Doctopic: Nonlinear science

PLA:127040

Physics Letters A eee (eeee) ssseee

Contents lists available at ScienceDirect
Physics Letters A

www.elsevier.com/locate/pla

PHYSICS LETTERS A

Parametric vibrational resonance in a gyroscope driven by

dual-frequency forces

K.S. Oyeleke ?, O.I. Olusola®*, U.E. Vincent ™€, D. Ghosh ¢-*, P.V.E. McClintock ¢

@ Department of Physics, University of Lagos, Lagos, Nigeria

b Department of Physical Sciences, Redeemer’s University, PM.B. 230, Ede, Nigeria

¢ Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

d Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India

ARTICLE INFO ABSTRACT

Article history:

Received 28 October 2020

Received in revised form 6 November 2020
Accepted 12 November 2020

Available online xxxx

Communicated by M. Perc

We examine and analyze vibrational resonance (VR) in a dual-frequency-driven gyroscope subject to
a parametric excitation and an additive periodic forces. The method of direct separation of the fast and
slow motions is used to derive the response amplitude analytically from the equation for slow oscillations
of the system, in terms of the parameters of the high-frequency signal and the parametric excitation.
Numerical simulations are carried out to validate the theoretical results. It is further shown that, when

the parametric excitation and additive periodic force consist of low and high frequencies, respectively,
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a much higher response amplitude can occur. It is about three times larger than the response obtained
when the forcing actions are reversed and is attributable to the optimization of low-frequency parametric
excitation by the high-frequency additive signal.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The amplification of a system’s response through the actions
of two periodic inputs of significantly different frequency - a low
frequency (LF) signal and a high frequency (HF) force - now known
as vibrational resonance (VR) [1], has become an active field of
research during the last two decades. The phenomenon is in many
ways similar to stochastic resonance (SR) in which a weak periodic
signal in a nonlinear system can be enhanced by additive noise of
optimal intensity [2-5], except that in VR the noise is replaced by
the HF force.

Work on VR has been motivated in large part by its di-
verse potential applications in weak signal detection [6,7], out-
put filtering and the attenuation of undesirable signals, as well
as the detection of faults in bearings [8-11]. The phenomenon
has been explored theoretically [1,6-11,5,12-18] and experimen-
tally [19-21] in bistable and multistable vertical-cavity surface-
emitting lasers (VCSELs), and dynamic logic gates in electronic
circuits. It has received attention in relation to monostable sys-
tems [22], bistable systems [1,23-26], quintic oscillators with and
without time-delay [27-29], multistable systems [13,30-32], ex-
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citable systems [33,34], scale-free and randomly-connected net-
works [35,36], neuron models [17,37-40], biological nonlinear
maps [41], Morse and Tietz-Hua quantum oscillators for mod-
eling diatomic molecules [42,43], systems with nonlinear damp-
ing/dissipation [44-47], fractional order systems [27,48], position-
dependent mass oscillator [49] and harmonically trapped potential
systems [50]. Very recently, some of us demonstrated response
amplification induced by deformation of an asymmetric poten-
tial [51] as well as the possibility of roughness-induced resonances
in a rough potential [47].

In contrast to the impressive array of theoretical and compu-
tational understanding embodied in this large corpus of research
on VR, rather less attention has been paid to parametrically-driven
nonlinear systems [48,52,53]. Such systems are abundant in na-
ture, however, as well as in a wide range of engineering applica-
tions. They can be found in models of Bose-Einstein condensates
(BECs) for cold atoms, and in laser models, including semiconduc-
tor, diode, and fibre lasers, as well as VCSELs. In diode-lasers for in-
stance, high-frequency modulation constitutes an important build-
ing block for the transmitters used for encoding optical commu-
nications through cavity loss or pump current modulation [54,55].
In addition, parametric driving plays vital roles in signal amplifi-
cation, filtering and sensing, in particular in micro- and nanoscale
materials [56]. Recently, vibrational resonance has been observed
in a model Rayleigh-Plesset bubble oscillator in an incompressible
liquid driven by a dual-frequency forcing [57].
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Fig. 1. (Colour online.) Schematic diagram of the dual-frequency-driven gyroscope.

