
ORIGINAL ARTICLE

An efficient triangle mesh slicing algorithm for all topologies
in additive manufacturing

Bethany King1
& Allan Rennie1 & Graham Bennett2

Received: 10 August 2020 /Accepted: 16 November 2020
The Author(s) 2020

Abstract
To date, slicing algorithms for additive manufacturing is the most effective for favourable triangular mesh topologies; worst-case
models, where a large percentage of triangles intersect each slice plane, take significantly longer to slice than a like-for-like file. In
larger files, this results in a significant slicing duration, when models are both worst cases and contain more than 100,000
triangles. The research presented here introduces a slicing algorithm which can slice worst-case large models effectively. A
new algorithm is implemented utilising an efficient contour construction method, with further adaptations, which make the
algorithm suitable for all model topologies. Edge matching, which is an advanced sorting method, decreases the number of sorts
per edge from n total number of intersections to two, alongside additional micro-optimisations that deliver the enhanced efficient
contour construction algorithm. The algorithm was able to slice a worst-case model of 2.5 million triangles in the 1025s.
Maximum improvement was measured as 9400% over the standard efficient contour construction method. Improvements were
also observed in all parts in excess of 1000 triangles. The slicing algorithm presented offers novel methods that address the
failings of other algorithms described in literature to slice worst-case models effectively.

Keywords Additivemanufacturing . Slicing algorithm . Efficiency . Computational geometry . Rapid prototyping

1 Introduction

Additive manufacturing (AM) can be defined as a technology
where a three-dimensional (3D) object is constructed by the
sequential creation of two-dimensional (2D) layers [1]. The
creation of components can be performed using a range of
methods and materials; however, all AM processes consist
of three distinct stages: (i) construction of a digital model;
(ii) application of pre-processing algorithms, converting the
model into 2D layers then generating the machine toolpath
[2]; and (iii) creation of the part by either depositing or fusing
material to the preceding layer. The benefits of AM include
increased design possibilities over subtractive manufacturing
and increase in efficiency and cost in small volumes [3].

Of the three primary file formats for AM (*.STL, *.AMF,
*.3MF) [4, 5], all construct geometry using triangular meshes.

Meshes in AM always consist of tessellated triangles which
connect at the vertices, each vertex defined as a 3D floating
point coordinate and are ordered counter-clockwise when ob-
serving the part from the outside [6]; an associated outward-
facing normal is attributed to each triangle, which can be
utilised during slicing or when graphically rendering the part
[7]. As technology has advanced and the resolution and accu-
racy of machines have improved [8], the meshes in AM files
required to capture the more detailed geometric features have
increased in complexity and become finer [9]. The slicing
algorithm required to convert modern AM models into 2D
contours must continue to improve, to slice what was once
considered exceptionally large files efficiently.

Part models that are the worst case from a slicing algorith-
mic perspective are those containing a large percentage of
triangles intersecting on any given layer. The slicing process
consists of two operations calculating the intersections be-
tween the triangles and the slice plane and then sorting the
intersection into contiguous contours. Worst-case parts are
particularly difficult to slice due to the sorting process, in-
creasing in duration exponentially by each additional triangle
in the layer. The research presented here builds on the efficient
contour construction (ECC) method [10] that exploits the

* Bethany King
b.a.king@lancaster.ac.uk

1 Lancaster University, Lancaster, UK
2 Euriscus Ltd, Chesham, UK

https://doi.org/10.1007/s00170-020-06396-2

/ Published online: 2 December 2020

The International Journal of Advanced Manufacturing Technology (2021) 112:1023–1033

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-020-06396-2&domain=pdf
mailto:b.a.king@lancaster.ac.uk

triangular mesh format adding features that address the inabil-
ity to handle worst-case parts effectively.

2 Review of related works

Slicing is the process of converting the 3Dmodel into a series of
layers containing the 2D perimeter boundaries characterised by a
closed loop of connected points [11]. Xu et al. [12] offer a basic
description of the stages involved in the slicing process (Fig. 1),
consisting of calculating all the intersections for one slice plane
then sorting them into a continuous contours method that works
verywell for simple geometries but becomes highly inefficient as
complexity increases, due to the consideration of triangles that do
not intersect with the slice plane. Tian et al. [13] describe a
method where pre-grouping triangles according to whether they
fall into a collection of slice planes using a binary search to
reduce such considerations. Whilst a significant increase in effi-
ciency can be observed, it would be better if consideration of
redundant triangles could be eliminated entirely.

