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Abstract

In this thesis, we propose new methodology for detecting changepoints in multivariate

data, focusing on the setting where the number of variables and the length of the data

can be very large.

We begin by considering the problem of detecting changepoints where only a sub-

set of the variables are affected by the change. Previous work demonstrated that the

changepoint locations and affected variables can be simultaneously estimated by solv-

ing a discrete optimisation problem. We propose two new methods PSMOP (Pruned

Subset Multivariate Optimal Partitioning) and SPOT (Subset Partitioning Optimal

Time) for solving this problem. PSMOP uses novel search space reduction techniques

to efficiently compute an exact solution for data of moderate size. SPOT is an ap-

proximate method, which gives near optimal solutions at a very low computational

cost, and can be applied to very large datasets. We use this new methodology to

study changes in sales data due to the effect of promotions.

We then examine the problem of detecting changes in the covariance structure of

high dimensional data. Using results from Random Matrix Theory, we introduce a

novel test statistic for detecting such changes. Importantly, under the null hypothesis

of no change, the distribution of this test statistic is independent of the underlying

covariance matrix. We utilise this test statistic to study changes in the amount of

water on the surface of a plot of soil.
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Chapter 1

Introduction

Due to advancements in technology, data of increasing complexity and size is being

collected. Typically, this data is collected over periods of time and the behaviour

of such data can change dramatically. If our statistical methodology does not take

account of these changes, our capacity to model, understand and forecast the data

will be significantly hampered. As a result there is substantial interest in developing

new statistical methods that can capture and model data in a dynamic setting.

One approach to studying data which changes over time, is to assume that the

data only changes at a small set of points, known as changepoints. This approach

provides a natural way to extend standard models to the dynamic setting, and in many

applications the changepoints themselves are interesting for practitioners. However

while significant work has been completed on estimating changepoints for a single

variable, less attention has been paid to the case where we have multiple variables.

In this thesis, we develop methodology for detecting changepoints in multivariate

datasets, where there are potentially a very large number of variables under observa-

tion. We start in Chapter 2 by reviewing the literature on multivariate changepoints,

focusing on the offline, frequentist setting which forms the basis of this thesis.

In Chapter 3 we consider the problem of detecting so called subset multivariate

changepoints, where a change only affects a subset of the variables under observa-

tion. Previous work on this problem proposed a dynamic program, SMOP (Subset

Multivariate Optimal Partitioning) which can simultaneously estimate the locations

1



CHAPTER 1. INTRODUCTION 2

of any changepoints and the set of variables affected by the change. However the

computational cost of this procedure is substantial and it is infeasible for even small

datasets. Therefore we propose a new dynamic program PSMOP (Pruned Subset

Multivariate Optimal Partitioning), which utilises a number of novel search space re-

duction techniques to compute the same segmentation as SMOP at a substantially

reduced computational cost.

Although it is considerably faster than its predecessor, the PSMOP procedure

is still infeasible for datasets of moderate and large scale. Therefore in Chapter 4

we propose an approximate dynamic program, SPOT (Subset Partitioning Optimal

Time). The computational cost of this procedure is, under mild conditions on the

number of changes, linear in the dimension and length of the data and thus it can

be applied to extremely large datasets. Furthermore we demonstrate that the loss of

accuracy due to the approximation is very small in practice. In Chapter 5 we utilise

the SPOT method to study changes in an industrial application.

A limitation of the subset multivariate approach is that it does not consider how

the variables under observation relate to each other. In particular, it is not possible

to detect changes in the relationships between variables. Therefore in Chapter 6, we

examine the problem of detecting changes in the covariance structure of large data

and, propose a new test statistic for detecting such changes in high dimensional data.

The primary advantage of this method is that under the null hypothesis of no change,

the distribution of the test statistic does not depend on the true covariance. We utilise

this method to study changes in amount of water on the surface of soil.

We conclude the thesis with a discussion of the main contributions of this work

and finally discuss a number of possible extensions to this research in Chapter 7.



Chapter 2

Literature Review

In this chapter, we review existing methodology for detecting changepoints in multi-

variate data. In particular, we focus on frequentist approaches to the offline multi-

variate changepoint problem. Changepoint detection has been a key area of research

within the statistical literature for decades, having been first applied to quality con-

trol problems (Page, 1954). While much of the focus within this literature has been

on the univariate changepoint problem, there has been a dramatic increase in interest

in multivariate changepoint detection in recent years.

The changepoint literature can be separated into two distinct settings, the offline

setting where all of the data is obtained prior to any analysis, and the online setting,

where new data is observed over time. While there are clear connections between

these settings, the primary issues considered in the two literatures are different. For

example, in the offline setting we often need to identify multiple changepoints in the

data. This is not typically the case in the online setting where the data generating

process stops if a change occurs. Similarly, there is a particular focus in the online

setting on detecting change as quickly as possible. This consideration is irrelevant in

the offline setting. In this work, we focus exclusively on the offline setting. Readers

interested in online setting should see Tartakovsky et al., 2014 for a thorough review.

The primary goal of this chapter is to provide a thorough review of existing

methodology for detecting changepoints in multivariate data streams. As a necessary

precursory step, we discuss some important contributions in the univariate change-

3



CHAPTER 2. LITERATURE REVIEW 4

point literature. Note the goal of this discussion is not to give a complete review

of univariate methods. Instead we focus on a small number of contributions which

are particularly relevant to multivariate changepoint detection or this thesis specif-

ically. In particular we review Binary Segmentation procedures (Section 2.2.1) and

optimisation based search methods (Section 2.2.2). The latter discussion is of par-

ticular importance to Chapters 3 and 4, which builds on this body of literature. We

then discuss recent advances in the multivariate changepoint problem. The multi-

variate changepoint literature considers a number of different types of changepoint

problems and therefore we separate the literature by problem type. We consider the

following types of changepoint problems; changes in mean (Section 2.3.1), changes in

covariance (Section 2.3.2), changes in functional data (Section 2.3.3), nonparamet-

ric changes (Section 2.3.4), changes in vector autoregressive models (Section 2.3.5)

and changes in network models (Section 2.3.6). We also highlight some advances in

detecting changepoints in more specific data structures (Section 2.3.7).