In this paper, we investigate VR in a model of a parametrically-
excited gyroscope driven by a periodic force. Research interest in
the gyroscope stems largely from its numerous applications in
mechanical, optical and micro-electro-mechanical devices where
it functions variously as an attitude heading reference system, a
gyrocompass, an inertial measurement unit, and in inertial nav-
igational aid systems. We refer readers to Ref, [58] for a recent
comprehensive review of a wide range of commercial gyroscope
applications and their classifications. Previous works on nonlinear
gyroscopes considered bifurcation and chaos in a harmonically ex-
cited rate gyro [59] and in a symmetric gyro with linear-plus-cubic
damping [G0]. Active and backstepping controls were employed to
control and synchronize two chaotic nonlinear gyroscopes [61,62].
Other examples include Gaussian, radial, basis-adaptive, backstep-
ping control, which was proposed for modified projective syn-
chronization of unknown heavy symmetric chaotic gyroscope sys-
tems [63]. The global synchronization stability criteria of linearly-
coupled gyroscopes was examined by Olusola et al. [64].

The aforementioned works on gyroscopes, and many others,
considered only single-frequency driving. In this paper, the gyro-
scope model is driven by dual-frequency forces: a parametric exci-
tation and an additive periodic force. In addition to the well known
method of tuning the strength of the high-frequency field in VR,
we show that the parametrically excited gyroscope also exhibits
VR when the low-frequency parametric excitation is tuned. Fur-
thermore, we demonstrate that a higher response amplitude and
a wider response bandwidth are obtained when a low-frequency
parametric excitation force cooperates with a high-frequency ad-
ditive forcing. We discuss the implications of our results for the
design of optical measurement devices, where high-frequency re-
sponse and high bandwidth are desirable.

In section 2, we describe the gyroscope model under study and
obtain its potential function for the first time. In section 3 detailed
theoretical and numerical analyses are presented for the two sce-
narios of: (i) a low-frequency parametric excitation with a high
frequency additive driving force; and (ii) a high-frequency para-
metric excitation with a low-frequency additive driving force. The
results are summarized and conclusions are drawn in section 4.

2. The model

The system to be considered is a dual-frequency-driven gyro-
scope model mounted on a vibrating base, as illustrated schemat-
ically in Fig. 1. The dynamics can be formulated using the La-
grangian approach associated with the Euler’s angles, namely, the
nutation (@), precession (¢) and spin (¥) [60]. The Lagrangian is
expressed as:

L=;ﬂw+&gﬁm+%h@mW+¢f (1)
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—Mg(l + 11 sin(wit)) cos® — Mgl sin(wnt)

where I1 and [5 are the polar and the equatorial moments of in-
ertia of the gyroscope, respectively. Mg is the gravity force, l; is
the amplitude of the external excitation disturbance, and 1 is the
frequency of the external excitation. [ is the amplitude of the ad-
ditive external forcing with frequency @;. Coordinates ¢ and
are cyclic, and they are absent from the Lagrangian. This provides
us with two first integrals of the motion expressing the conjugate
momenta as

alL

P¢,=a—q.§=]1gi>sin29+I3(qbc059+lzf)CO59, (2)
oL . :
pw=£=13(¢c059+¢)=13wz, 3)

where w; is the spin velocity of the gyroscope. Using the Routh’s
procedure and the definitions in Eq. (2), the Routhian of the system
becomes

R=L— Py — Py . (4)

Treating it as a single-degree-of-freedom dynamical system, its
equation of motion can be obtained from the Euler-Lagrange equa-
tion,

d (R R _ 5)
de \ 98 -

where F4 accounts for all the external contributions, including the

dissipative force. The latter is assumed to be of linear-plus-cubic
form and is written as,

Fd=7D]é*D293, (6)

where D1 and D3 are positive constants. The other components of
Fq are the dual frequency driving forces [y sinewit and Iy sinwot as
shown in Fig. 1. Accordingly, it is easy to show that the equation
governing the gyroscope can be written in dimensionless form as

. 5[ (1—cos8)? , . - ,
6+o W — Bsin® + 18 + c20” — [y sin(wat) =0,
(7)

where B = B + fysin(wit) is a parametric driving force of fre-
quency wi, and fysin(wyt) is an additive driving force of fre-
quency ws; c16 and 263 are the linear and cubic nonlinear damp-
ing terms, respectively, with coefficients ¢y and c3. The system (7)
has been extensively investigated for f5sin(w,t) =0 and without
any attention paid to its potential structure, although the latter is
fundamental to its general dynamics. From Eq. (7), we obtain the
system'’s potential in the absence of additive driving as

