sees the prey when searching the prey’s box 1,
but capture only occurs with probability ¢; since the prey will attempt to flee.
Without a loss of generality, suppose ¢1 < -+ < g,. Recall py from (6.2.3), the
unique hiding strategy which makes all n boxes equally attractive to the searcher in
IBOX. |Gal and Casas (2014) shows if d < 1/pg1, then py is optimal for the prey,
and the predator optimally searches box ¢ at some point before the deadline with
probability dpg;, @ = 1,...,n. The value of the game, the probability of capture

under these optimal strategies, is therefore
d
Z?:1 1 / q; '

Note that the prey can attain an expected payoff of at most ¢; by always hiding in

Zpo,z' X dpo,i X i = (6.2.8)
i=1

box i. If d > 1/pg 1, then exceeds q1, so pg is no longer optimal for the prey.
Gal and Casas| (2014)) shows that, in this instance, the prey cannot do better than
hiding in box 1 (the box with the best chance of fleeing successfully) with probability
1, so the value of the game is ¢;. Clearly any optimal strategy for the predator always
searches box 1.

Gal et al.| (2015) introduces a known, persistence probability 5 to the model of
Gal and Casas (2014). If the predator searches the prey’s box before the deadline but
fails to capture it, the predator either gives up with probability 1 — £ and the game
ends with no capture, or the predator persists with probability 8. If the predator
persists, the game restarts with the prey allowed to relocate to a new box. (Gal et al.
(2015)) solves the game for arbitrary .

As in|Gal and Casas| (2014)), if the deadline exceeds a threshold, the prey optimally
always hides in the box with the best chance of a successful flee, and otherwise opti-
mally makes all boxes equally attractive to the predator using a mixed strategy p*.
However, in |Gal et al.| (2015)), p* # po and depends upon (. Further, the threshold is
an increasing function of 3; therefore, the more likely the predator to persist, the more
appealing equating the attractiveness of all boxes using pg is to the prey. Extensions

in |Alpern et al. (2019) allow a chance of the prey being caught whilst relocating, and
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the detection/capture probabilities to be unknown to both players and learnt as the

search progresses.

Alternative Roles of the Players Several versions of IBOX have been considered
where the second player is not a hider.

Suppose a target is hidden among n boxes according to a target distribution known
to both players. In |Croucher| (1975), the second player is a protector, who wishes the
target to remain hidden. Both the searcher and protector allocate effort to each box,
with, if the target is located there, the more (resp. less) effort allocated to a box
by the searcher (resp. protector), the greater the probability of the detection of the
target. Both players have a finite amount of effort to allocate, and the expected
payoff is the probability that the target is found after both players have used all their
available effort. Baston and Garnaev| (2000) extend the model of (Croucher| (1975)) to
incorporate a player-dependent cost of allocating effort into each player’s objective,
which makes the game non zero sum. Further, the addition of such a cost means each
player may no longer wish to allocate all their effort.

In [Nakai| (1986a)), the second player is another searcher. Both searchers aim to
find the target before the other, and both believe the target to be hidden according
to a different target distribution. As in the continuous-time IBOX model of |Gittins
(1989), search effort is allocated in continuous time with an exponential detection
function. In Nakai (1990)), each searcher aims to find their own target before the
other searcher. Any effort allocated in box by one searcher disrupts the effectiveness

of effort allocated in that box by the other searcher.



Chapter 7

A Search Game in Discrete

Locations

This chapter concerns IBOX, the search game in n discrete locations (boxes) with
an immobile hider. As discussed in Section there are various studies of IBOX
in the literature, but their results are limited to two boxes or unit search times.
Here, with novel proof techniques, we extend several such results to IBOX in its
full generality, uncovering various new properties along the way. As a result, the
previously-fragmented theory of IBOX is both collated and enhanced.

In Section we formulate IBOX. As with all search games discussed in Chapter
[6] since there are two players in direct conflict, IBOX is a two-person, zero-sum
game introduced in Chapter Specifically, since there are an infinite number of
pure strategies for the searcher, IBOX is a semi-infinite game discussed in Section
for which general theory does not guarantee the existence of an optimal search
strategy. [Bram| (1963) proves an optimal search strategy exists in unit-search-time
IBOX; Section [7.2] extends Bram’s result to general IBOX.

In Section[7.3] several properties of optimal strategies for each player are presented,
including the generalisation of a two-box, unit-search-time result of Gittins| (1989)

showing the existence of a simple optimal search strategy among the many available.

162



Part II. Chapter 7. A Search Game in Discrete Locations 163

The two-box proof method of Gittins does not adequately extend to an arbitrary
number of boxes, so an alternative approach is taken. Further, we develop a practical
test determining whether a hiding strategy is optimal or not by solving a known
finite two-person, zero-sum game. In a numerical study, |Gittins and Roberts (1979)
investigates the frequency of the optimality of a particular hiding strategy (introduced
as po in Section that gives the searcher no preference over which box to search
first. In Section[7.4] using the aforementioned optimality test, we extend the numerical
study of (Gittins and Roberts (1979) to a much wider range of problems split into
subgroups, with comparisons between subgroups linked to Part I of this thesis. Section

derives some additional properties of an optimal hiding strategy.

7.1 Model and Preliminaries

Consider a two-person zero-sum search game G as follows. A hider decides where to
hide among n boxes labelled 1,...,n, and a searcher decides an ordered sequence of
boxes to search. A search in box 7 takes time ¢; and will find the hider with detection
probability ¢;, « = 1,...,n, if the hider is indeed hidden there. These quantities are
common knowledge to both players. The payoff to both players is the time at which
the hider is detected. Therefore, the expected payoff is the expected search time which
the searcher aims to minimise and the hider to maximise.

The hider’s pure strategy space is {1, ..., n}, where each pure strategy corresponds
to a box to hide. A mixed hiding strategy is a probability vector p = (p1, ..., p,) such
that the hider hides in box ¢ with probability p;, where 0 < p; < 1fori=1,...,n,
and )", p; = 1. The searcher’s pure strategy space is S = {1,2,...,n}*. Each pure
strategy is a search sequence—an infinite, ordered list of boxes to search until the
hider is found. A mixed search strategy is a function n with domain S which satisfies

the following conditions.

1. The set {£ € S : n(§) > 0} is countable.
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2. des 77(5) =L

Under strategy 7, the searcher plays £ € S with probability 7(¢).

For a search sequence ¢ € S, write V;(€) for the expected search time if the hider
hides in box i, for ¢ = 1,...,n. In other words, V;(§) is the expected payoff of the
hider-searcher strategy pair (i,£). While the hider’s pure strategy space is of size
n, the searcher’s pure strategy space S is uncountable, because it is the Cartesian
product of a countable number of {1,...,n}. Therefore, G is a two-person zero-sum
semi-infinite game discussed in Section

The hider seeks a mixed strategy to guarantee the highest possible expected search

time regardless of what the searcher does, so he seeks to determine

n

v = mgx%relglz:;pZM(ﬁ) (7.1.1)

Likewise, the searcher seeks to determine

vy = inf max /Vi(f)'r](ﬁ)dﬁ.

n ie{l,...,n}

It is clear that v; < vy. As discussed in Section because the payoff function—
namely the length of the search—is bounded below by 0, it follows from Theorem
2.4.2 of Blackwell and Girshick (1954) that v; = vy, which is the value of G, written
by v*. In addition, by the same Theorem 2.4.2, the hider has an optimal strategy that
guarantees an expected search time of at least v*, and the searcher has an e-optimal
strategy; that is, for an arbitrarily small € > 0, the searcher can find a strategy to
guarantee an expected search time of at most v* + €. The next section makes further
appeal to Blackwell and Girshick (1954) to show that the searcher has an optimal

strategy.

7.2 Existence of Optimal Search Strategies

The aim of this section is to prove that the searcher has an optimal strategy in the

search game G. We begin by reformulating G as an S-game studied in Blackwell and
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Girshick| (1954)) and previously discussed in Section |5.2] of this thesis. In the S-game,

instead of choosing a pure strategy in S, the searcher chooses a vector in the set

S={(Vi(&),...,Vu(§)) : £ € S} C R™

If the hider hides in box i € {1,...,n} and the searcher selects (V1(£),...,V,(§)) € S,
then the expected payoff is V;(§).

By Theorem 2.4.1 of Blackwell and Girshick (1954)), the searcher selecting a mixed
strategy is equivalent to choosing a point in S*, the convex hull of S. By Theorem
2.4.2, it S, or equivalently S*, is closed, then there exists an optimal search strategy.

The intuition behind this result is the following, adapted from Chapter 13 of
Ferguson| (2020). If s = (s1,...,,) € 5%, then there exists a mixed search strategy
which, if the hider hides in box 7, achieves an expected payoff s;, i« = 1,...,n. It
follows that the value of the game v* satisfies

vt = inf{ max s;:S € S*} . (7.2.1)

i€{1,...,n}
If S is closed, then the infimum in is attained, so there exists s* € S* with
maXie(1,. n} 5; = v*; it follows that s* is an optimal search strategy. See Ruckle (1991
for more on the geometrical interpretation of optimal strategies in the search game,
particularly for n = 2.
Bram (1963)) concluded that an optimal search strategy exists for the search game

with t; = 1 for ¢ = 1,...,n by showing that S* is closed. In this section, we take a

different approach to extend the result to arbitrary ¢; > 0,i=1,... n.

7.2.1 Preliminary Properties of Optimal Strategies

Recall that a pure search strategy is a search sequence—an infinite, ordered list of
boxes. We begin by defining a particular type of search sequence prominent through-

out Part I and also discussed in Chapter [6] of this thesis.
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Definition 7.2.1 A Gittins index sequence against a mixed hiding strategy p =
(p1, .. .,Dpn) is a search sequence constructed with the following rule. If m; € {1,2,...}
searches have already made of box ¢ during the search process, i = 1,...,n, then the

next search is of any box j satisfying

. pi(l —qi)™q;
] = argmax ——— .
i=1,...n i

(7.2.2)

The terms in are known as Gittins indices, and a Gittins index sequence is a
search sequence that always searches a box with a maximal Gittins index. There may
be multiple Gittins index sequences against the same hiding strategy p due to ties for
the maximum in , so we write C'(p) C S for the set of Gittins index sequences
against p.

As discussed in Part I, if the searcher knows that the hider will choose a mixed
strategy p, by the work of several authors in the 1960s (Norris (1962), Bram| (1963)),
Blackwell (reported in Matula; (1964))), Black (1965))), any Gittins index sequence
against p is an optimal counter strategy for the searcher. This result is also recognised
by a comment by Kelly on|Gittins (1979), which formulates the search game with fixed
p as a multi-armed bandit problem optimally solved by Gittins indices, from where
the sequences in C(p) take their name. Therefore, we say a Gittins index sequence
against p is an optimal counter to p, and C(p) is the set of optimal counters to p.

Recall that a mixed search strategy plays a countable number of search sequences

with non-zero probability; we next introduce the following terminology.

Definition 7.2.2 We say a mixed search strategy n is a mizture of the countable set
of pure search strategies {£ € S : n(§) > 0}, and write V;(n) for the expected time to

detection under 7 if the hider hides in box i, i =1,... n.

For any ¢ € S, as a function of p, > ., p;Vi(€) is a hyperplane in n-dimensional
space. Combined with (7.1.1]), it follows that v* is the maximum of the lower envelope
of an uncountable set of hyperplanes, which is a concave function of p. Let P* be

the set of p obtaining this maximum, so P* is the set of optimal hiding strategies.
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In most cases, |[P*| = 1 and the optimal hiding strategy is unique; an example with
|P*| > 1 can be found in Example [7.3.2]

Since the hider maximises a lower envelope of hyperplanes, there must exist at
least one hyperplane containing the point (p*,v*) for all p* € P*. In other words,
there exists at least one search sequence which optimally counters every optimal hiding
strategy. The following proposition states that an optimal search strategy, if it exists,

can only mix such search sequences.

Proposition 7.2.3 Any optimal search strategy n* is a mixture of some subset of
Npep+C(p). In other words, the searcher will use only search sequences that are

Gittins index sequences against every p € P*.

Proof. Since the search game G has a value v*, if the searcher chooses n* and the
hider any p* = (p,...,p5) € P*, the expected time until detection is v*; in other

words, we have
v = [r© <Zp;fv;<5>> de. (723)
i=1
Suppose n*(€) > 0, and there exists p = (P, ...,pn) € P* for which £ ¢ C(p). Then
S 5iVi(€) > v*. Since p is optimal for the hider, 7 p;Vi(€) > v* for all € € S;
therefore, cannot hold with p* = p, contradicting the optimality of n*. =
It is intuitive that adding a new box will increase the value of the game, because

the hider has one more place to hide, so the searcher needs to cover more ground, as

seen in the next proposition.
Proposition 7.2.4 The following are true.
1. If p* is optimal for the hider, then pf > 0 forv=1,...,n.
2. If »* is optimal for the searcher, then V;(n*) =v* fori=1,...,n.