In the standard slicing model (Fig. 1), sorting of the gener-
ated intersections relies on comparison of end points of the
generated line segment when intersecting the triangle with the
slice plane, as described by Steuben et al. [14] taking the form
of a connected graph search [15] causing false matches due to
models where more than two triangles converge on one point
(Fig. 2). This causes the algorithm to either fall into a contin-
uous loop or produce a failed output, for which a better meth-
od of sorting is required.

Typically, layer thickness is constant during the slicing
process; however, there are a number of examples for adaptive
slicing [16–18] where the layer height is decreased when slic-
ing regions of high detail or increased when there are less
geometric features to be captured. These methods can increase
the efficiency of the slicing process; however, use is only
appropriate where one model is produced per build cycle. In
larger AM machines, such as selective laser sintering (SLS),
stereolithography (SL), or selective laser melting (SLM),
where conventionally, multiple models are tessellated into
the build area. Increasing or decreasing the slice depth for
one model will likely be to the detriment of other models on
the layer. Li and Xu [19] acknowledge that adaptive slicing is
primarily useful for fused deposition modelling (FDM) and
can therefore not be considered suitable for a universally effi-
cient slice engine.

Several slicing algorithms produce an optimal output for
specific methods of AM. Ding et al. [20] suggest slicing in
multiple orientations for wire-feed-based AM, primarily with
the goal of increasing part integrity and minimising support
structures. There is similar research attempting to optimise the
slicing process for powder bed fusion technology [21]; how-
ever, similar, more significant improvements in this regard
can be seen in the optimising model orientation and arrange-
ment [22–24] and should therefore not be the responsibility of
the slicing algorithm.

Combining the slicing algorithm with tool path generation
[25] can improve the efficiency of the overall process by re-
moving the need to write to an intermediary slice file but limits
the possibilities of the output of the algorithm to the specific
application, due to the varying nature of the toolpath input
format. There have been a number of efforts to compensate
for low-quality models, containing errors or incorrect

Fig. 1 Basic slicing algorithm flowchart Fig. 2 Mesh with shared point

1024 Int J Adv Manuf Technol (2021) 112:1023–1033

geometric features using the slicing process; Zhao et al. [26]
aimed to reduce the error caused by discretising the CAD
model into the triangular mesh file using contour approxima-
tion, and Luo and Wang [27] similarly aimed to minimise the
impact of defects such as cracks and overlapping edges in the
model during the slicing process.

Zhang’s [10] ECC algorithm presents a comprehensive
universal slicing algorithm that is both time- and memory-
efficient; their method exploits the clockwise nature of a tri-
angular mesh, allowing for only one intersection per slice
plane per triangle to be computed, reducing the memory re-
quirement of the slicing algorithm by half. Additionally, the
dynamic sorting method is utilised where intersections are
inserted directly into the contour as they are calculated rather
than using an intermediary data structure to hold the unsorted
line segments, again reducing the memory requirement of the
algorithm. The sorting method enables lines to be connected
so that only the start and end of the connected line segments
need to be checked, drastically reducing the number of sorts
and therefore the amount of time taken for sorting than the
end-to-end line segment sort detailed in Fig. 1.

3 Methods

3.1 ECC algorithm implementation

Zhang et al. [10] offer a robust ECC algorithm, which is effi-
cient for some part geometries. The algorithm relies on calcu-
lating the intersections for each triangle from top to bottom
along either the longest edge or the two shorter edges (Fig. 3).
The decision is reliant on the order in which the vertices of the
longest edge appear in each triangle. On calculation of the
intersection, it is stored in an intersection node (IN), which
contains the 2D coordinates of the intersection, an edge point-
er (EP) containing the memory address of the vertices of the
two edges of the triangle intersecting the slice plane, and the
next and previous pointer, which locates a following or pre-
ceding IN in the list, respectively (Fig. 4). A series of linked
INs are held in an intersection linked list (ILL) data structure,

which contains a pointer to the subsequent ILL and a pointer
to the first and last element in the list.