2.1 Changepoint Model

Let {Xi}ni=1 be a sequence of p dimensional random variables. Then a changepoint

model for this sequence is given by

Xt ∼ Fk for τk−1 < t ≤ τk

Fk 6= Fk+1 for 1 ≤ k ≤ m

0 = τ0 < τ1 < · · · < τm < τm+1 = n (2.1.1)

where each Fk is a p dimensional data generating process. The goal in any change-

point analysis is to estimate the number of changepoints m and the locations of the

changepoints, τ := (τ1, . . . , τm). Changepoint models can be applied to univariate

data (p = 1) and multivariate data (p > 1). The changepoint model above is general

and works in the literature typically place some assumptions on the sequence of data

generating processes {Fk}mk=1. For example, many authors consider the setting where

each Fk belongs to the same family of distributions but differ in expectation. This is
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known as the change in mean problem.

2.2 Univariate Multiple Changepoint Detection

We begin our discussion of univariate multiple changepoint detection methods by

considering an important special case of (2.1.1), the At Most One Change (AMOC)

setting where m ≤ 1. The AMOC setting is the simplest version of the changepoint

problem and a number of authors have developed methods for this problem under

different assumptions. Methods include test statistics based on the likelihood ratio

(J. Chen and Gupta, 1997; Hinkley, 1970) as well as test statistics based on normalized

cumulative sums of functions of the data, also known as CUSUM statistics (Inclan

and Tiao, 1994; Page, 1954). Significant theoretical work has been done analysing

the behaviour of univariate changepoint tests in the AMOC setting. However this

research is too broad to be covered in any detail here. Interested readers should refer

to Csorgo and Horváth, 1997 for a thorough review.

There are two components to the AMOC setting, determining whether or not

a change has occurred and if so identifying the location of the change. Given an

appropriate likelihood function `(·) or cusum test statistic T (·), we can detect a single

change in the univariate sequence {Xi}ni=1 by calculating

max
1≤t≤n

`(X1:t) + `(X(t+1):n)− `(X1:n) or max
1≤t≤n

T (X1:t)− T (X(t+1):n). (2.2.1)

If this value exceeds a predefined threhold, then we say a change has occurred and an

estimator for the location of the change is given by the optimiser of (2.2.1). While it

is valuable to be able to detect changes in the AMOC setting, there are many settings

where we need to be able to detect multiple changepoints. The remainder of this

chapter considers methods for identifying multiple changepoints given a method for

identifying a single change.
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2.2.1 Binary Segmentation Methods

Scott and Knott, 1974 introduced the Binary Segmentation procedure, which extends

tests for a single change to the multiple changepoint setting. The procedure first

searches for a change in the entire dataset by applying a test such as in (2.2.1). If a

change is detected then the test is applied separately to the data to the left and right

of the change. This process continues recursively until no more changes are detected.

A number of authors have studied the theoretical properties of the procedure (K.

Chen et al., 2011; Fryzlewicz, 2014; Venkatraman, 1993). The Binary Segmentation

procedure can be used with any test for a single changepoint and is computationally

efficient with cost O(K(n)n log n), where K(n) is the cost of computing the likeli-

hood function `(·) or cusum statistic T (·). For many common hypothesis tests (e.g.

likelihood ratio test for a change in mean) these statistics can be computed based

on summary statistics of the data and thus have O(1) cost. There are important

limitations to the Binary Segmentation procedure. Firstly, if two changes move in

opposite directions, they can mask each other and fail to be detected. Secondly as Bi-

nary Segmentation is a conditional search approach, if an early change is misspecified

all future changepoint locations may also end up being misspecified. Despite these

limitations, Binary Segmentation works well in practice and has been widely used in

applications (Hernandez-Lopez and Rivera, 2014; Mahmoud et al., 2007).

In recent years, there have been a number of adaptations to the Binary Segmen-

tation procedure that aim to address these issues. Olshen et al., 2004 proposed the

Circular Binary Segmentation method, which addresses the issue of masking via a

hypothesis test that fits two changepoints rather than one. Fryzlewicz, 2014 proposed

the Wild Binary Segmentation method, which randomly samples M intervals and

searches for a single changepoint over each interval. If a change τ is detected in the

random interval (s, e), than the procedure is run again on the the intervals (s, τ) and

(τ + 1, e). The procedure terminates if no more changes are detected. Fryzlewicz,

2020 introduced a more computationally efficient adaptation of the Wild Binary Seg-

mentation procedure called Wild Binary Segmentation 2. This variant searches for

a single change over a set of randomly drawn intervals. It then ranks any detected
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changepoints by the size of test statistic. The largest candidate is added to the set of

detected changes and the procedure is applied to the data to the left and right of this

candidate. Again the procedure terminates when no more changes are detected. Note

that since the intervals are drawn at random, there is no guarantee that the method

will locate the same set of changepoints if the procedure is rerun on the data. Kovács

et al., 2020 address this concern with the Seeded Binary Segmentation variant, which

draws the intervals in a deterministic fashion. Finally we note that although Wild

Binary Segmentation incorporates randomization, the purpose of this randomization

is not uncertainty quantification and it would be incorrect to think of the method as

a bootstrap type procedure.

Although the Binary Segmentation procedure was developed for the univariate

setting, it is trivial to extend the procedure to the multivariate setting, and a number

of authors have applied the technique to various multivariate changepoint problems,

such as changes in covariance structure (Aue, Hörmann, et al., 2009; D. Wang, Yu,

and Rinaldo, 2017) and changes in network structures (D. Wang, Yu, and Rinaldo,

2018). However there is an important class of multivariate changepoint problems

where current Binary Segmentation approaches may be inappropriate. In particular,

there is a growing interest in the literature on changepoint problems where not ev-

ery variable is affected by a changepoint. While it is possible to conceive a Binary

Segmentation type procedure for this setting, to our knowledge such a method is

not widely available. Furthermore as we discuss in Section 2.4, there are significant

advantages in jointly estimating the changepoints and the set of affected variables.