3. Adding a new box increases the value of the game.
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Note that (1.) is also proved by |Bram| (1963)) for unit-search-time G via a different
method to the proof below.
Proof. We begin by proving (1.), which concerns the hider. Let v(p) be the expected
search time when the hider chooses p, and the searcher chooses any search sequence in
C(p); therefore, any p* € P* maximises v(p). Let &, be the element of C'(p) which,
when multiple boxes satisfy 7 searches the box with the smallest label.

Suppose, aiming for a contradiction, that we have p = (pi,...,p,) € P* with
pr = 0 for some k € {1,...,n}. Without loss of generality, relabel the boxes so that

we have p, = 0. Then

n—1

v(P) = piVils)- (7.2.4)

i=1

Take any € > 0 and set

pl:ﬁl(1_€> izla"'7n_17 DPn = €, p:(plaapn)

Compare &, € C(p) and & € C(p). Both apply the same rule when multiple
boxes satisfy (7.2.2), and for any i,j € {1,...,n — 1}, we have

Therefore, the subsequence formed of only searches of boxes 7 and j will be the same
for &, as for & for any i,j € {1,...,n— 1}. It follows that &, is just & with searches
of box n inserted between some searches of the first n — 1 boxes. Hence, we must
have V;(&,) > Vi(&p) for any i € {1,...,n — 1} with p; > 0. Further, we may choose
¢ small enough so that &, does not search box n until at least v(p) time units have

passed, so V,,(§,) > v(p). From these observations and (7.2.4), it follows that
n—1
U(p) = 6an(gp) + Zﬁz(l - 6)‘/7,(61))
i=1

> ev(p) + (1 —¢) Zpi‘/;(fﬁ) =v(p),

contradicting the optimality of p, and therefore proving the hider’s part of the result.
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Next, we prove (2.), concerning the searcher. Suppose n* is optimal for the searcher
and p* is optimal for the hider. Then the expected search time under the strategy
pair (p*,7*) is .

vt =3 pvior). (7.2.5)
i=1
Suppose that Vj(n*) < v* for some j € {1,...,n}. By (7.2.5)), there must either
exist k € {1,...,n} such that Vi(n*) > v*, or we must have p; = 0. The former
cannot happen as n* guarantees the searcher an expected search time of at most v*.
The latter cannot happen by the hider’s part of the result, leading to a contradiction
which proves the searcher’s part of the result.

Finally, we prove (3.) by showing that v}, , > v}, where v} is the value of an
n-box game, and vy, is the value if a new box is added to the n-box game. In the
game with n 4+ 1 boxes, the hider can guarantee an expected payoft of at least v} by
not hiding in the new box, so v}, ; > v;,. However, any such strategy has p,;1 = 0,
so is not optimal by the hider’s part of the result. Therefore, v} is not the value of

the (n + 1)-box game, so v}, > v;. ®

7.2.2 An Equivalent Search Game

In this section, we first show that an optimal search strategy exists in a modified
version of the search game G. We then draw the same conclusion for G by showing
that an optimal search strategy in the modified game is also optimal in G.

Consider a search game G(¢), parametrized by € € (0,1/n), identical to G in all
aspects apart from the set of pure search strategies, which are constructed by the

following. For ¢ = 1,...,n, write
M;(e) = inf{V;(¢) : £ € C(p) with p; < €}. (7.2.6)

In other words, among all Gittins index sequences against hiding strategies with
pi < €, M;(e) is the smallest expected search time if the hider is in box i. In G(e),

for i = 1,...,n, a pure strategy (;(¢) is available to the searcher. When elected, for
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i=1,...,n, ¢(e) results in payoff M;(¢) if the hider is in box i or payoff 0 otherwise.
In addition, available to the searcher in G(e) are Gittins index sequences against
hiding strategies where each box is hidden in with a probability of at least €. In other

words, hiding strategies in the set
Ple)={p:pi>e€i=1,...,n} (7.2.7)
To summarise, in G(¢€), the searcher has the following pure strategy set:

Sle)={£€Cp):pePle)}U{Ge):i=1,...,n}. (7.2.8)

For any € € (0,1/n), since the payoff in G(¢) is bounded below by 0, we may apply
Theorem 2.4.2 of Blackwell and Girshick| (1954) to conclude that G(e) has a value
and optimal hiding strategy. To prove that G(e) has an optimal search strategy, we

consider its S-game formulation, in which the searcher chooses a vector in

S(e) ={(Vi(E), .., Val§)) - £ € S(e)} CR™

The following lemma is proven in Appendix by showing that S(e) is closed and
applying Theorem 2.4.2 of |Blackwell and Girshick]| (1954)).

Lemma 7.2.5 For any € € (0,1/n), the game G(¢) has an optimal search strategy

which is a mixture of at most n pure search strategies.

The following result draws upon the properties in Section to conclude that,

for small enough €, the games G and G(€) are almost equivalent.

Lemma 7.2.6 Consider GG and its set of optimal hiding strategies P*. For any p* €
P*, there exists ey« € (0, 1/n] such that, for all € € (0, €p+), the two games G and G(e)
share the same value. In addition, p* is still optimal in G(€), and a search strategy is

optimal in G if and only if it is optimal in G(e).

Proof. First, by Theorem 2.4.2 of Blackwell and Girshickl (1954)), both G and G(¢)

have a value and an optimal hiding strategy.
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.....

Let p* = (p},...,p};) € P* and ¢ = minseq1,._ ) p}; we have €; > 0 by the hider’s
part of Proposition [7.2.4 Further, under any mixed hiding strategy, some box is
chosen with at most probability 1/n, so ¢ < 1/n.

As a function of €, M; in is clearly decreasing, as the set over which the
infimum is taken grows with e. Write p = (p1,...,pn). If p; = 0, then any & € C(p)
never searches box ¢, so V;(§) is infinite, and hence M;(e) T oo as € | 0. On the
other hand, if p; = 1, then any ¢ € C(p) only searches box 7, so V;(§) = t;/q;, and
hence M;(€) | t;/q; < v* as € T 1, where v* is the value of G. Combining the above

information, we may conclude that
€o = sup{e: M;(e) >v"/p;, i=1,...,n}

exists, and M;(e) > v*/pf for all € € (0,€2), 1 =1,...,n.
Let ep« = min(ey, €2); we show that ep+ satisfies the conditions of the lemma. Write

Y for a set of pure search strategies, and define

v(p,Y) = gigjf}v(p,f),

where v(p, &) is the expected search time if the hider chooses p and the searcher
chooses £. Throughout the following, let € € (0, ep+).

In G, a hiding strategy p is optimally countered by any sequence in C(p), leading
to an expected search time of v(p,S). Bearing the above in mind, we show that

v(p,S) > v(p,S(€)) for any hiding strategy p by considering two cases.

1. Suppose that p € P(e). Then C(p) is contained in S(e); therefore, if the

hider chooses p, the searcher does no worse when S is replaced with S(e), so

v(p,S) > v(p,S(e)).

2. Suppose that p ¢ P(e). Then there exists j € {1,...,n} such that p; < e
By the construction of (;(¢), we have V;((;(€)) < V;(§) for any £ € C(p), i =
1,...,n. Therefore, (j(€) € S(e) \ S dominates any sequence in C(p). It follows
that v(p,S) > v(p, S(e)).
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Now consider v(p*, S(€)); by the above, v* = v(p*,S) > v(p*,S(¢)). Since € < €,
we have p* € P(e), and hence C(p*) C S(e). The only pure search strategies in S(e)

that, when the hider chooses p*, could achieve a lower expected search time than a

sequence in C(p*) are those not in S, namely {(;(¢),i = 1,...,n}. Therefore, we have
(D", 8(e)) = min ({mn }{Zp;fvj«i(e))})
) g

= min (U*, min p;"Ml(e)> =",

i€{1,...,n}

where the final equality holds since € < €.

To conclude, we have v(p,S) > v(p,S(¢€)) for all hiding strategies p, and v* =
v(p*,S) = v(p*, S(e)). It follows that p* is optimal in G(e¢) and the value of G(e) is
v*.

As for the searcher, since the pure hiding strategies are the same for G and G(¢),
any optimal search strategy in G is optimal in G(¢) if it is available to the searcher in
G(e) and vice versa. By Proposition , any optimal search strategy in G chooses
only search sequences in C'(p*), available in G(¢) since C(p*) C S(¢). Further, for
i=1,...,n, wehave pf M;(€) > v*. Therefore, it is suboptimal in G(¢) for the searcher
to choose any strategy in S(e) \ & = {¢(€),7 = 1,...,n}. It follows that a search
strategy is optimal in G if and only if it is optimal in G(€), completing the proof. m

We conclude this section with its main result.

Theorem 7.2.7 In the search game G, for any optimal hiding strategy p*, there

exists an optimal search strategy which is a mixture of at most n elements of C'(p*).

Proof. By Lemma [7.2.5] there exists a search strategy n*, optimal in G(€), which is
a mixture of at most n pure search strategies. By Lemma [7.2.6] n* is also optimal in
the search game GG. By Proposition for any optimal hiding strategy p*, the n

pure strategies mixed by n* must all belong to C'(p*), completing the proof. =
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7.3 Properties of Optimal Strategies

While we have shown that each player has an optimal strategy in the search game
G, it turns out that each player’s optimal strategy need not be unique. Section [7.3.1
demonstrates how to identify an optimal hider-searcher strategy pair and presents
an example where the hider has multiple optimal strategies. Section [7.3.2] extends
a two-box result of Gittins (1989) to show that the searcher may always choose a
simple optimal strategy among the many available. An alternative proof method to
Gittins| (1989) is used; we explain why Gittins’ method does not adequately extend
to n boxes. Section develops a practical test of the optimality of any hiding

strategy.

7.3.1 An Optimal Hider-Searcher Strategy Pair

We begin by combining Propositions [7.2.3| and [7.2.4] to identify simple conditions on

a hider-searcher strategy pair which are both necessary and sufficient for optimality.
The backwards implication is Theorem 8.3 of Gittins| (1989)) applied to the search

game.

Theorem 7.3.1 Let v be the expected search time when the hider chooses some
mixed strategy p and the searcher some mixed strategy n. Then p (resp. 7) is

optimal for the hider (resp. searcher) if and only if
1. The strategy 7 is a mixture of some subset of C'(p).
2. Viln) =wv,fori=1,...,n.

Proof. First, we prove the forwards implication. If p is optimal for the hider and
n is optimal for the searcher, then (1.) follows from Proposition [7.2.3] Further, if p
and 1 are optimal, then v is the value of the game, so (2.) follows from the searcher’s

part of Proposition [7.2.4]
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Second, we prove the backwards implication. By (1.), p guarantees an expected
search time of at least v regardless of what the searcher does. In addition, by (2.),
1 guarantees an expected search time equal to v regardless of what the hider does.
Therefore, neither the hider nor the searcher can obtain a better guarantee than v; it
follows that p and n are an optimal strategy pair. =

Theorem [7.3.1|shows that any optimal search strategy n* is an equalising strategy;
in other words, whenever the searcher plays n*, the expected search time is the same
no matter where the hider hides. Theorem 5.2 of [Ruckle| (1991) shows that, in the
search game with unit search times, there always exists an equalising pure search
strategy £. However, £ is not necessarily a Gittins index sequence against any hiding
strategy, so Theorem does not necessarily apply to determine that & is optimal
for the searcher. Further, the proof of Theorem 5.2 of [Ruckle| (1991]) does not extend
to the search game with arbitrary search times, as, for any three boxes i, j and k, it
relies on Vi () being unaffected when the positions of a search of box ¢ and box j in
¢ are switched.

We next use Theorem to demonstrate that it is possible for the hider to have

multiple optimal strategies.

Example 7.3.2 Consider a 2-box search game, where box i has search time t; and
detection probability ¢;, 7« = 1,2, with ¢; < ¢ and t; > t5. Write p for the probability
that the hider hides in box 1. Inspection of ((7.2.2)) shows if

Q@ /to q2/t2
@/t+qa/tt @/te+a(1—aq)/t1]’

pe (7.3.1)

then there exists a Gittins index sequence against p that begins by searching box 1,
followed by box 2, and then box 1 again.

Suppose that (1—¢,) = (1—¢qy)?. For any p, if the searcher makes, in any order, two
unsuccessful searches of box 1 and one unsuccessful search of box 2, then the posterior
probability that the hider is in box 1 returns to p, and hence the problem has reset

itself. Therefore, the sequence ¢ that repeats the cycle of boxes 1,2, 1 indefinitely is
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a Gittins index sequence against any p satisfying ((7.3.1)).
Further, since (1—¢s) = (1—¢q1)?, the contribution of the kth cycle to V;(£) —V5(&)

(1= )" gt + (1 — @) (2t + t2)) — qo(t1 + t2)]

so we have

Vi(€) = Va(§) = [au(ts + (1 — q1)(2t1 + t2)) — qa(ts + t2) Z (1—gq)F ",
k=1

from which it follows that V;(§) = V4(&) if and only if

t; — to
t;

@ = (7.3.2)

Under , by Theorem , it follows that £ is optimal for the searcher and any
p satisfying is optimal for the hider.
For a numerical example, if ¢ = 0.4, g5 = 0.64, t; = 1 and t; = 0.6, then any
€ [8/11,40/49] is optimal for the hider.