Following the creation of the IN, it must be inserted into an
ILL. All the existing ILLs of the first and last element’s edge
pointers are compared with the edge pointer of the IN for
insertion. The IN is then inserted according to the following
scenarios:

1. There are no existing ILLs, the IN is the first calculated
intersection on that layer, and the IN is inserted in a new
ILL;

2. One match is found with the first IN in an ILL, and the IN
is inserted at the front of the list;

3. One match is found with the last IN in an ILL, and the IN
is inserted at the back of the list;

4. Two matches are found, in separate lists, at the first ele-
ment in one ILL and the last element in a second ILL; the
IN connects the two lists; and the second list is deleted;

5. Two matches are found in the same list, the IN is inserted
at the back of the matched list, and this indicates the
matched list has been completed;

6. Nomatch is found in any of the existing ILLS, and the IN
is inserted in a new ILL.

Once the IN has been inserted into an ILL, the following
intersection on the edge is calculated and sorted. Once all the
intersections on the triangle have been computed and inserted
into ILLs, the subsequent triangle is considered until all trian-
gles in the mesh have been considered, and slicing reaches
completion. The data in the ILLs can then be written into a
slice file format, or the ILL list format can be used directly for
generation of the toolpath.

Upon implementation of the ECC algorithm and a tradi-
tional strategy based on the flowchart detailed in Fig. 1 [12], in
the C++ language, comprehensive testing was performed on
the *.STL files shown in Figs. 5 and 6, and the results are
given in Table 1. The ECC algorithm shows improvements
over the conventional slicing method between 9000 and
1150% for all three parts. The result was especially impressive
for Fig. 6, taking under 575 ms to slice the part. However, in
both the conventional and the ECC methods, there is a

v_max

v_med

v_min

v_max

v_med

v_min

Fig. 3 Mesh triangle with slice planes

Point
(X,Y) EP

N
ex

t p
oi

nt
erretnio p

verP

Points to
Edge 1: p1,p2
Edge 2: p3,p4

Fig. 4 Graphical representation of IN data structure

1025Int J Adv Manuf Technol (2021) 112:1023–1033

disparity between the slice durations for Figs. 5a and 6 despite
consisting of a similar number of triangles, took in excess of
237,000 ms and 2,752,181 ms for the ECC and conventional
algorithms, respectively—413 times longer to slice for the
ECC method and 494 times longer for the conventional
algorithm.

Figure 5b slice time is 20.9 and 19.2 times less than that of
Fig. 5a for the ECC and conventional algorithm, respectively,
indicating that the direction of slicing interacting with the
topology of the part has a significant impact on the effective-
ness of both the algorithms. A possible solution is to analyse
parts and orient them in a way that is optimal for the slicing
algorithm; however, this does not present a good result as the
optimal orientation for slicing is unlikely to be the optimal
orientation for building the part [28]. An algorithm capable

of slicing the parts efficiently, regardless of the orientation, is
essential.

Analysis of the topology of Fig. 5a indicated that the aver-
age percentage of triangles intersecting on each layer is 33%
equating to 34,000 triangles, meaning that the part can be
identified as the worst case, whereas for Fig. 5b, an average
of less than 2% or 2056 triangles intersect on each layer. The
total number of intersections of the entire part remains the
same for both cases. It can be derived that the sorting proce-
dure when a large number of triangles are present per layer is
the cause of inefficiency.

3.2 Edge matching

The sorting process in the ECC algorithm relies on comparing
the edge pointer at the start and end of each list of connected
vertices for a match with the current IN. This process can be
further optimised using the fact that triangular meshes can
only be matched edge to edge and vertex to vertex; therefore,
one triangle only shares edges with exactly three others, one
on each edge. Consequently, once a match has been made for
one intersection on an edge, the matched triangle will be the
same for the rest of that edge (Fig. 7). The standard ECC
algorithm was adjusted to account for this to reduce the num-
ber of sorting procedures required for each edge from n, the
total number of intersections of the edge to one.

The IN data structure was modified to contain an edge link
pointer (Fig. 8), holding the memory location address which
points to the ILL containing the IN of the subsequent intersec-
tion on the triangle. The procedure of using the edge link is
described in the flowchart in Fig. 9. The first intersection is
inserted into the ILL using the method for the standard ECC
algorithm, and following this, the subsequent IN (INi) is
inserted into the ILL under four cases depending on the out-
come of the sorting of the previous IN (INprev):

Fig. 5 a Test sheet with 100 holes
with 102,812 triangles and
dimensions 265 × 265 × 3 mm; b
same test sheet rotated 90°

