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Abstract17

A new technique for investigating dust charging in the PMSE (polar mesospheric sum-18

mer echoes) source region is proposed and discussed in this paper. The first high-frequency19

(HF) modulation of the PMSE with varying pump power was employed during a recent20

experimental campaign at EISCAT (European Incoherent Scatter Scientific Association).21

Two experiment set-ups including HF pump power stepping as well as continuous power22

sweeping were used. The experiment was designed based on a computational model ca-23

pable of full simulation of PMSE evolution during HF pump modulation in order to de-24

velop a new approach for studying the dust charging process in the PMSE source region.25

The charge state of dust particles along with background dusty plasma parameters are26

examined using the experimental and computational results. A detailed future exper-27

imental design based on physical parameters is proposed.28

1 Introduction29

The polar mesospheric summer echoes (PMSE) are very strong radar echoes ob-30

served in the frequency range of 8 MHz up to 1 GHz (Ecklund and Balsley, 1981; Rapp31

and Lubken, 2004). PMSEs are coherent echoes produced by plasma (electron density)32

fluctuations at half the radar wavelength (known as Bragg scattering condition) (Rapp33

and Lubken, 2004). While the general picture of PMSE formation is known, the source34

of fluctuations in the electron density responsible for radar echoes is still in debate within35

the community (Mahmoudian et al., 2020).36

The first modulation of PMSE by high-power radio-waves was examined in 200037

and 2003 (Chilson et al., 2000; Havnes et al., 2003). Subsequently, the computational38

models were developed to study the associated physics of such experiments and explain39

the observational data (Scales, 2004; Chen and Scales, 2005; Scales and Mahmoudian,40

2016). Considering the model prediction of the di↵erent behavior of PMSE at the HF41

band (e.g. 8 MHz) and VHF (e.g. 224 MHz), a simultaneous experiment using the two42

radars was conducted at EISCAT in 2013 for the first time (Senior et al., 2014). The dif-43

fusion and electron attachment onto the dust particles (dust charging) are the two pro-44

cesses that control the electron density fluctuation amplitude and the corresponding radar45

echoes (Scales and Mahmoudian, 2016). The dust charging (⌧chg) and di↵usion (⌧di↵)46

time-period can be written as follow (Scales and Mahmoudian, 2016):47
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where �irreg, K, Ti, mi, ⌫in, Zd0, nd0, ne0, rd, vte0, �, rh denote electron density fluc-48

tuation wavelength, Boltzmann constant, ion temperature, ion mass, ion neutral colli-49

sion frequency, dust charge number, dust number density, electron number density, dust50

radius, electron thermal velocity, equilibrium normalized dust floating potential, and heat-51

ing ratio (Te/Ti), respectively.52

As shown in Eqs (1) and (2), both processes depend on electron temperature (Te),53

therefore radio modulation of PMSE will modify the two processes (Scales and Mahmoudian,54

2016). Background dusty plasma parameters also play a role in the di↵usion and charg-55

ing timescales. The di↵usion process is proportional to the radar frequency. While the56

VHF PMSE in the conventional PMSE heating experiments at fixed power can be used57

as a manifestation of dust charging process, the study of the dust charging process and58

estimate dust floating potential, dust charge state and its variation during pump heat-59
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ing is impossible using the conventional observations. To study the dust charging pro-60

cess and based on the parameters presented in equations 1 and 2, the common region61

within the PMSE should be probed by radar between di↵erent cycles. While most of the62

past experiments focused on multiple radar frequencies in order to distinguish the dif-63

fusion/charging processes during radio modulation (Te/Ti variation), due to altitude dif-64

ference of reflected echoes and changes in the background dust and plasma parameters65