7.3.2 Tie-Breaking in an Optimal Search Strategy

By Theorem [7.3.1], it is sufficient for the searcher to consider Gittins index sequences
against any optimal hiding strategy. Therefore, if there exists an optimal p against
which there is a unique Gittins index sequence ¢ (so |C(p)| = 1), then the pure
strategy & is optimal for the searcher. One instance can be found in Example [7.3.2
aside from the two endpoints, any p satisfying is both optimal for the hider
and has C(p) = {£}. The pure strategy & is optimal for the searcher. Further, Ruckle
(1991)) shows that in the search game with ¢; = 0.5 and ¢; = 1,7 =1, ..., n, the pure
strategy 1,2,...,n,n—1...,1,2,... is optimal for the searcher.

We now focus on the more challenging case where all optimal p satisfy |C(p)| > 1,
and the searcher’s optimal strategy may be a mixture of Gittins index sequences.

By Definition [7.2.1] the next box searched by any Gittins index sequence against

a hiding strategy p must satisfy (7.2.2)). If |C(p)| > 1, at some point in the search,
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the searcher must encounter a tie where some k € {2,...,n} boxes satisfy .
At such a tie, any Gittins index sequence must search the k tied boxes next, but the
order the k£ boxes are searched is unconstrained. Thereafter, any two Gittins index
sequences will be identical until another tie is encountered. Therefore, elements of
C(p) differ from one another only in how they break ties.

How the searcher chooses to break ties is important, since knowledge of the
searcher’s tie-breaking preferences could be used by the hider to their advantage.
Therefore, a mixed tie-breaking strategy is required by the searcher. To define a tie-
breaking strategy, write S, for the set of permutations of {1,...,n}. A permutation
o € 5, serves as a preference ordering to choose which box to search next if a tie is
encountered. For o € S, let o(i) represent the position of i in o for i € {1,...,n}.
Suppose, without loss of generality, after a tie between boxes 1,...,k, the next k
searches are made in the order 1,...,k. Then we say the tie is broken using o if
o(l) <---<a(k).

Of interest are Gittins index sequences that break every tie using the same pref-
erence ordering. Let o € S, and p be a mixed hiding strategy. Write &,(p) for the
Gittins index sequence against p that breaks every tie encountered using 0. We define

the following subset of C(p),

C(p) = {&(p): o € Sy} (7.3.3)

~

Whilst C(p) could be an infinite set, |C(p)| < n! since |S,| = n!. By Theorem
there exists an optimal search strategy a mixture of at most n elements of C'(p*)
for any optimal hiding strategy p*. The aim of the remainder of the section is to show
that the same holds true if we replace C/(p*) with C(p*).

For any search strategy n (pure or mixed), write V(n) = (Vi(n), ..., Va(n)). Now
define

S(p)={V(€):¢£€Cp)} and S(p)={V():¢€C(p)},

noting that S(p) C S(p) C R™.
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Clearly, if some search strategy n is a mixture of a subset of C'(p), then V() can
be written as a convex combination of the elements in S(p). The following lemma,

proved in Appendix , shows that the same statement is true replacing S(p) with
S(p)-

Lemma 7.3.3 For any hiding strategy p with p; > 0 for«=1,...,n, the convex hull
of S(p) is equal to the convex hull of S(p).

Lemmal[7.3.3|allows us to present the main theorem of this section, which strength-

ens Theorem by replacing C(p*) with é(p*)

Theorem 7.3.4 In search game G, for any optimal hiding strategy p*, there exists

an optimal search strategy which is a mixture of at most n elements of C (p*).

Proof. Let p* = (pi,...,p!) be an optimal hiding strategy. By Theorem ,
there exists an optimal search strategy n* which is a mixture of elements of C(p*).
Therefore, V(n*) can be written as a convex combination of elements of S(p*) and
hence belongs to the convex hull of S(p*).

By the hider’s part of Proposition , pi >0 for i € {1,...,n}. Therefore, by
Lemma [7.3.3, the convex hull of S(p*) is equal to the convex hull of S(p*). It follows
that V(%) also belongs to the convex hull of S(p*) and hence, by the definition of a
convex hull, V(n*) can be written as a convex combination of elements in S (p*).

By Carathéodory’s theorem, V(n*) can be written as a convex combination of at
most n + 1 elements in S(p*). Yet, for any s = (s1,...,s,) € S(p), the weighted
average » ., s;p; is equal to the expected search time if the hider chooses p and
the searcher any optimal counter £ € C(p). Therefore, all elements of S(p) lie on
the same hyperplane in R", and so do all elements in S (p). Hence, the number of
elements in the convex combination of V' (n*) can be reduced to at most n. Therefore,
n* can be written as a mixture of at most n strategies in C (p*). =

Theorem extends the result in Proposition 8.4 of |Gittins| (1989), which is

restricted to two boxes with unit search times, to an arbitrary number of boxes and



Part II. Chapter 7. A Search Game in Discrete Locations 178

arbitrary search times. It shows that it is sufficient for the searcher to consider search
sequences which use the same preference ordering to break every tie.

Gittins proves his Proposition 8.4 via a direct argument which he claims is not
difficult to extend to arbitrary n. However, upon further study, we found Gittins’
method makes limited progress for n > 3; the following explains.

For any (pure or mixed) search strategy n and 4,5 € {1,...,n}, write D, ;(n) =
Vi(n) —V;(n). If D, j(n) = 0 for some 4,5 € {1,...,n}, we say n equalises boxes i and
j. Let m; and 15 be search strategies, and relabel boxes and sequences if necessary so
that D; ;(m) < 0. Then, by direct computation, it is easy to show that there exists a
mixture of n; and 7 that equalises boxes ¢ and j if any only if D; ;(n2) > 0.

Let p* be an arbitrary optimal hiding strategy. Recall &,(p*) is the Gittins index
sequence against p* that breaks every tie encountered using o; write §, = &, (p*).
When n = 2, we have a(p*) = {&12, &1}, where {15 (resp. £91) breaks any tie in favour
of box 1 (resp. box 2). Gittins’ method shows that Dj2(&12) < 0 and D 5(€21) > 0.
In other words, there exists a mixture n* of £;2 and &; which equalises boxes 1 and
2; by Theorem n* is optimal for the searcher.

By extending Gittins’ method to an n-box problem, for any i,7 € {1,...,n}, we
can show that D; ;(&. ;) < 0 and D; (& ;) > 0, where x ...y is any permutation of
Sy, with o(1) = z and o(n) = y. Since, for any { € C(p*), D; ;(§) must lie one side
of 0, there exists a mixture of { and either & _; or & ; that equalises boxes ¢ and j.
Therefore, many mixtures of pairs in C (p*) can be constructed that equalise boxes i
and j.

To obtain an optimal search strategy using Theorem [7.3.1], we need a mixture of
elements of C'(p*) that equalises all n boxes. Yet, problems occur when a third box,
say k, is introduced. Suppose 7; and 7, both equalise boxes ¢ and j; then, any mixture
of m; and 7y that equalises boxes i and k (or j and k) will equalise boxes ¢, j and k.
However, there is no guarantee that D, x(7:) and D; x(n2) will have opposing signs, so

there is no guarantee that such a mixture exists. Whilst we managed to prove that
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such 7y and ny with D; ;(n1) <0 < D, (12) exist when n = 3 (thus finding an optimal

search strategy for the three-box case), the proof cannot be generalised to n > 4.

7.3.3 Testing the Optimality of a Hiding Strategy

From a practical viewpoint, if an optimal hiding strategy p* is known, Theorem [7.3.4]
allows the searcher to consider at most the n! search sequences in C (p*), and hence
reduces G to a finite two-person, zero-sum game. This logic may be reversed. Suppose

p is a hiding strategy, and the searcher cannot form a mixture that equalises all boxes

from any subset of C (p). Then, by a combination of Theorems |7.3.1| and |7.3.4L p is

not optimal for the hider. This section develops this idea into a practical optimality
test for any hiding strategy.

Write G¢ for the subgame of G where the searcher’s pure strategies are some finite
C C 8. Then G is a finite, n x |C] game easily solved by linear programming (see
Washburn| (2003), Chapter 10 of [Ferguson, (2020)), with optimal strategies guaranteed
to exist for both players. Write vg, for the value of G¢. Since C' C S, then vf, is an
upper bound on v*, the value of G.

By considering cases where the upper bound is attained, we present an optimality
test for a hiding strategy. We say a hiding strategy p = (p1, - .., pn) 18 interior if p; > 0
for i« = 1,...,n; otherwise, we say p is exterior. By Proposition any optimal
hiding strategy is interior. The following result applies Theorem to determine
whether a given interior hiding strategy is optimal in GG, and, if so, provides an optimal

search strategy.

Proposition 7.3.5 Let C C C/Z\’(p) for some interior hiding strategy p.

1. If the strategy p is optimal in G¢, then p is optimal in G, and any optimal

search strategy in G¢ is also optimal in G.

2. If the strategy p is not optimal in G¢, then any optimal hiding strategy in G¢

is exterior, and, if C' = a(p), then p is not optimal in G.
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Proof. First, we prove (1.). Suppose p is optimal in G¢. Since G¢ is a finite game,
there exists an optimal search strategy in G¢, say 17, which guarantees the searcher an
expected search time of at most v/, no matter which box the hider hides in. Therefore,
Vi(n) < wg for i =1,...,n. By the minimax theorem for finite games, when the hider

plays p and the searcher plays 7, the expected search time is v. In other words, we

have
Zpﬂ/i(n) = v¢-
i=1
Since p; > 0 for ¢ = 1,...,n, we must have V;(n) = v for i = 1,...,n. In addition,

n is a mixture of strategies in C' C C(p). By Theorem [7.3.1] p and 7 are an optimal
strategy pair in G and v* = v}, proving (1.).

Now we prove (2.), the case in which p is not optimal in G¢. For any search
sequence &, write he for the hyperplane in n-dimensional space satisfying he(x) =
Yo xiVi(€) for all x = (xq,...,2,) € R". For any hiding strategy y, write l(y) =
mingee he(y), so any y that maximises [(y) is optimal for the hider in G¢. Write
H = {he : £ € C}, a set of |C| hyperplanes. Since C' C C(p), he(p) is constant
for all £ € C; therefore, the point (p,l(p)) belongs to every hyperplane in H in n-
dimensional space. It follows that, for any line [ through (p, /(p)) and any hyperplane
h € H, either h contains [, or h and [ intersect at the unique point (p,{(p)).

Let L be the lower envelope of the hyperplanes in H; in other words, for any
hiding strategy y, we have (y,l(y)) € L. By definition, any point in L belongs to
some k € {1,...,|C|} hyperplanes in H. Since p is not optimal in G¢, there must
exist p with I(p) > [(p). Write H for the hyperplanes in H containing (p,(p)).
It follows that any hyperplane in H contains the line passing through (p,{(p)) and
(P, 1(P)), and this line intersects any hyperplane in H\ H only at (p,(p)). Since both
(p,l(p)) and (p,{(p)) lie in L, so does the line segment between these two points, and
so does its extension beyond p.

If p is interior, we may extend the line connecting (p,{(p)) and (p,(p)) until we

first reach (p,{(p)) for some p exterior. Since [(p) > I(p), we must have {(p) > I(p),
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so any p with I(p) > I(p) is itself dominated by some exterior p. It follows that any
optimal hiding strategy in G must be exterior.

We now prove the second part of (2.) with C' = C (p) by contradiction. Suppose
p is optimal in G. By Theorem [7.3.4] there exists a search strategy n* which is both

1. Optimal in GG, so guarantees the searcher an expected search time of at most v*.

2. A mixture of strategies in C (p), so is available to the searcher in the game G¢

since C' = C(p).

