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Abstract—Backscatter heterogeneous networks are expected to
usher a new era of massive connectivity of low-powered devices. It
also holds the promise to be a key enabling technology for massive
Internet-of-things (IoT) due to myriad applications in industrial
automation, healthcare, and logistics management. However,
there are many aspects of backscatter heterogeneous networks
that need further development before practical realization. One of
the challenging aspects is high levels of interference due to the use
of the same spectral resources for backscatter communications.
To partly address this issue, this article provides a reinforcement
learning-based solution for effective interference management
when backscatter tags coexist with other legacy devices in a het-
erogeneous network. Specifically, using reinforcement learning,
the agents are trained to minimize the interference for macro-
cell (legacy users) and small-cell (backscatter tags). Novel reward
functions for both macro- and small-cells have been designed that
help in controlling the transmission power levels of users. The
results show that the proposed framework not only improves
the performance of macro-cell users but also fulfills the quality
of service requirements of backscatter tags by optimizing the
long-term rewards.

Index Terms—Backscatter communications, Internet-of-things
(IoT), Interference management, Reinforcement learning.

I. INTRODUCTION

Backscatter communication is evolving as the cutting-
edge technology to enable ultra low-power and cost-efficient
communications for future Internet-of-things (IoT) [1]. This
is achieved by using ambient RF signals without the need
for active RF transmission. Specifically, by modulating and
reflecting back the received RF signal, a backscatter tag
transmit the data to nearby devices rather than generating
RF signals using oscillators [2]. Due to such ease of use
and efficiency, this emerging technology has been proposed to
use in healthcare networks and for industrial automation. This
communication method is especially helpful in addressing the
communication and energy efficiency-related issues of small
devices with miniature power sources for remote tracking,
and logistics management. Despite compelling advantages and
applications of this technology, certain limitations restrict the
adoption of worldwide backscatter communication systems
[3].

Firstly, in traditional backscatter communications, the trans-
mitters should be placed close to the respective RF sources,
which significantly limits the coverage area and device uti-
lization [4]. Secondly, the RF source and the backscatter
receiver are generally located on the same device, which

causes the self-interference between the transmitter and the
receiver antennas. As a result, communication performance
is substantially degraded. Recently, with the advancement in
wireless communication technology, some promising solutions
for addressing these limitations have been proposed.

In this regard, one of the promising solutions is to use
backscatter communications with the existing legacy devices.
This not only improves some of the limitations of the backscat-
ter tags but also opens new avenues for improved spectral
efficiency [5], [6]. A backscatter heterogeneous network is
considered one of the key enablers for the coexistence of
legacy devices and backscatter tags. The low-power backscat-
ter devices communicate with one another by taking advantage
of the available signals in the surrounding environment [7].
The signals are broadcasted from different sources available
in the environment that may include ambient RF sources, e.g.,
radio and TV broadcasting towers, FM transmitters, and Wi-
Fi APs, and cellular BSs. In this manner, the communication
takes place without the need for the scarce and expensive ded-
icated frequency spectrum. The receiver receives the signals
transmitted from the carrier emitter or an ambient RF source,
and decodes these signals as the useful information transmitted
from the transmitting antenna. By segregating the backscatter
receiver and the carrier emitter, the number of RF elements
is reduced at backscatter devices, and they can operate more
efficiently [8], [9].
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Fig. 1. A typical Q-learning model consisting of an agent that interacts with
environment.

A. Related Work
In recent years, the performance of backscatter communica-

tions has been extensively studied for different communication
conditions. In this regard, the authors of [10] presented an opti-
mization framework to improve the performance of backscatter



networks. More specifically, their considered network setup
consists of a single source and destination along with several
wireless-powered backscatter tags. To maximize the through-
put, they solved the problem using the interior point method.
Similarly, the authors of [11] considered a scenario with
multiple backscatter tags and a single reader. Their considered
tags used mono-static formation and reflected the RF carrier
to the RF source. They optimized the successive decoding
rate of the system and showed that their scheme improves
the network performance. The authors of [1] explored the
rate-energy tradeoff of the backscatter communication sys-
tem. Their system model was composed of wireless-powered
backscatter tag communicating under the Rayleigh fading. The
authors of [12] provided measurement results for backscatter
communication in healthcare networks. They used mono-static
backscatter tags communicating at low frequencies for both
indoor communication conditions.

