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Abstract

The growing increase in the size and scope of o�shore wind farms motivates the need

for industry to have access to mathematical tools that reduce costs by e�ciently

performing daily operations and maintenance activities. Key o�shore activities re-

quire the transportation of technicians to and within o�shore wind farms to complete

corrective and preventive maintenance tasks to keep turbines operating e�ciently.

We provide a new deterministic mixed integer linear programming formulation for

deciding the optimal vessel routes for transporting technicians around a wind farm and

the scheduling of crew transfers, by minimising downtime, travel and technician costs.

The model contains su�cient �exibility to account for multiple vessels, shifts and task

pro�les, whilst being able to prioritise and omit tasks in environments containing

limited resources. Computational experiments are performed which quantify and

con�rm the impact of key instance characteristics such as technician availability, task

pro�les and weather conditions. We implement and evaluate the impact of a novel

industry safety constraint.

The complexity of larger instances motivates a second continuous time formulation,

in which preventive maintenance again requires no minimum duration of work before
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it can provide bene�t. We employ a speci�c decomposition structure to take advan-

tage of variable preventive maintenance and utilise an adaptive large neighbourhood

search procedure to solve instances. We evaluate several distinct acceptance criteria

in conjunction with random and adaptive operator selection to determine the best

option for our model.

We produce a statistical model of o�shore weather conditions to help quantify the

likelihood of limited vessel accessibility to o�shore wind farms. We model the joint

distribution of key meteorological and oceanographic variables over time whilst ac-

counting for seasonal trends using multivariate kernel density estimation. Our method

generates alternative metocean realisations from historical data and reproduces the

important long term persistence statistics of good and adverse o�shore conditions.
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Chapter 1

Introduction

1.1 Motivation

All across the globe there exists a growing need to produce more electricity than ever

before. Both developed and developing countries need new infrastructure to either

expand their present levels of production to cope with rising demand or to simply

replace existing infrastructure as it reaches the end of its operating lifetime.

Traditionally economic factors are the dominant in�uence in the long term strate-

gic decisions involved in deciding a countries future energy mix, however there is now

also a need to prioritise switching to `greener' forms of electricity generation in order

to reduce carbon dioxide emissions. This is necessary because of the immediate threat

posed by a rapidly warming planet which is driven by the presence of excessively high

levels of greenhouse gases. As the energy sector in the UK still makes up around 30%

of the UK's CO2 emissions (UK Government, 2015) it is important to �nd ways of

reducing the amounts of these harmful pollutants.
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In recent years this has happened through the adoption of medium and long term

targets aimed at shifting the UK's energy production in the direction of more re-

newable forms of energy, examples of which are wind, wave and solar power plants.

The UK itself has placed more emphasis on wind energy due to the favourable local

conditions found for it around the British Isles. In 2016 wind initially contributed

around 6-7% of the UK's total energy needs, (UK Energy Statistics, 2016), whereas

by the third quarter of 2019 it was closer to 20%, (Carbon Brief, 2019).

The �rst generation of wind turbines built in the UK were situated on land and

grouped together into nearby locations known as `wind farms'. The e�ect from taking

this approach was that the average power output across the onshore wind farm became

more stable; small �uctuations in wind speed at a speci�c turbine were balanced

out over the entire set of turbines. In conjunction with the development of cheaper

and more e�cient turbines onshore wind has become one of the most mature and

cost e�ective forms of renewable energy. Despite this it is still subject to several

criticisms. These tend to be primarily environmental and quality of living concerns.

Many local residents oppose their construction on the grounds of them causing blights

on unspoiled landscapes, excessive noise and damage to local wildlife. Although many

of these issues have been addressed by industry through new technologies such as

quieter blades, focus has shifted in recent years towards building new wind farms out

at sea.

This change in policy can be seen as a bene�cial switch in terms of both energy

generation and environmental considerations. It has been shown that the wind speeds

found at positions just a few hundred metres o�shore are substantially higher than
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those found inland, often reaching the range of being 40% faster, (USA Department

of Energy, 2017). This equates to the energy potentially extractable from the wind

being nearly three times higher out at sea making these new regions highly desirable.

Another bene�t of locating these turbines in open waters is the reduced visual impact

to any coastal observers and noise pollution becoming negligible. Whilst there are still

other issues that need to be accounted for such as �shing areas and marine habitats,

the decision has been made that the extra cost associated with o�shore wind is worth

the price in order to avoid the drawbacks of onshore wind.

Compared to onshore wind, o�shore wind farms remain comparatively expensive to

develop and operate although these costs have rapidly decreased ahead of projections.

In 2011 it cost £136 for each megawatt-hour of o�shore wind produced which dropped

to £121/MWh by 2014 ahead of a targeted £100/MWh in 2020, (CATAPULT, 2015).

In actuality by the third quarter of 2019 this target had already been demolished with

some new o�shore wind farm contracts containing strike prices around £40/MWh,

(o�shoreWindBiz, 2019).

These reductions can largely be attributed to the introduction of newer 6MW

turbines, but more developments are required to make o�shore wind farms pro�table

without government subsidies. The rapid growth expected in the industry over the

next decade means that it is important to not only enhance production but also to

lower operating costs.

One way of making wind energy more competitive in a crowded energy marketplace

is clamping down on the day to day operating costs. At present these costs make up

a large percentage of the total costs over the lifetime of the wind farm, approximately
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20-35% (Sha�ee, 2015). The demand from industry to tackle this has pushed ideas

concerning e�cient and e�ective maintenance scheduling to the forefront.

The key reason for the incursion of such unusually high operating costs is the fact

that the costs of travelling to o�shore wind sites are signi�cantly higher than those

on land. In order to transfer the necessary technicians and equipment to the wind

farm, specialised vessels and helicopters are required which are expensive to rent. The

money involved with acquiring and utilising these vessels dominates other contributory

factors to the total maintenance cost since it is strongly related to losses in power

production. Vessels are used to help perform maintenance tasks on wind turbines

in order to keep them operational. If said vessels are unable to service faults then

the a�icted wind turbines will often be unable to generate electricity thereby missing

out on potential revenue. This accessibility of the wind farm is markedly di�erent

from onshore activities because of the impact of the weather and sea conditions. Bad

weather and heavy seas can limit the number of tasks that can be performed in a

day or even completely restrict access to the wind farm when maintenance activities

would otherwise be performed.

As faults and breakages in o�shore wind farms can potentially have a longer lasting

impact than the equivalent breakdown occurring onshore, it is necessary for mainte-

nance operators to decide upon an e�cient strategy for dealing with them. Several

di�erent strategies have been used that employ di�erent kinds of operations such as

reactive, preventive and condition based maintenance to reduce the likelihood of crit-

ical failures. Usually a combination approach involving all these types of strategies

make for the most sensible and cost e�ective policy.
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1.2 Maintenance Policies

The o�shore maintenance problem gets considerable attention from both industrial

and academic circles (Hassan, 2013), however before any decisions concerning the

maintenance �eet or operations scheduling can be made, a decision concerning the

type of maintenance strategy used to cover the wind farm must be taken. Historically

there have been several di�erent methods for servicing the wind turbines in order to

rectify any breakages and prevent future periods of downtime. These strategies can

loosely be classi�ed into reactive maintenance and preventive maintenance, (Sha�ee,

2015).

Reactive maintenance is de�ned as maintenance tasks which are performed in

response to any critical or major failures in the o�shore wind farms. These are likely to

be unpredictable faults that occasionally occur causing the turbine to cease production

of electricity for the period of time that the fault persists or alternatively requires it

be shut down due to safety considerations. As these stoppages in production are

extremely costly to the operator, they are important to resolve as soon as possible

which can con�ict with the current accessibility of the wind farm. It has been shown

by Van Bussel et al. (2001) that using a purely reactive maintenance strategy is a

poor choice which produces long periods of downtime and causes excessively high

repair costs making the strategy unappealing. These drawbacks are present even for

turbines located relatively close to the shore.

Preventive maintenance strategies are rooted in the idea that it can be more eco-

nomical to spend money to check the condition of components before they break in
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order to prevent the need for more costly critical repairs in the long term. These types

of inspections are scheduled in advance compared to the on demand nature of reactive

maintenance and tend to be periodic in nature. The key issue lies in determining the

frequency of these preventive visits; repeated visits will cause costs to quickly build

up whilst visits in isolation will be ine�ective at detecting likely faults.

The advent of modern monitoring technologies make it possible to improve upon

the idea of carrying out simple time based preventive maintenance activities by using

sensors that can measure the wear and tear of particularly susceptible components in

the wind turbine. These condition based monitoring systems allow for inspections and

replacements to be scheduled automatically based on the occurrence of key events.

This might be an increase in temperature or corrosion above a certain threshold. The

present trend tends to be use several di�erent basic monitoring systems (Mérigaud

and Ringwood, 2016) in order to cope with the limited computational power available

on site, however this may change in the future.

Most wind farms will eventually employ some kind of hybrid system mixing pre-

ventive replacements, inspections and reactive repairs all together. This will require

some notion of a priority system where critical repairs take precedence over scheduled

inspections in the scheduling protocol. In fact, each individual task type will have

di�erent properties that need to be accounted for in terms of the equipment needed,

completion time and personnel needed. For example gearbox alterations inside the

nacelle (cover housing of key generating components) of the turbine will take longer

to complete than inspecting the foundations complicating the scheduling procedure,

(Carroll et al., 2015).
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1.3 Available Vessels

The variety of tasks present at o�shore wind farms has led to a wide selection of

vessels suitable for transporting equipment and technicians becoming available for the

o�shore wind maintenance marketplace. Often vessels have been speci�cally designed

to cope with the demands of o�shore wind but some are sourced directly from the

existing o�shore gas and oil sector. These craft are generally divided into two main

categories based on the size of the job that they typically undertake, usually either

minor or major repairs (Dalgic et al., 2013).

Minor repairs do not require heavy equipment or the use of specialised lifting

vessels such as cranes and jack-up barges. These tasks could include visual inspections

or simple repairs and replacements of easy to access components such as sensors or

hydraulics. Minor maintenance jobs tend to be performed by smaller and faster

boats such as monohulls, catamarans (as shown in Figure 1.3.1a) and SWATH (Small

Waterplane-Area Twin Hull) vessels which are collectively known as types of crew

transfer vessels. Their main use is for ferrying technicians and equipment to and

from wind turbines in order to perform these routine tasks. Due to their size they

are limited in the amount of people they can carry. Most monohulls and catamarans

have a capacity of around 12 technicians. SWATH vessels can hold more technicians

and equipment but at the cost of vessel speed. They travel at a speed of around

15 knots compared to the faster catamarans (20 knots) and monohulls (25 knots).

Another important factor to consider are the operating restrictions imposed by the

external weather conditions. Crew transfer vessels can only operate in relatively light
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seas up to signi�cant wave heights of around 1-1.5m which tend to limit their overall

accessibility in comparison with larger vessels. Speed is also an issue as a typical

distance from port to wind farm can mean that round trips potentially approach a

total of 4 hours each day. Whilst this is all time which could be spent carrying out

repairs it is o�set by their relatively inexpensive chartering cost.

More serious repairs might need the presence of larger and better equipped vessels

that can support heavy lifting operations to replace large components such as wind

blades. These vessels tend to be either out�tted with a crane for lifting purposes or

are themselves some kind of jack-up vessel. These jack-up vessels, as illustrated in

Figure 1.3.1b, form a stable platform for operations by deploying legs that reach down

to the surface �oor and elevate the ship out of the water. This is a slow process with

the ship needing to be present for the entirety of the maintenance activity and their

operation being limited to periods of low wave heights and wind speeds, (Sperstad

et al., 2016). At present there is a low availability of these vessels causing their rental

costs to ascend signi�cantly past smaller crew transfer vessels (Dalgic et al., 2015).

Chartering costs per day run into the tens of thousands of pounds making their usage

important to optimise. The lead time of ordering these vessels is also sizeable as they

often have to be moved from one wind farm to another when hired. Even a relatively

short journey from the North Sea to the Irish sea can cause a lead order time of about

a week assuming no weather delays.



CHAPTER 1. INTRODUCTION 9

(a) A catamaran crew transfer vessel (Alicat

Workboats, 2016)

(b) A jack-up vessel (A2Sea, 2016)

!

Figure 1.3.1: Some typical o�shore vessels

Recently a larger class of vessels, known as service operations vessels, have been

constructed that are capable of staying out at sea for a considerably longer period than

smaller crew transfer vessels. As they are bigger ships they are able to undertake both

major and minor repair operations by using more advanced facilities such as hydraulic

gangways and cranes. Their larger size also means that they can carry substantially

more technicians and equipment whilst also being able to operate in heavier seas with

a signi�cant wave height limit around 2.5-3m. Although the costs of running such

vessels are double those of smaller vessels they have substantially higher accessibility

as they can operate on a 24 hour basis out at sea. They have been designed primarily

as a response to the industry's need for vessels that can operate in wind farms located

in deeper waters, whilst simultaneously avoiding the increasingly costly journey from

onshore bases.

Another extension to the idea of longer term support vessels are conceptual moth-

ership designs as seen in Figure 1.3.2b. The key di�erence between service operation
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vessels and motherships is that motherships can stay out of port for an even longer

period of time and launch smaller crafts to carry out the maintenance tasks. Gener-

ally they accommodate more technicians and resources with current designs looking

to accommodate around 200 technicians with space for helicopter landing pads and

smaller crew transfer vessels. In a sense this is the evolution of another innovation

in the o�shore industry: o�shore bases. These are permanent structures that are lo-

cated near to wind farms and permanently manned with technicians and spare parts.

In a similar vein to o�shore oil and gas platforms they cut down the need to make

expensive and frequent trips to the mainland every day just to access the wind farm.

It is anticipated that both of these ideas will become more common in the future as

construction costs reduce and wind farms are built further away from land.

As wind farms get built further out to sea the use of helicopters in the maintenance

�eet also becomes more viable. A helicopters top speed is 4 or 5 times greater than

crew transfer vessels, which can help to provide another way of quickly and e�ectively

moving small numbers of technicians to turbines. If this method of transportation

is employed tasks serviced via helicopters often end up accumulating signi�cantly

amounts of downtime losses compared to if they were accessed by surface vessels.

Helicopters are more commonly used in winter because of their ability to operate

independently of wave heights and wind speeds. This gives them the highest levels of

accessibility of any type of craft. Their downfall comes in the form of their exorbitant

operating costs making their practical usage hard to justify. In conjunction with

this is that their operation depends on having good levels of visibility, with little fog

(Domínguez-Navarro et al., 2014).
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(a) A helicopter transfer (Fiberline, 2016) (b) A mothership design (Focus, 2011)

Figure 1.3.2: Some atypical o�shore vessels

1.4 Weather Impact

It is also important to consider in�uence of weather patterns on both the long term

and short term task scheduling and routing problem at o�shore wind farms. The long

term goal of reliable wind energy generation is chie�y driven by the velocity of the

wind, so successful o�shore wind farms will need to attempt to maximise the amount

of time that turbines are operating for, particularly during periods of windy weather.

As the rate of electricity generation depends on the cubic power of wind speed the

�nancial losses sustained from downtime during lower wind speeds are signi�cantly

lower than those from periods of high wind speeds. This means that systematic

periods of lower windspeed such as the summer months should contain more planned

activities in order to produce cost e�ective schedules.

Individual journeys made by crew and vessels are also a�ected by the weather

even if they can still operate in the prevailing conditions. For example, if the wave

heights are higher than normal there will be a repercussive e�ect on the travel times

of vessels. If lots of vessels are scheduled to make trips to the wind farm, and the
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turbines within it, this increase in journey time can quickly accumulate into large

periods of wasted time.

The daily scheduling of vessel routes can also be impacted by o�shore storms

meaning that planned routes may not necessarily even be feasible. Short term storms

have been known to develop within a days' operations and can cause the need for rapid

changes in the schedule with little or notice given. If a day turns out to be too windy,

or waves too high, then vessels will be con�ned to port for an extended period of time,

or worse forced to abort their day's activities and return to their home base. This is

a worst case scenario as both money and manpower will have been wasted without

any restoration in power production or downtime reduction. The overall uncertainty

of the weather and sea conditions means that it is wise to have access to a portfolio of

vessels that can operate throughout a range of conditions, since poor weather and sea

conditions consequently limit the accessibility of the wind farm. This motivates the

need for designing vessel routes that take into account the uncertainties in predictions

of o�shore conditions.

Existing weather forecasts are known to be highly accurate in the short term with

very small uncertainty about their predictions. The chaotic nature of weather systems

means that uncertainty increases as the projections are made further into the future.

Reliable ensemble forecasting methods are usually only applicable up to 7-10 days into

the future, after which statistical models of long term metocean (meteorological and

oceanographic) conditions are required. These statistical models need to account for

the seasonal trends and site-speci�c details to be applicable for o�shore wind farms.
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1.5 Routing and Scheduling

In this thesis we focus on the daily operational problem of how best to transport

technicians to complete maintenance tasks o�shore. We therefore ignore the tactical

level decisions associated with how best to acquire the vessels and technicians that

we utilise.

When a task is created through an unexpected failure or as a preplanned activity

it is classi�ed based upon the urgency that it needs to be dealt with. The more severe

tasks such as critical repairs will need to be attended to ahead of less severe tasks

which have more �exibility in their completion date. In an ideal world we would

schedule a boat and crew to each individual task as soon as they occur, however the

costs of doing so are prohibitively large. This is particularly apparent for tasks that

involve more expensive jack-up vessels where logic dictates that a more �nancially

sound strategy might be to allow several jobs needing a jack-up vessel to accumulate

before one is hired from the spot market.

In order to e�ciently utilise a limited set of resources these maintenance activities

should not be carried out by individual crews and vessels but rather be grouped to-

gether into `activity bundles'. These activity bundles consist of tasks grouped together

into a batch including both preventive inspections and component replacements to be

undertaken by a single vessel on its daily trip to a wind farm. Normally because of

the length of time needed to complete each task and large transit times to reach the

wind farm the bundle will contain no more than 4 or 5 activities in total.

At the start of a shift vessels will depart laden with technicians and equipment
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destined to be used at the wind farm. It is assumed that due to the lengthy travel time

and fuel costs that each vessel will only access the wind farm once per day, ensuring

that every ship will spend its shift working in the vicinity of the o�shore wind farm.

Once the ship reaches the wind farm it will navigate around to the turbine with the

next maintenance task scheduled to be completed as part of its activity bundle on it.

After docking so as to transport the assigned workforce and spare parts across the

work can begin.

We assume that each activity can be completed by the technicians and equipment

transported with the use of a single vessel. These workers then stay at the wind

turbine they were deposited at for the tasks duration before waiting to be picked up

again by the same vessel. Depending on the scheduled route and the vessel used it is

possible for the same technicians to be dropped o� elsewhere to complete additional

tasks. This is obviously subject to appropriate time constraints and the predicted

weather patterns. At the end of a shift the vessels must return back to their base

with all of the workers they brought so that no one is abandoned.

It is possible that random faults and failures will be detected during the periods of

time when maintenance is being carried out. If this occurs then the easiest method of

dealing with these additional tasks is to assign any vessels with spare time, parts and

personnel to deal with these as soon as possible, ideally on the same day. This could

even be vessels currently located within the wind farm if they match the requirements

of the job known better as `opportunistic maintenance'. If this is not practical then

new tasks can simply be added to the bank of activities that still need to be scheduled

in the future subject to the usual caveats. Most optimisation based models tend to
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take this approach by assuming that any newly occurring tasks are only considered

for scheduling from the period after they were detected.

Due to the sheer scale of optimisation models that can capture the key features of

the problem it is likely that any models produced will take an appreciably long time

to solve to optimality. In order to obtain solutions within a time window useful for

industrial purposes we will most likely need to simplify the situation by incorporating

a heuristic based approach into the operational model itself. This is known as a

`rolling horizon' approach whereby the planning horizon of the problem is split into

two separate periods in order to reduce the total computational complexity.

The �rst period is a highly detailed system that incorporates all the details of the

routing problem to create speci�c routes for vessels, personnel and equipment that can

form the basis of schedules but only for a few initial days. In order to keep the run time

of the optimisation relatively low the second period does not attempt to schedule in

detail like the �rst period. Instead the second period tries to ensure that tasks do not

get moved around in a manner such that they or others do not become infeasible at a

later time. This approach also naturally links in with the fact that weather forecasts

are most accurate for one or two days into the future thus limiting the usefulness

of any longer term detailed scheduling. Whilst these heuristic simpli�cations would

potentially reduce the quality of the overall solution, we can apply the procedure in

an iterative fashion to produce routes for a much longer scenario. We �rst solve the

model to produce a solution for the �rst period and later periods. Then we try to

implement the vessel routes provided by the detailed �rst period. Once those tasks

have been performed, we can rollover to the second day in the scenario by removing
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the tasks and work that was actually completed. We note that the work planned and

actually completed may di�er due to real life uncertainties. The size of the problem to

solve starting from the second day is now much smaller and informed by what actually

happened in the �rst period. We note that every activity will thus be performed once

it reaches the shorter planning period that is actually implemented.

Heuristics could also be used in addressing cases of the operational problem where

a sudden adjustment in the route scheduling is needed. These changes could occur

just before the start of a maintenance shift if a vessel required to take part in the

days operations became unavailable for some reason. Alternatively the weather could

potentially change dramatically before or during operations to the point where the

current schedule becomes sub-optimal or infeasible. In these instances it is imperative

that a solution to the days activities can be found in a quick manner with the desire

for an e�ective solution being willingly sacri�ced to do so.

A statistical model of the weather and sea conditions surrounding an o�shore

wind farm is important to build as they govern whether the farm is accessible to

the vessels or not on a daily basis. As metocean conditions can exhibit substantial

variation over time and space it is unwise to simply assume a �xed level of accessibility

over a prolonged period of time. Shorter range weather patterns such as storms can

occur on a daily basis and often coincide with longer range and more periodic activity

such as wind-sea waves. These constituent elements and their interactions need to

be understood in order to capture the key elements of the marine conditions. This

knowledge can then be utilised to supplement optimisation based routing models for

a given shift with a range of possibilities for metocean conditions in subsequent shifts.
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We will restrict our focus to the standard variables used in the literature of windspeed

and signi�cant wave height that form the core of industry standards for safe operating

windows. It has already been shown however that more accurate predictions can be

developed by including additional variables Sperstad et al. (2014).

1.6 Research Goals

The main goals of this project was motivated by the needs of our industrial part-

ners, JBA Consulting, with the aim of contributing to the development of their

ForeCoast R©Marine product. This is a complicated risk management tool that com-

bines forecasting, physical and statistical techniques together to optimise complex

marine activities and identify the most favourable time to undertake these opera-

tions.

ForeCoast R©Marine is currently underpinned by a powerful simulation tool de-

signed to evaluate the impact of the weather and sea conditions on o�shore activities.

Typically these marine activities require the use of vessels and technicians to com-

plete a set of prede�ned activities at o�shore locations as e�ciently as possible. The

sequence in which these activities are completed is �exible, with the goal to �nd a

sequence that minimises a given cost function. As real life problems contain ever

growing numbers of activities there is a combinatorial explosion in the number of

feasible solutions, many of which are not necessarily obvious to a human decision

maker. Furthermore, it is challenging to explore all these possibilities in a rule based

simulation tool, suggesting the need for a future approach that leverages the power
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of mathematical optimisation.

The main objective of our work is to develop an optimisation component that

would form a natural extension to ForeCoast R©Marine, by considering in greater detail

the exact routing of vessels and technicians to o�shore tasks. This model should be

able to provide knowledge of the exact journeys and crew transfers required to be

made by vessels in order to complete the o�shore maintenance activities in a cost

e�cient manner. It should also incorporate some new problem domain knowledge yet

to be fully addressed in the literature. The solution methodology will likely need to

be heuristic in order to scale well for the larger anticipated problems in the future.

This would allow JBA Consulting to both increase the range of problems that can

be solved with ForeCoast Marine and increase the quality of routing solutions within

them.

One current use of ForeCoast R©Marine is the planning of installation campaigns for

building new o�shore wind farms. These campaigns involve the placement of turbine

foundations into the seabed, before constructing the remaining components such as

blades on top. Due to their immense size and scale, these operations often taken place

over the course of several months and require the chartering of specialised vessels. As

these vessels are very expensive and in high demand it is important to not hire a vessel

for any longer than needed, and especially important to not overrun a vessel's lease.

Doing either of these will incur signi�cant costs to the project. ForeCoast R©Marine

currently simulates the duration of these installation campaigns under the chief source

of uncertainty that is the weather and sea conditions. In order to make the results of

the simulation more accurate it needs to be repeated across many di�erent weather
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scenarios. Typically the number of these scenarios is limited to the existing historical

data available for a particular site. Our goal for the statistical content of this project

is to use this historical data to produce a statistical model from which any number of

possible weather scenarios can be generated. This will allow for many more simulation

replications to be performed and also be potentially able to �ll in any missing or

erroneous data within the historical data.

1.7 Thesis Outline

We now provide an overview of the content of each chapter in this thesis. In Chapter

2 we introduce our discrete time mixed integer linear programming formulation of

the scheduling and routing problem for o�shore wind farm maintenance. It incorpo-

rates several important features within a shift such as the accumulation of downtime

losses at corrective maintenance tasks and operating restrictions implied by weather

restrictions. We can con�rm and quantify the signi�cant impact that reducing the

amount of available vessels and technicians have on the problem. Furthermore, the

construction and impact of a novel safety constraint is evaluated.

In Chapter 3 we describe our approach for developing a heuristic method based on

adaptive large neighbourhood search to solve larger instances of the o�shore wind farm

maintenance problem. This is employed to solve a set of tough real world instances

that are characterised by the presence of a resource restricted environment.

Chapter 4 is devoted to our statistical model of metocean conditions from which

we can simulate many di�erent possible realisations of historical weather conditions.
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It is designed to capture the temporal dependence of joint distributions through the

use of multivariate kernel density estimation after extracting the seasonal trends of

the data. Graphical modelling is introduced to help reduce the number of parameters

in our model and improve the accuracy of the accuracy of the remainder. The thesis

concludes with Chapter 5 which addresses our conclusions and possible avenues for

future research.



Chapter 2

Exact Mathematical Model

2.1 Introduction

In order to meet the de�ned goals of green energy generation and environmental ob-

jectives many countries have focused on growing their renewable energy capacities.

The UK alone brought over 2.1GW of o�shore wind capacity online in 2018 (Renew-

ableUK, 2018), as a part of its stated target to generate over 30% of all its electricity

from renewable sources by 2020 (Energy and Climate Change Committee, 2016).

The rapid growth experienced in the o�shore wind sector means there is an in-

creasing opportunity to �nd savings from conducting operations and maintenance

(O&M) activities more e�ciently. Presently O&M constitutes up to 35% of a wind

farm's total lifetime costs (Sha�ee, 2015), providing a clear avenue for e�ciency sav-

ings. The introduction of turbines with capacities in excess of 8MW has helped to

dramatically reduce strike prices making o�shore wind comparable with fossil fuels

and nuclear power (RenewableUK, 2017). The continual accelerations in the size and

21
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quantity of new o�shore wind farms increase the likelihood of large quantities of daily

O&M tasks simultaneously occurring, allowing for new economies of scale to be found

and exploited in the regular trips made to service and maintain the turbines.

O�shore wind technology is expected to further evolve with novel concepts such as

�oating turbines designed to operate in deeper waters currently inaccessible with con-

ventional turbine foundations and arti�cial islands intended to act as inter-connected

power hubs between distant wind farms (North Sea Wind Power Hub, 2018). Con-

dition based maintenance strategies that further reduce costs are becoming more

common increasing the number of tasks to be performed across wind farms. Mathe-

matical decision support tools will be needed to fully exploit these savings especially

in the presence of limited resources and an uncertain o�shore environment.

A successful mathematical model of o�shore operations must consider both the

routing and scheduling aspects of the problem in parallel. A pure scheduling ap-

proach cannot harness potential savings from sharing technicians across multiple ves-

sels, whilst a stand alone routing model is unable to cope with discontiguous task

completion and prioritisation. Our proposed model utilises properties of both routing

and scheduling problems.

The structure of this chapter is as follows. Section 2.2 describes previous literature

for short term o�shore maintenance routing and outlines some key di�erences with our

approach. A model description is provided in Section 2.3 with the exact mathematical

model and its extensions. Section 2.4 details the results of the model on a set of

experimental instances with Section 2.5 summarising our conclusions.
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2.2 Literature Review

The o�shore wind maintenance problem shares some similarities with that of its on-

shore counterpart as discussed in Kovács et al. (2011). They develop a mixed in-

teger linear programming formulation that minimises lost electricity production and

technician transportation costs from scheduled maintenance tasks and unexpected

failures. It accounts for the hourly di�erences in power production on the current

day and synthesises this with costs accumulated in later shifts to produce a rolling

horizon framework. This model is extended to include a multi-skilled workforce work-

ing over several days (Froger et al., 2017). Tasks can also be executed in di�erent

modes and be postponed. Gutierrez et al. (2017) consider the onshore problem from a

multi-objective viewpoint as there are often several competing stakeholders involved,

before solving the resulting mixed integer linear program with an epsilon constraint

algorithm. The drawback of applying these models to o�shore maintenance is the

signi�cantly greater distance between the technician base and the turbines, which

leads to the noted pick-up and delivery behaviour of vessels found in o�shore wind.

Another issue exists with lower o�shore accessibility present for o�shore wind farms

which often prevents technicians visiting o�shore locations.

Besnard et al. (2009) develop a model that schedules preventive maintenance oper-

ations in o�shore wind farms from a cost bene�cial viewpoint so they occur in periods

of low wind speed and after corrective maintenance tasks are completed. This work

is continued in Besnard et al. (2011) to produce a stochastic optimisation model over

a longer time horizon. No uncertainty is modelled in the short horizon producing a
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rolling horizon model applied to a scenario bush. Camci (2015) looks at the failure

rates of turbines and develops a method that uses prognostic information to decide the

best time to perform preventive maintenance. Opportunistic maintenance at nearby

locations is considered because of the geographical spacing of turbine assets. These

works all attempt to determine the best time to perform corrective and preventive

maintenance in the medium term, but make no attempt to calculate the optimal

routing to complete tasks on their planned day of execution.

Our problem is an extension of the capacitated vehicle routing problem and cate-

gorised as an example of a rich vehicle routing problem (RVRP) as de�ned by Caceres-

Cruz et al. (2014), since it contains several features unique to o�shore wind farms.

A one-to-one pick-up and delivery structure is needed between the wind farm and

its onshore base, whilst within the wind farm a many-to-many pick-up and deliv-

ery structure is present. The need for wind farms to operate with limited resources

means the problem also shares several characteristics with the k-travelling repairman,

Nucamendi-Guillén et al. (2016), and team orienteering problems, Chao et al. (1996).

