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Abstract

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes

of mortality worldwide and is a major contributor to the number of emergency

admissions in the UK. We introduce a modelling framework for the develop-

ment of early warning systems for COPD emergency admissions. We analyse

the number of COPD emergency admissions using a Poisson generalized linear

mixed model. We group risk factors into three main groups, namely pollution,

weather and deprivation. We then carry out variable selection within each of

the three domains of COPD risk. Based on a threshold of incidence rate, we

then identify the model giving the highest sensitivity and specificity through the

use of exceedance probabilities. The developed modelling framework provides a

principled likelihood-based approach for detecting the exceedance of thresholds

in COPD emergency admissions. Our results indicate that socio-economic risk

factors are key to enhance the predictive power of the model.

Keywords: COPD; early warning system; exceedance probabilities;

generalised linear mixed model; spatio-temporal models;

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is one of the leading causes

of mortality worldwide (Mathers & Loncar, 2006; Hasegawa et al., 2014) with an
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estimated 3 million deaths in 2015, corresponding to 5% of all deaths globally

(World Health Organisation, 2016). Acute exacerbations are a major contrib-

utor to the number of emergency admissions and hospitalizations Tian et al.

(2012), especially during the winter months as a result of the increase in res-

piratory viral infections. Most of the current research has been focused on un-

derstanding the risk factors associated with COPD exacerbation (Osman et al.,

2017; Bahadori & FitzGerald, 2007; Chan et al., 2011). While the majority of

exacerbations are caused by infectious agents, especially rhinoviruses Wedzicha

(2004), there has been evidence from previous studies that biological, environ-

mental and socio-economic factors can also trigger COPD emergency hospital-

isation (Hemming et al., 2009). Hemming et al. (2009) developed a Bayesian

network approach in order to identify factors that can help predict COPD admis-

sions in the UK and found a combination of environmental, socio-economic and

health-related variables to be useful predictors. These included weather type

(classified as sunny, cloudy, rainy, windy and snowy) temperature, outdoor air

pollution, gas emissions, urbanisation, smoking, population age, environmental

tobacco smoke, indoor air pollution (housing condition), income and education,

infection load, number of previous admission and severity of the disease. How-

ever, most studies have examined these factors separately and only a few have

assessed their joint contribution to COPD risk.

Predictive models have been developed in several studies to identify patients

at high risk of COPD exacerbations (Billings et al., 2006; Yii et al., 2019; Ur-

wyler et al., 2019; Samp et al., 2018) which add significant cost to the patients

care. Hence, being able to accurately predict their occurrence can be especially

useful in order to reduce avoidable COPD emergency admissions by target-

ing patients in most need. In order to develop a robust and scalable predictive

model for COPD emergency admissions, the availability of comprehensive health

records of patients is essential so as to ensure its reliability. Predictive power can

also be further enhanced by incorporating risk factors concerning the lifestyle

behaviour (e.g. smoking status), income, exposure to pollutants and other indi-

vidual traits. However, such detailed information may not be readily available
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to researchers due to confidentiality issues or because it has not been collected.

Notwithstanding, statistical modelling provides solutions that can be used to

alleviate this issue. For example, generalized linear mixed models (GLMMs)

(Breslow & Clayton, 1993) are an extension of the classical generalized linear

modelling framework that allows to account for the unavailability of risk fac-

tors through the use of so-called random effects. However, the full potential

offered by this modelling framework has not been fully exploited in the analysis

of COPD data. In this paper, we aim to address this gap.

While some analyses on COPD emergency admissions have focused on indi-

vidual or patient level where biological markers (e.g. forced expiratory volume

in 1 seconds (Wei et al., 2018) and blood eosinophil level (Bélanger et al., 2018))

were used to predict the risk of an emergency admission, here we focus our at-

tention on studies that were concerned with understanding the geographical

variation of COPD risk at population-level. Niyonsenga et al. (2018) model

the prevalence of COPD and asthma over census units in the western area of

Adelaide, South Australia, and assessed the spatial clustering of cases using

the local Getis-Ord’s Gi indices (Anselin, 1995). Kauhl et al. (2018) analyse

how the prevalence of COPD varies across northeastern Germany and identify

risk factors including proportions of insurants aged above 65, proportions of

insurants with migration background, household size and area deprivation as

statistically significant predictors for COPD. Holt et al. (2011) were the first

to characterise geographic variations in COPD hospitalization across Health

Service Areas (HSAs) and at state level across the United States. They found

distinct geographical pattern in COPD hospitalisation rate in the HSA and state

level, suggesting that different risk factors could be operating at different spatial