(radius and density) such a comparison had a low accuracy. The recent simultaneous ob-66

servations of modulated PMSE at 56 MHz and 224 MHz has shown the similar limita-67

tion as the probed region by the two radars is not common and encompass di↵erent back-68

ground dust parameters (Havnes et al., 2015). Moreover, the 224 MHz radar needs the69

least calibration of the reflected data. The previous study has shown the 8 MHz radar70

signal undergoes a significant absorption during heating which makes discriminating the71

e↵ect of charging and study charging process almost impossible (Senior et al., 2014). There-72

fore, the present work is designed based on our extensive work on studying the physics73

of PMSE modulation with radio waves. We used the most reliable radar frequency, sin-74

gle radar to impose the altitude range of study between experiments and have the con-75

stant dust parameters over a short period of experiments and only have Te/Ti variation76

between cycles. The continuous and stepped pump power variation are employed in or-77

der to not only facilitate the first direct observation of dust charging process but also78

to determine charge state, background dust parameters and dust charge variation in re-79

sponse to the heating. The continuous pump heating has clearly shown the saturation80

of dust charging process at some levels of pump power which is essential in determin-81

ing the dust charging characteristics, initial dust charge state and its time evolution, and82

background parameter estimation.83

2 Experimental set-up84

The HF pump modulation campaign was conducted from July 22 to 26, 2019 at85

the EISCAT site near Tromsø, in northern Norway. The experiments started around 7:0086

UT every day and continued to ⇠13:00 UT based on the mesospheric conditions and pres-87

ence of a PMSE layer. The VHF data presented in this paper have a vertical resolution88

of 300 m and a time resolution of 4.8 s which corresponds to the integration time of the89

autocorrelation functions of the radar echo. The modulation scheme used was a pulse-90

to-pulse correlation ‘manda’.91

The HF facility was used both as a heater of electrons in the mesosphere along with92

VHF radar observations (Rietveld et al., 2016). Ten transmitters were used with antenna93

array-1 at 6.2 MHz, vertical beam, X-mode for the three days presented below. The nom-94

inal power per transmitter was stepped up (20, 40, 60, 80 kW) for each new heating cy-95

cle which correspond to e↵ective radiated powers (total transmitter power times antenna96

array gain, ERP) of approximately 52, 114, 240, 380, and 485 MW respectively assum-97

ing a perfectly conducting ground. A short summary of the experiment conducted on98

each day is provided below.99

24 July: The HF experiment ran with X-mode heating and this certainly gave very100

good PMSE modulation as will be discussed shortly. Power stepping was stepped up 40,101

60 and 80 kW for the first part, and changed subsequently to 10, 20, 40, 60, 80 kW for102

each new heating cycle in the last hour of the experiment. The heater was on for 48 s103

followed by 120 s o↵ period.104

July 25th: The first hour of experiment showed a very weak VHF PMSE. Around105

09:38 UT, the VHF echo started to form and the HF modulation started at 20, 40, 60,106

80 kW for each new heating cycle. Around 09:40 UT VHF PMSE got much stronger,107

at a high altitude of about 88 km. The experiment continued until 11:00 UT. The HF108

transmitter was configured for X-mode polarization at 6.2 MHz. In order to make sure109
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that the HF o↵ time was long enough to avoid preheating condition in the following heat-110

ing cycle, the heater o↵ time was increased to 144 s giving a 192 s total cycle.111

July 26th: In the last day of experiment, the heating power actually increased dur-112

ing the cycle continiously. The VHF radar started at 07:00 UT and ran until the sched-113

uled end of 11:00 UT. There were PMSE echoes which were stable in the first two hours,114

but not too strong. The 62.4 s heater on cycle with linear power sweep started at 07:19115

UT. The HF experiment ran with X-mode heating again. For almost the first 2 hours,116

the HF heater ran with a linear power sweep from 0 to full power in 62.4 s during the117

cycle followed by 144 s o↵ giving a 206.4 s cycle. In order to provide a scientific-based118

experiment design to investigate dust charging process in the earth’s middle atmosphere,119

a continuous power stepping is implemented rather than the power stepping over on/o↵120

cycles, which is in fact many small steps of every 0.515 s. Specifically, the power of the121

10 heating transmitters was increased in 120 steps (giving 62.4s on period) from 0 to 80122

kW nominally per transmitter followed by 144s o↵. At around 09:02 UT the experiment123

was changed to the same power stepping program as on July 25th. In the second half124

of the run, the VHF PMSE became weaker, more variable and was sometimes absent.125

