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Abstract

Age-related cochlear synaptopathy (CS) has been shown to occur in rodents with minimal noise

exposure, and has been hypothesized to play a crucial role in age-related hearing declines in hu-

mans. It is not known to what extent age-related CS occurs in humans, and how it affects the

coding of supra-threshold sounds and speech in noise. Because in rodents CS affects mainly low-

and medium-spontaneous rate (L/M-SR) auditory nerve fibers with rate-level functions covering

medium-high levels, it should lead to greater deficits in the processing of sounds at high than at

low stimulus levels. In this cross-sectional study the performance of 102 listeners across the age

range (34 young, 34 middle-aged, 34 older) was assessed in a set of psychophysical temporal pro-

cessing and speech reception in noise tests at both low, and high stimulus levels. Mixed-effect

multiple regression models were used to estimate the effects of age while partialing out effects of

audiometric thresholds, lifetime noise exposure, cognitive abilities (assessed with additional tests),

and musical experience. Age was independently associated with performance deficits on several

tests. However, only for one out of 13 tests were age effects credibly larger at the high compared

to the low stimulus level. Overall these results do not provide much evidence that age-related CS,

to the extent to which it may occur in humans according to the rodent model of greater L/M-SR

synaptic loss, has substantial effects on psychophysical measures of auditory temporal processing

or on speech reception in noise.
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1. Introduction

Presbycusis, the decline of hearing abilities with age, is one of the most common chronic con-

ditions in older adults (Lin et al., 2011). The hearing difficulties of older adults can be in part

explained by their reduced sensitivity to low-level sounds, which is usually due to cochlear hair

cell dysfunction caused by age-related metabolic changes in the cochlea, cumulative effects of

noise exposure, ototoxic agents, or other factors (Schmiedt, 2010). However, presbycusis is also

associated with supra-threshold deficits that cannot be easily explained by hair cell dysfunction

(Fitzgibbons and Gordon-Salant, 2010; Humes and Dubno, 2010). Age-related cochlear synap-

topathy (CS), a condition affecting the synapses between inner hair cells (IHCs), and auditory-

nerve fibers, has been hypothesized to play a major role in these supra-threshold deficits (Kujawa

and Liberman, 2015; Liberman and Kujawa, 2017).

CS and its phenomenology have been primarily characterized in rodents. Noise exposures

titrated to cause only temporary threshold shifts, with little outer hair cell (OHC) damage, have

been shown to result in a permanent loss of synapses between IHCs and auditory nerve fibers in

young CBA/CaJ mice (Kujawa and Liberman, 2009). This synaptic disconnection has been shown

to affect mostly auditory-nerve fibers with low and medium spontaneous rates (L/M-SR fibers)

with rate-level functions extending to high levels, beyond the saturation point of high spontaneous

rate (H-SR) fibers (Furman et al., 2013). Noise-induced CS has been observed in a range of rodent

species other than CBA/CaJ mice (see Hickox et al., 2017, for a review), and in primates (Valero

et al., 2017).

CS has also been observed in aged CBA/CaJ mice raised in a quiet environment before the

onset of OHC loss (Sergeyenko et al., 2013). Besides CBA/CaJ mice (Sergeyenko et al., 2013;

Parthasarathy and Kujawa, 2018), age-related CS has been observed in gerbils (Gleich et al., 2016),

and it has been shown to interact with noise exposure, with noise exposures at a young age leading

to accelerated age-related CS (Fernandez et al., 2015).

Evidence consistent with age-related CS in humans comes from post-mortem studies of tem-

poral bones. After synaptic disconnection, the peripheral axons of spiral ganglion neurons (SGNs)
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degenerate, followed later by a loss of SGN bodies. Post-mortem studies of human temporal bones

have shown steady age-related declines of SGN peripheral axons (Wu et al., 2019), IHC synaptic

ribbons (Viana et al., 2015), and SGN bodies (Makary et al., 2011), that precede or exceed hair

cell loss. It is not known whether the age-related degeneration of SGNs found in human temporal

bones mainly affects L/M-SR fibers.

Several pieces of evidence suggest that age-related CS in rodents may be selective for L/M-SR

fibers. Schmiedt et al. (1996) found a drastic decline in the proportion of L-SR fibers in quiet-

aged gerbils, although this decline occurred only for fibers with characteristic frequencies > 6

kHz. Stamataki et al. (2006) found a preferential age-related loss of small afferent terminals (that

correspond to L-SR fibers) on IHCs in a mouse strain which exhibits a pattern of progressive age-

related hearing loss similar to that of human presbycusis (C57BL/6J mice; Someya et al., 2009;

Fetoni et al., 2011). Shrestha et al. (2018) used single-cell ribonucleic acid sequencing to charac-

terize SGNs, and derived three subtypes of SGNs on the basis of this molecular characterization:

types Ia, Ib, and Ic, that respectively match the anatomical features of H-, M-, and L-SR SGNs.

Molecular characterization at three different ages (32, 64, and 128 weeks) revealed that the type Ic

neurons (matching the L-SR profile) are selectively vulnerable to age-related loss.

Phenomenologically the picture regarding L/M-SR specificity in age-related CS is less clear.

Although ABR wave I growth functions with click level (either in dB SPL or dB sensation level)

always appear markedly shallower in mice with age-related CS on a linear scale, on a log scale they

sometimes appear to have a similar shape to those of young mice, with a downward offset at all

levels (Sergeyenko et al., 2013; Parthasarathy and Kujawa, 2018; Möhrle et al., 2016). However,

the age-related wave I declines at low stimulus levels may reflect, at least in part, residual OHC

dysfunction (which would not greatly affect wave I responses at high stimulus levels; Cheatham

et al., 2004; Chen et al., 2008; Verhulst et al., 2016, 2018). Similarly, frequency following response

growth functions with level appear to have a similar shape for mice with age-related CS and young

controls, with a downward offset for aged mice at all levels (Parthasarathy and Kujawa, 2018).

However, if the likely effect of OHC dysfunction is compensated for by plotting the functions

at equal sensation levels, the functions appear markedly shallower in aged animals compared to

young controls (Parthasarathy and Kujawa, 2018).
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Unlike deficits due to OHC dysfunction, which should affect mainly the processing of sounds

at low stimulus levels, a predominant involvement of L/M-SR fibers in CS should cause deficits

mainly at high stimulus levels according to several theoretical models (Bharadwaj et al., 2014;

Plack et al., 2016). These models hypothesize a direct role of L/M-SR fibers in the coding of high-

level stimuli. Although another theoretical model, proposed by Carney (2018), excludes a direct

involvement of L/M-SR fibers in the coding of high-level stimuli, it envisages an important role

for these fibers in a feedback loop that is crucial for the optimal encoding of high-level stimuli.

Thus, also for this model it is reasonable to expect that deafferentiation of L/M-SR fibers should

lead to deficits occurring mainly at high stimulus levels.

As mentioned before, there is evidence of age-related supra-threshold auditory deficits in hu-

mans, but while CS is certainly a candidate explanation of these deficits, they may be also due

to age-related changes of the central auditory system (Caspary et al., 2008; Ouda et al., 2015), or

to age-related cognitive declines (Humes and Dubno, 2010; Schneider et al., 2010; Dryden et al.,

2017; Kamerer et al., 2019). Studies showing greater age-related declines at high compared to

low stimulus levels would provide stronger evidence of age-related CS in humans, if it is assumed

that age-related CS in humans affects mainly L/M-SR fibers. In line with previous studies of age-

related CS in humans (Grose et al., 2019; Johannesen et al., 2019; Prendergast et al., 2019; Garrett

and Verhulst, 2019), this will be the working assumption on which the evidence for age-related

CS in the current study will be assessed. However, it should be kept in mind that, although the

evidence reviewed above provides substantial support for this assumption, this evidence is not

conclusive.

Only a few studies have assessed the differential effects of age on auditory processing at high

and low stimulus levels. Grose et al. (2019) compared, between groups of young and older listeners

(∼ 10 per group), thresholds for sinusoidal amplitude modulation (AM) detection with a 2-kHz

tonal carrier in quiet and in noise, and thresholds for spectral modulation detection with a two-

octave noise band, at two levels (70 and 85 dB SPL for AM detection; 65 and 85 dB SPL for

spectral modulation detection). They did not find either significant effects of age or significant age

by level interactions for either task.

Moore and Vinay (2019) compared thresholds for envelope regularity discrimination between
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10 young and 10 older listeners at levels of 20 dB SL, and 80 dB SPL. While they found significant

effects of age, with raised thresholds in older listeners, the effect of age was not significantly larger

at the high stimulus level.

Prendergast et al. (2019) tested 156 young and middle-aged (< 60 years old) participants on

two psychophysical tasks (sinusoidal AM detection with a 4-kHz tonal carrier, and interaural phase

difference detection for the envelope of a transposed tone with a 4-kHz carrier and a 255-Hz mod-

ulator), and two speech-reception tasks [coordinate response measure (CRM; Bolia et al., 2000)

with two diotic speech maskers, and digit triplets test (DTT; Smits et al., 2004) with a speech-

shaped noise masker] at both low and high sound levels. They found that multiple regression

models including age, lifetime noise exposure, and 16-kHz audiometric thresholds significantly

predicted differential performance at the high vs low stimulus levels in the AM detection and DTT

tasks. The relation between age and differential thresholds, however, was opposite in the two tasks.

While for the DTT increasing age was associated with higher relative thresholds at the high stim-

ulus level, for the AM detection task increasing age was associated with lower relative thresholds

at the high stimulus level. Subsequent analyses suggested that these effects remained stable when

audiometric thresholds at the frequency that best correlated with the differential measure (4 kHz

for AM detection, and 0.5 kHz for DTT) were used as a covariate instead of 16-kHz audiometric

thresholds.

Johannesen et al. (2019) measured speech reception thresholds (SRTs) in noise for sentences

and for words in a group of 94 participants ranging in age from 12 to 68 years. SRTs were

measured for both steady-state, and fluctuating noise maskers with the target speech fixed at a

level of 65 dB SPL in the case of sentence SRTs, and at levels of 50, 65 or 75 dB SPL in the case

of word SRTs. Sentence SRTs were not significantly correlated with age. Word SRTs significantly

worsened with increasing age, but there was no evidence of larger age effects at higher target

speech levels (the effect of age did not interact significantly with target speech level). Furthermore,

SRTs were not significantly correlated with the slope of ABR wave I amplitude growth with level

— a putative electrophysiological measure of CS (Bramhall et al., 2019).

Overall, the studies that have compared the effects of age on auditory processing at high and

low stimulus levels have yielded mixed findings. Two of these studies (Grose et al., 2019; Moore
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and Vinay, 2019) did not find evidence of differential effects of age on auditory processing at

high and low stimulus levels, but their sample sizes were small. The Prendergast et al. (2019)

study had a much larger sample size, but did not include participants over the age of 60, and found

differential effects of age at high and low stimulus levels consistent with age-related CS in only one

of four tasks (and a differential effect in the direction opposite to that predicted by age-related CS

in another task). The differential effect of age consistent with CS in the Prendergast et al. (2019)

was found on a speech reception in noise task, but the Johannesen et al. (2019) study, that also had

a large sample size and included participants over a wide age range, did not find differential effects

of age at high and low stimulus levels consistent with age-related CS on speech reception in noise

tasks.

The primary aim of the current study was to test the hypothesis that age-related deficits in the

processing of supra-threshold sounds are greater in conditions that are thought to rely on L/M-SR

fibers for stimulus coding: namely stimuli presented at a high SPL, and within a noise background.

To address this aim we assessed the performance of 102 listeners across the age range on a battery

of psychophysical and speech-reception tests, with each test run at a low, and at a high stimulus

level.

CS is expected to degrade the precise timing information (Plack et al., 2014; Bharadwaj et al.,

2014; Lopez-Poveda and Barrios, 2013) that is often crucial for the encoding of basic sound at-

tributes, such as the pitch of low-frequency tones, and the spatial location of tones with interaural

time differences (Moore, 2008, 2019). For this reason the psychophysical test battery of the current

study focused on tasks that are thought to require precise temporal coding: AM detection for tones

with unresolved side bands, frequency discrimination for low-frequency pure tones, fundamental

frequency (F0) discrimination for unresolved complex tones, and interaural phase difference (IPD)

detection.

Older people often complain of difficulties understanding speech in noise, and age-related CS

has been hypothesized to play a major role in these difficulties (Sergeyenko et al., 2013; Kujawa

and Liberman, 2015; Liberman and Kujawa, 2017). For this reason, the test battery of the current

study also included two speech-reception tests: the DTT with a noise masker, and the CRM with

two colocated or spatially offset speech maskers. The test battery also included: a test on the
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subjective preference for the consonance of musical intervals, a trait that has been previously

associated with age-related temporal coding deficits (Bones and Plack, 2015); a questionnaire that

evaluated self-reported hearing abilities; and a questionnaire estimating lifetime noise exposure.

Besides testing for age effects on differential high-low level measures, a secondary aim of

this study was to assess, at each stimulus level, the contributions of age, independent of hearing

sensitivity, lifetime noise exposure, cognitive abilities, and musical experience on performance in

the tasks outlined above. For this reason, the test battery included also several cognitive tests, and

a measure of self-reported musical experience.

The tests described in this article were part of a larger study that included electrophysiological

measures of temporal coding, on the same cohort of participants. This paper will present only the

results of the behavioral tests. The results of the electrophysiological tests have been published

previously (Carcagno and Plack, 2020). Those results did not provide evidence that age-related

declines in electrophysiological responses, restricted to a low-frequency test region (. 3 kHz)

with near-normal audiometric thresholds across the age range, were larger at high compared to

low stimulus levels. Thus, assuming that age-related CS affects mainly L/M-SR fibers, those re-

sults do not provide evidence of age-related CS occurring within the low-frequency test region.

However, this does not warrant the stronger conclusion that age-related CS was not occurring in

this frequency region, because the sensitivity of electrophysiological measures to CS in humans

is uncertain (Bramhall et al., 2019). The behavioral and speech-reception test reported in the cur-

rent paper provide a further, independent tests of the hypothesis that responses to supra-threshold

sounds in humans match a profile consistent with the predictions of age-related CS specific for

L/M-SR fibers.

2. Methods

2.1. Participants

A total of 170 participants from three age groups (young: 18–39, middle-aged: 40–59, older:

>60 years old) were enrolled in the study. Sixty-eight participants either failed to meet the selec-

tion criteria outlined below, or withdrew from the study. Only the data of the 102 participants who
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completed the study will be presented. Selection criteria included audiometric thresholds for both

ears below 20 dB HL at octave frequencies from 0.125 to 2 kHz, and below 40 dB HL at 4 kHz.

