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Abstract

Recent extreme value theory literature has seen significant emphasis on the
modelling of spatial extremes, with comparatively little consideration of spatio-
temporal extensions. This neglects an important feature of extreme events:
their evolution over time. Many existing models for the spatial case are limited
by the number of locations they can handle; this impedes extension to space-
time settings, where models for higher dimensions are required. Moreover, the
spatio-temporal models that do exist are restrictive in terms of the range of
extremal dependence types they can capture. Recently, conditional approaches
for studying multivariate and spatial extremes have been proposed, which enjoy
benefits in terms of computational efficiency and an ability to capture both
asymptotic dependence and asymptotic independence. We extend this class
of models to a spatio-temporal setting, conditioning on the occurrence of an
extreme value at a single space-time location. We adopt a composite likelihood
approach for inference, which combines information from full likelihoods across
multiple space-time conditioning locations. We apply our model to Red Sea
surface temperatures, show that it fits well using a range of diagnostic plots, and
demonstrate how it can be used to assess the risk of coral bleaching attributed
to high water temperatures over consecutive days.

Keywords: conditional extremes, environmental extremes, extremal
dependence modelling, spatio-temporal modelling

1. Introduction

There are many situations where modelling extreme events may be of in-
terest; understanding such events can allow us to prepare for, and potentially
mitigate, their effect. For environmental extremes, such as high temperatures
or intense rainfall, the spatial extent of an extreme event is of particular con-
cern, with possible focus on determining regions that may be affected by a given

∗Corresponding author
Email addresses: e.simpson3@lancaster.ac.uk (Emma S. Simpson),

j.wadsworth@lancaster.ac.uk (Jennifer L. Wadsworth)

Preprint submitted to Spatial Statistics October 2, 2020



phenomenon. Moreover, situations may be exacerbated if the extreme events
persist for a period of time, indicating that temporal modelling also requires
attention. To understand and prepare for such spatio-temporal extreme events,
we require modelling techniques motivated by extreme value theory. In this
paper, we focus on modelling surface temperature extremes in the Red Sea by
extending the so-called conditional approaches of Heffernan and Tawn (2004),
Heffernan and Resnick (2007) and Wadsworth and Tawn (2019) to a spatio-
temporal setting. We condition on observations at a single space-time location
being above some high threshold, and construct a model for other locations
across a spatio-temporal domain.

The tail dependence properties of variables are an important consideration
in multivariate extreme value modelling. Many models are limited in terms of
whether they can capture asymptotic dependence, when variables can take their
extreme values simultaneously, or asymptotic independence, when the largest
extremes occur separately. More formally, consider random variables X(s, t)
and X(s + hs, t + ht) at two space-time locations separated by spatial dis-
placement hs and temporal lag ht, with X(·, ·) ∼ F·,·. To assess the extremal
dependence between these variables, one option is to consider the conditional
survivor function

χ (u; s, t, hs, ht) = Pr [Fs+hs,t+ht{X(s+ hs, t+ ht)} > u | Fs,t{X(s, t)} > u] ,
(1)

for some value of u close to 1. If the process is isotropic in space and station-
ary in space and time, then the value of χ(u; s, t, hs, ht) is common across all
pairs of locations separated by the same spatio-temporal lag (‖hs‖, ht). In this
case, we simplify the notation to χ (u; s, t, hs, ht) = χ (u; ‖hs‖, ht). A popular
measure of asymptotic dependence is obtained by the relation χ(‖hs‖, ht) =
limu→1 χ(u; ‖hs‖, ht), with χ(‖hs‖, ht) = 0 corresponding to asymptotic inde-
pendence, and χ(‖hs‖, ht) ∈ (0, 1] revealing asymptotic dependence between
X(s, t) and X(s + hs, t + ht). In practice, we expect that χ(u; ‖hs‖, ht) and
χ(‖hs‖, ht) decrease as ‖hs‖ and ht increase.

Existing methods for modelling spatial extremes include max-stable pro-
cesses (see Davison et al. (2012)), with spatio-temporal extensions given by
Davis et al. (2013) and Huser and Davison (2014). These processes arise as
asymptotically-justified extensions of the generalised extreme value distribu-
tion for modelling univariate extremes (von Mises, 1936; Jenkinson, 1955) when
pointwise maxima are taken over spatio-temporal domains. A drawback of max-
stable processes is that they are computationally intensive to fit, limiting the
number of space-time locations one can feasibly handle, though the recently
proposed semiparametric approach of Buhl et al. (2019) aims to address this
point. A further potential drawback of this class of models is their ability to
capture only asymptotic dependence. If max-stable models are fitted to asymp-
totically independent data, results will be too conservative as we extrapolate into
the tail. They therefore lend themselves to modelling extremes only in small
spatio-temporal domains, where asymptotic dependence is more likely to arise.
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Figure 1: Locations of observations, with the northerly region we study in orange (left),
and sea surface temperature data for the location outlined in black (right). The red points
correspond to the months July to September.

It is also unclear which data applications would be of interest for temporally
dependent maxima, since the process of taking block maxima usually leads to
approximately independent observations, meaning space-time max-stable pro-
cess models may not be so useful in practice. To address some of these issues,
Morris et al. (2017) propose a modelling technique that allows for different
tail dependence features across space. In particular, they suggest partitioning
the spatial locations to allow for asymptotic dependence for nearby sites, and
asymptotic independence between those that are further apart, modelled via
a skew-t process. The temporal dependence in their model is captured by an
AR(1) process, but in many cases it may be desirable to have models that are
not restricted to one type of temporal dependence, allowing for both asymptotic
dependence and asymptotic independence in time.