2.2.2 Multiple Changepoint Detection via Optimisation

The different Binary Segmentation procedures identify changepoints one by one with

each subsequent changepoint conditional on the previously detected changes. How-

ever there are also methods that jointly estimate all the changepoint locations by

solving an optimisation problem. Auger and Lawrence, 1989 examine the problem

of detecting multiple changepoints where the number of changepoints m is known a

priori, sometimes referred to as the constrained minimisation problem. Their method,
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Segment Neighbourhood, selects the m changepoints which solve the following opti-

misation problem,

arg min
(τ1,...,τm)

m∑
k=0

C(X(τk+1):τk+1
). (2.2.2)

where C is a cost function measuring goodness of fit and as before τ0 := 0 and τm+1 :=

n. This optimisation problem can be solved using a dynamic program which has

computational cost O(K(n)mn2), where K(n) is the cost of evaluating C. Note that

as with binary segmentation, many commonly used cost functions have computational

cost O(1). Maidstone et al., 2017 and Rigaill, 2010, 2015 introduce dynamic programs

which under certain conditions can solve the constrained minimisation problem at a

substantially lower computational cost than the Segment Neighbourhood procedure.

Of course in practice it is unlikely that the true number of changes is known a priori,

thus practitioners typically solve (2.2.2) for multiple values of m and choose the value

of m that minimises some criteria such as a penalised likelihood.

Jackson et al., 2005; Yao, 1988 consider the setting where the number of change-

points is unknown and jointly estimate the number and locations of changepoints by

solving the following optimisation problem,

arg min
m,(τ1,...,τm)

m∑
k=0

C(X(τk+1):τk+1
) + βf(m), (2.2.3)

where β is a penalty to prevent overfitting of changepoints, and f(m) = m. This op-

timisation problem can be solved exactly via a dynamic program with computational

cost O(K(n)n2). We refer to (2.2.3) as a penalised cost function. Davis, Lee, et al.,

2006 propose to detect changepoints via the principle of Minimum Description Length

which can be formulated as a special case of (2.2.3). The authors introduce a genetic

algorithm which provides accurate (although potentially suboptimal) solutions to the

resulting optimisation problem. There has been significant work in developing tech-

niques that reduce the computational cost of solving (2.2.3). If the cost function C

is convex with respect to the data, the Pruned Exact Linear Time (PELT) method

introduced by Killick, Fearnhead, et al., 2012 and the Functional Pruned Optimal

Partitioning (FPOP) method of Maidstone et al., 2017 can solve (2.2.3) in linear time

under mild conditons on the spread of the changepoints within the data. Fearnhead
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and Rigaill, 2019 introduce the Robust Functional Pruned Optimal Partitioning (R-

FPOP) which efficiently solves (2.2.3) for cost functions that are robust to outliers.

Finally, a number of authors have studied the theoretical properties of optimisation

based estimators (Tickle et al., 2020; Yao, 1988).

The penalised cost function approach has a number of advantageous properties.

Firstly Killick, Fearnhead, et al., 2012 show that many hypothesis tests (such as all

likelihood ratio tests) can be reformulated as penalised cost function problems, with

the β penalty replacing the threshold. Under this framework Binary Segmentation

procedures can be thought of as heuristic methods that produce sub optimal solutions,

whereas exact methods such as Optimal Partitioning and PELT always produce the

best possible solution. Secondly, since it utilises a generic cost function, it can be

applied to a wide range of problems. In particular, optimisation based changepoint

methods can be easily extended to the multivariate setting by utilising a multivariate

cost function such as a multivariate likelihood function. However this approach has

the same limitation in the multivariate setting as the Binary Segmentation methods; it

is only appropriate if every variable is affected by each change and thus, not suitable

for many of the applications we consider in this work. Finally we note that the

penalised cost function approach is not necessarily applicable in all settings and there

are certain test statistics that can not be formulated in the penalised cost function

framework in (2.2.3), for example test statistics which are based on maximising the

distance between segments.

2.3 Multivariate Changepoint Methods

This section reviews the literature for identifying changepoints in multivariate data.

A naive implementation would be to consider each series independently to identify

changepoints but this is an inefficient use of available information and, would likely

lead to changepoints being missed and a larger error in the changepoints locations.

We do not consider such an approach further here and instead describe methodology

which explicitly considers the multivariate nature of the problem.
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2.3.1 Changes in Mean

We begin by considering the literature on detecting a common change in mean across

multiple series. Formally, we have the following model,

Xt,j = µj + δjI(t > τ) + εt,j

where E(εt,j) = 0, δj ∈ R is the size of the change in variable j and τ ∈ Z is the location

of the changepoint. The goal of this literature is to exploit the common location of

the changepoint, in order to detect changes more accurately than is possible in the

univariate setting. For example, if |δj| is small for each j, then it will be difficult to

detect a change by looking at each series individually. However, if the sum,
∑p

j=1 |δj|

is large than we should be able to detect the changepoint by aggregating information

across the series. Thus, there are two key questions in this literature, how can we

efficiently combine information across different series, and to what extent does this

improve changepoint estimation.

Much of the work in this area focuses on first applying a univariate changepoint

test to each series, and then aggregating this information. The majority of authors

consider aggregating the univariate CUSUM test originally derived by Page, 1954,

however we note that a least squares approach has also been considered. The CUSUM

test statistic for data {Xi}1≤i≤b is defined as,

T (t, j) :=

√
t(n− t)

n

(
1

n− t

n∑
r=t+1

Xj,r −
1

t

t∑
r=1

Xj,r

)
(2.3.1)

The value T (t, j) is the likelihood ratio test statistic for a change in the mean occuring

at t. Note for the purposes of aggregation, authors utilise T 2(t, j) to avoid positive

and negative changes cancelling each other.

There are a range of different approaches for aggregating information across dif-

ferent series. The best approach depends heavily on the application. Throughout the

rest of this subsection, we discuss papers that have examined this issue, with a focus

on the settings where these methods are most appropriate. Note, some of these ap-

proaches incorporate extra algorithmic steps such as post processing or only rejecting

the null hypothesis if the threshold is exceeded at multiple consecutive points. We do
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not consider these concepts in this discussion, as they can be generalised to other test

statistics and make it more difficult to compare methods. Similarly, although these

methods can be extended to the multiple changepoint setting via the binary segmen-

tation heuristic, we focus on the single changepoint case for simplicity. Finally, the

majority of methods we discuss assume cross-sectional independence, i.e. that εt,j

are independent over j. Throughout this subsection, we also assume cross-sectional

independence unless otherwise specified.

Zhang et al., 2010 average over the square CUSUM test statistic,

max
1≤t≤n

p∑
j=1

T 2(t, j).

J. Bai, 2010; Horváth and Hušková, 2012 average over a slight variant of the CUSUM

test statistic which incorporates a normalization constant and different scaling,

max
1≤t≤n

1
√
p

t(n− t)
n2

p∑
j=1

{
T 2(t, j)− 1

}
.