No selection criteria were imposed for frequencies above 4 kHz. Due to the use of an incorrect

calibration table for the headphones used in the audiometric tests the actual cutoff thresholds dif-

fered by a few dBs with respect to the nominal cutoff thresholds listed above. Using the correct

calibration table five older, two middle-aged, and two young participants would not have passed

the selection. However, these listeners had thresholds below 30.5 dB HL for audiometric frequen-

cies up to 2 kHz, and below 37 dB HL at 4 kHz. Given that their thresholds were only slightly

above the cutoff criteria, and given that audiometric thresholds were used as continuous covariates,

the data of these listeners were included in the analyses. Participants with audiometric threshold

asymmetries between the left and right ear larger than 20 dB at any frequency from 0.125 to 4

kHz were excluded from the study. Overall the selection criteria ensured that all participants had

near-normal hearing in a low-frequency region extending up to 2 kHz. An otoscopic examination

was performed prior to the beginning of the tests, and participants with earwax occlusions were

excluded from the study. Participants were required to be native British English speakers.

Recruitment continued until 34 participants from each age group had completed the study.

Within each age group 27 females, and seven males completed the study. Towards the end of the

study, recruitment was targeted to ensure that the proportion of females to males would be the

same across the three age groups. We are not aware of interactions between age-related CS and

sex that could limit the applicability of the findings from the current study, in which a greater

proportion of females than males was tested, to the general population. The youngest participant

was 18.8, while the oldest was 73.6 years old.

Participants were asked to report the number of years of musical practice (with a musical

instrument or vocal) they had. They gave written informed consent for participation in the study,

and received an hourly wage. All the experimental procedures were approved by the Lancaster

University Research Ethics Committee.
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2.2. Noise exposure

Lifetime noise exposure was estimated via the structured interview developed by Lutman et al.

(2008), which estimates the duration and level of noise exposure for a range of activities. One unit

of noise exposure calculated via the interview corresponds to an eight hour daily exposure, for five

days a week, for 52 weeks, for a year, to a noise level of 90 dBA. The estimated noise exposure was

summed across all activities (occupational or recreational) to estimate the total cumulative noise

exposure (TCNE). For the analyses the TCNE was log-transformed using base 10, so that a unit

difference in the log10-transformed TCNE corresponds to a tenfold difference in noise exposure

energy. Further details of the noise exposure interview are available in a previous publication

(Carcagno and Plack, 2020).

2.3. Audiometric thresholds

Audiometric thresholds were measured for pure tones at octave frequencies from 0.125 to 8

kHz (clinical frequency range) as well as for pure tones at 12 and 16 kHz (extended high-frequency

range) using a two-interval two-alternative forced-choice (2I-2AFC) task with an adaptive two-

down one-up transformed up-down procedure tracking the 70.7% correct point on the psychomet-

ric function (Levitt, 1971). Further details of the procedure are available in a previous publication

(Carcagno and Plack, 2020).

2.4. Psychophysical and speech tasks

Psychophysical and speech reception tests were run with n-interval m-alternative forced-choice

tasks using the updated maximum likelihood (UML) adaptive procedure (Shen and Richards,

2012). The UML is a Bayesian procedure that starts with experimenter-defined priors of the free

parameters of the psychometric function (threshold, slope, and lapse rate; the guess rate for forced-

choice tasks is fixed by the number of response alternatives); the priors chosen for each task are

listed in the supplementary materials. The procedure updates the posterior distribution of the psy-

chometric function after each response. On each trial the stimulus is placed at one of the four

sweetpoints that allow the most efficient sampling for these parameters. For the current study, a

2-down 1-up sweetpoint selection rule was used. After data collection, listeners’ responses were
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re-fit (as suggested in Shen and Richards, 2012; Shen et al., 2015) through Markov Chain Monte

Carlo (MCMC) methods to estimate their psychometric functions (Kuss et al., 2005). A signif-

icant advantage of this approach based on the UML procedure and threshold estimation through

psychometric function fits is that the fits take into account the lapse rate, which could otherwise

bias threshold estimates (Wichmann and Hill, 2001).

For the frequency/F0 discrimination and the IPD detection tasks stimuli were presented with

the AAAA vs ABAB paradigm of Hopkins and Moore (2010), which has been shown to minimize

practice effects (King et al., 2013). In this paradigm the standard interval(s) contains four identical

stimuli (AAAA), while the comparison interval contains stimuli alternating along the dimension

of interest (ABAB). The silent interval between each of the four stimuli was 20 ms. The silence

between observation intervals in these tasks, as well as in the AM detection task, had a duration of

500 ms.

Stimuli for the psychophysical tasks had a frequency (or were centered at a frequency) of

either 0.6 kHz (low-frequency stimuli), or ∼ 2 kHz (high-frequency stimuli). Two bands of pink

noise were added to the stimuli. One band was lowpass filtered at a frequency ∼ 25% below

the frequency of the stimulus (450 Hz for the low-, and 1500 Hz for the high-frequency stimuli,

respectively), with a spectrum level of 45 dB SPL at 100 Hz for the high-level stimuli, and a

spectrum level of 5 dB SPL at 100 Hz for the low-level stimuli. The second band was bandpass

filtered between 3 and 8 kHz, and had a spectrum level of 40 dB SPL at 4 kHz for the high-

level stimuli, and a spectrum level of 0 dB SPL at 4 kHz for the low-level stimuli. The high-

frequency band served to limit upward spread of excitation, thus reducing the contribution of

off-frequency H-SR fibers in the coding of the stimuli. The low-frequency band served to mask

the low-frequency combination tones generated by stimuli with multiple frequency components

(complex tones and amplitude-modulated tones).

Participants first completed one block of 25 practice trials for each condition of the psy-

chophysical tasks to familiarize themselves with the stimuli and the tasks; the data from these

practice trials were excluded from the analyses. This familiarization phase was typically run

during their first session. No practice blocks were run for the speech reception tasks, but the

experimenter made sure that participants had understood the instructions by running a few trials
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with them immediately prior the beginning of each speech test. For both the psychophysical and

the speech tests participants completed two blocks of 80 trials for each stimulus condition over a

number of sessions. At the end of each trial, feedback was provided by means of a colored light

(green=correct, red=incorrect) on the computer screen.

2.4.1. Amplitude modulation detection

AM detection was assessed with a 3I-3AFC task for 2-kHz carriers sinusoidally modulated at

rates of 25, 50, or 100 Hz. The amplitude-modulated tones had a duration of 320 ms, including

10-ms onset and offset cosine-squared ramps. The unmodulated carriers had levels of 40, or 80 dB

SPL1. The starting and maximum possible difference in AM depth was 100%. The stimuli were

presented diotically.

2.4.2. Frequency/F0 discrimination

Frequency and F0 discrimination were measured with a 2I-2AFC task using the AAAA vs

ABAB paradigm (with B tones having a higher frequency/F0 than A tones). Frequency discrimi-

nation was measured for 0.6, and 2 kHz pure tones, at levels of 40, and 80 dB SPL. The tones were

presented diotically and had a duration of 300 ms, including 10-ms onset and offset cosine-squared

ramps.

F0 discrimination was measured for complex tones with an F0 of 100 Hz, and harmonics added

in sine phase. The tones were bandpass filtered between 1.5 and 2.5 kHz, and had an overall level

of 40, or 80 dB SPL.

1Amplitude modulation increases the average power of the sound by a factor of 1+m2/2 (where m is the modulation

index; Viemeister, 1979). Detection thresholds for intensity increments of pure tones in notched noise (similar to the

condition of the current study in which the AM tone was flanked by low and high pass noise maskers) are around 1.4-

1.5 dB for highly trained listeners (Moore and Raab, 1974; Schneider and Parker, 1987). Such intensity differences

would be reached for AM depths exceeding ∼ −1.2 dB; given that AM detection thresholds in the current study were

generally much lower than -1.2 dB it can be excluded that they were determined by intensity cues. Because intensity-

discrimination thresholds tend to worsen with increasing age (He et al., 1998), it is also unlikely that the very few

participants with AM detection thresholds close to, or greater than 1.2 dB, who were generally older, used intensity

cues to perform the task.
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The frequency of the B pure tones ( fB) was initially set 10% higher than the frequency of the

A pure tones ( fA) [i.e. fB = fA + fA · 10/100]. The F0 of the B complex tones (F0B) was initially

set 80% higher than the F0 of the A complex tones (F0A) [i.e. F0B = F0A + F0A · 80/100]. The

maximum permitted frequency/F0 difference was in each case 99%.

The rank of the lowest harmonic was 15 for the A complex tones. The lowest harmonic rank of

the B complex tones decreased as a function of their F0, but was never lower than 8. The complex

tones thus contained exclusively, or mainly (for trials with very large F0 differences), unresolved

harmonics (Moore and Gockel, 2011).

2.4.3. Interaural phase difference detection

IPD detection was assessed with a 2I-2AFC task using the AAAA vs ABAB paradigm (with

A tones having an IPD of 0° and B tones having an IPD >0°). IPD detection was assessed by

introducing an IPD to the modulator (MOD) of 100% sinusoidally amplitude-modulated tones

at carrier frequencies of 0.6 and 2 kHz, with a modulation rate of 100 Hz. IPD detection was

also assessed in separate conditions in which an IPD was applied to 0.6-kHz pure tones. The

conditions in which the IPD was applied to the modulator of an AM tone will be referred to as

MOD, while the conditions in which the IPD was applied to pure tones will be referred as PT.

In the 2-kHz MOD conditions the IPD should be detectable only in the envelope (ENV) of the

stimuli because the sidebands are not spectrally resolved and their frequency would in any case

be too high (Brughera et al., 2013) for the detection of IPDs in the temporal fine structure (TFS).

In the 0.6-kHz PT conditions, on the other hand, only IPDs in the TFS are available. In the 0.6-

kHz MOD conditions, because the sidebands may be spectrally resolved and are of relatively low

frequency, IPDs in both the ENV and the TFS could be available to the listener to perform the task.

The tones for both the MOD and PT conditions had a duration of 400 ms, including 50 ms onset

and offset cosine-squared ramps, and were presented at levels of 40, or 80 dB SPL. The initial and

maximum possible IPD was 180°.

2.4.4. Coordinate response measure

On each trial participants were presented with three (one target, two interfering) simultaneous

sentences from a version of the CRM corpus (Bolia et al., 2000) recorded by eight (four males
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and four females) native British English speakers (Kitterick et al., 2010). The sentences were of

the form “Ready < call sign > go to < color > < number > now”. There were eight possible

call signs (“arrow”, “baron”, “charlie”, “eagle”, “hopper”, “laker”, “ringo”, “tiger”), four possible

colors (blue, red, white, green), and four possible numbers (1–4). The three speakers were drawn

randomly from the set of eight available speakers on each trial (hence the identity of the target

speaker changed across trials). The sentence spoken by the speaker using the call sign “baron” was

defined as the target sentence (the interfering speakers used different call signs randomly drawn

from the set of the seven remaining call signs). Participants were presented with a 4x4 matrix

of colored and numbered buttons corresponding to each possible color/number combination, and

were asked to click on the button corresponding to the color/number combination specified in

the target sentence. The colors and numbers spoken by the interfering speakers were randomly

drawn from the available set of colors and numbers, and could occasionally match the color and/or

number in the target sentence.

The sentences were spatialized by convolving them with the head-related impulse responses of

subject #3 from the CIPIC database (Algazi et al., 2002). The target sentence was always presented

at a 0° azimuth. In the colocated condition the interfering sentences were also presented at a 0°

azimuth. In the offset condition one of the interfering sentences was presented at a +65°, and the

other at a -65° azimuth. In the high-level condition each interfering sentence had a root mean

square (RMS) level of 74 dB SPL, while in the low-level condition each had an RMS level of 39

dB SPL.

The sentences were lowpass filtered at 3 kHz, and three bands of pink noise were added to

the sentences to eliminate the contribution of high-frequency cochlear regions to the coding of the

sentences. The three noise bands were all bandpass filtered between 3 to 8 kHz, but each had the

same azimuth as one of the sentences (all a 0° azimuth in the colocated conditions; -65°, 0°, and

+65° azimuth in the offset conditions). The noise bands had each a level of 40 dB SPL at 4 kHz

in the high-level conditions, and a level of 5 dB SPL at 4 kHz in the low-level conditions.

The target sentence was initially presented at a signal to noise ratio (SNR) of 7 dB (with the

noise level defined as the combined level of the two masker sentences), and its level was varied

adaptively to define the psychometric function.
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2.4.5. Digit triplets test

On each trial the participant was presented with three digits in the 1–9 range, but excluding

7 (the only digit consisting of two syllables). No repetitions of the same digit were allowed in a

trial. The digits were voice recordings of a male speaker taken from McShefferty et al. (2013). The

digits were lowpass filtered at 3 kHz. A noise2 lowpass filtered at 3 kHz, and with an RMS level

of 80, or 45 dB SPL was presented throughout the duration of the trial and served as the masker.

A pink noise bandpass filtered between 3 and 8 kHz was added to the stimuli to eliminate the

contribution of high-frequency cochlear regions to the coding of the digits. Each trial started with

the recording of a female voice saying the phrase “the digits”, and was followed by the presentation

of the digits spoken by the male voice. Participants were asked to input the three digits they heard,

or give their best guess if they could not hear them clearly, using a numeric keypad. Responses

with repeated digits within the same sequence were not allowed.

The digits were initially presented at an SNR of 10 dB, and their level was varied adaptively

to define the psychometric function.

2.5. Consonance preference

Participants rated the pleasantness of dyads consisting of a low (“root”) note, and a high (“in-

terval”) note, forming a musical interval on the equal temperament (ET) scale that was either

consonant [perfect fifth (P5); 700 cents)], or dissonant [tritone (TT); 600 cents]. The dyads were

rated on a scale ranging from -3 to +3 in 0.1 steps by moving, via a computer mouse, a slider

presented on a computer monitor (McDermott et al., 2010; Carcagno et al., 2019). Each note con-

sisted of an equal amplitude complex tone lowpass filtered at 2.5 kHz, with harmonics summed

in sine phase. The dyads had a duration of 2 seconds, including 10-ms onset and offset cosine-

squared ramps. The F0 of the root note could take one of eight possible values, from 146.83 Hz

(note D3 on the ET scale) to 220 Hz (note A3 on the ET scale) in 100-cent steps. The dyads were

2The noise was intended to be a speech shaped noise (SSN). However, due to a bug in version 1.5 of the

software used to generate the SSN (https://it.mathworks.com/matlabcentral/fileexchange/37376-oscillator-and-signal-

generator), its spectral shape was different from that of an SSN. Figure S1 in the supplementary materials shows the

spectrum of an SSN and the spectrum of the noise used for the DTT task in the current study.
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presented diotically at a level of either 40, or 80 dB SPL. They were presented with a pink noise

bandpass filtered between 3 and 8 kHz to eliminate the contribution of high-frequency cochlear

places to the coding of the stimuli; the noise had a spectrum level at 4 kHz that was 40 dB below

the level of the dyad. On each trial, a 2-s pink noise was presented before the dyad to weaken the

sensory memory trace of the preceding dyad and minimize any effect it might have on the rating of

the upcoming dyad (Bones et al., 2014; McDermott et al., 2010). This noise was bandpass filtered

between 0.02 and 8 kHz, and had a spectrum level at 1 kHz 40 dB below the level of the dyad.

