Magma vesiculation and pyroclastic volcanism on Venus

Garvin, James B. and Head, James W. and Wilson, Lionel (1982) Magma vesiculation and pyroclastic volcanism on Venus. Icarus, 52 (2). pp. 365-372. ISSN 0019-1035

Full text not available from this repository.


Theoretical consideration of the magma vesiculation process under observed and inferred venusian surface conditions suggests that vesicles should form in basaltic melts, especially if CO2 is the primary magmatic volatile. However, the high surface atmospheric pressure ((∼90 bars) and density on Venus retard bubble coalescence and disruption sufficiently to make explosive volcanism unlikely. The products of explosive volcanism (fire fountains, convecting eruption clouds, pyroclastic flows, and topography-mantling deposits of ash, spatter, and scoria) should be rare on Venus, and effusive eruptions should dominate. The volume fraction of vesicles in basaltic rocks on Venus are predicted to be less than in chemically similar rocks on Earth. Detection of pyroclastic landforms or eruption products on Venus would indicate either abnormally high volatile contents of Venus magmas (2.5-4 wt%) or different environmental conditions (e.g., lower atmospheric pressure) in previous geologic history.

Item Type:
Journal Article
Journal or Publication Title:
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
16 Nov 2020 14:30
Last Modified:
15 Sep 2023 01:12