Recently, there has been increasing interest in using conditional approaches,
first introduced by Heffernan and Tawn (2004), to model extreme events. In the
multivariate setting, this involves conditioning on a single variable being above
some high threshold, and modelling the behaviour of the remaining variables. In
the spatial case (Wadsworth and Tawn, 2019), additional structural properties
are exploited to construct models conditioning on extreme values at a single
spatial location. Conditional extremes models have the advantage of being able
to capture a range of tail dependence behaviours, while being computationally
efficient compared to other methods. These appealing features lead us to ex-
tend the spatial conditional extremes methodology to a spatio-temporal setting,
which is particularly helpful for handling the additional burden that comes from
expanding the domain from space to space-time. Important new considerations
for this spatio-temporal extension include: whether or not the model should
exhibit separability in space and time; how to separate the data into individual
events for inference; and the construction of model diagnostics that allow us to
assess the fit across both domains.
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We demonstrate our new spatio-temporal model through an application to
Red Sea surface temperatures. This is particularly of interest as continual high
sea temperatures can lead to problems for marine life, with coral bleaching
being a notable concern; see McClanahan et al. (2007) and Huser (2020). While
corals can recover from high sea temperatures that occur over a short period
of time, prolonged extreme events can lead to irreparable damage and coral
mortality, highlighting the importance of studying the temporal aspect of sea
surface temperature extremes. A dataset relating to the Red Sea was the focus of
the recent EVA conference data challenge (Huser, 2020). The challenge involved
modelling temperature anomalies rather than the raw surface temperatures we
study here, with the aim being to develop methods for missing data, which is
also not our focus. Approaches developed as a result of this challenge include
Castro-Camilo et al. (2020) and Ivek and Vlah (2020).

To study surface temperature extremes in the Red Sea, we have access to 16
years of daily sea surface temperature data, for the 108 locations shown in the
left panel of Figure 1. These locations are a subset of 0.05◦ × 0.05◦ grid cells
covering the whole of the Red Sea. The data are obtained from a combination
of satellite measurements and in situ readings; see Donlon et al. (2012). Our
initial investigations indicated differing behaviour in the north and south of the
Red Sea, as well as in the most north-westerly locations, corresponding to the
Gulf of Suez; this issue is also identified by Huser (2020). Since the model
we propose assumes spatio-temporal stationarity, we focus on the northerly
region highlighted in orange, containing 54 locations, and comment further on
approaches to deal with spatial non-stationarity in Section 5. To remove the
need to account for seasonality in the data, we focus only on the warmest months
of July to September. Example data for one location are shown in the right
panel of Figure 1, with other locations in the northerly region exhibiting similar
seasonal behaviour. Focussing on this time period is consistent with the claims
of Maynard et al. (2008), that coral bleaching is most likely during summer
months.

The remainder of the paper is constructed as follows. We detail our pro-
posed model in Section 2, and discuss inference and simulation in Section 3. In
Section 4, we present a variety of diagnostic tools for assessing model fit, as well
as results on Red Sea surface temperatures in the context of coral bleaching.
Section 5 concludes with a discussion of potential extensions.

2. Modelling

2.1. Model assumption

Let w = (s, t) ∈ S × T ⊂ R2 ×R denote a space-time location, and suppose
we are interested in the stationary spatio-temporal process {X(w) : w ∈ S×T }.
As with all conditional extremes approaches, we require that each marginal dis-
tribution of the process has a standard exponential upper tail, i.e., Pr{X(w) >
x} ∼ e−x, as x → ∞, for each w ∈ S × T . In practice, this can be achieved
via a transformation. We focus on Laplace margins, as suggested by Keef et al.
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(2013), which we obtain by applying the probability integral transform via a
rank transformation to each spatial location.

Conditioning on the process at a single space-time location, w0 ∈ S × T ,
being above a high threshold u, we assume that for a finite number of space-time
locations w1, . . . , wdm, corresponding to d spatial locations at m time-points,
there exist functions aw−w0(·) and bw−w0(·) such that([

X(wi)− awi−w0
{X(w0)}

bwi−w0
{X(w0)}

]
i=1,...,dm

, X(w0)− u

)∣∣∣∣∣X(w0) > u

d−→
({

Z0(wi)
}
i=1,...,dm

, E

)
,

(2)

as u → ∞. That is, after normalisation, the process {X(w) : w ∈ S × T }
converges to {Z0(w) : w ∈ S×T } in the sense of finite dimensional distributions.
The variable E is independent of {Z0(w)} in the limit and follows a standard
exponential distribution. The function aw−w0

(x) should take values in [0, x],
with a0(x) = x, and be non-increasing with respect to ‖s − s0‖ and ‖t − t0‖.
This implies that the process {Z0(w)}, subsequently referred to as the residual
process, must satisfy Z0(w0) = 0. We note that although we are working with
finite dimensional distributions here, these are given useful structure by having
the spatio-temporal index domain.