A di�erent o�shore routing problem occurs in the construction of supply vessels

schedules for o�shore oil and gas platforms. It contains similar requirements to o�-

shore wind farm maintenance, as supplies need to be transported by, and loaded/unloaded

from, vessels. However the platforms are located signi�cantly further o�shore than

o�shore wind farms, so voyages typically last in excess of a week. They also sequen-

tially visit a few platforms in a row, rather than revisiting multiple close locations

at di�erent times in a single voyage. The trade-o�s between costs, emissions and

robustness to weather conditions is examined by Norlund et al. (2015). They use a
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simulation-optimisation methodology to construct weekly schedules of voyages, which

will contain periods of waiting or idle time. The accumulation of these idle times leads

to slack in the schedules which can either be used to reduce the speed of vessels, or as

a bu�er against bad weather. Norlund and Gribkovskaia (2017) extends this work by

estimating the fuel consumption in di�erent weather conditions, and evaluating the

bene�t of vessel speed optimisation when the weather uncertainty found in di�erent

seasons is included.

The explicit scheduling and routing of o�shore wind turbine maintenance on an

operational level is �rst considered by Dai et al. (2015). They develop a mixed in-

teger linear program that �nds the optimal sequence of turbines for vessels to visit

to complete a set of maintenance tasks over several shifts subject to temporal and

personnel constraints. Vessel travel costs and penalty costs for delayed maintenance

tasks form the objective function of the model. A similar arc-�ow mode for a single

shift is presented and reformulated into a path-�ow problem through Dantzig-Wolfe

decomposition by Stålhane et al. (2015). They further di�erentiate the downtime

costs between corrective and preventive tasks by assuming the latter are only incurred

whilst work is being performed.

Irawan et al. (2017) generalise the existing models to include multiple operations

and maintenance bases and wind farms. Generic personnel are replaced with a spe-

cialist multi-skilled workforce including roles such as electrical and mechanical tech-

nicians. Resources such as spare parts, personnel and vessels are treated as scarce

and only available in limited quantities. Their approach follows previous solution

methods in splitting the problem into a master problem of assigning vessels to routes
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and a sub-problem for identifying feasible routes. The creation of feasible routes is

an extension of Dai et al. (2015) and is performed with an algorithm incorporating

a mixed integer linear program, however the use of an upper limit on the number of

turbines a vessel can visit means that optimality is not guaranteed.

Raknes et al. (2017) integrate vessels that can stay o�shore for several consecutive

days and also tasks which span across multiple shifts into the existing problem. They

continue with the distinction between the calculation of downtime costs for preventive

and corrective tasks. The di�culty in choosing to perform preventive tasks (which can

only be evaluated with a long term view) is overcome in the short term by specifying

the number which should be completed in the immediate horizon. Due to the size

of the mixed integer program, they propose rolling horizon heuristics to solve bigger

instances.

Heuristic methods for short term routing and scheduling of maintenance tasks have

also been investigated, chie�y with the aim of solving instances containing higher num-

bers of o�shore tasks. Kennedy et al. (2016) base their genetic algorithm on the model

of Besnard et al. (2011) and �nd savings of around 15% versus unoptimised schedul-

ing. Dawid et al. (2017) takes the approach of several authors and clusters groups

of maintenance activities together with compatible vessels to form a list of feasible

maintenance plans. They �nd this cluster-matching approach compares favourably

with commercial solvers, particularly for instances containing less than 15-20 tasks.

Dawid et al. (2018) extend this to include probabilities of successfully completing

tasks.

Task prioritisation is included within Stock-Williams and Swamy (2018) who pro-
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duce high quality crew transfer plans through a metaheuristic procedure. The size and

scope of technicians assigned to vessel routes is explored through a genetic algorithm

procedure that allows for tasks to be scheduled outside of the current day. The �t-

ness of each crew transfer plan is evaluated by a detailed simulation that accounts for

both short and long term costs. The inability to complete all the tasks within a shift

may be caused by a lack of suitable weather windows or a scarcity of resources. The

bene�ts of sharing limited resources such as skilled technicians across di�erent wind

farms are illustrated by Schrotenboer et al. (2018). They develop an adaptive large

neighbourhood search (ALNS) heuristic that calculates assignments of technicians to

bases and the vessel routes that transport them to turbines on a daily basis. Savings

of up to 7% are found from sharing technicians.

Exact models all assume that technicians should be assigned to the same vessel

throughout the entire time they remain o�shore. We choose to let technicians become

disassociated from their original vessel, as swipe on and o� access systems permit

schedules where technicians may be dropped o� and picked up by di�erent vessels.

Furthermore, some of the approaches do not consider maintenance tasks that are

performed over multiple shifts. This will be necessary for complicated replacement

tasks which take several days to complete and motivates the explicit separation of

work and technicians in our model. This greater level of detail allows us to model

periods of inactivity on the turbines even when technicians are present, which could be

theorised to occur when weather conditions prevent certain operations or if turbines

are restarted whilst technicians are onboard. Schedules can also be improved from

the opportunity to start a task near the end of a shift and complete it at the start
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of the subsequent shift. This can be observed from circumstances that involve shifts

containing multiple weather windows which vary spatially over an entire wind farm.

Previous works also penalise incomplete tasks after a given deadline on a daily

basis in proportion to the lost energy production. This allows for task selection and

prioritisation between shifts, but has little e�ect on the ordering of tasks within a

shift. We introduce a variant where tasks do not have completion deadlines, but

instead accumulate losses whilst they remain incomplete. These losses might be the

physical downtime losses from the performance of turbines or represent some notion

of priority relative to the other tasks. We choose to minimise the total value of lost

revenue from all of the turbines. This will incentivise the model to fully complete

tasks as soon as possible within the horizon whilst considering the impact on the

completion of other tasks. This forms a time sensitive framework where vessels will

seek to visit and deposit technicians as early as possible at turbines.

A side e�ect of e�ectively minimising the time to complete tasks is the presence

of slack time at the end of shifts. In practice tasks may require more time than

expected, so this slack time can potentially ensure that all the planned activities are

still �nished before the end of the shift. This approach is limited by the fact that

solutions cannot be di�erentiated after the last task has been completed, since the

optimal route for picking up technicians is the same regardless of the time it occurs.

We remove this source of symmetry by explicitly incentivising technicians and vessels

to return to port as soon as possible. This has the bene�t of extending the time

sensitive framework to the end of the shift and incorporating a degree of safety into

the model by minimising technician time o�shore.
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We choose to model the problem using a discrete time model for several reasons.

Firstly, it allows us to incorporate a novel vessel-technician safety constraint often

used in o�shore operations. Existing models make no reference to the existence of

any safety regulations concerning the presence of technicians and vessels o�shore when

executing the tasks. The formulation that we introduce later in this paper is �exible

enough to integrate a variety of spatial and temporal constraints on crew transfers

and vessel movements. Secondly, time discretisation allows us to model the presence

of weather windows within shifts in detail. Previous methods neglect the possiblities

of multiple non-contiguous weather windows within a single shift, however we can

easily model these cases by forbidding vessel or task related activites in speci�c time

periods. Finally, our resulting model allows for the possibility of task preemption

so that work can be performed in stages rather than in a single event. This is of

particular value given our goal of including weather operating restrictions on tasks.

2.3 Methodology

We introduce a mathematical model for the routing of vessels and technicians around

o�shore wind farms alongside the scheduling of task completion as a mixed integer

linear program in this section.

2.3.1 Problem Description

The problem consists of a set IW wind turbines and Ip maintenance ports. A set V

of heterogeneous vessels are available to transport an o�shore maintenance workforce
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comprised of P Tot technicians to the o�shore tasks. A discretised travel time of Tvij

periods exists when a vessel v travels from location i to location j. Each vessel v can

hold up to PMax
v technicians, travels at a �xed speed vs and incurs a cost KMin

v per

period of travel. A crew transfer can only occur if a vessel v with su�cient technicians

or free capacity is present at a location i for a prespeci�ed number of periods τvi. Crew

transfers either drop-o� or pick-up technicians, with the former required to occur

�rst if an o�shore turbine is maintained. We make no direct connection between

technicians and vessels so that technicians can be picked up and dropped o� by

di�erent vessels.

Maintenance tasks exist on a subset of wind turbines and are unique to that

location. Tasks and turbines have a one-to-one relationship: each turbine is limited

to a single task and each task is assigned to a single turbine. Tasks are split into two

sets: IcW corrective and IpW preventive maintenance tasks. Corrective tasks reduce

the amount of electricity generated by their turbine during every period the task

remains incomplete. The degraded output is typically the entire capacity of the

wind turbine if it switched o� from the start of the shift up until the completion of

the task. Alternatively condition based maintenance could be modelled with a cost

that varies over time in accordance with the estimated turbine condition. Preventive

maintenance tasks only require turbines to be turned o� whilst work is performed.

Every minute worked on a preventive maintenance task i ∈ IpW yields a monetary

bene�t of γMin
i , whilst a corrective maintenance task i ∈ IcW incurs a monetary cost of

θtis if it is completed in period t of each shift s. This cumulative cost strictly increases

in size for more distant time periods in the planning horizon. It is modelled as a
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piecewise linear function, made up of the speci�c downtime losses in each period up

to and including period t of shift s. We de�ne Θt
is as the monetary value of downtime

losses in period t of shift s if corrective maintenance task i is incomplete, so that

θtis = Θt
is+ θt−1

is , with Θt
is > 0. This monetary value depends on the turbine, shift and

time period involved. This allows it to be informed by the relative priorities of tasks

and levels of energy production related to the wind speed in the speci�c period.

A maintenance task i is considered complete after Pi technicians have worked on

it for DMin
i minutes. Task preemption is allowed so that work can be completed

in discontinuous stages instead of a single event. Furthermore we allow tasks to be

potentially ignored in the planning horizon. This is bene�cial when there is insu�cient

time or resources to complete every task. The planning horizon itself consists of a set

of shifts S, forming a short term schedule. Each shift is further split into a set of time

periods Ts, each beginning with tsa and ending with tsb, by which all technicians and

vessels must have returned back to port. The length of each time period in shift s is

λMin
s minutes. Technicians and vessels are incentivised to remain onshore in shift s

at a rate of ωMin
is ,ΩMin

vis per minute respectively. Unnecessary personnel are therefore

kept away from the wind farm reducing the likelihood of seasickness and its contagion

within the transported technicians.

Vessel routes should be constructed so that each vessel starts and ends each shift in

the port and has access to a shared pool of technicians. The vessels need to transport

technicians to and from the o�shore wind farm, whilst also moving them around to

di�erent turbines in order to complete more work. The number of technicians onboard

a vessel is not allowed to exceed its technician capacity at any point. Technicians can
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only be dropped o� and picked up at a turbine once in each shift, however di�erent

vessels are allowed to perform these crew transfers. Furthermore, a vessel can drop-o�

technicians at a turbine and later pick them up again without ever having left the

turbine. Once a drop-o� has completed technicians can potentially perform work until

a vessel starts to pick them up.

The vessel routes and timing of crew transfers should be chosen so that the most

valuable combination of work on corrective and preventive maintenance tasks are per-

formed. The cost for completing corrective tasks increases the later they are �nished

in the planning horizon, however the model may choose to intentionally not complete

certain tasks if it leads to a better overall solution or if there are insu�cient resources

to complete them. Visits to preventive maintenance tasks should also be scheduled if

they are found to be bene�cial. The length of time that technicians and vessels are

kept o�shore should also be minimised.

We use the following decision variables in our mathematical model:



CHAPTER 2. EXACT MATHEMATICAL MODEL 33

• xtvis = 1, if the vessel v is at location i at the beginning of time period t in shift s, after

any relocations in or out of i. 0 otherwise.

• rtvijs = 1, if the vessel v starts a relocation from location i to location j before the start

of time period t in shift s and completes it before the start of time period

t+ Tvij in shift s. 0 otherwise.

• stvis = 1, if a drop-o� occurs at location i with vessel v before time period t in shift s.

0 otherwise.

• s̄tvis = 1, if a pick-up occurs at location i with vessel v before time period t in shift s.

0 otherwise.

• ltvis, Number of technicians dropped-o� by vessel v at port i before time period t

and arrive the turbine before the start of time period t+ τiv in shift s.

• l̄tvis, Number of technicians picked-up by vessel v at port i before time period t

and arrive onboard before the start of time period t+ τiv in shift s.

• ytvs, Number of technicians on vessel v at the beginning of time period t in shift

s, after any crew transfers have occurred.

• ptis = 1, if Pi technicians are present on turbine i at the beginning of time period t in

shift s, after any crew transfers have occurred. 0 otherwise.

• p̃tis, Number of technicians at port i at the beginning of time period t in shift s,

after any crew transfers have occurred.

• W t
is = 1, if a period of work at location i is performed in time period t in shift s. 0

otherwise.

• ai = 1, if the corrective task at location i is completed within the planning horizon.

0 otherwise.

• ci, Total downtime cost accumulated from the corrective task at location i.



CHAPTER 2. EXACT MATHEMATICAL MODEL 34

2.3.2 Mathematical Model

min

corrective costs︷ ︸︸ ︷∑
i∈IcW

ci −

preventive bene�ts︷ ︸︸ ︷∑
s

∑
t∈Ts

∑
i∈IpW

λMin
s γMin

i W t
is +

travel costs︷ ︸︸ ︷∑
s

∑
v,i,j

λMin
s KMin

v TMin
vij

∑
t∈Ts

rtvijs

−
∑
s

∑
t∈Ts

∑
i∈IP

λMin
s ωMin

is p̃tis︸ ︷︷ ︸
technician onshore incentive

−
∑
s

∑
t∈Ts

∑
i∈IP

∑
v

λMin
s ΩMin

vis x
t
vis︸ ︷︷ ︸

vessel onshore incentive

(2.3.1)

s.t. xt+1
vis = xtvis +

∑
j

r
t+1−Tvji
vjis −

∑
j

rt+1
vijs, ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ T−s (2.3.2)

∑
j

rt+1
vijs ≤ xtvis, ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ T−s (2.3.3)

∑
v

(xtvis +
∑
j

rtvijs) ≤ 1, ∀i ∈ IW ,∀s ∈ S,∀t ∈ Ts (2.3.4)

∑
i

(xtvis +
∑
j

Tvji−1∑
w=0

rt−wvjis ) = 1, ∀v ∈ V, ∀s ∈ S,∀t ∈ Ts (2.3.5)

stvis ≤ xuvis, s̄tvis ≤ xuvis, ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ Ts,∀u ∈ [t, t+ τvi − 1]

(2.3.6)

ltvis ≤ min(P Tot, PMax
v )stvis, ∀v ∈ V, ∀i ∈ IP ,∀s ∈ S,∀t ∈ Ts (2.3.7)

l̄tvis ≤ min(P Tot, PMax
v )s̄tvis, ∀v ∈ V, ∀i ∈ IP ,∀s ∈ S,∀t ∈ Ts (2.3.8)∑

v

∑
t∈Ts

stvis =
∑
v

∑
t∈Ts

s̄tvis ≤ 1, ∀s ∈ S,∀i ∈ I (2.3.9)

∑
v

∑
t∈Ts

ts̄tvis ≥
∑
v

∑
t∈Ts

(t+ 1)stvis, ∀s ∈ S,∀i ∈ IW (2.3.10)

ytvs ≤ PMax
v , ∀v ∈ V, ∀s ∈ S,∀t ∈ Ts (2.3.11)

yt+1
vs = ytvs +

∑
i∈IP

l̄t+1−τvi
vis −

∑
i∈IP

lt+1
vis

+
∑
i∈IW

Pis̄
t+1−τvi
vis −

∑
i∈IW

Pis
t+1
vis , ∀v ∈ V, ∀s ∈ S,∀t ∈ T−s (2.3.12)
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pt+1
is = ptis +

∑
v

st+1−τvi
vis −

∑
v

s̄t+1
vis , ∀i ∈ IW ,∀s ∈ S,∀t ∈ T−s (2.3.13)

p̃t+1
is = p̃tis +

∑
v

lt+1−τvi
vis −

∑
v

l̄t+1
vis , ∀i ∈ IP ,∀s ∈ S,∀t ∈ T−s (2.3.14)

∑
v

ytvs + Pi
∑
i∈IW

ptis +
∑
i∈IP

p̃tis

+
∑
v∈V

∑
i∈IW

τvi−1∑
u=0

Pi(s
t−u
vis + s̄t−uvis )

+
∑
v∈V

∑
i∈IP

τvi−1∑
u=0

(lt−uvis + l̄t−uvis ) = P Tot, ∀s ∈ S,∀t ∈ Ts (2.3.15)

∑
(v,i)∈φkst1

xtvis +
∑

(v,i,j,u)∈φkst2

rt−uvijs ≥ ptks, ∀k ∈ IW , ∀t ∈ Ts, ∀s ∈ S (2.3.16)

ptis ≥ W t
is, ∀i ∈ IW , ∀s ∈ S,∀t ∈ Ts (2.3.17)∑

s

∑
t∈Ts

λMin
s W t

is ≥ DMin
i ai, ∀i ∈ IcW (2.3.18)

∑
s

∑
t∈Ts

λMin
s W t

is ≤ DMin
i , ∀i ∈ IpW (2.3.19)

ci ≥ θtisW
t
is, ∀i ∈ IcW , ∀s ∈ S,∀t ∈ Ts (2.3.20)

ci ≥ θ
tsb
is(1− ai), ∀i ∈ IcW , ∀s ∈ S (2.3.21)∑

i∈IP

(x
tsa
vis +

∑
j

r
tsa
vijs) = 1, ∀v ∈ V, ∀s ∈ S (2.3.22)

∑
i∈IP

(x
tsb
vis +

∑
j

r
tsb+1−Tvji
vjis ) = 1, ∀v ∈ V, ∀s ∈ S (2.3.23)

∑
i∈IP

(p̃
tsa
is +

∑
v

l̄
tsa
vis) = P Tot, ∀s ∈ S (2.3.24)

∑
i∈IP

(p̃
tsb
is +

∑
v

l
tsb+1−τvi
vis ) = P Tot, ∀s ∈ S (2.3.25)

xtvis ∈ {0, 1}, ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.26)
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rtvijs ∈ {0, 1}, ∀v ∈ V, ∀i ∈ I,∀j ∈ I,∀s ∈ S,∀t ∈ Ts

(2.3.27)

stvis, s̄
t
vis ∈ {0, 1}, ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.28)

ltvis, l̄
t
vis ∈ Z, ∀v ∈ V, ∀i ∈ IP ,∀s ∈ S,∀t ∈ Ts (2.3.29)

ytvs ∈ Z, ∀v ∈ V, ∀s ∈ S,∀t ∈ Ts (2.3.30)

ptis ∈ {0, 1}, ∀i ∈ IW , ∀s ∈ S,∀t ∈ Ts (2.3.31)

p̃tis ∈ Z, ∀i ∈ IP ,∀s ∈ S,∀t ∈ Ts (2.3.32)

W t
is ∈ {0, 1}, ∀i ∈ IW , ∀s ∈ S,∀t ∈ Ts (2.3.33)

ai ∈ {0, 1}, ∀i ∈ IcW (2.3.34)

ci ∈ R ∀i ∈ IcW (2.3.35)

The objective function (2.3.1) involves the minimisation of �ve components. The

�rst is the accumulation of downtime losses from corrective O&M tasks over the

entire horizon. The second represents the bene�t gained by performing preventive

maintenance tasks - it includes a negative sign since we are minimising the objective

(minimising the additive inverse of a number is the same as maximising the original

number). The third assigns vessel speci�c travel costs per minute travelled. The

fourth and �fth components incentivise technicians and vessels to spend time in port

respectively. Penalising this in the objective function allows us to account for solutions

where work is �nished early or when vessels return to port without any technicians

onboard. We set the values of ωMin
is and ΩMin

vis to be very small in relation to other

objective function coe�cients, so it is always bene�cial to complete additional tasks.
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For each location i ∈ I, shift s and period t ∈ Ts, their combination (i, s, t) repre-

sents a time-space node. In addition to the time-space nodes, there are two di�erent

types of arcs in the network: dwelling arcs and relocation arcs. These correspond

to the earlier outlined variables. The presence of a vessel v at a time space node is

measured by the dwelling arc (v, i, s, t). These connect with relocation arcs that can

be represented as a tuple (v, i, j, s, t), where (i, s, t) represents the tail time-space node

and (j, s, t− Tvij) indicate the head time-space node. Both types of arcs do not cross

the boundary between di�erent shifts.

Constraints (2.3.2) are illustrated in Figure 2.3.1. Vessels are constrained to bal-

ance their arrivals via a relocation
∑

j r
t+1−Tvji
vjis , plus those present the period before

xtvis with their departures. These are the vessels that remain at the location for the

next period xt+1
vis and those relocating away from the location

∑
j r

t+1
vijs. This is en-

forced for every time-space period (i, s, t) except for the �rst and �nal time periods

in the shift, tsa and tsb. The boundary conditions ensure that vessels can only leave

before the start of tsa and arrive at the end of tsb.

(𝑖, 𝑠, 𝑡) (𝑖, 𝑠, 𝑡 + 1) (𝑖, 𝑠, 𝑡𝑏
𝑠)(𝑖, 𝑠, 𝑡𝑎

𝑠)

𝑎𝑟𝑟𝑖𝑣𝑎𝑙

σ𝑗 𝑟𝑣𝑗𝑖𝑠
𝑡+1−𝑇𝑣𝑗𝑖

σ𝑗 𝑟𝑣𝑖𝑗𝑠
𝑡+1

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒

𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛
(𝑖, 𝑠, 𝑡 + 1)

𝑥𝑣𝑖𝑠
𝑡+1

𝑥𝑣𝑖𝑠
𝑡

𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝑖𝑛 (𝑖, 𝑠, 𝑡)

෍

𝑗

𝑟𝑣𝑖𝑗𝑠
𝑡𝑎
𝑠

𝑥𝑣𝑖𝑠
𝑡𝑎
𝑠

෍

𝑗

𝑟
𝑣𝑗𝑖𝑠

𝑡𝑏
𝑠+1−𝑇𝑣𝑗𝑖

𝑥𝑣𝑖𝑠
𝑡𝑏
𝑠

Figure 2.3.1: Individual vessel �ow including boundary conditions.
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Constraints (2.3.3) ensure that vessels cannot arrive to and then instantly depart

from a location. Constraints (2.3.4) restrict each turbine to a maximum of one vessel at

any time on the grounds of safety. Conservation of vessels is guaranteed by constraints

(2.3.5) since each vessel is present at a location or involved in a relocation.

Constraints (2.3.6) require a vessel to be present for the entirety of any crew

transfer. Constraints (2.3.7-2.3.8) decide the number of technicians involved if a crew

transfer occurs in port. We assume that Pi technicians are transferred at turbines

thus excluding partial transfers. In practice vessels do not perform multiple crew

transfers at locations within a shift (constraints (2.3.9)), whilst constraints (2.3.10)

force drop-o�s to occur before pick-ups at turbines. Constraints (2.3.11) determine

the technician capacity of each vessel. Technician �ow on and o� vessels is controlled

by constraints (2.3.12). It states that technicians either arrive onboard by completing

a crew transfer, depart by initiating a crew transfer or remain onboard the vessel. An

equivalent form for the port and turbine viewpoints is given by constraints (2.3.13-

2.3.14). Constraints (2.3.15) conserve the total number of technicians in the system

at any time by tracking them at locations, on vessels and during crew transfers.

Constraints (2.3.16) refer to our technician-vessel maximum safety range constraint,

which we describe in detail in Section 2.3.3.

Technician idle time and working time is di�erentiated with constraints (2.3.17).

This allows for technicians to be present on a turbine for a period, but not necessarily

perform work in it. This gives �exibility to model the e�ects of weather on task

completion. Speci�cally, we can model the e�ect of weather forcing technicians to

stop working on turbines during periods of bad weather without having to leave it.
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This can be achieved since ptis = 1 does not necessarily imply that W t
is = 1, which

we will make use of in Section 2.3.5. Constraints (2.3.18) provide for discontiguous

work on corrective maintenance tasks across multiple shifts and is only considered

complete after DMin
i minutes of work across the planning horizon. An upper limit on

the length of preventive maintenance is given by constraints (2.3.19).

Corrective cost accumulation is modelled through constraints (2.3.20-2.3.21) which

we now explain in more detail. Analysing the constraints shows that we have to

consider two cases which are related to whether the corrective task at turbine i is

completed or not, i.e. if ai = 1. If ai = 1 then the right hand side of constraints

(2.3.21) evaluates to zero, causing constraints (2.3.20) to become binding in the form

of ci ≥ θtisW
t
is for every time period t and shift s. We notice that the total downtime

cost from accumulated from the corrective maintenance task at i is greater than or

equal to the total losses incurred from completing the task in each period that it

is worked on. Therefore as θtis strictly increases for later time periods and shifts,

according to its de�nition, the actual binding constraint amongst all these constraints

will be ci ≥ θt
∗
is∗ where s

∗ and t∗ are the last shift and last period the task is worked

on and thus is completed.

Alternatively if ai = 0, then constraints (2.3.21) will become binding in the form

of ci ≥ θ
tsb
is , since θ

tsb
is is the downtime cost from �nishing the work in the last period

of the last shift of the planning horizon. This is cannot actually occur if the work is

completed, since the vessels and technicians are required to be back in port at this

time, so it is the cost of not actually completing the task. Conceptually this cost is

greater than every other θ value, so that we heavily penalise incomplete corrective
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maintenance tasks, which follows naturally from the de�nition of θt
s
b
is .

Finally as the objective function minimises ci, the optimal solution will select

the minimum value of ci. This minimum value clearly occurs for the outlined binding

constraints, when the left hand side equals the right hand side. Furthermore as shown

later in the thesis, the downtime losses typically represent over 90% of the optimal

value in practice. This means that even in slightly sub-optimal solutions we are likely

to determine the correct downtime costs, since they are by far the most important

quantity to minimise.

The use ofW t
is variables in constraints (2.3.20) implies that turbines with corrective

tasks are switched on after the task is completed. An alternative assumption where

they are only switched on after the technicians who completed the task are picked up,

would require using ptis variables instead. We prefer the �rst option since it implicitly

limits the amount of time technicians spent on turbines and has the advantage of

structuring vessel pick-up routes. In practice the turbines may simply be switched

on after the shift has concluded rendering this distinction moot. Constraints (2.3.22-

2.3.25) state that vessels and technicians must start and end each shift in port. Model

complexity can be further reduced by noticing that each turbine has an earliest arrival

time (EAT) and latest departure time (LDT). The assumption that locations can only

be visited for pick-up and drop-o� once means that vessels and technicians can only

be present at the wind farm between the EAT and LDT. We therefore �x associated

variables outside of this window to zero during pre-processing.
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2.3.3 Technician-Vessel Maximum Safety Range Constraint

Discussions with our industry partners have highlighted the need to include several

real world technician safety constraints. One of these refers to the relative positions of

vessels and technicians onboard turbines and is included in our model as constraints

(2.3.16). We now describe our process of deriving said constraints.

Safety regulations stipulate that in an emergency any technician should be able

to be picked up from their working location by a vessel within a set amount of time,

α. This is to ensure that in the event of serious injury, technicians can always be

quickly reached by a vessel, and if necessary transported to hospital in an expedited

manner. A typical value of α is 30 minutes which is not a signi�cant restriction for

smaller wind farms, but can become more restrictive for larger wind farms that use

slower vessels. We will also ignore any technician capacity considerations, since if the

vessel is already fully loaded with technicians some can be dropped o� to make room

for the injured technicians.

∑
(v,i)∈φkst1

xtvis +
∑

(v,i,j,u)∈φkst2

rt−uvijs ≥ ptks, ∀k ∈ IW ,∀t ∈ Ts,∀s ∈ S (2.3.16)

Constraints 2.3.16 describe the constraint for ensuring at least one vessel is within

the safety range of a turbine with technicians onboard and involves two sets φkst1 and

φkst2 . φkst1 denotes the set of locations for vessels that are within α minutes of turbine k

before time period t in shift s. φkst2 represents the set of vessel relocations in shift s that

lie inside an α minute radius of turbine k in time period t. This includes relocations

which intersect the radius and only temporarily lie within the safety coverage region.

For convenience we convert the safety time radius α to a distance r by multiplying with
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the vessel speed vs, so that r = αvs. We also convert a location z in the mathematical

model to its physical location in Cartesian co-ordinates, ~z = (zx, zy).

We �rst de�ne ~rvij to be the vector de�ned by the possible travel of a vessel v

from location~i = (ix, iy) to location ~j = (jx, jy). We consider ~evij as the vector of one

period of travel of a vessel v from location~i to location ~j, so that ~evij = ~rvij/Tvij. The

start point of the wth period of travel within the relocation is written as ~i + w~evij,

where w ∈ [0, Tvij − 1]. In order for a period of a relocation to provide valid coverage

within the safety range, both the start and end point of that period must lie within the

safety radius. This radius r emanates from a circle centered at turbine ~k = (kx, ky).

We can determine whether a point ~a lies within the safety radius of a turbine k

by checking whether the Euclidean distance from location ~a to location ~k is smaller

than r. The Euclidean distance between two locations ~a = (ax, ay) and ~k = (kx, ky)

is de�ned as dist(~a,~k) =
√

(ax − kx)2 + (ay − ky)2. We can therefore determine if a

relocation that starts at period t−w provides valid coverage for turbine k at period t

by checking that the conditions dist(~i + w~evij, ~k) ≤ r and dist(~i + (w + 1)~evij, ~k) ≤ r

are true. This utilises the fact that if a vessel v lies within the interval [o1, o1 + 1] at

time period t, it must have started its relocation from i to j at time period t− o1.
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    If vessel v is inside interval [o1,o1+1] during period t, it must depart before the start of period t-o1.

Figure 2.3.2: The vessel v travelling from i to j can only provide safety coverage for

turbine k in period t of shift s, if it departs i before period t− 5, t− 6, t− 7, or t− 8.

Figure 2.3.2 illustrates an example vessel relocation which partially covers the

turbine k. Speci�cally the vessel can only provide coverage if it departs at a speci�c

set of time periods. Other cases are possible where the entire relocation is either

completely exterior or interior to the safety region. We also need to check whether a

vessel is dwelling at a location i within the safety radius r in period t, which requires

that dist(~i,~k) ≤ r.
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Using our outlined notation, the sets φkst1 , φkst2 can be described as,

φkst1 = {(v, i) : dist(~i,~k) ≤ r}, (2.3.36)

φkst2 =
{

(v, i, j, w) :
[
dist(~i+ w~evij, ~k) ≤ r

]
&
[
dist(~i+ (w + 1)~evij, ~k) ≤ r

]
& [w ∈ [0, Tvij − 1]]

}
.

(2.3.37)

For simplicity we have assumed that a relocation time period must be completely

enclosed within the safety region in order to provide valid coverage. This excludes

points o1, o2 in Figure 2.3.2. An alternative approach would require a minimum frac-

tion of a period to lie within the safety region to be designated as providing coverage.