Fig. 6 Chess rook containing 93,930 triangles, dimensions: 31.75 ×
31.75 × 53.15 mm

1026 Int J Adv Manuf Technol (2021) 112:1023–1033

1. If the INprev is inserted into a new ILL, the current IN for
consideration INi will also be inserted into a new ILL, and
the address of the ILL containing INi will be saved as
INprev’s edge link pointer;

2. If INprev is inserted at the back of a list, INi will be inserted
into the back of the list that is located at the edge pointer of
the last IN in the list that INprev is connected to;

3. If INprev is inserted at the front of a list, INi will be inserted
into the front of the list that is located at the edge pointer
of the first IN in the list that INprev is connected to;

4. Finally, if INprev connected two lists, INi will connect the
two lists contained in the edge pointers of the last IN in the
ILL that INprev follows and the first IN that INprev pre-
cedes once connected.

In cases 1 to 3, the memory location address of the ILL that
INi has been inserted into is assigned as the edge link of the
INprev. In case 4, it is unnecessary to assign the edge link, as
INprev is on the middle of an ILL and therefore will not be
checked in future IN insertions. The impact of implementing
the edge link pointer into the algorithm is that the number of
intersections that undergo the checking process per triangle is
reduced from n (the total number of intersections on the trian-
gle) to one. The values recorded in counter were temporarily
implemented within each algorithm detailing the number of

times the matching process of the standard ECC has under-
gone for each algorithm is given in Table 2.

3.3 Additional modifications and edge matching

Transferring completed ILLs from the active sorting CLL to a
separate CLL containing only completed lists was expected to
increase efficiency by reducing the number of sorts. In some
cases, all the triangles in one connected multi-shell triangular
mesh appear successively in the file; therefore, the contour or
contours associated with that shell will be completed first, and
consequently, any further INs generated by the remaining
shells will check the completed ILL on each search iteration.
On initialisation of the algorithm, two versions of the CLL are
created: the standard CLL where all sorting and IN insertions
take place and a second complete CLL where ILLs are trans-
ferred by modifying the memory location pointers, when the
IN is found to match in the same list twice.

Micro-optimisation in the order that case variables are
assessed in the IF/ELSE-case loop provided a noticeable time
saving. The order the case variables appear was restructured to
ensure that the most likely case arises first. To test which case
is the most likely, a series of integer values were created to
count the number of times each case variable appeared.
Table 3 shows the number of occurrences of each case record-
ed using integer counters when running the ECC algorithm
with edge matching.

Table 4 shows that the most dominant case is largely de-
pendent on the topology of the triangles in the mesh, revealed
by a comparison of the rotated test sheets in Fig. 5 presenting
differing case occurrences despite having triangles of identical
geometry and connections. Table 5 contains the average like-
lihood of a case occurring for all models considered in this
paper. It was determined that the order of the automatic inser-
tion processes in the IF/ELSE loop would follow the most
probable to the least probable occurrence outlined in Table 4.

Table 1 Performance of ECC and traditional slicing algorithm; all parts were sliced at 0.1-mm slice thickness on a 64-bit system

Model Size (L, W, H mm) Triangles Conventional slicing algorithm (ms) ECC time (ms)

Test sheet with 100 holes (Fig. 5a) 256 × 256 × 3 102,812 2,752,181 237,582

Test sheet with 100 holes rotated (Fig. 5b) 256 × 3 × 256 102,812 143,587 11,371

Rook (Fig. 6) 31.75 × 31.75 × 53.15 93,930 5573 575

Fig. 7 Example slice plane intersecting with matched triangles

Point
Float x,y EP

N
ex

t p
oi

nt
erre tn iop

verp ed
ge

 li
nk

Fig. 8 Modified IN to include the edge link

1027Int J Adv Manuf Technol (2021) 112:1023–1033

4 Results, analysis, and discussion

The modifications to the ECC algorithm create the en-
hanced efficient contour construction (EECC) algorithm,

to assess the successfulness of this method; several parts
were sliced using the standard ECC algorithm, the ECC
algorithm with edge matching, and the completed EECC
algorithm, and the results are shown in Table 5. The most

Start: Input Triangle

Calculate intersec�on (I)

Decide which edge or
edges to slice

Is I first a�er v_min or v_med?

Run standard ECC IN
inser�on procedure

Insert IN using the edge
link of the previous ILL(s)

Assign the edge link of the
previous IN to the

memory loca�on address
of the current ILL

Return the edge link(s) of
the ILL(s) that the IN has

been a�ached to

All intersec�ons considered ?