In the game G¢, the hider can guarantee at least v* with p, and the searcher can
guarantee at most v* with n*, so p is optimal in G¢, drawing the contradiction, which
completes the proof. m

We can test the optimality in G of any hiding strategy p using Proposition [7.3.5]

by solving G¢ with C' = a(p) The hiding strategy po = (po1, - - -, Pon) With

_ tifa
p07i = <n 4 /7 _
> i1t/

is of particular interest, since it creates a tie between all n boxes at the start of the

i=1,...,n, (7.3.4)

search, giving the searcher no preference over which box to search first. As discussed
in Section [6.2.1] po is optimal for G (called IBOX in Section [6.2.1)) with a mobile
hider, and optimal for G with the usual immobile hider when the boxes are identical.
Further, in a numerical study, Roberts and Gittins (1978) and Gittins and Roberts
(1979) both find, for 2 and n boxes respectively, that pg is often optimal for the hider
in G with unit search times. In Section [7.4] we extend these studies of the optimality

of pp using Proposition [7.3.5]

7.4 Numerical Study

This section presents a numerical study which, using Proposition [7.3.5 determines

how often the hiding strategy po defined in ((7.3.4]) is optimal for various parameters
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of the search game G. Similar investigations with unit search times are carried out
in [Roberts and Gitting (1978)) and |Gittins and Roberts| (1979). Not only does our
study encompass a much wider range of problems divided into comparable subgroups,
but Proposition is more efficient at determining the optimality of py than the
method of Gittins and Roberts, which is described in the following. Recall v(p) as the
expected search time when the hider chooses p and the searcher chooses any search
sequence in C'(p); an optimal hiding strategy maximises v(p). Both papers by Gittins
and Roberts determine the optimality of pg by direct comparison of v(pg) and v(p*),
where p* is an optimal hiding strategy found by, starting at py, making incremental
adjustments to hiding strategies and evaluating v(p).

Search games are split into two types. In the first, we have

(I—q)" = =(1—g)™ (7.4.1)
for some coprime, positive integers x;, © = 1,...,n. We call such games cyclic search
games, since x; searches of box ¢ for © = 1,...,n reset the search problem.

We will also examine acyclic search games, where, for any distinct 4, j € {1,...,n},
(I—a@)" # (1 —q)" (7.4.2)

for any strictly positive integers  and y. The proportion of problems with py optimal
across the two types of search game will be compared.
Before introducing the numerical study, we first discuss the methods used to cal-

culate V;(£), 1 =1,...,n, for search sequences £ € C(py).

7.4.1 Calculating Expected Search Times

Let p be a hiding strategy. For i = 1,...,n, for any search sequence &, we have

K—oo

Vi(§) = lim Z%’(l — ) ik, €), (7.4.3)

where b;(k, ) is the time at which the kth search of box 7 is made under £. For

¢ € C(p), the terms b;(k, &) are determined by ((7.2.2) and the rule £ uses to break
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ties in . However, when computing indices in , detection probabilities,
search times and p itself must be encoded as floating-point numbers, which can cre-
ate problems identifying ties in (7.2.2)). To apply Proposition to po, we need
to calculate V;(&) for specific £ € a(po), so a computational method to accurately
identify ties in ([7.2.2)) is important. Below, for both cyclic and acyclic search games,
we present a technique which can reliably calculate V;(€) for a specific £ € C(pg) by
taking advantage of knowing when ties will be encountered.

Suppose we wish to evaluate &,, the sequence in a(po) that breaks ties using
preference ordering o whose ith element is denoted o(i), i = 1,...,n. At the start
of the search, there is a tie between all n boxes; therefore, the first n searches of &,
will be of boxes ¢(1),...,0(n) in that order. In an acyclic search game, since
holds, &, will never encounter another tie between any pair of boxes. Therefore, from
the (n + 1)th search onwards, &, can be calculated using floating-point numbers to
compute the indices in (|7.2.2)).

Whilst a finite approximation to after any K € Z™ searches of box i gives
a lower bound for V;(&,), we calculate an upper bound for V;(,) using the following
method.

Write

log(1 — ¢;
m= L,jer?ﬁfn} HJ + 1.
For any 7,7 € {1,...,n}, since m > log(1 —¢;)/log(1 —g;), then (1 —¢;)™ < (1 —q),
so between any two successive searches of box i, any Gittins index sequence will make
at most m searches of box j, for i # j. Therefore, for any i € {1,...,n}, no more
than time m = Z;’:l mt; can elapse between successive searches of box 4 following
the Gittins index sequence &, .

It follows that, for any K € Z* and i € {1,...,n}, following &, until K searches

of box i have been made, then, after that, assuming box 7 is searched at regular time
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intervals of length m gives an upper bound on V;(¢,). In other words,

Vi(€o) <D (1 =) Mok, ) — bi(k = 1,)] + (1 — q,) Z (1—q)*"
k=1 —1
< (1= q)* ik, ©) — bi(k — 1,€)] + m(1 ; @)" (7.4.4)

Note that the first term in is the lower bound for V;(&,) obtained via a finite
approximation to (7.4.3]) after L searches of box ¢. Therefore, we increase K until
the ratio of the second term of divided by the first term of is less than
1078,

In a cyclic search game, further ties will be encountered after the first n searches.
In particular, it follows from the rule in that the first T = ) | z; searches
will include exactly z; searches of box ¢ for ¢ = 1,...,n, after which all n boxes
will again be tied, so the problem has reset itself. Therefore, the same cycle of &
searches will be indefinitely repeated. It follows that, for any a € {1,2,...}, we have

bi(k+ax;, &) = bj(k,&,)+az fori = 1,...,n, which allows the following simplification

of [T
‘/;(50) Z (Z QZ 1 o q2>k 1+M%b (k + ax;, fa))

a=0 \k=1
Z(l - Qz azl <Z Qz 1 - %)k ! [ i(kafa) + a%])
a=0 k=1

= 31— @) [A&,) + aZ(1 - )

where ¢ is equal to (1 — ¢;)*, constant over all boxes by (7.4.1]), and
= Z i(1 = q:)" b (k, €). (7.4.5)
k=1

Therefore, to evaluate V;(§,) precisely, we only need to calculate b;(k,&,) for k €
{1,...,2;}. Yet, the repeated cycle of T searches may involve more than just the

tie between all n boxes at the start of the cycle. Therefore, from the (n + 1)th
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search onwards, using floating-point numbers to compute indices in (and hence
the b;(k,&,) terms for k € {1,...,x;}) may again lead to issues identifying ties.
However, the relationships in allow an alternative method to calculate b;(k, &,)
for k € {1,...,z;} involving an alternative set of indices which encodes integers rather
than floating-point numbers, described as follows.

Since &, is a Gittins index policy against py, all n indices in ((7.2.2)) are equal at
the start of the search, say to y. Fori =1,...,n, suppose m; € {1,...,x;} searches
of box i have been made, so the current corresponding index in ((7.2.2)) is y(1 — ¢;)™.

Then we have
y(1—g)™ oc (1= g)™ = (1= q)*)™/™ = &™/* oc i /m.
Therefore, the rule in ([7.2.2)) is equivalent to searching any box j satisfying

j = arg max . (7.4.6)
i=1,...n My

Yet, both x; and m; are integers, so, unlike using ((7.2.2)), ties will always be detected
using ([7.4.6)). Therefore, for i = 1,...,n, A;(&,), and hence V;(§,), can be calculated

exactly for any preference ordering o.

7.4.2 Sample Schemes

We now introduce the numerical study, beginning with the generation of boxes, for
which acyclic and cyclic search games require different methods. To generate a search

time and detection probability for a box in an acyclic search game, we draw
q~Ulq,q) t~U(L5) (7.4.7)

for pre-specified 0 < ¢ < ¢q, < 1. The resulting search game with n such boxes
will be acyclic, since for any ¢; and ¢; drawn from a continuous uniform distribution,
log(1 — ¢;)/log(1 — ¢;) € Q with probability 0, and hence (7.4.2)) is satisfied almost

surely.
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Table 7.4.1: Sample schemes used throughout the numerical study by values of ¢; and

¢u used in (7.4.7) and (7.4.8).

Sample Scheme | (g1, qu)
Varied [0.1,0.9]
Low [0.1,0.5]
Medium [0.3,0.7]
High [0.5,0.9]

To generate search times and detection probabilities for a set of n boxes in a cyclic

search game, we draw
a ~Ulq,qu) = ~DU(1,10) t;~U(1,5), i=2,...,n, (7.4.8)

for pre-specified 0 < ¢ < ¢q, < 1, with DU(1,10) representing the discrete uni-
form distribution where each integer in {1,...,10} is selected with equal probability.
Whilst ¢; is drawn directly by , for 1 = 2,...,n, we attain ¢; using x;, ¢;, and
the relationship in (7.4.1). To allow comparisons of acyclic and cyclic search games
generated using the same ¢; and g,, we use with rejection sampling, rejecting
a search game if leads to ¢; ¢ [qi, qu) for any i € {2,... ,n}.

To explore a variety of detection probabilities, we set ¢¢ = 0.1 and ¢, = 0.9
in and . However, to investigate the effect of the size of detection
probabilities, other choices of ¢; and ¢, will also be used and results compared to one
another; see Table [7.4.1] Search games with n = 2, 3 and 5 boxes will be investigated.
To account for increased variation within a search game as n increases, for each value
of n and sample scheme, we study both n x 1000 acyclic and n x 1000 cyclic search

games. Results are presented in the next section.
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7.4.3 Numerical Results

For each generated search game, we test the optimality of py using Proposition [7.3.5]
which involves solving the finite game G with the searcher restricted to the set of
pure strategies C' = C (po). By Proposition , Po is optimal in G if and only if pg
is optimal in G'¢. We find v§,, the value of G¢, by the standard linear programming
methods for solving finite games discussed in |Washburn (2003) and Chapter 10 of
Ferguson| (2020)). Since G¢ may have multiple optimal hiding strategies, to determine
the optimality of pg in G¢, we compare v, to v(po), the expected search time when
the hider plays po and the searcher plays any search sequence in C'(pg). In principle,
Po is optimal in G¢ if and only if v(pg) and v}, are equal. However, due to limitations
in computational accuracy, we accept equality if |v(pg) — vE|/vE < 107°.

For n = 2, 3 and 5, Table[7.4.2| shows the percentage of generated search games in
which pg is optimal for different sample schemes in Table . Since |(7 (po)| = n!,
it is computationally infeasible to solve G, and hence test the optimality of pg, for

n much larger than 5.

Table 7.4.2: The percentage of search games in which pg is optimal by the number of

boxes n, search game type, and sample scheme.

Acyclic Cyclic

n | Varied Low Medium High | Varied Low Medium High

2| 395 305 64.4 88.6 | 61.7 65.4 81.2 94.6
31 219 134 55.0 91.7 | 456 48.6 76.3 97.1
5 8.5 3.8 42.7 96.9 | 248 269 73.8 98.9

Table[7.4.2|shows py often achieves optimality, but with a strong dependence on n,
the sample scheme, and whether the search game is cyclic or acyclic. We first explain

the patterns in sample scheme and search game type evident for each fixed n.



Part II. Chapter 7. A Search Game in Discrete Locations 188

Recall Norris (1962) shows that if the hider was free to change boxes after every
unsuccessful search (called mobile-hider IBOX in Section , it is optimal for the
hider to choose a new box according to pg, independent of previous hiding locations.
Note that, if the hider plays p = (p1, ..., pn) and the searcher first searches box i, then
piq;/t; is the detection probability per unit time of this first search, i = 1,...,n. Since
Po equates these terms across all boxes and hence gives the searcher no preference of
a box to search, Norris’ result is unsurprising.

The following observation is made by |Roberts and Gittins| (1978)) and was discussed
briefly in Section of this thesis. Another way to view Norris’ result is that it
is optimal for the hider to keep the Gittins indices in equal throughout the
search process. In our search game, the hider hides once at the start of the search, so
it is not possible to maintain equality in . Intuitively, the best the hider can
do is hide with probability p* such that, when the searcher follows a Gittins index
sequence against p*, the Gittins indices in stay close to each other throughout
the search. Such closeness is more important towards the start of the search, since the
probability that the hider remains undetected decreases as time passes. Therefore, it
is more important to the hider to approximate equality in ([7.2.2)) earlier in the search
rather than later, explaining why pg is often optimal for the hider.

The preceding argument explains the following patterns in Table [7.4.2] We see
Po optimal more often with the high sample scheme compared to the medium sample
scheme compared to the low sample scheme since the larger the detection probabilities,
the sooner the hider is likely to be detected, and hence equality in near the
start of the search takes even more importance.

Further, recall that in a cyclic search game, where holds, unlike an acyclic
game, if the hider plays py and the searcher adopts any Gittins index sequence against
po, after T = Y"1 | x; searches, equality in is reattained. Therefore, cyclic
games are more suited to approximating equality in by starting at pg, explain-

ing why pg is optimal more often in cyclic than in acyclic search games.
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Note that, from their own numerical study in Gittins and Roberts| (1979), the
authors conclude that whether a search game is acyclic or cyclic has no effect on
their results. In our results in Table [7.4.2], whilst the effect of the sample scheme and
number of boxes n on the optimality rate of po—the percentage of search games in
which pg is optimal— appears to be unaffected by the search game type, pg is clearly
optimal less frequently in acyclic search games.

We also see py optimal more often with the medium sample scheme, with its
narrow range of detection probabilities, compared to the varied sample scheme. To
explain this phenomenon, we make the following connection to Chapter [3| of Part I,
where the searcher was assumed to know the strategy of the hider, but had a choice
of two search modes when searching any box.