The reinforcement learning-based artificial intelligence al-
gorithms have been applied to wide areas of wireless com-
munication such as D2D communication [13]. Q-learning
is among the most explored and successful reinforcement
learning techniques [14]. In this case, the problem consists
of an environment and either single or multiple agents. As
shown in Fig. 1, by observing the current state of the system,
an agent takes action according to a stochastic policy. The
authors in [15] used a reinforcement learning-based power
control algorithm in underlay D2D communication and com-
pared a centralized Q-learning based algorithm with distributed
Q-learning. It was shown that distributed Q-learning users
are enabled to self-organize by learning independently, thus,
reducing the overall complexity of the system. In [16], the
problem of vehicle-to-vehicle (V2V) transmission of the mes-
sage was considered. However, there exist a few studies
on backscatter communication that employ machine learn-
ing techniques [17], [18]. For instance, the authors of [19]
used a supervised machine learning technique (support vector
machine) to detect the signal from a backscatter tag by
transforming the tag detection into a classification task. The
learning algorithm divides a signal into two groups based on
the energy features. It was shown that the proposed scheme
outperforms the conventional random forest technique. In [20],
the authors proposed to use machine learning for channel
estimation in backscatter systems. They design a semi-blind
channel estimator using a typical machine learning technique
called expectation maximization. They also derived Cramer-
Rao lower bounds of estimated parameters to verify the
utility of the proposed technique and validated the results
using simulations. In [21] the authors discussed the ambient
backscatter communication that enables wireless devices to
communicate without utilizing radio resources. The system
is modeled by the Markov decision process and the optimal
channel is obtained by the iterative algorithm.

B. Motivation and Contribution

The aforementioned research efforts have significantly ad-
vanced the state-of-the-art on backscatter communications.

However, the optimization aspect of backscatter communica-
tions has received little attention. The feasible adoption of
backscatter communication largely depends on the optimiza-
tion of existing solutions. Motivated by this objective, we
aim to provide a novel Q-learning solution for backscatter
heterogeneous networks. According to the best of authors’
knowledge, the interference mitigation via Q-learning has not
been performed for backscatter heterogeneous networks. The
main contribution of our work is twofold.

1) We develop a backscatter heterogeneous network to
improve the spectral efficiency of the legacy networks.
Specifically, the backscatter tags are associated with
the small-cells that share the resources with macro-cell.
The quality of service requirements and interference
constraints of both the backscatter and legacy users have
been taken into account.

2) A Q-learning optimization framework has been proposed
to mitigate inter-cell interference. The Q-learning model
considers different rewards for both macro-cell and
small-cell. The results show that the proposed opti-
mization framework improves the performance of the
backscatter heterogeneous network.

The remainder of the paper is organized as follows. Section
II provides the details of the considered system model. In Sec-
tion III, the proposed Q-learning framework for interference
minimization is provided. Section IV presents the simulation
results and provides a relevant discussion. Section V, finally,
presents some concluding remarks and future research direc-
tions.

II. SYSTEM MODEL

We consider an uplink backscatter heterogenous network
having single macro-cell BS and multiple small-cell BSs
operating at sub-6 GHz, as illustrated in Fig. 2. The macro-cell
BS and small-cell BS are assumed to be operating on the same
channels using the same number of resource blocks. Without
loss of generality, we consider that a user (i.e., backscatter or
legacy user) can connect to only one BS at a time, whereas,
the users are considered to be already associated with either
the macro-cell BS or small-cell BS. The backscatter users
are assumed to be communicating to small-cell BS while the
legacy users are considered to be communicating with the
macro-cell BS.

For backscatter communications with small-cell BS, we
consider a monostatic backscatter configuration and that all
the backscatter tags1 are equipped with single antennas. Each
backscatter user is assumed to use a reflection amplifier that
is characterized by the negative load impedance [3]. The
channel coefficients between the small-cell BS and backscatter
transmitter (i.e., direct link), and between the backscatter trans-
mitter and small-cell BS (i.e., backscatter link) are denoted as
gst and gtr. During each time slot, the backscatter transmitter
has to decide whether to operate in energy harvesting mode

1The phrases ‘backscatter tag’ and ‘backscatter user’ are used interchange-
ably throughout this paper.
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Fig. 2. Illustration of backscatter heterogenous network consisting of macro-
cell and multiple small-cells.

or backscatter mode. All the backscatter tags are considered
to be equipped with a rechargeable battery such that the
backscatter transmitter can improve its life cycle by harvesting
the wireless-power from the RF carrier of small-cell BS.