Furthermore, Jirak, 2012 consider the case of averaging with both cross-sectional and

temporal dependence. Their method first uses an estimate of the long run covariance

to whiten the CUSUM test statistics. They then take a pointwise average of the

normalised test statistics. Note that estimating the long run covariance becomes

difficult as p grows. Thus, this approach is only possible if p is small. J. Li et al.,

2019 study a CUSUM type statistic with a bias term, which takes account of spatial

and temporal dependence.

Taking an average is appropriate if each δj is small, but
∑p

j=1|δj| grows quickly

with p. For example, J. Bai, 2010; Horváth and Hušková, 2012 demonstrate that their

method will consistently detect changepoints, if the sum of δ2
j diverges faster than

√
p.

Furthermore, since this approach averages over a set of changepoint estimators, the

resulting changepoint estimator should be more accurate. An important criticism of

these approaches is raised by T. Wang and Samworth, 2018. An unweighted average is

inefficient, if the δj values are not of similar size. T. Wang and Samworth, 2018 argue

that a better approach would be to take a weighted average, with weights proportional
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to the size of δj. However, this approach has not been analysed directly, as T. Wang

and Samworth, 2018 also incorporate sparsity constraints in their model.

There are many applications where the assumption that every series under ob-

servation undergoes a change is unrealistic. Cho and Fryzlewicz, 2015 incorporate

sparsity into a test statistic, by averaging over values of the CUSUM which exceed

some threshold i.e.

max
1≤t≤n

p∑
j=1

|T (t, j)|I (T (t, j) > πn) ,

where πn is a user specified threshold and I is an indicator function. Note, we say

that a change has occurred if this value is greater than zero. Theoretical results

demonstrate that this method can consistently estimate changepoints, even in the

presence of temporal dependence. However we note that while this approach does

utilise a sparsified test statistic, it does not determine whether variables are affected

by a change and the method does not report the set of affected variables.

Many authors consider sparse alternatives directly by adding the following sparsity

assumption to (2.3.1),
p∑
j=1

I(|δj| > 0) = k,

if the number of non zero elements, k is known, and

p∑
j=1

I(|δj| > 0) ≤ k otherwise.

Note that this sparsity constraint introduces a new component to the problem, dis-

tinguishing the series that change from those that do not. We can use the CUSUM

value to distinguish these sets. The magnitude of the CUSUM indicates how likely it

is that a change has occurred, and series that are affected by a change are more likely

to have large CUSUM values. Thus, it should be possible to partition the series into

two groups at each time point, based on the magnitude of the CUSUM values. The

group with larger CUSUM values will have been affected by the change.

Enikeeva and Harchaoui, 2019 study the following test statistic,

max
1≤t≤n

max
1≤l≤p

(
log

knp

α

(
p

l

))−1 l∑
j=1

{
T (t, π(t, j))2 − 1

}
,
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where k is a constant, α is a significance level and π(j) denotes the label of the series

with the jth largest CUSUM value at time t. This test statistic takes into account

the multiple different possible combinations of series through the combinatoric term.

Cho, 2016 utilise the following test statistic,

max
1≤t≤n

max
1≤m≤p

{
m(2n−m)

2n

}ξ
1

m

m∑
j=1

(
|T (t, π(t, j))| − 1

2n−m

n∑
j=m+1

|T (t, π(t, j))|

)

where ξ ∈ [0, 1]. This is equivalent to fitting an elbow plot to the ordered CUSUM

values at each time point. These approaches are appropriate when we can easily

separate the set of change sizes, {|δj|}pj=1, into two groups and a large number of

these δj values are zero. Note however that if the ordered sequence of |δj| values

decays smoothly to zero, these methods will struggle even in the presence of true

sparsity, as a clear seperation point will not exist. Furthermore, the accuracy of

these methods depends heavily on the number of non zero δj values. As this number

increases, the methods underperform compared to a simple average.

T. Wang and Samworth, 2018 consider a weighted average of CUSUM values,

which does not suffer this limitation. Their approach can be broken into two steps.

The weights are estimated as the leading sparse principal component, v of the CUSUM

matrix T where [T ]i,j = T (i, j). Then an estimator for the change is given by,

max
1≤t≤n

(
p∑
j=1

vT (t, j)

)2

.

Note that the weight vector v is an estimator for the vector δ := (δj)
p
j=1. Thus this

approach is equivalent to weighting by the size of the change in each series. As a result,

this method is applicable in settings where previously discussed methods struggle, such

as the case when some of the affected series experience much larger changes than the

others. However, estimating v requires estimating an extra k parameters. Thus, if

each affected series experiences a similar sized change or the change is not truly sparse,

then this approach may add complexity without improving statistical efficiency. We

note that in some applications there can be a mix of sparse and dense changes, and

the Inspect procedure may perform worse than other methods on these problems.

The Inspect method has been implemented in the R package InspectChangepoint (T.
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Wang and Samworth, 2016). Due to the fact that it is a state of the art competitor

method, in Chapters 3 and 4 we compare our contributions with the Inspect method.

There are certain settings where taking an average over test statistic values may

be inappropriate. For example, in certain applications small changes which occur

across multiple series may be unimportant, and the primary interest would be a large

break in a single series. Jirak et al., 2015 take the maximum over the set of CUSUM

statistics at each time point, which would be more appropriate than an average in these

settings. Note that we would not expect the resulting changepoint location estimates

to be more accurate than the equivalent estimates from applying a univariate CUSUM

test to the series with the largest change. This is in contrast with averaging, where we

would expect some improvement. The problem discussed in Jirak et al., 2015 can be

described as detecting a statistically significant change. However there is another way

of framing this. Dette and Gösmann, 2018 consider the problem of detecting relevant

changes in mean, that is changes in mean which exceed some prespecified level, ∆µ.

The advantage of this approach is that it allows the practitioner to define a significant

change, which is useful if small changes are not important. The authors study the

maximum of the CUSUM statistic at each time point, after applying a correction for

∆µ. There are clearly deep links between these two approaches. In particular, one

can map the desired minimum size of change, ∆µ, to a significance level and vice

versa.