To model {X(w)} using assumption (2), choices need to be made about the
form of the normalising functions and the residual process; we discuss these in
Sections 2.2 and 2.3, respectively. Wadsworth and Tawn (2019) demonstrate
that (2) holds for a wide variety of underlying spatial dependence structures,
detailing specific forms of as−s0(·), bs−s0(·) and {Z0(s) : s ∈ S}. It will therefore
hold for analogous dependence structures with spatio-temporal indexing. We
check the validity of assumption (2) for our Red Sea data in Section 4.

2.2. The normalising functions aw−w0
(·) and bw−w0

(·)
In order to exploit assumption (2) for modelling purposes, we impose para-

metric forms on the normalising functions aw−w0
(·) and bw−w0

(·). In the spatial
case, under the assumption of isotropy, Wadsworth and Tawn (2019) suggest
taking as−s0(x) = xαs(s− s0), with

αs(s− s0) =

{
1, ‖s− s0‖ ≤ ∆s,

exp [−{(‖s− s0‖ −∆s) /λs}κs ] , ‖s− s0‖ > ∆s,
(3)

for ‖s − s0‖ denoting the distance between s and s0, λs > 0, κs ∈ [0, 2] and
∆s ≥ 0. If ∆s > 0, this yields as−s0(x) = x for ‖s − s0‖ ≤ ∆s, allowing
for asymptotic dependence up to distances of ∆s from the conditioning site,
and asymptotic independence beyond that. Although (3) assumes isotropy,
anisotropy is straightforward to handle, as discussed in Section 2.4. In the
spatio-temporal setting, a possible extension of this is to take

aw−w0(x) = xαs(s− s0)αt(t− t0), (4)
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with αt(t − t0) defined analogously to (3), where we recall that the condition-
ing site is denoted by w0 = (s0, t0), and more generally we set w = (s, t).
This allows for asymptotic dependence within some space-time neighbourhood
of the conditioning site, controlled by the parameters (∆s,∆t), and asymptotic
independence outside this neighbourhood. In modelling the Red Sea surface
temperatures, we found the inclusion of these parameters not to have a signif-
icant effect; we therefore fix ∆s,∆t = 0, corresponding to an asymptotically
independent model.

Normalising function (4) exhibits space-time separability, but one could in-
stead consider a non-separable form for aw−w0

(·). A natural choice is to exploit
the class of known, non-separable covariance functions, such as those introduced
by Cressie and Huang (1999) and studied further by Gneiting (2002). One pos-
sibility, inspired by the class of Gneiting (2002), is to take

aw−w0(x) = x
(
λt‖t− t0‖2κt + 1

)−1
exp

{
− λs‖s− s0‖2κs

(λt‖t− t0‖2κt + 1)
ηκs

}
, (5)

for λs, λt > 0, κs, κt ∈ (0, 1] and η ∈ [0, 1]. The larger the parameter η, the
stronger the interaction between space and time, with η = 0 corresponding to
separability. We note that while certain covariance functions provide a conve-
nient way to introduce non-separability into the function aw−w0(x), we are not
restricted to this class of models since covariance functions must induce pos-
itive definiteness in their covariance matrices, but there is no such constraint
on the function aw−w0

(x). Exploiting the covariance function in (5) also allows
us to satisfy the condition that aw−w0

(x) ∈ [0, x], and leads to the intuitive
model property that aw−w0

(x) is non-increasing with respect to ‖s − s0‖ and
‖t−t0‖. Asymptotic dependence could be incorporated into (5) via an approach
analogous to the use of (∆s,∆t) in the separable case.

Three theoretically-motivated forms for the normalising function bs−s0(·) are
proposed by Wadsworth and Tawn (2019). We focus on one such example in
the spatio-temporal extension, taking

bw−w0
(x) = 1 + {aw−w0

(x)}β , (6)

for some β ∈ [0, 1]. This can be used for either of our proposed forms of
aw−w0

(x). The advantage of using (6) as the model for bw−w0
(x) is that the

function can vary with distance, while being controlled by only a single extra
parameter, but other options could also be used.

2.3. The residual process {Z0(w)}
We construct a model for the residual process by first considering the station-

ary space-time Gaussian process {Z(w) : w ∈ S × T }, with mean µ and stan-
dard deviation σ > 0. We propose using a separable covariance function with
powered exponential components in space and time, i.e., the covariance corre-
sponding to sites wi = (si, ti) and wj = (sj , tj) is

σ2 · exp {− (‖si − sj‖/φs)ps} · exp {− (‖ti − tj‖/φt)
pt} . (7)
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To ensure the condition that Z0(w0) = 0 is satisfied, the residual process is taken
as the Gaussian process with distribution equal to that of {Z(w)}|Z(w0) = 0.
We note that taking this Gaussian form for the residual process does not induce
Gaussianity in the process {X(w)} due to the appearance of the normalising
functions.

Recall that we are interested in modelling observations at space-time lo-
cations w1, . . . , wdm. The corresponding mean vector of the Gaussian process
{Z(w) : w ∈ S×T } is µ = µ ·1dm ∈ Rdm, with 1dm denoting a vector of 1s, and
we denote the covariance matrix, constructed via function (7), as Σ ∈ Rdm×dm.
These two components can be partitioned to represent the space-time locations
to be modelled, and the conditioning site, i.e., µ = µ · (1dm−1, 1), and

Σ =

[
Σ∗ Σ∗0

Σ∗T0 σ2

]
, for Σ∗ ∈ R(dm−1)×(dm−1) and Σ∗0 ∈ Rdm−1.