scales. In another study conducted in Taiwan, Chan et al. (2014) analyse the

spatio-temporal distribution of COPD mortality over a 9 year period, from 1999

to 2007. They found that smoking rate, the percentage of aborigines within a

district, PM10, altitude and density of healthcare facilities were significantly

associated with COPD mortality.

Most spatio-temporal analyses on COPD have used conditional autoregres-
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sive models (CAR) (Besag et al., 1991) to carry out spatial smoothing of COPD

risk but did not attempt any forecasting. CAR models are formulated by defin-

ing a correlation structure between neighbouring areal units (e.g. districts or

regions). In addition, all of these studies (Kauhl et al., 2018; Holt et al., 2011;

Chan et al., 2014) have focused their efforts in predicting mean level of risks. In

this paper, we argue that statistical modelling should, instead, aim to predict

the exceedance of clinically relevant thresholds beyond which COPD risk is of

public health concern.

In our analysis of COPD admissions, we pursue two specific objectives: 1) to

assess the relative contribution of socio-economic and environmental variables

for forecasting COPD emergency admissions; 2) to develop a reliable surveillance

system that triggers an alarm whenever COPD emergency admissions signal

the likely exceedance of predefined incidence thresholds. To the best of our

knowledge, this is the first study that attempts to achieve these objectives using

state-of-the-art spatio-temporal statistical methods for the analysis of data on

COPD emergency admissions.

2. Methods

2.1. COPD admission data

Using the International Classification of Diseases (ICD) code (10th revi-

sion)49 , J44 for COPD, we extracted monthly counts of COPD emergency

admissions for patients above 19 years living in the LA postcode area, covering

parts of South Cumbria and North Lancashire in England (see Figure 1). The

total population of the study region was 272,520 based on the 2011 census. The

data cover the period from 1 April 2012 to 30 March 2018. To protect confi-

dentiality and anonymity of the patients, spatial information on their place of

residence was provided at the Lower Super Output Area (LSOA).

The COPD emergency admission data was provided by Morecambe Bay NHS

Foundation Trust (UHMBT). The study received approval from the research and

development department of UHMBT.
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2.1.1. Environmental variables

We obtained monthly weather data for 2012-2018 including monthly rela-

tive humidity, number of days of ground frost and temperature from the UK

Met Office, freely available from the Centre for Environmental Data Analysis

(http://data.ceda.ac.uk/). The spatial resolution of the weather raster files

is 1 × 1km2 across the UK. We also obtained yearly pollution data including

Particulate Matter less than 10 m in diameter (PM10), Sulphur Dioxide (SO2)

and Nitrogen Dioxide (NO2), available from the Department of Environmen-

tal Food and Rural Affairs (DEFRA) (https://uk-air.defra.gov.uk/data/

pcm-data). The estimate of the pollutants are provided at 1× 1km2resolution

over the entire Great Britain. For our analysis, we computed the population

weighted average of all the available raster data over the LSOAs shown in Figure

1.

2.1.2. Socio-economic variables

We obtained the index of multiple deprivation (IMD) created by the De-

partment for Communities and Local Government in order to account for socio-

economic heterogeneities across LSOAs. The IMD combines seven domains

which relate to income deprivation, employment deprivation, health deprivation

and disability, education skills and training deprivation, barriers to housing and

services, living environment deprivation, and crime. The IMD is available as

either a score, decile or rank. In this study, we used the IMD score for 2015,

the most recent release. Larger values of the score correspond to a higher level

of the domain deprivation.