A fraction of 0.8 would include o1, but not o2 in Figure 2.3.2. A potential exten-

sion could allow deviations to straight vessel paths to form curved arcs to increase

the vessel time spent within the safety radius. Further optimisation should then be

performed if several turbines are covered by a vessel relocation.

2.3.4 Model Simpli�cation - Transfer Time Approximation

One method of reducing the number of variables in our model lies in using a larger

time period discretisation to reduce the overall number of time periods. We propose

that combining vessel travel times and crew transfers times together can allow us to

increase the period length and reduce the size of the model. The combined travel and

transfer activity is typically the event with shortest duration in the model allowing

us to increase the period length to around 20-30 minutes.

Existing models tend to append transfer times into vessel travel times as drop-o�

and pick-up turbines are modelled as separate locations, (Christiansen et al., 2013).
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In our model this would relate to setting the transfer times to zero and excluding

them, whilst the new vessel travel times are increased to include the old transfer

times, T ′vij = Tvij + τvi. Our model requires an additional constraint to concatenate

these activities since the outlined transformation can omit the time needed to pick-up

technicians if a vessel remains present whilst the task is worked on. Crew transfer

times are required to be symmetric with respect to pick-up and drop-o� to make the

approach valid. This is illustrated in the �rst line of Figure 2.3.3. Our proposed

method is shown in the second line, where we extend the time technicians spend

working on the turbine by τvi periods.
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Figure 2.3.3: Above: Pick-up time at location i is omitted when a vessel performs a

single visit if the standard transformation is used. Below: The missing τvi periods of

pick-up are modelled as dummy periods of work with the vessel waiting at the turbine.

We represent the missing pick-up time as additional dummy work time since we

lack a threshold for the time spent on a turbine. This modi�cation is underpinned

by the assumption that it is sub-optimal to leave technicians on a turbine after the

work is completed if the vessel is present. We correctly adjust the timings by �rst

di�erentiating between tasks that have both crew transfers performed within a single

vessel visit and those performed across two vessel visits. If there is only a single

departure from a turbine in a shift, then both pick-up and drop-o� must be performed
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in the same visit. If there are two departures from a turbine, pick-up and drop-o�

are performed across separate visits. We introduce new binary variables to track this:

χis = 1 if turbine i is visited exactly once in shift s and ψis = 1 if turbine i is visited

exactly twice in shift s.

χis + 2ψis =
∑

v,j,t∈Ts

rtvijs, ∀i ∈ IW ,∀s ∈ S (2.3.38)

χis + ψis ≤ 1, ∀i ∈ IW ,∀s ∈ S (2.3.39)

χis, ψis ∈ {0, 1} ∀i ∈ IW ,∀s ∈ S (2.3.40)

We introduce wis to track the minutes spent working on turbine i in shift s to ensure

dummy work is performed in its correct shift. The calculation is performed in minutes

to potentially �t the pick-up transfer into any excess work time arising from the

conversion to discrete time, thus avoiding the need for dummy work. The assumption

that θtis is a piecewise linear function θ
t
is = Θt

is+θt−1
is , where Θt

is is the losses in period

t of shift s for turbine i allows us to adjust downtime costs for dummy work.

∑
t∈Ts

λMin
s W t

is − τMin
vi χis = wis ∀i ∈ IW ,∀s ∈ S (2.3.41)

∑
s

wis ≥ DMin
i ai, ∀i ∈ IcW (2.3.42)

∑
s

wis ≤ DMin
i ∀i ∈ IpW (2.3.43)

ci ≥ θtisW
t
is − τMin

vi ΘMin
is χis ∀i ∈ IcW ,∀s ∈ S,∀t ∈ Ts (2.3.44)

ci ≥ θ
tbs
is(1− ai), ∀i ∈ IcW ,∀s ∈ S (2.3.45)

wis ∈ R ∀i ∈ IW ,∀s ∈ S (2.3.46)
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Experiments have shown that the model will try to actively avoid solutions which

contain dummy work by scheduling extra visits to the tasks to reduce their cost.

The additional visits occur before or after task completions and do not trigger crew

transfers. We forbid these arti�cial solutions by introducing two further constraints.

Constraints (2.3.47) state that if a vessel arrives to a location, the location must

either already have technicians onboard it or a drop-o� must occur when it arrives.

Constraints (2.3.48) are the symmetric counterpart of constraints (2.3.47), stating

that if a vessel leaves a location technicians should remain on the turbine after it

leaves or the vessel must execute a pick-up on it's departure.

∑
j

r
t+1−Tvji−τvi
vjis ≤ ptis + st+1

vis , ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ T−s (2.3.47)

∑
j

rtvijs ≤ ptis + s̄tvis, ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.48)

We now restate the mathematical model with the transfer time approximation and

technician-vessel maximum safety range constraint for completeness. Any relocation

variables involving Tvij are rescaled to Tvij + τvj, whilst τvi is removed from any crew

transfer terms. Constraints (2.3.6) are omitted since the transfer time approximation

removes the need to explicitly force vessels to wait at locations during crew transfers.

min
∑
i∈Ic

W

ci −
∑
s

∑
i∈Ip

W

γMin
i wis +

∑
s

λMin
s

∑
v,i,j

KMin
v TMin

vij

∑
t∈Ts

rtvijs −
∑
t∈Ts

∑
i∈IP

(
ωMin
is ptis +

∑
v

ΩMin
vs xtvis

)

s.t. (2.3.2), (2.3.4)− (2.3.5), (2.3.7)− (2.3.11), (2.3.12)− (2.3.15), (2.3.16), (2.3.47)− (2.3.48), Flow constraints

stvis ≤
∑
j

r
t−Tvji−τvi

vjis , s̄tvis ≤
∑
j

rtvijs ∀v ∈ V,∀i ∈ I, ∀s ∈ S,∀t ∈ Ts

(2.3.38)− (2.3.39), (2.3.17), (2.3.41)− (2.3.45), (2.3.21) Task execution constraints

(2.3.22)− (2.3.25) Return to base constraints

(2.3.26)− (2.3.35), (2.3.46), (2.3.40) Variable de�nitions

(2.3.49)
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2.3.5 Metocean Restrictions On O�shore Activities

The limitations imposed by meteorological and oceanographic (metocean) conditions

di�erentiate the execution of o�shore O&M activities from their onshore counterparts.

The modelling choice of a discrete time space network provides the �exibility to in-

corporate a variety of restrictions on both turbine accessibility and task execution at

any location and time.

The metocean conditions are created by introducing a wind speed and wave height

for every time period into our model. A single wind speed across the entire windfarm

is allowed to vary throughout the planning horizon. This is incorporated into the

objective function costs so that greater downtime losses are accrued by corrective tasks

during periods of higher wind speed. Conversely preventive maintenance tasks receive

a greater bene�t when performed in periods of low wind speed since the lost energy

production is smaller. If the wind speed exceeds a thresholdWindLim = 10m/s, work

cannot be performed although technicians can remain idle on the turbine. Therefore

solutions in which work is paused and restarted within shifts may become optimal.

Signi�cant wave height controls whether crew transfers or vessel relocations can

be performed. A crew transfer can only be performed if the signi�cant wave height

stays below a threshold WaveT for the entire transfer, whereas a vessel relocation

requires it to be below WaveR at both the start and end of the relocation. For

simplicitly we make an assumption that the wave heights will either slowly increase

or decrease throughout a shift at a constant rate. Speci�cally we assume that if the

wave height is below WaveR at both the start and end of the relocation, it must
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have stayed below the threshold at all times during the relocation. This means we

do not need to check the wave height in the middle of a relocation. Crew transfer

vessels can safely operate in signi�cant wave heights up to 1.5m which in conjunction

with our previous assumption that every relocation will result in a crew transfer leads

us to set WaveR = WaveT = 1.5m. These thresholds allow us to model multiple

non-contiguous weather windows within a shift. More complicated weather windows

across parts of the wind farm could be modelled if weather data exists for each wind

turbine.

The wave height at turbine i in period t of shift s, Waveist and the wind speed

in period t of shift s, Windst are known parameters that restrict variables in our

mathematical model as follows,

Waveistr
t
vijs ≤ WaveT ∀v ∈ V, ∀i ∈ I,∀j ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.50)

Wavejst+Tvijr
t
vijs ≤ WaveT ∀v ∈ V, ∀i ∈ I,∀j ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.51)

Waveists
t
vis ≤ WaveT , ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.52)

Waveists̄
t
vis ≤ WaveT , ∀v ∈ V, ∀i ∈ I,∀s ∈ S,∀t ∈ Ts (2.3.53)

WindstW
t
is ≤ WindLim, ∀i ∈ IW , ∀s ∈ S,∀t ∈ Ts. (2.3.54)

We choose to allow vessels to dwell at o�shore turbines at any point in time re-

gardless of the weather conditions, so constraints (2.3.50)-(2.3.54) do not include any

x variables. Constraints (2.3.50) and (2.3.51) check that the wave weights for a po-

tential relocation from time-space node (i, s, t) to (j, s, t + Tvij) are below WaveT .

Constraints (2.3.52) and (2.3.53) only allow crew transfers to occur when the signi�-
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cant wave height is below the threshold. Constraints (2.3.54) forbid work from being

performed in a period of high wind speed.

2.3.6 Stochastic Extension For Uncertain Weather Conditions

As the metocean conditions, Waveist,Windst, cannot be predicted with a 100 percent

con�dence, there is a degree of uncertainty associated with them. It is important

to capture this uncertainty, particularly if it could cause an operational threshold

WindLim,WaveR,WaveT to be exceeded. The optimal plan of action for vessel and

personnel can vary signi�cantly dependent on whether access to a turbine is allowed

at a particular time point. This motivates the need for a stochastic extension to

our model. The aim of this is to account for the uncertainty in whether vessels and

personnel can access turbines, as de�ned through the metocean conditions.

A stochastic version of our model to account for uncertainty in o�shore weather

conditions can be developed in which the aim would be to minimise the overall ex-

pected cost across several shifts. In general this would form a multi-stage stochastic

model using several di�erent weather forecasts with di�erent probabilities of occur-

rence. This would optimise the cost of the routing and scheduling in a �rst time

period, plus the expected costs in the subsequent later shifts. The metocean condi-

tions for the �rst shift are assumed to be known exactly, whereas the conditions in

later shifts are uncertain. This idea is motivated by the fact that weather forecasts

are normally very accurate in the present, but tend to decrease in accuracy when pre-

dicting futher into the future. In the context of our routing and scheduling problem

we consider the metocean conditions in the �rst shift to be common to each scenario
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as the latest weather forecast is assumed to be an accurate prediction of conditions.

Predictions for subsequent shifts are subject to greater uncertainty and need to be

modelled with distinct metocean conditions with �xed probabilities of occurring. The

di�ering possibilities of metocean conditions can lead to operational thresholds being

exceeded in di�erent scenarios, all of which should be considered when building the

plan for the �rst shift.
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Figure 2.3.4: A scenario tree for a three stage stochastic optimisation. sxy represents

the metocean conditions in the yth day of scenario x. There are three days in the

planning horizon, with the second and third each having two distinct possibilities for

metocean conditions. Several scenarios have common metocean conditions.

An example of a three stage stochastic optimisation is shown in Figure 2.3.4.

There are 4 di�erent scenarios, S1, S2, S3 and S4, each of which share the same meto-

cean conditions in the �rst shift, but contain di�erent conditions in the second and

third shifts. Instances using several vessels and shifts with size comparable to those
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described in Section 2.4.1 were found to be too large to be solved exactly using a stan-

dard mixed integer programming solver. We therefore restrict our focus to a smaller

two stage model.

We choose to focus on a two stage model with two scenarios for the metocean

conditions in the second stage. The �rst reason for this is to ensure that we can solve

problems of a reasonable size. The second reason is that we wish to focus on the case

where metocean conditions are either slightly above or below operational thresholds

at di�erent locations. This is the most interesting example where a small change in

o�shore conditions could have a signi�cant impact on the optimal solution. Otherwise

the e�ect of the weather is negligible, as the wind farm is either entirely accessible or

inaccessible most of the time.

If a larger multi-stage problem does need to be solved, one method could be to

use a rolling horizon approach. A rolling horizon approach aims to solve smaller

sub-problems that incorporates less information from future shifts, in a sequence that

moves through the shifts. This will then provide a good approximation to the full

multi-stage problem. The �rst step is to optimise the �rst shifts activities in detail

whilst taking into account its impact on the work planned for the second shift, rather

than all the successive shifts. The plan created for the �rst shift is then implemented

and the work available for the next shifts is updated based on the solution of the

�rst shift. In order to solve for the next shift we roll the time horizon forward, and

in the case of later shifts update the metocean conditions with their newly revealed

information. This is repeated to form an iterative process that covers the entire

planning horizon.
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The stochastic programming model we now present is an enhanced version of

our previously stated deterministic model. For this reason, constraints that remain

unchanged from its deterministic counterpart will be ignored to avoid unnecessary

repetitions. The proposed modi�cations will now be described.

We can convert our existing model to a deterministic equivalent of a two stage

stochastic model using two scenarios, K = {1, 2} from a set of shifts S = {1, 2A, 2B}.

Scenario 1 can be represented as a set of shifts S1 = {1, 2A}, whilst scenario 2 is rep-

resented as S2 = {1, 2B}. This ensures that both scenarios have a common �rst shift,

but a di�erent second shift. A probability pk is assigned to each scenario under the

conditions
∑

k∈K pk = 1. Then we can minimize the expected value of the objective,

subject to the constraints from both scenarios.

We �rst need to extend the de�nition of the variables associated with work on a

corrective maintenance. They should now operate on the basis of scenarios, rather

than all the possible shifts.

aki = 1, if the corrective task at location i is completed within the planning

horizon in scenario k. 0 otherwise. (2.3.55)

cki , Total downtime cost accumulated from the corrective task at

location i in scenario k. (2.3.56)

The objective of our mathematical model can now be rewritten to minimise the ex-

pected costs of scenario 1 and scenario 2, by including the probability of that scenario

occurring. Constraints (2.3.42-2.3.45) are also altered to account for multiple scenar-
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ios as shown below,

min p1

 ∑
i∈Ic

W

c1i −
∑
s∈S1

∑
i∈Ip

W

γMin
i wis +

∑
s∈S1

λMin
s

∑
v,i,j

KMin
v TMin

vij

∑
t∈Ts

rtvijs −
∑
t∈Ts

∑
i∈IP

(
ωMin
is ptis +

∑
v

ΩMin
vs xtvis

)


(2.3.57)

+ p2

 ∑
i∈Ic

W

c2i −
∑
s∈S2

∑
i∈Ip

W

γMin
i wis +

∑
s∈S2

λMin
s

∑
v,i,j

KMin
v TMin

vij

∑
t∈Ts

rtvijs −
∑
t∈Ts

∑
i∈IP

(
ωMin
is ptis +

∑
v

ΩMin
vs xtvis

)


(2.3.58)

∑
s∈Sk

wis ≥ DMin
i aki , ∀i ∈ IcW ,∀k ∈ K (2.3.59)

∑
s∈Sk

wis ≤ DMin
i ∀i ∈ IpW ,∀k ∈ K (2.3.60)

cki ≥ θtisW
t
is − τMin

vi CMin
is χis, ∀i ∈ IcW ,∀k ∈ K, ∀s ∈ Sk,∀t ∈ Ts (2.3.61)

cki ≥ θ
tbs
is(1− aki ), ∀i ∈ IcW , ∀k ∈ K, ∀s ∈ Sk (2.3.62)

2.4 Experimental Results

In this section we outline the results of three experiments which were designed to

illustrate the breadth of our model. Our main experiment solves our deterministic

model on a modern wind farm layout with the goal of �nding the maximum instance

size we can solve within a reasonable computation time. We also evaluate the impact

of two di�erent safety ranges on the same set of instances, so that the cost of imple-

menting a safety range can be quanti�ed. The �nal experiment is designed to assess

the value of a stochastic solution for uncertain metocean conditions.

The geographic layout of an o�shore wind farm can have a signi�cant impact on the

design of routes for conducting O&M activities. Initial o�shore wind farms arranged
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turbines in a traditional square lattices with a typical inter-turbine separation of

around 1km. Existing analysis tends to be performed on wind farms of this shape

(Dawid et al., 2017), or commonly seen variations such as trapezoidal layouts. Newly

emerging wind farms optimise turbine placement based on predicted wind speeds

and foundation costs (Fischetti and Pisinger, 2018), which leads to irregular spatial

structures such as that found in Figure 2.4.1. This structure has been provided by

our industrial partners as a realistic example of a future o�shore wind farm, which we

use as the basis for our experiments. Some turbines have been deliberately omitted

and distances rescaled to ensure anonymity. The port is located 45 km south east of

the centre of the wind farm.
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Figure 2.4.1: Example of a future o�shore windfarm layout.

Task lists were adapted from Dawid et al. (2018) and include �xed ratios of correc-

tive and preventive maintenance tasks. Preventive maintenance requires 2 technicians

and provides the smallest bene�t of 20 per minute worked, but possess durations in

excess of 8 hours. This allows opportunistic maintenance to be performed. Correc-

tive maintenance tasks are split into sub-categories based on their priority. The most

severe tasks accrues losses of 80 per minute whilst they are incomplete and require 4

technicians. Typical corrective tasks require 2-4 hours of work by 2-3 technicians to

be considered complete. Task locations were randomly assigned to existing turbines



CHAPTER 2. EXACT MATHEMATICAL MODEL 58

within the wind farm. A maximum of three vessels are available, the �rst two being

smaller crew transfer vessels with capacity for 12 technicians moving at a speed of

36km/h. The third vessel can carry 16 technicians but moves at a slower 30km/h. The

technicians available in port totalled 10, 15 or 24. We follow the approach of Dawid

et al. (2018) and reduce vessel speed within the wind farm by a third to account for

turning and acceleration/deceleration. Wave and sea conditions are ignored in these

scenarios, which consisted of a single shift of 11 hours split into 15 minute time in-

tervals. Instances were solved using IBM CPLEX Optimizer using default settings on

a Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz with 32.0GB of RAM with a time

limit of 2hrs.

Name Type Cost/min Pi DMin
i τMin

vi

Annual Service (Short) Prev 20 2 480 20

Annual Service (Long) Prev 20 2 600 20

Minor Reset Corr 40 2 120 20

Minor Repair Corr 50 3 240 20

Medium Repair Corr 60 3 300 20

Major Repair Corr 80 4 360 20

Table 2.4.1: Overview of task pro�les.
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2.4.1 Combining Preventive and Corrective Maintenance (With-

out A Safety Range)

(|IcW |), |I
p
W |) P Tot

|V | = 1 |V | = 2 |V | = 3

Time(s) #Opt. Gap(%) Time(s) #Opt. Gap(%) Time(s) #Opt. Gap(%)

(3,1) 10 1.12 10 0

(3,1) 15 1.00 10 0

(3,1) 24 1.01 10 0

(5,1) 10 8.34 10 0 70.55 10 0

(5,1) 15 10.49 10 0 37.60 10 0

(5,1) 24 9.98 10 0 18.49 10 0

(6,2) 10 33.40 10 0 353.9 10 0 1131 10 0

(6,2) 15 58.22 10 0 256.0 10 0 751.3 10 0

(6,2) 24 50.26 10 0 86.15 10 0 128.4 10 0

(8,2) 10 2271 10 0 3846 6 4.99

(8,2) 15 2555 10 0 5281 3 2.51

(8,2) 24 532.7 10 0 1961 9 0.6

(9,3) 10 N/A 0 3.35

(9,3) 15 7067 2 6.45

(9,3) 24 N/A 0 3.46

(3,1) Avg 1.05 30 0

(5,1) Avg 9.06 30 0 42.21 30 0

(6,2) Avg 47.30 30 0 232.0 30 0 670.4 30 0

(8,2) Avg 1786 30 0 3142 18 3.18

(9,3) Avg 7067 2 4.28

Table 2.4.2: Results from preventive and corrective maintenance instances.
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As previous studies have indicated that vessels tend to visit no more than 4 or 5

turbines in optimal solutions (Irawan et al., 2017), we investigate similar levels of

tasks per vessel. Single vessel instances are comprised of 4, 6 and 8 tasks, 2 vessel

instances contain 6, 8 and 10 tasks, whilst 3 vessel instances consist of 8, 10 and

12 tasks. Table 2.4.2 shows the e�ects of changing the number of tasks, vessels and

technicians within this set-up using the parameters outlined earlier in this section.

The �rst column shows the number of corrective and preventive maintenance tasks

in the instance set. The second column gives the number of technicians available.

For each instance set we created 10 di�erent instances and report the average time to

solve the instances, the number of instances (out of 10) solved to optimality within 2

hours and the average optimality gap.

The solution time scales dramatically with the number of tasks to the point that

larger instances with 3 vessels and 12 tasks cannot be solved to optimality within 2

hours. The number of vessels available similarly a�ects the solution time as there

are more ways of starting tasks earlier within the shift. The optimal routing and

transfer plans for multiple vessel instances tends to follow a line drop-o� and pick-up

approach, as there is no need to reuse technicians across multiple tasks regardless of

the number available. An example of line drop-o� and pick-up for three tasks, A,B

and C would be: drop-o� at A, drop-o� at B, drop-o� at C followed later by pick-up

at A, pick-up at B and pick-up at C.

Table 2.4.2 proves this is not always the case since the average solution time often

decreases upon adding more technicians into the system. This is particularly visible

for the 3 vessel, 8 task instances. The reason behind this is attributable to the change
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in task completions. Optimal solutions to instances with fewer technicians make use

of the ability to ignore certain tasks which adds additional complexity to the model,

whereas the presence of large quantities of technicians often allow all the tasks to be

completed. In the 3 vessel, 8 task instances, the majority of the 15 technician instances

ignore at least 1 task whilst the 24 technician instances complete all the tasks. Further

evidence comes from the 15 technician instances utilising all the available technicians

at the wind farm, whereas the 24 technician instances often leave a few excess techni-

cians behind in port. This highlights a class of tougher resource restricted instances

which our model can solve without any prior speci�cations on the subset of tasks

to perform. Discussions with our industrial partners emphasized the requirement of

coping with variable numbers of technicians and vessels. In severe cases wind farms

can accrue numerous tasks to the point where they cannot all be completed within

a single shift even with maximum vessel and technician availability. Moreover these

availability levels are often signi�cantly lower producing resource restricted instances

where there is an abundance of work to perform with few technicians and vessels.

2.4.2 E�ect Of Adding A Vessel Safety Range

We quantify the �nancial cost of potential safety regulations by solving instances with

and without a vessel safety radius. The inclusion of this as an additional constraint will

cause an increase in the solution costs as certain schedules will be forbidden. Using a

small safety radius can produce solutions where locations are visited purely for their

geographic location without completing tasks. This provides circumstances where

corrective tasks are only temporarily worked on. The average percentage increase in
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the objective function for a safety radius of k minutes is measured as

∆Objk = 100 ∗ 1

n

n∑
i=1

(
Zk
i − Z∗i
Z∗i

)
, (2.4.1)

where Z∗i is the optimal cost of task list i if no safety radius is imposed and Zk
i the

optimal cost if a safety radius of k minutes is imposed.
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(a) Single vessel instances. Left: 15 minute safety range. Right: 10 minute safety range.
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(b) Two vessel instances. Left: 15 minute safety range. Right: 10 minute safety range.

Figure 2.4.2: Quantifying the e�ect of a safety range.

Figure 2.4.2 shows the results of applying both a 15 and 10 minute safety radius

on a subset of instances from Table 2.4.2 in box-plot form. A black dot represents an

individual task list in each of the instance sets. Although the total cost is used, it is
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heavily dominated by the corrective maintenance tasks. Any signi�cant increases will

therefore correspond to fewer tasks being completed or existing tasks being �nished

at a later time. The expected increase in objective function costs as the safety radius

tightens occurs in all the presented instances. The average increase in the optimal

cost of single vessel instances which contain 6 tasks is ∆Obj15 = 8.25% and ∆Obj10 =

14.01%. This e�ect is less pronounced when 2 vessels are available as there is more

�exibility to deal with the tightened safety restrictions resulting in increases of 6.62%

and 12.90% when 15 and 10 minute safety radii are used. The computational time for

solving instances that involve a safety radius is signi�cantly larger than those without.

The largest 2 vessel, 10 task instances contained some task lists that were unable to

be solved to optimality within 2 hours, so calculations were performed with the best

solution found to that point. A decrease in the safety radius appears to have a bigger

e�ect on solutions containing larger quantities of technicians and tasks, however this

is not always guaranteed.

Both of these aspects can be explained by the model's need to consider omitting

tasks once all available resources have been fully utilised. At this stage newly intro-

duced corrective tasks cannot be completed (or should not replace an existing task)

and substantially increase the proportion of downtime costs within the total objec-

tive cost, thus reducing the percentage increase due to the safety radius. E.g. the

downtime costs could increase from 60, 000 to 80, 000, but the extra costs due to the

safety range h may remain stable. Then the percentage that h represents out of the

total costs will naturally reduce, as the downtime costs are the main component of

the objective function. Solutions to instances involving additional technicians are re-
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stricted more heavily for the same safety radius since fewer transfer plans will remain

feasible. This causes a growth in the percentage increase in the objective function

due to the safety radius. This e�ect is capped by the ability to transfer technicians

to the wind farm and illustrated in the single vessel instances containing 6 tasks. The

inconsequential di�erence in the objective value from using 24 over 15 technicians can

be attributed to the model receiving a reward for keeping the surplus technicians in

port, since a maximum of 12 can be transported on the vessel. Signi�cant reduc-

tions in downtime costs from utilising more technicians is only possible when there is

both spare vessel capacity and su�cient uncompleted tasks to make use of them, as

observed in the two vessel instances.

2.4.3 Uncertain O�shore Accessibiilty

In this experiment we consider a simple 2 stage stochastic optimisation with a look

of a single shift to produce the scenario tree in Figure 2.4.3. We test our model in

situations where task premption within and across shifts is necessary by considering

periods of time when WindLim,WaveR and WaveT are all exceeded. In the �rst shift

every location in the wind farm is accessible by vessels at any time, however there is a

signi�cant period of time in the middle of the shift where WindLim is exceeded. Work

cannot be performed on turbines during this interval meaning technicians will become

idle. The weather conditions diverge in the second shift as the signi�cant wave height

at a turbine depends on its geographical location. In scenario 1 all the turbines in

the northern half of the wind farm are inaccessible due to the wave heights, whilst in

scenario 2 the southern half is inaccessible. This means that certain activities can only



CHAPTER 2. EXACT MATHEMATICAL MODEL 67

be completed within the �rst shift for each scenario. We set p1 = 0.6 and p2 = 0.4

to represent a stronger belief in the �rst forecast. The downtime losses for corrective

tasks and bene�ts for preventive maintenance are linked to the wind speed at each

turbine for every period.

𝑝𝑖𝑠
7 = 0

𝑺𝟏

𝑺𝟐

𝑝1 = 0.6

𝑝2 = 0.4

𝑊𝑖𝑛𝑑𝐿𝑖𝑚

𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑

𝑊𝑎𝑣𝑒𝑅 ,𝑊𝑎𝑣𝑒𝑇𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑

𝑊𝑎𝑣𝑒𝑅 ,𝑊𝑎𝑣𝑒𝑇𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑

Figure 2.4.3: A simple scenario tree with metocean conditions.

A direct comparison between the vessel routes and transfer plans for the �rst shift

is visualised in Figure 2.4.4 using the task list provided by Table 3.5.1. Directed arcs

denote the direction of travel with the time periods spent travelling and the number of

technicians onboard illustrated through arc labels. Tasks with longer durations were

selected to �nd optimal solutions containing tasks that were performed discontigu-

ously, whilst the number of tasks was balanced across both the northern and southern

halves of the wind farm. A single vessel with capacity for 12 technicians was available.

The deterministic solution for scenario 1 shown in Figure 2.4.4a, exhibits the

traditional planning technique of line drop-o� and pick-up as the vessel visits the
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Name Place Cost Type Pi DMin
i τMin

vi

Medium Repair T45 240 Corr 3 300 20

Minor Repair T74 220 Corr 3 240 20

Medium Repair T19 240 Corr 3 300 20

Annual Service T8 100 Prev 2 480 20

Major Repair T78 400 Corr 4 600 20

Minor Repair T13 220 Corr 3 240 20

Medium Repair T63 240 Corr 3 300 20

Annual Service T21 100 Prev 2 480 20

Table 2.4.3: Task pro�les for Figure 2.4.4.

tasks at T74, T19, T13 and T21. Work completion is paused on these tasks during

the interval of high wind speed, after which the vessel starts picking up technicians

from the turbines in the reverse order having waited at T21. The corrective tasks at

T13 and T19 have 7 and 11 periods of works performed on them respectively. These

tasks can be completed in second shift as the southern half of the wind farm remains

accessible. The task completed at T74 is an example of prioritisation as it is completed

earlier than the more urgent task at T19, because it cannot be accessed in the second

shift. As the task is only considered �nished after its technicians have been picked

up, 3 extra periods of work can potentially be performed. The optimal solution only

transports 11 technicians to the wind farm despite having the availability of an extra

technician.
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The deterministic solution for scenario 2 in Figure 2.4.4b services 5 turbines and

reuses technicians across multiple tasks to improve e�ciency. The task at T13 is

visited �rst to allow it to be completed within the current shift as it will not be

accessible in the subsequent shift. The vessel then transports technicians to T63 and

T74, before immediately returning to T63 to pick-up its technicians after 6 periods

of work are performed. During the interval of high wind speed these technicians are

moved to the corrective task at T45 and the preventive task at T21 before the vessel

returns for its second visit to T74. This action allows 4 tasks to be immediately

restarted after the pause in work but exacerbates the imbalance in work performed

by di�erent technicians. The return transit to port picks up all 12 technicians from

T74, T45, T21 and T13 respectively. The asymmetric travel time between P1 and

T13 is due to the rounding di�erences in the travel and transfer time approximations,

in conjunction with the outgoing transit including time for the initial loading in port.

Figure 2.4.4c illustrates the stochastic solution which is informed about the rel-

ative likelihoods of wind farm accessibility in shift 2 and correspondingly performs

maintenance on corrective tasks located in both the northern and southern halves of

the wind farm. This contrasts with the deterministic solutions where work is never

performed on turbines that will become inaccessible in the second shift. The vessel

initially transports technicians to T74, T45, T21 and T13 via a line drop-o�. The

task at T21 is a preventive task so the vessel returns to collect its technicians at the

start of the interval of high wind speed. These technicians are then directly moved

to T63 along with the �nal spare technician onboard before the vessel travels to and

waits at T13. After the interval of high wind speed concludes the vessel picks up the
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remaining technicians from T13, T63, T74 and T45. This solution di�ers from the

second deterministic scenario as the work performed is more heavily concentrated on

the two corrective tasks at T74 and T45.
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(c) Stochastic solution for scenario 1 and sce-

nario 2.