The dyad was separated from this noise by a 500-ms silent interval.

Participants completed first 16 practice trials (four for each combination of musical interval and

dyad level, with F0s randomly drawn from the set of eight possible F0s). They then completed two

trials for each combination of musical interval, dyad level, and F0. Both the practice and the main

trials were blocked by dyad level, with the starting levels randomly chosen across participants.

The pleasantness ratings of each participant were converted to z scores by subtracting the

mean and scaling by the standard deviation of the scores given by that listener across all stimulus

conditions (McDermott et al., 2010; Carcagno et al., 2019). Consonance preference was computed

as the difference of these z scores between ratings of the perfect fifth and ratings of the tritone

intervals.

2.6. Speech, Spatial and Qualities of Hearing scale

Self-reported hearing abilities were assessed with the short version of the “Speech, Spatial and

Qualities of Hearing scale” (SSQ12; Noble et al., 2013).

2.7. Cognitive tests

There is evidence that cognitive abilities are associated not only with speech-reception in noise

(Dryden et al., 2017), but also with performance in psychoacoustical tasks (Zhang et al., 2016).

For this reason cognitive abilities were assessed with four cognitive tests, targeting mainly working

memory, and fluid intelligence. Working memory has been found to be associated with speech-

reception in noise in older hearing-impaired listeners (Akeroyd, 2008), and plays a prominent

role in some auditory-cognitive models of speech understanding (Rönnberg et al., 2013). Fluid
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intelligence is a crucial aspect of general cognitive ability, and as such its assessment can provide

a more rounded view of the cognitive status of an individual compared to the assessment of more

specific cognitive domains (Valentin Kvist and Gustafsson, 2008; Deary et al., 2010; Kovacs and

Conway, 2019).

The four cognitive tests were the digit span forward and digit span backward tests (Wechsler,

1997), the reading span task (Rönnberg et al., 1989), and the Raven’s progressive matrices test

(Raven and Raven, 2003). A brief description of the cognitive domains tapped by each test is given

below, although it should be kept in mind that cognitive tests generally are not “pure” measures

of a single cognitive construct, and that theories related to cognitive constructs are continually

evolving and often there is considerable controversy regarding the cognitive processes underlying

a given ability.

The digit span forward test is generally thought to measure verbal short-term memory. The

digit span backward test is also dependent on verbal short-term memory. However, because it

additionally requires active manipulation of the items to be recalled (transposition of their order),

it is considered by some authors to be a measure of working memory (Aben et al., 2012). The

reading span test is a complex span task that requires both storage and active processing of in-

formation, and as such, is generally considered a measure of working memory (Conway et al.,

2005; Richardson, 2007). Performance on the reading span task has been found to be associated

with speech reception in noise (Akeroyd, 2008), although this association seems to be limited to

older and/or hearing-impaired listeners (Füllgrabe and Rosen, 2016). The Raven’s progressive

matrices test is a nonverbal test of fluid intelligence (Nisbett et al., 2012), the ability to solve novel

reasoning problems; this ability is associated with other constructs, including working memory

(Kyllonen and Christal, 1990; Martínez et al., 2011), and processing speed (Kievit et al., 2016),

although the relations between these constructs remain a matter of debate (Duncan et al., 2017).

The digit span tests were administered through a custom computerized interface that presented

the sequences of digits to the participant through loudspeakers at a rate of one digit per second

using the recordings of McShefferty et al. (2013). The sequences started at a length of two digits,

and contained digits in the 1–9 range. They were the same for each participant and did not con-

tain repeated digits up to a length of nine digits; if a participant was able to recall a sequence of
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nine digits, sequences with more than 10 digits were chosen by random sampling with replace-

ment from the 1–9 range. The interface was controlled by the experimenter, who also input the

participant’s responses on the computer.

The reading span task followed the format of Rönnberg et al. (1989). Participants were pre-

sented with sets of sentences of increasing length (3–6 sentences). The words composing each

sentence were presented one at a time at a rate of 0.8 words per second. Sentences were separated

by blank intervals of 1.75 seconds, during which participants had to say “yes” if the sentence made

sense (e.g. “The captain saw his boat”), or “no”, if it did not make sense (e.g. “The train sang a

song”). At the end of a set of sentences participants were prompted to recall either the first, or the

last words of each sentence in the set (in any order). The test was scored on the total number of

correctly recalled words (the task of judging whether each sentence is meaningful is a secondary

task that is not typically scored).

The Raven’s progressive matrices test is a multiple-choice test in which participants have to

select the missing piece in a geometric pattern. The full 60-item test was administered in accor-

dance with the guidelines set out in the manual (Raven and Raven, 2003). The test was scored by

counting the total number of correct responses.

2.8. Equipment

All auditory tests took place in double-walled soundproof booths (IAC Acoustics, Winch-

ester, UK). Cognitive tests and questionnaires were completed in a quiet room. The stimuli for

the psychophysical tests and audiometry were generated in Python (Python Software Foundation,

Delaware, United States) with 32-bit resolution. The stimuli for the speech tests consisted of

16-bit WAV recordings. Stimuli were played through either an EMU 0204 USB sound card (E-

MU Systems, Scotts Valley, U.S.A.), or a 24-bit RME Hammerfall DSP Multiface DAC (RME

Intelligent Audio Solutions, Germany). Sennheiser HDA300 headphones (Sennheiser electronic

GmbH & Co. KG, Hanover, Germany) were used for the measurement of audiometric thresholds.

Sennheiser HDA650 headphones were used for all the other auditory tests.
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2.9. Psychometric functions fitting

Thresholds for the psychophysical and speech-reception tasks were obtained by fitting psy-

chometric functions on the data acquired with the UML procedure. Psychometric functions were

fit via MCMC methods (Kuss et al., 2005), using a Logistic function. The midpoint, slope, and

lapse rate were free parameters, while the guess rate was fixed at the reciprocal of the number of

response alternatives. Normal (on a linear or log scale depending on the task) priors were used for

the midpoint, while gamma priors were used for the parameter controlling the slope, and for the

lapse rate. Priors for the midpoint and the slope were centered on average values of these parame-

ters obtained via preliminary maximum likelihood fits (Wichmann and Hill, 2001). Further details

of the fitting procedures are given in the supplementary materials.

2.10. Principal component analysis of cognitive tests scores

In order to reduce the number of predictor variables, the scores of the four cognitive tests

were subject to principal component analysis (PCA; Sharma, 1996). The scores of each test were

standardized by subtracting the sample mean and dividing by the sample standard deviation before

being entered into the PCA. The eigenvalues and percentage of variance explained by the resulting

principal components (PCs) are shown in Table S1, while the loadings of the components on

each test are shown in Table S2. The first two components accounted for 74% of the variance

(PC1: 50%, PC2: 24%), and were retained as predictor variables for further analyses. PC1 had

correlations between 0.6 to 0.8 with all tests. The main loadings of PC2 were a positive correlation

with the reading span task (0.6), and a negative correlation (-0.6) with the forward digit span task.

2.11. Statistical analyses

All analyses were performed using Bayesian models (Ntzoufras, 2008; Kruschke, 2014; McEl-

reath, 2016) implemented by MCMC simulations using JAGS (Plummer, 2003) and R (R Core

Team, 2020). For all MCMC simulations the chains for the main parameters of interest were

monitored for convergence using trace plots, and where available the Gelman-Rubin statistic.

The chains were also monitored for autocorrelation to ensure an effective sample size of at least

' 10, 000 samples for the main parameters of interest (Kruschke, 2014).
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The data were analyzed using robust mixed-effect multiple regression models (Singmann and

Kellen, 2019; Gelman and Hill, 2007) which included both categorical and continuous predic-

tors, as well as random effects of subjects. Robust regression uses a Student’s t distribution

instead of a Normal distribution for describing residuals, minimizing the potential influence of

outliers on the estimated regression coefficients (Kruschke, 2014). For categorical predictors an

unweighted effect coding scheme was used (Aiken et al., 1991). Continuous variables were stan-

dardized using the Friedrich method (Friedrich, 1982; Aiken et al., 1991) before being entered

into the analyses. Unstandardized coefficients corresponding to those resulting from an analysis

of the mean-centered variables can be obtained by scaling using the appropriate standard deviation

terms (Aiken et al., 1991). The priors for the slope coefficients in the models were set differently

for coefficients that were of main interest in the analysis, and coefficients that were expected to

affect the dependent variable, but were not of great analytical interest, such as the effect of masker

location on CRM speech-reception threshold. For the latter effects, the priors were very broad

on the scale of the data. Shrinkage priors were used for the former: the standardized coefficients

were described by a t distribution centered at zero, with 1 degree of freedom, and scale parameter

set to 0.1. This prior assumes that the standardized slope coefficients should be generally close to

zero, where the narrow peak of the t distribution is located, reflecting a belief that effect sizes will

be generally small. However, owing to its heavy tails the t prior can accommodate coefficients

much larger than zero if the likelihood provides clear evidence for this (Kruschke, 2014). The

interpretation of the standardized slope coefficients, and hence of the priors set on them, differs for

continuous and categorical variables. For continuous variables the standardized slope coefficient

is the change of the dependent variable in standard deviation (sd) units, for a 1-sd change of the

dependent variable. Categorical variables were not standardized, and the coefficients represent the

shift in the value of the dependent variable (which was still set in sd units in our models) for the

categorical level coded as 1, from the unweighted grand mean of the dependent variable over all

the levels. Further details of the models are given in the supplementary materials, and the model

code is available at https://osf.io/b69ds/?view_only=4f6eb2bef2f74aa0a4b97828ead2eb11.

Effects were summarized by 99% credibility intervals (CIs) of the posterior distribution of the

parameter of interest. These indicate that, according to the model, the parameter has a 99% proba-
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bility of being enclosed within the bounds of the interval. The use of CIs to summarize the results

of the study is in line with calls from different schools of statistical thought for a shift from crude

null hypothesis testing to explicit estimation of the size of parameters of interest, and the uncer-

tainty of these estimates (Gardner and Altman, 1986; Schmidt, 1996; Kruschke and Liddell, 2018;

McShane et al., 2019). This approach emphasizes the idea that statistical results provide graded

evidence, or different degrees of (un)certainty regarding a hypothesis, avoids conflating statistical

significance with practical and/or theoretical significance, and acknowledges that single studies

can rarely provide on their own conclusive evidence for or against an effect. Nonetheless, it is dif-

ficult to summarize succinctly the results of a large-scale study without making some categorical

statements. For this reason we will refer to parameters whose 99% CIs excludes zero as being

credibly different from zero3 to highlight the most salient findings, but we will also emphasize the

size and uncertainty of effect estimates.

2.11.1. Amplitude modulation detection model

AM detection thresholds, measured in dB, were modeled jointly across stimulus levels and

modulation frequencies. Predictor variables included age, pure tone audiometric thresholds at 2

kHz (PT2), log10TCNE, the first (Cog1) and second (Cog2) principal components extracted from

the PCA on cognitive test scores, and the number of years of musical practice. Because this latter

variable was right skewed, a cube root transformation was applied to it before statistical analyses.

For brevity the cube-root-transformed number of years of musical practice will be referred to

as MUS. Stimulus level (40 or 80 dB SPL), modulation frequency (25, 50, or 100 Hz), and the

interactions of these two variables with age, PT2, and log10TCNE were also included as predictor

variables. All terms for the AM detection model are listed in Table S7.

3Bayesian credibility intervals have analogies with Frequentist confidence intervals, and Bayesian statements of

credible differences have analogies with Frequentist statements of significant differences; however, there are also

subtle but fundamental differences in the definition and interpretation of these concepts in the context of Bayesian

and Frequentist analyses that cannot be succinctly described within the scope of this paper. Accessible expositions of

these differences are provided by Kruschke (2013, 2014), and Kruschke and Liddell (2018). McMillan and Cannon

(2019) provide an introduction to Bayesian analysis methods in the context of auditory research.
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2.11.2. Frequency discrimination model

Log-transformed frequency-discrimination thresholds (measured in % frequency difference)

were modeled jointly across pure tone levels and frequencies. Predictor variables included age,

pure tone audiometric thresholds at 0.5 kHz (PT0.5) for the 0.6-kHz frequency-discrimination data,

and PT2 for the 2-kHz discrimination data, log10TCNE, Cog1, Cog2, and MUS. Stimulus level (40

or 80 dB SPL), frequency (0.6 or 2 kHz), and the interactions of these two variables with age, pure

tone audiometric thresholds, and log10TCNE were also included as predictor variables. All terms

for the frequency-discrimination model are listed in Table S8.

2.11.3. F0 discrimination model

Log-transformed F0-discrimination thresholds (measured in % F0 difference) were modeled

jointly across complex tone levels. Predictor variables included age, PT2, log10TCNE, Cog1,

Cog2, and MUS. Stimulus level (40 or 80 dB SPL), and the interactions of this variable with age,

pure tone audiometric thresholds, and log10TCNE were also included as predictor variables. All

terms for the F0-discrimination model are listed in Table S9.

2.11.4. Interaural phase difference detection with AM tones model

Log-transformed IPD detection thresholds (measured in degrees) were modeled jointly across

amplitude-modulated tones carrier frequencies and levels. Predictor variables included age, PT0.5

for the amplitude-modulated tone with a 0.6-kHz carrier, and PT2 for the amplitude-modulated

tone with a 2-kHz carrier, log10TCNE, Cog1, Cog2, and MUS. Stimulus level (40 or 80 dB SPL),

carrier frequency (0.6 or 2 kHz), and the interactions of these two variables with age, pure tone

audiometric thresholds, and log10TCNE were also included as predictor variables. All terms for

the MOD-IPD detection model are listed in Table S10.

2.11.5. Interaural phase difference detection model with pure tones model

Log-transformed IPD detection thresholds (measured in degrees) were modeled jointly across

tone levels. Predictor variables included age, PT0.5, log10TCNE, Cog1, Cog2, and MUS. Stimulus

level (40 or 80 dB SPL), and the interactions of this variable with age, PT0.5, and log10TCNE
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were also included as predictor variables. All terms for the PT-IPD detection model are listed in

Table S11.