Then the conditional Gaussian process {Z(w)}|Z(w0) = 0 follows a multivariate
Gaussian distribution with mean µ|0 ∈ Rdm−1 and covariance matrix Σ|0 ∈
R(dm−1)×(dm−1) of the form

µ|0 = µ ·
(
1dm−1 − σ−2Σ∗0

)
; Σ|0 = Σ∗ − σ−2Σ∗0Σ∗T0 . (8)

In place of (7), we could also consider a non-separable covariance function.
However, most of the structure in our model is captured by the normalising
functions aw−w0

(x) and bw−w0
(x), and separability in the covariance function

of {Z(w)} actually induces non-separability in {Z0(w)}. We therefore choose
to focus only on covariance function (7).

Wadsworth and Tawn (2019) propose what they term a delta-Laplace dis-
tribution for the marginal form of their residual process {Z0(s) : s ∈ S}, which
has univariate Gaussian and Laplace distributions as special cases. We expect
independence between observations at large spatial lags, and the delta-Laplace
distribution allows for the recovery of the original Laplace margins in such cases.
It is possible to include such a marginal distribution in our spatio-temporal ex-
tension, however, we found that at the distances studied in our Red Sea exam-
ple, this is not necessary, and retaining the Gaussian margins of the conditional
Gaussian process leads to improvements in terms of computational efficiency.

We note that our choices of normalising functions and residual process lead
to a model that is symmetric with respect to time, i.e., the model assumes that
the process has the same behaviour going forwards or backwards from time
t0. In Section 4.3, we demonstrate that this reasonable for our data example,
but in other cases the assumption of temporal symmetry may not be valid. If
such an issue arises, it may be better to consider the forwards and backwards
cases separately. In such cases, models of the form we have proposed could still
be used, but different parameter estimates may be obtained in each situation.
Depending on the data set and relevant issues that need to be studied, it may
also be possible to restrict the analysis to focus on just one of the cases.
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2.4. Spatial anisotropy

We account for spatial anisotropy through a transformation of the spatial
coordinates, setting

s∗ =

(
1 0
0 1/L

)(
cos θ − sin θ
sin θ cos θ

)
s, (9)

where the parameter θ ∈ [−π/2, 0] controls rotation, and L > 0 relates to the
amount by which the coordinates are stretched, with L = 1 recovering the
isotropic model. Such an approach is often termed geometric anisotropy. These
parameters are estimated, along with the other model parameters, using the
methods discussed in Section 3.2.

3. Inference and simulation

3.1. Extreme events for inference

We propose carrying out inference using a likelihood approach. To reduce
the computational burden of these calculations, we first aim to separate the
data into shorter space-time blocks that allow us to capture the evolution of
single extreme events.

Suppose that an extreme value at a particular location is defined as any
observation above the high threshold u. One option, proposed by Huser and
Wadsworth (2019), is to consider clusters of days with extreme values at any site,
separated by k days with no extreme values, to belong to a single extreme event,
for some value k. This provides an intuitive way to separate extreme events,
but for our data, we found this often produced long clusters that were not
computationally feasible to handle. A simpler alternative is to divide the data
into blocks of m days, for some choice of m, taking care not to have blocks that
span multiple years. If the chosen block-length, m, does not exactly divide the
length of each summer period, we remove an appropriate number of observations
at the end of each one. The value of m should be large enough to provide
sufficient information about temporal changes in the extremal dependence, but
small enough to ensure computational feasibility.

To determine an appropriate value of m, we investigate the spatio-temporal
dependence present in our data, using the measure defined in (1). Our model
assumes stationarity, and we have spatial isotropy under transformation (9), so
we proceed with the notation χ(u; ‖hs‖, ht). For a finite number of realisations
of X(s, t) and X(s + hs, t + ht), it is not possible to evaluate χ(‖hs‖, ht) =
limu→1 χ(u; ‖hs‖, ht) itself, so we instead consider an empirical estimate of (1),
denoted by χ̂(u; ‖hs‖, ht). Suppose we observe the process at times t = 1, . . . , n
at two spatial locations, s and s + hs. We obtain realisations for these two
locations where the temporal lag is ht, by considering the pairs of observations
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{x(s, i), x(s+ hs, i+ ht)}, for i = 1, . . . , n− ht. Then,

χ̂(u; ‖hs‖, ht) =

n−ht∑
i=1

1{x(s+ hs, i+ ht) > qu, x(s, i) > qu}

n−ht∑
i=1

1{x(s, i) > qu}
,

with qu denoting the quantile of the Laplace distribution corresponding to
threshold u. We evaluate χ̂(u; ‖hs‖, ht) for observations from each pair of spa-
tial locations, and at increasing time lags. The results are shown by the grey
points in Figures 2 and 3 for u = 0.95 and u = 0.975, respectively; these plots
will later be used to assess model fit. As expected, the strongest extremal de-
pendence occurs for pairs of nearby locations and at short time lags. From these
plots, it appears that the pairwise spatial dependence becomes stable for time
lags greater than three or four. We therefore expect that taking m ≥ 4 should
enable us to sufficiently capture the changing spatio-temporal dependence in
our process. For the remainder of the paper we take m = 5, corresponding to
a maximum time lag of four, but results for other values of m are presented in
Section A of the Supplementary Material.