3 Observations126

The experimental observations associated with three days discussed in the previ-127

ous section are presented. Figure 1a shows the natural VHF PMSE layer started at 07:21:26128

UT on July 24, 2019 with a single structure expanded from ⇠81 km to 84 km. The HF129

pump modulation of PMSE started at 07:46:20 UT. The HF pump power was set to 40,130

60 and 80 kW. A very weak modulation of VHF PMSE associated with the pump power131

of 40 kW is observed (Figure1a, b). A strong weakening of VHF PMSE during HF heat-132

ing at 60 kW and almost complete disappearance of the modulated PMSE at 80 kW are133

observed in the VHF radar data. The heating continued until 08:36:44 UT when the nat-134

ural PMSE becomes very weak. At 09:10:20 UT, a double layer PMSE starts to form.135

The first layer has a thickness of ⇠3 km (81.5-84.5 km) and a narrow PMSE layer of ⇠1136

km appears at a center altitude of 88.11 km. The very interesting modulation e↵ects and137

similar characteristics of the VHF PMSE described for Figure 1a, are observed at both138

PMSE layers with an altitude di↵erence of ⇠5 km. A clear radio-wave modulation at139

the top PMSE layer can be seen. This will be elaborated using the modeling results in140

following section.141

Figure 1c shows the experimental observations collected on July 25, 2019. The VHF142

PMSE data from 09:37:36 UT to 10:59:50 UT are presented. The HF pump transmit-143

ter was operated at four power levels of 20, 40, 60 and 80 kW. The clear modulation and144

agreement of VHF PMSE associated with the power level, which is expected to suppress145

proportionally to heating ratio (Te/Ti) and increase of pump power, is observed (Scales146

and Mahmoudian, 2016). The physics of VHF PMSE variation during radio-wave heat-147

ing will be explained using the numerical simulations in the following section. The more148

detailed analysis including superposed-epoch analysis of the averaged signal over alti-149

tude (⇠80.91-84.51 km) is shown in Figure 2c for the heating cycles 09:53:36 UT to 10:19:16150

UT. Three power levels of 40, 60 and 80 kW are presented. The agreement of the am-151

plitude reduction of the normalized radar echoes during heating and turn-o↵ overshoot152

with the HF pump power will be elaborated in the section III. Another case from July153

24, 2019 between 10:00:48 UT to 10:14:48 UT (80.91-84.51 km) is also included in Fig-154

ure 2d in order to address the lower pump power modulation that is dependent on the155

background dusty plasma parameters.156

The superposed-epoch analysis of the VHF radar echoes associated with several157

heating time intervals on July 24, 2019 (Figure 1) are presented in Figure 2a and b. The158

subinterval analysis corresponds to averaged power over the altitude of the PMSE layer159

and normalized for the time period of heater on and o↵ at each HF transmitter power.160
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Figure 2a, b represent the above mentioned analysis for the PMSE layer formed in the161

lower altitude range of ⇠82-84 km in two subsequent heating cycles. The normalized radar162

echoes are very much consistent for both cycles with same suppression amplitude, turn-163

o↵ overshoot, and relaxation time at HF heating powers of 40, 60 and 80 kW. Consid-164

ering the short time period as well as overall behavior of the PMSE layer in the VHF165

data that is related to the background dusty plasma parameters, this behavior empha-166

sizes the similar HF modulation and heating e↵ects on the layer. The results of the superposed-167

epoch analysis denote the time variation of the PMSE layer and di↵erent e↵ect of HF168

pump heating on the layer.169

The experimental observations in Figure 3a show the 62.4 s heating cycle with con-170

tinuous power stepping (denoted by on) on July 26, 2019. It is clear that as the power171

starts at a very low amplitude, the persistence of PMSE strength from the o↵ cycle ex-172

tends to the new heating cycle. As the power increases and the Te/Ti grows to larger173

values, the scattered radar signal drops significantly towards to the end of heating cy-174

cle. The suppression of the weak PMSE layer for heating cycles after 08:41:04 UT even175