2.11.6. Coordinate response measure model

Speech-reception thresholds, measured in dB, were modeled jointly across maskers levels and

offsets relative to the target speech. Predictor variables included age, average pure tone audiomet-

ric thresholds from 0.125 to 2 kHz (PTA0.125–2), log10TCNE, Cog1, Cog2, and MUS. Maskers level

(42 or 77 dB SPL), maskers offset (colocated or offset), and the interactions of these two variables

with age, PTA0.125–2, and log10TCNE were also included as predictor variables. Additionally the

model included interaction terms between maskers offset and Cog1, Cog2, and MUS. All terms

for the CRM model are listed in Table S12.

2.11.7. Digit triplets test model

Speech-reception thresholds, measured in dB, were modeled jointly across masker levels. Pre-

dictor variables included age, PTA0.125–2, log10TCNE, Cog1, Cog2, and MUS. Masker level (45 or

80 dB SPL) and the interactions of this variable with age, PTA0.125–2, and log10TCNE were also

included as predictor variables. All terms for the DTT model are listed in Table S13.

2.11.8. Musical intervals ratings model (consonance preference)

The standardized ratings (averaged across root notes) given to the dyads were modeled jointly

across musical intervals and dyad levels. Predictor variables included age, PTA0.125–2, log10TCNE,

Cog1, Cog2, and MUS. Dyad level (40 or 80 dB SPL), interval (TT or P5), and the interactions of

these two variables with age, PTA0.125–2, and log10TCNE were also included as predictor variables.

Additionally, the model included interaction terms between interval and Cog1, Cog2, and MUS.

All terms for the musical interval ratings model are listed in Table S14.

2.11.9. Speech, Spatial, and Qualities of Hearing scale model

The dependent variable consisted of the SSQ12 scores, averaged across questions. Predictor

variables included age, PTA0.125–2, average pure tone thresholds between 4 and 12 kHz (PTA4–12),

log10TCNE, Cog1, Cog2, and MUS. All terms for the SSQ12 model are listed in Table S15.

22



3. Results

3.1. Predictor variables

Fig. 1 shows the audiometric thresholds for the participants included in the study, while Fig. S2

shows the other predictors (log10TCNE, MUS, Cog1, and Cog2) as a function of age. Tables 1 and

2 show correlations among predictor variables used in this study, along with 99% CIs computed

with a Bayesian model based on that of Lee and Wagenmakers (2014, chap. 5, see supplementary

materials for details). Not all of the predictors shown in the tables were used in all models, for

details of the predictors used in each model see Section 2.11.

Correlations between the predictor variables were all low or moderate, with the exception of

the correlation between age and PTA4–12, two variables that were used together only in the SSQ12

model. As expected there were also credible low/moderate correlations between age and audio-

metric thresholds at other frequencies or frequency averages (and between audiometric thresholds

at different audiometric frequencies). There were credible negative correlations between age and

Cog2, and between PTA4–12 and Cog2.

It is notable that, in this sample, age was not associated with increased log10TCNE. This may

reflect geographical or historical peculiarities of the participants sample, as well as the fact that

they were a self-selected sample of volunteers from the general population. For most listeners the

major contributor to log10TCNE was recreational noise exposure, and this tended to be concen-

trated in their youth years. Nonetheless TCNE had a large spread across the sample, varying over

more than three orders of magnitude.

PT0.5 PT2 Log10TCNE Music 3√Y Cog1 Cog2

Age 0.26 (0.01 – 0.48) 0.44 (0.21 – 0.62) 0.02 (-0.23 – 0.28) 0.10 (-0.16 – 0.34) -0.06 (-0.30 – 0.20) -0.28 (-0.50 – -0.04)

PT0.5 0.41 (0.18 – 0.60) -0.22 (-0.44 – 0.03) -0.01 (-0.26 – 0.24) -0.13 (-0.37 – 0.13) -0.12 (-0.36 – 0.13)

PT2 -0.02 (-0.27 – 0.23) -0.03 (-0.29 – 0.21) -0.16 (-0.41 – 0.09) -0.14 (-0.38 – 0.12)

Log10TCNE -0.01 (-0.26 – 0.25) 0.05 (-0.20 – 0.30) 0.07 (-0.19 – 0.31)

Music 3√Y 0.07 (-0.20 – 0.31) 0.20 (-0.05 – 0.43)

Table 1: Matrix of correlations (r) among the predictor variables. 99% CIs are shown in brackets. Only the correlations

between some of the predictor variables are shown in this table. The remaining correlations are shown in Table 2.

Some entries are repeated across the two tables.
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Figure 1: Audiometric thresholds for the study participants. The light blue points plot mean thresholds ± 1 standard

error of the mean (s.e.m.) for each age group. The dashed and dotted lines mark respectively 20, and 40 dB HL.

PTA0.125-2 PTA4-12 Log10TCNE Music 3√Y Cog1 Cog2

Age 0.39 (0.15 – 0.58) 0.84 (0.74 – 0.90) 0.02 (-0.23 – 0.28) 0.10 (-0.16 – 0.34) -0.06 (-0.30 – 0.20) -0.28 (-0.50 – -0.04)

PTA0.125-2 0.50 (0.30 – 0.68) -0.14 (-0.39 – 0.12) -0.06 (-0.30 – 0.19) -0.19 (-0.43 – 0.06) -0.16 (-0.40 – 0.08)

PTA4-12 0.06 (-0.21 – 0.29) -0.06 (-0.31 – 0.19) -0.01 (-0.25 – 0.24) -0.30 (-0.51 – -0.06)

Table 2: Matrix of correlations (r) among the predictor variables. 99% CIs are shown in brackets. Only the correlations

between some of the predictor variables are shown in this table. The remaining correlations are shown in Table 1.

Some entries are repeated across the two tables.

3.2. Amplitude modulation detection

Figure 2 shows the AM detection thresholds as a function of age for each modulation frequency

and stimulus level. Thresholds were generally within the range of possible AM depths, but a

few participants (mostly older) had great difficulty in some conditions of this task, so that their

thresholds estimated by fitting psychometric functions were above the range of possible AM depths

(m > 1, or equivalently AM depth in dB > 0; see supplementary materials for details of the

psychometric function fitting procedures).

Figure 3 shows the effects of age on AM detection thresholds estimated by the multiple regres-

sion model at each modulation frequency, and stimulus level, as well as the differential effect of
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age between the high and low stimulus levels. There were trends for thresholds to increase with

age in all conditions, with posterior medians of ∼0.5 – 1 dB per age decade, although these in-

creases were not credibly different from zero for the 50 and 100 Hz modulation frequencies at the

low stimulus level. For the other conditions the CIs, which provide a measure of the uncertainty of

effect estimates, were compatible with effects ranging in size from ∼ 0.1 to 1.5 dB per age decade.

The differential effect of age between the high and low stimulus level was credibly different

from zero only for the 50 Hz modulation frequency, with thresholds increasing ∼ 0.7 dB (CI:

0.1 – 1.2) more per age decade for the high compared to the low stimulus level. A trend in the

same direction was present for the stimulus with a 100 Hz modulation frequency, while for the

25-Hz stimulus there was no evidence of larger age-related effects for the high compared to the

low stimulus level.

Interestingly, AM detection thresholds appeared to be lower overall at 40 than at 80 dB SPL.

This was the case also for young participants, with the model estimating thresholds at 80 dB

SPL 3.7 dB (CI: 2.6 – 4.7) higher than at 40 dB SPL at age 20 (with predictors other than age

set at their mean). Previous studies of AM detection that have generally found that thresholds

decrease as the stimulus level increases (Kohlrausch, 1993; Moore and Glasberg, 2001), an effect

attributed to spread of excitation that can improve detection by allowing listeners to combine

information across multiple auditory filters, and/or by allowing listeners to detect the modulation

at off-frequency places that are less subject to basilar-membrane compression (Kohlrausch et al.,

2000). Both these effects favoring AM detection at high stimulus levels would have been reduced

or eliminated in the current study due to the presence of the highpass noise masker. Additionally,

the small decrement in performance at the high compared to the low stimulus level found in the

current study may be due to masking of the AM tone by the lower noise band, which would have

had a larger upward spread at 80 than at 40 dB SPL.

The effects of PT2 and log10TCNE are shown in Figures S3 and S4, respectively. None of

these effects was credibly different from zero. The effects of Cog1, Cog2, and MUS are listed in

Table S3. The effect of Cog1 was credibly different from zero, with greater Cog1 scores associated

with smaller thresholds (CI: -2.1 – -0.2). The effects of Cog2 and MUS were not credibly different
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from zero.

3.3. Frequency and F0 discrimination

Figure 4 shows the frequency and F0 discrimination thresholds as a function of age. The effects

of age estimated by the multiple regression models are shown in Figure 5. None of these effects

was credibly different from zero. The log-threshold changes shown in Figure 5 can be converted to

proportional changes by exponentiation. When expressed in this way the CIs for the effects of age

on pure tone frequency discrimination were relatively narrow, and compatible with increases of at

most a factor of ∼ 1.1 per age decade. The CIs for the differential effects at the high compared to

the low stimulus level were also relatively narrow, and compatible with a greater age effect for the

80 dB SPL stimulus of at most a factor of 1.05 per age decade.

The CIs for the effects of age on F0 discrimination for the unresolved complex tone were

somewhat larger, and compatible with an age-related increase of a factor of ∼ 1.15 per age decade,

and a greater age effect for the 80 dB SPL stimulus of at most a factor of 1.16 per age decade.

The effects of audiometric thresholds and log10TCNE are shown in Figures S5 and S6, re-

spectively. The effects of audiometric thresholds on pure tone frequency discrimination were all

credibly greater than zero, except for the 80-dB SPL 0.6 kHz pure tone, that nonetheless showed

a similar trend of worse discrimination thresholds with larger audiometric losses. The CIs for the

credible effects ranged from a threshold increase of a factor of ∼ 1.01 to 1.4 per 10 dB of audiomet-

ric threshold increase. The effects of audiometric thresholds on complex tone F0 discrimination

were not credibly different from zero. There were no credible effects of log10TCNE on frequency

or F0 discrimination. The CIs for the effects of log10TCNE were relatively narrow for pure tone

frequency discrimination (compatible with threshold increases of at most a factor of 1.17 per ten-

fold increase in noise exposure in one condition), while they were somewhat larger for complex

tone F0 discrimination (compatible with threshold increases of at most a factor of 1.27 per tenfold

increase in noise exposure).

The effects of Cog1, Cog2, and MUS are listed in Table S3. None of these effects were cred-

ibly different from zero, although there were trends for better pure tone frequency discrimination

thresholds for individuals with higher cognitive test scores and greater musical experience, and for
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better F0 discrimination thresholds with increases in Cog2.

3.4. Interaural phase difference detection

Figure 6 shows thresholds for MOD and PT IPD detection as a function of age. The CIs for

age effects estimated by the multiple regression model are shown in Figure 7. Age effects for

MOD IPD detection at 600 Hz were not credibly different from zero, with posterior medians close

to zero, and CIs compatible with either increases or decreases of a factor of ∼ 1.1 per age decade.

For MOD IPD detection at 2000 Hz there was a credible age-related increase in thresholds at 80

dB SPL, with the CI compatible with threshold increases ranging from a factor of ∼ 1.1 to ∼ 1.3

per age decade. A trend in the same direction was also present at 40 dB SPL (CI: 0.97 – 1.21

factor change per age decade). The effect tended to be larger at 80 compared to 40 dB SPL, but the

effect difference was not credibly larger than zero (CI: 0.98 – 1.25 factor change per age decade).

No credible effects of age were present for PT IPD detection with CIs compatible with age-related

changes of a factor of ∼ 0.96 to a factor of ∼ 1.15 per age decade.

The effects of audiometric thresholds are shown in Figure S7. There were credible effects of

audiometric thresholds on MOD IPD detection at 40 dB SPL, with CIs compatible with threshold

increases of a factor of just above 1 to a factor of 1.7 per 10-dB increase in audiometric thresholds.

A trend in the same direction and of similar magnitude was present for PT IPD detection (CI: 0.99

– 1.6 factor change per 10-dB increase in audiometric thresholds). Effects at 80 dB SPL were not

credibly different from zero for either MOD or PT thresholds (CIs ranging from ∼ 0.7 to ∼ 1.4

factor change per 10-dB audiometric threshold increase).

Figure S8 shows the effects of log10TCNE. None of these effects were credibly different from

zero, with posterior median effects close to zero (factor change close to 1), and CIs ranging from

a factor change of ∼ 0.8 to ∼ 1.2 per tenfold increase in noise exposure.

The effects of Cog1, Cog2, and MUS are listed in Table S3. None of these effects were credibly

different from zero, although there were trends for better MOD and PT IPD detection thresholds

for individuals with higher cognitive test scores.

3.5. Coordinate response measure

Figure 8 shows the speech-reception thresholds in the CRM task as a function of age. The
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effects of age estimated by the multiple regression model for the offset and colocated conditions

are shown in Figure 9. None of these effects were credibly different from zero, with posterior

medians close to zero, and CIs consistent with age-related changes in either direction of less than

0.5 dBs per age decade. Figure 9 also shows the effect differences between the colocated and offset

conditions, which provides a measure of age-related changes in spatial release from masking.

There were no credible effects of age on spatial release from masking.

The effects of PTA0.125–2 on CRM thresholds are shown in Figure S9. In the offset conditions

there were credible CRM threshold increases with increasing PTA0.125–2 both at 42 dB SPL (CIs:

1.5 – 4.1 dBs per 10-dB PTA0.125–2 increase) and at 77 dB SPL (CI: 0.3 – 3.1 dBs per 10-dB

PTA0.125–2 increase). Although the effect tended to be larger at 42 than at 77 dB SPL, this difference

was not credibly different from zero (CI: -2.5 – 0.3 dBs per 10-dB PTA0.125–2 increase). There were

no credible effects of PTA0.125–2 in the colocated condition. Spatial release from masking decreased

with increasing PTA0.125–2 both at 42 dB SPL (CI: 0.7 – 3.5 dBs per 10-dB PTA0.125–2 increase),

and at 77 dB SPL (CI: 0.4 – 3.4 dBs per 10-dB PTA0.125–2 increase).

The effects of log10TCNE are shown in Figure S10. None of these effects was credibly different

from zero. The CIs were consistent with effects in either direction of at most ∼ 1 dB threshold

change per tenfold increase in noise exposure. There were no credible effects of log10TCNE on

spatial release from masking.