3.2. Inference

To estimate the parameters of our model, we adopt a composite likelihood
approach similar to that of Wadsworth and Tawn (2019), where the idea is to
allow different space-time locations to act as the conditioning site, and pool
information from each one. In our case, these conditioning sites correspond
to all combinations of the spatial locations in Figure 1, and the time points
in our chosen blocks of length m. With w∗ = (s∗, t) denoting locations under
transformation (9), the likelihood contribution of conditioning site wi is

Li(θ) =

ni∏
`=1

(
fZ

0

i

{x`j − aw∗
j−w∗

i
(x`i)

bw∗
j−w∗

i
(x`i)

}
j∈{1,...,dm}\{i}

 · ∏
j∈{1,...,dm}\{i}

bw∗
j−w∗

i
(x`i)

−1

)
,

for the ni observations where x(w∗i ) > u, where x`j denotes the value of the `th

such observation at space-time location w∗j , and fZ
0

i represents the density of

the residual process {Z0(w∗)} at all locations except w∗i . Here, θ represents all
model parameters relating to geometric anisotropy, the residual process Z0 and
normalising functions aw−w0

and bw−w0
, and is discussed more explicitly for the

models we use in Section 4.2.
The overall likelihood is given by L(θ) =

∏dm
i=1 Li(θ). This is a composite

likelihood since the same observation can be included in the likelihood calcula-
tion multiple times, depending on how many space-time locations take values
above the threshold u. The parameters θ can be estimated using standard maxi-
mum likelihood techniques, and we take u to be the 0.95 quantile of the marginal
Laplace distributions, which results in an average of 73 threshold exceedances
per spatial location, or approximately 14 per space-time location. We use optim
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in R for inference, which works well in general, but can require repeated iter-
ations to ensure convergence is reached. We subsequently drop the s∗ and w∗

notation, but note that geometric anisotropy is included for the remainder of
the paper.

3.3. Simulation given extremes at a single location
Many of the diagnostics we introduce in Section 4 and in the Supplementary

Material rely on the simulation of events from our fitted models. To simulate a
single spatio-temporal event {x(w) : w ∈ S × T }, conditioning on X(w0) > v,
for v ≥ u, i.e., at a level at least as extreme as where we fit the model, the steps
are:

1. simulate e ∼ Exp(1), and let x(w0) = v + e;
2. simulate {z0(w) : w ∈ S × T } from the model for the residual process

defined in Section 2.3;
3. set {x(w) : w ∈ S × T } = aw−w0

[x(w0)] + bw−w0
[x(w0)] · {z0(w)}.

We note that the resulting simulations are on the Laplace scale, which is
sufficient in our setting as we are particularly interested in the dependence
structure of our variables, and in Section 4.6 we will use quantiles to approximate
critical levels associated with coral bleaching. One could marginally invert the
rank transform to obtain simulations on the original scale.

3.4. Importance sampling
Rather than conditioning on extreme values at a single space-time location, it

may be more useful to condition on situations where extremes occur anywhere
in some spatio-temporal domain. Wadsworth and Tawn (2019) introduce an
importance sampling algorithm to handle this case, which is straightforward to
adapt to our spatio-temporal setting. Suppose we are interested in conditioning
on maxw∈DX(w) > v, for some v ≥ u, where D denotes a subset of locations
in the spatio-temporal domain S ×T , which may or may not be identical to the
locations {w1, . . . , wdm} used for inference. For some function g(·), the aim is
to estimate a quantity of the form

E
[
g {X(w) : w ∈ D}

∣∣∣max
w∈D

X(w) > v

]
. (10)

This is achieved by taking the following steps:

1. sample a location w̃ from the set D, each with probability |D|−1;
2. simulate a single observation using the method in Section 3.3, with w̃ as

the conditioning site;
3. repeat steps 1 and 2 n times, generating samples XD,1, . . . ,XD,n;
4. obtain an estimate of (10) via

n∑
j=1

g(XD,j) ·

{ ∑
x∈XD,j

1(x > v)

}−1
n∑
j=1

{ ∑
x∈XD,j

1(x > v)

}−1 .
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We demonstrate results using this approach in Section 4.5.

4. Model diagnostics and results

4.1. Pairwise χ(u; ‖hs‖, ht) in space and time

As a first assessment of how well our model captures the spatio-temporal de-
pendence present in the data, we again consider the measure χ(u; ‖hs‖, ht) dis-
cussed in Section 3.1. In Figures 2 and 3, we compare estimates of χ(u; ‖hs‖, ht)
calculated from the data, to estimates obtained from 10,000 simulations from
our fitted model, with both the separable model (4) and non-separable model (5)
for aw−w0

(x), and u = 0.95, 0.975. The spatial distances are calculated using
the Euclidean distance on locations under transformation (9). We demonstrate
this transformation in Section B of the Supplementary Material.

We see from Figures 2 and 3 that the two models perform similarly well
overall. The main difference is the performance at short spatial distances as the
time lag increases, where the separable model overestimates the extremal de-
pendence, and the non-separable model performs better. Due to this advantage,
we use the non-separable model for the remainder of the paper.

4.2. Diagnostic based on {Z0(w)}
After anisotropy parameters, the remaining parameters in our model can be

separated into those related to the normalising functions aw−w0
(·) and bw−w0

(·),
and those from the model of the residual process {Z0(w)}. Under the non-
separable model, the former is the set θnorm = (λs, κs, λt, κt, η, β) and the
latter is θres = (µ, σ, φs, ps, φt, pt). We obtain estimates of these parameters
through maximising the composite likelihood discussed in Section 3.2, and de-
note these by θ̂norm and θ̂res, respectively.