Figure 2.4.4: Comparison of vessel routes and task completions for the common �rst

shift. Preventive tasks not worked on are yellow, those worked on are orange. Cor-

rective tasks are coloured red. Green is added to corrective tasks in proportion to the

percentage of total work performed on them. Arc label T states the periods of travel,

whilst P represents the number of technicians onboard.
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Figure 2.4.5: Quantifying the value of stochastic solutions for the single look ahead

approach.

To measure the improvement that can be achieved by solving the stochastic model

instead of its deterministic counterpart, we compute the value of a stochastic solution

(V SS). The V SS and the relative V SSr show the impact of the uncertainty on the

solution in the �rst shift,

V SS = z∗det − z∗stoc (2.4.2)

V SSr = (z∗det − z∗stoc)/z∗det (2.4.3)

where z∗stoc is the optimal solution of the stochastic problem and z∗det is the optimal

solution of the stochastic problem with the actions performed in the �rst stage �xed

to those found in the optimal solution of the deterministic problem. A large value of

V SSr indicates that there is a value in solving a stochastic model, compared to its

deterministic equivalent.
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The results of an initial implementation of this stochastic approach are given in

Figure 2.4.5, which shows the relative value of a stochastic solution (V SSr). Certain

instances have optimal costs which are identical across the deterministic and stochastic

solutions as the majority of tasks can be completed before the second shift. This

became less common when the second vessel was added as it can be leveraged to

further improve solutions. A single task list's best stochastic solution found within

2 hours was greater than its corresponding optimal deterministic solution due to it

not being solved to optimality, so we set its percentage saving to zero. We observe

that for our extreme example, containing contradictory expectations of the metocean

conditions in the second shift, there is little bene�t to a stochastic solution. This

is because most of the extra work completed is optional preventive maintenance.The

implementation of this iterative framework can be extended and improved upon in

further work. A multi-period look ahead method using more than 2 shifts could be

used to better account for future uncertainty. The e�ect of introducing new tasks into

the system could also be investigated to validate the value of stochastic solution in a

dynamic setting.

2.5 Conclusions

We have presented a new mathematical formulation of the o�shore maintenance rout-

ing problem that addresses several limitations of the existing literature. The existing

approach to task completion is extended to a fully time sensitive framework both

within and across shifts. We have illustrated the e�ect of omitting or postponing
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O&M tasks, which helped to de�ne a new class of resource restricted instances that

are tougher to solve to optimality. A novel technician-vessel maximum safety range

constraint is introduced with its e�ect quanti�ed on smaller instances. Stochastic

solutions show the value of performing opportunistic maintenance in the presence of

a variety of weather and resource restrictions.

This work could be developed further to incorporate multiple concurrent tasks

at o�shore turbines and fully di�erentiate technician skill types. Our model could

be extended to include larger service operations vessels used primarily at distant

far-shore wind farms by introducing an extra o�shore location where these vessels

wait overnight. It would then be possible to determine optimal routes and schedules

involving a mixed vessel portfolio. An additional target would be to quantify and

fully integrate the long term bene�ts of completing preventive maintenance into a

short term horizon which is mainly focused on corrective maintenance. Condition

based maintenance strategies that monitor individual component degradations provide

signi�cant motivation for further research in this direction. It is hoped that this work

can eventually be applied to a real life instance.



Chapter 3

Heuristic Method

3.1 Introduction

O�shore wind power is currently one of the fastest growing methods of generating

renewable electricity on the planet. The global o�shore wind industry installed a

record 6.1GW of new capacity in 2019, bringing the total capacity to 29GW, according

to Council (2019). It is predicted that the total global capacity could exceed 90GW

within the next �ve years.

The breakneck expansion of o�shore wind farms has been powered by environ-

mental subsidies and the development of larger turbines. Opportunities to reduce the

high operating costs incurred by o�shore wind farms still exist in the form of daily

operations and maintenance activities. O&M activities are believed to contribute up

to 35% of a wind farm's total lifetime costs (Sha�ee, 2015), providing a clear av-

enue for e�ciency savings. One key direction involves the day to day scheduling of

maintenance activities and the design of optimal routes for vessels and technicians to

75
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complete said tasks.

Two common types of maintenance actions required at o�shore wind farms are

known as preventive and corrective maintenance respectively. Preventive mainte-

nance requires turbines to be temporarily shutdown in order to maintain and restore

components before they fail, ideally at the least disruptive times. Corrective main-

tenance is a responsive action to an unexpected failure which ideally merits a rapid

repair response to avoid a costly accumulation of lost potential revenue whilst the

turbine is inactive. This can con�ict with the notion of minimising travel costs, but

may harmonize with opportunistic preventive maintenance once a vessel is o�shore. A

successful mathematical model of o�shore operations must consider both the routing

and scheduling aspects of the problem in parallel. A pure scheduling approach cannot

harness potential savings from sharing technicians across multiple vessels, whilst a

stand alone routing model is unable to cope with discontiguous task completion and

prioritisation.

These challenges will be particularly apparent inside newer o�shore wind farms

that contain more turbines over a larger area than ever before. The Hornsea Project

One wind farm is set to be the world's biggest wind farm containing over 170 turbines

and is planned to expand further in several stages, Orsted (2018). Routing and

scheduling problems of this size will require mathematical decision support tools and

likely need heuristic methods given the nuances associated with o�shore work and

transportation.

The structure of this chapter is as follows. Section 3.2 presents a brief review on

existing literature associated with the o�shore wind farm maintenance and routing
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problem. Section 3.3 describes the optimisation model for the problem. Section 3.4

motivates and describes the metaheuristic framework for solving the model, before

Section 3.5 presents the computational experiments. Section 3.6 states our conclu-

sions.

3.2 Literature Review

Dai et al. (2015) introduce the �rst mixed integer linear programming (MILP) model

of o�shore operations that integrates the vessel routing and task scheduling aspects.

The model aims to complete a set of o�shore tasks so that travel costs and downtime

losses are minimised over a short term planning horizon. Tasks completed after a set

period are penalised with the model solved through a commercial solver. This model

is extended by Irawan et al. (2017) to consider multiple o�shore windfarms being

serviced by several ports and introduces di�erent technician skill types.

Di�erent problem aspects are examined by subsequent works such as Raknes et al.

(2017) who investigate longer tasks which often span across several working days.

Their optimisation model also incorporates larger service vessels that can stay o�-

shore for several consecutive shifts. Schrotenboer et al. (2018) consider the impact

of sharing technicians across multiple windfarms instead of remaining localised to a

single windfarm. They quantify the estimated saving as around 7% by developing an

adaptive large neighbourhood search (ALNS) heuristic to assign technicians to ports

and vessel routes.

Heuristic methods for short term routing and scheduling of maintenance tasks have
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also been investigated, chie�y with the aim of solving instances containing higher num-

bers of o�shore tasks. Kennedy et al. (2016) base their genetic algorithm on the model

of Besnard et al. (2011) and �nd savings of around 15% versus unoptimised schedul-

ing. Dawid et al. (2017) takes the approach of several authors and clusters groups

of maintenance activities together with compatible vessels to form a list of feasible

maintenance plans. They �nd this cluster-matching approach compares favourably

with commercial solvers, particularly for instances containing less than 15-20 tasks.

Dawid et al. (2018) extend this to include probabilities of successfully completing

tasks. Stock-Williams and Swamy (2018) utilise a genetic algorithm metaheuristic to

create vessel routes that allow for a degree of task prioritisation inside vessel routes.

The �tness of each vessel route is later evaluated through a simulator.

We believe a more realistic model of o�shore operations lies in the form of a cumu-

lative capacitated vehicle routing problem (CCVRP). This problem di�ers from the

standard CVRP since the objective is to minimise the sum of arrival times to loca-

tions rather than the total cost of the routes. It often occurs in disaster management

settings such as earthquakes, where it is important to reach as many victims as soon

as possible Campbell et al. (2008), Rivera et al. (2015).

Multiple works employ an adaptive large neighbourhood search (ALNS) procedure

to solve larger instances and variations of the classical CCVRP. Ribeiro and Laporte

(2012) illustrate the bene�ts of ALNS compared to other methods on a set of classical

benchmark instances. Li et al. (2016) use an ALNS procedure to solve a pick-up and

delivery problem with pro�ts and reserved requests in a collaborative logistics setting.

There are a set number of reserved requests which must be completed within the time
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window and an additional number of selective requests which can be carried out if

determined to be pro�table.

The CCVRP forms the basis of the more accurate downtime losses used by Stål-

hane et al. (2015) wherein corrective tasks are penalised until their completion, yet

preventive tasks are only charged whilst being worked on. Their MILP models a sin-

gle shift and is reformulated into a path-�ow model via Dantzig-Wolfe decomposition.

The e�ects of this model under uncertainty is considered by Irawan et al. (2019) who

use it as the basis of a simulation-optimisation algorithm. The deterministic prob-

lem is �rst solved with a large neighbourhood search to e�ciently create high quality

routes before a simulation tool is used to evaluate the underlying parameters such as

vessel travel and personnel transfer time, previously assumed to be deterministic.

We utilise the adaptive large neighbourhood search (ALNS) framework �rst pro-

posed by Ropke and Pisinger (2006a) for vehicle routing problems. ALNS extends

the large neighbourhood search heuristic of Shaw by incorporating multiple destroy

and repair operators within the same search space. During each iteration a pair of

operators are probabilistically selected based on their historical performance relative

to the other combinations. It has been successfully applied to a variety of rich vehicle

routing problems (Aksen et al. (2014),Grangier et al. (2016). The direct application

of ALNS in our context is more challenging because of the desire to include optional

preventive maintenance of variable duration and the separation of work completion

from arrival times. This results in the breakdown of the assumption of a �xed time

between a drop-o� and pick-up activity. We overcome this di�culty by decoupling

the timing aspect of the problem from the route sequencing. The binary variables of
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the mathematical model corresponding to the turbine visits and the vessel routes are

managed by the removal and repair operators of the ALNS. The continuous variables

denoting the arrival times to the given locations and amount of work performed are

determined by solving the mathematical model with the binary variables �xed for a

given route or through a simple heuristic.

3.3 Mathematical Model

We now introduce our mathematical model of the o�shore wind farm maintenance

routing (OWFMRP) problem in order to state the OWFMRP in a precise fashion.

The main di�erences between the model described in this section and the model

described in Chapter 2 are as follows. Firstly, this model is a continuous time model

instead of a discrete time period model. Secondly, the objective of the model no longer

includes the minimisation of technician and vessel time o�shore. Thirdly, this model

partitions the node set into two groups: one for pick-up and one for drop-o�. Vessel

routes must drop-o� technicians at the drop-o� node and pick-up personnel from the

pick-up node. Finally, we longer explicitly model technicians when they are present

on a turbine. If they are on a turbine, they are assumed to be performing work.

3.3.1 Notation

The OWFMRP is de�ned on a complete undirected graph G = (N,E). The set of

nodes Nd = {1, . . . , n} and Np = {n + 1, . . . , 2n} represent the drop-o� and pick-up

nodes of all tasks respectively. The port at node {0} hosts a set of heterogeneous
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vessels V = {1, . . . , v} with variable travel costs of Kv which end their respective

routes in a dummy node {2n+ v} respectively. The technician capacity of each vessel

is QCap
v . Each edge has a vessel speci�c travel time Tvij and each node has a transfer

time of τvi before pick-up or drop-o�. These transfer times are the same for pick-up

and drop-o�. Travel times are symmetric and respect the triangle inequality. This

means that the direct travel time of a vessel v between two locations a and b is at

least as fast as the travel time via a third location c, so that Tvab ≤ Tvac + Tvcb.

The planning horizon is comprised of a set of distinct shifts S = {1, . . . , s} with the

length of shift s limited to TMax
s . The task at turbine i, i = 1, . . . , n has a drop-

o� node i and a pick-up node n + i, a duration Di, a technician demand Pi and a

classi�cation as either corrective or preventive maintenance. For the pick-up node we

de�ne Pi+n = −Pi. The set of turbines with corrective maintenance tasks i ∈ NCorr

accrue losses of vi > 0 from the start of the shift until their completion, whereas

preventive maintenance tasks i ∈ NPrev provide a bene�t vi only whilst being worked

on. A scaling term δ is included to penalise corrective tasks not completed within the

planning horizon more severely. Both corrective and preventive maintenance tasks

can be ignored if it leads to a more pro�table solution.

The aim of the OWFMRP is to de�ne a set of vessel routes starting and ending

at port, which collectively visit the drop-o� and pick-up nodes of a subset tasks

in order to complete the most valuable combination of maintenance. Each route

must not require more technicians than the vessel capacity and �nish within the

duration of the shift. We seek to minimise the lost revenue accrued before corrective

tasks are completed, in conjunction with the bene�t of working on variable preventive
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maintenance.

We use the following decision variables in the model:

• xsvij, equals to 1, if vessel v travels directly along arc (i, j) in shift s; 0, otherwise.

• ysvi, equals to 1, if vessel v visits location i in shift s; 0, otherwise.

• csi , time that a vessel arrives to location i in shift s.

• qsvi, number of technicians onboard vessel v after visiting location i in shift s.

• ti, completion time of corrective task at turbine i.

• wi, amount of time spent working on preventive task i.

• ãsi , equals to 1, if the turbine i which contains a corrective task is visited in shift

s; 0, otherwise.

• ai, equals to 1, if the turbine i which contains a corrective task is completed; 0,

otherwise.

3.3.2 Formulation

min
∑

i∈NCorr
p

viti −
∑

i∈NPrev
p

viwi +
∑
v∈V

∑
i∈N

∑
j∈N

∑
s∈S

KvTvijx
s
vij (3.3.1)

∑
i,j∈Nd∪Np
∪{0,2n+v}

i 6=j

Tvijx
s
vij +

∑
i∈Nd∪Np

τviy
s
vi ≤ TMax

s , ∀v ∈ V,∀s ∈ S (3.3.2)

∑
j∈Nd∪Np∪{2n+v}

xsv0j = 1, ∀v ∈ V,∀s ∈ S (3.3.3)
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∑
j∈Nd∪Np∪{0}

xsvj,2n+v = 1, ∀v ∈ V,∀s ∈ S (3.3.4)

yvis =
∑

j∈Nd∪Np∪{2n+v}
j 6=i

xsvij , ∀v ∈ V,∀i ∈ Nd ∪Np, ∀s ∈ S (3.3.5)

yvis =
∑

j∈Nd∪Np∪{0}
j 6=i

xsvji, ∀v ∈ V,∀i ∈ Nd ∪Np, ∀s ∈ S (3.3.6)

csi ≥ csj + Tvji + τvi −M(1− xsvji), ∀v ∈ V,∀i ∈ Nd ∪Np ∪ {2n+ v}, (3.3.7)

∀j ∈ Nd ∪Np ∪ {0}, i 6= j,∀s ∈ S

cs0 = 0, ∀s ∈ S (3.3.8)∑
v∈V

ysvi = ãsi , ∀i ∈ Nd ∪Np,∀s ∈ S (3.3.9)

ai ≤ ãsi , ∀i ∈ NCorr
p (3.3.10)

csi ≤ TMax
s ãsi , ∀i ∈ Nd ∪Np,∀s ∈ S (3.3.11)∑

s∈S
csi −

∑
s∈S

csi−n ≥ Diai, ∀i ∈ NCorr
p (3.3.12)

∑
s∈S

csi −
∑
s∈S

csi−n ≥ wi, ∀i ∈ NPrev
p (3.3.13)

ti ≥
s−1∑
u=1

TMax
u ãsi + csi , ∀i ∈ NCorr

p ,∀s ∈ S (3.3.14)

ti ≥ δ
s∑

u=1

TMax
u (1− ai), ∀i ∈ NCorr

p ,∀s ∈ S (3.3.15)

qsvi ≥ qsvj + Pj − (QCapv + Pj)(1− xsvji), ∀v ∈ V,∀i ∈ Nd ∪Np ∪ {2n+ v}, (3.3.16)

∀j ∈ Nd ∪Np ∪ {0}, i 6= j,∀s ∈ S

xsvij ∈ {0, 1}, ∀v ∈ V,∀i, j ∈ Nd ∪Np ∪ {0, 2n+ v}, ∀s ∈ S

(3.3.17)

ysvi ∈ {0, 1}, ∀v ∈ V,∀i ∈ Nd ∪Np, ∀s ∈ S (3.3.18)

csi ≥ 0, ∀i, j ∈ Nd ∪Np ∪ {0, 2n+ v},∀s ∈ S (3.3.19)
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0 ≤ qsvi ≤ QCapv , ∀v ∈ V,∀i, j ∈ Nd ∪Np ∪ {0, 2n+ v}, ∀s ∈ S

(3.3.20)

ti ≥ 0, ∀i ∈ NCorr
p (3.3.21)

Di ≥ wi ≥ 0, ∀i ∈ NPrev
p (3.3.22)

ãsi ∈ {0, 1} ∀i ∈ Nd ∪Np, ∀s ∈ S (3.3.23)

ai ∈ {0, 1} ∀i ∈ NCorr
p (3.3.24)

The objective function (3.3.1) minimises the net cost of the solution from the sum

of the lost revenue accrued before corrective tasks are completed subtracted by the

bene�t from working on preventive tasks and the total vessel transportation costs.

Constraints (3.3.2) limit the duration of a vessel route to the length of its shift.

Constraints (3.3.3) and (3.3.4) ensure that each vessel must leave the port and return

back to it at the end of the route. Constraints (3.3.5) establish that if a vessel visits

a drop-o� or pick-up node it must depart onwards to another location. Similarly

constraints (3.3.6) provide an immediate predecessor to a visited node. Constraints

(3.3.7) specify that if location i is visited directly after location j by vessel v, then the

di�erence between their arrival times must be at least Tvji + τvi. M is a su�ciently

large positive constant. Constraints (3.3.8) set the departure time of all vessels in

port to zero, whilst constraints (3.3.9) ensures that at most one vessel can visit each

location in a shift. Constraints (3.3.10) allows work to be performed on corrective

tasks in a shift without necessarily completing the task and constraints (3.3.11) force

the arrival to time to unvisited locations to zero. Constraints (3.3.12) and (3.3.13)



CHAPTER 3. HEURISTIC METHOD 85

determine the amount of time spent on corrective and preventive maintenance tasks

respectively. Constraints (3.3.14) calculate the completion time for �nished corrective

tasks, whereas constraints (3.3.15) ensure extra penalised downtime losses accrue for

the entire planning horizon for incomplete tasks. Constraints (3.3.16) deal with the

technician load of the vessels. Finally constraints (3.3.17-3.3.24) de�ne the nature of

the decision variables.

The formulation is a less compact version of the models derived from Stålhane

et al. (2015) versions since we consider variable preventive maintenance durations

and include explicit variables for if tasks are executed. We choose this form to allow

us to model vessels visiting turbines without necessarily completing tasks within the

same shift. For example we might complete the majority of a preventive task in the

�rst shift and the remainder in the subsequent shift. Additionally we no longer impose

the task duration as a hard constraint for time spent on a turbine or between visits,

we have a softer form which penalises costs until technicians are picked up.

The outlined formulation contains a large number of binary, integer and continuous

variables and is unable to be solved e�ciently using optimisation software. After

thirty minutes of computational time Gurobi reported an optimality gap of 51.17%

when dealing with just fourteen corrective maintenance tasks and three vessels. Our

industrial partners indicated their desire for a solution to be produced in less than

thirty minutes, which ruled out the use of an exact formulation for all but very small

instances. The di�culty in solving instances with multiple vessels and more than 12

tasks matches with our �ndings from Chapter 2, so we conclude that simply solving

the mathematical model is impractical for realistic sized instances containing more
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than twenty tasks.

We note that 3.3.7 and3.3.16 are the classic Miller,Tucker and Zemlin constraints

for the temporal and capacitated aspects of the OWFMRP respectively (Miller et al.,

1960). These can be lifted to form tighter constraints as described by Desrochers and

Laporte (1991) for a variety of routing problems. We experimented with including or

excluding the lifted versions of the MTZ constraints, however we found them their

inclusion did not allow us to solve any larger instances of our model to optimality.

The reasons for this could be investigated further, however we chose not to focus on

this as our goal was to provide a heuristic for large problem instances.

3.4 Solution Framework

In this section we de�ne the decomposition strategy to solve the problem. The moti-

vation for this is to reduce the complexity of the overall OWFMRP by decomposing

the problem into two smaller sub-problems that are each easier to solve. The binary

variables xsvij, y
s
vi and a

s
i are handled by the removal and repair operators of an ALNS

procedure, whereas the continuous variables csi , ti and wi are determined from a timing

sub-problem.

We choose this decomposition structure for three reasons. Firstly it provides for

an e�cient calculation of the amount of preventive maintenance work performed,

including cases where it might be bene�cial to delay a pick-up from a completed

corrective maintenance task. Secondly it caters for the potential inclusion of drop-

o� and pick-up nodes of the same task being visited by di�erent vessels. This is an
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emerging development in o�shore systems, as new vessels contain swipe-on and swipe-

o� technician access systems. These systems can allow for technicians' locations to be

tracked throughout the day across di�erent vessels. Finally we can embed feasibility

checks into the sequencing sub-problem as equipment loads, technicians, and skill

types can be generated from the sequence of visits a priori to the timing sub-problem.

In a similar vein to Adulyasak et al. (2012) we refer to the algorithm as an

optimisation-based adapative large neighbourhood search (Op-ALNS), since the de-

composed timing sub-problem can be handled with exact methods. The pseudocode

for our ALNS procedure is given in Algorithm 1 with more details outlined later in

Section 3.4.2.
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Data: Instance data; Set of operators O

S ← simple construction heuristic;

Sbest ← S;

T ← Tstart;

Initialise weights and scores of operators;

for seg ← 1 to Nsegs do

Select the policy for operators;

for iter ← 1 to Niters do

Select the destroy, repair operators O−, O+ via roulette wheel selection

of operator weights;

Apply operators O−, O+, S → S ′;

if S ′ feasible then

if f(S ′) < f(S) or Unif(0, 1) < e
f(S)−f(S′)

T then

S ← S ′;

if f(S) < f(Sbest) then Sbest ← S;

end

end

Update scores of O−, O+;

T ← T ∗ c;

end

Update the weights and reset scores of the operators;

Call local search procedure on S;

if f(S) < f(Sbest) then Sbest ← S;

end

return Sbest, f(Sbest)
Algorithm 1: ALNS procedure



CHAPTER 3. HEURISTIC METHOD 90

3.4.1 Timing Sub-Problem

The output of the removal and repair operators can be thought of as creating a

sequence of locations to be visited for each vessel. Note that the sequence of tasks

proposed by the removal and repair operators will be a feasible assignment of tasks

to vessels, but not necessarily a feasible sequence of visits for each vessel route. In

the timing sub-problem we clarify this and determine the optimal arrival times and

hence task completions for the planned visits. We �x xsvij, y
s
vi to their value from the

sequencing sub-problem in the full mathematical model (3.3.1)-(3.3.24) to form the

timing sub-problem. The work completion variables ai can be dealt with in two ways.

We can either assume their values from the proposed routes, so that if a location is

included in a route it must be visited and worked to completion. However it is possible

that a better solution could be obtained in some circumstances by potentially omitting

work at certain locations from the routes. The cumulative aspect to the problem

means that any travel time directed towards wasteful tasks is heavily penalised in the

corrective downtime losses. This can be avoided by assuming that work is performed,

but not necessarily completed, if a turbine is visited in a shift. This is equivalent

to allowing only the ai variables to remain un�xed in the timing sub-problem. The

resulting model becomes mixed integer albeit with only a few binary variables and

the proposed routes trimmed afterwards if tasks are ignored.

Timing Sub-Problem Simpli�cation

Whilst our results have shown that this sub-model remains tractable for the instance

sizes we wish to tackle, it may be harder to directly incorporate within the ALNS
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procedure. Our practical implementation revealed that the frequent creation and

solving of the sub-problem took longer than expected. Deeper analysis indicated that

the despite its simplicity, repeatedly updating and �xing binary variables formed a

temporal bottleneck on the process. This lag was an order of magnitude larger than

the solving time of the MILP vastly reducing the number of iterations that could be

performed in a �xed time. We therefore deemed this direct approach unbene�cial

because of its associated computational complexity.

For practical use it may be su�cient to solve a restricted form of the sub-model

with additional assumptions. In this case the aim would be to complete as many, if not

all of the corrective tasks, before squeezing in additional preventive maintenance. This

requires the assumptions that the losses per unit time of corrective tasks is strictly

bigger than the bene�t per unit time of any preventive tasks, which in themselves

are strictly bigger than the routing costs and that all corrective tasks in a route are

completed. As we illustrate later these are natural assumption for realistic instances

which allow us to determine the total cost of vessel routes directly.

The variability in preventive maintenance makes it natural to model its inclusion

as a two step process. The �rst step requires the calculation of arrival times to

tasks assuming corrective tasks are always completed and zero work is performed on

preventive tasks. Any slack time found at the end of a vessel route should then be

repurposed into time spent working on preventive tasks in the subsequent step. As the

inclusion of preventive work impacts subsequent tasks, we �rst examine the marginal

e�ects of delaying existing activities in a vessel route.

The marginal bene�t of moving implicit slack past a given location depends on
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its type. Table 3.4.1 lists the possible combinations which depend on several factors.

For example delaying a corrective drop-o� causing additional downtime costs at the

rate of ω per minute. We do not consider moving the preventive maintenance slack

from T ∗p to locations preceding T ∗d as it would imply the corrective maintenance task

itself becomes incomplete. An example case is illustrated in Figure 3.4.1. Each of the

positions (↑) is a candidate for having the implicit slack reassigned to. Every position

the slack is moved past causes the accumulation of marginal bene�ts according to the

outlined rules. Thus the total bene�t is determined from the summation of all the

marginal bene�ts of locations past which the implicit slack is moved. For example

the total bene�t at posn4 is 0 − ω2 − ω9 + ω1, since the implicit slack would need

to be moved prior to a preventive pick-up, a preventive drop-o� and a corresponding

corrective drop-o� and pick-up. Notice the correction to T9d in order to avoid double

penalising delay to corrective tasks. We note that this is essentially the same situation

as the slack presenting itself at the end of the shift. In that case the T ∗d and T ∗p would

be replaced by the port.
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Type Partner Marginal Bene�t

Corrective drop-o� Its pick-up after T ∗p -ω

Corrective pick-up Its drop-o� before T ∗d -ω

Preventive drop-o� Its pick-up after T ∗p -ω

Preventive pick-up Its drop-o� before T ∗d +ω

Corrective drop-o� Its pick-up before T ∗p 0

Preventive drop-o� Its pick-up before T ∗p +ω

Table 3.4.1: Marginal bene�ts for delaying maintenance activities due to inserting

slack.

𝑇𝑑
∗ −𝜔5 𝑇𝑑

∗𝜔3 0 −𝜔2 −𝜔9 𝜔1 𝑇𝑑
∗

Corr
T5d

Prev
T3p

Corr
T9d

Prev
T2d

Corr
T9p

Prev
T1p

Slack

𝑃𝑜𝑠𝑛6 𝑃𝑜𝑠𝑛5 𝑃𝑜𝑠𝑛4

𝐵4= 0-𝜔2-𝜔9+𝜔1

𝑃𝑜𝑠𝑛3 𝑃𝑜𝑠𝑛2 𝑃𝑜𝑠𝑛1 𝑃𝑜𝑠𝑛0

Figure 3.4.1: Analysis of marginal bene�t of moving slack around a route.

Assuming the slack originates in Posn0 with valuePosn0 = 0 then we can recursively
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compute the value of the preceding positions Posn1, Posn2, . . . , Posnn.

∀n ≥ 1, BenefitPosnn = BenefitPosnn−1 +



+ω, if Posnn is a preventive pick-up

0, if Posnn is a corrective drop-o�

& corresponding pick-up already delayed

−ω, otherwise

(3.4.1)

Under the assumption that we want to place the slack into a position containing as

large a cumulative bene�t as possible, Equation 3.4.1 shows us that we should never

choose a −ω location. This corresponds to only ever placing the slack in front of either

a corrective drop-o� with the corresponding pick-up also delayed before T ∗p or directly

before a preventive pick-up. We choose to only consider ending on a +ω position

rather than a 0 valued position. In this case the surplus slack will be associated with

the travelling from a corrective drop-o� to a preventive pickup. The option to delay

the departure time gives more freedom to complete the corrective maintenance task in

practice. The mathematical formula is equivalent to the logical case described earlier

as it only relies on the assumption that every ω > 0.

Net bene�t of

preventive pick-up

in Posni

=



Preventive

bene�t

of task i


−



Costly delays

to subsequent

corrective pick-ups


+



Bene�cial delays to

later preventive pick-ups

that started before i


(3.4.2)

We formalise this approach mathematically in Equation 3.4.3, where we de�ne Bi

as the net bene�t of delaying the pick-up activity of preventive maintenance activity
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i.

Bi = ωi −
∑

j after i
j∈NCorr

p

ωj +
∑

k after i
k∈NPrev

p

k−n before i

ωk (3.4.3)

The bene�t calculation is comprised of three terms. The �rst term is the pure bene�t

from performing work on a preventive task, whereas the remaining terms quantify the

e�ects on subsequent corrective and preventive tasks respectively. Additional time

assigned to preventive task i will delay the arrival to any subsequent corrective pick-

up nodes in the same route. Costs will continue to accrue for these tasks despite the

work being �nished. Preventive tasks which overlap the task, de�ned by their drop-o�

node being visited before i and their pick-up node after, provide bene�t as scheduled

work at i will similarly occur on them.

Our heuristic for assigning preventive work applies the available slack time to tasks

with the highest bene�t preference to the tasks with the highest bene�t. This process

continues until either all the slack time is applied or there are no more locations with

positive bene�t available. The assumption that corrective tasks must be completed

often means that surplus time separates consecutive locations in routes. A second

update procedure allows for surplus time associated with preventive tasks to be shifted

around locally to yield greater bene�ts. For simplicity and computational speed we

only consider moving the surplus time to preceding tasks. Both of these steps are

described in Algorithm 2 for a given vessel route.
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Data: Route sequence R1:n, slack, net bene�ts B

Sort B such that i < j =⇒ Bi > Bj;

for q ← 1 to |B| do

if slack > 0 and Bq > 0 then

for l ∈ Rroute.index(q):n do

Cs
l ← Cs

l + min(slack,Dq);

end

slack ← slack −min(slack,Dq);

end

end

for q0, q1 ∈ Rn−1:1 �Rn:2 do

if q0 ∈ NPrev
p then

availableT ime = Cs
q1
− Cs

q0
;

if availableT ime > Tvq0q1 + τvq1 then

Cs
q0
← Cs

q0
+ availableT ime− Tvq0q1 − τvq1 ;

end

end

end

Algorithm 2: Preventive work assignment heuristic to update the values of timing

sub-problem variables.