The effects of Cog1, Cog2, and MUS are listed in Table S3. None of these effects were

credibly different from zero, although there were trends for better thresholds for individuals with

higher cognitive test scores both in the offset and colocated conditions. In the offset conditions

there was also a trend for better thresholds for individuals with greater musical experience.

3.6. Digit triplets test

Figure 10 shows the speech-reception thresholds in the DTT as a function of age. The effects

of age estimated by the multiple regression model are shown in Figure 11. These were not credibly

different from zero, although there were trends for small threshold increases with increasing age

at both levels, with CIs compatible with thresholds changes of ∼ -0.1 to 0.3 dB per age decade.

The effects of PTA0.125–2 on DTT thresholds are shown in Figure S11. There was a credible
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increase in DTT thresholds with increasing PTA0.125–2 at 45 dB SPL (CI: 0.1 – 1.6 dB per 10-dB

PTA0.125–2 increase), and a trend in the same direction at 80 dB SPL (CI: -0.3 – 1.1 dB per 10-dB

PTA0.125–2 increase).

Figure S12 shows the effects of log10TCNE on DTT thresholds. These effects were not credibly

different from zero at either stimulus level, with CIs ranging from ∼ -0.3 to ∼ 0.4 dB per tenfold

increase in noise exposure.

The effects of Cog1, Cog2, and MUS are listed in Table S3. None of these effects were credibly

different from zero, although there were trends for better DTT thresholds for individuals with

higher cognitive test scores, and for worse DTT thresholds for individuals with greater musical

experience.

3.7. Consonance preference

Figure 12 shows the consonance preference scores (ratings for the consonant perfect fifth in-

terval minus ratings for the dissonant tritone interval) as a function of age (ratings for each interval

are shown in Figure S13). Figure 13 shows the effects of age on consonance preference scores

estimated by the multiple regression model. There was a credible decrease in consonance prefer-

ence scores with increasing age at 80 dB SPL (CI: -0.21 – -0.02 per age decade) and a trend in the

same direction at 40 dB SPL (CI: -0.17 – 0.02 per age decade). The effect of age was not credibly

different between the two levels (CI: -0.17 – 0.09).

There were no credible effects of PTA0.125–2 on consonance preference scores (Figure S14),

with CIs compatible with maximal score changes of ∼ ±0.3 per 10-dB PTA0.125–2 increase.

The effects of log10TCNE were also not credibly different from zero (Figure S15) at either level

(CI 40 dB SPL: -0.14 – 0.23; CI 80 dB SPL: -0.10 – 0.31 per tenfold increase in noise exposure).

CIs for the effects of Cog1, Cog2, and MUS are listed in Table S3. There was a credible

increase in consonance preference scores with increasing Cog1 scores (CI: 0.03 – 0.27), and a

trend in the same direction for Cog2 (CI: -0.06 – 0.18). There was also a credible increase in

consonance preference scores with MUS (CI: 0.05 – 0.26).
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3.8. Speech, Spatial, and Qualities of hearing scale

Figure 14 shows the average across-questions SSQ12 scores by age (scores for each SSQ12

question are shown in Figure S16). There were no credible effects of age (CI: -0.15 – 0.22 per

age decade), PTA0.125–2 (CI: -0.7 – 0.3 per 10-dB PTA0.125–2 increase), PTA4–12 (CI: -0.2 – 0.16 per

10-dB PTA4–12 increase), or log10TCNE (CI: -0.37 – 0.23 per tenfold increase in noise exposure).

Posterior medians for these effects were in each case close to zero, and the CIs were relatively

narrow. There were no credible effects of Cog1, Cog2, or MUS (see Table S3 for the CIs).

4. Discussion

In this study we assessed the performance of 102 listeners ranging in age from 19 to 74 years

on a range of auditory tasks that included several psychophysical tests thought to be dependent on

auditory temporal processing, and speech reception in noise tests. For each task, performance was

assessed both at a low and at a high stimulus level to test for specific effects of age-related CS,

which was hypothesized to affect mainly performance at high stimulus levels. Performance in sev-

eral tasks was negatively affected by age even after partialing out the effects of audiometric thresh-

old, lifetime noise exposure, cognitive abilities, and musical experience. However, for only one

out of 13 tests were age-related declines credibly larger at the high than at the low stimulus level.

Overall these results do not provide much evidence that age-related CS has substantial effects on

psychophysical measures of auditory temporal processing or on speech-reception thresholds.

4.1. Differential high-low level effects

Age-related declines in the current study were credibly larger for AM detection at a high than

at a low stimulus level for a tone amplitude-modulated at a rate of 50 Hz. No credible effects

of age on the differential high-low level measure of performance were observed for the same tone

modulated at rates of 25 or 100 Hz, although a weak trend in that direction was present for the 100-

Hz modulated tone. There are three possible scenarios regarding this effect: i) it may be a genuine

effect indicative of age-related CS affecting mainly L/M-SR fibers; ii) it may be a genuine effect,

but unrelated to CS; iii) it may be a fortuitous result due to sampling error. We will consider each
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possibility in light of other available evidence from the current study and from previous studies in

the literature.

If the differential age effect for the 50-Hz amplitude-modulated tone is a genuine effect reflect-

ing CS, there should be an explanation for why it was detected only for this particular condition of

the AM detection task, and not for the other conditions or for the other tasks of the current study.

Further analyses of the posterior estimates do not provide strong evidence of specificity of this

effect with respect to modulation rate because the 50-Hz effect was not credibly larger than the 25-

Hz effect (CI: -0.23 – 1.33) or the 100-Hz effect (CI: -0.53 – 1.1), although there is at least trend

for larger differential effects at the two higher modulation rates. A previous study (Grose et al.,

2019) failed to find evidence of differential age effects at low and high stimulus levels on an AM

detection task using a modulation rate of 80 Hz, but the sample size was small, so the study could

have easily missed differential age effects. Another study (Prendergast et al., 2019) that found a

differential effect in the opposite direction of that found in the current study for the 50-Hz AM,

used a modulation rate of 25 Hz. The evidence from the current and previous studies reviewed

above is to a certain extent consistent with the possibility of greater CS effects at higher modula-

tion rates (in the 50–100 Hz range). However, if CS effects were greater at these higher stimulus

rates, it is not clear why they were not detected in other psychophysical tasks of the current study

(frequency/F0 discrimination and IPD detection) that used envelope or fine-structure modulation

rates of 100 Hz or higher. Overall, while it cannot be excluded that the differential effect at 50 Hz

reflects CS, the evidence for this hypothesis in light of other findings from the current and previous

studies appears weak.

A second possible scenario is that the differential effect of age at high and low stimulus levels

for 50-Hz AM detection is genuine, but is due to factors other than CS. Although we do not have

specific suggestions on other mechanisms that could explain this effect, this scenario would fit

better with the rest of the available data that do not provide evidence of CS effects for other tasks.

Finally, although we strove to use models that would minimize the likelihood of false detections,

and although our sample size was rather large, it cannot be excluded that the differential age effect

for 50-Hz AM detection is due to sampling error. This possibility is rarely discussed in scientific

writings, but no statistical method, Bayesian or Frequentist, can guarantee that a particular effect
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is not due to sampling error.

Besides 50-Hz AM detection the only other task showing a consistent trend towards a differ-

ential effect of age at high and low stimulus levels was IPD MOD detection at 2 kHz. Similarities

between these two tasks include the use of a 2-kHz carrier frequency, and the fact that both tasks

involve encoding envelope periodicities. To a large extent they share these similarities with the F0

discrimination task, for which there was no obvious trend for a differential effect of age at high and

low stimulus levels, although the CIs for that effect are relatively large and would be compatible

with such an effect. Overall, while we do not think that the current data provide much evidence for

differential age effects at high and low stimulus levels, tasks involving the detection of envelope

periodicities may be good candidates for further investigations of such effects.

The lack of credible differential effects of age at high and low stimulus levels in the speech

reception in noise tasks (CRM and DTT) observed in the current study is broadly consistent with

the results of Johannesen et al. (2019), who did not find significant interactions between age and

target speech level for the reception of words in steady-state or fluctuating noise maskers. Our

findings are also consistent with those of Prendergast et al. (2019) for the CRM task.

Prendergast et al. (2019) found a differential effect of age at high and low stimulus levels in

the DTT, with greater age-related threshold increases at the high stimulus level. Additionally,

they found that greater levels of lifetime noise exposure were associated with greater threshold

decreases at the high compared to the low stimulus level. We found no evidence for such effects in

the current study, and the CIs for such effects in the current study were relatively narrow, especially

for the differential age effect. There are several differences in the stimuli and procedures between

the two studies (e.g. speech stimuli were lowpass filtered at 3 kHz and a band of pink noise was

added above 3 kHz only in the current study), but none of them seems an obvious candidate to

explain the different results. Because Prendergast et al. (2019) measured thresholds at the 25%

correct point of the psychometric function, we repeated the DTT analyses using the 1/4 point of

the psychometric function (i.e. ∼ 25% for a listener with a zero lapse rate) instead of the midpoint,

but found the results qualitatively unchanged. Another difference between the two studies is that

we included cognitive abilities covariates in the analyses; however we did not include interaction

terms between cognitive abilities and stimulus level, therefore this difference cannot explain the
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discrepancies in the results of the two studies. Perhaps, an explanation for the differing results may

lie in the populations of participants tested in the two studies. Besides differences in the age range

of the participants included in the two studies (see Introduction), the overall levels of lifetime

noise exposure were lower in the current study compared to the study of Prendergast et al. (2019).

This may reflect a different recruitment strategy that favored acquiring participants with extreme

ranges of noise exposure in the Prendergast et al. (2019) study in order to test for effects of noise-

induced CS. Interestingly, qualitative analyses suggested that the largest age-related differences in

Prendergast et al. (2019) occurred between older listeners, who had high levels of noise exposure,

and a subset of young highly noise-exposed listeners, rather than with young listeners who had low

levels of noise exposure. However, the interaction between age and noise exposure in a multiple

regression model was not significant; additionally, musical experience, which may have been a

lurking variable driving either the noise or age effects, did not appear to explain a significant

amount of variance. Overall, the available evidence does not point clearly to differences in the

participant populations as a reason for the differing results in the two studies. However, it remains

possible that a lurking variable other than musical experience, and which correlated with either

age or noise exposure, may have driven the differential effects of age and noise exposure found by

Prendergast et al. (2019).

Although the major aim of the current study was the assessment of possible effects of age-

related CS, it is notable that no credible differential effects of lifetime noise exposure between high

and low stimulus levels were found on any of the tests. Although the results of this single study

do not exclude the possibility of small or moderate effects of noise exposure on such tests, they

add to the results of the majority of studies on the topic, that have failed to find effects of lifetime

noise exposure on behavioral measures of auditory processing (see Le Prell, 2019; Bramhall et al.,

2019, for reviews).

4.2. General effects

Although the main objective of the current study was to test for the presence of differential

effects of stimulus level on age-related auditory deficits that could be signs of CS, it is also of in-

terest to assess the associations between performance in the psychophysical and speech-reception
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tests and the predictor variables at each stimulus level. The following sections will discuss these

associations in relation to previous findings in the literature.

4.2.1. Amplitude modulation detection

The results of the current study indicate the presence of age-related increases in AM detection

thresholds for most of the combinations of level and modulation frequencies tested, and trends

in the same direction for the remaining conditions. Studies assessing effects of age on AM de-

tection for listeners with audiometric thresholds within the normal range at the test frequencies

have yielded mixed findings, with some finding evidence of age-related AM detection declines

(He et al., 2008; Füllgrabe et al., 2014; Wallaert et al., 2016), and others not (Schoof and Rosen,

2014; Paraouty et al., 2016; Grose et al., 2019).

Several factors could account for the differing results across studies, including differences in

the age range of the older participants tested, small sample sizes in some studies, and differences

in the specific stimuli used (e.g. sinusoidal vs noise carriers; tones in quiet vs tones in noise).

Moore and Vinay (2019) have suggested that differences across studies could be partly explained

by the fact that OHC dysfunction in older listeners can partially offset age-related deficits (though

older listeners had thresholds within the normal range in these studies, they typically had higher

thresholds than young listeners, indicative of OHC dysfunction). Using the envelope regularity

discrimination test, a test that is similar to AM detection but according to Moore et al. (2019)

should be little affected by OHC dysfunction, Moore and Vinay (2019) found higher thresholds

in a group of older listeners compared to young listeners, but their sample size was small. The

results of our study do not provide strong evidence that raised audiometric thresholds can offset

age-related AM detection deficits, but are consistent with this hypothesis, because there were

trends for independent effects of audiometric thresholds on AM detection thresholds in several

conditions of the AM detection task.

4.2.2. Frequency/F0 discrimination

In the current study, we did not find evidence that age per se affects pure tone frequency

discrimination. On the other hand we found evidence that audiometric thresholds are associated

with pure tone frequency discrimination independently of age not only at low, but also at high
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stimulus levels. Overall these results are consistent with those of Marmel et al. (2013). Two other

studies, however, reported age effects on frequency discrimination thresholds by comparing groups

of younger and older listeners with thresholds within the normal range (He et al., 1998; Clinard

et al., 2010). One of these studies (He et al., 1998) matched quite closely audiometric thresholds

between the two groups at some of the test frequencies, but had a very small sample size. For the

other study (Clinard et al., 2010) no information on the audiometric thresholds is available beyond

the fact that participants had thresholds < 25 dB HL up to 8 kHz, so it is possible that residual

audiometric differences could have accounted for the age effect.

We did not find evidence of age effects on F0 discrimination of unresolved complex tones in

the current study, consistent with the results of Bianchi et al. (2019). Although our results rule out

the hypothesis that age per se may have large effects on F0 discrimination of unresolved complex

tones, the CIs for the age effect were not very narrow, and are compatible with the possibility that

small age effects exist but were not detected in the current study.

4.2.3. Interaural phase difference detection

In the current study we found evidence of age-related declines in MOD IPD detection for a

tone with a relatively high carrier frequency (2 kHz), but no evidence of age effects for tones with

a low carrier frequency (600 Hz).

Several studies reported age-related deficits on IPD detection for low-frequency pure tones

using either the TFS-LF test (see Füllgrabe and Moore, 2018, for a review and meta-analysis of

these studies) or similar tests (Grose and Mamo, 2010; King et al., 2014). Overall, their results

indicate that age and audiometric thresholds at the test frequency make independent contributions

to performance in these tests. Potential explanations for the fact that independent effects of age

were generally detected in these studies but not in the current one will be given below. However, it

should be first pointed out that our results and those of these studies are not necessarily discrepant,

because the CIs in the current study, while incompatible with large effects of age on low-frequency

IPD detection are not incompatible with the possibility that small or moderate effects exist.

Several of the studies reviewed in Füllgrabe and Moore (2018), and also the study of King et al.