2

Vi) = + (B + f1sin(wit)) cosa. (8)

14 coso
The potential, V(#) admits two types of potential structure de-
pending on the values of « and S. For instance, with: ¢; =
0.5 2 =005 fi=f,=005 wi=wy =2 and ¢ =ty(n =
0,1,2,...,00), V(@) takes the forms shown in Fig. 2. Both sin-
gle and double-well potential shapes can be obtained. Fig. 2(a)
shows a single-well potential for « = 10 and g =1, while Fig. 2(b)
shows a double-well potential for @« = 2, 8 = 10. For the single-
well structure, Fig. 2(a), the equilibrium point of the unforced sys-
tem is located at the origin (¢ = 0, # = 0), around which oscillatory
motion occurs along the principal axis of the gyroscope, which co-
incides with its vertical axis. For the double-well potential, which
has a local maximum at & = 0 (an unstable fixed point) with @ =2
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Fig. 2. (Colour online.) The potential of system (7) against # with the following
parameters (a) @ =10, B =1, f =0.05, @ =2, t =t, (single-well), (b) ¢ =2, B =
10, f =0.05, w =2, and t = t, (double-well).
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Fig. 3. (Colour online.) Evolution of the parametric driving force, B against t and w
with the following choice of parameters (a) f =0.05, B=1, w=[11.52],(b) f=
005 g=1,t=[5710].

and g = 10, there are two local minima located at # = 2 around
which oscillatory motion takes place. The existence of equilibrium
is important for the investigation of vibrational resonance [65].

In the absence of the parametric excitation, the shape of the po-
tential, including the positions of the local minima, depends only
on the two parameters ¢« and g. This is similar to the case of the
Duffing oscillator, in which the shape of the potential also depends
on two parameters, g, the natural frequency and B, the parame-
ter controlling the strength of the nonlinearity [14]; but it is unlike
the case of quintic oscillators in which the shape of the potential
depends on three parameters (a)g, A and y) [22]. In what follows,
we investigate VR in the system (7) under two different conditions:
(i) a low-frequency (w1 = w) parametric excitation force cooper-
ating with a high-frequency (w; = ) additive driving force with
fi=1/f, f» =G; and (ii) a high-frequency (w1 = Q) parametric ex-
citation force cooperating with a low-frequency (w; = @) additive
driving force, with fi =G, fo = f, where 2> w and G > f.

3. Analysis of vibrational resonance
3.1 CASEONE: w1 =@, s =%, fi=fand fo=C

We first consider the gyroscope model under the action of a
weak parametric excitation force of frequency @1 = w and a high-
frequency additive driving force of frequency w; = 2. The potential
function is shown in Fig. 2(a). The forms of the parametric driving
force B plotted against t and « are shown in Figs. 3(a) and 3(b),
respectively. Note that the period of oscillation decreases with in-
crease in ¢ and also that, as ¢ increases, the value of @ at which a
complete oscillation occurs decreases.

We now analyze VR theoretically in this system, based on the
method of direct separation of the slow and fast motions described
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by Blekhman [12] and further extended by Blekhman and Landa
[23]. This is the most effective way of formulating vibrational me-
chanics problems to obtain the equation of slow motion modulated
by the parameters of the fast driving signal. We assume that the
solution @ of Eq. (7) consists of a slow motion X(t) with period
27 /e and a fast motion ¥ (t, Q) with period 27 /€, i.e.,

In general, the mean value for the fast oscillatory motion is defined
as

2

— 1

1//=Efwa‘t=0, (10)
0

and, by substituting Eq. (9) into Eq. (7), one readily obtains,

o . o0 cosXcostrsinXsim/f)z)

X+y+a ( (sin X cos ¥ + sinyr cos X)3

—[B + [ sin(ewt)](sin X cos ¥ + sin yr cos X)

FerX 4 crd + c2(X3 4 3X29 +3X92 4+ 4)

—Gsin(Q) =0. (11)

Averaging Eq. (11) with respect to the fast motion component
yields

_ in Xsinv)2
K+ a? (1 . cos Xcosyr J-rszsmy//)
(sin Xcos ¥ + siny cos X)3
—[B + [ sin(ewt)](sin Xcos yr + sin ¥ cos X)
+C1).('+C2X-3 =0. (12)

Subtracting Eq. (12) from Eq. (11) yields:

U+ a? ((1 — cos X[cos ¥y — cos /] + sin X[siny — sim/,])l)

(sin X[cos ¢ — cos ]+ [sinyr — W] cos X)3
—[B+ fsin(wt)](sin X[cos ¥ — cos ¥r]
+[siny —sing]cos X) + 19 + c23X2Y + 3Ky 2 + )
— Gsin(Qt) =0. (13)

Equations (12) and (13) are the required integro-differential equa-
tions of motion for the slow motion X and the fast motion v,
respectively. Eq. (12) is the more important result from the anal-
ysis, being the equation of motion for the slow dynamics, with
parametric forcing, which is to be modulated appropriately by
varying the parameters of the fast signal. Furthermore, one can
impose the inertial approximation v > v > ¥ on Eq. (13) so that
¥ = Gsin(§2t), which has the solution

G
W= ey sin Q. (14)

with ¥ in Eq. (14), and ¥ given by Eq. (10), we obtain the mean
values

2
_ 1
v =0; sinwzﬂfsinv;dtz{]; (15)
0
2
cosyr = ! fcosy’fa’t—j (G)
T RRYe?
0

where ]g(%) is the zeroth-order Bessel function of the first kind.
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Fig. 4. (Colour online.) The effective potential corresponding to the slow motion of
the system the parameters (a) @ =10, =1, 2=100, f =0.05, w=2,t=t,, G=
[5000, 10000, 15000, 18000, 20000], (b) & =10, g =1, G =5000, [ =0.05, w =2,
t =ty, 2=1[100,70, 60,55, 50].
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Fig. 5. (Colour online.) The effective potential corresponding to the slow motion of
the system for parameters (a) « =2, § =10, Q =100, f =0.05, w =2, t =1, G =
[2500, 15000, 20000, 24000, 30000], (b) @ =2, B =10, G =2500, f =0.05, @ =2,
t=tp, 2=[100, 40, 30, 20, 1].

Substituting solutions (15) into Eq. (12), we have

, (1= Jo(&) cos X)?
(Jo(%)sinX)?

X+ (16)

G . .
—[B+ fsin(wr)]jo(ﬁ)sinX—f—c]X + X3 =0.

Equation (16) is the equation of motion for the slow motion of the
gyroscope. Its effective potential, Vsf is given as:
@? Jo($5)

Verr(X) =
1 = T 7008 cos )

+B+f Sin(wf)]lo(%) cos X. (17)

The shape of Vepr(X) is dictated by the six parameters «, G, €,
B, f and w. Fig. 4 shows plots of V.ff against the slow motion
component X for selected values of the parameters of the high-
frequency signal with fixed values ¢« =10, =1, f =0.05, w =2,
and at time t = t. It is clear that, as the parameter G of the
fast motion increases, the potential well decreases whereas, as the
frequency €2 of the fast motion decreases, the potential well de-
creases, thereby driving the system into the neutral equilibrium
state. Also Fig. 5 shows the plot of Vs against the slow motion
component X, for ¢ =2, =10, f =0.05, @ =2, at time t =tp,
such that Vs is a double-well potential. In both Figs. 4 and 5,
it can be seen that the shape of the effective potential depends on
the parameters of the excitation signal and, in the double-well case
shown in Fig. 5, the variation in parameters of the high-frequency
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Fig. 6. (Colour online.) Evolution of the effective parametric driving force, Befs
against t with the following choice of parameters (a) g =1, 2 =100, f = 0.05,
w = 2, G =0, 10000, 15000, 18000, 22000], (b) g =1, G = 5000, f =0.05, & =2,
€ =[100, 70, 60, 55, 50].
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Fig. 7. (Colour online.) Evolution of the effective parametric driving force, Begss
against @ with the following choice of parameters (a) g =1, = 100, f = 0.05,
t =22, G = [0, 10000, 15000, 18000, 22000], (b) g =1, G =5000, f =0.05, t =22,
€2 =[100, 70, 60, 55, 50].

signal can energetically initiate potential barrier crossing. Thus the
high-frequency force acting as a control input provides the energy
requirement for the barrier crossing process.