2.1.3. Population data

We obtained the yearly population data per LSOA from the Office of Na-

tional Statistics (ONS), UK. ONS updates their population estimates yearly

based on migration data and any other physical adjustments (Office for Na-

tional Statistics, 2018). The average population of LSOAs in England and Wales

according to the census data in 2011 was 1,614 with 95% of LSOAs having a
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Figure 1: Map of South Cumbria and North Lancashire showing the boundaries (blue lines)

of 209 Lower Super Output Areas (LOSAs).

population of between 1,157 and 2,354. We stratify the population data into

age and sex using age group 20− 29, 30− 39, 40− 49, 50− 59, 60− 69, 70− 79,

80− 89 and 90+ and sex group male and female.

2.2. Statistical modelling and assessment of residual spatio-temporal correlation

Let Yit denote the monthly COPD emergency admission count at LSOA i

and month t. We then assume that the Yit, conditionally on a random effect

Zit, follow a Poisson distribution with mean µit = Eitλit, where Eit denotes the
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expected counts at LSOA i and month t and λit represents the monthly relative

risk of COPD emergency admission at a given LSOA.

We compute Eit using indirect standardization for age and sex. Let m = 16

denote the number of age and sex strata and let nitj and yitj is the total popu-

lation and the number of COPD emergency admission, respectively at LSOA i,

month t and in stratum j. Then, the expected counts is computed as follows:

Eit =

m∑
j=1

r̂
(s)
j nitj ,

where r̂
(s)
j =

∑
it yitj/

∑
it nitj is the disease rate in stratum j in the standard

population, such that r̄ =
∑m

j=1 r̂
(s)
j /m.

We define the log-linear model for the mean number of cases as

µit = Eit exp{d>itβ + Zit}, (1)

where dit is a vector of covariates with associated regression coefficients β. Fi-

nally, we assume that the Zit are independent and identically distributed Gaus-

sian variables with mean zero and variance σ2. In order to build our regression

model, we select predictors within three domains that are known to affect COPD

admissions: weather, pollution and deprivation. The variables that we consider

within each of these domains are listed in Table 1. As the variables within each

group are highly collinear, our goal is to select the best predictor from each of

the three groups.

In order to carry out the selection of the best predictors, we split the dataset

into training and test sets, with the former covering the months from April 2012

to March 2017 and the latter from April 2017 to March 2018. The rationale for

the chosen test and training sets is that we aim to develop an early warning sys-

tem that can better capture temporal features of the latest reported admissions.

We then fit 63 models obtained by combining one predictor from each domain

of Table 1 and, for each of those, we compute the bias, and root-mean-square-

error (RMSE) for the predicted COPD admissions cases using the test set. Let

ψit denote the observed incidence rate per 1000 population and ψ̂it denote the
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Table 1: Predictors for chronic obstructive pulmonary disease (COPD) and their correspond-

ing domain.

Domain Variables

Weather
Minimum temperature; relative humidity; and num-

ber of days of ground frost.

Pollution
PM10 SO2; and NO2. All in micrograms per cubic

metre (µgm−3)

Deprivation

Income deprivation; employment deprivation; health

deprivation and disability; education skills and train-

ing deprivation; barriers to housing and services; liv-

ing environment deprivation; and crime deprivation.

predicted incidence rate per 1000 population for LSOA t at time t for the test

set, hence,

Bias =
1

IT

I∑
i=1

T∑
t=1

(ψ̂it − ψit),

RMSE =

√√√√ 1

IT

I∑
i=1

T∑
t=1

(ψ̂it − ψit)2,

. For different combination of the set of predictors, we provide a rank for each

metric according to their performance. Then compute the cumulative rank

across the metrics and choose the combination of predictors with the lowest

cumulative rank as the best set.

From the mixed model with the best set of predictors identified through

the procedure outlined above, we assess whether the random effects Zit show

evidence of residual spatio-temporal correlation. To this end, we compute the

empirical spatio-temporal variogram (ESTV) for the estimates of Zit, using the

centroid of each LSOA in order to quantify the geographical proximity between

LSOAs. Let Ẑ(xi, ti) denote the estimate of Zit from model (1) associated

with the centroid xi at time ti. Let n(u, v) denote the pairs (i, j) such that

‖xi − xj‖ = u, where ‖ · ‖ is the Euclidean distance, and |ti − tj | = v. The
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expression of the ESTV is

γ̂(u, v) =
1

2|n(u, v)|
∑

(i,j)∈n(u,v)

{Ẑ(xi, ti)− Ẑ(xj , tj)}2,

where |n(u, v)| is the number of pairs set.