(2014), included somewhat older participants (up to 90 years old) than those of the current study.
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Given that age-related deficits in the detection of a 180° IPD tend to occur first at high carrier

frequencies, before progressing towards lower ones (Ross et al., 2007; Grose and Mamo, 2010;

Füllgrabe et al., 2018), it is possible that the lower age range of our participant sample allowed us

to detect age-related IPD deficits at high, but not at low frequencies.

Another important difference between the current and previous studies is that in the current

study age effects were estimated while partialing out not only effects of audiometric thresholds,

but also effects of cognitive abilities and musical experience. Several studies (Füllgrabe et al.,

2014; Strelcyk et al., 2019) have found associations between cognitive abilities and IPD detection,

and although our results do not provide conclusive evidence for this association, the trends in the

data are consistent with it. It is not clear whether the age effects found in previous studies would

have survived if the effects of cognitive abilities had been partialed out.

We found effects of audiometric thresholds on IPD MOD detection at low stimulus levels,

and a trend in the same direction for PT IPD detection at a low stimulus level. Overall these

results are consistent with those of previous studies (Füllgrabe and Moore, 2018; King et al.,

2014). However, these studies presented stimuli at equal sensation levels rather than at equal

SPLs, as was done in the current study. Therefore it is difficult to directly compare their results

with those of the current study re audiometric threshold effects, because in the current study, effects

of audiometric thresholds would include the effect of reduced sensation level in addition to other

psychophysiological changes associated with raised audiometric thresholds.

4.2.4. Speech reception tasks

The results of the current study on the DTT do not provide evidence of age effects independent

of audiometric threshold shifts. On the other hand, poor performance on this test at the lower

stimulus level was associated with higher audiometric thresholds independently of age. These

results are in line with other studies that have not found evidence that age per se affects speech

reception in a steady-state noise background, and that the performance declines of older adults in

these conditions can be largely accounted for by audiometric threshold shifts (Humes and Dubno,

2010).

Performance in the CRM test is limited mainly by informational masking (Brungart et al.,
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2006). Previous studies using the CRM test have generally found that age effects are minimal or

absent when the target and maskers are colocated and are of the same gender, while older adults

perform worse than younger adults in conditions in which target and maskers are spatially offset

or are of different genders (Humes et al., 2006; Marrone et al., 2008; Rossi-Katz and Arehart,

2009; Humes et al., 2013; Gallun et al., 2013). These findings suggest that release from infor-

mational masking on the basis of F0 or spatial cues is impaired in older listeners. However, it is

unclear to what extent these differences between younger and older adults could be accounted for

by audiometric threshold elevations, and one study failed to find effects of age on spatial release

from masking independent of hearing loss (Jakien et al., 2017). Many of the studies cited above

compared younger and older listeners with low-frequency audiometric thresholds within the nor-

mal range, or used other techniques to try to estimate age effects independently of audiometric

threshold shifts, such as attempting to match audibility via spectral shaping, but many of these

approaches could not completely exclude the possibility that residual audiometric threshold dif-

ferences were contributing to the age effect. Additionally, some of these studies did not attempt to

estimate age effects independent of age-related cognitive declines. Using a strict approach to test

for the presence of age effects independent of effects of audiometric thresholds and cognitive abil-

ities, the results of the current study do not provide evidence that aging per se affects performance

in the CRM test either when the target and maskers are colocated (and could be of a different

gender), or when they are spatially offset. On the other hand, our results confirm the finding that

audiometric threshold shifts are associated, independently of age, with deficits in spatial release

from masking (Marrone et al., 2008).

4.2.5. Consonance perception

In the current study we found that consonance preference credibly decreased with increasing

age at the high stimulus level, and a trend in the same direction was present at the low stimulus

level. These effects, as well as the credible increase in consonance preference with years of musical

experience that we found in the current study, are consistent with previous reports (Bones et al.,

2014; Bones and Plack, 2015), and additionally show that these effects are independent of potential

confounding effects of audiometric threshold elevations and cognitive abilities.
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We did not find credible effects of audiometric thresholds on consonance preference. The

results of a previous study (Tufts et al., 2005) suggest that audiometric threshold losses reduce

the ability to perceive the contrast between consonant and dissonant intervals. However, the effect

may have been driven by covariations between age and audiometric threshold losses, that were not

taken into account in that study. On the other hand, Tufts et al. (2005) included participants with

larger audiometric losses than those of the participants tested in the current study. It is possible

that effects of audiometric threshold elevations on consonance perception become apparent only

for larger losses, and this may explain why they were not detected in the current study.

4.2.6. Role of cognitive factors

In the current study, credible independent effects of cognitive abilities on auditory processing

were only found for AM detection and consonance preference. However, it is remarkable that for

almost all tests there were trends for at least one of the two principal components of cognitive test

scores to be positively associated with performance. While these results do not provide strong

evidence (except for AM detection and consonance preference) for a role of cognitive factors on

performance in psychophysical and speech reception tests, they are certainly compatible with it.

This underlies the importance of controlling for potential effects of individual differences in cogni-

tive abilities in observational studies assessing effects of age or noise exposure on psychophysical

and speech reception performance.

4.2.7. Self-reported hearing abilities

No credible effects of age or of any other independent variable were found on SSQ12 scores in

the current study. This may seem somewhat surprising given that effects of age and/or audiometric

threshold losses were found on several objective psychophysical and speech reception tests. These

findings are consistent with those of Füllgrabe et al. (2014), who did not find significant differences

in SSQ scores between a group of younger and older listeners with low-frequency thresholds

within the normal range, despite finding differences between the two groups on several objective

psychophysical and speech-reception tests. Banh et al. (2012), on the other hand, found significant

differences in SSQ scores between a group of young and a group of older listeners with normal

audiometric thresholds below 4 kHz. The differing results may be partly due to the fact that the
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participants tested by Banh et al. (2012) had somewhat higher audiometric thresholds than those

tested in the current study, and those tested by Füllgrabe et al. (2014).

Overall the SSQ12 results of the current study suggest that for people with relatively well-

preserved low-frequency audiometric thresholds, self-perceived hearing abilities are largely un-

affected by age or by mild high-frequency audiometric threshold losses. It is unclear to what

extent this is due to i) objective real-world hearing abilities being minimally affected by the

age/audiometric deficits documented in the laboratory-based tests of this study, ii) insufficient

sensitivity of the SSQ12 to detect mild self-perceived deficits, or iii) cognitive heuristics or socio-

cultural factors that lead older people with hearing deficits to minimize them (see supplementary

materials in Füllgrabe et al., 2014).

5. Conclusions

Overall the results of the current study on a cross-sectional sample of 102 participants are

consistent with those of previous studies indicating the presence of age-related deficits independent

of audiometric threshold shifts on several psychophysical auditory temporal processing tasks, but

they do not provide evidence for age effects independent of audiometric threshold shifts on the

reception of speech masked by either static noise, or interfering talkers.

The results of the current study do not provide evidence that performance on psychophysical

temporal processing and speech-reception tasks follows a pattern consistent with age-related CS,

which would predict greater age-related deficits at high compared to low stimulus levels, once

the effects of audiometric threshold shifts or other potential confounders are accounted for. A

caveat on this conclusion is that the predictions are based on a pathophysiological model of CS

that has been developed mainly in rodents, and it is not clear to what extent it applies to humans.

For example, as noted by Hickox et al. (2017), the association between the spontaneous rates of

auditory-nerve fibers and their thresholds, which have been observed for a number of mammalian

species, were not observed in a study on a non-human primate species (macaque; Joris et al., 2011).

Therefore, it is not clear whether the pathophysiological model of age-related CS affecting mainly

fibers with high thresholds applies to humans. Furthermore, as discussed in the Introduction, while

there is substantial evidence suggesting that age-related CS in rodents is specific for L/M-SR fibers,
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currently this evidence is not conclusive. Overall, given the currently available evidence, it cannot

be excluded that age-related CS in humans differs from noise-induced CS in rodents re L/M-SR

specificity. If this is the case, some of the age-related changes observed in the current study could

be attributed to CS that is not specific to L/M-SR fibers. However, as discussed in the Introduction,

they could also reflect sensorineural deficits other than CS: if CS effects are not level specific, it

becomes difficult to distinguish them from other sensorineural deficits on the basis of the measures

employed in the current study.
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Figure 2: AM detection thresholds [20 log(m)] by age. Each panel shows a least squares line fit of threshold by age

with 95% confidence intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure 3: Posterior medians (circles) and 99% CIs for the effects of age on AM detection thresholds estimated by the

Bayesian multiple regression model. Effects are plotted as threshold change for an age increase of 10 years.
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Figure 4: Frequency and F0 discrimination thresholds by age. Each panel shows a least squares line fit of threshold by

age with 95% confidence intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple

regression model is not the same as that shown in the figure.
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Figure 5: Posterior medians (circles) and 99% CIs for the effects of age on pure tone (PT) frequency discrimina-

tion thresholds, and complex tone (CT) F0 discrimination thresholds estimated by the Bayesian multiple regression

models. Effects are plotted as threshold change for an age increase of 10 years.
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Figure 6: IPD detection thresholds by age. Each panel shows a least squares line fit of threshold by age with 95%

confidence intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple regression

model is not the same as that shown in the figure.
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Figure 7: Posterior medians (circles) and 99% CIs for the effects of age on MOD and PT IPD detection thresholds

estimated by the Bayesian multiple regression models. MOD refers to conditions in which the IPD was applied to the

modulator of an AM tone, and PT to conditions in which the IPD was applied to a pure tone. Effects are plotted as

threshold change for an age increase of 10 years.
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Figure 8: CRM thresholds by age. Each panel shows a least squares line fit of threshold by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple regression model is not the

same as that shown in the figure.
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Figure 9: Posterior medians (circles) and 99% CIs for the effects of age on CRM speech reception thresholds estimated

by the Bayesian multiple regression model. Effects are plotted as threshold change for an age increase of 10 years.

The leftmost, and the central panel show effects for the conditions with maskers that were either offset, or colocated

with the target, respectively. The rightmost panel shows the effect difference between these two conditions. Values

above zero in this panel would indicate that spatial release from masking decreases with increasing age.
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Figure 10: DTT thresholds by age. Each panel shows a least squares line fit of threshold by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple regression model is not the

same as that shown in the figure.
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Figure 11: Posterior medians (circles) and 99% CIs for the effects of age on DTT speech reception thresholds esti-

mated by the Bayesian multiple regression model. Effects are plotted as threshold change for an age increase of 10

years.
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Figure 12: Consonance preference scores by age. Each panel shows a least squares line fit of consonance preference

scores by age with 95% confidence intervals as a visual aid. The slope for the effect of age estimated by the Bayesian

multiple regression model is not the same as that shown in the figure.
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Figure 13: Posterior medians (circles) and 99% CIs for the effects of age on consonance preference scores estimated

by the Bayesian multiple regression model. Effects are plotted as score change for an age increase of 10 years.
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Figure 14: SSQ12 scores by age. The panel shows a least squares line fit of SSQ12 score by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian multiple regression model is not the

same as that shown in the figure.

60



Supplementary materials for “Effects of age

on psychophysical measures of auditory

temporal processing and speech reception at

low and high levels”

Contents

1 Supplementary figures referenced in the main manuscript 2

2 Supplementary tables referenced in the main manuscript 14

3 Supplementary methods 16

3.1 UML settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Psychometric function fits 17

5 Statistical models and results 20

5.1 Bayesian correlation model . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Mixed effect multiple regression models . . . . . . . . . . . . . . . 20

1



1 Supplementary figures referenced in the main

manuscript

2



0 1000 2000 3000

-9
0

-8
0

-7
0

-6
0

-5
0

-4
0

Frequency (Hz)

L
e
ve

l 
r
e

 a
rb

it
ra

ry
 u

n
it
 (

d
B

) SSN
SSN bug

Figure S1: Spectrum of a speech-shaped noise (SSN; black line), and of

the noise used for the digit triplets test in the current study (red line). Both

noises are lowpass filtered at 3 kHz. Due to a bug in version 1.5 of the soft-

ware (https://it.mathworks.com/matlabcentral/fileexchange/37376-oscillator-

and-signal-generator) used to generate the SSN for the current study, its spectral

shape had relatively higher energy below ∼200 Hz, and lower energy above

∼2.5 kHz compared to a SSN.
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Figure S2: A. Total cumulative noise exposure as a function of age. A unit

difference in the base 10 logarithmic y axis of the figure corresponds to a tenfold

difference in noise exposure energy. B. Years of musical experience as a function

of age. The y axis is shown on a cube root scale (years are displayed in their

original unit). C. Standardized scores of the first principal component from the

PCA of the cognitive test scores. D. Standardized scores of the second principal

component from the PCA of the cognitive test scores.
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Figure S3: Posterior medians (circles) and 99% CIs for the effects of PT2 on

AM detection thresholds estimated by the Bayesian multiple regression model.
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Figure S4: Posterior medians (circles) and 99% CIs for the effects of log10TCNE

on AM detection thresholds estimated by the Bayesian multiple regression

model.
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Figure S5: Posterior medians (circles) and 99% CIs for the effects of audiometric

thresholds (at 0.5 kHz for the 0.6 kHz pure tone, and at 2 kHz for the other two

stimuli) on pure tone (PT) frequency discrimination thresholds, and complex

tone (CT) F0 discrimination thresholds estimated by the Bayesian multiple

regression models.
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Figure S6: Posterior medians (circles) and 99% CIs for the effects of log10TCNE

on pure tone (PT) frequency discrimination thresholds, and complex tone (CT)

F0 discrimination thresholds estimated by the Bayesian multiple regression

models.
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Figure S7: Posterior medians (circles) and 99% CIs for the effects of audio-

metric thresholds (at 2 kHz for the 2-kHz carrier, and at 0.5 kHz for the other

two stimuli) on IPD detection thresholds estimated by the Bayesian multiple

regression models. MOD refers to conditions in which the IPD was applied

to the modulator of an AM tone, and PT to conditions in which the IPD was

applied to a pure tone.
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Figure S8: Posterior medians (circles) and 99% CIs for the effects of log10TCNE

on IPD detection thresholds estimated by the Bayesian multiple regression

models. MOD refers to conditions in which the IPD was applied to the modulator

of an AM tone, and PT to conditions in which the IPD was applied to a pure

tone.
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Figure S9: Posterior medians (circles) and 99% CIs for the effects of PTA0.125−2

on CRM thresholds estimated by the Bayesian multiple regression model. The

leftmost, and the central panel show effects for the conditions with maskers

that were either offset, or colocated with the target, respectively. The rightmost

panel shows the effect difference between these two conditions. Values above

zero in this panel indicate that spatial release from masking decreases with

increasing PTA0.125−2.
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Figure S10: Posterior medians (circles) and 99% CIs for the effects of log10TCNE

on CRM thresholds estimated by the Bayesian multiple regression model. The

leftmost, and the central panel show effects for the conditions with maskers

that were either offset, or colocated with the target, respectively. The rightmost

panel shows the effect difference between these two conditions. Values above

zero in this panel would indicate that spatial release from masking decreases

with increasing log10TCNE.
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Figure S11: Posterior medians (circles) and 99% CIs for the effects of PTA0.125−2

on DTT thresholds estimated by the Bayesian multiple regression model.
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Figure S12: Posterior medians (circles) and 99% CIs for the effects of log10TCNE

on DTT thresholds estimated by the Bayesian multiple regression model.