Empirical realisations of the residual process can be obtained by normalising
the observed data, transformed to Laplace margins, using functions (5) and (6)

with parameters θ̂norm, and conditioning on the observation at site w0 being
above the modelling threshold u. For this same choice of conditioning site, we
can simulate directly from the multivariate Gaussian distribution with mean
vector and covariance matrix in (8) determined by parameter values θ̂res, in
order to obtain realisations of our fitted residual process. If the model fits well,
the empirical and fitted residuals should exhibit similar behaviour.

For the model fitted using block-length m = 5, Figure 4 demonstrates the
behaviour of the empirical and fitted residuals across a diagonal spatial transect,
for three different conditioning sites. This transect was chosen as it includes
some of the longest spatial ranges present in our data. We take u to be the 0.95
quantile of the observations in Laplace margins. The number of simulations
from the fitted residual process was taken to be the same as the number of
empirical observations. The diagnostic plots demonstrate reasonable agreement
between the empirical and fitted residuals.

Figure 4 represents a purely spatial diagnostic. In Section C of the Supple-
mentary Material, we present similar results to assess the temporal aspect of
our model. These diagnostic plots also indicate a successful model fit.
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Figure 2: Pairwise estimates of χ(0.95; ‖hs‖, ht) for the Red Sea data (grey), with the mean
and 0.025 and 0.975 quantiles for sections of the distances (black). The solid lines show
χ(0.95; ‖hs‖, ht) estimates for our fitted models: separable (red); non-separable (blue). The
distances ‖hs‖ are measured in the transformed space.
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Figure 3: Pairwise estimates of χ(0.975; ‖hs‖, ht) for the Red Sea data (grey), with the mean
and 0.025 and 0.975 quantiles for sections of the distances (black). The solid lines show
χ(0.975; ‖hs‖, ht) estimates for our fitted models: separable (red); non-separable (blue). The
distances ‖hs‖ are measured in the transformed space.
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Figure 4: Top row: locations of the conditioning sites (orange) and spatial transect (blue);
bottom row: comparison of residuals simulated from the fitted model (grey) and empirical
residuals (red) across space.

4.3. Diagnostic based on {X(w)}
Another useful diagnostic is to consider simulations from our fitted model,

obtained via the method outlined in Section 3.3, conditioning on extreme values
at some conditioning site w0 = (s0, 0). We can then consider the propagation
of these events forwards and backwards in time, and compare the simulated
events to observations from the data on Laplace margins. In Figure 5, we
demonstrate this technique for the conditioning site and spatial transect in the
top-central panel of Figure 4. In these plots, we also see reasonably similar
behaviour between the simulated events and observed data. We note that the
model appears to have captured the behaviour of the process both forwards and
backwards in time from the conditioning site, indicating that our choice to use
a temporally-symmetric model for this data is reasonable.

4.4. Evaluating parameter uncertainty

Due to our use of a composite likelihood, it is necessary to evaluate the un-
certainty in our parameter estimates, for which we use the bootstrap (Efron,
1979). For a time series of length n, Künsch (1989) proposes creating blocks
of length b containing consecutive observations, i.e., starting at observation
1, 2, . . . , n + 1 − b. One can then randomly sample n/b of these blocks, with
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Figure 5: Comparison of simulations from the fitted model (grey) and observed data (red) on
Laplace scale at different time lags. The conditioning site and spatial transect correspond to
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λs κs λt κt η β µ φs φt σ ps pt θ L

−
1

0
1

2
3

4
5

Figure 6: Boxplots of bootstrapped parameter estimates for 100 bootstrapped samples, with
the estimated parameters values for the original data shown in red.
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replacement, to obtain each bootstrapped sample. We take this approach, but
remove blocks that span more than one summer to ensure each block contains
consecutive observations. Since we separate the data into blocks of length m
to carry out our likelihood inference, it is possible that not all the temporal
dependence in the data has been captured in our model. We can account for
this issue by taking a block-size b > m for the bootstrapped samples.

A drawback of the block bootstrap approach is that it can lead to non-
stationarity in the bootstrapped samples, even if the original observations ex-
hibit stationarity. Politis and Romano (1994) propose a stationary bootstrap-
ping approach to overcome this issue, where the first observation in each block
is still sampled uniformly across all observations, but the lengths of the blocks
are randomly sampled from a Geom(p) distribution. The use of random block-
lengths does not guarantee that the blocks, of fixed length m, that we subse-
quently create for our inferential approach contain consecutive observations, so
we continue with the block bootstrap approach.

As in the preceding investigations, we fix the block-length used to carry
out our inference as m = 5. Then each summer contains 90 observations, and
we have n = 90 × 16 = 1440 observations overall. We take a block-length of
b = 20 for the bootstrap, with 72 blocks making up each of our bootstrapped
samples. We fit the non-separable version of our model to 100 such samples,
with boxplots of the resulting parameter estimates shown in Figure 6. The
majority of the estimated values of the parameter η in equation (5) are equal
or very close to one, indicating strong interaction between space and time, and
that the non-separable model is a reasonable choice.

4.5. Conditioning on an extreme at any location

We now consider quantities of the form (10), estimated via the importance
sampling algorithm discussed in Section 3.4. This method can be applied for any
set of space-time locations within the domain S×T . In this section, we focus on
the 54 locations where we have observations, at five time-points, corresponding
to our chosen block-length m, i.e., a total of 270 locations w1, . . . , w270.