Whilst this approach will likely determine the optimum amount of preventive main-

tenance in a given route, we note that it is a heuristic method and as such may not

always provide the optimal solution.



CHAPTER 3. HEURISTIC METHOD 97

3.4.2 ALNS Framework

ALNS was �rst introduced by Ropke and Pisinger (2006a) to generalise the large

neighbourhood search heuristic by utilising multiple removal and repair operators

within the same search procedure. Some of these heuristics attempt to focus the

search around previously discovered high quality solutions whilst other heuristics help

to diversify the search. It can be seen as an extension of large neighbourhood search

(LNS) to include a reinforcement learning layer for choosing which operators to apply.

During each iteration a removal and repair operator combination is selected from

a list according to an adaptive and probabilistic mechanism. These are applied in

succession to destroy a signi�cant percentage of the current solution before repairing

it. This new solution is then accepted or rejected according to an acceptance criterion

such as simulated annealing. The likelihood of reselecting the previous removal-repair

combination is then updated based on its performance. The repeated application of

these steps cause the chance of choosing to be linked with their historical performance.

We now describe the key elements of our ALNS heuristic for the problem.

Neighbourhood size

During each iteration a solution containing L tasks will have a total of dρLe tasks

removed from the solution, where ρ ∈ [0, 1] is the removal fraction. These tasks will

then be gradually reinserted into the routes with only tasks that improve upon the

incumbent solution without violating constraints being kept. Tasks deemed to be un-

pro�table and not inserted in a particular iteration are retained in the task pool. This

pool is merged with the tasks removed from subsequent destroy operators allowing
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the possible reinsertion of tasks later in the algorithm. Every solution produced at the

end of an iteration will be feasible since every corrective and preventive maintenance

task is considered optional.

If the algorithm cannot �nd an improved feasible solution in Γ = 100 iterations,

we double the removal fraction ρ. This helps to avoid repeatedly searching the same

solution space. Additionally, after the �rst 10 iterations we apply each previously un-

selected operator combination to ensure all combinations are applied before the initial

weight calculations. The size of ρ is of crucial importance. If only a small percentage

of tasks in the solution are removed then the bene�ts of large neighbourhood search

will be lost. If a large percentage of the solution is destroyed then the application of

repair operators can be very time consuming and ine�cient at �nding improvements.

We initially set ρ = 0.2 in our experiments in accordance with previous works.

Adaptive search engine

The selection of removal and repair operators should be informed by their previous

performance but not at the total expense of diversi�cation. Previously unsuccess-

ful operators should maintain a small chance of selection in the future, requiring a

probabilistic approach. A weight ωi is associated with each removal-repair operator

combination, which is a guide to the historical performance of combination i in pre-

vious iterations. Assuming a set of n operator combinations, the probability pj of

choosing combination j is controlled by roulette-wheel selection of all the weights,

pj = wj/
∑n

i=1 wi.
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Adaptive weight adjustment

Sets of consecutive iterations are de�ned as segments during which the weights remain

�xed. At the beginning of the ALNS each operator combination weight is set to

one, but these are updated at the end of a segment based on the scores collected

during it. The scores re�ect the success of each operator at �nding new or improved

solutions within the segment. If the operator �nds a feasible solution we update

the operator score by either σ1, σ2, σ3 or σ4. A reward of σ1 = 10 is given should

a new globally best solution be discovered, σ2 = 5 for an undiscovered and σ3 = 3

for a rediscovered solution that improves upon the incumbent respectively. σ4 = 1

is awarded if a worse solution is accepted through a stochastic acceptance criteria.

We assume σ1 > σ2 > σ3 > σ4 as there is a clear hierarchy in the properties of new

solutions. This follows the approach of Li et al. (2016).

Once a segment is completed the next set of adaptive weights are calculated from

the existing scores before they are reset to zero for the next segment. Let wi,seg

be the weight of operator combination i in segment seg, timei,seg be the total time

combination i was used and scorei,seg its resulting score. Then

wi,seg+1 =


wi,seg, if scorei,seg = 0.

(1− η)wi,seg + η
scorei,seg
timei,seg

, otherwise,

(3.4.4)

where η ∈ [0, 1] is a reaction factor which controls the speed of blending between the

historical operator performance and its most recent scores. η = 1 implies that weights

are purely controlled by the score to computational time ratio in the previous segment,

whereas η = 0 simply maintains the previous weight. As our experiments have a
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limited computational time we scale scores by the total running time rather than

their frequency. This helps to incentivise quick and e�cient operator combinations.

We set η = 0.7 in our experiments.

Acceptance and stopping criteria

Acceptance criteria within meta-heuristics can be classi�ed as either deterministic

or stochastic. Deterministic methods produce the same decision regardless of any

exterior factors. Stochastic methods produce results that depend on the state of the

search and often involve probabilistic actions. We include simulated annealing, time

dependent simulated annealing and great deluge as stochastic acceptance criteria in

our study. The deterministic acceptance criteria of only allowing improving solutions

is also considered.

The most common stochastic acceptance method often employed within ALNS

procedures is simulated annealing. It speci�es that improving solutions should always

be accepted, whilst worse solutions are to be accepted with a given probability. This

probability depends on the cost of the proposed move and the state of the search,

which helps to reduce the chance of the method getting trapped in a local optima.

The process is underpinned by the temperature T which is gradually reduced during

the search by multiplication with a cooling constant 0 < c < 1, so that the probability

of accepting a worse solution correspondingly lowers. The formula for this probability

is

p = e−
∆f
T , (3.4.5)

where ∆f = f(S)−f(S ′) is the change in cost from the proposed move. T is initially
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set to Tstart , which is computed from the choice to accept a solution 30% worse than

the initial solution with a probability τ = 20%. When T eventually reaches zero the

process reduces to the deterministic approach of only accepting improving solutions.

Simulated annealing has also been extended to a variety of settings. Bilgin et al.

(2006) adjusted the formula for limited computational time to accept non-improving

solutions with a probability at time t governed by the following equation

pt = e

−∆f

∆F(1− t
T ) , (3.4.6)

where ∆f is the change in the cost from the proposed move at time t, ∆F is the

range for the maximum change in the objective function, T is the time limit and t is

the current time within the search.

The great deluge algorithm was �rst proposed by Dueck (1993) and is based on

a stochastic framework which allows improving moves by default. The decision of

whether to accept a worsening move depends on if its quality is better than an expected

cost. The common analogy with nature describes this expected cost as a gradually

rising water level in which a person climbing a hill will try to move in any direction

in order to avoid getting their feet wet. For our minimisation problem with limited

computational time, the water level is set equal to the cost of the initial solution. It

decreases linearly in proportion with the remaining time

τt = f0 + ∆F

(
1− t

T

)
, (3.4.7)

where ∆F is the expected maximum change in the objective function, f0 is the ex-

pected �nal cost, T is the time limit and t is the current time within the search. As

f0 is unknown it can be replaced with a suitable lower bound. Great deluge has an
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advantage over simulated annealing in the sense it requires fewer parameters to be

�xed.

3.4.3 Removal (O−) and Repair (O+) Heuristics

This section describes seven removal heuristics and four repair heuristics. Given the

set of tasks currently contained in the vessel routes L and a removal fraction ρ ∈ [0, 1],

each removal operator removes a total of dρ|L|e tasks from the routes. A degree of

randomisation is associated with the removal operators, using the approach of Ropke

and Pisinger (2006a) p ≥ 1 in order to help diversi�cation. Our randomisation scheme

picks the bU(0, 1)3|L|cth item from a ranked list, where U(0,1) is a random number

generated from the standard uniform distribution.

Random removal heuristic

This simple removal heuristic removes a total of dρ|L|e tasks from the current solution

S. The advantage of including this operator is to enhance the diversi�cation of the

explored solutions.

Least expensive removal heuristic

This heuristic emphasises the fact that it is more bene�cial to perform tasks with

greater downtime costs suggesting that the least expensive tasks are better candidates

for removal.
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Price similarity removal heuristic

This heuristic attempts to remove tasks that are most similar in price to an initial seed

removal request subject to randomisation. A price similarity measure can be de�ned

between two tasks i and j according to their price di�erence, P (i, j) = |pi− pj|. This

makes the heuristic biased towards removing tasks that can be easily interchanged,

given the expectation that reshu�ing them is more likely to produce better solutions.

Shaw removal heuristic

The Shaw removal heuristic employed by Ropke and Pisinger (2006a) and Shaw (1997)

expands the notion of similar tasks to examine more features. A seed task i is ran-

domly selected from the tasks contained in the incumbent solution, which is used to

de�ne the similarity S(i, j) between itself and another task j. The lower the S(i, j)

the more similar the two tasks are. We use a similarity measure consisting of three

terms: a distance term, an arrival time term and a technician term. These terms are

weighted using α, β and γ respectively. Each term is scaled to be inside [0, 1] as α, β

and γ correspond to the maximum possible inter-turbine distances, arrival times and

technician di�erences respectively.

S(i, j) =

√
d2
i,j + d2

i+n,j+n

α
+
|Ci − Cj|+ |Ci+n − Cj+n|

β
+
|Pi+n − Pj+n|

γ
(3.4.8)

Neighbour removal heuristic

Ropke and Pisinger (2006b) and Ribeiro and Laporte (2012) suggest the use of an-

other class of removal heuristics that make use of the existing historical information
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when removing tasks. This may be a bene�cial inclusion but can counteract the diver-

si�cation bene�ts from the overall ALNS procedure. The neighbour removal heuristic

stores information in a complete, directed and weighted graph called the `neighbour

graph', an example of which is shown in Fig 3.4.2a. Each node represents a location

that has been been visited in the problem. Initially all edge weights are set to in�nity

(∞). The weight of edge (i, j) in the graph represent the best objective value found

among solutions for which i is visited directly before j. These weights are updated,

if necessary, whenever a new ALNS solution is discovered. The choice of which tasks

to consider for removal is informed by calculating a score for each task in the current

solution by examining the state of the neighbour graph. We determine the score of

a given task by summing the weights of arcs leaving both its drop-o� and pick-up

locations. Tasks with high scores are more likely to be misplaced and can be removed

with the goal of reinserting them into superior positions later. Some randomisation

is included to ensure we don't only remove tasks with the highest score.

Request historical removal heuristic

This heuristic also uses historical information to remove tasks from the routes, but

focuses on vessel routes rather than predecessor-successor relations. The information

is stored in a complete, weighted and undirected graph called the `request graph`

where each node represents a task's drop-o� or pick-up location. All the edge weights

are initially set to zero. The cost of the edge (i, j) is de�ned as the number of times

i and j have been visited by the same vessel in the best B solutions found so far

in the search. When a solution better than an existing solution among the top-B
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is discovered it replaces it causing the request graph to be updated accordingly. In

our computational experiments we use B=20. Task i and task j are considered more

similar if they have higher edge weights connecting them. Speci�cally the similarity of

task i and j is constructed from the pairwise connections, Sij = Ei+d,j+p +Ei+d,j+d +

Ei+p,j+p + Ei+p,j+d. More similar tasks can then be removed in the same method as

outlined for the Shaw removal heuristic.

(a) Neighbour removal heuristic. Part of the

neighbour graph involving the task at tur-

bine 1. The best solution found so far with

a location directly succeeding T1d is T2p

with a cost of 10681. (Other edges have been

omitted for clarity.)

(b) Request historical removal heuristic.

Part of the request graph involving the task

at turbine 2. The similarity between task

1 and task 2 is (3+2+3+1)=9. (Some edge

weights have been omitted for clarity.)

Figure 3.4.2: History based removal heuristics
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Smallest objective value increase removal heuristic

This heuristic is designed to remove tasks which provide the lowest bene�t in the

current solution S so that they can be potentially inserted later in better positions.

This often corresponds to removing corrective tasks with the lowest e�ect on total

downtime costs accumulation or preventive tasks with little or no work performed.

The cost of removing a task from solution S is de�ned as f(S ′)− f(S), given f(S ′) is

the value of the timing sub-problem with task i omitted. This is calculated for every

task contained in the routes and requires invoking the timing sub-problem to evaluate

every proposed intermediate solution S ′. The cumulative aspect of the problem makes

it possible that removing a task from the routes lowers the overall cost of the solution.

The heuristic then randomly removes a less detrimental task based on the ranked costs

of removing each task. The entire process is then repeated until the necessary number

are removed, as shown by Algorithm 3.
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Data: Solution S containing initial L∗ tasks, ρ ≥ 1

D is the set of removed tasks;

while |D| < dρL∗e do

L→ tasks in S;

for i ∈ L do

Cost−(Li, S) = f(S \ {Li})− f(S ′);

end

Sort L such that i < j =⇒ Cost−(Li, S) < Cost−(Lj, S);

k ← bU(0, 1)3|L|c;

D ← D ∪ {Lk};

S ← S \ {Lk};

end

return S,D;

Algorithm 3: Smallest objective value increase removal heuristic

Random repair heuristic

We include the naive random repair heuristic primarily as a check that the adaptive

operator selection is working correctly. It randomly chooses two locations in a vessel

route and inserts the drop-o� and pick-up of a given task in an order respecting

their precedence. It is not expected to provide good solutions, but can help with

diversi�cation and bene�ts from its speed in being an O(1) operation.
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Sequential greedy repair heuristic

This heuristic is a classic sequential insertion heuristic that seeks to minimise the cost

of repairing solutions by inserting tasks into their immediate best position. We de�ne

∆zvi to be the cost reduction from inserting the pick-up and drop-o� nodes i and i+n

of task i into the positions of vessel route v that produce the largest possible decrease

in total cost. The maximum cost reduction among the vessels maxv∈V {∆zvi} is then

selected to determine the location for insertions. If a task cannot be inserted in a

route or maxv∈V {∆zvi} < 0, it is not added and is returned to the task pool. The

complexity of this heuristic is reduced by processing each task in P in a sequential

order and therefore only requires O(P) operations.

Greedy repair heuristic

This heuristic extends the sequential repair to the classic greedy repair framework.

Rather than evaluating tasks in a particular order, the task i with the globally most

pro�table insertion is selected. This process is repeated until P contains no tasks with

pro�table potential insertions and takes O(P2) operations.

Regret repair heuristic

The regret repair heuristic has the advantage of recognising the limited possibilities

for task insertions earlier than greedy based heuristics and tries to account for this.

We de�ne z1
vwi as a variable that indicates the cost of placing a task in its best position

i in its best vessel route and z2
vwi its second best vessel route. A regret value is then

calculated for each task i in P as the di�erence in cost savings between inserting i in
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its best and second best route. The task with maximum regret value is then inserted

at its best position. This can be extended to a general regret-κ heuristic by including

the cost di�erences up to the κth best route combination, with the task Ri chosen for

insertion.

Ri = arg max
κ∑
j=2

(∆z1
vwi −∆zκvwi) (3.4.9)

As a result, requests with a high regret value will be inserted �rst in an attempt to

preserve valuable positions for later tasks. The regret-2 repair heuristic we utilise is

computationally expensive relative to the greedy heuristics since it requires O(P3)

operations.

3.4.4 Local Search

Following the approach of Li et al. (2016) we include a local search component within

the ALNS metaheuristic. This is applied at the end of each segment to steadily

improve solutions and keep running times to an acceptable length. A total of nmoves =

3 moves are randomly selected from the list and applied in the order listed below.

Each move explores all the feasible possibilities before choosing the best option. This

is repeated until no more improvements can be found. At this point the local search

moves to the next type of neighbourhood. The moves outlined below assume that

drop-o� and pick-up nodes of the same task are visited by the same vessel, but can

be generalised if the nodes are split.

• Intraroute relocate: the drop-o� and pick-up nodes of a task are moved to

di�erent positions in the same vessel route.
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• Interroute relocate: a task is removed from a vessel and reinserted in another.

• Intraroute exchange: a pair of tasks within the same vessel route are exchanged.

• Interroute exchange: a pair of tasks contained on separate vessel routes are

exchanged.

• Pro�table task insertion: insert tasks from the pool following a greedy procedure

if it improves the objective.

• Pro�table task removal: remove tasks from the solution following a greedy pro-

cedure if it improves the objective.
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3.5 Computational Results

The geographic layout of an o�shore wind farm can have a signi�cant impact on the

design of routes for conducting O&M activities. Initial o�shore wind farms arranged

turbines in a traditional square lattices with a typical inter-turbine separation of

around 1km. Existing analysis tends to be performed on wind farms of this shape

Dawid et al. (2017), or commonly seen variations such as trapezoidal layouts. Newly

emerging wind farms optimise turbine placement based on predicted wind speeds

and foundation costs Fischetti and Pisinger (2018), which leads to irregular spatial

structures such as that found in Fig. 3.5.1. This structure has been provided by our

industrial partners as a realistic example of a future o�shore wind farm, which we use

as the basis for our experiments. Some turbines have been deliberately omitted and

distances rescaled to ensure anonymity. The port is located 45 km south east of the

centre of the wind farm.
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Figure 3.5.1: Example of a future o�shore windfarm layout.

We perform computational experiments on an instance set with characteristics

de�ned by Table 3.5.1. Individual task pro�les were designed in accordance with

previous works and validated with data from our industry partner. We consider

instances involving 3-4 vessels, 20-26 tasks and 20-40 technicians. This will allow us

to model instances that are resource restricted in terms of having either insu�cient

numbers of technicians or vessels. We later refer to speci�c instances as a-b-c, where

a is the number of vessels, b the number of tasks and c the number of technicians

available.
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Corrective maintenance tasks require 2-4 technicians and have typical durations

of 180-450 minutes to ensure they can be completed in a single shift. This variety

is included to provide a more interesting scenario as all the associated turbines are

assumed to be inactive at the start of shift losing potential revenue of £10.8/min.

These values are based on a strike price of £60/MWh on a windy day where power

output is on average 10MW. Small adjustments to the downtime cost have been made

to ensure the model fully prioritises corrective maintenance over preventive tasks. The

same analysis could be repeated for summer work days featuring slower winds which

would result in a much smaller di�erence between preventive and corrective task

downtime costs.

We can also model corrective tasks which have not caused the turbine to be com-

pletely shutdown. The task at T23 is an example where a minor repair has caused

the turbine to be generating electricity at a reduced capacity of 72%. A mixture of

preventive maintenance tasks are modelled with di�erent prioritisations. These levels

are scaled relative to the corrective downtime losses and can be informed by either

stakeholders' preferences or wind conditions since revenue is lost only during task

execution. The fuel consumption of the crew transfer vessels per minute travelled is

approximated to £5/min. Each vessel can transport a maximum of twelve technicians

and travel at a speed of 35km/h. Minor alterations are made to the fuel cost of each

vessel to di�erentiate between them and avoid multiple optimal solutions.

Operations are considered during a single shift of twelve consecutive hours, so

that all vessels must have returned back to port before the time is elapsed. Time to

transfer technicians between vessels and turbines is �xed at 11 minutes independent of
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each vessel and task type. Incomplete corrective maintenance activities are penalised

with an entire day's downtime costs to re�ect the loss of revenue during overnight

conditions between shifts. This is achieved by setting δ = 2.

It is important to note that we have deliberately constructed far more challenging

instances than in previous works or typically found in practice. The reason for this

is twofold. Firstly we believe that as o�shore wind farms start to grow in size larger

routing and maintenance problems will begin to occur and need to be solved. Secondly

larger problems allow us to demonstrate the power of our model to determine the best

times to perform a mixture of corrective and preventive tasks in situations without

an obvious solution. Problems of this scale will make better use of the ability of

the model to not only route vessels and technicians to tasks, but also determine

the best combination of tasks to perform within the shift. Typical workloads might

allow for 3-4 tasks to be completed on average by a vessel per day. Our system is

signi�cantly overloaded with more tasks per vessel than this, in order to guarantee

that the resulting solutions use a large degree of task prioritisation. Despite this we

do not overload the system only with corrective maintenance tasks in order to ensure

a blend of corrective and preventive maintenances tasks are performed.
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Turbine Type Cost Technicians Duration

T11 Prev 3.0 4 420

T86 Prev 3.0 2 420

T3 Prev 5.2 2 420

T20 Prev 5.2 2 420

T32 Prev 3.0 4 420

T67 Prev 3.0 2 420

T24 Prev 3.0 3 420

T78 Corr 10.8 4 180

T55 Corr 10.8 4 240

T73 Corr 10.8 3 450

T45 Corr 10.8 2 180

T19 Corr 10.8 3 180

T81 Prev 5.2 2 420

T59 Prev 3.0 2 1200

T8 Corr 10.8 3 180

T13 Corr 10.8 4 240

T28 Prev 3.0 2 1200

T42 Prev 3.0 3 650

T33 Prev 3.0 2 1200

T9 Corr 10.8 4 240

T1 Corr 10.8 3 180

T23 Corr 7.8 4 240

T68 Prev 3.0 2 1200

T52 Prev 3.0 3 650

T63 Prev 3.0 2 1200

T29 Prev 3.0 4 240

Table 3.5.1: Example task pro�les.
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A sensible idea would be to benchmark the results of our ALNS based heuristic

against the optimal solution to determine the true quality of the heuristic. A simple

approach is to solve the mathematical model described earlier in Chapter 3 to opti-

mality using a mathematical solver, and compare the optimal solution with the best

objective found by our heuristic. However, as described earlier, we can only compare

the results of our heuristic with the optimal solution found from the formulation for

very small instances. As a result we decided to not spend much time benchmarking

our heuristic's performance compared to the optimal solution. Table 3.5.2 shows a

few of the largest instances that we could solve in acceptable computational time.

Tasks #Vessels Optimal soln. Time (s) ALNS soln.

T11,T81,T73,T45,T8,T55,T78 1 23 333.550 265.1 23 333.550

T11,T81,T73,T45,T55,T78, 2 13 979.291 586.2 13 979.291

T11,T81,T73,T45,T8,T13,T55,T78 1 25 121.691 3154.0 25 121.691

Table 3.5.2: Sample benchmarking instances.

Each row lists the tasks included and the number of vessels for the given instance;

all instances included 24 technicians. The last three columns provide the optimal

solution, the best solution found by the heuristic after 30 minutes of run time and the

time taken to solve the model to optimality using Gurobi in Python 2.7. We see that

that for these smaller cases our heuristic successfully reproduces the optimal solution.

This is to be expected as the problem instances are fairly small, but does not give
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any real insight into how well our method will perform as well for more challenging

problem instances. Regardless, our analysis now proceeds on the assumption that

our heuristic will produce high-quality solutions for the larger instances that we are

actually interested in. Rather than benchmarking against the optimal solution, we

will focus on comparing results between di�erent operator selection methods and

acceptance criteria.

We compare four di�erent acceptance criteria on our instance set in conjunction

with either random operator selection or adaptive operator selection. We evaluate the

performance of several variations of the ALNS procedure constructed from alternative

pairings of operator selection methods and acceptance criteria. We pair adaptive

operator selection and random operator selection with the move acceptance criteria

of only allowing improvements, simulated annealing, great deluge acceptance and time

dependent simulated annealing. To ensure fair comparisons, all heuristics were run

thirty times on the same computer after being implemented in Python 2.7.
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|V | |I| P Tot Acceptance Random Adaptive

Best (#) Avg. Sd. Dev(%) Best (#) Avg. Sd. Dev(%)

3 20 20 classicSA 29512.87 30 507.21 451.93 1.31 29 812.89 30 204.37 278.72 2.34

3 20 20 greatDeluge 29606.16 30 403.11 422.45 1.64 29 649.15 30 359.85 354.05 1.78

3 20 20 onlyImprove 29129.83 30 455.98 519.21 0.00 29 300.78 30 404.61 302.00 0.59

3 20 20 timeDepSA 29 743.64 30 465.87 386.14 2.11 29674.78 30 229.56 333.75 1.87

Avg 29 498.13 30 458.04 444.93 1.26 29 609.40 30 299.60 317.13 1.65

3 20 40 classicSA 17 808.99 17 967.08 125.47 0.01 17807.36 17 943.16 132.67 0.00

3 20 40 greatDeluge 17811.22 18 012.66 363.73 0.02 17811.22 18 121.51 412.71 0.02

3 20 40 onlyImprove 17811.22 18 068.81 377.33 0.02 17811.22 18 007.54 280.98 0.02

3 20 40 timeDepSA 17807.36 17 883.45 92.95 0.00 17807.36 17 862.19 104.22 0.00

Avg 17 809.70 17 983.00 239.87 0.01 17 809.29 17 983.60 232.65 0.01

3 26 20 classicSA 43 802.75 46 878.57 1765.70 1.21 43657.44 45 852.60 1722.70 0.88

3 26 20 greatDeluge 43 918.71 46 636.52 1747.90 1.48 43278.34 45 457.06 1845.38 0.00

3 26 20 onlyImprove 43 497.42 47 561.71 2984.81 0.51 43428.07 46 935.50 2173.33 0.35

3 26 20 timeDepSA 43999.88 48 087.38 1692.91 1.67 44 260.71 47 201.02 1756.23 2.27

Avg 43 761.58 47 282.71 2058.50 1.22 43 656.14 46 361.55 1874.41 0.87

3 26 40 classicSA 26846.68 28 286.96 542.76 0.98 27 152.06 28 243.02 456.98 2.13

3 26 40 greatDeluge 26 736.27 27 402.02 440.71 0.57 26730.78 27 687.12 570.76 0.55

3 26 40 onlyImprove 26 695.90 27 722.65 782.52 0.41 26693.59 27 840.65 671.50 0.41

3 26 40 timeDepSA 26 950.86 27 724.17 460.28 1.37 26585.69 27 858.58 581.15 0.00

Avg 26 807.43 27 783.95 556.57 0.83 26 790.53 27 907.34 570.10 0.77

Table 3.5.3: Computational results from three vessel instances using a thirty minute

time limit.
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|V | |I| P Tot Acceptance Random Adaptive

Best (#) Avg. Sd. Dev(%) Best (#) Avg. Sd. Dev(%)

4 20 20 classicSA 29732.66 30 346.14 346.16 1.66 29 752.03 30 340.84 320.38 1.72

4 20 20 greatDeluge 29 743.98 30 403.70 343.20 1.70 29534.04 30 104.66 367.49 0.98

4 20 20 onlyImprove 29247.94 30 281.92 339.40 0.00 29 798.63 30 315.96 251.65 1.88

4 20 20 timeDepSA 29456.99 30 243.68 437.87 0.71 29 729.29 30 121.70 224.37 1.65

Avg 29 545.39 30 358.77 535.42 1.02 29 703.50 30 220.79 290.97 1.56

4 20 40 classicSA 16 316.83 16 416.51 60.86 0.06 16308.46 16 436.93 72.12 0.01

4 20 40 greatDeluge 16307.27 16 319.53 22.92 0.00 16307.27 16 335.34 43.44 0.00

4 20 40 onlyImprove 16307.27 16 332.35 49.53 0.00 16307.27 16 333.50 54.27 0.00

4 20 40 timeDepSA 16306.90 16 332.21 33.26 0.00 16 309.94 16 346.14 42.72 0.02

Avg 16 309.57 16 350.15 41.64 0.02 16 308.24 16 362.98 53.14 0.01

4 26 20 classicSA 44 259.71 46 409.89 1584.69 3.80 43343.52 44 980.78 1449.21 1.65

4 26 20 greatDeluge 43 532.46 46 432.35 1548.89 2.10 42638.37 45 802.84 1753.88 0.00

4 26 20 onlyImprove 43 540.90 46 745.03 2363.30 2.12 43407.47 46 836.29 2808.77 1.80

4 26 20 timeDepSA 44 186.40 47 401.72 1706.02 3.63 43902.57 46 520.60 1788.50 2.96

Avg 43 879.87 46 747.20 1800.72 2.91 43 322.98 46 035.13 1950.09 1.61

4 26 40 classicSA 23526.64 24 126.81 302.21 1.11 23 737.29 24 155.35 254.21 2.02

4 26 40 greatDeluge 23267.88 23 729.39 365.48 0.00 23 292.04 23 588.54 323.12 0.10

4 26 40 onlyImprove 23 304.13 23 875.39 430.36 0.16 23267.76 23 827.74 430.68 0.00

4 26 40 timeDepSA 23 334.47 23 685.78 196.04 0.29 23318.83 23 648.48 200.81 0.22

Avg 23 358.28 23 854.34 323.52 0.39 23 403.98 23 805.03 302.20 0.59

Table 3.5.4: Computational results from four vessel instances using a thirty minute

time limit.

The results of our experiments are summarised in Tables 3.5.3 and 3.5.4. The
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initial column headings refer to the number of vessels available, the total number

of maintenance tasks, the number of technicians present and the acceptance criteria

used. Results are de�ned for both the random operator selection and the adaptive

operator selection methods. We specify the best solution found in thirty runs of

the instance (column Best), the average solution found (column Avg.), the standard

deviation among the results (column Sd.) and the deviation (column Dev %). This

measures the relative quality of results without the knowledge of the true optima

and is calculated as Dev(%)=100(Best - Best)/Best, where Best is the best known

solution obtained by any of the acceptance criteria operator selection combinations

for a given instance. The best values found across selection methods are highlighted

in boldface. We also visualise the spread of the objective values for each combination

in the histograms presented in Figures 3.5.2 and 3.5.3.
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Figure 3.5.2: Histograms of experimental results for three vessel instances.
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Figure 3.5.3: Histograms of experimental results for four vessel instances.

For both of the instances containing 20 tasks and 40 technicians all the tested

combinations were able to produce very similar results. Indeed the best results found

for the 3-20-40 instance are all within four units of each other with many combinations

all reaching the same objective value. We believe that these instances are less complex

than the others since they contain the lowest ratio of work volume to resources. This

e�ectively reduces the complexity of the problem since the model no longer has to solve

the knapsack portion of the problem as the task prioritisation needed is clear. The fact

that the average deviations never exceed 0.02% adds further weight to the idea that the
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methods all converge to a similar high quality solution. Interestingly it appears that

classic simulated annealing performs signi�cantly worse than the other combinations

on the 4-20-40 instance in terms of its average performance. Notice however that since

the problem is relatively simple the absolute di�erence in objective values is only 300.

We therefore conclude that there is little bene�t to using an adaptive selection method

in these scenarios.

The adaptive operator selection - great deluge acceptance criteria combinations

appears to perform the best for the 3-26-20 task instance. It provides both the best

solution found (43278.34) and the lowest average objective (45457.06) for the three

vessel version. The best results of other combinations have noticeable deviations

ranging from 0.35% for only accepting improving solutions and 2.27% for time de-

pendent simulated annealing. Standard deviations are roughly similar with the not

unexpected exception of the random selection method and only accepting improving

solutions combination. We also observe that the standard deviations for all the combi-

nations are around 3.5 times bigger than in the corresponding case with 40 technicians

indicating that this is a more di�cult instance. Furthermore the greatest di�erence in

average objective values across the random and adaptive selection methods (921.17)

occurs for this instance suggesting that adaptive selection holds the highest bene�ts

for our most challenging resource restricted instance.