End

Yes No

Yes

No
Increment
slice depth

Fig. 9 EECC algorithm flowchart

Table 2 Reduction in the number of matching processes from ECC to EECC

Model Total number
of sorts per part ECC

Average number
of sorts per layer

Total number
of sorts EECC

Percentage reduction
from ECC to EECC

Test sheet with 100 holes
(Fig. 5a)

1,562,144 52,071 53,555 2916%

Test sheet with 100 holes rotated (Fig. 5b) 2,380,123 898 53,555 44,446%

Rook (Fig. 6) 3,949,700 7452 81,435 4850%

1028 Int J Adv Manuf Technol (2021) 112:1023–1033

impactful improvement is shown in the identified worst-
case parts (Figs. 12, 13, 14, and 15). In the largest worst-
case model that could be sliced using the ECC algorithm
(Fig. 15), the EECC algorithm is 9400% faster than the
standard ECC algorithm. Of the parts tested, only models
containing under 1000 triangles witnessed a significant
percentage increase in comparison to the original slicing
time of 180% for Fig. 10. This is an acceptable increase
due to the imperceptible slicing times both with the ECC
and EECC algorithms and can be explained due to the
implementation of edge-point testing taking more time

than its saves; only a negligible decrease is seen in
Fig. 11 for the same reason.

Figures 11, 12, and 13, 16 represent the largest of the files
tested using the standard ECC algorithm, which underwent
the slicing process for over 4 h but never reached completion
due to the program being terminated after this time, as it was
unacceptably long. This indicated that these parts would have
seen even larger improvements than those witnessed in
Fig. 14, if completion was indeed possible.

Table 6 offers a comparison of open-source slicers with the
enhanced ECC algorithm; slicing was precisely timed by

Table 4 Average percentage case
occurrences of the EECC sorting
result on 50 test parts

No matching
list (%)

Insert at front
of list (%)

Insert at back
of list (%)

Links two
list (%)

26.91 29.89 20.79 22.40

Table 3 EECC number of case occurrences per part

Model No matching list Insert at front of list Insert at back of list Link two lists Requires Sorting

Test sheet with 100 holes (Fig. 5a) 733,700 174 11,600 733,700 54,036

Test sheet with 100 holes rotated (Fig. 5b) 377,964 256,360 25,639 800,658 72,589

Test sheet with 1225 holes (Fig. 12) 17,904,600 174 497,350 17,904,600 1,288,736

Test sheet with 225 holes (Fig. 15) 3,288,600 174 91,350 3,288,600 236,736

Test sheet with 484 holes (Fig. 13) 7,074,144 174 19,504 7,074,144 509,204

Test sheet with 729 holes (Fig. 14) 10,655,064 174 295,974 10,655,064 766,944

Dodecahedra (Fig. 10) 4850 7810 1386 4693 567

Calibration model (Fig. 11) 69,540 123,906 51,421 68,144 81,459

Rook (Fig. 6) 30,379 83,907 82,258 26,514 9077

Figure head (Fig. 16) 159,372 194,935 202,963 15,906 511,004

Table 5 Enhanced ECC algorithm efficiency test results; all parts were sliced at 0.1-mm slice thickness on a 64-bit system

Part name #Triangles #Layers Time conventional
algorithm (s)

Time ECC (s) Time ECC+ edge
matching (s)

Time-enhanced
ECC (s)

Test sheet with 100 holes
(Fig. 5a)

102,812 30 2752.181 237.582 10.029 8.241

Test sheet with 1225 holes (Fig. 12) 2,513,712 30 -a -a 1025.81 302.8

Test sheet with 225 holes (Fig. 15) 461,712 30 -a 4775.382 70.884 50.3

Test sheet with 484 holes
(Fig. 13)

993,180 30 -a -a 202.745 111.3

Test sheet with 729 holes
(Fig. 14)

1,495,920 30 -a -a 380.788 169.1

Dodecahedra (Fig. 10) 2074 1653 2.582 0.41 0.685 0.654

Calibration model (Fig. 11) 316 255 1.573 0.031 0.066 0.058

Rook (Fig. 6) 93,930 533 34.81 2.855 2.452 2.29

Figure head (Fig. 16) 467,882 814 788.698 65.695 8.091 7.59

Lattice sole (Fig. 17) 862,014 545 -a -a 186.351 95.876

a Slice time was in excess of 4 h; process was terminated

1029Int J Adv Manuf Technol (2021) 112:1023–1033

downloading the open-source software and including timing
modifications. The EECC algorithm was at least twice as fast
for all instances.