Specifically, the backscatter transmitter uses the RF signal
to harvest energy by converting the RF signal into a direct
current. The collected energy can be used for charging the
battery or transferring the data back to the small-cell BS. Thus,
the harvested energy can be denoted as Eih = ηρE |gk,fst,i|2P

f
i ,

where η denotes the energy harvesting efficiency, ρE is the
power-splitting ratio, and P fi is the transmit power of the
small-cell BS. Generally, the transmission signal is known
at the small-cell BS and, thus the small-cell BS can apply
interference cancellation techniques to obtain the signal from
backscatter tag [22].

The instantaneous SINR at the k-th small-cell BS can be
written as

Ωk,fi =
µρIP fi |g

k,f
st,i|2|g

k,f
tr,i|2

I1 + I2 +N0
(1)

where 0 < µ < 1 is the reflection coefficient, ρI is
the information processing power-splitting ratio, gk,fst,i is the
channel gain between the i-th backscatter user and the k-th
small-cell BS, N0 represents the noise variance of additive
white Gaussian noise (AWGN), P fi the transmission power
of small-cell BS, I1 and I2 are the interferences, respectively,
given as

I1 =
∑
j∈Im

Pmj |gmtr,j |2, (2)

and

I2 =
∑
r∈If

µρIP fr |g
f
st,r|2|g

f
tr,r|2. (3)

In (2), Im is the set of interfering macro-cell users on
the same sub-channels. Similarly, If in (3) represents the
interference from backscatter users in the other small-cell BSs.
Now, the received SINR at the macro-cell BS for decoding the
l-th legacy user’s message can be given as

Ωml =
Pml |gmtr,l|2

I1 + I2 +N0
, (4)

where Pml denotes the transmission power of the legacy user
to the macro-cell BS, and gmtr,l is the channel gain between l-th
legacy user and macro-cell BS.

III. INTERFERENCE MANAGEMENT THROUGH
REINFORCEMENT LEARNING

Prior to solving the interference problem in backscatter
heterogeneous networks, it is important to understand the
dynamics of different entities in the network. We resort to
using Q-learning which allows us to find the optimal policy
over the long-time interaction of agents. In general, Q-learning
has three main components, i.e., state, reward, and action. In
that, the agent is rewarded based on the action it takes for pre-
defined states. Specifically, the agent uses the Q-learning table
to maximize the reward by interacting with the environment.
In our considered network setup, the agents are the members
of the macro and small-cells that are competing for the con-
strained resources. As a result of this interaction, a significant
amount of interference is introduced in the network known as
co-channel interferences. We anticipate this interference can
be mitigated after finding the optimal policy for each agent
that learns independently about the environment and do not
cooperate.

To avoid the unjust distribution of resources and make sure
that members of the macro-cell do not fall in the low SINR
region, we assume that the small-cell BS has the knowledge
of channel of the macro-cell. This assumption is incorporated
in the reward function for developing the Q-learning model.
We now provide details of the state-reward function for the
proposed Q-learning model. Here, for the sake of simplicity,
we consider that we have one macro-cell BS and two small-
cell BSs. This does not undermine the significance of the
proposed solution since this optimization framework can be
easily extended for a larger number of small-cells in the
network. Moreover, due to the different dynamics of macro-
cell and small-cell, we define the reward function separately
for both cells.

A. State

The state of any small-cell sSM = {IΩm
, IΩi

, Ir} is
represented, respectively, as a tuple of following indicators:

IΩm
=

{
1 Ωm ≥ ΩT
0 Ωm < ΩT

(5)

IΩi
=

{
1 Ωi ≥ ΩT
0 Ωi < ΩT

(6)

and

Ir =

{0 Ωi

Pi
≤ Ta

1 Ta <
Ωi

Pi
< Tz

2 Ωi

Pi
≥ Tz

(7)

where ΩT is the level of required SINR for reliable commu-
nication, Ωm represents the instantaneous SINR of the macro-
cell, whereas, Ωi denotes the instantaneous SINR of the small-
cell. Furthermore, Ta and Tz are the thresholds for energy



TABLE I
STATES OF MACRO-CELL AND SMALL-CELL.