Incorporating dependence between series in a CUSUM style statistic is difficult as,

the distribution of the resulting test statistic will depend on dependence structure. As

a result, the practitioner has to estimate this structure to use these methods, which is

challenging in the presence of changepoints. R. Wang et al., 2019 study the following

U statistic based process instead,

D(τ ; l, k) :=
∑

l≤j1 6=j3≤τ

∑
τ<j2 6=j4≤k

(Xj1 −Xj3)
T (Xj2 −Xj4).

The advantage of this approach is that, the test statistic can be normalised without

estimating the dependency structure, by dividing by linear combinations of D2(τ ; ·, ·)

calculated on different subsets of the data. This approach is valuable if there is some
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cross-sectional dependence in the data. However, we note that in their simulation

studies, the method only marginally outperforms T. Wang and Samworth, 2018 in a

setting where it is favoured. Therefore, it is questionable whether this approach is

effective in practice.

2.3.2 Changes in Covariance Structure

We now move on to the problem of detecting changes in the covariance structure

of multivariate time series. The literature on this problem has grown substantially

in recent years. An important distinction between the different approaches is how

they incorporate the structure of the underlying covariance matrix. We begin our

discussion by considering models which do not assume any structure. Formally, we

study the mean zero vectors Xt such that,

Σ∗1 = E(X1X
T
1 ) = · · · = E(XτX

T
τ ) 6= E(Xτ+1X

T
τ+1) = · · · = E(XnX

T
n ) = Σ∗2

where ‖Σ∗2 − Σ∗1‖ = δ > 0

where as before, τ ∈ Z is the location of the changepoint. As in our previous dis-

cussion, we assume that the vectors {Xt}nt=1 are I.I.D, unless otherwise stated and

restrict our attention to the single changepoint setting.

Given the amount of work focused on the problem of detecting changes in mean, a

natural approach to this problem is to look for changes in the mean of the vectorized

matrix XiX
T
i . In particular, Cho and Fryzlewicz, 2015; R. Wang et al., 2019 feature

results, which show that their methods for changes in mean can also detect changes

in second order structure. This approach does not exploit the relationships between

the entries of XiX
T
i , and thus may lose power in settings where these relationships

are stronger than the change.

A number of authors examine the problem of detecting changes in covariance

directly via the Covariance CUSUM,

T (t) := αt,n

(
1

n− t

n∑
r=t+1

XrX
T
r −

1

t

t∑
r=1

XrX
T
r

)
(2.3.2)
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where αt,n is an appropriate weight function. Aue, Hörmann, et al., 2009 study the

following statistic,

max
1≤t≤n

vech(T (t))T Σ̂−
1
2vech(T (t))

where vech(X) is the p(p+ 1)/2 dimensional vectorization of the matrix X and Σ̂ is

a plug in estimator for the long run covariance of vech(T (t)). The Σ̂ term accounts

for cross sectional and temporal dependence between the entries of XiX
T
i . Note

estimating Σ̂ can become very difficult as p increases. D. Wang, Yu, and Rinaldo,

2017 consider the following statistic,

max
p logn<t≤n−p logn

‖T (t)‖op

where ‖X‖op is the largest principal component of X. This approach is shown to

be minimax optimal if the vectors are independent and sub-Gaussian. However, the

method requires bounds on the variance of each Xi. If these are not known a priori

then an upper bound must be estimated from the data, which requires knowledge of

the unknown covariance for each segment. This approach can be understood as a

projection method, where the data is projected along the first principal component of

T (t). These methods are state of the art competitors for the method we develop in

Chapter 6, and we compare our proposed approach with these methods via a simula-

tion study where the methods were implemented in the R programming language.

Dette, Pan, et al., 2018 study the problem of detecting a change in the covariance

of very large covariance matrices. They study a similar test statistic to Aue, Hörmann,

et al., 2009, however they incorporate a sparsification step similar to that used in Cho

and Fryzlewicz, 2015. If the threhold is sufficiently large, then the method can be

used to study very high dimensional time series. Steland, 2020 study bilinear forms

of the covariance cusum, i.e. quadratic forms, vTT (t)w where v, w are non random

vectors chosen by the user. This approach is useful in settings where, there is some

a priori knowledge of the structure of the covariance, such as a block structure. Note

that this approach allows for temporal dependence. Avanesov and Buzun, 2018 study

changes in the inverse covariance (precision) of high dimensional time series. Their

test statistic measures differences between debiased estimates of the inverse covari-
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ance matrix. The authors provide a bootstrap procedure for selecting the threshold,

however this threhold requires knowledge of the underlying initial covariance matrix.

Note that while a change in the inverse covariance matrix is equivalent to a change

in the covariance matrix, there are many applications where the primary parameter

of interest is the precision matrix and assumptions can be made about the matrix.

In such settings, a method that focuses on changes in the precision matrix may be

preferable. We have implemented a version of this method in the R programming

language and this approach is also included in the simulation study in Chapter 6.

The methods described in this section all require an estimate of an initial covari-

ance or autocovariance in order to calculate the test statistic or set an appropriate

threshold for detecting changepoints. However to accurately estimate the initial co-

variance we need to know where the changepoints are. As a result, it can be difficult

to correctly specify the appropriate threshold for changes in covariance. Furthermore

if the initial covariance is estimated from a heterogenous sample, the power of the

method may suffer. In Chapter 6 we propose a new method for detecting changes in

covariance structure which does not require any knownledge of the underlying covari-

ance structure.

2.3.3 Changes in Functional Data

There has been significant interest within the literature in detecting changes in func-

tional data. In functional data analysis, each vector Xi is assumed to be a discrete

realisation of a continuous function. Formally, we have that

Xt = µt + εt where

µt = µ∗k ∈ L2(I), εt ∼ Fk

for τk−1 + 1 ≤ t ≤ τk, 1 ≤ k ≤ m

I is some compact set, and Fj is distribution over L2(I). In other words, µt and εt

are square integrable real valued functions from I to the reals. Each distribution Fk

has covariance function

Kk(r, s) = E(ετk(r)ετk(s)), r, s ∈ I.
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If µ∗k 6= µk+1∗ then we say there is a change in mean, while if Kk(r, s) 6= Kk+1(r, s)

we say there is a change in covariance.

It is common to assume that the covariance function Kk has some low dimensional

representation. This low dimensional representation can then be estimated using

functional principal component analysis (Ramsay, 2004). Aue, Gabrys, et al., 2009;

Berkes et al., 2009 estimate changes in mean of indepedent functional observations,

by projecting a CUSUM style statistic onto sample functional principal components.