appears right after heater turn-on. The subintervals at each power step are analyzed by176

performing a superposed-epoch analysis of the Radar Cross Section (RCS) from the radar177

over the heating cycles. The associated superposed-epoch analysis of Figure 3a is shown178

in Figure 3b. The clear modulation behavior described for Figure 3a is seen. The aver-179

aged VHF PMSE over all heating cycles is shown in Figure 3c. According to this Fig-180

ure, a slow decrease of echo strength by about 80% is observed. Unlike the instant mod-181

ulation of PMSE layer with radio-waves explained for experiments on July 24 and 25,182

the slow increase of HF pump power from zero to 80 kW in 62.4 s represents a di↵er-183

ent behavior of associated VHF PMSE. A slow decay denotes the slow charge state vari-184

ation of dust particles in response to Te/Ti increase over small steps. This behavior is185

noted as plateau within ⇠ 10 s (Figure 3c). A saturated charging process within 40 s of186

heating cycle is seen. The corresponding physics will be elaborated in the subsequent187

section and by implementing the numerical simulations.188

4 Diagnosis of dust charging process189

The computational model originally created in 2004 is used to interpret the obser-190

vations in terms of mesospheric dust particle parameters (Scales, 2004). In the model-191

ing, the electron to ion temperature ratio during heating, Te/Ti is varied in accordance192

with the heated center volume probed by the VHF radar. Two sets of simulations are193

designed to explain the experimental observations and the proposed approach for study-194

ing fundamental physics of dust charging process in space. The model initialization is195

conducted using the observational data from recent in-situ rocket measurements of dust196

particles within the cloud (Robertson et al., 2009). Several initial simulation runs are197

performed with the purpose of limiting the possible dust radius range in order to get the198

best agreement with the observations. The possibility of small dust particles of the or-199

der of 1 nm is excluded in this paper as it requires a large density that is well beyond200

the typical densities in the associated region. Large dust particles (> 5 nm) are also ne-201

glected due to the nature of the observation including stable background electron den-202

sity, short duration of cloud appearance, and constant level of natural VHF PMSE through-203

out the observations. Therefore, dust radii of 3 and 4 nm are used in this study and cor-204

responding dust density and heating ratio to achieve the best consistency with the ob-205

servations. The associated time evolution of dust charge state during HF pump heat-206

ing is investigated.207

Figures 4a and b denote the numerical results for rd = 4 nm, nd/ne0 = 115% (per-208

cent) corresponding to the observational data presented in Figure 2a and b. The dust209

fluctuation amplitude is assumed to be 50% of the background dust density. The cases210

shown in Figure 2a illustrate a 60% suppression of the VHF signal during HF heating211

at the HF power of 40 kW. The suppression level reaches ⇠ 80% for 60 kW and 80 kW212
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pump power levels. The turn-o↵ overshoot discriminates the behavior of VHF PMSE213

during 60 kW and 80 kW heating. The best agreement between observations and sim-214

ulations is obtained for Te/Ti of 2.3, 2.8 and 2.9. The simulation results predict a turn-215

o↵ overshoot of 5.5, 4.5, and 2.5 for HF pump of 80, 60, and 40 kW, respectively. The216

average charge state on dust particles (Zd,ave) shows an increase of average electron charge217

attached to dust particles by a factor of ⇠2 associated with Te/Ti of 2.8 and 2.9. A close218

comparison of radar echoes simulated by the model and time evolution of average dust219

charge reveals that electron charging process dominated the di↵usion process during radio-220

wave modulation and determines the final suppression level of backscattered signal.221

Figures 4c and 4d represent the numerical simulations for the experimental case222

of Figure 2c. According to the heating cycles shown in Figure 2c, the VHF PMSE drops223

70, 77.5 and 85% at 40 kW, 60 kW, and 80 kW HF power, respectively. A small turn-224

o↵ overshoot is observed in all cycles. The VHF PMSE during heater o↵ period shows225

a temporal variation in the natural PMSE layer. This VHF PMSE evolution can be clearly226

seen in Figure 1c. This is mainly due to the change in the dust cloud parameters and227

can be attributed to the formation of new small dust particles. Such small particles are228

a↵ected by the HF pump heating and electron charging process to a much lower degree.229