40 dB SPL 80 dB SPL

P
e
rfe

c
t fi

fth
T
rito

n
e

20 40 60 20 40 60

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Age (years)

z
 S

c
o
re

Figure S13: Standardized ratings for musical intervals by age. Each panel

shows a least squares line fit of standardized ratings by age with 95% confidence

intervals as a visual aid. The slope for the effect of age estimated by the Bayesian

multiple regression model is not the same as that shown in the figure.
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Figure S14: Posterior medians (circles) and 99% CIs for the effects of PTA0.125−2

on consonance preference scores estimated by the Bayesian multiple regression

model.
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Figure S15: Posterior medians (circles) and 99% CIs for the effects of log10TCNE

on consonance preference scores estimated by the Bayesian multiple regression

model.
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Figure S16: Scores for each question of the SSQ12 by age. Each panel shows

a least squares line fit of SSQ12 score by age with 95% confidence intervals as

a visual aid.
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2 Supplementary tables referenced in the main manuscript

Eigenvalue % Variance Cumulative % variance

PC1 2.00 50.00 50.00

PC2 0.96 23.97 73.97

PC3 0.62 15.41 89.37

PC4 0.43 10.63 100.00

Table S1: Eigenvalues, percentage of variance explained, and cumulative

percentage of variance explained for the PCs extracted from the PCA of cognitive

tests scores.

Task PC1 PC2 PC3 PC4

Dig. span forw. 0.69 -0.59 0.11 0.40

Dig. span backw. 0.79 -0.31 -0.27 -0.44

Raven’s prog. matr. 0.69 0.40 0.59 -0.11

Read. span 0.64 0.60 -0.43 0.23

Table S2: Loadings (correlations) between PCs and variables of the PCA of

cognitive tests scores.
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Cog 1 Cog 2 MUS

AMD -1.178 (-2.111 – -0.184) 0.115 (-0.710 – 0.983 ) -0.157 (-0.879 – 0.516)

PT FD -0.069 (-0.152 – 0.006) -0.054 (-0.137 – 0.020 ) -0.031 (-0.101 – 0.029)

CT F0D -0.013 (-0.122 – 0.092) -0.106 (-0.244 – 0.012 ) -0.001 (-0.097 – 0.096)

MOD IPD -0.076 (-0.210 – 0.048) -0.053 (-0.195 – 0.070 ) -0.025 (-0.137 – 0.082)

PT IPD -0.081 (-0.225 – 0.040) -0.101 (-0.253 – 0.035 ) -0.033 (-0.152 – 0.069)

CRM Col. -0.272 (-0.767 – 0.180) -0.217 (-0.686 – 0.294 ) -0.098 (-0.521 – 0.296)

CRM Off. -0.278 (-0.799 – 0.210) -0.193 (-0.746 – 0.319 ) -0.404 (-0.843 – 0.030)

CRM Off. - Col. -0.009 (-0.486 – 0.463) 0.023 (-0.486 – 0.545 ) -0.306 (-0.737 – 0.120)

DTT -0.210 (-0.502 – 0.061) -0.122 (-0.414 – 0.119 ) 0.147 (-0.070 – 0.407)

Cons. Pref. 0.148 ( 0.031 – 0.269) 0.061 (-0.059 – 0.182 ) 0.150 ( 0.046 – 0.256)

SSQ12 0.056 (-0.187 – 0.330) 0.039 (-0.194 – 0.326 ) -0.020 (-0.258 – 0.188)

Table S3: Posterior medians and 99% CIs (in brackets) for the effects of Cog1, Cog2, and MUS estimated by the

Bayesian multiple regression models on AM detection thresholds (AMD), pure tone frequency discrimination

thresholds (PT FD), complex tone F0 discrimination thresholds (CT F0D), IPD MOD and IPD PT detection

thresholds, CRM thresholds in the colocated (Col.), and offset (Off.) conditions, and for the difference between

offset and colocated conditions (Off. - Col.), DTT thresholds, consonance preference (Cons. Pref.), and SSQ12

scores.
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3 Supplementary methods

3.1 UML settings

The form of the psychometric function assumed for all tasks was Logistic:

ψ(x;α,β ,γ,λ) = γ+ (1− γ−λ)

�

1

1+ eβ(α−x)

�

(1)

The parameter space for the UML procedure consisted of a three-dimensional

grid defining the possible values of the midpoint (α), the parameter controlling

the slope (β), the lapse rate (λ), and their prior probabilities. It should be

noted that because the psychometric functions were re-fit after data collection

(as suggested in Shen and Richards, 2012; Shen et al., 2015), the priors used

for the UML procedures did not directly affect the final threshold estimates,

but could affect the adaptive placement of the stimuli and the efficiency of the

procedure. Data collection occurred over two blocks of trials for each task and

condition. To maximize the efficiency of the adaptive procedure, the posterior

distribution of the parameters at the end of the first block was saved, and was

used as the prior for the second block of trials.

Besides the limits on the space of the parameters of the psychometric func-

tion, lower and upper limits on the values that the stimuli could take were

defined. These upper limits also served to define the λ sweetpoint for all the

tasks, except for the frequency and F0 discrimination task. For these two tasks

the λ sweetpoint was initially set at a “suggested” frequency/F0 difference

that was deemed sufficiently high to result in asymptotic performance for most

listeners (10% frequency difference for the frequency discrimination task, and

80% F0 difference for the F0 discrimination task). However, if the current

estimate of the psychometric function indicated that the frequency/F0 differ-

ence needed to reach a close-to-asymptotic performance (proportion correct of

0.99-λ) was greater than the suggested λ sweetpoint, the λ sweetpoint changed

to the estimated frequency/F0 difference needed to reach a close-to-asymptotic

performance. In this way most listeners would not be presented with very

large frequency/F0 excursions across trials, but frequency/F0 differences larger

than the suggested λ sweetpoint could be used if the current estimate of the

psychometric function suggested that these were needed to more accurately

estimate λ.

The parameter space for the slope and the lapse rate parameters, as well

as their priors were the same for all tasks. The array of values for β ranged
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from 0.1 to 10 with a logarithmic spacing (step factor of 1.1). The prior for β

was uniform in this log space. The array of values for λ ranged linearly from

0.001 to 0.3 with a 0.01 step. A beta prior with a mean of 0.08 and a standard

deviation of 0.065 was used for λ.

The parameter space for the midpoint in each task is detailed in Table S4.

The midpoint (and the stimulus space) was defined in terms of the modulation

index m for the AM detection task, in terms of the frequency or F0 difference

(∆F or ∆F0), measured in percent, for the frequency/F0 discrimination tasks,

in terms of the IPD, measured in degrees, for the IPD detection task, and in

terms of the SNR of the target speech, measured in dB, for the CRM and DTT

tasks.

Task Par. α Step Spacing x

AM det. m 0.01–1 1.05 log 0.001–1

Freq. discr. ∆F (%) 0.005–50 1.05 log 0.0005–99

F0 discr. ∆F0 (%) 0.5–99 1.05 log 0.05–99

IPD det. IPD (°) 1–180 1.05 log 0.1–180

CRM SNR (dB) -33-12 1 linear -33-12

DTT SNR (dB) -40-10 1 linear -40-10

Table S4: Table listing the settings for the parameter space of the midpoint (α),

and of the stimuli for each task. The second column indicates the parameter

that was varied in the task. The third column indicates the lower and upper

limits of the midpoint array. The fourth column indicates the step size; for

parameters with linear spacing (see fifth column) the step was additive, while

for parameters with log spacing the step was a multiplicative factor. The prior

was always uniform on the (log or linear) parameter space of the midpoint.

The sixth column indicates the lower and upper limits of the parameter space

for the stimuli (e.g. for the AM detection task, the lowest and highest values

that m could take in any trial).

4 Psychometric function fits

A Logistic function (Eq. 1) was used for all fits. Fits were obtained via MCMC

methods (Kuss et al., 2005) using JAGS (Plummer, 2003) and R (R Core Team,

2020). For the λ parameter, a gamma prior with a mode of 0.01 and a standard

deviation of 0.08 was used for all tasks. The priors for the α and β parameters
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were informed by preliminary fits obtained via maximum likelihood (Wichmann

and Hill, 2001). For the β parameters gamma priors with the mode set at the

geometric (across-participants) mean of the maximum likelihood estimate, and

a standard deviation of 3 were used for all tasks. For the α parameters, normal

(on a linear or log scale depending on the task; see Table S5) priors centered at

the (across-participants) mean of the maximum likelihood estimate, and with

a standard deviation indicated in Table S5 were used. Example priors for one

condition of the pure tone frequency discrimination task are shown in Fig. S17.

Task Par. α s.d. γ Scaling

AM det. m 4 1/3 log

Freq. discr. ∆F (%) 4 1/2 log

F0 discr. ∆F0 (%) 4 1/2 log

IPD det. IPD (°) 4 1/2 log

CRM SNR (dB) 12 1/16 linear

DTT SNR (dB) 12 1/336 linear

Table S5: Table listing the settings for the psychometric function fits for each

task. The second column indicates the dependent variable. The third column

indicates the standard deviation of the normal prior on α; for variables with

logarithmic scaling, this value represents the geometric standard deviation.

The fourth column indicates the value of the γ (guess rate) parameter of the

psychometric function, that was fixed at the reciprocal of the number of response

alternatives. The last column indicates whether the dependent variable was

log-transformed before the fit.

Goodness of fit was assessed qualitatively, via visual posterior predictive

checks (Kruschke, 2013), as well as via the Monte Carlo simulations described

by Wichmann and Hill (2001). For the latter, 10,000 simulated datasets were

generated using the parameter estimates of the fitted psychometric function.

The deviance of each simulated dataset relative to the fitted function was calcu-

lated in order to derive the deviance distribution. The deviance of the observed

data relative to the fitted function was then compared to the deviance distribu-

tion. Deviance values above the 95th percentile of the deviance distribution may

be indicative of poor fits. Only for 10 out of the total of 2448 fits across tasks

had observed deviances above the 95th percentile of the deviance distribution.

This indicates that in the vast majority of cases the quantitative goodness of

fit check did not detect issues with the fits. Visual inspection of the few poor
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fits indicated that these were either due to psychometric functions with non-

monotonicities, or to cases in which performance was very poor even for the

highest differences between the standard and comparison stimuli (∆s). The

former may be due to confusion or to lapses occurring more frequently at higher

stimulus levels or in one of the two blocks of trials. The qualitative posterior

predictive checks confirmed that the majority of fits were good. These checks

also revealed a number of cases, occurring mostly for MOD IPD detection at 2

kHz, and in the AM detection task, in which performance was poor even at the

highest ∆s. Because of this, in some cases the adaptive procedure could not

explore a wide range of performance points on the psychometric function, and

only a few points at high ∆s were available. Although in these cases the fits

were usually good, in the sense that the fitted function passed close to available

data points, the CIs around the parameter estimates were large. This reflects

the fact that these functions could be relatively well fit by a large range of

combinations of values of the midpoint, slope, and lapse rate. For example,

poor performance at the highest ∆s in some cases could be well accounted for

by either a very high lapse rate or a very shallow slope; the resulting trade-off

between these parameter estimates results in large uncertainty in the value

of these parameters. Such estimates will necessarily be more noisy. However,

because the same procedures for fitting the functions were used for all partici-

pants, the estimates, even if noisy in some cases, are not biased with respect to

age or to the other variables of interest in the study.

For some cases in which performance at the highest ∆s was poor the es-

timated threshold fell above the possible stimulus range. This is a normal

consequence of the fact that performance at the highest possible stimulus level

was still below threshold. Extrapolations of thresholds beyond the stimulus

range have been performed in previous studies (Hopkins and Moore, 2010; King

et al., 2014), relying on an assumed relation between the proportion of correct

response (Pc) and ∆, that is considered valid also beyond the possible stimulus

range. The approach employed in the current study, that allows threshold esti-

mates beyond the stimulus range, is in a way similar to that of these previous

studies, but relies on less assumptions. In particular, in the current study i) the

form of the relation between ∆ and Pc is estimated from the data (or, when the

data of a given participant do not sufficiently constrain the estimate, is influ-

enced by the priors, which being based on average across-participant estimates

reflect the overall across-participant trends) rather than being based on further

assumptions, and ii) performance is in part explained by the estimated lapse

rate, which was always assumed to be zero in previous studies extrapolating
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thresholds beyond the stimulus range.

5 Statistical models and results

5.1 Bayesian correlation model

The Bayesian model to estimate the correlations among predictor variables was

based on the model of Lee and Wagenmakers (2014, chap. 5) but used vague

uniform priors for estimating the standard deviations of the variables instead

of inverse-square-root-gamma priors.

5.2 Mixed effect multiple regression models

Tables S7, S8, S9, S10, S11, S12, S13, S14, and S15 list all the terms included

in each statistical model (excluding the random effect of participant). The first

column indicates the variable to which each coefficient refers (abbreviated as

previously defined in the main text of the manuscript or as indicated for each

model in Table S6; this table also indicates the dummy codes used to encode

categorical variables through an unweighted effect coding scheme). The second

column indicates the type of variable (continuous, categorical, or interaction).

The third column indicates (for all the terms except the intercept) the scale

parameter of the 1-degree-of-freedom t distribution used as a prior for the

standardized slope coefficient; for the intercept term this column indicates the

standard deviation of the zero-centered normal distribution used as a prior

for the intercept. The fourth column indicates the same quantity as the third

column, but in unstandardized mean-centered units. The fifth column indicates

the median of the posterior distribution in unstandardized mean-centered units.

The sixth column indicates the 99% CI for the coefficients in unstandardized

mean-centered units.