Aston and Kirch, 2012a extend this approach to the setting where there is temporal

dependence. Aston and Kirch, 2012b demonstrate that this method can be used to

identify non-stationary fMRI data. The dimension reduction approach is appropriate

if the data can be accurately described by a low dimensional representation. However

there is also interest in so called fully functional data which does not admit such a

representation and thus dimension reduction techniques perform poorly. Aue, Rice,

et al., 2018 propose a CUSUM style estimator for changes in mean in this setting,

which does not use dimension reduction. Note the question of whether or not to use a

dimension reduction technique here depends on the data. If the change occurs in the

direction of the primary principal components (or we are only interested in changes

in these directions) then a method which uses a dimension reduction technique is

preferable. However if the change occurs in the direction of the subspace orthogonal

to the principal components, then the use of dimension reduction techniques may

make the change harder to find.

There has been growing interest in detecting changes in the covariance function

K(r, s). Jarušková, 2013 propose a two sample test for detecting a difference in co-

variance operator which they extend to the changepoint setting. Dimension reduction

techniques are also used for this problem. Stoehr et al., 2020 first perform dimension

reduction and then utilise the estimator proposed by Aue, Hörmann, et al., 2009 to

detect changes in covariance. Dette and Kutta, 2019 propose a self-normalised two

sample test statistic to detect differences in the eigensystem of the covariance function

K. Finally, Aue, Rice, et al., 2020 study changes in the spectrum function and trace

of the covariance function.
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2.3.4 Nonparametric Changepoints

So far we have focused on methods which attempt to identify changes in the moments

of a distribution, where the distribution is either known or satisfies some strong as-

sumptions. However this ignores problems where the distribution of the data changes

or, the data does not satisfy the required assumptions. Thus there is a growing inter-

est in nonparametric methods, which do not place assumptions on the type of change

and minimal assumptions on the data. Formally, we study the original changepoint

model in (2.1.1) without extra assumptions which we repeat here for convenience,

Xt ∼ Fk for τk−1 < t ≤ τk

Fk 6= Fk+1 for 1 ≤ k ≤ m

0 = τ0 < τ1 < · · · < τm < τm+1 = n (2.3.3)

Matteson and James, 2014 study a test statistic based on energy distances which

measure the distance or divergence between random variables. In particular given two

samples X and Y of length n and m respectively, the authors demonstrate that the

following two sample test statistic,

ζ(X,Y , α) =
2

mn

n∑
i=1

m∑
j=1

|Xi−Yj|−
(
n

2

)− 1
2 ∑

1≤i≤k≤n

|Xi−Xk|−
(
m

2

)− 1
2 ∑

1≤j≤l≤n

|Yj−Yl|

can be used to consistently detect changes in the distribution of data. The authors

develop a bootstrap procedure for selecting the significance threshold which can be

applied in the multiple changepoint setting. This method, E-Divisive, is implemented

in the ECP R package (James and Matteson, 2015) and has computational cost O(n2)

(as it requires computing every possible pairwise distance). We compare our contri-

butions with this method in Chapters 3 and 4. Finally we note that although the

energy statistic ζ is based on euclidean distances, in theory it could be extended to

consider other metrics and with the proper choice can be applied to a wide range of

data types such as functional data and compositional data.

A number of authors have have studied Kernel based changepoint estimators.

Inspired by clustering methods, these methods utilise a kernel transform to map a



CHAPTER 2. LITERATURE REVIEW 20

change in distribution to a change in expectation in the kernel space. One advantage

of the kernel approach is that we can analyse any type of data, so long as a suitable

kernel exists. S. Li et al., 2015 study kernel M-statistics for which the tail probability,

and thus the threshold for determining a change, can be fully characterized. Arlot

et al., 2019; Garreau, Arlot, et al., 2018 study the statistical properties of kernel

based changepoint estimators. They prove that such estimators are consistent if the

kernel of the data satisfies some assumptions. Importantly, these assumptions are not

placed on the data itself, thus we can detect changes in any type of data, so long as

a suitable kernel function exists. Finally, J. Li, 2020 study the properties of a kernel

based estimator in high dimensions, although they describe their procedure as being

based on interpoint distances. Note, although their approach is applicable in high

dimensions, they place stricter assumptions on the kernel matrix. Finally, we note

that the energy statistic approach described above can also be expressed as a kernel

method.

Kernel changepoint estimators have two important limitations. Firstly, the practi-

tioner must choose an appropriate kernel family and set the hyperparameters correctly.

Different kernels will favour certain types of changes over others and, the power of the

method may decrease substantially if the hyperparameters are not suitable. Thus the

choice of kernel may have significant impact on results. Secondly, the computational

cost of estimating the kernel is O(n2), which may be prohibitively large for longer

datasets. Celisse et al., 2018; Truong et al., 2019 introduce computationally efficient

implementations of these test statistics, for large datasets with multiple changepoints.

Lung-Yut-Fong et al., 2015 study a rank based statistic for estimating change-

points. In particular, at each time point they measure the distance between segments

using a Wilcoxon-Mann-Whitney type test for each variate independently. The au-

thors then aggregate this information using a normalised sum of squares, where the

normalisation term is an estimator of the covariance. Note there is a clear connec-

tion here with the aggregation techniques discussed for the change in mean problem.

This procedure is consistent, assuming some conditions on the gradient of the true

distribution. Note, the effectiveness of this procedure depends on accurate estimation
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of the nuisance covariance parameter, which may be difficult in the multiple change-

point setting. Brault et al., 2018 extend this approach, to study changes in the block

structure of high dimensional symmetric matrices.

There is growing interest in graph based test statistics. H. Chen and Zhang,

2015 detect changes by first constructing a graph from the data. Then at each time

point, they count the number of edges between data to the left and right of the

candidate change. If this number is large then the two segments are more likely to

have the same distribution and vice versa. Chu and H. Chen, 2019 argue that this

approach can be ineffective for certain types of changes, and introduce new statistics

that are more appropriate for these settings. Similar to kernel based methods, the

assumptions required for a graph based test statistic to be consistent, depends on how

the graph is constructed rather than the statistical properties of the data. However,

the power of the method also depends on how the graph is constructed and whether

this construction illuminates the type of change.