In our search game, the hider chooses p to make the search last as long as possible,
which involves balancing maximising uncertainty about their location and forcing the
searcher into boxes with ineffective search modes. Chapter [3| of Part I introduces
two measures of the effectiveness of a search mode of a box i. The first, called the
immediate benefit, is given by ¢;/t;. The larger the immediate benefit of box i, the
greater the detection probability per unit time when box ¢ is searched. The second,
called the future benefit, is given by

—pi(1 — p;)log(1 — ¢;)

i

. (7.4.9)

The larger the future benefit of box 4, the greater the information per unit time
gained about the hider’s location on an unsuccessful search of box 7. Inspection of its
definition in shows that, whilst py takes the immediate benefit of the n boxes’
search modes into account by hiding in box ¢ with probability proportional to ¢;/¢;,
it ignores the future benefit.

In Norris’ game, where the hider may change boxes after every search and pg is
optimal, since the game resets after every search, information gained by the searcher
about the hider’s location is useless and hence there is no concept of future benefit.

Yet, in our search game, gaining more information about the hider’s location enables
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the searcher to make better box choices later in the search. Therefore, the hider should
be dissuaded from hiding in boxes with a large future benefit, as the information-gain
advantages of these boxes will benefit the searcher.

Since py does not take future benefit into account, the larger the variation in future
benefit between the n boxes, the less appealing is pg for the hider. With the varied
sample scheme, there is more opportunity for such variation, hence pg is optimal less
frequently than with the narrower medium sample scheme.

We now examine patterns as n changes. In general, pg is optimal less frequently
as n increases, since the more boxes there are, the greater the uncertainty in the
hider’s location and hence, as demonstrated in Chapter |3[of Part I, the more valuable
information about the hider’s location becomes. Therefore, the future benefit, ignored
by po, takes more importance as n grows, so pg is optimal less often.

We further examine how the sample scheme affects the degradation in the opti-
mality rate of pg with n. As previously noted, the smaller the variation in future
benefit between the n boxes, the more frequently pg is optimal. The narrower the
range of detection probabilities in the sample scheme, the quicker the variation in
future benefit decreases as we add more boxes. Therefore, the degradation of the
optimality rate of pg as n increases is steeper with the varied than with the narrower
medium sample scheme since, in the latter, this decrease in future benefit variation
suppresses the increasing importance of future benefit as n grows.

Further, the smaller the detection probabilities, the longer the search is expected
to last, so the more important future box choices become. Hence, the smaller the
detection probabilities, the greater the importance of the future benefit and the less
frequently pg is optimal. Therefore, with the low sample scheme, we see the sharpest
decline in the optimality rate of pgy as n increases. Due to large detection probabilities
and a narrow sample scheme, the optimality rate of pg actually improves with n with

the high sample scheme.
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Future Benefit in Roberts and Gittins (1978) and [Ruckle (1991) To con-
clude this section, we discuss several unexplained results of Roberts and Gittins (1978))
and |[Ruckle| (1991)) which we believe to be caused by future benefit.

As discussed in Section [6.2.1] [Roberts and Gittins| (1978)) studied two-box search
games with ¢; < ¢» and unit search times. The authors observed that, whenever
Po = (po, 1 — po) was suboptimal, p*, an optimal hiding probability in box 1, was
greater than py, but found no reason for this observation. We believe this phenomenon
is explained by future benefit. Since ¢; < g2 and t; = t5 = 1, the future benefit in
at any p is greater for box 2 than box 1. Whilst py considers immediate
benefit, it ignores future benefit, explaining why the hider, who wants the searcher to
spend more time in boxes with inefficient search modes, may prefer to hide in box 1
with a probability greater than py.

Also mentioned briefly in Section Ruckle| (1991)) solves a two-box game with

t1 =ty = g2 = 1 and a sole parameter ¢g; = ¢q € (0,1). In this problem

1/q

vy

Ruckle| (1991) shows that the hider optimally hides in box 1 with probability

. 1/q
1/g+ (1 —qg)"

We analyse this result of Ruckle (1991)) to conclude the following. The optimal hiding

P where h=|h| with h=1/q+ (1—¢)" " (7.4.10)

strategy in leads to a tie between the Gittins indices of the two boxes for the
hth search, and hence pq is optimal for the hider if and only if h = 1. In general,
p* > po, and as q decreases, h increases, so p* increases; see Table [7.4.3]

We offer the following explanation. Recall that py ignores future benefit. For any
q € (0,1), the future benefit in is greater for box 2 than for box 1, with the size
of the difference growing as q decreases. Therefore, for larger ¢, the hider optimally
hides in box 1 with probability pg, since difference in future benefit between the two

boxes is small. As ¢ decreases, the advantage in future benefit of box 2 over box 1
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Table 7.4.3: Values of h by ¢ in the two-box game of [Ruckle| (1991]).

Value of h | Range of ¢

1 [0.618, 1]
2 [0.382,0.618]
3 [0.276,0.382]

grows. Wishing the searcher to spend more time in boxes with poor search modes,
the hider optimally hides in box 1 with a probability p* increasing from py.

Rucklel (1991)) also finds that an optimal search strategy is a mixture of the two
search sequences which make their only search of box 2 on the hth (resp. (h + 1)th)
search. Since any Gittins index policy against p* encounters its only tie on its hth
search, Ruckle’s optimal search strategy is a mixture of the two elements of C (p*), so

satisfies Theorem [7.3.4]

7.5 Additional Properties of Optimal Hiding Strate-
gies

If py is suboptimal, Proposition is less useful for finding an optimal hiding
strategy, as only one hiding strategy can be tested at once. In this instance, the
algorithm of Lin and Singham| (2015) discussed in Section efficiently finds an
optimal strategy for each player by successively computing tighter bounds on v*, the
value of the game. The majority of the work in this chapter will be combined with
the algorithm of [Lin and Singham| (2015) and submitted for publication in 2020.
Whilst the algorithm of |Lin and Singham| (2015) is efficient, it still requires the
solution of numerous finite two-person, zero-sum games. With only calculation of

expected search times needed, the corollary to the following lemma and its corollary
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can ‘point the hider in the right direction’ towards an optimal hiding strategy.

Lemma 7.5.1 Let p be a hiding strategy. If, for some k£ € {1,...,n}, we have

Vi(§) > v* or Vi (&) < v* for all € € C(p), then p is not optimal for the hider.

Proof. We use proof by contradiction. Let p be optimal for the hider and, for some
k€ {1,...,n}, suppose Vi(§) > v* for all £ € C(p). (The case Vi(§) < v* for all
¢ € C(p) is proved using a similar argument.) Let n* be an optimal search strategy,
which must exist by Theorem . By Proposition , only elements of C'(p) are
played with a strictly positive probability by n*, so Vi(n*) > v*. This contradicts the
searcher’s part of Proposition [7.2.4] so p cannot be optimal for the hider. m

Note that, whilst Lemma[7.5.1]is of limited practical use in determining suboptimal

hiding strategies since v* is unknown, the corollary below is useful.

Corollary 7.5.2 Let p be a hiding strategy and write & (resp. &) for any element
of C(p) that searches box k first (resp. last) when breaking any tie involving box k.

If there exist 4,5 € {1,...,n} with V;(£;7) < V;(§"), then p must be suboptimal.

Proof. First note that Vi (&) and Vi (€, ) remain the same regardless of the preference
ordering of the n — 1 boxes other than box k. Further, for any ¢ € C(p), we have
V(&) € [Ve(&), V(& )] If there exist 4,5 € {1,...,n} with V;(&) < Vi(&), then
either V(&) < v* or v* < V;(§"); therefore, either V;(&§) < v* for all £ € C(p), or
v* < V(&) for all £ € C(p). It follows from Lemma that p is suboptimal. m
Corollary not only provides a sufficient condition to verify that a hiding
strategy is suboptimal by calculating only 2n expected search times, but also indicates
why a hiding strategy is suboptimal if so, as explained in the following. By Theorem
m an optimal search strategy n* must equalise V;(n*) across all boxes by mixing
elements of C'(p). If there exist i, € {1,...,n} with V;(§;) < Vi(§"), then such an
equalisation is not possible as any Gittins index sequence against p makes too few

searches of box ¢ and too many searches of box j. Therefore, to get closer to the
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optimal hiding strategy, it is intuitive that the hider should increase p; and decrease
pj.

To finish this section, we present bounds on the probability with which the hider
optimally hides in each box, reducing the size of the strategy space in which an optimal
hiding strategy can lie. By the hider’s part of Proposition[7.2.4] for any optimal hiding
strategy p* = (pi, ..., p.), the hiding probability p; belongs to the open interval (0, 1)
for i = 1,...,n. With the aid of Lemma [7.5.1 we can restrict p} to a closed subset

of (0,1). First, we need a bound on v*.

Lemma 7.5.3 The value v* of the search game is bounded above by U = "7 | t;/q

and below by max;c(1,..ny ti/d:-

Proof. To derive the upper bound, consider a variation of the search game in which
the hider is free to move between boxes after each unsuccessful search, solved by

Norris (1962). As discussed in Section the value of G (called IBOX in Section
with a mobile hider is .
> b (7.5.1)
=1 b
A mobile hider has more options, so is an upper bound on the value v* of G.
To prove the lower bound, suppose the hider hides in box j with probability 1.
The optimal counter for the searcher is to search box j repeatedly until finding the
hider, leading to an expected search time of ¢;/qg;, which is a lower bound on v*. Since
this is true for any box j, the maximal value of ¢;/¢; over all boxes i € {1,...,n} is

the best such lower bound on v*. =

Let U be the upper bound on v* from Lemma [7.5.3] For i =1,...,n, write

m; = L—U;J + 1; (7.5.2)

in other words, making m; searches in box 7 requires more than U time units. The

following bound is based on the idea that if p; is small enough, there must be some

box j that the searcher needs to search at least m; times before searching box 4 for
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the first time. Therefore, U time units have passed before box i is visited, and, since
U > v*, we may invoke Lemma [7.5.1]

Proposition 7.5.4 For i =1,... n, write

" i ti/qi
¢ = Z —— and 0 = ———, (7.5.3)
KLt (1 — qx)™ ti/qi + ci
where my, is defined in (7.5.2)). Any optimal hiding strategy (pi,...,p:) must have

i€ [@,1—22:1#1.54,forizl,...,n.

Proof. Without a loss of generality, we prove the result for ¢ = n.

We begin with the following observation. Let p be a hiding strategy. Suppose
that, for any £ € C(p), there exists j € {1,...,n — 1} such that £ makes at least m;
searches of box j before visiting box n. Then the first time box n is visited, more than
time U has elapsed, so we must have V,,(§) > U > v* for all £ € C(p); by Lemma
p is not optimal for the hider. Observation of shows that, for such j to
exist, we require

a:(1 = g:)mi—1 G,
pJqJ< QJ) > Pnq

; for some je{l,...,n—1}. (7.5.4)
7 n
Now let (p1,...,Pn_1,0,) be the unique solution to the following system of linear
equations:
n—1
ﬁka(l - Qk>mk_l 5nQn _
= o k=1,...,n—1; =1—90,. 7.5.5
tk tn ) ) y T ) ;pk ( )

It is easy to verify that ¢,, satisfies with ¢ = n.

We are now in a position to prove the contrapositive of the theorem. First suppose
that p, < J, for some hiding strategy p = (p1,...,pn). Then, by , there must
exist j € {1,...,n—1} such that p; > p;. It follows that holds, and hence p is
not optimal for the hider. Finally, suppose that p, > 1 — Z;ll 0. Then there must
exist [ € {1,...,n — 1} such that p; < §;. By the above argument applied to box [, p
is not optimal for the hider. m

The bounds in Proposition [7.5.4] are easy to calculate, but are rarely tight, with

0; often close to 0.



Chapter 8

Conclusions and Further Work

In this chapter, Part II of this thesis is reviewed, and a direction for further work

suggested.

8.1 Review of Part 11

Chapter [6] shows that search games in which a searcher seeks a hider who actively
avoids detection are well studied in the literature. However, the majority of work
assumes the searcher always detects the hider when their paths cross. This assumption
is unrealistic if the hider can conceal themselves in a crowded search space, or has
planted a bomb or buried landmine. Introducing a chance of overlooking a stationary
hider makes a search game much harder, as the searcher must revisit parts of the search
space. Even the simplest search game with overlook, IBOX introduced in Section 6.2
with search space n discrete boxes, has an incomplete theory mostly limited to special
cases; Chapter [7] extends this theory to a fully-general IBOX.