S No. Macro-cell States Small-cell States
1. s0(0, 0) s0(0, 0, 0)
2. s1(1, 0) s1(0, 1, 0)
3. s2(0, 1) s2(0, 0, 1)
4. s3(1, 1) s3(0, 1, 1)
5. s4(0, 2) s4(0, 0, 2)
6. s5(1, 2) s5(0, 1, 2)
7. s6(1, 0, 0)
8. s7(1, 1, 0)
9. s8(1, 0, 1)
10. s9(1, 1, 1)
11. s10(1, 0, 2)
12. s11(1, 1, 2)

efficiency ratio. More specifically, if the energy efficiency is
below Ta, then the small-cell is in experiencing low efficiency.
On the other hand, if the energy efficiency is above Tz , then
it is in desirable region of high efficiency. The small-cell not
only considers the SINR of itself but also the macro-cell’s
SINR. This results in small-cell to achieve a high efficiency
without compromising the quality of service requirements of
the macro-cell. On the other hand, the macro-cell only cares
about itself and tries to achieve a high efficiency. Due to this
reason, the states of macro-cell is a tuple of two indicators
sMA = {IΩm

, IΩi
}. Thus, for the considered setup, there are

12 possible states for both macro-cell and small-cell members
as given in Table I

B. Action

The actions of the agents are predefined transmission power
levels. Specifically, the power levels are increased from a
specific level with a constant step size.

C. Reward

Again, the reward for both macro-cell and small-cell mem-
bers differ since macro-cell members must be kept above a
certain quality of service and capacity limit. However, we also
intend to maximize the capacity of the small-cell members.
We define the reward functions of macro- and small-cells
based on their corresponding SINRs. More specifically, the
reward functions of macro-cell and small-cell members can,
respectively, be given as

rmi =

{
100 Ωm ≥ ΩT
−1 otherwise (8)

and

rfi =

{100 Ωm

ΩT
≥ 1, Ωi

ΩT
≥ 1

−1 Ωm

ΩT
≥ 1, Ωi

ΩT
< 1

−1 Ωm

ΩT
< 1, Ωi

ΩT
< 1

(9)

The macro-cell is rewarded a large value if the SINR is
higher than the threshold, while it receives a small punishment
if it is below. Similarly, the small-cell members receive the
reward and punishment for their corresponding SINR values.
In this regard, it is worth highlighting that a negative reward

may result in low Q-value. By iteratively updating the Q-
values, the gap between the rewards of macro-cell and small-
cell members can be mitigated. Ultimately, the agent selects
the action with the highest Q-value for every state.

Fig. 3 illustrates the working of the proposed Q-learning
technique. Let us consider the small-cell agent is at a random
state s0(0, 0, 0) and selects a random action for transmission
power level 10 dB. The small-cell agent can now estimate
the SINR since the other agents also choose their actions ran-
domly. This information can be shared among agents through
the BSs. Now, the instantaneous SINR can be easily estimated.
Let us consider that based on the predefined values, the agent
now moves to the state s11(1, 1, 2) and receives a reward.
Again, the agent selects a random action and supposedly
moves to the next state s7(1, 1, 0). Here, the agent again
selects an action and learns that the calculated SINR has been
reduced and that the SINR of the macro-cell is also below
the threshold. These sort of dynamics are modeled by our
proposed Q-learning technique for interference management
in backscatter heterogeneous networks.
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Fig. 3. Working example of the Markov decision process.

IV. PERFORMANCE EVALUATION

In this section, we provide the simulation results and their
relavent disucssion. To validate the performance of the pro-
posed Q-learning optimization framework, we perform Monte-
Carlo simulations. In that, the channel gains between BS and
the backscatter tag/ legacy user depends on their distance
d−χ, where, χ = 4 is the pathloss exponent. Unless stated
otherwise, the simulation parameters and their corresponding
values are given as follows: learning rate = 0.5, N0 = 0.1,
η = 0.9, ρI = 0.8, discount factor=0.9, transmit power range
= 2 - 16, Tz=10, Ta = 2, ΩT = 5.