From Eq. (17), we also deduce that the effective parametric
force, Befr is

G
Besr = + [ sin(et)] Jo (@) ) (18)

Equation (18) shows clearly that the effective parametric force is
also a function of the parameters of the excitation signal. Plots
of Bepy against t and @ are shown in Figs. 6 and 7 respectively,
where it can be observed that an increase in the parameter G de-
creases the system’s response, whereas an increase in parameter
Q increases the system’s response. This again confirms that varia-
tions in the parameters of the high frequency forcing impacts on
the system’s response by excitation of the parameter f.

Considering Eqs. (17) and (18), and Figs. 4-7, it can be seen
that the effective potential of the slow motion and the effective
parametric driving force depend on the parameters G and €2 of the
high-frequency forcing. By varying either G or €, the onset of VR
can be promoted: either G or € can be used to set the equilibrium
points of the slow dynamics. This can be computed from Eq. (16)
by evaluating dVeff/dX =0, i.e.,

L [ (1= Jo(%) cos X)?
o
(Jo(gg)sin X)?

—[B + f sin(wt)]
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G\ .
x Jo (@) sinX =0, (19)

which gives a simple stable equilibrium at X = X* =0, satisfying
stable equilibrium for the single-well potential structure. Note that
other stable equilibrium points also exist, satisfying the double-
well potential condition.

For simplicity, we assume that the oscillation takes place
around the simple equilibrium point X*. Thus, in what follows,
it will be appropriate to treat the oscillation as a deviation from
an equilibrium point. Taking the deviation as D, one can write,

D=X—X* X=D+X* (20)

Substituting Eq. (20) into Eq. (16) and considering only small de-
viations, we can approximate sin D =~ D and cos D ~ 1, so that
D + Czﬁa - 3C2X*D.2 + (362X*2 + C1)D
.2 [(1— Jo(&)(cos X* — Dsin X*)J?
[(Jo(Z)(D cos X* + sin X*)]?

—PJp (é) (D cos X* +sin X*) — f sin(wt) =0, (21)

where
[ sin(wt)
Jo(Z)(D cos X* +sinX*) |

P =p+ fsin(wt) — (22)

If ]0(%) > 0 (< 0), then X* = X;. (Xj4). Therefore,
Jo(Z)cosX* = [Jo(Z5)]. For f 1, we assume that [D| > 1 so
that sin D =~ D. By neglecting the nonlinear terms in Eq. (21), we
obtain a linearly-damped driven oscillator whose dynamics may be

written as:

D+mD+wT2D=fsir1(a)t). (23)

where m = 3c3X*2 4+ ¢; and w; is the resonant frequency. At the
equilibrium point X* =0, m = ¢y and (uf = (,B+fsin(a)t))\]0(%)\.

Equation (23) has the solution D(t) = Ay sin(wt +¢) as t — o0,
where ¢ is the phase angle and A; is given as

f

Al = > - (24)
[(@F — @? + (@?/(mw)))? + m?e?]2
In general, the system'’s response is defined as
AL
Q=—. (25)
f
Therefore,
a2
Q= (wrz —w?+ —) +mw? (26)
mw
and the phase angle ¢ is
maw
=tan~!| ———|. 27
¢ [w2 — wz] (27)
In Eq. (26), setting
a?\?
Sz(a)f—cuz—l——) —I—mza)z, (28)
mw
we have
1
Q=— (29)

7
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Fig. 8. (Colour online.) Frequency response of the system with different value of m
with other parameters fixed at £ =50, f =0.05, t =t,, G = 100 with (a) double-
well case (@ =2, g =10) and (b) single-well case (@ =10, g =1).
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Fig. 9. (Colour online.) Frequency response of the system with different values G and
Q with (a) c; =0.5; c2 =005, « =2, =10, f =0.05, t =t,, 2=100; (b) ¢c; =
05, c2 =005 o =2, =10, f =0.05, t =t,, G =2000.

Fig. 8 plots the response amplitude, Q versus w for different val-
ues of m, (m = 3c2X*2 + ¢1) at the equilibrium point X* =0 for
both (a) double-well and (b) single-well potential configurations.
This so-called frequency response is widely used in engineering to
understand the behaviour of a system under study [65]. Here, the
amplitude of the frequency response in the double-well configura-
tion is about twice the amplitude of Q in the single-well case. The
figure shows that, as the damping coefficient c; or ¢3 (or both) in-
creases, Q decreases. There is also a decrease in the value of w at
which the maximum response amplitude occurs. Thus, resonance
occurs when Q is a local maximum and this happens whenever S
is at a local minimum and is satisfied by @ = w;.