Dubey and Müller, 2019 study changes in the Fréchet mean and variance of data

observed in some metric space. Fréchet mean and variance generalise the concepts

of location and scale to objects in a metric space. The proposed estimator selects

changepoints, by maximising the distance in sample Fréchet mean and variance es-

timates. Although this method assumes knowledge of the type of change, it can be

considered nonparametric as the data is observed in a generic metric space. The

method is consistent with assumptions on the metric space. However, the perfor-

mance of the method depends on the choice of metric. Padilla, Yu, D. Wang, et al.,

2019 propose a CUSUM type estimator for estimating changes in distribution of real

valued data. Their method measures the distance between probability distribution

functions, of data to the left and right of each candidate change using Kernel Den-

sity Estimators. This approach is consistent assuming the true density functions are

uniformly Lipschitz.
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2.3.5 Changes in Vector Autoregressive Models

There is a growing literature focused on changes in vector autoregressive (VAR) mod-

els. VAR models are widely used in multivariate time series analysis, with applications

in biology (Fujita et al., 2007) and finance (Fan et al., 2011). Formally, we consider

the following model,

Yt =

qk∑
l=1

Ak
l Yt−l + εt for τk < t ≤ τk+1

{Akl }
qk
l=1 6= {A

k+1
l }

qk+1

l=1 for 1 ≤ k ≤ m

where qt ∈ R is the order of the model, Ak
l is a p × p matrix and the error terms εt

are IID normal with covariance Σt. Depending on the work, the covariance and order

terms may be assumed to be stationary or piecewise stationary. Furthermore, there is

some disagreement in the literature, about whether data immediately after a change

should be affected by data before the change or not. If the order terms qt are small,

this issue is unlikely to substantially alter the analysis. However for series with large

order terms, this problem may need to be addressed directly.

It is possible to detect a change in the VAR parameters by examining changes in

the covariance of Yt or changes in expectation of the parameters At and as such, pre-

viously discussed methods may also be appropriate for this problem. However, there

are also methods that tackle this problem directly. Davis, Lee, et al., 2006 propose

a consistent changepoint estimator, based on the principle of Minimum Description

Length (MDL). Their estimator allows for changes in the covariance and order terms.

The proposed estimator is the solution to a computationally intractable optimisation

problem. Therefore the authors utilise a genetic algorithm to optimise the func-

tion and estimate changepoints. Kirch et al., 2015 estimate the changepoint in two

steps. Firstly they jointly estimate the autoregressive parameters and changepoint

locations by solving a regularized regression problem for the entire dataset. This reg-

ularized regression problem incorporates two penalties, one for controlling the number

of changepoints and another for controlling the sparsity of the VAR model. Due to

the fact that this estimator consistently overestimates the number of changes, they
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then study a CUSUM style statistic of the fitted residuals. The method assumes

that the order and covariance terms are constant across segments. Note this second

stage introduces more hyperparameters. This approach is computationally efficient

if the hyperparameters are fixed and is suitable for high dimensional VAR problems.

However in practice the hyperparameters must be tuned to a given dataset which is a

costly and non trivial exercise, particularly since there are two sets of interconnected

hyperparameters which must be trained.

The number of parameters required in a VAR model is quadratic in p. A number of

authors have addressed this problem by inducing sparsity in the model with a LASSO

type penalty (Davis, Zang, et al., 2016; Nicholson et al., 2017). Recently, some authors

have applied this approach to the change in autoregression problem. Safikhani and

Shojaie, 2020 utilise a two step procedure. They first jointly estimate the parameters

of the model and the changepoints by optimising a penalised cost function. This

procedure consistently overestimates the true number of changepoints. Therefore,

the second step reduces the set of estimated changes by choosing the subset which

optimises an information criterion. D. Wang, Yu, Rinaldo, and Willett, 2019 estimate

changepoint locations by minimising the penalised cost function (2.2.3), where C is

a likelihood function which uses a LASSO estimator for the autoregressive terms.

Note that unlike the previous approach, this method directly penalises the number of

changepoints and does not assume any prior beliefs about the sparsity of the changes.

However this approach does have a number of limitations. Firstly whereas the previous

approach solves a single (large) convex optimisation problem, this method must solve

O(n) convex optimisation subproblems on average and O(n2) in the worst case. This

may be a computationally intensive process. Secondly the authors do not include

any simulation results and thus it is unclear whether this approach works in practice.

Finally, as with all regularization methods, the penalty term must be tuned for the

problem which is a computationally intensive process.
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2.3.6 Changes in Network Structures

A number of authors have studied the problem of detecting changes in a sequence of

networks. Barnett and Onnela, 2016 detect changes in correlation networks by max-

imising the `2 distance between sample covariances. This procedure uses a bootstrap

procedure to test for a significant change. The authors extend the method to the

multiple changepoint case via the binary segmentation procedure. This extension is

unsatisfactory as in the multiple changepoint setting, the bootstrap samples will have

different distributions leading to different thresholds for significance. Furthermore

the authors do not address the question of sparsity when studying the changepoints,

which is important in this case as correlation networks are typically sparse.

D. Wang, Yu, and Rinaldo, 2018 utilise a CUSUM style statistic to identify changes

in independent Bernoulli networks. The authors argue these networks structures are

very general including the stochastic block model and random dot product models as

special cases. While this is true, it ignores the fact that these models require stronger

assumptions about the data to accurately represent the data and, without them the

the variance of the estimates of the network structure will overwhelm the signal.

As such while the approach is very general, it is unlikely to be useful in practice.

Padilla, Yu, and Priebe, 2019 propose a two step estimator, for detecting changes in

a sequence of independent random dot product graphs. The authors first estimate

the latent coordinates of each graph and then use a nonparametric CUSUM style

test to detect a change. By utilising more realistic assumptions, this approach should

be applicable to a greater range of real datasets than the previous general approach.

However we do note that the authors assume that the dimension of the latent space

is fixed and known which is unlikely to be true.

Cribben, Haraldsdottir, et al., 2012; Cribben, Wager, et al., 2013 study changes in

functional connectivity networks of fMRI data. The authors detect changepoints by

minimising a BIC type penalty which uses a multivariate normal log likelihood with a

Graphical LASSO based estimator for the precision matrix. Then conditional on the

changepoints the segment networks can be estimated. The authors detect multiple

changepoints via the binary segmentation procedure and use a bootstrap procedure
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to test for significance. While this approach has merit, it suffers from some important

limitations. Each segment has a mean and covariance parameter which implies that

changes in the mean of the time series or scale of the covariance will be reported as

changepoints. In other words, the model can report a change where the structure of

the network is constant. Furthermore the regularization parameter requires tuning.