In IBOX, the hider chooses a box to hide in, and then the searcher visits the boxes
sequentially to minimise the expected time needed to find the hider. If the searcher
knows the probabilities p with which the hider hides in each box, we have a classic

one-sided search problem which, as discussed in Part I, is solved by a Gittins index

196
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policy against p where the searcher optimally next searches a box with a maximal
Gittins index. However, since there are multiple options when there is a tie for the
box with the largest Gittins index, there are multiple Gittins index policies against p.
Whilst in the one-sided problem all such policies are optimal, in the two-sided IBOX,
the searcher must carefully choose a tie-breaking strategy of which an optimally-
playing hider cannot take advantage. Theorem in Section shows that such
an optimal strategy for the searcher exists, a result previously proven only in special
cases. Further, Theorem in Section [7.3.2] shows there exists an optimal search
strategy with a simple tie-breaking rule easily found when an optimal hiding strategy
is known and the number of boxes is not too large. The proof of neither theorem is
straightforward, showing the complexity of the seemingly simple IBOX.

Chapter [7] also makes progress on the hider’s side. Section develops novel
bounds on an optimal hiding probability in each box (Proposition , and a simple
test of optimality for any hiding strategy (Proposition . In special cases, the
literature has numerically investigated the optimality of a particular hiding strategy,
Po, which gives the searcher no preference of a box at the start of the search, and is
known to be optimal when the hider can hide anew after each unsuccessful search.
Using the aforementioned optimality test in Proposition [7.3.5 Section extends
these numerical investigations, making valuable insight by comparing the optimality

rate of py for problems with high and low chances of overlooking the hider.

8.2 Further Work: IBOX with Two Search Modes

The remainder of this chapter discusses further work. As previously mentioned, parts
of Chapter [7| and the algorithm of Lin and Singham (2015, which finds optimal
strategies for either player, will be combined and submitted for publication in 2020.
The numerical study of Section will be extended to examine the performance of

Po as a heuristic strategy for the hider.
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Section [6.2.2] shows several extensions to IBOX have already been studied in the
literature; the remainder of this section discusses an unstudied extension most relevant
to Part I of this thesis, namely IBOX with a fast and a slow search mode available
for each box. A slow (resp. fast) search of a box takes search time ¢, (resp. ts), and
finds the hider, if in the box, with detection probability g, (resp. ¢f). The slow mode
has a larger detection probability, but takes longer to finish, so ¢ > ¢y and t; > t;.

With the addition of a second search mode, a pure hiding strategy remains a box
to hide in, but the set of pure search strategies grows since a search sequence must now
specify both a box to search and a mode at which to search it. Since we still have a
semi-infinite two-person, zero-sum game, the theory of Blackwell and Girshick| (1954)
still applies to guarantee the existence of a value and an optimal hiding strategy.
However, it remains to be seen whether the proof of Theorem [7.2.7| can be extended
to guarantee the existence of an optimal search strategy. Further, an extension of
Theorem may be possible if, for each box, a sequence determining the modes
to use to search that box is fixed. Under such fixed mode sequences, Gittins index
policies against a hiding strategy may be defined, which, as in single-mode IBOX,
differ from one another only in the way ties between indices are broken.

Recall that in the one-sided, two-mode search problem studied in Chapter [3| of
Part I, the hiding probabilities for each box are known to the searcher since the
‘hider’ is an inanimate object. The key one-sided results from Chapter |3|of Part I are
Theorems [3.2.5 and [3.2.8, which give sufficient conditions for each mode to dominate

the other mode in the same box, so the dominated mode may be optimally discarded.

Since these conditions depend only on the detection probabilities and search times of

each box and not the hiding probabilities, Theorems [3.2.5| and [3.2.8| still apply to the

two-mode search game. In other words, no matter the strategy of the hider, if
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the searcher optimally always uses the slow mode of the box, and, if
(1 =) o s
Ly T 1
the searcher optimally always uses the fast mode of the box.

Outside of these conditions, Part I suggests the posterior probability p’ with which
the searcher believes the hider lies in the box plays a big part in the optimal mode
choice. The best-performing heuristic policy from Part I searches the box fast if p’
is greater than a threshold p, and otherwise tries both modes. Yet, as seen in Part

*

IT, the hider’s optimal strategy p* is likely to roughly equate the attractiveness of
all boxes to the searcher, and hence an optimal counter by the searcher will keep
posterior hiding probabilities close to the starting point p*. Therefore, especially if
n is large, we are likely to have p’ < p throughout the search, the case where both
available modes are tried.

Yet, by the above logic, posteriors are likely to only explore a small region of
the hiding probability space, so it is likely that the same search mode will always be
optimal in the same box. There are 2" unique allocations assigning a single mode to
each box. Chapter [3| of Part I investigated heuristically cutting down the number of

allocations to test; this may be the best route to pursue for heuristics in a two-mode

search game.
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Appendix C

Supplementary Proofs for Part II

C.1 Proof of Lemma [7.2.5

As explained in the main body, by Blackwell and Girshick| (1954), we may prove
Lemma by showing that S(e) is closed. Write

S(e) = S\ {(Vi(Gi(e)), - ValGile)) 1 =1, m}.

Since they differ by a finite subset of R", S(¢) is closed if and only if S(e) is closed.
Therefore, the proof will be completed by showing that S(e) is closed.

Throughout the proof, write Zt = {1,2,...}, and V(§) = (Vi(§),...,Vn(8));
therefore, any element of S(¢) takes the form V(£) where € is a Gittins index sequence
against some p € P(e).

By Definition [7.2.1], the next box searched by any Gittins index sequence against
a hiding strategy p must satisfy . If, at some point whilst following a Gittins
index sequence against p, multiple boxes satisfy , we say the searcher has
encountered a tie and p is a tie point. Note that an equivalent definition of a tie point
pis |C(p)| > 1. If |C(p)| = 1, we say p is a non-tie point.

If p is a non-tie point, then there is a unique Gittins index sequence against p,
whereas, for a tie point p, as justified in Section[7.3.2], a specific Gittins index sequence

against p is determined by how we break ties between boxes.

201
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Let the set of rules for breaking ties be R. We can think of R as a set of infinite
sequences whose elements are permutations of {1,...,n}. The jth element of r € R is
the order of boxes with which the jth encountered tie should be broken. For example,
suppose n = 5 and the jth tie following a Gittins index sequence against p involves
boxes 2, 3 and 5. Suppose the jth element of r is 54231. Then, under rule r, tie j is
broken by searching boxes 5, 2 and 3 in that order. Note that changing the jth element
of r to 45123 does not affect the Gittins index sequence generated, demonstrating that
multiple rules can generate the same Gittins index sequence.

Further, R can be identified with the interval [0, 1] in the following way. Any term
in any r € R is one of the n! elements of S, where S,, is the set of permutations of
{1,...,n}. Number the elements of S, from 0 to n!—1, and rewrite r as z1z5 ... ;.. .,
where z; is the number (from 0 to n! — 1) representing the jth element of r. We now

associate with r the real number given by

¢(r)

2l
The mapping ¢ : R — [0, 1] is a bijection. Therefore, throughout the proof, by a con-
vergent subsequence {r, : a € Z"} in R, we mean a sequence for which {¢(r,) : a € Z*}
converges in [0, 1]. However, we shall continue to interpret elements of R as infinite
sequences with terms in .S, for the remainder of the proof.

Before showing that S(e) is closed, we first show that a smaller set, concerning only

Gittins index sequences against a fixed hiding strategy with p; > 0 fori=1,...,n, is

closed.
Lemma C.1.1 For any p € P with p; > 0 for2=1,...,n, the set

S(p) ={V(§): £ C(p)} (C.1.1)
is closed.

Proof. Since p; > 0 for i = 1,...,n, we have S(p) C R". If |S(p)| is finite, then

S(p) is a finite collection of points in R", which is always closed. For the rest of the
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proof, we concentrate on the case where |S(p)| is infinite, so p must be a tie point.

Write {s, : a € Z*} for a convergent sequence in S(p), and write sg = lim, . S,
for its limit. To show that S(p) is closed, we need to show that sy € S(p).

Write &, for the Gittins index sequence against p that breaks ties using rule r.
Let f be the function from R — S(p) that maps r to V(). Since any element of
S(p) corresponds to some rule r € R, the image of f is equal to S(p); therefore,
for each a, we can choose r, € R such that s, = f(r,). Consider the sequence
{r, : a € Z"} and, by identifying R with the interval [0,1], choose a convergent
subsequence {rjq) : a € Z*}.

Identifying R with the interval [0, 1] shows R is closed; therefore, we have ry =
limg oo Th@) € R, so f(ro) € S(p). Any infinite subsequence of the convergent
sequence {s,} must converge to the same limit as {s,}; therefore, we have sy =
lim, 00 Sp(a)- To complete the proof, we show that sy = f(ro).

Note that we have spa) = f(ta@) = V(&) and f(ro) = V(&,). To ease
notation, for the remainder of the proof, drop the subscript r in any sequence &,
(resp. &), instead writing &, (resp. &). Therefore, our aim to show that sy = f(rg)
is equivalent to showing that lim,_,o V' (&n)) = V (&o)-

Since rg = lim,_, Tp(a), for each j € 7", there must exist a smallest element of Z™T,
say aj, such that the first j elements of r(,) are equal to the first j elements of r( for
all @ > a;. Further, the {a; : 7 € Z"} must form an increasing sequence. Therefore,
for any a > a;, both &) and & break the first j ties, j € Z*, encountered by any
Gittins index sequence against p in the same manner, so as j increases, the first time
when &pq;) and & differ becomes increasingly later and later into the search, so the
effect on the expected time to detection decreases to 0. It follows that, fori =1,...,n,
we have lim;_o Vi(&na,)) — Vi(&), and hence lim;_o V(€na,)) = V(o). Yet, since
the {a; : j € Z"} form an increasing sequence in Z*, we have lim; oo V(§u(a,)) =

limg o0 V(€n(a)), completing the proof. m
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Let

i=1

PE{(pu---,pn):piZO, sz:l}

be the space of mixed hiding strategies. Let f. be the function from P — S(e) that
maps p to V(& (p)), where &.(p) is the Gittins index sequence against p that breaks
ties using rule r.

First, via two lemmas, we investigate the continuity of the functions f, in P(e).

The first lemma deals with the simpler case of continuity at non-tie points in P(e).

Lemma C.1.2 If p € P(e) is a non-tie point, then f, is continuous at p for any

rcRk.

Proof. Write £ for the unique Gittins index sequence against p. For k € ZT, let
P C P contain precisely those mixed hiding strategies x for which every Gittins
index sequence against x is identical to ¢ for the first k& searches. Clearly, for any
k € Z*, we have P11 C P and p € Py.

For any § > 0, write B(p,d) for the open ball with radius § centred at p. Note
that, since p is a non-tie point in P(¢), for any k € Z*, it is possible, in any direction,
to move a small enough (Euclidean) distance in P away from p and not disrupt the
order of the indices in that generate the first k searches of €.

Therefore, we have
0 =0.5 xsup{d: B(p,d) C Pr} >0, (C.1.2)

with 0 > dpy1 and B(p,dx) C Py for all k € ZT, where 0.5 is an arbitrarily chosen
number between 0 and 1. Write 0* = limy_,o 0.

There are two cases. First suppose that §* > 0. Let x € B(p, d*); then x € Py, for
all k € Z*, so any Gittins index sequence against x is identical to &. It follows that &,
the unique Gittins index sequence against p, is also the unique Gittins index sequence
against x. Hence, for any r € R, f; is constant on B(p,*), so f, is continuous at p.

Second, suppose that 6* = 0. Let {x,} be a sequence in P with lim, ,,, X, = p.

Since {x,} has limit p and, for any k € Z*, we have ¢, > 0, there must exist a



Part II. Appendices 205

smallest number g(k) € Z* such that every term in {x,} after x,u belongs to the

ball B(p, dx). Formally, for any k € Z*, we write
g(k) = min{A : x, € B(p, ), a > A}. (C.1.3)

Further, for any [ € Z", since §; > x4y, we have B(p,dry) C B(p,dx) and hence
g(k) < g(k +1), so the sequence {g(k) : k € Z*} is increasing weakly.

Consider the sequence {x,u : k € Z*}. We have lim,_, X, = p by assumption;
our next aim is to show that limy_,o X44) = p also. To do this, we show that, for
any € > 0, we can choose K such that x,) € B(p,¢) for all £ > K. Choose ¢ > 0.
Since limy_,o 0 = 0, there exists K such that dx < e. By the definition of ¢ in
(C.1.3]), we have x, € B(p,dk) for all a > ¢g(K). Since g is increasing, we have
Xqk) € B(P,dx) C B(p,€) for all k > K, showing that {x,q} has limit p.

By the definitions in and , we have x4y € B(p,0x) C Py Recall £
as the unique Gittins index sequence against p, and, for a € Z™T, let &, be any Gittins
index sequence against x,. Since g is increasing and x,) € Py, as k increases, the first
time when &) and § differ becomes increasingly later and later into the search, so the
effect on the expected time to detection decreases to 0. Therefore, V;(&y ) — Vi(§)
as k — oo, i =1,...,n. Since &, is an arbitrary Gittins index sequence against x,,

we draw the following conclusion for any rule r € R:

lim fr(Xg(k)) = alggo fr(Xa) = fr(p)a

k—o00

and hence f, is continuous at p. =

Now we consider the continuity of the f, at tie points in P(¢), the more challenging
case. Informally, if p € P(e) is a tie point, then f, is only continuous at p for certain
r € R, and only approaching p via certain paths in P.