In Figure 7, we consider results for two different functions g. The left panel
corresponds to the expected number of space-time locations that exceed the
threshold v, given that maxi=1,...,270X(wi) > v. The right panel shows results
based on the average temperature over all sites, on the Laplace scale, under
the same conditioning event. We simulate n = 10, 000 importance samples for
each threshold. To demonstrate uncertainty in the estimates, we present results
obtained using the bootstrapped parameter estimates in Figure 6, and compare
these to empirical estimates obtained using the data.

The results in Figure 7 reveal that our model overestimates the number of
simultaneously extreme locations, particularly at lower thresholds, as well as the
average temperature across all locations. These discrepancies may be explained
by the results in Figures 2 and 3; for short time-lags, we slightly overestimate the
pairwise extremal dependence, the effect of which could have been exacerbated
when considering results for all locations simultaneously. However, the empirical
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Figure 7: Importance sampling results for the number of sites exceeding a threshold (left)
and the average value of the temperatures on the Laplace scale (right), given an exceedance
anywhere in the domain. The threshold v is given in terms of quantiles of the Laplace distri-
bution. The solid black lines show results using our parameter estimates, and the grey lines
show the bootstrapped results. The red circles provide empirical estimates from the data with
95% confidence intervals.

estimates are within the range of our bootstrapped calculations in both cases,
so taking uncertainty into account, our model appears to perform adequately.

4.6. Investigation into the risk of coral bleaching

Sea surface temperatures can be used as an indicator of potentially damag-
ing conditions for coral life. The average sea surface temperature at different
coral reefs varies depending on geographic location, with different varieties of
coral adapting to their different habitats. Therefore, there is no single, high
temperature threshold to which coral bleaching can be attributed. While Jokiel
and Brown (2004) collate information about temperature thresholds associated
with this phenomenon for a range of locations, none of these are particularly
close to the northern Red Sea. Rather than using one fixed threshold to ex-
plain coral bleaching at different locations, Genevier et al. (2019) propose using
high quantiles that vary with space (an approach adopted by Hazra and Huser
(2020)), and time. Goreau and Hayes (2005) suggest that coral bleaching may
occur if temperatures persistently exceed a level corresponding to one degree
above the average temperature in the warmest month, which for our data is
August. In Section D of the Supplementary Material, we show that this is well
approximated by taking the 0.961 quantile of summer sea surface temperatures
for each location we study, so this is the level on which we focus our study.

Coral reefs are located around much of the coast of the northern Red Sea,
with those in the north-west generating particularly high revenue from tourism
(Fine et al., 2019). Although coral bleaching is currently less of an issue in
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the northern Red Sea than the south, its potential impact on tourism means
studying extreme sea surface temperatures in this region may still be of interest,
and we use this example to demonstrate how our model could be employed
to investigate the probability of high sea surface temperature events for other
locations that may be more at risk of coral bleaching.

When modelling extreme events through time at a single location, it is usual
to decluster the observations into sets of days that correspond to the same event.
In practice, we achieve this declustering using the runs method of Smith and
Weissman (1994), where clusters of observations containing exceedances above
a high threshold v are separated by r consecutive days of non-exceedances.
We note that the method of Ferro and Segers (2003) offers an alternative to
the approach of Smith and Weissman (1994), with the desirable feature that
the declustering is automated, and this could also be used here. Of interest
may be the average length of such clusters, but in studying the effect of high
temperatures this may not be the most important factor. In their heatwave
application, one alternative proposed by Winter and Tawn (2016) is to consider
the maximum number of consecutive exceedances within a cluster, since these
events can have a large impact in practice. We follow this approach, aiming
to estimate the number of clusters per year containing a maximum of at least
n consecutive exceedances. We first consider events at any single location in
the northern Red Sea, and then extend the approach to consider simultaneous
exceedances at a set of spatial locations.

Since corals particularly grow in shallow water, we focus on locations where
the water depth is less than 150m (Genevier et al., 2019), shown in the left
panel of Figure 8 using bathymetry data from the GEBCO Compilation Group
(2019). Winter and Tawn (2016) discuss the importance of within-cluster and
over-cluster results; in our single location setting, the former is the probability
that the maximum number of consecutive exceedances in a cluster is at least n,
while the latter is the expected number of clusters in a single year. Assuming
independence of clusters, we can multiply together these two values to obtain
our estimate.