We used Monte Carlo methods to construct a 95% confidence intervals for

γ̂(u, v) under the assumption of absence of spatial correlation. We then proceed

through the following iterative steps:

1. permute the order of Ẑ(xi, ti), while holding (xi, ti) fixed;

2. compute the empirical variogram for Ẑ(xi, ti);

3. repeat step 1 and 2 for a large number of times, say B times; and

4. use the resulting B empirical variogram to generate 95% tolerance interval

at each of the predefined distance bins.

If γ̂(u, v) lies outside these intervals, then we conclude that the Z(xi, ti)

shows an evidence of residual spatio-temporal variation. Conversely, if γ̂(u, v)

lies inside, we conclude that the data do not show evidence against the model

in (1) which assumes independence between the counts Yit after removing the

effects of the covariates dit.

To quantify the relative contribution of each predictor in the model, we

compute the relative variance reduction (RVR) defined as

RV R =
σ2
−j − σ2

σ2
−j

where σ2 the variance of the Zit from the final model and σ2
−j is the variance

of the Zit when the j−th predictor is excluded from the final model.

2.2.1. An early warning system based on exceedance probabilities

We aim to develop an early warning system that triggers an alarm if the

COPD emergency admissions rate for a given LSOA exceeds a policy relevant

threshold, denoted by l.

Using the best model obtained from the previous stage of the analysis, we

predicted the expected number of cases as, µ̂it = E[Ŷit|Ẑit] = Eit exp{d>it β̂ +
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Ẑit}, such that the expected incidence rate per 1,000 population is given by

ψ̂it = 1, 000× r̄ × µ̂it/Eit. We then compute the exceedance probability (EP),

i.e. the predictive probability that ψ̂it exceeds a predefined threshold l, formally

expressed as

EPit = Pr
(
ψ̂it > l

∣∣∣ yit) . (2)

Values of EP close to one indicate that incidence rate per thousand is highly

likely to be above l, while the values of EP close to zero indicate that incidence

rate per thousand is highly likely to be below l. Finally, values of EP around

0.5 indicate that incidence rate per thousand are equally likely to be above or

below l, thus implying a scenario with highest uncertainty.

For a given LSOA and month, an alarm is then triggered whenever the EP

exceeds a value, say p. To identify an optimal value of p, we maximise the

sensitivity and specificity of the early warning system using the test set from

April 2017 to March 2018. Sensitivity is computed as the proportion of districts

whose true incidence rate per thousand is above the threshold l and are correctly

classified based on EP > p; the specificity is the proportion of districts whose

true incidence rate per thousand is below the threshold l and are correctly

classified based on EP < p.

We also compare the use of exceedance probabilities with a naive approach

which triggers an alarm for an LSOA if the predictive mean for the incidence

rate per thousand exceeds l, i.e.

E
[
ψ̂it

∣∣∣ yit] > l. (3)

Note that this approach, unlike (2), ignores the dispersal of the predictive distri-

bution ψ̂it hence yielding a lower sensitivity or specificity for the early warning

system.

3. Result

3.1. Descriptive Analysis

The age distribution of the COPD admissions is shown in Figure 2. We

observe the largest number of admissions for the age group 70-79. Also, more
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females were admitted than males.

As expected, the empirical pattern of monthly counts of COPD emergency

admission showed a seasonal pattern with the highest peaks found in the winter

period each year, around December and January (Figure 3), and lowest number

of admissions in September. It is well established that COPD patients suffer

from increased exacerbation during cold weather (Donaldson et al., 1999). Our

model captures the seasonal variations through the variables falling under the

weather domain.

Figure 2: Count of COPD emergency admission, by age group and sex, in South Cumbria

and North Lancashire, 2012-2018

3.2. Spatio-temporal Analysis

By applying the variables selection procedure described in Section 2.2, our

final set of predictors consists of minimum temperature, PM10, income depriva-

tion (see Table A.3 and A.4 in supplementary material). This set of predictors

has rank first in terms of cumulative rank among other candidate set of predic-

tors.
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Figure 3: Boxplot showing seasonal variation in the monthly count of COPD emergency

admission in South Cumbria and North Lancashire, 2012-2018.