The red curve of 60 kW pump power in Figure 2c shows more of pump-induced relax-230

ation response of VHF PMSE after heating. The turn-o↵ overshoot of 15% within 10 s231

of heater turn-o↵ is observed. The numerical simulations match well the suppression be-232

havior of as well as the recovery to the initial value (red line in Figure 2c). The main233

feature observed in power stepping experiments is that there is a close agreement between234

the level VHF PMSE suppression and enhanced charge state. The more suppression in235

the power level corresponds to higher dust charge state.236

The heating cycle started at lowest HF pump of 10 kW on July 24, 2019 (Figure237

2d) is analyzed in Figures 4e and f. The VHF PMSE during radio-wave heating shows238

a strong correlation with the heating powers of 10, 20, 40, 60 and 80 kW. A 20, ⇠ 50,239

70, 76, and 90% reduction of VHF PMSE during heating from the lowest to the high-240

est powers are observed. The overall behavior of VHF PMSE after heater turn-o↵ in-241

cluding a sudden increase to twice of the initial amplitude and remaining at that level242

is a clear manifestation of HF pump modulation. In other words, radio-wave modula-243

tion can control the response of the PMSE independent of the background parameters.244

The behavior of VHF PMSE in the subsequent cycle at 80 kW validates the suppres-245

sion level observed at 60 kW. As shown in Figure 2d, the rise time-period of VHF PMSE246

after heater turn-o↵ involves a sharp increase followed by a suppression of radar echo in247

some cases (e.g. for 80 kW in light green line) and continued with a slow recovery to ini-248

tial value. Two sets of parameters using 3 nm and 4 nm dust radius are performed. The249

main point is to characterize the time evolution of radar echoes in order to get the best250

estimation of dust parameters. This could shed light on electron attachment onto dust251

particles and associated physics as well as dust particle characteristics. According to Fig-252

ure 4f, the average charge state on the dust particles varies with approximately the same253

proportion at 3 nm and 4 nm associated with each pump power. The timing of local max-254

imum (turn-o↵ overshoot) for both dust radii used in this study is in agreement with the255

experimental data. A close comparison of radar echo suppression level during radio heat-256

ing, turn-o↵ overshoot amplitude and recovery of backscattered signal to normal level257

show that numerical results of 4 nm dust size (solid line in Figure 4e) produces the best258

agreement with the experimental observations. This approach will confine the study of259

dust charging process with purpose of better understanding of charging rate and the pos-260

sible shape of dust particles. This goal will be achieved through the measured dust float-261

ing potential using the proposed technique.262

One of the main characteristics of the observed VHF PMSE during continuous radio-263

wave modulation (Figure 3) is the plateau that is formed within the first few seconds of264

heating at low powers. This e↵ect can be attributed to the slow dust charging process.265
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Such a unique behavior not only can be implemented to determine the background dust266

parameters, but also could shed light on charging characteristics and possibly other prop-267

erties of the particles. The numerical simulations based on two possible range of param-268

eters are evaluated (Figures 4g and h). The main parameter used as the base of simu-269

lations is the dust radius. The continuous HF power variation included 120 steps from270

0 to 80 kW during 62.4s pump-on period. The computational model was set to increase271

the electron temperature (Te) similar to the experiment set up. The dust radius of 3 nm272

and 4 nm are used as the base of the simulations. The simulation results produce the273

plateau (10% reduction of VHF PMSE) within 16 s of heater turn-on associated with274

all parameters including the heating rate ratio. A close comparison reveals a plateau be-275

havior of up to 10% within 10 s in the observations (Figure 3c). The suppression of radar276

echos is estimated about 87% in comparison with the experimental data that show ⇠80%277

reduction. The clear saturated charging state is not seen in the simulation results. This278

will be investigated in future work with more sophisticated charging model. The turn-279

o↵ overshoot amplitude also shows a good agreement. It should be noted that an aver-280