These �ndings also hold for the four vessel extension with great deluge acceptance

again providing the best ultimate solution. Adaptive operator selection performs

the best for every acceptance criteria and therefore has a lower average deviance of

1.61% versus 2.91%. We note that the gaps between average performance and best
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solution are larger in this instance when compared with the 3-26-20 instance despite

the overall objectives being similar. Interestingly the best average performance occurs

for adaptive selection within classic simulated annealing rather than the great deluge

acceptance.

Surprisingly, random operator selection with only accepting improving solutions

appears to hold its own against the other methods on the 3-20-20 and 4-20-20 in-

stances. It provides the best solution found for both instances, albeit with only one

or two runs performing signi�cantly better than the other methods. This may be due

to the presence of the local search component potentially dominating the behaviour

of the removal and repair heuristics.

Results for the 3-26-40 and the 4-26-40 instances are less conclusive and hence

are harder to draw meaningful conclusions from. In the 3 vessel instance the average

performance is mixed and often contradictory to the best solution. Some combinations

exhibit better performance with random operator selection and others with adaptive

operator selection. For example, the best solution comes from adaptive selection with

time dependent simulated annealing, but it has a worse average performance than �ve

other combinations. This ambiguity is highlighted in the average performance being

very similar between adaptive and random operator selection. We note that classic

simulated annealing acceptance criteria appears to perform worst across all the tested

combinations. Adaptive selection method with great deluge has the best average

performance (23588.54) for the 4-26-40 instance, but is beaten to the best ultimate

performance by both random selection with great deluge acceptance and adaptive

selection with only accepting improving solutions. We again observe contradictory
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results between most operator selection acceptance criteria combinations. However

the performance of simulated annealing is again worse than the other combinations in

accordance with the 4-20-40 instance with the additional caveat that its best solution

fails to come close to the other combinations.

We introduce statistical hypothesis tests as an additional step in our analysis as

a measure for detecting whether any relative performance di�erence can be consid-

ered signi�cant. We �rst utilise the Kruskal-Wallis H test (Kruskal and Wallis, 1952)

as a non-parametric test to detect whether there is least one signi�cant di�erence

between selection method-acceptance criteria combinations. In other words, it will

check if the choice of selection method-acceptance criteria actually has an impact on

the objective value found at the end of the ALNS. A p-value below 0.05 indicates

that there is evidence to reject the null-hypothesis: that the objectives found by

all selection method-acceptance criteria originate from the same underlying distribu-

tion. Our �ndings listed in Table 3.5.5 indicate signi�cance for every instance at a

95% con�dence level. This con�rms the need for further analysis, since the selection

method-acceptance criteria does impact the quality of the ALNS solution.
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Instance p-value Reject?

3-20-20 0.005 21 3

3-20-40 9.467× 10−5 3

3-26-20 1.663× 10−5 3

3-26-40 6.637× 10−9 3

4-20-20 0.002 355 3

4-20-40 <2.2× 10−16 3

4-26-20 0.000 454 4 3

4-26-40 1.563× 10−12 3

Table 3.5.5: Krusal-Wallis H test results for detecting a signi�cant di�erence between

combinations.

We next examine our results to determine if adaptive operator selection is superior

to random operator selection by pooling the results for each instance and performing a

Mann-Whitney U test for signi�cance. We use the Mann-Whitney U test (Fagerland

and Sandvik, 2009), (Kruskal, 1957) as a non-parametric statistical test to detect

whether two independent samples are drawn from the same underlying distribution.

Our results are summarised in Table 3.5.6 based on a 95% con�dence interval. It

indicates that the performance of adaptive operator selection is statistically superior

to the random operator selection for the 20 technician instances. The null hypothesis
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is con�rmed for the 3-20-40 instance with the largest p-value of 0.9978 which validates

the idea that both selection methods have converged to a similar local or near optimal

minima, since it is conceptually the simplest instance. Results are less clear for the

remaining instances.

Instance p-value Reject? Comments

3-20-20 0.003 179 3 Adaptive is superior; median of 30268 vs 30443.

3-20-40 0.9978 7 -

3-26-20 0.000 839 3 Adaptive is superior; median of 45847 vs 47902.

3-26-40 0.1045 7 -

4-20-20 0.011 55 3 Adaptive is superior; median of 30190 vs 30347.

4-20-40 0.1481 7 -

4-26-20 0.001 422 3 Adaptive is superior; median of 45264 vs 46289.

4-26-40 0.2539 7 -

Table 3.5.6: Mann-Whitney U test results for comparison between adaptive and ran-

dom operator selection.

We also investigate whether a particular acceptance criteria is dominant for each

instance by performing pairwise Wilcoxon-Rank Sum tests between all the combina-

tions in order to detect which speci�c operator selection-acceptance criteria results

are signi�cantly di�erent from each other. As multiple comparisons are needed an

adjustment to the p-value threshold for signi�cance is required to maintain a low
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overall type-I (false positives) error. We use the `Bonferroni correction' which divides

the alpha value α for each comparison by the number of comparisons n = 28. Thus

our adjusted p-values will be approximately 0.001786.

Furthermore we classify combinations into a graphical structure denoted by let-

ters according to the signi�cant di�erences detected as described by Piepho (2004).

Structures containing the same letter are not considered signi�cantly di�erent, whilst

groups not containing any mutual letters are. Note that transitivity does not hold,

namely if a is signi�cantly di�erent to b and b signi�cantly di�erent from c it does

not imply that a is also signi�cantly di�erent from c. The results of this graphical

method of representing pairwise signi�cant di�erences is found at the top of each graph

in Figures 3.5.2 and 3.5.3. We choose to interpret these signi�cance/non-signi�cant

relations as quasi-groups, which can be ranked or further split in conjunction with

the performance metrics outlined earlier.

We broadly observe few statistical di�erences between operator selection-acceptance

criteria combinations on most of the instances. For example the 3-20-20 instance only

has a single signi�cant di�erence between adaptive operator selection with classic

simulated annealing and only accepting improving solutions acceptance criteria. The

statistical tests unsurprisingly indicate that adaptive great deluge and the only accept

improving combinations perform similarly given that their upper quartiles and tails

are the largest in the 3-20-40 instance. We observe that classic simulated annealing

performs signi�cantly di�erent to the majority of other combinations on the 3-26-40

and 4-26-40 instance so we conclude that its performance is de�nitely worse.

An example where the pairwise tests add value is the 3-26-20 instance. This in-
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stance presents several signi�cant di�erences using structures represented by three

letters a,b and c. It is clear that the time dependent simulated annealing accep-

tance methods (bc, c) are statistically worse than the great deluge acceptance with

adaptive operator selection (a). If we incorporate additional metrics such as average

performance then we can rank quasi-groups which perform better but below statistical

signi�cance. This creates a pseudo-ranking of a > ab > abc > bc > c which implies

that a is the most valuable structure. This matches our earlier belief that adaptive

operator selection with great deluge acceptance performs the best on this instance.

Furthermore, adaptive operator selection beats random selection on every per-

formance criteria (Mann-Whitney U test, best solution, lowest average, smallest de-

viation for each acceptance criteria) in the 4-26-20 instance, whilst the three vessel

version is only denied this by two solutions. We therefore conclude that the bene�ts of

adaptive operator selections are greatest on the most complicated instances. It should

be noted that the inclusion of a local search mechanism within our ALNS procedure

may be responsible or interfere with the analysis of these results.

3.5.1 Analysis of ALNS Procedure

The key advantage of adaptive operator selection over random selection lies in its

ability to self adjust to use the more successful heuristics repeatedly within the ALNS

framework. We determine the average utilisation percentage of the operator combina-

tions from the relative frequency of combinations used during the search procedure.

Random operator selection will produce utilisation percentages that are static and

equal to 1/n, where n is the number of combinations. Our adaptive operator selection



CHAPTER 3. HEURISTIC METHOD 130

allows these percentages to change in favour of more successful and e�cient heuris-

tics. The degree of success will vary in accordance with the score obtained and the

operators' duration which together act as a proxy for information learnt per unit time.

We present this information in Figure 3.5.4 for an arbitrarily chosen run of the 3-26-

20 instance. The inner ring of Figure 3.5.4a represents the utilisation percentage of the

removal operator and the outer ring the utilisation percentage of the repair operator.

Operators are listed in clockwise descending order of their utilisation percentage.

Figure 3.5.4b shows the same information but with the contents of the rings swapped.

This allows us to display the conditional percentages of operator combinations with

the absolute percentages listed on the larger fractions for clarity.

We observe that some combinations are clearly boosted or reduced relative to

random operator selection as we would not expect all of the removal and repair oper-

ator combinations to necessarily generate high scores per unit time. Smallest objective

value increase removal is used in 25% of the iterations with request historical removal,

neighbour removal and price similarity also having utilisation percentages larger than

14%. The heuristic still makes use of the remaining removal operators as a diver-

si�cation technique with random removal employed 6% of the time, but e�ectively

ignores the expected worst combination of random removal and random repair. We

note that request historical removal was paired with random repair 6% of the time

perhaps indicating that some of this score was achieved by chance near the start of

the search procedure.

Figure 3.5.4b shows that the most heavily utilised repair operator was the sequen-

tial randomised greedy repair heuristic which appears to achieve a large score. This
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score is e�ectively increased in our time dependent setting since it consumes signif-

icantly less computational time than full greedy repair or regret repair. We observe

that regret repair has a higher utilisation percentage (28%) than greedy repair (20%)

indicating that it manages to accumulate a large enough score to o�set its compar-

atively long running time. The random repair heuristic is used 9% less often than

would be expected under random operator selection. Even though the heuristic is

extremely quick it becomes less favoured since it does not discover new solutions very

frequently. Interestingly the smallest objective increase removal heuristic was most

often paired with the three key repair heuristics with relative utilisation percentages

of 27.8%, 28.6% and 25.0% respectively. These are approximately double the rate of

their usage under random operator selection. The next set of operator combinations

with boosted utilisation percentages relative to random selection vary dependent on

repair heuristic but include neighbour removal, price similarity removal, Shaw removal

and request historical removal.
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(a) Utilisation percentage of removal-repair combinations for

adaptive operator selection.

(b) Utilisation percentage of repair-removal combinations for

adaptive operator selection.

Figure 3.5.4: Utilisation percentage of removal and repair operators during adaptive

large neighbourhood search.
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Figure 3.5.5: Illustration of an example vessel route produced for a 3-26-20 instance.

Corrective maintenance tasks are coloured red. Preventive tasks are coloured orange

with green added in proportion to the percentage of work completed.
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V1 Nodes P1 T13d T1d T1p T8d T13p T19d T8p T3d T19p T11d T3p T11p P1

Time 0 90 105 285 299 330 345 479 494 585 598 622 643 720

#Techs 7 3 0 3 0 4 0 3 1 5 1 3 7 7

V2 Nodes P1 T78d T73d T78p T55d T55p T73p T81d T86d T86p T81p P1

Time 0 96 110 276 299 539 560 575 590 623 638 720

#Techs 7 3 0 4 0 4 7 5 3 5 7 7

V3 Nodes P1 T45d T9d T45p T20d T9p T23d T23p T20p P1

Time 0 90 112 270 293 352 369 609 631 720

#Techs 6 4 0 2 0 4 0 4 6 6

Table 3.5.7: Details of the vessel routes for Figure 3.5.5 including the arrival time to

each location and the number of technicians onboard the vessel when departing the

location. Arrival times are rounded to the nearest minute.

Figure 3.5.5 shows the set of vessel routes generated from a run of the ALNS

procedure with adaptive operator selection and great deluge acceptance on the 3-26-

20 instance. The speci�c properties of the routes are listed in Table 3.5.7 including the

locations visited, departure times and number of technicians onboard the vessel when

departing the location. We see that the �rst vessel modelled with the lowest fuel costs

is required to visit six turbines, the most of any vessel. The route prioritises corrective

maintenance tasks ahead of the preventive maintenance tasks with technicians being

required to work on multiple turbines during the shift. A small degree of opportunistic

maintenance is performed on the preventive tasks at T3 and T11 with the limited time

remaining in the shift. Meanwhile the second vessel takes seven technicians to deal



CHAPTER 3. HEURISTIC METHOD 135

with a group of tasks in the more distant northern half of the o�shore wind farm.

The solution suggests to complete the task at T78 and start the task at T73 with

the transported technicians. The vessel is instructed to wait alongside T55 until

its corrective maintenance is completed before moving onto opportunistic preventive

maintenance. This behaviour is a natural consequence of the costs found in our

instances since the corrective downtime losses dominate both preventive maintenance

bene�ts and transportation costs. Once preventive task bene�ts increase we start

to observe solutions that deviate from this behaviour. This can be seen in the third

vessels route which drops technicians at the preventive maintenance task at T20 before

relocating the technicians from T9 to complete the corrective task at T23.

We notice that the model has chosen to omit many of the preventive maintenance

activities included within the model. This prioritisation allows for a better utilisa-

tion of resources with technicians spending 61.9% of the shift working on tasks. The

downtime losses from corrective maintenance tasks were calculated as 43272.972 with

the smaller bene�t of preventive maintenance tasks being 2989.676. The transporta-

tion costs are in line with the results obtained by Irawan et al. (2019) with a cost of

3212.86 representing 6.5% of the total costs compared to 5%. We cannot compare

the corrective and preventive maintenance percentages since we include signi�cantly

more corrective maintenance tasks in our dataset. We note that a saving of 1% in

the overall objective value approximately corresponds to either a 14% drop in the

e�ective routing costs or a 15% increase in preventive maintenance bene�ts assuming

the same corrective downtime losses are accrued.

Table 3.5.8 describes the completion times for corrective maintenance tasks and
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the time spent working on preventive maintenance tasks for the twenty technician

instance and a less restricted forty technician instance. We observe that almost all

of the omitted preventive tasks have large percentages of work performed on them

often in excess of 50%. Interestingly the corrective maintenance tasks also tend to

be completed earlier suggesting that the bene�ts of the additional technicians is not

limited to performing extra preventive maintenance after all the corrective tasks.

Note that strict improvements in completion time or working time are not always

guaranteed. Sometimes it is bene�cial to slightly delay the pick-up activity of a

corrective task compared to the twenty technician instance. T73 is an example of this

myopic behaviour with its completion time occurring 76.5 minutes later.
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Task Completion Time Task Duration Worked Task Duration Worked

NCorr P Tot = 20 P Tot = 40 NPrev P Tot = 20 P Tot = 40 NPrev P Tot = 20 P Tot = 40

T19 585.0 326.5 T28 0.0 327.1 T52 0.0 0.0

T23 608.8 541.7 T67 0.0 11.0 T3 128.4 420.0

T73 559.6 636.5 T59 0.0 327.6 T32 0.0 75.2

T13 330.0 365.2 T33 0.0 208.4 T24 0.0 182.0

T1 285.4 272.8 T86 32.4 367.9 T20 338.5 420.0

T45 269.9 284.7 T63 0.0 353.9 T29 0.0 0.0

T8 478.9 286.3 T11 45.2 234.8

T9 351.9 359.8 T81 63.3 420.0

T55 538.7 327.6 T68 0.0 353.9

T78 276.1 290.2 T42 0.0 304.4

Table 3.5.8: A comparison of corrective task completion times and preventive main-

tenance task work durations between a 20 and a 40 technician instance.

3.5.2 Impact of Resource Availability

We now examine the impact of adding additional resources such as technicians and

vessels into the OWFMRP. Figure 3.5.6 illustrates the relative saving in the optimal

cost in the di�erent instances normalised by the average value found from the instance

containing 3 vessels, 26 tasks and 20 technicians. This was chosen as it is the most

expensive and complex instance on average. We note that some runs lie below 0%
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since there are obviously more expensive solutions than the average case. As our

system contains uncompleted corrective maintenance tasks in the 26 task instance

there is an approximate reduction of 35% in costs when six of the additional tasks

are omitted in the 20 task instance version. The bulk of this saving comes from the

lowered downtime costs from �nishing corrective maintenance tasks earlier within the

shift. We observe that the savings from doubling the number of technicians present

is signi�cantly larger than those from adding an extra vessel, an expected result since

our instances are e�ectively limited by the number of technicians rather than vessels.

Each vessel has a technician capacity of 12, so the 3 vessel instances can use up to 36

technicians with the additional technicians. The 80% increase in technicians can be

fully utilised as potential tasks remain in the system. Furthermore adding technicians

in conjunction with a fourth vessel into the system allows us to make use of the 4

idle technicians in the 3 vessel instances to harness further savings in optimal cost of

achieve a 49% saving in the 26 task instance.



CHAPTER 3. HEURISTIC METHOD 139

Figure 3.5.6: E�ect of adding extra resources into task instances.

We note that the analysis and discussion in this section is operating on the assump-

tion that the heuristic yields solution close to optimality. Also that the optimality

gaps of the solutions are roughly the same.

3.6 Conclusions and Future Work

We have presented a mathematical formulation for the o�shore wind farm maintenance

routing problem involving both corrective and optional preventive maintenance activ-

ities. We propose a novel decomposition structure to decouple the model into a timing

sub-problem and a master routing problem to re�ect the intricacies of downtime cost
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calculations. An adaptive large neighbourhood search procedure is developed to solve

a set of tough real world instances which re�ect undertaking operations in the midst

of possible resource restrictions. A variety of performance measures and hypothesis

tests were employed to determine the relative performance of a variety of acceptance

criteria in conjunction with either random or adaptive operator selection methods.

Our results indicate that there is no clear winner for the simpler instances but that

adaptive operator selection performs better on the more challenging personnel limited

instances. Evidence exists to suggest that adaptive operator selection combined with

great deluge acceptance was the best choice for several instances such as the 3-26-20

case.

The full power of our decomposition approach could be extracted with a deeper

examination of the potential for pick-up and drop-o� nodes to be visited by di�erent

vessels. The inclusion of multiple concurrent tasks with technician skill types fully

di�erentiated would further expand this framework. Another goal would be to quan-

tify and incorporate the long term bene�ts of preventive maintenance into a short

term horizon which is mainly focused on corrective maintenance. Condition based

maintenance strategies that monitor individual component degradations provide sig-

ni�cant motivation for further research in this direction. Our model can be extended

to consider the challenge of routing larger Service Operation Vessels (SOV) which can

remain o�shore for several shifts.



Chapter 4

Developing a Statistical Model of

Metocean Conditions

4.1 Introduction

4.1.1 Motivation

Key o�shore activities such as o�shore wind turbine installation or complex repair

tasks require vessels and technicians to spend signi�cant periods of time working

in uncertain o�shore environments. In order to avoid wasteful o�shore trips and

potentially unsafe working conditions detailed planning and scheduling is needed to

minimise the likelihood of unnecessary costs being incurred. Furthermore, the o�shore

conditions also directly impact on the revenue of the o�shore wind farm given that

the turbines are powered by the wind which heavily contribute to its overall economic

performance.

141
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Future technological developments will likely seek to hybridise multiple data sources

such as turbine degradation and wave conditions to plan and automate operations and

maintenance tasks. This will increase the need for decision making based on a wide

array of possible metocean scenarios. Accurate judgements can only be made when

uncertainties are incorporated from a large number of metocean time series, partic-

ularly given the existence of key operational limits on parameters such as o�shore

windspeed Ws, and signi�cant wave height Hs. The knowledge of the possible evo-

lutions of o�shore conditions can then be used in conjunction with improved vessel

and technician routing to fully extract potential savings from e�ciently performing

operations and maintenance activities. As a result methods are needed for generating

alternative realisations from a relatively small pool of historical data and hindcasting.

Our overall goal is to create a statistical model that is capable of generating

scenarios, lasting up to a fortnight in length starting from any future time point. This

model should be able to synthesise several inputs together to produce a prediction of

future conditions that includes uncertainty. If the time point of interest is within two

weeks it is important to utilise the recent metocean conditions and current seasonal

trends, as they both play a role in generating future metocean patterns. In contrast

for time periods further into the future only statistical methods are of use. Here we

focus on the latter case but our discussion in Chapter 5 outlines how our approach

can be adapted for the former case. A statistical approach requires modelling the

joint distribution of the metocean variables from a temporal viewpoint. This joint

distribution could vary with seasonal trends with possible realisations created by

simulating from it used to aid decision making.
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4.1.2 Weather Windows

The most important factors in o�shore activities are the operational limit of tasks and

of the vessels used to transport personnel to turbines. If weather conditions exceed the

operational thresholds, then vessels cannot travel safely and repair activities cannot

be executed thus leading to the accretion of signi�cant downtime costs. An operation

can only be undertaken if the conditions remain calm for at least the duration of the

repair or a speci�ed amount of time, often referred to as a weather window, Anastasiou

and Tsekos (1996). A weather window is technically de�ned as a number of successive

multivariate observations (e.g. wind speed, signi�cant wave height etc.) all of which

concurrently lie below their respective thresholds, with its persistence de�ned as the

length of time it remains below the threshold. Weather windows are always de�ned to

be as large as possible. This means that twelve consecutive hours of conditions always

below a threshold will be considered a single weather window of 12 hours, rather two

consecutive windows of 6 hours or 3 windows of 4 hours.

We also examine the frequency and persistence of the `waiting time' before a

weather window occurs. It is de�ned as the number of successive multivariate ob-

servations which have at least one of their marginal variables taking a value above

the threshold. This is the converse of a weather window since it requires at least

one of the environmental parameters to constantly exceed its threshold, rather than

every observation lying below it. As a result every data point will be classi�ed into

the state of either being in a weather window or waiting for a weather window. As

an o�shore wind farm will only be considered accessible during a weather window of
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su�cient duration it will important to accurately reproduce their distribution in any

model, and hence by any synthetic dataset generated under that model. Accurate

planning of operations and maintenance activities will require a good representation

of the distribution of waiting times until subsequent weather windows as this directly

impacts lost revenue if tasks cannot be completed beforehand.

Leontaris et al. (2016) attempt to determine windows of time during which o�shore

operations can be completed. In the context of o�shore wind farm installation this

requires modelling wind speeds and signi�cant wave heights. They follow a copula

approach that constructs the joint distribution of metocean variables with knowledge

of the dependence structure and autocorrelation built in. Seasonal trends are ac-

counted for by analysing the data on a monthly basis. A simple vine copula is used

to model the dependence structure. The autocorrelation within the wind speed is

captured through a Gaussian copula, whilst the dependence between wind speed and

signi�cant wave height is modelled with a Gumbel copula for the majority of months.

As a result they generate continuous values of metocean parameters which can be

evaluated for multiple potential weather thresholds.

Bruijn et al. (2019) take an alternative approach to modelling the weather windows

for a series of sequential o�shore operations. They introduce a discrete time 2-state

Markov chain model representing whether an operation can be worked on or not in

a period of time. The transition rates can either be assumed to be constant within

predetermined periods such as months or seasons or modelled as time-dependent. In

this case kernel density estimation is employed to place more weight on observed tran-

sitions close to the time of interest and correspondingly less weight on more distant
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transitions. A �rst-order Markov chain is incorporated to replicate the persistency of

metocean conditions. De Masi et al. (2015) builds a �rst order multivariate Markov

chain model of o�shore wave heights using a triple state of signi�cant wave height,

peak wave period and mean wave direction. Their work is calibrated on the autocor-

relation of wave heights and the persistence of weather windows and the waiting time

before a weather window.

A drawback of the model provided by Leontaris et al. (2016) is that data is split

into monthly blocks with the environment parameters allowed to have di�erent sta-

tistical parameters from block to block. This leads to unrealistic discontinuous jumps

between the end and start of successive months. We will utilise a rolling window of

local observations to ensure smooth transitions in statistical parameters over time.

Furthermore whilst the empirical cumulative distribution function does capture non-

trivial patterns, it will not be able to give detail between the ranks of data. As this

transformation is eventually employed in reverse to reincorporate seasonality, it will

be unable to accurately generate observations at higher precision than those found in

the original data. Our use of kernel density estimation will better account for seasonal

e�ects and allow for new previously unobserved observations to be generated. We will

also show that their assumed graphical dependence structure in which the wave height

is driven by the current windspeed, which itself is driven by the previous windspeed,

is inappropriate for our dataset. We �nd that it is important to condition on multiple

previous lags as opposed to a single time step.

Our work di�ers from the Markov chain based approaches as described by the likes

of Bruijn et al. (2019) as it generates a continuous model of metocean conditions rather
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than a discrete set of states. This means that an equivalent workability distribution

based on a threshold u2 instead of u1 can be automatically generated from a single

synthetic dataset as opposed to needing to rerun and calibrate a discrete Markov chain

model. It is also likely that a �rst order Markov chain is too simplistic a model to

fully capture all the features of metocean conditions. This is illustrated in Fig. 4.1.1.

Another advantage is the potential for sensitivity analysis for observations close to

the threshold, given in practice there is likely to be some uncertainty surrounding

measurements.

Figure 4.1.1: Weather windows based on di�erent thresholds are easily deduced from

a continuous model of metocean conditions. Sensitivity analysis can also be explored

to determine how close weather windows are to being shortened or extended.

4.1.3 Model Overview

The methodological approach described in this section utilises several statistical con-

cepts to simulate stochastic o�shore time series that preserve key properties of the

original data. The foundation of our statistical model is a multivariate Markov model.
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We will assume that the underlying structure can be reproduced with a Markov chain

model; a sequence of random vectors X1,X2, . . . ,XN which follow a kth order Markov

property, where X˜ t = (X1,t, . . . , Xd,t) is the vector of d environmental parameters.

This requires that the probability of moving to a future state Xt+1 in any set A con-

ditioned on all the previously visited states is exactly the same as the probability

conditioned on just the previous k observations. In other words, the choice of the

next state is in�uenced only by the last k states. This is expressed probabilistically

by

P (Xt+1 ∈ A|Xt = xt,Xt−1 = xt−1, . . . ,X1 = x1) = Pt(Xt+1 ∈ A|Xt = xt, . . . ,Xt−k+1 = xt−k+1),

(4.1.1)

for all t > k and all sets A.

The current Markov model described in Eq. 4.1.1 is a time dependent process,

namely that the transition probabilities between states vary depending on the time

of year. This is emphasised through the probability Pt on the right hand side being

a function of t. The presence of temporal non-stationarity is a re�ection of the long

term seasonality in the metocean conditions with winter conditions typically being

more severe than those in summer. In order to remove the dependence of Pt on t

we seek to transform the data to make them stationary. Our reason for doing this

is that data from any t will be then informative about any other time t′, which will

help give e�cient inference. In particular, a stationary time series ensures that all of

its statistical properties such as mean, variance and other higher order moments can

be considered constant over time. Ensuring that our time series have the stationarity
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property is important since it allows the assumption that any two sub-blocks of the

series follow the same underlying model. Transforming the data to be stationary

e�ectively increases the sample size for any analysis leading to greater accuracy in

results. Furthermore any block of deseasonalised and stationary data can be resampled

without restrictions and used to create a new synthetic time series by adding in the

necessary seasonality.

As the rate and scale of seasonality is unique to each metocean variable, we �rst

adjust the individual marginal distributions to account for their seasonal e�ects. One

option could be to use a parametric family of distributions to model each metocean

variable individually, however we employ a non-parametric approach. This involves

constructing a kernel density estimate of the cdf for the ith environmental parameter,

denoted F̂i,t, at each time point t in a year to deseasonalise the data. The transformed

marginal variables F̂i,t(Xi,t) will therefore all follow a common (standard uniform)

distribution.

In order to generate the necessary joint and conditional distributions we trans-

form the deseasonalised marginals to the standard normal scale by use of the proba-

bility integral transform, Yi,t = Φ−1(F̂i,t(Xi,t)), to give the transformed vector Y˜ t =

(Y1,t, . . . , Yd,t). This choice is made to exploit the properties of the multivariate normal

distribution, namely that its conditionals are also distributed as multivariate normal.

Furthermore correlation analysis is best employed with the use of normal margins.

We observe that a Gaussian multivariate copula fails to capture the true complexity

of the joint distribution of Yt in Section 4.3, but because of the Gaussian margins

we feel it is appropriate to use a Gaussian kernel, see Section 4.2.1. We therefore
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simulate from the full multivariate kernel density estimate instead.

We are not limited to examining purely kth order Markov chains as we can condi-

tion on a non-consecutive set of time lags and variables. For example a second order

Markov chain could be supplemented with higher order dependencies for signi�cant

wave height Hs and wave period Tp such as the example in Eq. 4.1.2. This could

be viewed alternatively as a fourth order Markov chain with some higher order terms

removed. Speci�cally for all t > 4 we could have

P (Yt+1 ∈ A|Yt = yt, . . . ,Y1 = y1) = P (Yt+1 ∈ A|Yt = yt,Yt−1 = yt−1, Hs,t−2 = hs,t−2, Tp,t−4 = tp,t−4).

(4.1.2)

We observe that Eq. 4.1.2 no longer contains explicit dependence on t. This graph-

ical model may be a more appropriate form than a fully saturated fourth order

Markov model since it may match better with the underlying physics of the sys-

tem. In addition, models containing fewer parameters will have improved accuracy

due to the improved ratio between number of parameters and sample size. The rel-

ative bene�ts of simpler graphical structures are determined by the calibration of

auto- and cross-correlation of data. New observations can then be simulated on

the stationary scale Yt from any multivariate Markov structure with the desired

structure. The completed synthetic dataset is obtained by back-transforming the

marginals of the simulated data through their respective inverse kernel density esti-

mates to restore both the observed marginal structure and seasonality to the time

series, Xt = F̂−1
t (Φ(Yt)) = (F̂−1

1,t (Φ(Y1,t)), . . . , F̂
−1
d,t (Φ(Yd,t))), whilst preserving the

observed dependence.
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4.1.4 Data Information

The dataset analysed in this chapter was obtained from our industry partners JBA

Consulting and consists of 10 years of data (2000-2009) sampled at 3 hourly inter-

vals. We choose to focus our research on three key meteorological and oceanographic

variables: wind speed (m/s), the signi�cant wave height (m) and wave period (s).

The wind speed Ws, is required as it has the largest impact on the safety of

o�shore operations. The signi�cant wave height Hs, is de�ned as the average of the

highest third of all the waves measured within a 20 minute period. This convention

has been adopted as larger waves tend to be more destructive and impactful than

smaller waves. Signi�cant wave height measurements are therefore a more meaningful

tool than simple averages when considering the sea's impact on o�shore activities.

Wave period Tp, is taken to be the mean zero-up crossing wave period which provides

information about the frequency of wave crests. The calculation of this mean is

achieved by taking the average at the points of the wave where its vertical displacement

crosses the z-axis, rather than at its peaks or troughs.