Table 2 shows the relative variance reduction (RVR) of each predictor in the

model. We find that, overall, the selected predictor variables explain about 17%

of the variability in the residual random effects. Among these variables, income

deprivation attained the largest RVR of about 12%.

In order to test whether the predictors included in this model can capture

all the spatio-temporal correlation in the data, we applied the Monte Carlo

procedure of Section 2.2 based on the spatio-temporal variogram for both an

intercept-only model, that excludes all of the predictors of the final model (Fig-

ure 4), and the final model (Figure 5). The empirical variogram is based on

spatio-temporal bins that span in space and time. A comparison between Fig-

ures 4 and 5 indicates that the predictors used in the final model allowed us to

capture most of the residual spatio-temporal correlation in COPD emergency

admissions. For this reason, we deemed the model with unstructured Zit to be

a satisfactory fit to the data.

We then predict the incidence rates per thousand of COPD emergency ad-

mission for April 2017 - March 2018 and classify each LSOA as being above or
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below an incidence rate per thousand threshold l which we set to 12 per 1,000,

a choice which was agreed in consultation with expert clinicians. Based on this

threshold, the value of EP value that maximizes the sensitivity and specificity of

the early warning system was 0.85, yielding a 72% sensitivity and a 70% speci-

ficity. The area under the curve (AUC) was about 78% (Figure 6 left panel),

indicating a satisfactory predictive performance. The approach which classifies

LSOAs based on the predictive mean yields a 70% sensitivity and a 58% speci-

ficity. Because of the very low specificity of this second approach which leads to

an unacceptable high number of false alarms, the use of exceedance probabilities

is our preferred classification procedure.

Figure 7 shows the LSOA that were correctly and incorrectly classified based

on the exceedance probabilities. The selected months were chosen to show the

performance of the model in each of the four seasons of the test set. LSOAs that

are incorrectly classified corresponds to false alarms (purple and red LSOAs).

In October 2017, we observe the largest number of COPD emergencies that are

detected correctly by the model corresponding to 160 out of 209 LSOAs (blue

and orange LSOAs).

Table 2: The table showing the relative variance reduced by the predictors.

Predictors RVR (%)

Minimum temperature 0.30

PM10 0.18

Income deprivation 11.51

All predictors 17.01

4. Discussion

We have proposed a modelling framework that allows the development of

an early warning system for chronic obstructive pulmonary disease (COPD)
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Figure 4: Spatio-temporal variogram of the residual from an intercept only model.

admissions and have applied this to a case study in South Cumbria and North

Lancashire districts of Northwest England.

We have used our novel approach to identify emergencies in the number of

COPD admissions which are triggered whenever a predefined level of incidence

rate is exceeded. We have argued that, in this context, the development of

statistical models should aim to quantify the risk for the occurrence of a ma-

jor public health emergency through the use of exccedance probabilities (EPs).

Unlike other commonly used indices of predictive performance, such as mean

square errors, EPs are easier to interpret and more directly address the public

health question raised by this study. This contrasts with the current prevailing

approach, where models are exclusively developed in order to optimize predic-

tions for average levels of incidence.

Our best fitting model was identified by optimizing the exceedance probabil-

ity threshold for classification of LSOAs in order to maximize both sensitivity

and specificity. However, if the prioritization of LSOAs with incidence rate

14



Figure 5: Spatio-temporal variogram of the residual from model including all the predictors.

above 12 per 1,000 was more important, levels of sensitivity higher than 72%

could also be achieved at the expense of a specificity lower than 70%. Guidance

on the choice of classifications of LSOAs with higher sensitivity should then also

take into account costs of interventions, so as to identify the highest acceptable

number of false alarms.

Our predictive model uses a combination of weather, environmental and

socio-economic variables as predictors. Because of the high collinearity of the

variables within each of the three domains and in order to make the model more

parsimonious, we proposed to select a single variable to represent the risk factors

domains. Grouping variables into domains of COPD risk can be particularly

useful to enhance the explanatory power of the model as well as simplify the

variables selection process. In our application, due to the strong collinearity

among risk factors within the same domains, the differences between models

considered, in the terms of predictive accuracy, were minimal.