Because Tables S7–S15 list all the terms included in each model the re-

gression equations can be derived from these tables. Full equations for the

regression models are not given here because they would be very long, but an

example equation for a model containing only a term for age, one for stimulus

level (a categorical predictor encoded as a dummy variable), their interaction,

and a random effect of subject is given below:

y[i,s] = β0 + βAA[s] + βL L[i] + βLxAL[i]A[s] + r[s] + ǫ[i,s] (2)
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where y[i,s] is the score for the sth subject at the i th stimulus level, A[s] is the age of

the sth subject, and L[i] is the dummy code for the i th stimulus level (-1=low lev.,

1=high lev.); β0 is the intercept, βA, βL, and βLxA are the regression coefficients

for the effects of age, stimulus level, and their interaction, respectively; r[s] is

the random effect of the sth subject, and ǫ[i,s] is the residual error term.

To give a sense of the prior distribution, Figure S18 plots t distributions with

the same mean and degrees of freedom as the priors used in the current study

for several values of the scale parameter. In each case the prior probability is

highest for values around zero; while it is sharply centered around zero for

small scale values, it becomes more diffuse as the scale value increases. Even

when the scale value is relatively small, due to its heavy tails the t distributions

can accommodate coefficients much larger than zero if the likelihood provides

clear evidence for this. For a more in depth overview of t priors see Kruschke

(2014).

Abbreviation Variable Dummy codes

A Age decade

3
p

Y
Cube root

music years

L Level -1=low lev., 1=high lev.

MF1 Mod. freq. 1
-1=100 Hz, 1=25 Hz

0=50 Hz

MF2 Mod. freq. 2
-1=100 Hz, 1=50 Hz

0=25 Hz

F
Frequency /

Carrier frequency
-1=low freq., 1=high freq.

O Offset -1=colocated, 1=offset

I Interval -1=tritone, 1=perf. fifth

Table S6: Abbreviated variable names for the statistical models. The third

column lists the dummy codes used for each categorical variable.
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Figure S17: Priors for A. the α, B. β , and C. λ parameters of the Logistic

psychometric function for the 0.6 kHz pure tone frequency discrimination task

at a level of 80 dB SPL. The priors forλwere the same for all tasks and conditions.

Priors for β had a the same standard deviation across tasks/conditions, but their

mode was centered at the average value of the parameter for the task/condition

obtained via preliminary maximum likelihood fits. Priors for α were similarly

centered at the average value of the parameter for the task/condition obtained

via preliminary maximum likelihood fits.
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Figure S18: Density functions of t distributions with 1 degree of freedom

centered at zero, and with scale parameter set to 0.25 (black), 0.5 (light blue),

or 1 (red).
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Table S7: Model terms and coefficients for the AM detection

model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 10.673 -12.073 -12.368– -11.787

A Cont. 0.100 0.302 0.704 0.123–1.314

PT2 Cont. 0.100 0.072 -0.047 -0.183–0.061

log10TCNE Cont. 0.100 0.636 -0.357 -1.4–0.5

Cog1 Cont. 0.100 0.534 -1.178 -2.111– -0.184

Cog2 Cont. 0.100 0.534 0.115 -0.71–0.983
3
p

Y Cont. 0.100 0.470 -0.157 -0.879–0.516

L Cat. 10.000 53.365 2.340 2.051–2.625

MF1 Cat. 10.000 53.365 0.655 0.25–1.044

MF2 Cat. 10.000 53.365 -0.169 -0.554–0.249

LxMF1 Int. 0.100 0.534 -0.019 -0.403–0.355

LxMF2 Int. 0.100 0.534 0.021 -0.335–0.402

LxA Int. 0.100 0.302 0.192 0.023–0.374

MF1xA Int. 0.100 0.302 0.089 -0.138–0.323

MF2xA Int. 0.100 0.302 -0.005 -0.223–0.224

LxMF1xA Int. 0.100 0.302 -0.132 -0.365–0.108

LxMF2xA Int. 0.100 0.302 0.136 -0.084–0.367

Lxlog10TCNE Int. 0.100 0.636 -0.233 -0.578–0.093

MF1xlog10TCNE Int. 0.100 0.636 -0.019 -0.481–0.449

MF2xlog10TCNE Int. 0.100 0.636 -0.115 -0.56–0.332

LxMF1xlog10TCNE Int. 0.100 0.636 0.061 -0.4–0.529

LxMF2xlog10TCNE Int. 0.100 0.636 -0.181 -0.64–0.262

LxPT2 Int. 0.100 0.072 0.014 -0.026–0.054

MF1xPT2 Int. 0.100 0.072 -0.010 -0.066–0.045

MF2xPT2 Int. 0.100 0.072 -0.037 -0.092–0.017

LxMF1xPT2 Int. 0.100 0.072 0.030 -0.027–0.087

LxMF2xPT2 Int. 0.100 0.072 -0.015 -0.071–0.038
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Table S8: Model terms and coefficients for the frequency

discrimination model. The PT variable took the value of the

pure tone audiometric threshold at 0.5 kHz for the 0.6-kHz

pure tones, and at 2 kHz for the 2-kHz pure tones.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 0.964 -1.139 -1.177– -1.099

A Cont. 0.100 0.027 0.007 -0.032–0.052

PT Cont. 0.100 0.007 0.017 0.007–0.025

log10TCNE Cont. 0.100 0.057 0.005 -0.076–0.088

Cog1 Cont. 0.100 0.048 -0.069 -0.152–0.006

Cog2 Cont. 0.100 0.048 -0.054 -0.137–0.02
3
p

Y Cont. 0.100 0.042 -0.031 -0.101–0.029

L Cat. 10.000 4.820 0.074 0.033–0.113

F Cat. 10.000 4.820 0.014 -0.025–0.053

LxF Int. 0.100 0.048 -0.013 -0.051–0.024

LxA Int. 0.100 0.027 -0.009 -0.031–0.014

LxPT Int. 0.100 0.007 -0.003 -0.009–0.003

Lxlog10TCNE Int. 0.100 0.057 0.012 -0.034–0.056

FxA Int. 0.100 0.027 -0.006 -0.029–0.017

FxPT Int. 0.100 0.007 -0.000 -0.007–0.006

Fxlog10TCNE Int. 0.100 0.057 -0.020 -0.066–0.025

LxFxA Int. 0.100 0.027 -0.001 -0.024–0.021

LxFxPT Int. 0.100 0.007 0.000 -0.005–0.006

LxFxlog10TCNE Int. 0.100 0.057 -0.010 -0.055–0.034

Table S9: Model terms and coefficients for the F0 discrimi-

nation model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 1.671 1.353 1.247–1.463

A Cont. 0.100 0.047 0.028 -0.039–0.109

PT2 Cont. 0.100 0.011 0.009 -0.007–0.027

log10TCNE Cont. 0.100 0.100 0.008 -0.119–0.137

Cog1 Cont. 0.100 0.084 -0.013 -0.122–0.092
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Cog2 Cont. 0.100 0.084 -0.106 -0.244–0.012
3
p

Y Cont. 0.100 0.074 -0.001 -0.097–0.096

L Cat. 10.000 8.354 0.500 0.393–0.606

LxA Int. 0.100 0.047 0.015 -0.045–0.077

LxPT2 Int. 0.100 0.011 -0.002 -0.016–0.012

Lxlog10TCNE Int. 0.100 0.100 -0.053 -0.177–0.064

Table S10: Model terms and coefficients for the IPD MOD

model. The PT variable took the value of the pure tone

audiometric threshold at 0.5 kHz for the 0.6-kHz carrier,

and at 2 kHz for the 2-kHz carrier.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 2.201 4.003 3.931–4.075

A Cont. 0.100 0.062 0.076 -0.008–0.157

PT Cont. 0.100 0.016 0.015 -0.001–0.03

log10TCNE Cont. 0.100 0.131 -0.012 -0.157–0.134

Cog1 Cont. 0.100 0.110 -0.076 -0.21–0.048

Cog2 Cont. 0.100 0.110 -0.053 -0.195–0.07
3
p

Y Cont. 0.100 0.097 -0.025 -0.137–0.082

L Cat. 10.000 11.004 -0.313 -0.382– -0.24

F Cat. 10.000 11.004 0.743 0.671–0.815

LxF Int. 0.100 0.110 -0.055 -0.127–0.015

LxA Int. 0.100 0.062 0.028 -0.013–0.07

LxPT Int. 0.100 0.016 -0.015 -0.026– -0.004

Lxlog10TCNE Int. 0.100 0.131 -0.018 -0.101–0.066

FxA Int. 0.100 0.062 0.054 0.009–0.098

FxPT Int. 0.100 0.016 -0.003 -0.015–0.009

Fxlog10TCNE Int. 0.100 0.131 -0.023 -0.109–0.059

LxFxA Int. 0.100 0.062 0.021 -0.019–0.064

LxFxPT Int. 0.100 0.016 -0.005 -0.016–0.005

LxFxlog10TCNE Int. 0.100 0.131 -0.019 -0.105–0.063

Table S11: Model terms and coefficients for the IPD PT

model.
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Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 1.361 3.266 3.202–3.328

A Cont. 0.100 0.039 0.036 -0.034–0.122

PT0.5 Cont. 0.100 0.010 0.016 -0.005–0.039

log10TCNE Cont. 0.100 0.081 0.010 -0.13–0.154

Cog1 Cont. 0.100 0.068 -0.081 -0.225–0.04

Cog2 Cont. 0.100 0.068 -0.101 -0.253–0.035
3
p

Y Cont. 0.100 0.060 -0.033 -0.152–0.069

L Cat. 10.000 6.804 -0.178 -0.236– -0.117

LxA Int. 0.100 0.039 -0.003 -0.036–0.029

LxPT0.5 Int. 0.100 0.010 -0.006 -0.016–0.003

Lxlog10TCNE Int. 0.100 0.081 0.005 -0.063–0.071

Table S12: Model terms and coefficients for the CRM

model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 9.292 -6.066 -6.306– -5.814

A Cont. 0.100 0.263 0.016 -0.23–0.274

PTA0.125−2 Cont. 0.100 0.092 0.124 0.027–0.216

log10TCNE Cont. 0.100 0.554 0.144 -0.333–0.635

Cog1 Cont. 0.100 0.465 -0.275 -0.701–0.151

Cog2 Cont. 0.100 0.465 -0.205 -0.658–0.216
3
p

Y Cont. 0.100 0.410 -0.251 -0.624–0.105

L Cat. 10.000 46.462 -1.226 -1.474– -0.985

O Cat. 10.000 46.462 -3.542 -3.78– -3.296

LxO Int. 0.100 0.465 -0.858 -1.107– -0.623

LxA Int. 0.100 0.263 0.010 -0.132–0.148

OxA Int. 0.100 0.263 0.044 -0.108–0.196

LxOxA Int. 0.100 0.263 -0.051 -0.193–0.093

LxPTA0.125−2 Int. 0.100 0.092 -0.047 -0.097–0.001

OxPTA0.125−2 Int. 0.100 0.092 0.099 0.047–0.151

LxOxPTA0.125−2 Int. 0.100 0.092 -0.007 -0.055–0.043

Lxlog10TCNE Int. 0.100 0.554 0.118 -0.169–0.394

Oxlog10TCNE Int. 0.100 0.554 0.042 -0.239–0.323
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LxOxlog10TCNE Int. 0.100 0.554 -0.032 -0.323–0.237

OxCog1 Int. 0.100 0.465 -0.004 -0.243–0.231

OxCog2 Int. 0.100 0.465 0.012 -0.243–0.272

Ox
3
p

Y Int. 0.100 0.410 -0.153 -0.368–0.06

Table S13: Model terms and coefficients for the DTT model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 3.016 -8.877 -9.093– -8.666

A Cont. 0.100 0.085 0.078 -0.065–0.262

PTA0.125−2 Cont. 0.100 0.030 0.062 -0.001–0.124

log10TCNE Cont. 0.100 0.180 0.033 -0.256–0.319

Cog1 Cont. 0.100 0.151 -0.210 -0.502–0.061

Cog2 Cont. 0.100 0.151 -0.122 -0.414–0.119
3
p

Y Cont. 0.100 0.133 0.147 -0.07–0.407

L Cat. 10.000 15.082 0.339 0.123–0.546

LxA Int. 0.100 0.085 0.014 -0.098–0.128

LxPTA0.125−2 Int. 0.100 0.030 -0.023 -0.066–0.018

Lxlog10TCNE Int. 0.100 0.180 0.002 -0.223–0.217

Table S14: Model terms and coefficients for the musical

intervals ratings model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 1.472 0.003 -0.053–0.057

A Cont. 0.100 0.042 0.001 -0.032–0.035

PTA0.125−2 Cont. 0.100 0.015 -0.001 -0.012–0.01

log10TCNE Cont. 0.100 0.088 -0.008 -0.073–0.061

Cog1 Cont. 0.100 0.074 0.004 -0.051–0.059

Cog2 Cont. 0.100 0.074 0.005 -0.055–0.06
3
p

Y Cont. 0.100 0.065 -0.001 -0.05–0.045

L Cat. 10.000 7.358 -0.204 -0.262– -0.146

I Cat. 10.000 7.358 0.543 0.476–0.607

LxI Int. 0.100 0.074 -0.013 -0.066–0.039

LxA Int. 0.100 0.042 -0.024 -0.058–0.009
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IxA Int. 0.100 0.042 -0.048 -0.084– -0.011

LxIxA Int. 0.100 0.042 -0.012 -0.043–0.021

LxPTA0.125−2 Int. 0.100 0.015 -0.011 -0.022–0.001

IxPTA0.125−2 Int. 0.100 0.015 -0.001 -0.012–0.01

LxIxPTA0.125−2 Int. 0.100 0.015 -0.000 -0.011–0.011

Lxlog10TCNE Int. 0.100 0.088 0.065 -0.004–0.139

Ixlog10TCNE Int. 0.100 0.088 0.034 -0.034–0.102

LxIxlog10TCNE Int. 0.100 0.088 0.011 -0.053–0.078

IxCog1 Int. 0.100 0.074 0.074 0.015–0.134

IxCog2 Int. 0.100 0.074 0.031 -0.029–0.091

Ix
3
p

Y Int. 0.100 0.065 0.075 0.023–0.128

Table S15: Model terms and coefficients for the SSQ model.

Coefficient Type
Prior

scale z

Prior

scale

Posterior

Median
99% CI

Intercept 2.000 2.439 7.435 7.11–7.745

A Cont. 0.100 0.069 0.013 -0.153–0.223

PTA0.125−2 Cont. 0.100 0.024 -0.014 -0.075–0.034

PTA4−12 Cont. 0.100 0.007 -0.002 -0.024–0.016

log10TCNE Cont. 0.100 0.145 -0.047 -0.367–0.229

Cog1 Cont. 0.100 0.122 0.056 -0.187–0.33

Cog2 Cont. 0.100 0.122 0.039 -0.194–0.326
3
p

Y Cont. 0.100 0.107 -0.020 -0.258–0.188
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