4.1 Space and time complexity

The standard ECC sort procedure can be defined under three
cases: worst case, best case, and average case, if there are k
number of lists in the CLL, m intersections per triangle, and n

triangles in the model; the complexity of the sorting algorithm
is detailed in Table 7.

The introduction of the enhanced ECC algorithm re-
duces the number of sorts per triangle from m intersec-
tions on the triangle to 2 in all cases, and therefore, the
time complexity become O(2n), O(2kn), and O(kn) for
the best, worst, and average cases, respectively. This
demonstrates that the improvements to the ECC algo-
rithm have the greatest impact on the worst-case triangu-
lar meshes, and the least on the best case. The worst-case
sort procedure can be differentiated from previously

Fig. 13 Test sheet containing 484 holes, 993,180 triangles of dimension
250 × 250 × 3 mm

Fig. 12 Test sheet containing 1225 holes, 2,513,751 triangles of
dimension 250 × 250 × 3 mm

Fig. 11 A calibration model consisting of 316 triangles, 165.1 × 165.1 ×
25.4 mm

Fig. 14 Test sheet containing 729 holes, 1,495,920 triangles of
dimension 250 × 250 × 3 mm

Fig. 10 Dodecahedra model consisting of 2074 triangles, 157.81 ×
133.62 × 165.15 mm

Table 6 Comparison of the enhanced ECC algorithm with Slic3r and
Cura, sliced at 0.1-mm slice thickness with 0% infill

File name Ultimaker
Cura1 (s)

Slic3r2

(s)
Enhanced
ECC (s)

Dodecahedra
(Fig. 10)

7.674 9.125 0.654

Test sheet with 225
holes (Fig. 15)

128.360 -a 50.3

Rook (Fig. 6) 5.341 6.31 2.29

a Slicing could not complete without program terminating

1030 Int J Adv Manuf Technol (2021) 112:1023–1033

identified worst-case models where the k value would be
very large, up to 67% of the total number of triangles n,
when compared with a best-case model where k would
be less than 1% of the total number of triangles.

There was a slight increase in space complexity in
the enhanced ECC algorithm in comparison to the stan-
dard ECC algorithm due to the implementation of the
edge link pointer, where each pointer is 8 bytes on a
64-bit system. The total space requirement for one in-
tersection is 4 bytes each for the X and Y coordinates of
the intersection and the five pointers, two edge pointers,
one edge link pointer, and two pointers which link the
contour together, which is a total of 48 bytes per inter-
section, an increase of 8 bytes or 16.67% over the stan-
dard ECC algorithm. As there are m intersections per
triangle and n triangles in the model, the total RAM
requirement can be defined as 48-nm bytes. This slight
increase in space complexity can be justified by the
improvements in efficiency.

4.2 Industrial context

Lattice structures have been identified that offer signifi-
cant advantages over solid infill products and design de-
pendently, and they can offer the same or better material
properties, e.g., tensile and compressive strength at a
considerably reduced part weight and volume. These
types of parts have seen significant advantages in areas
where a high strength to weight ratio is desirable,

examples include aerospace and sport performance prod-
ucts. Lattice structure models can often be categorised as
the worst-case models, especially when the lattice is in
one layer running from top to bottom in the direction of
construction.

One industrial example of lattice structures in AM is
3D printed shoes [29, 30], Figure 17 shows the Adidas
Alphaedge 4D shoes currently available on the mass
market, featuring a lattice structure on the sole of the
shoe. Increasingly, these shoes are manufactured custom
to a scan of the wearers’ foot, meaning that each CAD
model is different and will need to be sliced individually,
resulting in overall very lengthy slice times. Figure 18
shows a model of the sole of shoe intended that is
intended for production using additive manufacturing.
This part can be considered both the worst case, with
an average of 24% triangles intersecting on each layer
and a large *.stl file. The results in Table 5 demonstrate
enhanced ECC algorithm that offers significant advan-
tage on this part that would be manufactured in an in-
dustrial application. The part shows an improvement of
over 100% on the standard ECC algorithm and an im-
provement of at least 15,200% over the traditional end-
to-end line sort algorithm.