An important finding of our analysis was the lack of evidence of residual
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Figure 6: The receiver’s characteristics curve (ROC) based on the use of exceedance proba-

bilities (see equation (2)) for a 12 per 1,000 threshold. The red dot indicates the sensitivity

and specificity for the approach based on the exceedance of the predictive mean (see equation

(3)) for the admissions incidence.

spatio-temporal correlation in the reported COPD counts, after accounting for

the effects of the aforementioned risk factors. If spatio-temporal correlation

had been detected, our strategy would have been to model Zit as a stochastic

process whose sptatio-temporal correlation structure is derived from spatially

continuous Gaussian process; for more explanation on the rationale and techni-

cal aspects of this approach, we refer the reader to Johnson et al. (2019).

The most important predictor in our model for COPD admissions was in-

come deprivation. This is consistent with other studies that have reported

similar findings (Calderón-Larrañaga et al., 2011; McAllister et al., 2013) and

suggests that taking account of heterogeneities in socio-economic status across

LSOAs is key to develop more reliable statistical models for COPD admissions.

Temporal misalignment of the predictors may be one of the main causes af-
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Figure 7: Maps showing Lower Super Output Areas (LOSAs) that are correctly and incorrectly

classified for a COPD emergency. The interpretation of the colour coding scheme is as follows:

blue indicates LSOAs that are correctly predicted to be below the threshold of 12 per 1,000

incidence rate; orange indicates an LSOA that is correctly predicted to be above the threshold;

purple indicates an LSOA that is incorrectly predicted to be below the threshold; finally, red

indicates an LSOA that is incorrectly predicted to be above the threshold.

fecting the predictive power of our model. Furthermore, the pollution indicators

are only measured at few monitoring stations and an interpolation technique is

then used to obtain estimates of pollutant concentrations across the whole of

the UK. This can then further weaken the predictive performance of the best

fitting model.
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One of the main limitations of our study is inability to account for other

important risk factors that are not available for the study region and times

considered. One important missing variable in our analysis is the smoking rate,

a key driver of COPD admissions, or, as an alternative proxy, lung cancer

rates at LSOAs level could have also been used. Other important variables

include influenza rates and the fraction of the population employed in mining

and agriculture.

The developed warning system will be used to support the National Health

Service Morecambe Bay Clinical Commission Group and policymakers both in

the development of targeted interventions and in the resource allocation for the

healthcare system, so as to reduce the need for hospital care and unplanned

COPD emergency admissions. Future research will focus on improving the

current modelling framework through the inclusion of risk factors that are not

captured in this study.
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Appendix A. Table showing the performance of the combination of

predictors

Table A.3: The table showing the performance of the combination of the predictors. Note RB

is the rank of the bias, RR is the rank of the RMSE and Cum rank is the cumulative rank of

the RB, RR and RC. Also, Min. temp is the minimum temperature, Grd frost is the number

of days of ground frost and Rel. humi is the relative humidity.