The frequency response for different values of G and € is
shown in Fig. 9. It is evident that, as predicted theoretically, the
value of G or £ impacts significantly on the frequency response
curve. Hence, in practice, one can adjust the parameters of the high
frequency forcing (i.e., G and ) so as to achieve the desired fre-
quency response, or so as to avoid some undesirable frequencies.

In order to validate the above theoretical analysis, we integrated
Eq. (7) numerically using the fourth-order Runge-Kutta algorithm.
Equation (7) is expressed as a set of two coupled autonomous or-
dinary differential equations (ODEs) in the form

doq

=, 30
=t (30)
de 1 — cos6;)?

N ﬂ) + (B + fsinwt)siné,

dt sin® 6

—c162 — €265 + G sin(Q).

Equation (30) was integrated with initial conditions &1(0) = 1,
#2(0) =1, and period, T = %T The solution corresponds to the first
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Fig. 10. (Colour online,) Comparison between numerically and theoretically calcu-
lated Q plotted against @ with ¢; = 0.5, ¢ =0.004, ¢ =3, g =10, f =0.05,

Q2 =50, G=100.
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Fig. 11. (Colour online.) Comparison between numerically and theoretically calcu-
lated Q plotted against g with ¢; =0.3, c; =0.001, @ =5, @ =4, f=0.05,
€ =100, G=100.

1000 drive cycles of the low-frequency force as a transient. Then,
VR was examined by investigating the linear response Q of the
low frequency input signal of the gyroscope oscillator, computed
numerically using the sine and cosine components of the Fourier
series given respectively as

nT

Qs = 3f@(t) sinotdt, (31)
nT

0
nT

2
Qc=— f 6(t) cos wtdt,
nT
0
so that,

VZ+a?
=

The theoretical Q from Eq. (12) is compared with the numerically
computed Q from Eq. (32) as a function of w in Fig. 10; the sim-
ulation parameters were chosen as ¢; = 0.5, ¢ = 0.004, « = 3,
B =10, f =0.05, 2 =50 and G = 100. The results are in excel-
lent agreement. In both the numerical and theoretical plots, the
resonance amplitude of ~ 0.4 is attained at close values of w. A
similar comparison but as a function of parameter g in Fig. 11
also yields excellent agreement; here, the simulation parameters
were ¢1 =0.3, ¢ =0.001, =5, « =4, f =0.05 =100, and
G =100.

Finally, Fig. 12 shows numerically-computed three-dimensional
plots of Q as a function of both @ and B; the simulation param-

Q= (32)
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o2

Fig. 12. (Colour online.) 3D plot of Q against e and g with the following parame-
ters settings o =4, G = 100, 2 =50, f =0.05, ¢ =0.5, c2 =0.05, t = ty.
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Fig. 13. (Colour online.) The potential V(#) of the system (33) given by Eq. (34)
against @ for different parameter values. (a) Single-well (¢« =35, f =5, G = 5000,
€2 =100, t =0) and (b) Double-well (& =10, g =100, G = 5000, 2 =100, t =0.)

eters were ¢ =4, G =100, 2 =50, f =0.05, c; =0.5, c; =0.05,
t = t,. The maximum response occurs when <20 and 0 < @ < 5.

32. CASETWO: iy =Q,cn =w, f1 =G, fa=f

We now consider the case where the gyroscope is paramet-
rically excited by a high frequency periodic force of frequency
w1 = Q and additively driven by a low frequency force of fre-
quency wy = w. The equation of motion to be considered becomes:

. 5 {(1—cos0)? i . . ,

04+« 736 — Bsin® +c16 + c26” — fsin(wt) =0,
sin

(33)

where B = 8 + Gsin(2) is a high frequency parametric excita-
tion force and fsin(wt) is the low frequency forcing. All other
parameters and variables retain their usual meanings. The poten-
tial corresponding to Eq. (33) is:

2

V(O) = +[B + G sin(Q0)] cosf. (34)

14 cosé
The following parameters were chosen: c; = 0.5, ¢ = 0.05, f =
0.05 and @ = 2. The potential V(0) is plotted against ¢ for differ-
ent values of & and g in Fig. 13. Beside the single-well potential
structure for o =35, =5 and t =0, the double-well structure
when o = 10, 8 = 100 and t = 0 has a potential barrier about
ten times higher than the potential structure of Case One shown
in Fig. 2(b). Its local maximum is located at & =0 and its two local
minima are located at 8 = +2.