Table 7 Time complexity of the standard ECC sorting algorithm

Case Number of checks
per intersection

Number of checks
per triangle

Number of checks
per model

Best O(1) O(m) O(mn)

Worst O(k) O(km) O(kmn)

Average O(k/2) O(km/2) O(kmn/2)

Fig. 16 Figure head containing 467,882 triangles, dimensions of
141.61 × 111.27 × 81.29 mm

Fig. 15 Test sheet containing 225 holes, 461,712 triangles of dimension
250 × 250 × 3 mm Fig. 17 Adidas Alphaedge 4D [29]

1031Int J Adv Manuf Technol (2021) 112:1023–1033

5 Conclusion

The objective of this research was to generate a slicing algo-
rithm for AM that is capable of efficiently slicing worst-case
geometric parts, defined as triangular mesh models where a
high percentage of the parts of triangles intersect on each
layer. An adaption of the ECC algorithm, including reduction
in the number of sorts for each triangle, and micro-
optimisations through structuring, formed the enhanced ECC
algorithm. Efficiency tests were conducted on a set of *.STL
files (however, any other triangular mesh files could be used
in the algorithm) and found a maximum improvement of
9400% on the largest worst-case file. It was also found that
*.STL files that were previously too time-inefficient to com-
plete slicing using the standard ECC algorithm took less than
300 s to slice.

The enhanced ECC algorithm addresses the failings of the
other algorithms to slice very large worst-case parts, which are
becoming more prevalent in the AM sector [31] in reproduc-
tion of scanned real-world objects [32] or highly detailed,
large-scale AM components. Improvements to the slicing pro-
cess will have to evolve as the models grow in complexity and
size; whilst the enhanced ECC algorithm may be able to slice
all parts efficiently now, and further developments will be
necessary in the future.

Author contributions BK undertook the development of the algorithm
presented in this paper, supervised by AR. Models for testing were sup-
plied by GB.

Funding This study was partly funded by the Low Carbon in Lancashire
Hub (grant reference 19R16P01012 and Euriscus Ltd.).

Data availability Not applicable.

Compliance with ethical standards

Conflict of interest This research is sponsored by Euriscus Ltd. of which
Graham Bennett is the CTO.

Ethical approval This study complies with the ethical standards set out
by Springer.

Consent to participate Not applicable.

Consent to publish Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Gibson I, Rosen D, Stucker B (2014) Additive Manufacturing
Technologies: 3D Printing, Rapid Prototyping, and Direct Digital
Manufacturing: Springer, New York. pp. 1–25

2. King B, Bennett GR, Rennie AEW (2017) Comparison of galva-
nometer and polygon scanning systems on component production
rates in selective laser sintering. In: Proceedings of the 15th Rapid
Design, Prototyping & Manufacturing Conference (RDPM2017),
Newcastle

3. Mohsen A (2017) The rise of 3-D printing: the advantages of addi-
tive manufacturing over traditional manufacturing. Bus Horiz
30(5):677–688

4. Garden J (2016) Additive manufacturing technologies: state of the
art and trends. Int J Prod Res 54(10):3118–3152

5. Paul R, Anand S (2015) A new Steiner patch-based file format for
additive manufacturing processes. Comput Aided Des 63:86–100

6. Cătălin I, Daniela I, Alin S (2010) From Cad model to 3d print via
“Stl” file format. Fiabilitate Durab, l 1(5):73–80

7. Adnan FA, Romlay FRM, Shafiq M (2018) Real-time slicing algo-
rithm for Stereolithography (STL) CAD model applied in additive
manufacturing industry, IOP conference series Materials Science
and Engineering 342(1):012016

8. Engstrom D, Porter B, Pacios M, Bhaskaran H (2014) Additive
nanomanufacturing - a review. J Mater Res 29(17):1792–1816

9. Zha W, Anand S (2015) Geometric approaches to input file modi-
fication for part quality improvement in additive manufacturing. J
Manuf Process 20:465–477

10. Zhang Z, Joshi S (2015) An improved slicing algorithm with effi-
cient contour construction using STL files. Int J Adv Manuf
Technol 80(5–8):1347–1362

11. Brown A, De Beer D (2013) Development of a stereolithography
(STL) slicing and G-code generation algorithm for an entry-level 3-
D printer, 2013 AFRICON, pp 1–5