ID Weather Pollution Deprivation Bias RMSE RB RR Cum rank

1 Min. temp Income PM10 -0.172172 0.510393 1 8 9

2 Rel. humi Education PM10 -0.172175 0.510394 2 9 11

3 Min. temp Employment PM10 -0.172251 0.510388 36 5 41

4 Grd frost Crime NO2 -0.172252 0.510386 39 3 42

5 Grd frost Crime PM10 -0.172243 0.510395 33 10 43

6 Min. temp Employment NO2 -0.172231 0.510438 25 18 43

7 Grd frost Employment SO2 -0.172240 0.510433 28 16 44

8 Min. temp Barriers PM10 -0.172252 0.510388 41 6 47

9 Grd frost Employment NO2 -0.172234 0.510443 27 21 48

10 Grd frost Income NO2 -0.172233 0.510444 26 22 48

11 Min. temp Education NO2 -0.172243 0.510637 32 17 49

12 Grd frost Environment PM10 -0.172242 0.510438 30 19 49

13 Min. temp Barriers SO2 -0.172241 0.510439 29 20 49

14 Min. temp Crime PM10 -0.172188 0.510576 13 36 49

15 Min. temp Environment NO2 -0.172212 0.510524 21 29 50

16 Grd frost Environment SO2 -0.172195 0.510572 16 35 51

17 Grd frost Income SO2 -0.172291 0.510376 51 1 52

18 Rel. humi Education PM10 -0.172291 0.510376 50 2 52

19 Min. temp Crime NO2 -0.172223 0.510518 24 28 52

20 Rel. humi Income SO2 -0.172212 0.510547 20 32 52

21 Min. temp Crime SO2 -0.172210 0.510549 19 33 52

22 Grd frost Environment NO2 -0.172288 0.510388 49 4 53

23 Min. temp Employment SO2 -0.172222 0.510542 23 30 53

24 Min. temp Barriers NO2 -0.172221 0.510544 22 31 53

25 Min. temp Environment PM10 -0.172180 0.510633 7 46 53

26 Rel. humi Environment PM10 -0.172195 0.510583 15 39 54

27 Rel. humi Crime NO2 -0.172194 0.510585 14 40 54

28 Rel. humi Environment SO2 -0.172242 0.510681 31 23 54

29 Grd frost Crime SO2 -0.172288 0.510389 48 7 55

30 Grd frost Education SO2 -0.172201 0.510577 18 37 55
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Table A.4: Continuation of Table A.3

ID Weather Pollution Deprivation Bias RMSE RB RR Cum rank

31 Rel. humi Crime PM10 -0.172201 0.510579 17 38 55

32 Min. temp Environment SO2 -0.172180 0.510675 6 49 55

33 Min. temp Income NO2 -0.172177 0.510693 4 54 58

34 Rel. humi Crime SO2 -0.172188 0.510669 11 48 59

35 Min. temp Health SO2 -0.172184 0.510677 8 51 59

36 Min. temp Health PM10 -0.172179 0.510707 5 56 61

37 Rel. humi Environment NO2 -0.172185 0.510688 9 53 62

38 Grd frost Barriers NO2 -0.172176 0.510715 3 59 62

39 Min. temp Income SO2 -0.172287 0.510436 47 17 64

40 Rel. humi Education SO2 -0.172188 0.510702 12 55 67

41 Rel. humi Health PM10 -0.172185 0.510711 10 58 68

42 Rel. humi Employment NO2 -0.172283 0.510448 46 23 69

43 Rel. humi Employment PM10 -0.172317 0.510432 58 14 72

44 Rel. humi Employment SO2 -0.172320 0.510432 60 13 73

45 Grd frost Barriers PM10 -0.172329 0.510412 63 11 74

46 Grd frost Employment PM10 -0.172327 0.510413 62 12 74

47 Rel. humi Health SO2 -0.172322 0.510433 61 15 76

48 Grd frost Health SO2 -0.172309 0.510481 55 26 81

49 Grd frost Barriers SO2 -0.172315 0.510480 57 25 82

50 Grd frost Income PM10 -0.172319 0.510470 59 24 83

51 Grd frost Health PM10 -0.172311 0.510484 56 27 83

52 Min. temp Education PM10 -0.172295 0.510564 54 34 88

53 Rel. humi Income NO22 -0.172271 0.510618 45 43 88

54 Grd frost Education NO2 -0.172264 0.510619 44 44 88

55 Min. temp Education SO2 -0.172264 0.510620 43 45 88

56 Rel. humi Barriers NO2 -0.172252 0.510677 38 50 88

57 Rel. humi Barriers SO2 -0.172248 0.510709 34 57 91

58 Min. temp Health NO2 -0.172293 0.510586 52 41 93

59 Grd frostfrost Education PM1010 -0.172295 0.510590 53 42 95

60 Rel. humi Barriers PM10 -0.172248 0.510717 35 60 95

61 Rel. humi Education NO2 -0.172251 0.510743 37 62 99

62 Rel. humi Health NO2 -0.172254 0.510730 42 61 103

63 Grd frost Health NO2 -0.172252 0.510751 40 63 103
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