To state the continuity conditions precisely, we first need a few definitions. Let
p = (p1,..-,pn) be a tie point in P(e). Let S, denote the set of permutations of

{1,...,n},and ¥ C S,,. For ¢ € S, write (i) for the number in the ith position of
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o and write

P(p, E) = {X cP: L,(i)/pg(i) > .:Co-(i+1)/po-(i+1), 1=1,... ,n— 1, o€ Z} . (C.1.4)

The set P(p,>) may be interpreted as follows. Suppose x € P(p, ). Then, for
any o € X, if any tie encountered in a Gittins index sequence against p is broken
using o, the order that the tied boxes are searched remains the same if we replace p
with x when calculating the terms in and still use o to break any remaining
ties. Clearly p € P(p, X) for any subset ¥ of S,,. Further, note that if x,y € P(p, X),
then for any A € [0, 1], we must have Ax 4+ (1 — \)y € P(p, X). Therefore, P(p,X) is
a convex set containing p.

Informally, the following lemma says that, if r € R contains only elements of

¥ C S, then f, is continuous at p approaching from any path in P(p, X).

Lemma C.1.3 Suppose p € P(e) is a tie point and ¥ C S,,. Let {x, :a € ZT} be
a sequence in P(p, X)) with lim, ,., x, = p. Then, for any r € R whose elements all

belong to X, we have lim, o fr(X4) = fr(P)-

Proof. First, note that if P(p,X) = {p}, then any sequence in P(p, ) is constant,
and the result is trivially true. The rest of the argument, similar to the proof of
Lemma , deals with the case where P(p, X)) contains elements in addition to p.
Let r € R contain only elements from » C S,,. Let & be the Gittins index sequence
against p that breaks ties using rule r. For k € Z*, let Py, C P contain precisely
those mixed hiding strategies x for which the Gittins index sequence against x under
rule r is identical to & for the first & searches. Clearly, for any & € Z*, we have
Pit1ir € Prr and p € Py

For any ¢ > 0, write B(p, d) for the open ball with radius ¢ centred at p. Note that
any two points in P must be within Euclidean distance y/n of eachother. Therefore,
for any p € P, we must have B(p,+/n) = P. For 6 € [0,1/n], write P(p,d,%) =
B(p,d) NP(p, ). In other words, P(p, d, X) is the subset of mixed hiding strategies

in P(p, X) strictly less than (Euclidean) distance § from p.
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Write
Jer = 0.5 xsup{0: P(p,, %) C Prr}. (C.1.5)

s0 P(p, Ok.r, ) C Pyr. Note that 6, > 0 for all k € Z7 since P(p,0,%) = {p} € Prr.
The aim of the following is to show that 5, > 0 for all k € Z.

Let k € Z™. We examine two cases. First, suppose that, in the first & searches
of &, no ties are encountered. Then, it is possible, in any direction, to move a small
enough (Euclidean) distance in P away from p and not disrupt the order of the terms
in that generate the first £ searches of &.. Therefore, we may choose § > 0 such
that B(p,d) C Pg,. It follows that P(p,d, ) C Py, and hence that oy, > J/2 > 0.

Second, suppose that, in the first k searches of &, we do encounter ties between
boxes. Suppose such a tie involves b boxes. By , whilst the order of the next b
boxes searched may depend on the tie-breaking rule, the set of b boxes searched will
not. Therefore, after the tie has been broken, the terms in ([7.2.2) will be the same no
matter how the tie was broken. Hence, it is possible, in any direction, to move a small
enough (Euclidean) distance away in P from p and not disrupt the order of the terms
in that generate the first k searches of & at any point where there is not a tie
between boxes. It follows that we may choose § > 0 such that, for any x € B(p,d),
any Gittins index sequence against x differs only in the first k£ searches to &, for those
searches where &, is in the process of breaking a tie. Now suppose additionally that
x € P(p,X), so x € P(p,§,%). Since x € P(p,X), when a tie is reached by &, if
we instead were following a Gittins index sequence against x, any boxes involved in
the tie will either still be tied, or lie in the ordering determined by ¢ for all o € X..
Therefore, since r contains only elements of 3, the Gittins index sequence against x
that breaks ties using r will break the tie the same way as &, so will be identical to &,
for the first k& searches. In other words, P(p,d, ) C Py, and hence g, > 6/2 > 0.

Now we have shown d;, > 0 for all £k € Z*, we are in a position to finish the proof
in a similar style to Lemma Write 0 = limg o0 Okr, and let {x, : a € ZT} be

a sequence in P(p, X) with lim,_,,, x, = p. There are two cases.
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First suppose that ¢f > 0. Let x € P(p,9;,%); then x € Py, for all k € ZT, so
the Gittins index sequence against x which breaks ties using rule r is identical to &,.
It follows that f, is constant on P(p, d:, ). Furthermore, since lim,_,, X, = p, there
must exist A such that x, € B(p,d;) for all @ > A. Yet, since {x,} is a sequence
in P(p, ), we also, for all a > A, have x, € P(p,d;,%) and hence fp(x,) = fr(P);
proving the result for the first case.

Second, suppose that 87 = 0. As in the proof of Lemma [C.1.2] since {x,} has limit
p and, for any k € Z*, d, > 0, there must exist a smallest number g,(k) € Z* such
that every term in {x,} after x4 belongs to the ball B(p,dy,). Further, since {x,}
is a sequence in P(p, ¥), every term in {x,} after x4 also belongs to P(p, o, 2).

Formally, for any k € Z*, we write
gr(k) = min{A : x, € P(p,dgr,2), a > A}. (C.1.6)

Note from that, for any [ € Z*, since Priir C Prr, we have dpy > Opipp. It
follows that B(p,dx1) € B(p, k), and hence g.(k) < g.(k +1) for all kK € Z", so the
sequence {g.(k) : k € Z*} is increasing.

Consider the sequence {x,, ) : k € Z*}. We have lim,_, X, = p by assumption;
our next aim is to show that limy_,. X4, = p also. To do this, we show that, for
any € > 0, we can choose K such that x4 ) € B(p,¢) for all £ > K. Choose ¢ > 0.
Since limy_,o 0 = 0, there exists K such that 0k, < €. By the definition of g,(k)
in , we have x, € B(p,dx,) for all a > g,(K). Since g, is increasing, we have
Xg (k) € B(P,dkx) C B(p,e€) for all k > K, showing that {xg, )} has limit p.

By the definitions in and , we have X, 1) € P(P,0kr,2) € Py
Recall &, as the Gittins index sequence against p that breaks ties using r, and, for
a € Z*, let &, be the Gittins index sequence against x, which breaks ties using r.
Since g, is increasing and X, (1) € Py, as k increases, the first time when £y ),
and &, differ becomes increasingly later and later into the search, so the effect on the

expected time to detection decreases to 0. Therefore, V(& (x),x) = Vi(&) as k — oo,
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1=1,...,n, so we have

lim fr(xg(k)) = aligolo fr(Xa) = fr(p)7

k—o0

proving the result for the second case. m
The continuity of the functions f; is key in proving the main result: that S(e) is

closed.

Proof that S(e) is closed. Write {s, : a € Z*} for a convergent sequence in S(e),
and write sop = lim,_,o S, for its limit. To show that S (€) is closed, we need to show
that sy € S(e).

Since each element of S(€) corresponds to some mixed hiding strategy p € P(e)
and tie-breaking rule r € R, an equivalent definition of S(e€) is written by

S(e) = [J {1 (P}, (C.1.7)
rer
where f,(P(€)) is the image of P(e) under f,. The images under different r are not
disjoint, however. In particular, if p is a non-tie point, then f.(p) are equivalent for
all r € R. For a tie point p, however, some of the f.(p) will differ.

By (C.1.7), for all a € Z*, we may choose x, € P(e) and r, € R such that s, =
fra(X4). Further, since P(¢) is bounded, the sequence {x, : @ € Z"} has a convergent
subsequence {Xp(q) : a € Z*}, and, since P(e) is closed, Xo = limg_00 Xp(a) € P(€).
Any infinite subsequence of the convergent sequence {s,} must converge to the same
limit as {s,}; therefore, we have sy = lim,_,oc Sh(q)-

We consider two cases. First, suppose that {Xh(a)} attains its limit xq. In other
words, there exists A € Z™ such that Xp(a) = Xp for all @ > A. In this instance, the
sequence {sp(q) : @ > A}, which has limit sg, is a sequence in the set S(xo), defined
in (C.1.1), shown to be closed by Lemma [C.1.1} Therefore, sy € S(xg) C S(e),
completing the proof for the first case.

Second, suppose that {xy(} does not attain its limit x,. Since xo € P(e), we

have f.(x9) € S(e) for any r € R. To complete the proof for the second case, we
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show that sy = fr(x0) for some r € R. To do this, we split the second case into two
subcases.

First, consider the easier subcase in which Xy is a non-tie point. Then, for any
r € R, we have

So = lim spe) = lim fr, ) (Xh(a)) = fr(X0),

where the last equality follows by Lemma and the fact that the f.(x() are equal
for all r € R.

The rest of the proof concerns the more challenging subcase, in which x, =
(o1, ..,Ton) is a tie point. Note that, for any x € P, there exists a subset Xx C S,

for which o € Y if and only if

xo(i)/xo,a(i) > xa(i—‘rl)/xo,o(i—i-l)’ 1= 17 27 s, = L.

Recalling the definition in (C.1.4]), we have x € P(xq,Xx), and further, ¥ is the
unique subset of maximal size such that x € P(x¢, Xx). Since the elements {x;/z; :
i€ {l,...n}} must lie in some order, ¥, is non-empty for any x € P(e).

Since there a finite number of subsets of S,,, there must exist ¥* C S, and a
convergent subsequence of {Xp(}, say {x, : m € Z*}, such that ¥, = X* for all
m € Z*. In other words, {x,,} is a sequence in P(xq, X*).

Since {x,,} is a convergent subsequence of {Xq)}, we have lim,, ,. X,,, = Xo, and

lim f;, (x,)= lim s, = s.
m—r0o0 m—0o0

To finish the proof, we split into further subcases, numbered below.

1. First, we consider the easier subcase in which there are finitely many tie points
in {x,,}. In this case, we may choose M such that there are no tie points in the
sequence {x,, : m > M}. Therefore, for all m > M, we have f;, (X)) = fe(Xm)

for all r € R. Let r* € R contain only elements in ¥*. Then we have

S0 = 7%1_{%0 frm(Xm) = Til_lgo Je- (Xm) = fr*(X0>7

where the last equality follows by Lemma [C.1.3]
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2. Now suppose that there are infinitely many tie points in {x,,}. We begin with

two observations for any x € P(e).

Observation 1: First, note that the position of any equalities in the ordering
of the terms {x;/xo; : i € {1,...,n}} completely determines ¥4. In particular,
for any pair of boxes i,j € {1,...,n}, we have z;/x¢,; = x;/x0; if and only if
there exists 01,09 € Xy with o1(2) > 01(j) and o2(j) > 02(i). Also, we have

x;/x0; > xj/x0,; if and only if o(i) > o(j) for all o € ¥y.

Observation 2: Second, for any pair of boxes 7,5 € {1,...,n} and any y, z €
N={0,1,...}, write

q;(1 — q;)*t;

ai(1 — qi)vt;’

recalling that ¢; (resp. t;) is the detection probability (resp. search time) of box

kij(y, 2)

7, 1 = 1,...,n. Then, following a Gittins index sequence against x, there is a
tie between boxes i and j after y (resp. z) searches of box ¢ (resp. j) have been

made if and only if z;/z; = k; ;(y, 2).

Now consider the sequence {x,,}. Since {x,,} has limit x¢, for any two boxes

i,7 €{1,...,n}, we have

Tmi T
s 0 as om — oo, (C.1.8)
Tmg X0

Now choose x € {x,,} and suppose that ¢,d € {1,...,n} satisfy z./xo. #
x4/Toq. Then, by Observation 1, the same must be true for every element of
{xm} since ¥y, = X* for all m € Z*. Hence, the limit in is never
attained for 7,7 = ¢, d. In other words, x,,./%m 4 approaches but never reaches

Zo,./Toqd &S M — 00.

Let y,z € N and consider k.q4(y,2) defined in Observation 2. There are two
scenarios. First, we may have k.4(y,2) = xo./Toq; in this scenario, since the

limit in (C.1.8) is never attained, in no Gittins index sequence against any
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element of {x,,} is there a tie between boxes ¢ and d after y (resp. z) searches
of box ¢ (resp. d) have been made. Second, if k. 4(y, 2) # %o./%0q, by the limit
in (C.1.8), there exists a finite smallest natural number, say M, 4(y, z), such that
the same statement holds after the M, 4(y, 2)th term of {x,,}; in other words,
in no Gittins index sequence against any element of {x,, : M.4(y,2) > m} is
there a tie between boxes ¢ and d after y (resp. z) searches of box ¢ (resp. d)

have been made.