age of 13 heating cycles over one hour of observations are compared with numerical sim-281

ulations. Therefore, a small di↵erence between the results is expected. The recovery of282

the radar echo to its initial value before turn-on emphasizes distinct variation in time283

that can be used to determine background parameters with high accuracy. According284

to Figure 4g, even small change in dust radius can introduce a notable footprint in the285

model curve. The slow increase of average charge state from the initial state as a response286

to slow increase of HF pump power matches well with the behavior of observed and sim-287

ulated radar echo. This behavior also validates the objective of the present paper as the288

first direct observation of dust charging process in space.289

5 Conclusion290

The first radio-wave modulation of polar mesospheric summer echoes (PMSE) with291

varying HF pump power was conducted at EISCAT facility in Tromso, Norway in July292

2019. The associated modulated PMSE was probed with a VHF radar at 224 MHz. The293

observations during pump power stepping as well as continuous HF power variation re-294

vealed the first direct signature of dust charging process in space. It has been shown that295

the features of VHF PMSE during pump power stepping in every new cycle can be im-296

plemented to determine the very accurate dust density and corresponding Te/Ti using297

measurements at only one radar frequency. Another main feature observed in power step-298

ping experiments is that there is a close agreement between the level VHF PMSE sup-299

pression and enhanced charge state. The more suppression in the power level corresponds300

to higher dust charge state. Numerical simulation is used in order to characterize the301

combination of continuous and discrete power variation, including heating cycle design302

with long enough continuous heating at each power level in order to determine the back-303

ground parameters as well as charging parameters. It has been shown that continuous304

HF pumping of PMSE source region can be used to determine the saturated charge state305

on the dust particles. While the unique experiment design is shown to be able to study306

the dust charging process in the mesosphere, more complicated experiments including307

switching back and forth between two HF pump powers as well as hysteresis increasing308

from a low to high power and vice versa could lead to determination of the charging rate.309

Such information in addition to dusty plasma diagnosis can provide a much better un-310

derstanding of charging characteristics in the PMSE source region.311
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Figure 1. The VHF PMSE during radio-wave modulation including HF power variation

over the heating cycles on July 24, 2019. The powers shown are the nominal power radiated by

each of the 10 transmitters. c) The VHF PMSE during radio-wave modulation including HF

power variation with increased o↵ period and total heating cycle of 192 s on July 25, 2019. The

backscattered signal is shown in log10(Ne) unit.–8–
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Figure 2. Subintervals at each power step analyzed by performing a superposed-epoch anal-

ysis of the RCS (radar cross section) over the heating cycles. a) Turn-on and b) turn-o↵ normal-

ized radar echoes associated with the bottom layer in the altitude range of (82.7-84.5 km) and

(82.35-83.49 km) corresponding to (09:18:44-09:27:08 UT) and (09:27:08-09:35:32 UT) time inter-

vals, respectively, on July 24, 2019. c) corresponds to (09:53:36 UT to 10:19:16 UT) and average

altitude range of (80.91-84.51 km) on July 25, 2019. d) corresponds to (10:00:48 UT to 10:14:48

UT) and average altitude range of (80.91-84.51 km) on July 24, 2019.
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Figure 3. The HF pump power sweeping from 0 to 80 kW on July 26, 2019. a) the backscat-

tered signal is shown in log10(Ne) unit. b) Subintervals at each power step analyzed by perform-

ing a superposed-epoch analysis of the RCS associated with heating cycles shown in Figure 3a. c)

averaged normalized radar echoes associated with all heating cycles.
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Figure 4. a-f) Numerical results corresponding to experimental observations presented in

Figure 1-2. Zd,ave denotes the average electron charge on dust particles. The discrete HF pump

variation and associated charge state simulated by the model are presented to characterize the

similarity between VHF PMSE behavior and elevated dust charge state. g, h) Numerical results

corresponding to experimental observations presented in Figure 3. The plateau feature formed in

the numerical results corresponding to similar behavior in the observations is seen.
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ments. The data presented in this paper can be downloaded from the EISCAT online316

database at https://www.eiscat.se/scientist/data/317
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