4.2 Methodology

We now introduce the statistical techniques that we use to develop our statistical

model of o�shore metocean conditions. Kernel density estimation is introduced with

the goal of converting the original data to a stationary scale upon which a statistical

dependence model (both across variables and over time) can be built. In Section 4.2.1

we outline the principles associated with kernel density estimation, before adapting
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the standard methods to help us deseasonalise our data series in Section 4.2.2. Section

4.2.3 de�nes the conditional property of multivariate normal distributions and Section

4.2.4 describes the process we use to generate new observations from a conditional

multivariate kernel density estimate.

4.2.1 Kernel Density Estimation

Kernel density estimation is a widely used non-parametric technique for estimating

the distribution of a random variable (Silverman, 2018). Compared to parametric

techniques, which involve selecting a parametric family of distributions and estimating

the parameters of this family via maximum likelihood estimation, it o�ers greater

�exibility in modelling and is capable of discerning multiple modes, skewness and other

structures present without requiring the selection of a parametric family of models.

The goal of kernel density estimation (KDE) is to determine a smoothed estimate

of an underlying probability distribution from a limited set of data points. We �rst

consider a set of independent and identically distributed (i.i.d.) univariate data points

(x1, x2, . . . , xn) which are assumed to follow an unknown probability density function

f . The kernel density estimate of these points is

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (4.2.1)

where K is a kernel (a symmetric probability density function centered at zero which

integrates to 1) and h > 0 is the bandwidth. We employ a Gaussian kernel henceforth

so K = φ, the standard normal density function. The bandwidth determines the scale

of smoothing in the estimate. Mathematically speaking the kernel density estimate
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applies a kernel function at each data point xi, so that the estimate at a point x is the

sum of the contributions from each kernel function at that point. A kernel estimate

of the cumulative distribution function is obtained by integrating f̂h(x), i.e.,

F̂h(x) =
1

n

n∑
i=1

Φ

(
x− xi
h

)
, (4.2.2)

where Φ is the cumulative distribution function of the standard normal distribution.

As described in Silverman (2018) there is a necessary trade-o� between the bias and

variance of the KDE dependent on the size of h. A smaller bandwidth with less

smoothing produces a less biased estimate at the cost of a larger variance. Esti-

mates with an over-smoothed bandwidth yield the opposite: a larger bias but smaller

variance. The standard approach is to choose the bandwidth that minimises the

asymptotic mean integrated squared error (MISE) in order to best reduce both the

bias and variance of the estimator. However if the underlying density is approxi-

mately Gaussian and Gaussian kernels are used then a good estimate for the optimal

bandwidth h is `Silverman's rule of thumb' Silverman (2018),

h =
0.9 min(σ̂, IQR

1.34
)

n
1
5

. (4.2.3)

It involves the standard deviation σ̂ of the data sample of size n and their inter-

quartile range IQR. Note that as n increases h decreases, so as more data is obtained

less smoothing is required. The advantage of this rule is its simplicity to compute.

We also employ boundary re�ection on our kernel density estimates to cope with

the domain boundaries found in our data. These are important to consider as negative

windspeeds and negative signi�cant wave heights make no physical sense. Standard

kernel density estimation su�ers from boundary e�ects from a lack of data below a
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lower boundary. This can cause an underestimation in the density estimate compared

to the true density near the boundary. A simple adjustment can be made to incorpo-

rate weights from below the boundary by re�ecting data points about the boundary

and including them in the estimate. The set of data points (x1, x2, . . . , xn) is aug-

mented with (−x1+2b,−x2+2b, . . . ,−xn+2b), where b is the lower bound of the data.

The natural lower bounds of windspeed and signi�cant wave heights are 0m/s and

0.1m respectively, so the zero probability is assigned to values below these boundaries

in the re�ected kernel density estimate of the form

f̂h(x) =
1

nh

n∑
i=1

{
K

(
x− xi
h

)
+K

(
x+ xi − 2b

h

)}
, (4.2.4)

for x ≥ b and f̂h(x) = 0 for x ≤ b. This estimate will always have zero derivative at

the boundary assuming the kernel is symmetric and di�erentiable, which is the case

when K = φ. In practice we only need to re�ect observations close to the boundary

since they are the only points that will contribute to the density estimate near it. As

our approach uses K = φ there is no practical need to re�ect points with xi > 4h+ b,

since φ decays very quickly from its mode.

In higher dimensions the d-dimensional kernel density estimate f̂H is constructed

from a set of i.i.d d-variate vectors (x1,x2, . . . ,xn) as

f̂H(x) =
1

n|H|
1
2

n∑
i=1

K

(
x− xi

H
1
2

)
, (4.2.5)

where |H| is the determinant of a positive de�nite bandwidth matrix H and K is

a symmetric multivariate kernel. We will employ the standard multivariate normal

kernel of d dimensions, K = φd in our subsequent kernel density estimation process,
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so

f̂H(x) =
1

n
√
|H|(2π)d

n∑
i=1

e−
1
2

(x−xi)TH−1(x−xi), (4.2.6)

where the bandwidth matrix H is analogous to the covariance matrix.

4.2.2 Deseasonalising Data

The �rst step of our approach is designed to reduce the prevalence of long term sea-

sonality in our dataset. This requires us to estimate F̂i,t as described in Section 4.1.3

for each of our series (i = 1, . . . , d). We consider historical time series of windspeeds,

signi�cant wave heights and wave periods measured at 3 hourly intervals over the

course of 10 years. In order to apply our statistical methods we seek to transform

these time-series into stationary series.

Recall that the probability integral transform (PIT) allows us to alter the dis-

tribution of a set of univariate data to that of a standard uniform distribution by

constructing their cumulative distribution function. A continuous univariate random

variable X with an unknown distribution can be transformed to U(0,1) by passing it

through its cdf, FX , so that Z = FX(X) has a U(0, 1) distribution. Furthermore, if

we wish to transform X to Y , where Y follows a standard normal distribution then

Y = Φ−1(FX(X)).

The classic kernel density methods introduced in Section 4.2.1 require that the

data be identically distributed, so the methods are only applicable to speci�c win-

dows during which an assumption of an identical distribution is deemed reasonable.

Given our initial dataset starts with unknown probability distributions we need to
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construct a kernel density estimate for the cdf at various points in time. This choice

is made since the true distribution will vary depending on the time year, for example

windspeeds are signi�cantly higher in winter months compared to summer months.

We create a kernel density estimate of each variable at time t to fully capture the

overall distribution's time dependency. We utilise a local window Et around a central

time point xt containing κ observations before and after xt, i.e. a window of 2k + 1

values. In addition we add the equivalent data points in subsequent years into the

window since they also follow the same distribution if we neglect the e�ects of climate

change. These occur with a periodicity of w = 8 ∗ 365 = 2920, which is the number

of observations in a year. The mathematical de�nition of such a window is thus,

Et = {s : |s mod w − t| ≤ κ}. (4.2.7)

We choose to set κ = 200 under the belief that only short term local patterns up to

the range of a few weeks worth of observations can be considered to follow the same

underlying distribution as xt. Speci�cally the window incorporates 25 days worth of

observations from both before and after the central time point (recall that observations

occur every 3 hours). The complete re�ected kernel distribution estimate about a

lower bound b using data from the local window Et for the cumulative distribution

function at time t is given as,

F̂t(x) =
1

|Et|
∑
i∈Et

{
Φ

(
x− xi
h

)
+ Φ

(
x+ xi − 2b

h

)}
. (4.2.8)

Long term seasonality trends can be reincorporated by transforming data back

onto its original scales. A new set of observations generated on a di�erent scale can

be altered to follow the original scale by reversing the PIT. A set of observations
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Z following a U(0, 1) distribution can be transformed via the inverse of a given cdf

FX , so that F−1
X (Z) follows the same distribution as X. Additionally if we wish to

transform Y which follows a standard normal distribution to X with a cdf FX , then

X = F−1
X (Φ(Y )).

4.2.3 Conditional Distribution of a Multivariate Normal Dis-

tribution

Our previous steps were aimed at extracting the long term seasonality from the data

set, however consideration needs to be made for the shorter term dependence struc-

tures that remain present. These e�ects tend to be driven by environmental processes

such as o�shore storms which persist across several days. A simple pass through the

deseasonalised data highlights the signi�cant degree of autocorrelation within each

metocean variable and the large amount of cross-correlation between variables within

this range. Here a statistical model is developed to capture and represent these fea-

tures.

Markov models provide a general framework for modelling continuous stochastic

processes. First order Markov models rely on the Markov property: that the condi-

tional probability distribution of the future depends only on the present state. This

is also referred to as the �memoryless� property. Higher order Markov models in

contrast, depend on more than just the previous value thus incorporating a degree

of �memory� into the model. Higher order processes therefore utilise more historical

information than lower order processes. We utilise a higher order Markov model to
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better capture the features within our deseasonalised data. A single model can drive

the entire process since the data were transformed to be marginally stationary. For-

mally the joint distribution at time t of Yt, is assumed to be driven by the a set of k

previous values (lags) Yt−1, . . . ,Yt−k.

A natural approach for modelling this Markov process comes from transforming

the deseasonalised data to the normal scale via the PIT in order to use the conditional

properties of multivariate normal distributions. We describe the equations involved

for completeness. Assume that Z ∼MVN(µ,Σ) is an N -dimensional set of variables

with mean µ and covariance Σ. These variables can be also be split into a set of

variables Za and a set Zb. In our context Za = Yt and Zb = (Yt−1, . . . ,Yt−k), so

that Za contains variables at the current time step t and Zb environmental variables

at any of the previous k lags. Furthermore, we can partition µ and Σ as follows

Z =

Za

Zb

 ,µ =

µa
µb

 ,Σ =

Σa,a Σa,b

Σb,a Σb,b

 . (4.2.9)

An analytical formula for the conditional distribution exists which states that the

conditional distribution of a set of variables Za given another set Zb taking the value

c is again multivariate normal. Formally
(
Za|Zb = c

)
∼MVN

(
µ̂, Σ̂

)
, where

µ̂ = µa + Σa,bΣ
−1
b,b (c− µb) (4.2.10)

Σ̂ = Σa,a −Σa,bΣ
−1
b,bΣb,a. (4.2.11)

We can condition on as many lags or subsets of variables as is deemed necessary in

order to accurately model future observations.

Our empirical modelling found this approach to produce poor replications of the
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original data. We tried a variety of graphical structures and values for k, but none

yielded a su�ciently good level of �t. Some variables such as the wave height and

wave period did not appear to follow a bivariate Gaussian distribution post desea-

sonalisation, with a di�erent regime for swell and wind-sea waves. We also found

that the distributions of weather windows and waiting time before weather windows

appeared to be signi�cantly underestimating the empirical distributions observed in

our dataset. Therefore we instead chose to simulate data from a multivariate kernel

density estimation as described in Section 4.2.4.

4.2.4 Simulating From a Multivariate Kernel Density Esti-

mate

We now seek to instead construct a kernel density estimate of the conditional dis-

tribution of Za|Zb from the joint kernel distribution of Za and Zb. Sampling from a

conditional density estimate constructed from kernel density estimates is a relatively

straightforward process.

We begin by illustrating this for the bivariate case containing data (x1, y1), . . . , (xn, yn)

in which we want to simulate from Y |X = x. Instead of randomly sampling from the

existing data points (xi, yi) we are required to use weighted sampling in proportion

to each data points contribution to the overall density given a observed value for X .

This can be understood from the formula in Eq. (4.2.15), which has been derived from

a two-dimensional kernel density estimate. We utilise the standard bivariate normal

density function φ(x, y; ρ) as the kernel, with ρ the correlation coe�cient and a band-
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width matrix H =

 h2
x hxhyρ

hyhxρ h2
y

. Then the conditional kernel density estimate of

Y given X is

f̂(y|x) =
f̂(x, y)

f̂(x)
(4.2.12)

=

1
nhxhy

∑n
i=1 φ

(
x−xi
hx

, y−yi
hy

; ρ
)

1
nhx

∑n
i=1 φ

(
x−xi
hx

) (4.2.13)

=

1
hy

∑n
i=1

(
φ
(
x−xi
hx

)
φ

(
y−(yi+ρ

hy
hx

(x−xi))

hy(1−ρ2)
1
2

))
∑n

i=1 φ
(
x−xi
hx

) (4.2.14)

=
1

hy

n∑
i=1

ωiφ

(
y − (yi + ρhy

hx
(x− xi))

hy(1− ρ2)
1
2

)
, (4.2.15)

where ωi = φ
(
x−xi
hx

)
/
∑n

j=1 φ
(
x−xj
hx

)
is the fraction that the kernel centered at xi

contributes to the overall kernel density estimate for x, with 0 < wi < 1 for i =

1, . . . , n and
∑n

i=1wi = 1. Thus with probability ωi the y realisation comes from a

N
(
yi + ρhy

hx
(x− xi), hy(1− ρ2)

1
2

)
random variable.

We now consider the multivariate extension of the kernel density estimation as

shown in Eq. 4.2.5. We continue to use the sets Za and Zb as outlined in Section

4.2.3 but they now include a time index t. This allows us to build a time series in

an iterative manner. Joint observations of Z at time i, zi, can be partitioned into

two sets [zai , z
b
i ] according to whether they relate to the current or preceding time

steps. The bandwidth matrix is partitioned in the same manner, H =

Ha,a Ha,b

Hb,a Hb,b

 .
We �rst generate an initial realisation of Z0 = (Y0,Y−1, . . . ,Y1−k) by randomly

sampling from the historical data points (z1, z2, . . . , zn) and then simulating from the
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marginalised kernel associated with it. Then we can simulate future observations,

Za
t+1 = Yt+1, from past observations, Zb

t+1 = (Yt, . . . ,Yt−k+1), (for t = 0, . . . ,m)

by probabilistically selecting a kernel i at centered at zi = [zai , z
b
i ] with probability

ωi de�ned by Eq. (4.2.16) and simulating from the kernel's conditional distribution,

E.q. (4.2.17). This process is repeated to construct a time series of length m as shown

below.

1. Generate Z1 by selecting a kernel i with probability 1/n and simulating from

its marginalised kernel, Z1 = zbi +MVN(0,Hb,b).

2. For t = 0, . . . ,m

(a) Normalise the weights w(t)
i that the kernel applied to each data point zi

contributes to the KDE at Zb
t+1 to give

w
(t)
i = φ

(
Zb
t+1 − zbi

H
1
2

)
/

n∑
j=1

φ

(
Zb
t+1 − zbj

H
1
2

)
. (4.2.16)

(b) Select kernel i (centered at zi = [zai , z
b
i ]) to simulate from with probability

w
(t)
i .

(c) Generate the next observations Za
t+1 from the conditional multivariate nor-

mal distribution.

Za
t+1|Zb

t+1 ∼MVN
(
zai +Ha,bH

−1
b,b

(
Zb
t+1 − zbi

)
,Ha,a −Ha,bH

−1
b,bHb,a

)
(4.2.17)

4.2.5 Selection of Bandwidth Smoothing Parameter

Our approach for determining the correct set of variables and time lags to condition

on relies upon a set of statistical diagnostics. These diagnostics include direct compar-
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isons between the deseasonalised and simulated data via the autocorrelation within

variables, the cross correlation between variables and marginal QQ-plots. Another

key validation tool are the weather window persistence distributions which would

underpin any practical use of the synthetic time series.

Our results indicate that the quality of the �t depends highly on the bandwidth

scale. We �rst utilise a standard normal scale plug-in bandwidth selector given by

Chacón et al. (2011) denoted as,

Hns = S

(
4

n+ 2

) 2
d+4

, (4.2.18)

where S is the sample covariance matrix, d is the dimensionality of the data and n

is the number of observations. An example bandwidth matrix Hns is shown below

and conditions on multiple variables and time steps. In particular it has a graphical

structure in which the set of variables Zt+1 depend on Zt,Zt−1,Zt−2,Zt−3,Zt−7 and

Zt−10. We note that our earlier use of the probability integral transform ensures

that all of the marginal variables have the same variance so the bandwidth matrix

is symmetric with its diagonal elements being identical. It appears that classical

bandwidth estimators such as this oversmooth the kernel density estimate causing

the autocorrelation functions in the marginals to become a poor �t to those of the

observed data. We have found through empirical analysis that the elements of the

bandwidth matrix H in our conditional simulations should be at least an order of

magnitude smaller than those implied by Hns. This result captures the acf at larger

lags signi�cantly better allowing us to reduce the amount of variables to be conditioned

on.
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

W t
s Ht

s T tp W t−1
s Ht−1

s T t−1
p W t−2

s Ht−2
s T t−2

p W t−3
s Ht−3

s T t−3
p W t−7

s Ht−7
s T t−7

p W t−10
s Ht−10

s T t−10
p

W t
s 0.339 0.263 0.172 0.289 0.225 0.152 0.244 0.189 0.131 0.204 0.158 0.112 0.109 0.082 0.06 0.072 0.054 0.040

Ht
s 0.263 0.339 0.269 0.271 0.305 0.246 0.253 0.273 0.22 0.228 0.238 0.188 0.137 0.138 0.113 0.095 0.094 0.081

T tp 0.172 0.269 0.339 0.175 0.243 0.269 0.166 0.225 0.231 0.153 0.201 0.199 0.102 0.124 0.115 0.079 0.090 0.082

W t−1
s 0.289 0.271 0.175 0.339 0.263 0.172 0.289 0.225 0.152 0.244 0.189 0.131 0.125 0.096 0.070 0.082 0.061 0.045

Ht−1
s 0.225 0.305 0.243 0.263 0.339 0.269 0.271 0.305 0.246 0.253 0.273 0.220 0.155 0.159 0.134 0.108 0.108 0.093

T t−1
p 0.152 0.246 0.269 0.172 0.269 0.339 0.175 0.243 0.269 0.166 0.225 0.231 0.112 0.139 0.134 0.086 0.100 0.096

W t−2
s 0.244 0.253 0.166 0.289 0.271 0.175 0.339 0.263 0.172 0.289 0.225 0.152 0.145 0.112 0.082 0.096 0.070 0.053

Ht−2
s 0.189 0.273 0.225 0.225 0.305 0.243 0.263 0.339 0.269 0.271 0.305 0.246 0.177 0.182 0.153 0.122 0.128 0.108

T t−2
p 0.131 0.220 0.231 0.152 0.246 0.269 0.172 0.269 0.339 0.175 0.243 0.269 0.124 0.154 0.156 0.094 0.120 0.121

W t−3
s 0.204 0.228 0.153 0.244 0.253 0.166 0.289 0.271 0.175 0.339 0.263 0.172 0.173 0.133 0.096 0.109 0.082 0.060

Ht−3
s 0.158 0.238 0.201 0.189 0.273 0.225 0.225 0.305 0.243 0.263 0.339 0.269 0.201 0.217 0.177 0.137 0.138 0.113

T t−3
p 0.112 0.188 0.199 0.131 0.220 0.231 0.152 0.246 0.269 0.172 0.269 0.339 0.139 0.187 0.200 0.102 0.124 0.115

W t−7
s 0.109 0.137 0.102 0.125 0.155 0.112 0.145 0.177 0.124 0.173 0.201 0.139 0.339 0.263 0.172 0.204 0.158 0.112

Ht−7
s 0.082 0.138 0.124 0.096 0.159 0.139 0.112 0.182 0.154 0.133 0.217 0.187 0.263 0.339 0.269 0.228 0.238 0.188

T t−7
p 0.060 0.113 0.115 0.070 0.134 0.134 0.082 0.153 0.156 0.096 0.177 0.200 0.172 0.269 0.339 0.153 0.201 0.199

W t−10
s 0.072 0.095 0.079 0.082 0.108 0.086 0.096 0.122 0.094 0.109 0.137 0.102 0.204 0.228 0.153 0.339 0.263 0.172

Ht−10
s 0.054 0.094 0.090 0.061 0.108 0.100 0.070 0.128 0.120 0.082 0.138 0.124 0.158 0.238 0.201 0.263 0.339 0.270

T t−10
p 0.040 0.081 0.082 0.045 0.093 0.096 0.053 0.108 0.121 0.060 0.113 0.115 0.112 0.188 0.199 0.172 0.270 0.339



Figure 4.2.1: Estimated bandwidth matrix Hns before scaling reduction.

Figure 4.2.2 demonstrates that scaling the bandwidth matrix Hns to become

Hns/10 and Hns/20 produces a superior match to the autocorrelation in the deseason-

alised data. This was performed for a graphical model with the following structure,

where the only change was the scaling in the covariance matrix.

P (Zt+1 ∈ A|Zt = zt, . . . ,Z1 = z1) = P (Zt+1 ∈ A|Zt = zt,Zt−1 = zt−1,Zt−2 = zt−2,Zt−7 = zt−7,Zt−10 = zt−10)

(4.2.19)

A similar pattern is observed for the remaining marginal variables. Whilst this may

appear dramatic, note that this reduction in covariance e�ectively only reduces the

standard deviation in the kernel by a factor of
√

20 ≈ 4.47 from a small number to
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begin with.

(a) Hns (b) Hns/10

(c) Hns/20

Figure 4.2.2: The use of a scaling reduction on the Hns improves the autocorrelation

�t. Illustrated for deseasonalised signi�cant wave heights.

4.2.6 Graphical Modelling

In order to make our statistical model more reliable we seek to reduce the number of

parameters in the model by investigating whether all of the links between variables in
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a kth order Markov chain are strictly necessary. A complicated model which condi-

tions on multiple variables across a multitude of previous values may perform equally

as well as a reduced, simpler version. This reduction will also make our estimates of

the remaining variables more accurate as estimates will be less variable given fewer pa-

rameters are estimated. The correlation matrix C and the inverse correlation matrix

D = C−1 provide the necessary information. The elements of the inverse correlation

matrix D inform us of the correlation between pairs of variables conditioned on the

remaining variables, (Whittaker, 1990). These are better known as the partial corre-

lations. Under our assumption that all the variables follow a multivariate Gaussian

distribution, a partial correlation element Dij = 0 implies that variables i and j are

conditionally independent given the other variables. This property can therefore be

used to reduce a dense graphical model to a simpler form such as that shown in Fig

4.2.3 by replacing small values in D with zero. Formally two random variables X

and Y are conditionally independent given an extra variable Z if and only if joint

cumulative distribution function given Z can be decomposed into the product of the

independent cdf given Z for both X and Y .

(X ⊥⊥ Y )|Z ⇐⇒ FX,Y |Z=z(x, y) = FX|Z=z(x).FY |Z=z(y) ∀x, y, z. (4.2.20)

A drawback to the partial correlation analysis is that the assumption of a partial

correlation being zero has an e�ect on the remaining partial correlation structure.

Making one such approximation requires solving an equation to �nd how the maxi-

mum likelihood estimates change, but multiple zero approximations have to be solved

simultaneously and not iteratively. This makes the situation signi�cantly more com-
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plicated.

A pairwise comparison can be made between two graphical models using the fol-

lowing log-likelihood based approach. The log likelihood of a q-variate Gaussian

graphical model with a mean µ, covariance matrix Σ, based on a random sample of

N observations is given as,

2l(µ,Σ) = const−N log(|Σ|)−Ntr(SΣ−1)−N(x̄− µ)TΣ−1(x̄− µ), (4.2.21)

where x̄ =
1

N

∑N
i=1 xi is the sample mean, S =

1

N

∑N
i=1(xi − x̄)(xi − x̄)T is the

sample covariance and tr is the trace of a matrix (sum of all the elements along its

main diagonal). We observe that this log-likelihood is maximised when the maximum

likelihood estimators take the value µ̂ = x̄ and Σ̂ = S. Using these estimators causes

the �nal term in Eq. (4.2.21) to evaluate to zero. The term Ntr(SΣ̂−1) evaluates

to Ntr(SS−1) = Ntr(Iq) = Nq, where q is the number of variables in the model.

Ignoring the constant term, the maximised log-likelihood under the saturated model

Ms simpli�es to

2ls(µ̂ = x̄, Σ̂ = S) = −N log(|S|)−Nq. (4.2.22)

In order to compare graphical models we need to construct the deviance, which is

denoted as twice the di�erence between the maximised log-likelihood under a fully

saturated model Ms and a candidate model Mc. This simpli�ed model Mc has a

di�erent covariance matrix Sc where we have approximated several entries in the

inverse matrix Sc−1 to be zero. Whittaker (1990) shows that the approximation of

elements to zero in S−1
c only e�ects the corresponding elements in S. The remaining
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elements of Sc are the same as those in S, i.e. Sij = (Sc)ij for all i, j not approximated

to zero in (Sc)
−1
ij . This means the term Ntr(SΣ̂−1) also evaluates to Ntr(SS−1

c ) =

Ntr(Iq) = Nq, where q is the number of variables in the model, so

2lc(µ̂ = x̄, Σ̂ = Sc) = −N log(|Sc|)−Nq. (4.2.23)

This means that the deviance di�erence between the two models can be written as,

Deviance di�erence for Mc ⊆Ms = 2(l̂s − l̂c) (4.2.24)

= −N log(|S|) +N log(|Sc|) (4.2.25)

= N log(|Sc|/|S|). (4.2.26)

In order to test whether a model M2 is a better �t than model M1, we can perform

a likelihood ratio test based on E.q. (4.2.24) which is χ2
p distributed where p is the

di�erence in the number of parameters. The testing of these models for signi�cance

is normally performed in a sequential manner.

Wst Hst Tpt

Wst+1 Hst+1 Tpt+1

Wst Hst Tpt

Wst+1 Hst+1 Tpt+1

Figure 4.2.3: Two graphical model candidates. One is more saturated than the other.

The two main selection methods are forwards selection and backwards elimination.

Forwards selection starts from the independence model, which assumes that all of the
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variables are completely independent, and adds in edges based on deviance di�erence

rules. Backwards elimination removes edges from the model since it begins from the

fully saturated model that contains every possible link between the variables. As the

underlying physics of the problem is well understood, we hope that any statistical

selection methods will converge with our understanding of the physical processes

involved. For example it would make little sense for the wave period at time t to

a�ect the wind speed at t+ 20.
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4.3 Time Series Validation

We chose to employ a graphical model of the following form with a rescaled bandwidth

matrix of Hns/20,

P (Zt+1 ∈ A|Zt = yt, . . . ,Z1 = z1) = P (Zt+1 ∈ A|Zt = zt,Zt−1 = zt−1,Zt−2 = zt−2,Zt−5 = zt−5,Zt−9 = zt−9).

(4.3.1)

This graphical model conditions the Zt+1 future observations using a tenth order

Markov chain with many of the higher order terms removed, speci�cally keeping only

the Zt,Zt−1,Zt−2,Zt−5,Zt−9 lagged terms. We believe that the inclusion of the both

the lower order terms and higher order terms provide bene�t to the resulting model.

The �rst three lags help to provide a sense of immediate direction and the connected

rate of change of the metocean variables, whilst the higher order terms balance this

with information from over 24 hours in the past to re�ect the dependence between

di�erent weather systems. Whilst this model may still appear to be overparametrised

compared to other works and the underlying physics of the problem, it produces good

results for our dataset. We note that although our modelling framework is �exible

enough to condition on individual variables at higher order terms, every time step

conditioned on in our model involves all three variables (windspeed, signi�cant wave

height and wave period).

This choice of graphical model was made after experimentation with several graph-

ical structures. Analysis was performed on the stationary scale before the diagnostic

process was repeated on the synthetic data with seasonality back transformed in. The

synthetic data was generated so as to be the same length as the observed data and
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for the same time periods. The results for our chosen model are now described.

4.3.1 Marginal Distribution Analysis On The Stationary Scale

We introduce the autocorrelation plot as a visual measure of comparison between two

time series. These are shown for the marginal variables in Figures 4.3.1a, 4.3.1c and

4.3.1e. The autocorrelation within a time series is the correlation between values of

the process at di�erent times and for a stationary series yt at lag k is denoted as

ρk = Corr(yt, yt−k). The autocorrelation at lag zero is always 1, since this represents

the autocorrelation between each term and itself. The value of the autocorrelation

function at each lag is marked with a vertical line in the plots. Only acf values that

are greater (or less) than the 95% tolerance bounds for independence (blue dashed

line) are considered statistically signi�cant with our plots omitting insigni�cant lags

greater than 50 (over 6 days in the past), as all autocorrelations are essentially zero

then. We have added a curve connecting each autocorrelation value in order to aid

with visual comparison. The autocorrelation for the original deseasonalised dataset

is marked in the solid black line, whilst the autocorrelation of the simulated dataset

is presented with the red dashed line.

Figures 4.3.1b, 4.3.1d and 4.3.1f accompany their respective marginal autocorre-

lation plot and display their quantile-quantile (q-q) plot. This is a more powerful

technique for assessing whether two distributions follow the same underlying distri-

bution than simply comparing histograms of the two samples. We include the line

y = x in red as a reference line along which points will lie if the two distributions are

identical. Points that signi�cantly deviate from this line can indicate di�erent levels
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of skewness between the distributions or that one contains heavier tails.

For both types of �gures we observe a good match between the deseasonalised

data and the simulated data indicating that we reproduce the key features. In fact

for all three variables the autocorrelations become statistically insigni�cant beyond

lag forty highlighting the removal of long term seasonal patterns beyond �ve days in

the past. The argument for some marginal variables is more successful than others,

which we will now describe in more detail.

Windspeed autocorrelation plot

For example, the autocorrelation plot of windspeed matches very well for the

�rst seven lags in particular and is even successful at picking up the minor

piecewise deviations to the underlying curve. After this the acfs begin to slightly

diverge with weaker autocorrelations observed in the simulated data than in the

deseasonalised data. The di�erence in acfs is no more than 0.05 for any given

lag.

Signi�cant wave height autocorrelation plot

The signi�cant wave height autocorrelation function also �ts well for signi�cant

wave height at lower lags. At higher lags the acfs again exhibit a mild divergence

at higher order lags albeit in a less noticeable fashion.

Wave period autocorrelation plot

The autocorrelation plot for the wave period exhibits a comparative poorer �t

at lower order lags, but a closer �t at higher lags. Figure 4.3.1e shows that the

jagged structures present are captured more accurately by the simulated data
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from lags 26 onwards than they are in lags 1-8. We note the possible presence

of a cyclical pattern where the simulated data contains an additional spike at

lags 2 and 6 compared to the deseasonalised data.

Q-Q plots

The q-q plots for all three of the metocean variables indicate an excellent �t of

the simulated data quantiles to the deseasonalised data quantiles.
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(a) Windspeed acf (b) Windspeed q-q plot

(c) Signi�cant wave height acf (d) Signi�cant wave height q-q plot

(e) Wave period acf (f) Wave period q-q plot

Figure 4.3.1: Autocorrelation structure and Q-Q plots for the deseasonalised and simulated data.
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4.3.2 Joint Distribution Analysis On The Stationary Scale

It is possible to generalise the concept of autocorrelation between distinct time points

in a marginal variable to consider cross-correlation between di�erent marginal vari-

ables at di�erent time steps. The cross-correlation function will therefore reveal deeper

information about the interactions between the metocean variables which are impor-

tant features to capture within our joint statistical model. Mathematically the cross-

correlation function between two stationary time series xt and yt at lag k is denoted

as Rk = Corr(xt, yt−k). An examination of the cross-correlation function (ccf) be-

tween the windspeed, signi�cant wave heights and wave periods is provided in Figure

4.3.2. The graphs presented follow the same approach as Figure 4.3.1 and highlight

the di�erence between the deseasonalised and simulated data.