By applying the method of separation of fast/slow motions for
the analysis of VR, as before, we obtain the equation of motion for
the slow dynamics:
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Fig. 14. (Colour online.) The effective potential corresponding to the slow motion
of system against X with the following parameters (a) @ =35, g =5, 2 = 100,
(b) @ =35, p=5, G =5000.
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Fig. 15. (Colour online.) The effective potential corresponding to the slow motion
of system against X with the following parameters (a) @ = 10, g =100, €2 = 100,
(b) @ =10, g =100, G =5000.

Py (U Jo(S5) cos X)?
(Jo(&) sin X)?

G . .
—Blo (a) sin X +c1X +c2X3 = fsin(wt). (35)
Its effective potential Verr(X) is

a? Jo($5)

Vepf(X) =
1 = T & cos 0

+BJo (%)cosx. (36)

Comparing Eq. (36) and Eq. (17), we find a significant difference.
Eq. (17) is dependent on the parametric excitation force f sin(wt)
which contributes to the shape of V.ff(X), whereas in Eq. (36)
the shape of Vesr(X) is independent of the parametric excitation.
This difference is nontrivial and clearly has consequences for the
system’s response.

Fig. 14 plots Vs against the slow-motion component X for
selected values of the parameters G and @ of the high-frequency
parametric driving force; the other parameter values were o = 35,
B =05 and t = 0. Note that Figs. 13(a) and 14 are similar when
the parameters are fixed at « =35, g =5, t =0, 2 =100 and
G = 5000. Fig. 14(a) shows that the depth of the potential well
decreases with increased variation in G, while Fig. 14(b) shows
that the depth of the well also decreases with decreased variation
in Q. Again, we plot V¢ in Fig. 15 for the double-well potential
configuration. We find that Fig. 15 is similar to Fig. 13(b) when the
parameters are fixed at « =10, =100, t =0, =100 and G =
5000. In both Figs. 14 and 15 the shape of the effective potential
depends largely on the parameters G and € of the high frequency
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Fig. 16. (Colour online.) Frequency response of the system with (a) double-well case
(@ =10, B =100) and (b) single-well case (@ =35, 8 =5).
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Fig. 17. (Colour online.) Frequency response of the system with different values G
and Q with (a) ¢; = 0.5, c2 = 0.05, @ = 10, g =100, € =100, (b) ¢c; = 0.5, c2 =
0.05, @ =10, B =100, G = 2000.

parametric modulating force: the system responds to variation in
the parameters (G or 2) of the fast signal.

Proceeding as before, it is straightforward to obtain a linearly-
damped driven oscillator given by

5+mD+w$D = fsin(wt), (37)

where m = 3c3X*2 + ¢; is the nonlinear damping and @, is the
resonant frequency. At X* =0,m = cq, and curz = ﬁ|]0(%)‘. Here,
the resonance frequency is independent of the low frequency sig-
nal as in Case One (See Equation (23)). The response amplitude,
Q versus w for different values of m, at equilibrium point X* =0
is shown in Fig. 16 for both double-well and single-well configu-
rations. Here, the response amplitudes are relatively the same in
magnitude. As the damping coefficients ¢; or ¢z (or both) increase,
the resonance amplitude, Q decreases, consequently decreasing
the value of @ at which the maximum resonance amplitude oc-
curs.

The corresponding solution of Equation (37) is given as D(f) =
Ay sin(wt + ¢), in the limit t — oo, where A; is given as

A= ! (38)

[(@F — 0 + (@2 /mw))? +m2e?]3

Following Eqs (25) to (32), one can determine the response ampli-
tude Q. The frequency response for different values of G and Q is
shown in Fig. 17. The value of G or £ impacts on the frequency
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Fig. 18. (Colour online.) Numerically calculated Q versus theoretically calculated Q
against @ with ¢y =0.5, c2 =0.05, @ =10, # =100, f =0.05, £ =100, G =200.
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Fig. 19. (Colour online.) Numerically calculated Q versus theoretically calculated Q
against B with ¢; =0.5, c2 =0.05, @ =11, @ =10, f =0.05, 2 =100, G =200.

response. These parameters (G and ) of the high frequency forc-
ing can be adjusted, appropriately, in order to achieve the desired
frequency response or to avoid some frequency range.