To study the expected number of clusters per year, we apply the runs method
of Smith and Weissman (1994), with parameter r = 10, at each of the 54 loca-
tions, and take empirical values. Due to our assumption of spatial stationarity,
we take the average over all these locations to obtain our estimate. We apply
this same approach for other values of r in Section E of the Supplementary
Material; r = 10 corresponds to the value above which the estimated number of
clusters stabilises, suggesting independence between clusters. We estimate the
distribution of the maximum number of consecutive exceedances in a cluster via
simulation, based on our fitted model. To simulate single events, Smith et al.
(1997) suggest conditioning on the maximum value within a cluster being above
the threshold v, and simulating forwards and backwards in time. This can be
achieved by applying the simulation method in Section 3.3 within a rejection
sampling routine, with rejection if the maximum value does not occur at the
conditioning site; see Winter and Tawn (2016). We obtain 250,000 observations
using this technique, and take empirical estimates for the required distribution,
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Figure 8: Left: six locations where the water depth is less than 150m and coral has the
potential to grow. Right: expected number of clusters per year where the maximum number
of consecutive exceedances of the 0.961 quantile at a single location is at least n, estimated
using the fitted model parameters (purple) and bootstrapped parameter estimates (grey);
empirical results corresponding to the highlighted locations in the left panel are also shown.
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Figure 9: Left: one of the shallow-water locations (red) and its neighbours (orange). Right:
expected number of clusters per year where the maximum number of consecutive days with
exceedances of the 0.961 quantile at all of these locations is at least n, estimated using the
fitted model parameters (purple) and bootstrapped parameter estimates (grey); empirical
estimates are shown in orange.
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ensuring that the conditioning site is within the contributing cluster, and that
each cluster begins and ends with r = 10 non-exceedances of the threshold. This
is repeated using each set of bootstrapped parameter estimates. The results are
shown in the right panel of Figure 8. Here, we also present empirical estimates
for the six shallow-water locations, and our model appears to give reasonable
results. Further, at four of these six locations, the data does not contain a block
of consecutive exceedances longer than 13 days, i.e., our model enables us to
consider the expected occurrence of unobserved events.

Genevier et al. (2019) consider events where the sea surface temperature is
above some critical level for seven consecutive days. For any single location
in the northern Red Sea, we estimate the expected number of clusters with a
maximum of at least seven consecutive exceedances to be 0.247 per year. This
corresponds to a return period of 4.05 years with a 95% confidence interval of
(2.28, 9.10) years.

Since extreme surface temperatures occurring over larger spatial domains
could have more impact on marine life, for one of the locations in Figure 8
taken as s0, we consider simultaneous extremes at this and its neighbouring
sites, which correspond to locations s where ‖s − s0‖ < 1 in the transformed
coordinates; these sites are shown in the left panel of Figure 9. We now define
a cluster as a series of days where all these sites exceed their 0.961 quantile
simultaneously, separated by r = 10 days where this is not the case, and are
interested in the maximum number of consecutive, simultaneous exceedances in
a cluster. The estimate of the number of clusters is again obtained empirically,
but we now only average over those locations with four, five or six neighbours
within a distance of 1, to give a reasonable approximation for the location of
interest.

To estimate the distribution of the maximum number of consecutive ex-
ceedances within a cluster, we note that our definition of a cluster means we
must condition on there being an exceedance at all locations within the cluster,
rather than at a single location as in the previous case. We employ a similar
rejection sampling technique as previously, simulating forwards and backwards
conditioning on X(w0) > v, with the criteria for rejection being that at least
one site is below the threshold v, and the maximum within the cluster does not
occur at the conditioning time.

Results are shown in the right panel of Figure 9; we now have no observations
of a maximum number of consecutive exceedances greater than six, but are able
to extrapolate beyond this using our model. The expected number of clusters
per year where all locations exceed their 0.961 quantiles for a maximum of at
least seven consecutive days is estimated to be 0.057. This corresponds to a
return period of 17.4 years with a 95% confidence interval of (9.5, 41.8) years.

5. Discussion

In this paper, we presented an approach to modelling extreme events over
space and time, by extending the conditional spatial extremes model of Wadsworth
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and Tawn (2019) to a spatio-temporal setting. The model is constructed by con-
ditioning on exceedances above a threshold at a single location, with inference
carried out via a composite likelihood approach, allowing for contributions from
different conditioning sites. We used this approach to model sea surface temper-
ature extremes in the north of the Red Sea, and proposed a range of diagnostic
techniques, showing that the data were well described by the model. The re-
sulting model fit was used to demonstrate how one could assess the risk of coral
bleaching, by estimating the return period of clusters where sea surface tem-
peratures exceed a high threshold over consecutive days, across one or several
spatial locations.

One issue that could be considered further is the differing behaviour observed
in the north and south of the Red Sea. We chose to concentrate on modelling
surface temperatures only in the north to simplify our approach, but it would
be useful to have techniques available to model the full set of locations simul-
taneously. One way to deal with the non-stationarity in the data may be to
allow the model parameters to depend on the spatial conditioning site in some
way. We considered allowing the parameters λs or κs to depend on the spatial
coordinates of the conditioning site, and separately tried to include water depth
as a covariate in the parameter λs. Although these attempts did not sufficiently
improve our model fit, it is possible that a different covariate could have ex-
plained some of the spatial non-stationarity present in the data, and covariate
modelling as a technique may be successful in other applications.

A final aspect that could benefit from further attention in the future is that of
threshold selection. This is a topic of notorious difficultly within extreme value
statistics, with the univariate case seeing a particularly large amount of research;
see for instance Scarrott and MacDonald (2012) or Northrop et al. (2017). The
problem lies in choosing a threshold low enough that there is sufficient data to
carry out reliable inference, but high enough that the asymptotic assumptions
of the model hold. A common technique is to use plots to assess the stability of
parameter estimates, or some other measure related to the data, but these plots
can be difficult to interpret, and the resulting threshold choice subjective. Our
choice to use a fixed quantile in the present paper has the benefit of simplicity,
but we acknowledge that, as with all extremal modelling, there may be some
sensitivity to this choice.

Acknowledgements

This publication is based upon work supported by the King Abdullah Uni-
versity of Science and Technology (KAUST) Office of Sponsored Research (OSR)
under Award No. OSR-CRG2017-3434. We thank the two anonymous referees
for their helpful comments.

References
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