Similar patterns emerge in the cross-correlation structure as those found in the

autocorrelation structure.

Windspeed and signi�cant wave height cross-correlation plot

The windspeed and signi�cant wave height ccf displays a good �t for lags close

to lag zero. The simulated data starts to deviate away from the deseasonalised

data for lags outside [−8, 8] with the underestimation of the ccf more noticeable

on the left hand side of the plot creating an asymmetry in Figure 4.3.2a. The

maximum ccf value occurs for both the deseasonalised and simulated data occurs

at lag -1, indicating that the strongest correlation is Corr(Wst, Hst+1). This

suggests that the prevailing wind conditions precede the arrival of waves, which

matches with the physical generation of waves. As one lag represents three
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hours it also appears to capture the local nature of this e�ect.

Windspeed and wave period cross-correlation plot

The next plot comparing windspeed and wave period displays the simulated

data accurately reproducing the ccf values for the �rst twenty lags save for the

initial value at lag zero. The negative lags appear to match for far fewer lags

and again underestimate the cross-correlation function. Figure 4.3.2b shows

that the maximum ccf value for the deseasonalised data occurs at lag -1, whilst

for the simulated data it occurs at lag 0. Physically we would expect the wave

period to lag the windspeed by the same amount as the signi�cant wave height

does (1 lag), given that they occur together. It appears that our model has both

shifted the peak and increased it compared to the deseasonalised data, which

could be addressed in the future.

Signi�cant wave height and wave period cross-correlation plot

The best match of all the cross-correlation functions occurs for signi�cant wave

height and wave period since the simulated and deseasonalised data agree well

at both low and high lags, albeit not always picking up the jagged underlying

structure at greater lags. Surprisingly the cross-correlation function for the de-

seasonalised data becomes statistically insigni�cant around lag forty but remains

signi�cant at lag minus forty. The simulated data appears to broadly capture

this feature, which is present in each comparison. The maximum ccf value for

both the deseasonalised and simulated data occurs at lag 0. This matches with

the underlying physics that waves and wave periods occur simultaneously.
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(a) Ws vs Hs cross-correlation function (b) Ws vs Tp cross-correlation function

(c) Hs vs Tp cross-correlation function

Figure 4.3.2: Cross-correlation structure within the deseasonalised and simulated

data.
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4.3.3 Marginal Distribution Analysis On The Original Scale

As we have shown the multivariate Markov model appropriately represents the sta-

tionary data we now repeat the analysis with the seasonality added back into the

data. Figure 4.3.3 again displays the marginal autocorrelation and q-q plots of the

windspeed, signi�cant wave height and wave period.

We observe that the decaying structure of the autocorrelation function is broadly

reproduced as the plots capture the decaying structure of the acf found in the original

data. All three plots highlight that longer term seasonality is successfully reincorpo-

rated as there are statistically signi�cant acf values around 0.2 at lag forty (5 days in

the past).

Windspeed autocorrelation plot

The windspeed acf for the synthetic data begins a gradual divergence from its

value in the original dataset starting from the �rst lag and reaches a maximum

di�erence from the observed data of 0.08 past lag ten.

Signi�cant wave height autocorrelation plot

A similar result occurs for the signi�cant wave height acf, however the overall

divergence between the acfs for the original and synthetic data is smaller.

Wave period autocorrelation plot

The wave period acf could be considered the closest match to the original dataset

as only the tail of the synthetic data acf appears to be an underestimation.

Furthermore, some of the spikes in the function are captured within the synthetic

results. It is noted that the underestimation of autocorrelation in the synthetic
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data was expected as it also occurred albeit to a lesser degree on the stationary

scale.

Q-Q plots

The q-q plots have steps in them since the original data was provided to us on

a non-continuous scale, which leads to the original data having ties. This is a

features that doesn't occur for the simulated data. For example, the windspeed

data was given to the nearest metre/second. This creates the vertical banding

e�ect seen in the q-q plots where there are noticeable gaps in the original data

quantiles. The plots themselves suggest a good matching between the original

and synthetic datasets. A closer inspection shows a small degree of curvature in

the plots which is particularly visible for signi�cant wave height. This occurs in

the central quantiles where the red reference line forms a tangent to the vertical

banding rather than an intersection.
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(a) Windspeed acf (b) Windspeed q-q plot

(c) Signi�cant wave height acf (d) Signi�cant wave height q-q plot

(e) Wave period acf (f) Wave period q-q plot

Figure 4.3.3: Autocorrelation structure within the original and synthetic data.
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4.3.4 Joint Distribution Analysis On The Original Scale

An examination of the cross-correlation between the windspeed, signi�cant wave

heights and wave periods is provided in Figure 4.3.4. Our approach appears to pro-

vide a good �t for the cross-correlation structure between the marginal variables. This

is particularly evident for shorter range lags near zero which have very small errors

that are typically less than 0.03. We note that all three cross-correlations contain

slightly higher errors at longer lags, as shown in Figures 4.3.4a, 4.3.4b and 4.3.4b

once seasonality is included.

Windspeed and signi�cant wave height cross-correlation plot

The ccf between windspeed and signi�cant wave height in the synthetic data

appears to be a slight, but consistent, underestimation of the ccf in the original

data. This does not exceed 0.08 at any point.

Windspeed and wave period cross-correlation plot

The ccf is again an underestimation of the original value at low lags with the

windspeed vs wave period plot even exhibiting some asymmetry in this diver-

gence between the positive and negative lags. This may be because of we are

unable to distinguish e�ectively between the swell and wind-sea waves in our

dataset.

Signi�cant wave height and wave period cross-correlation plot

The third graph comparing signi�cant wave height and wave period performs

well as the acfs only signi�cantly diverge outside of the lag [-10,+10] interval.



CHAPTER 4. DEVELOPING A STATISTICALMODEL OFMETOCEAN CONDITIONS180

(a) Ws vs Hs cross-correlation function (b) Ws vs Tp cross-correlation function

(c) Hs vs Tp cross-correlation function

Figure 4.3.4: Cross-correlation structure within the original and synthetic data.
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4.3.5 Conditional Joint Distribution Analysis On The Original

Scale

We now examine the joint distribution of the metocean variables with respect to the

preceding values of the variables. Figures 4.3.5 - 4.3.7 depict each lagged joint distri-

bution up to the �rst three time steps for the windspeed, signi�cant wave heights and

wave periods respectively. We include horizontal and vertical lines marking our chosen

operating restrictions of 15m/s for windspeed and 1.5m for signi�cant wave height in

order to emphasise their presence in the body of the distribution. Observations from

the original dataset are marked in black and have density contours coloured blue,

whilst observations from the synthetic data are red with green density contours. The

contours are overlaid on top of the observations for visual clarity.

The lagged joint distributions produce a good visual matching between the origi-

nal and synthetic data across all of the variables. Figure 4.3.5a is clearly a symmetric

distribution with the windspeed threshold of 15m/s occurring in the centre of the

distribution. The density contours also closely match. Lagged joint distributions

involving signi�cant wave height are shown in Figure 4.3.6 and again resemble the

original data well. In contrast to the windspeed threshold 1.5m corresponds to val-

ues larger than those in the area of highest density for the signi�cant wave heights.

We capture the spread of the data well as synthetic observations are created both

in the bulk of the distribution and the upper tails of the marginals and joint distri-

bution respectively. The distributions involving wave period in Figure 4.3.7 are the

most irregular as our data contains a mixture of swell and wind-sea waves. This is
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most obvious in Figure 4.3.7a where there is clear evidence of two distinct underlying

processes: a wave period in excess of 6 seconds can be generated from either a low

windspeed below 10m/s or a high windspeed above 20m/s. We note that our kernel

density based method allows us to generate new observations but on average they do

not greatly exceed the maximum values found in the original data.



CHAPTER 4. DEVELOPING A STATISTICALMODEL OFMETOCEAN CONDITIONS183

(a) Wst−1 vs Wst (b) Hst−1 vs Wst (c) Tpt−1 vs Wst

(d) Wst−2 vs Wst (e) Hst−2 vs Wst (f) Tpt−2 vs Wst

(g) Wst−3 vs Wst (h) Hst−3 vs Wst (i) Tpt−3 vs Wst

Figure 4.3.5: Conditional joint distributions involving windspeed for the original and

synthetic data.
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(a) Wst−1 vs Hst (b) Hst−1 vs Hst (c) Tpt−1 vs Hst

(d) Wst−2 vs Hst (e) Hst−2 vs Hst (f) Tpt−2 vs Hst

(g) Wst−3 vs Hst (h) Hst−3 vs Hst (i) Tpt−3 vs Hst

Figure 4.3.6: Conditional joint distributions involving signi�cant wave height for the

original and synthetic data.
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(a) Wst−1 vs Tpt (b) Hst−1 vs Tpt (c) Tpt−1 vs Tpt

(d) Wst−2 vs Tpt (e) Hst−2 vs Tpt (f) Tpt−2 vs Tpt

(g) Wst−3 vs Tpt (h) Hst−3 vs Tpt (i) Tpt−3 vs Tpt

Figure 4.3.7: Conditional joint distributions involving wave period for the original

and synthetic data.
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4.3.6 Weather Window Statistics

Following the approach of Leontaris et al. (2016) we seek to further verify charac-

teristics of our synthetic data that pertain to its practical domain of use. Given the

aim of the process is to generate metocean data for access to o�shore wind farms,

we evaluate the frequency and persistence of weather windows based on typical op-

erational limits. A common threshold for crew transfer vessel (CTV) access is 1.5m

for signi�cant wave height and a threshold of 15m/s for wind speed, however other

thresholds could be easily examined since our method creates continuous data rather

than pre-de�ned weather states. We compare the persistence and waiting time dis-

tribution between the original and synthetic datasets visually through the histograms

presented in Figures 4.3.8a and 4.3.9a.

We observe that the distribution of weather window lengths in the synthetic

dataset matches well with the distribution in the original dataset. The system spent

a total of 43938 hours below the operating restrictions in the original data whilst

42180 hours occurred in the synthetic data, an approximate decrease of 4%. This

suggests that the cumulative total hours of weather windows are well calibrated. It is

possible to observe some minor di�erences between the original and synthetic data.

It appears that we may overestimate the quantity of very short weather windows

which can clearly be seen through the large spike at the three hour weather window

value. Furthermore it is conceivable that we underestimate the frequency of very long

weather windows (>100hrs), however as these are very rare events in the original data

we do not consider it particularly important. This information is more clearly seen
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through the q-q plot in Figure 4.3.8b which indicates a linear relation between the

two quantiles of the two samples. The line initially follows a 45 degree gradient but

diverges before continuing parallel to the red line indicating identical distributions. It

should be noted that our approach is compared with the empirical weather windows

and may still perform better than a di�erent method for forecasting weather windows.

Our model as such provides a conservative estimate on the long term distributions of

weather window lengths.

The distribution of time the system waits before the occurrence of a weather

window again shows a close �t to the original data. A total of 43632 and 45327

hours are spent waiting for a weather window in the original data and the synthetic

data respectively. The short term synthetic durations appear to have a slight but

consistent overestimation in their frequency. This is expected as the weather windows

and waiting time until weather windows are complements of each other. It also appears

that the data matches well even into the tail of the distribution. The q-q plot of the

waiting times before a weather window reinforces this point with the observations

�tting accurately to the background line indicating they follow the same distribution.
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(a) Histogram (b) Q-Q plot

Figure 4.3.8: Weather window persistence comparison

(a) Histogram (b) Q-Q plot

Figure 4.3.9: Waiting upon a weather window comparison

In order to gain deeper insights into the performance of our method we now ex-

amine the weather windows based on only one of the two thresholds previously used.

Figures 4.3.10 and 4.3.11 are based on the results from only considering a windspeed
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threshold of 15m/s, whilst Figures 4.3.12 and 4.3.13 are derived from a single signi�-

cant wave height threshold of 1.5m. Our results indicate that the modelling inaccura-

cies in the weather window distributions are caused from both the joint distribution

and marginal distribution of weather windows.

Weather windows purely based on windspeed

The q-q plot shows that the �t for pure windspeed weather windows is very good

and matches the equivalent q-q plot for the full weather windows described ear-

lier. This may be because it is a more restrictive threshold than using just

signi�cant wave height as seen by the total hours of weather windows being

approximately 10,000 fewer. Further evidence for modelling the windspeed win-

dows correctly is the fact that the total hours of weather windows only di�ers

for the synthetic dataset by around 0.3%. The waiting time before a weather

window is a noticeably worse �t, as there is a noticeable deviation around the

central quantiles which is not present in the corresponding joint threshold q-q

plot.

Weather windows purely based on signi�cant wave height

The persistence of signi�cant wave height weather windows is shown in Figure

4.3.12. The q-q plot presented is similar to that of the joint weather window for

the �rst 15 percentiles, before a systematic miscalibration begins to occur. This

is true despite the relative di�erence in axis scales. We note that the signi�cant

wave height weather windows have a few much longer weather windows in excess

of 150 hours. The waiting time before a weather window is much closer to that
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found for the joint weather threshold, although there is still a minor deviation

similar to that found in Figure 4.3.11b. This could indicate a minor issue with

our model as it occurs for both marginal variables.

(a) Histogram (b) Q-Q plot

Figure 4.3.10: Windspeed weather window persistence comparison

(a) Histogram (b) Q-Q plot

Figure 4.3.11: Waiting upon a windspeed weather window comparison
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(a) Histogram (b) Q-Q plot

Figure 4.3.12: Signi�cant wave height weather window persistence comparison

(a) Histogram (b) Q-Q plot

Figure 4.3.13: Waiting upon a signi�cant wave height weather window comparison

Finally we now consider the e�ect of increasing the wind speed and signi�cant wave

height thresholds by 10% on our weather window comparisons. The new thresholds

now become 16.5 m/s and 1.65 m for the windspeed and signi�cant wave heights
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respectively. This causes a signi�cant change in the weather windows for both the

original historical dataset and our synthetic dataset. A total of 48684 hours are

spent inside weather windows in the historical data based on the increased weather

thresholds. The slight underestimation highlighted on the original weather window

graphs is more pronounced on Figure 4.3.14 for the weather window persistence. It

therefore appears that we have a worse �t for the less restrictive weather windows. The

q-q plot for the waiting time before a weather window for the increased thresholds,

Figure 4.3.15b, also exhibits a similar �t to the previous graph. The lower quantiles

are well calibrated with this extending well into the upper tail of the distribution.

(a) Histogram (b) Q-Q plot

Figure 4.3.14: Weather window persistence comparison with 10% higher thresholds
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(a) Histogram (b) Q-Q plot

Figure 4.3.15: Waiting upon a weather window comparison with 10% higher thresholds

4.3.7 Conclusions and Further Work

In this chapter we have proposed a method for generating a realistic joint distribution

of metocean variables, such as wind speed and signi�cant wave height, for which sub-

stantial values restrict o�shore vessels access to o�shore locations. The use of a joint

distribution allows our model to fully capture the key features of metocean conditions,

since the environmental variables involved are clearly dependent on each other. Our

statistical model can be applied to any point in the year (or future year) and takes

into account the autocorrelation and cross-correlation between variables whilst ac-

counting for seasonal trends. An important method for validating the resulting time

series generated by our method is through the frequency and persistence of weather

windows. This has been performed on our target dataset with our results indicating

a good �t when a graphical model is �tted to a tenth order Markov chain with the



CHAPTER 4. DEVELOPING A STATISTICALMODEL OFMETOCEAN CONDITIONS194

removal of several higher order terms.

For future work it would be useful to compare the persistence of and waiting

time before weather windows computed from our synthetic time series with other

methods. We currently compare with the empirical weather window distributions of

the dataset provided to us, so it would be of interest to see how our method compares

with alternative methods, such as the Markov chain approach of Bruijn et al. (2019),

that purely forecast weather windows. We could also investigate how our validation

measures di�er as we include more environmental variables such as wind and wave

direction.



Chapter 5

Conclusions and Future Work

In this thesis we have presented a new exact mathematical improvisation model of

the o�shore maintenance routing problem and a custom heuristic method for solving

larger problem instances. We have also provided a statistical model for generating

alternative metocean scenarios based on historical data from o�shore wind farms.

These models have had input from JBA Consulting with the goal of extending the

scope of their ForeCoast R©Marine software. We now summarise our main conclusions

and outline some ideas for further work.

5.1 Optimisation Models

In Chapter 2 we presented our mixed integer programming formulation of the routing

and scheduling problem present at o�shore wind farms. We included important char-

acteristics such as distinction between corrective and preventive maintenance tasks

and the possibility of task preemption. The relative performance of the model was

195
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assessed in a variety of resource restricted situations that highlights the additional

complexity from our inclusion of task prioritisation.

One avenue of future research could involve the relaxation of the assumption that

only one task can appear on a turbine in the planning horizon. An initial approach

could be to bundle multiple concurrent tasks on a given turbine into a single bulk

task speci�ed by the minimum number of technicians and work duration required to

complete all said tasks. This would imply that the tasks are completed in parallel,

however it could be possible to extend the model to allow for technicians moving

around the system to help perform speci�c tasks within a task bundle. A better

global solution could be obtained if technicians are not required to work on an en-

tire activity bundle and can perform a subset of tasks before being transported to

another turbine. Further complications could arise if predecessor-successor relations

are included between tasks within activity bundles.

Another aspect of the model that could be enhanced is the question of how to

quantify the relative bene�t of performing preventive maintenance tasks versus im-

mediate corrective maintenance tasks. We have proceeded on the basis that corrective

maintenance is signi�cantly more valuable than preventive maintenance, so that our

solutions choose to heavily prioritise completing corrective maintenance tasks as soon

as possible. This could be explored with either a strict lexicographic approach or

a proper evaluation of the long term bene�t of preventive maintenance. Given that

our focus was on day to day operations we have not thoroughly investigated this,

but our modelling framework is �exible enough to consider its integration as another

future direction of research. This could form the basis of a coveted condition based
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maintenance strategy with the inclusion of a turbine state of health index mapped to

expected downtime losses if faults do occur.

Our novel technician-vessel maximum safety range constraint could be evolved

to better capture o�shore behaviour. In practice there will be some uncertainty in

vessel paths so that they are not always the direct straight lines we assume them

to be. It is likely that routes will contain some natural curvature which we could

build upon in the safety constraint. If deviations to straight vessel paths are allowed

forming curved arcs there may be an added bene�t of increasing the time vessels spend

within the safety radius. We could expand the mathematical model or an equivalent

sub-problem to determine whether it is bene�cial to deviate these routes to prolong

periods of vessel coverage to o�shore technicians. This optimisation procedure would

also have to consider if several turbines are covered by the resulting vessel relocation.

Our investigation of the merits of a simple stochastic solution to deal with the

uncertainty in weather conditions could also be expanded. It would be expected

that a full evaluation on a longer term scenario would yield greater bene�ts in the

value of a stochastic solution. The most interesting examples would likely be the

borderline cases where there is a realistic chance of either exceeding or falling short

of an operating threshold. Other instances with conditions expected to persist below

thresholds could see value from a focus on the uncertainty in the completion time

of corrective maintenance tasks, which would likely have a greater impact on the

problem.

In Chapter 3 we provided an alternative formulation of the o�shore wind farm

maintenance routing problem which we decompose into two sub-problems. The �rst
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ordering sub-problem is associated with generating the sequence of visits made by

each vessel, whilst the timing sub-problem determines the exact arrival and departure

times of vessels in such a way that the most valuable balance of corrective and pre-

ventive maintenance is performed. An adaptive large neighbourhood search heuristic

is employed to solve the problem and contains 7 removal operators and 3 repair op-

erators. The performance of di�erent acceptance criteria are statistically evaluated

with our results con�rming the bene�t of the adaptive layer to operator selection.

A simple extension to our model lies in the incorporation of technician skill types.

Most tasks requiring technicians actually require more specialised technicians with

di�erent skill types such as electrical or mechanical technicians. Our decomposi-

tion structure means that restrictions on the amounts of skilled technicians can be

e�ciently evaluated as additional feasibility checks in the timing sub-problem. There-

fore not only could the total amount of skilled technicians be restricted but also the

equipment loads of vessels if desired.

Our basic timing sub-problem heuristic was implemented as we experienced di�-

culties in the practical implementation of solving the optimisation model repeatedly

within the adaptive large neighbourhood search. It is anticipated that future work

could overcome these di�culties to achieve the bene�ts we previously outlined, since

it amounts e�ectively to solving a small linear programming model. For example,

solving the timing sub-problem exactly would allow for a simple incorporation of

technicians, of di�erent abilities, to be picked up and dropped o� by di�erent vessels.

If binary variables associated with task completion are considered within the timing

sub-problem then signi�cantly more routes could be pruned from the sequencing prob-
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lem as the timing sub-problem would show which tasks are more valuable to perform

and which are optimal to omit. Alternatively time could be dedicated to developing

an improved heuristic for the timing problem.

Another interesting extension would be to investigate whether a similar math-

ematical model and heuristic approach could be employed to consider the routing

problem of o�shore SOVs and motherships. These vessels are capable of staying o�-

shore overnight and do not require our assumption that vessels must return to port

at the end of each shift. These craft are both capable of traversing the wind farm

to transport technicians to maintenance tasks, and in the case of motherships launch

smaller daughter vessels to complete tasks in di�erent areas. The mathematical chal-

lenge of routing daughter craft in conjunction with larger motherships could provide

another research direction.

5.2 Statistical Modelling

Chapter 4 detailed a statistical model capable of generating a realistic joint distribu-

tion of the metocean variables for any point in the year (or future year). This provides

the basis for simulating alternative representations of short-term meteorological and

oceanographic scenarios o�shore.

Typically planned o�shore activities, such as wind turbine installation, are evalu-

ated on the basis of weather forecasts or a limited range of historical weather data.

These are valid only as far as one month ahead at most, whereas a statistical model

allows for inferences to be made much further ahead in time than using pure weather
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forecasts.

The statistical model we have developed could be used to generate signi�cantly

more metocean scenarios from the historical data. Multivariate kernel density esti-

mation is used in conjunction with graphical modelling to reproduce the temporal

dependence structure of the joint distributions of key metocean variables such as

wind speed and signi�cant wave height. We also formally introduced the de�nition

of a weather window and waiting time before a weather window as key metrics for

o�shore wind farm accessibility.

We note that our wave modelling is somewhat naive in the statistical model as

our method makes no distinction between swell and wind-sea waves. Whilst the

model presented in Chapter 4 somewhat captures these di�erent wave generation

processes through kernel density estimation, Figures 4.3.7a and 4.3.7b show that they

could be better represented as a mixture of two distributions. These are the locally

generated swell waves and the longer-ranged wind-sea waves. Swell waves tend to

have longer wave periods given a particular signi�cant wave height than wind-sea

waves. We can therefore infer from Figure 4.3.7b that the observations with wave

period greater than 6 seconds and signi�cant wave height less than 1.5m are examples

of swell waves. Our existing approach makes no distinction between the two and

so conditional distributions are not informed by which wave state they are currently

in. We chose to ignore this as the dataset provided to us did not split signi�cant

wave heights into swell and wind-sea components. A possible extension to the model

could be to implement methods for partitioning signi�cant wave heights into their

components, whilst also minimising the amount of switching between states to provide
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a more realistic depiction of the sea conditions.

A drawback of our current approach is that it is heavily reliant on the existing

observations found in our dataset. The kernel density estimation approach will accu-

rately interpolate values between existing datapoints, but is unlikely to extrapolate

the information to generate values outside of the dataset. In practice there exists a

small chance of abnormally large or extreme events occurring o�shore which might be

expected to occur every few decades. These extreme values will not have a signi�cant

e�ect on the durations of calm or stormy weather, but will help to make our synthetic

data more realistic and thus could be of value for other planning scenarios. One way

of modelling these extreme values is by �tting a parametric model to the tail of the

kde.

The generalised Pareto distribution is a parametric tail model that is theoreti-

cally justi�ed by extreme value theory, (Coles et al., 2001). It is used to model the

occurrences of infrequent and unusually large observations. Informally it models the

exceedance of observations above a given threshold level. The conditional excess dis-

tribution function can be used to replace the upper tail of a probability distribution

with that of a generalised Pareto distribution. This adjusts the kde to include the

possibility of generating values outside the range of the data using extreme value the-

ory instead of the arbitary choice of a kernel function. The replacement tail value

F (y) above a threshold u is given by,

F (y) = 1− λ
(

1 + ξ

(
y − u
σ

))− 1
ξ

, y > u (5.2.1)

with λ = 1−F̂ (u) where F̂ is the kernel estimated distribution function from Eq. 4.2.8
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for a given time t, so λ is approximately the fraction of observations within the sample

that exceed the threshold. The model parameters are σ > 0 the scale parameter and

ξ ∈ R the shape parameter. Both the shape and scale parameters are estimated

based on maximum likelihood estimates for the sample's �t by a generalised Pareto

distribution in the upper tail above the threshold. This concept has been illustrated

with the upper tail as it is of more interest to us. The same procedure could also be

applied to the lower tail, albeit with the caveat that there is a physical lower bound

of zero on the windspeed, signi�cant wave heights etc.

The choice of threshold value u is informed by the desire to maximise the informa-

tion within the tail subject to it remaining a good �t to the sample. A basic method

to determine u is through visual inspection of �ts and quantile-quantile (Q-Q) plots.

A more sophisticated approach involves investigating the scale, σ and shape, ξ pa-

rameter stabilities for di�erent potential threshold choices via the method presented

in Coles et al. (2001). The aim is to select the smallest threshold u, such that ξ(u)

remains within the con�dence interval for ξ(u∗), ∀u∗ ≥ u.

Our statistical model relies on having access to information derived from the o�-

shore wind farm site that it will be applied to. Gauged wind farms regularly record

the required metocean data by employing one or two wind and wave buoys in the wind

farm. In the rare case that an o�shore site is ungauged, the historical data needed for

our statistical model will be lacking. This means that we will be unable to perform

kernel density estimation based on past information from the desired site and need to

adapt our approach. One option would be to borrow information from nearby gauged

sites and apply spatial interpolation methods to estimate the variables at the desired
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location. Alternatively we could use spatial statistical methods to account for the

spatial variation in the o�shore conditions and to give estimates at ungauged sites.

Several of our key assumptions about the data will also start to break down if

climate change has a signi�cant impact on the o�shore environment. We have con-

structed our statistical model under the belief that the deseasonalised data can be

considered identically distributed over time. The kernel density estimation process

currently pools local data and their equivalent data points in other years of the dataset.

The latter concept cannot be implemented if we assume some underlying upwards

trend due to climate change. Recent research has indicated that average wind speeds

have risen by 1.5 m/s and wave heights by 30cm over the last 30 years in some lo-

cations, (Young and Ribal, 2019). Extending our model to account for the e�ect of

climate changes within the historical time series available would be of great value to

the o�shore wind industry, particularly given that the lifetime of o�shore wind farms

is expected to be 20-25 years. This is clearly exceedingly di�cult to model and would

likely require external information produced by another climate model creating pro-

jections into the future. This could provide an estimate of both of the upwards trend

and rate of change of the trend which our model could use as an input. Thus our

hybrid model could be informed of the global patterns and the localised e�ects for a

given o�shore site.

A long-term continuation of this project could involve the integration of our model

with short term weather forecasts available for future time periods. These short-term

weather forecasts are known to be highly accurate for a few days into the future

meaning that incorporating this information into the model would likely produce a
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more accurate prediction of metocean conditions in the short term. Our statistical

model gives information at longer scales which weather forecasts cannot, so combining

both gives the option of combining both short and long term information in one model.

A joint statistical and numerical model should be able to quantify the uncertainty in

short term numerical predictions and balance it with longer term climate patterns such

as monthly seasonality. Furthermore, if an ensemble forecasting approach cannot

produce forecasts for all the desired variables or if historical data are missing due

to sensor failures, we can utilise the statistical approach to make up the shortfall.

The synthesis of numerical and statistical models could be achieved with a Bayesian

framework using forecasts as prior beliefs to update an existing statistical model.

In Section 4 we develop a statistical model of the joint distribution of the meto-

cean variables that restrict access to and work on o�shore wind turbines. This was

done in recognition of the need to capture the time dependent nature of the meto-

cean conditions incorporated into the stochastic extension of our model in Section 2.

This can be considered as part of a rolling horizon approach that we outlined ear-

lier to consider the impact of uncertain metocean conditions on o�shore wind farm

operations. Rather than considering a global optimisation taking into account every

possible combination of weather scenarios across multiple shifts, we instead attempt to

create a good plan for the �rst shift taking into account some of the future shifts. This

amounts to solving the optimisation model on a daily basis with uncertain weather

conditions, but only using the solution for the current shift in practice. After this the

schedule rolls over to the next day based on the work completed and is updated with

any additional new tasks or predictions of o�shore conditions entering the system.
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In a deterministic model the metocean conditions and associated parameters were

assumed to be deterministic. In practice these parameters are probabilistic and as

such the uncertainty surrounding them should be propagated through a proper model.

A simple stochastic model based on uncertain metocean conditions for a single shift

of activities could be modelled as thus. Let us denote the metocean conditions as

θ which are themselves uncertain. The simulation of o�shore conditions currently

�nds the best estimate of these parameters θ̂ and uses this to inform a model of o�-

shore maintenance operations. Decisions about which actions x to make are compared

through the use of a test statistic T (likely to be the objective function of an opti-

misation model) given the metocean conditions, T (x|θ̂). As we wish to incorporate

the uncertainty in the metocean conditions into the evaluation of the costs of choos-

ing actions x, the metocean conditions become the prior distribution in the Bayesian

sense π(θ). Then the cost of choosing actions x are given below as,

T (x) =

∫
θ

T (x|θ)π(θ)dθ. (5.2.2)

This framework can be adjusted to include information related to the weather forecasts

y. The impact of short or long term weather forecasts could be conceptualised with

the change of π(θ)→ π(θ|y) in Equation 5.2.2.

In practice we would evaluate the rolling horizon model with the knowledge of

forecasts and expected work patterns for several days ahead. This would allow us

to consider the impact of scheduling in a realistic setting involving multiple shifts.

Furthermore as we have shown in Section 4 there is a large degree of seasonality

present in the metocean conditions which has an impact on o�shore operations. This
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can be accounted for by changing our prior beliefs on θ to become time dependent

θt. We can also include some notion of time dependency to the actions performed

given that tasks can be left partially incomplete between shifts in our multiple shift

models. It is also likely that new tasks can be generated within the planning horizon

so that a longer plan involves the actions in a subsequent periods. This leads to

T (x|θ) becoming T (x, t|θ̂t) once we consider later shifts at time t.
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