12. Xu H, Jing W, Li M, Li W (2016) A slicing model algorithm based
on STL model for additive manufacturing processes. IEEE
Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC) : 1607–1610

13. Tian R, Liu S, Zhang Y (2018) Research on fast grouping slice
algorithm for STL model in rapid prototyping. J Phys: Conf Ser.
https://doi.org/10.1088/1742-6596/1074/1/012165

Fig. 18 Lattice sole of AM manufactured shoe, containing 862,014
triangles, dimensions of 324 × 125 × 54 mm

1032 Int J Adv Manuf Technol (2021) 112:1023–1033

https://doi.org/
https://doi.org/10.1088/1742-6596/1074/1/012165

14. Steuben J, Iliopoulos A, Michopoulos J Implicit slicing for func-
tionally tailored additive manufacturing. Comput Aided Des 77:
107–119

15. Hopcroft J, Tarjan R (1973) Efficient algorithms for graph manip-
ulation. Commun ACM 16(6):372–378

16. Hu B, Jin G, Sun L (2018) A novel adaptive slicing method for
additive manufacturing. CSCWD, Nanjing, pp 218–223

17. Wang W, Chao H, Tong J, Yang Z, Tong X, Li H, Liu X, Liu L
(2015) Saliency-preserving slicing optimization for effective 3D
printing. Comput Graph Forum 34(6):148–160

18. Pan X, Chen K, Zhang Z, Chen D, Li T (2013) Adaptive slicing
algorithm based on STL model. Appl Mech Mater 288:241–245

19. Li Q, Xu XY (2015) Self-adaptive slicing algorithm for 3D printing
of FGM components. Mater Res Innov 19(S5):635–641

20. Ding D, Pan Z, Cuiuri D, Li H, Larkin N, Van Duin S (2016)
Automatic multi-direction slicing algorithms for wire based addi-
tive manufacturing. Robot Comput Integr Manuf 37:139–150

21. Singhal SK, Jain PK, Pandey PM (2008) Adaptive slicing for SLS
prototyping. Comput-Aided Des Appl 5(1–4):412–423

22. Pereira S, Vaz A, Vicente L (2018) On the optimal object orienta-
tion in additive manufacturing. Int J Adv Manuf Technol 98(5):
1685–1694

23. Golmohammadi AH, Khodaygan S (2019) A framework for multi-
objective optimisation of 3D part-build orientation with a desired
angular resolution in additive manufacturing processes. Virtual
Phys Prototyp 14(1):19–36

24. Yang G, Liu W, Wang W, Qin L (2010) Research on the rapid
slicing algorithm based on STL topology construction. Adv Mater
Res 97-101:3397–3402

25. Eragubi E (2013) Slicing 3D model in STL format and laser path
generation. Int J Innov Manag Technol 4(4):410–413

26. Zhao G, Ma G, Feng J, Xiao W (2018) Nonplanar slicing and path
generationmethods for robotic additivemanufacturing.(Report). Int
J Adv Manuf Technol 96(9–12):3149

27. Luo N, Wang Q (2016) Fast slicing orientation determining and
optimizing algorithm for least volumetric error in rapid prototyping.
Int J Adv Manuf Technol 83(5):1297–1313

28. Zhang Y, De Backer W, Harik R, Bernard A (2016) Build orienta-
tion determination for multi-material deposition additive
manufacturing with continuous fibers. Proc CIRP 50:414–419

29. Cătălin A, Zapciu A, Popescu D (2019) 3D-printed shoe last for
bespoke shoe manufacturing. MATEC Web Conf 290:4001

30. Perry A (2018) 3D-printed apparel and 3D-printer: exploring ad-
vantages, concerns, and purchases. Int J Fash Des Innov 11(1):95–
103

31. Barnett E, Gosselin C (2015) Large-scale 3D printing with a cable-
suspended robot. Addit Manuf 7(C):27–44

32. Tóth T, Živčák J (2014) A comparison of the outputs of 3D scan-
ners. Proc Eng 69:393–401

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1033Int J Adv Manuf Technol (2021) 112:1023–1033

	An efficient triangle mesh slicing algorithm for all topologies in additive manufacturing
	Abstract
	Introduction
	Review of related works
	Methods
	ECC algorithm implementation
	Edge matching
	Additional modifications and edge matching

	Results, analysis, and discussion
	Space and time complexity
	Industrial context

	Conclusion
	References