Fig 4 the values of SINR for the increasing number of
iterations. In general, it can be noted that the model converges
around 1100 iterations for small-cells and macro-cell. Due to
the high priority of the macro-cell (legacy) users, it can be
seen that the SINR value of macro-cell users is higher than
the backscatter (small-cell) users. Moreover, the SINR value of
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Fig. 4. Illustration of SINR for small-cells and macro-cell, where, (a) Tz = 3, (b) Tz = 4, (c) Tz = 5, (d) Tz = 6, (e) Tz = 7, (f) Tz = 8, (g) Tz = 9,
(h) Tz = 10.

small-cell backscatter users generally fluctuates. As the value
of Tz increases, given Fig 4 (a) to Fig 4 (h), the value of
SINR of macro-cell users gradually improves. Specifically, the
gap between small-cell and macro-cell SINR increases and
becomes stable. Finally, when Tz = 10, the gap between the
SINRs of macro-cell and small-cell users is generally greater.
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0.5
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2

Fig. 5. SINR against increasing values of learning rate.

Fig 5 shows the impact of different learning rates on the
performance of the proposed Q-learning based optimization
framework. The learning rate has an impact on the perfor-
mance of the Q-learning agent since it decides the tradeoff
between exploration and exploitation of the agent. It can be
seen from the figure that for macro-cell and small-cell 2, the
increase in learning rate first improves that SINR and then
results in decreasing the value of the SINR. However, the same
is not true for small-cell 1. For the case of small-cell 1, the
increase in learning rate from 0.1 to 0.9 first reduces the SINR
and then increases the SINR as the learning rate approaches
0.9. Moreover, the peak and lowest value of SINR differ for
both macro-cell, small-cell 1 and small-cell 2. This shows

that based on the priority of macro-cell and small-cell users,
the learning rate could be differed to improve the learning
capabilities of the agent.
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Fig. 6. Illustration of SINR for increasing values of threshold.

Fig 6 shows the change in values of SINR for increasing
threshold values (ΩT ). It can be seen that the value of SINR
for both macro-cell and small-cell users generally decreases
with an increase in the threshold value. However, due to the
reduced information gap among the small-cell users, the value
of small-cell 2 increases, whereas, the SINR value of small-
cell 1 decreases. Moreover, it can also be observed that the
gap between SINR of small-cell 1 and small-cell 2 increases
with an increase in the value of the threshold. Thus, one can
deduce that the improvement in SINR of small-cell 2 users
comes at the cost of small-cell 1 users.

In Fig 7, we illustrate the impact of Ta on the SINR of both
macro-cell and small-cell users. In general, it can be seen that
an increase in the value of Ta improves the SINR of both
the macro-cell and small-cell users. However, as the value of
Ta increases further, the SINR values approaches a ceiling.
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Fig. 7. SINR versus different values of Ta.

This shows that despite a large increase in the value of Ta no
significant increase in the value of SINRs of macro-cell and
small-cell users is observed.

V. CONCLUSION AND FUTURE WORK

Backscatter heterogeneous networks are going to play a
critical role in enabling low-powered massive IoT applications.
However, some challenges need to be addressed before the
practical realization of such networks. In this regard, this work
has provided a Q-learning based optimization framework for
mitigating the impact of interference in backscatter heteroge-
neous networks. To do so, we have proposed a novel reward
function for both macro-cell (legacy) and small-cell (backscat-
ter) users. The proposed Q-learning model is formulated in a
way where macro-cell users are given priority over the small-
cell users. The simulation results clearly indicate that the Q-
learning framework increases the performance of the macro-
cell users while maintaining a recommended level of SINR
for the backscatter users in the small-cell.

Although the result provided here show considerable
promise, they can be extended in many ways. For instance,
future studies can consider multi-antenna backscatter tags
to improve the overall throughput of the system. Our pro-
posed framework can be used to improve the performance
of backscatter heterogeneous network through an efficient
beamforming mechanism. Furthermore, an effective schedul-
ing mechanism can further reduce the impact of interference in
backscatter heterogeneous networks. Our proposed framework
can be combined with the scheduling technique which may
improve the performance manifolds. These challenging yet
interesting works are left for future studies.
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