To validate the theoretical analysis, we integrated Eq. (33) nu-
merically using the same procedure as before with the following
fixed parameters: « = 10, g = 100, @w = 2, ¢; = 0.5, ¢z = 0.05,
f =0.05, and the same initial conditions, i.e., 8;(0)=1,6(0) =1
with period, T = %’ The plots of the theoretical calculated Q and
numerically calculated Q against w, with the following parame-
ters: f =0.05, 2 =100, G =200 are compared in Fig. 18. The
agreement between the numerical and theoretical results is sat-
isfactory given that, in the linear approximation, the average of
the parametric forcing gsin(2t) in Eq. (35) vanishes leaving only
the external slow forcing. Fig. 19 shows plots of Q against g for
c1=0.5¢=0.05 =11, « =10, f =0.05, =100, G = 200.
The response amplitudes in both the numerical and the theoretical
plots are attained when g = 50. To complete the picture, we show
the three-dimensional plot of Q versus @ and g in Fig. 20 with
parameters chosen as « = 10, G = 2000, 2 =100, t =0, ¢c; =0.5
and ¢ = 0.05. The low values of the parameter g appear to opti-
mize the low-frequency @ to attain the maximal response.

4. Concluding remarks

In summary, we have investigated the response of a gyroscope
oscillator to dual-frequency driving forces in two distinct cases:
first, with a weak parametric excitation force of frequency w and a
high-frequency additive force of frequency 2; and, secondly with
a high-frequency parametric excitation force of frequency £ co-
operating with a low-frequency additive force of frequency w. We
considered the response of the oscillator within the framework of
vibrational resonance (VR) in which the presence and properties of

PLA:127040

Physics Letters A sse (eses) ssssss

0.3
0.2 0.25

@ 0.2

0.1

0.15

0F 0.1

10

100 0.05

W o0 5;60

Fig. 20. (Colour online.) 3D plot of Q against e against g with the following pa-
rameters settings o = 10, G = 2000, £ =100, ¢c; =0.5, c; =0.05.

the high-frequency component can be used to optimize the oscilla-
tor's response to the low frequency force. We derived the equation
describing the slow motion analytically in terms of the parame-
ters of the two signals, and examined the response outputs for the
two cases analyzed. In each case we found that variations in the
parameters of the fast signal and the parametric excitation in the
equation of the slow motion component lead to the occurrence of
VR.

Finally, we highlight some distinctive features of the two simu-
lated cases that constitute the main findings and contributions of
this paper, and which could be informative for practical purposes.

(i) The shapes of the effective potential [Eq. (17)] in Case One,
in which the system is under the action of a weak-frequency
parametric excitation are as shown in Figs. 4 and 5. They are
determined by the six parameters «, £, f, @, G and Q2; while
in Case Two, for which a system parameter is excited by a
high-frequency parametric force, the shapes of the effective
potential [Eq. (36)] shown in Fig. 14 and 15 are determined
by the four parameters «, 8, G and w.

(ii) The resonance frequency @, in Case One is dependent on the
parameters of the parametric excitation, whereas in Case Two,
it is independent of the parameters of the excitation force.

(iii) The response amplitude in Case One is about three times
higher than that of Case Two. This difference is especially strik-
ing when one compares Figs. 8 and 16. Here, the higher ampli-
tude in Fig. 8 arises from the contributory action of the low-
frequency excitation, optimized by the high-frequency additive
signal which, in effect, is absent when the forcing actions are
reversed.

(iv) In Case One, the Q versus § plot exhibited a much stronger
resonance than Q versus e (Figs. 10 and 11) whereas in Case
Two, there is no significant difference between the response
curves (cf. Figs. 18 and 19).

(v) A narrower bandwidth was observed in Case One, in contrast
to the wider modulation bandwidth found in Case Two where
the system parameter is excited by a high-frequency paramet-
ric force.

(vi) In Case One, the amplitude of the frequency response in the
double-well configuration is about twice, in magnitude, the
amplitude of Q in the single-well case whereas in Case Two,
the amplitudes are similar.

The information provided in (iii) and (iv) may be useful for the de-
sign of measurement techniques where a high-frequency response
is required [66]. In connection with (v), higher laser modulation
bandwidths are desirable qualities for applications in multigigabit
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optical fibre transmitters [55]. Thus, high-frequency parametric vi-
brations could readily be exploited for practical applications.
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