For any b € Z*, write
Mgd = max{M.q4(y,2) : y,z € Nwith y + z < b}.

It follows that, whilst the total number of searches of boxes ¢ and d is no larger
than b, no ties involving both boxes ¢ and d are encountered in a Gittins index
sequence against any element of {x,, : m > M_,}. Clearly {M!, : b € Z*}
forms an increasing sequence; therefore, as m — oo, any tie involving both
boxes ¢ and d occurs increasingly later and later into the search, so the effect

on the expected time to detection of how such a tie is broken decreases to 0.

Therefore, as m — oo, only the manner in which ties involving only boxes i@
and j satisfying z;/z0; = w;/x0; are broken has any effect on the expected
time to detection under a Gittins index sequence against an element of {x,,}.
Without a loss of generality, suppose such a tie is between boxes 1,...,y, for
some y € {2,...,n}. Suppose the tie is broken by o € S,,. By Observation 1,
since x1 /01 = - - = x,/%o, there exists o* € Xy which ranks boxes 1,...,y in
the same order as 0. Therefore, breaking the tie using o* leads to boxes 1,...,y
being searched in the same order as breaking the tie using o. It follows that
there exists r* with only elements in X* such that, if, for all m € Z*, we replace
r,, with r*, as m — oo, the effect on the expected time to detection tends to 0.

In other words,

S0 = nlggo frm(xm) = mlgréo Jr (Xm) = fe-(X0),
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where the last equality follows by Lemma [C.1.3| m

C.2 Proof of Lemma [7.3.3

Proof. If |C(p)| = 1 then S(p) = §(p) and the result is trivially true. For the rest
of the proof, assume |C'(p)| > 1.
First, we show that S(p) is compact. Since S(p) C R", by the Heine-Borel

theorem, S(p) is compact if and only if it is both closed and bounded. By Lemma
in Appendix[C.1} S(p) is closed. To show S(p) is bounded, let

v(p, &) = Zpiv;(@

be the expected time to detection if the hider uses p and the searcher uses . Consider
the search sequence &; that repeats the cycle of searches (1,2,...,n) indefinitely.
Clearly V(&) is finite for ¢ = 1,...,n, so v(p, &) is also finite. Since C(p) is the set
of optimal counters to p, we must have v(p,&) < v(p,&) for any £ € C(p). Since
p; > 0, we must have V;(§) finite for ¢ = 1,...,n and any £ € C(p); it follows that
S(p) is bounded and hence compact.

Let A be the convex hull of S(p). By definition A is convex, and, since S(p) is
compact in the finite-dimensional vector space R,,, A is also compact. (See Corollary
5.33 of (Charalambos and Aliprantis (2013).) Therefore, we may apply the Krein-
Milman theorem to deduce that A is the convex hull of its extreme points. To prove
Lemma , we show that S (p) is the set of extreme points of A. We first note the

following useful facts.

e By definition, a point x € A is extreme if and only if, for any y,z € A and
A € [0,1] satisfying x = Ay + (1 — M)z, we have x = y = z. In other words,
the only way we can express X as a convex combination of elements of A is by

x itself.
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e For any s = (s1,...,5,) € S(p), the weighted average Y., s;p; is equal to the
expected time to detection if the hider chooses p and the searcher any optimal
counter £ € C(p). Therefore, all elements of S(p) lie on the same hyperplane,
say H, in R".

e By the definition of S(p), we have

S(p)C B=<(v1,...,v,) €ER": min V;(§) <v; < max V;(&), 1=1,...,np.
(9) € 5= { (000 € R amin Vi) < 0 < amx VO }

Further, since A is the smallest convex set containing S(p), and B is also a

convex set containing S(p), we have A C B.

The proof will be done by double inclusion. In the first half of the double in-
clusion proof, we show that any point in S (p) is an extreme point of A. Write
X = (T1,...,2,) € §(p) Then x corresponds to a search sequence &, € é(p) which
breaks all ties using some o € S,,. Without a loss of generality, let 0 = (1,2,...,n).

Suppose that
x=Ay+(1-N)z (C.2.1)

for some y,z € A and X € [0,1]. To prove that x is extreme, we show that we must
have x =y = z.

Since, when breaking any tie, &, gives preference to box 1 over any other box,
no other sequence in C(p) makes the jth search of box 1 any sooner than &,, for
J €{1,2,...}; therefore, we have x; = mingco(p) V1(§). For any v = (vy,...,v,) € A,
since A C B, we must have v; > x;. It follows that, for to hold, we must have
Y1 =71 = 21-

We now demonstrate how this argument may be repeated to show that y, = 2z =
x9. Let C1(p) be the elements of C'(p) which, when breaking any tie involving box
1, give preference to box 1; therefore, for any & € C(p), we have Vi(§) = x; if and
only if £ € Cy(p). Write V(&) = (V1(€),...,Vn(€)) and Si(p) = {V(€) : £ € Ci(p)};

therefore, for any v = (vy,...,v,) € S(p), we have v; = 7 if and only if v € S;(p).
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Let A; be the convex hull of S;(p); since Si(p) C S(p), we have A; C A. Note that
y,z € Aj since y; = 21 = x7.

Write
Bl = {(xlav2)"'7U7Z) € R™: min ‘/;(5) S Vg S max ‘/’L<§>7 L= 27“"”} :

Then Bj is a convex set containing Si(p), so A; C Bj. Since, when breaking any
tie, &, gives preference to box 1 over box 2, but then to box 2 over any other box i,
i =3,...,n, no other sequence in C;(p) makes the jth search of box 2 sooner than
&, 7 € {1,2,...}; therefore, we have x5 = mingce, (p) V2(§). Since any v € A; also
belongs to B;, we must have vy > x5. It follows that, for to hold, we must
have y, = 2o = x».

We may repeat the above argument a further n — 3 times to conclude that y; =
zi=ux; fori=1,...,n—1. Finally, since y,z and x all lie in the same hyperplane H
in R™, we must have y,, = z, = x,, so y = z = X, and X is an extreme point of A.

In the second half of the double inclusion proof, we show that any extreme point
of Aisin § (p). We will prove the contrapositive of this statement; i.e., we show that
any a € A\ §(p) is not an extreme point of A.

To begin, note that, by definition, any element of A can be written as a convex
combination of some m € {1,2,...} elements of S(p). If b € A\ S(p), then any such
convex combination must contain at least m > 2 elements of S(p), so b is not an
extreme point of A. Hence, our task is reduced to showing that any a € S(p) \ S(p)
is not an extreme point of A.

Consider a € S(p) \ S (p), and write &, for the corresponding search sequence in
C(p)\C(p). Since & ¢ C(p), there exists no permutation in S, with which &, breaks
every tie it encounters. It follows that there must exist some k € {2,...,n} boxes
and k ties encountered by &, such that the preference ordering among these k boxes
used to collectively break the k ties constitutes a cycle. Without loss of generality,
assume boxes 1,2,...,k are involved in this cycle. Suppose tie m involves boxes m

and m + 1, with box m searched before box m + 1 by &, m = 1,...,k — 1, and tie
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k involves boxes k and 1, with box k is searched before box 1 by £,. Note that ties
1,..., k are not necessarily consecutive nor in chronological order.

Consider tie k, which uses the preference ordering

Ji, .- 7joc—17 k7j0¢+17 cee 7jﬁ—17 17jﬁ+17 cee 7jn7

bearing in mind that box j; is not necessarily involved in tie k, i € {1,...,n}\{«, 5}.
In other words, box k ranks in the ath position, and box 1 ranks in the Sth position,
for some 1 < a < <n.

Let &, € C(p) break tie k using preference ordering

j17 s 7jo¢—17 17k7joc+17 s aj,@—lvjﬁ-‘rl? s 7jn7

and all other ties in the same order as &,. Similarly, let {5 € C'(p) break tie k using

preference ordering

j17 v 7j0(—17ja+17 e 7jﬁ—17 17k7jﬂ+17 e 7jn>

and all other ties in the same order as &,. In other words, at tie k, both &, and
s switch the order boxes 1 and k are searched by &, to prefer box 1, and all boxes
searched between boxes 1 and k by & when breaking tie k& have (retaining their
order) been shifted after boxes 1 and k are searched in &,, and before boxes 1 and k
are searched in £3. Note that if 3 = a + 1 (so there are no boxes searched between
boxes k and 1 when &, breaks tie k), then &, = {3, but the following argument is still
valid.

Note that V;(&.) = Vi(§s) = Vi(&a) for any box i € {ji,..., Ja-1,J8+1s--»Jn}

Recall that ¢; stands for the search time of box i, and let

122 1

= a D .
t +tk€ t +tk5ﬁ

Mk

Clearly ‘/Z(T]k> = ‘/;(éa) fOI'Z- - {jl, e 7j04717j/3’+17 e 7]71} FOI'Z. - {ja+17 PN ,jﬂ,l}, let
w; be the probability that the hider is found on the first search of box ¢ after the kth tie
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is reached, conditional on the hider being in box i. Then we have V;(&,) = V(&) +wity
and V;(&s) = Vi(&a) — wity for i € {jat1,-..,75-1}. It follows that

b (Vi) + wity) + — 2 (Vi(Es) — wity) = Vi(Ea)

Vi) = —2—
() = 5=, t+

for i € {ja+17 c. 7jﬂ—1}-
Because Vi (&5) > Vi(€a) > Vi(&), we have that Vi(nr) > Vi(&). Since V()
and V(&,) lie in the same hyperplane, H, in R™, we must have Vj(ny) < Vi(&). To

summarise, we have

Vi(me) > Vil€a), Vilm) < Vi(&) and Vi(ne) = Vi(&a) fori # 1,k (C.2.2)

Now, for m € {1,...,k — 1}, we repeat the same procedure with tie m for boxes

m and m + 1 to create 7, which satisfies:

Vm(”m) > Vm(fa)v Vm+1(77m> < Vm+1(€a) and %(nm) = Vz(ga) fOI‘ i 7£ m,m + L.

(C.2.3)
To complete the proof, we show how we may express &, as a mixture of {ny, ..., m;}.

To begin, by (C.2.3) with m = 1,2, for any X € [0, 1], the mixture
Mma2(A) = Ap @ (1= Ay (C.2.4)

satisfies

Vi(m2(A) > Vi(&a), Vs(ma(N) < Vs(&) and  Vi(mo(A)) = Vi(éa) fori=4,... n.

Also by (C.2.3)), there exists A* € [0, 1] such that 15 = 11 2(\*) satisfies Va(n12) =
V(&a). Therefore, we have

Vi(ma) > Vi(&a), Va(me2) < Va(&) and  Vi(niz) = Vi(&a) for i #1,3. (C.2.5)

By (C.2.3) with m = 3 and (C.2.5)), there exists a mixture, 7y 23, of 13 and 7; 2
satisfying

Vi(mizs) > Vi(a), Valmos) < Vi(€a) and Vi(nios) = Vi(&a) for i # 1,4
(C.2.6)
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We may repeat this process of mixing 7, and m for m =

..........

4,...k — 1, with the resulting n; ;1 satisfying

.....

Vitm..k—1) > Vi(&), Vit k—1) < Vi(&) and V(. k1) = Vi(&a) fori # 1, k.
(C.2.7)

.....

-----

By the construction of the 7, for m = 1,... k as mixtures of elements of S(p),
V(m.. k) and V(n) are two distinct elements in A different from a, showing that a

is not an extreme point of A and completing the proof. m



Concluding Remarks for Parts 1
and I1I

The thesis has studied two important extensions to the classic search problem in
discrete locations, both motivated by advances in technology: Part I on the searcher’s
side, with more ways to search each location, and Part II on the hider’s side, with
increasingly frequent and sophisticated cyber attacks placing more importance on the
search game. Whilst Chapters [4] and [§] respectively draw individual conclusions for
Parts I and II, here, some concluding remarks are made on the thesis as a whole.

While Gittins index policies play a key part in both Parts I and II, the focus of
the searcher differs greatly between the two parts. In Part I, the searcher exploits
areas of the search space most attractive to them. In Part II, the hider all but takes
away the notion of one area being more attractive than another, with the searcher’s
focus on randomising their strategy to guard against being taken advantage of by
the hider. However, the two parts do share some common elements. The future
benefit, concerning the information gained about the hidden target’s location from
an unsuccessful search, is crucial in Part I and explains several observations in the
numerical study of Part II. The searcher’s dislike of having no preference of where to
search next, crucial in optimal hiding strategies in Part I, explains why a seemingly
dominated search mode is sometimes optimal in Part I.

It is hoped that the key theoretical results in both parts, in addition to the insights

explaining the theory and its shortfalls, provide a platform for further study.
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