Londschien et al., 2019 consider a similar approach for detecting changes in graphical

models with missing data. In particular, they consider a penalised cost function

approach with a cost function based on the LASSO penalised likelihood function. The

authors consider a number of data imputation strategies for estimating the covariance

of the full data, which can then be used to calculate the penalised likelihood.

Many network models assume that the graph can be represented as a point in a

Euclidean space, however there is significant interest in non-Euclidean based repre-

sentations (Bronstein et al., 2017). Grattarola et al., 2019 study changes in networks

by first embedding each graph on a constant curvature Riemannian manifold via an

adversarial autoencoder. The authors then test the resulting sequence for a single

change. Note this procedure requires a large sample of homogenous data on which to

train the autoencoder, which is not typically available.

Gibberd and Nelson, 2014, 2017 study changes in the dependency structure of

Gaussian Graphical Models via group LASSO penalties. Both methods jointly es-

timate a sequence of n inverse covariance (precision) matrices {Θ̂t} by optimizing

a penalised cost function. The penalised cost function incorporates two types of

penalty, a shrinkage term which penalises non zero entries in each precision matrix

and a smoothness term which penalises non zero differences between the same entry

in consecutive precision matrices i.e. |Θt+1
i,j −Θt

i,j| . This penalty structure produces a

sequence of sparse precision matrices in the sense that many entries Θt
i,j = 0. Further-

more the sequence {Θt
i,j}nt=1 exhibits a piecewise constant structure. Note however

that this approach does not penalise the number of changepoints and in theory there

can be a change at each time point. These methods are particularly valuable in high

dimensional settings where there is true sparsity in the covariance structure and a

small number of entries change at each time point. However the method harshly pe-
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nalises changepoints where the majority of entries change. Furthermore the penalty

terms need to be tuned for the method to work, which can be difficult in practice.

2.3.7 Changes in Other Data Structures

So far in our discussion, we have considered changes in the mean, changes in co-

variance, changes in Vector Autoregressive models, changes in functional data and

nonparametric changepoints. We now discuss some interesting works in the litera-

ture that do not fit neatly into these categories. As we have already seen, hypothesis

tests based on likelihood functions are widely used to detect changepoints in a wide

range of models. However there are a range of applications where the full likelihood

is computationally intractable, due to a high dimensional integral term. In such situ-

ations, it can be useful to work instead with the composite likelihood function, which

combines likelihoods calculated on subsets of the data. Ma and Yau, 2016 combine

the penalised cost function approach with a cost function based on the pairwise like-

lihood, an example of a composite likelihood. Although this approach is necessarily

less efficient than a full likelihood approach, the authors demonstrate that it can

be used to consistently detect changepoints and outperforms nonparametric methods

when correctly specified. Zhao et al., 2019 adapt this approach to detect changes

in spatio-temporal processes. Prabuchandran et al., 2019 consider the problem of

detecting changes in compositional data where each element is a probability mass

function. They propose a penalised cost function approach with a cost function based

on the parametric Dirichlet likelihood function. We note the authors only consider

the single changepoint setting in this work, however it should be possible to extend

this approach to the multiple changepoint setting via a dynamic program or binary

segmentation.
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2.4 Multivariate Changepoint Detection via Opti-

misation

In the previous section, we saw that there is significant interest in methods that can

detect so called sparse changepoints, changes where only a subset of the variables

under consideration are affected by the change. However in Section 2.2.2 we saw that

the primary search methods for detecting multiple changepoints, namely the various

binary segmentation procedures and the penalised cost function approach, do not

allow for such sparse changes and assume that every variable is affected by a change.

Pickering, 2016 consider the problem of simultaneously estimating multiple sparse

changepoint locations and the set of variables affected by each change. In particular,

the author proposes to estimate changepoints by solving an optimisation problem

with a dual penalty cost function.

Let mj be the number of changepoints and τ j := {τ j0 , τ
j
1 , . . . , τ

j
mj , τ

j
mj+1
} be the

set of changepoints that affect variable j, where τ j0 = 0 and τmj+1 = n. Furthermore,

let m := {m1, . . . ,mp} and T := {τ j}j=1,...,p. Then the optimal subset multivariate

segmentation for the dataset, X := {X1, . . . ,Xn}, is given by the solution to the

following optimisation problem,

min
m,T

p∑
j=1

mj+1∑
k=1

(
Cj
(
Xj

(τ jk+1):(τ jk+1)

)
+ α

)
+ βψ(T ) (2.4.1)

where p is the length of the vectors Xi, Cj is a cost function measuring goodness of fit

for variable j, β penalises the number of changepoints, α penalizes each series affected

by the change, and ψ is a function which counts the number of unique elements in a

set. Note under this framework changepoints are shared across multiple variables via

the β penalty, however not every variable is affected by each change due to the addition

of the α penalty. Furthermore the multivariate penalised cost function approach can

be thought of as a special case of this model (for example by setting β = 0). Note, as

it is foundational to the ideas developed in Chapters 3 and 4, an equivalent definition

of (2.4.1) (and necessary associated terms) is repeated in Sections 3.2 and 4.2.1.

We can identify sparse changepoints by selecting the model that minimises the
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dual penalty cost function. This optimisation problem can be solved via a dynamic

program introduced by Pickering, 2016, Subset Multivariate Optimal Partitioning

(SMOP). The reported computational cost of this procedure is O(K(n)pn2p) which is

prohibitively expensive for even small datasets. In Chapter 3 we propose a number of

techniques which substantially reduce the computational cost of this procedure. Sub-

sequently, in Chapter 4 we introduce a computationally efficient approximate method

which can be applied to very large datasets. Although this procedure is not exact, we

show that it always performs at least as well as the single penalty framework with a

similar computational cost.



Chapter 3

Exact Subset Multivariate

Changepoints

As we have discussed in the literature review, there is increasing interest in and de-

mand for methods that can detect changepoints in multivariate datasets. Consider

the copy number variation dataset included in the ecp R package (James and Matte-

son, 2015). This dataset contains information related to 43 individuals with bladder

tumours. Changes which occur across multiple individuals, may be linked to the pres-

ence of tumours and are of significant scientific interest. When looking to detect these

changes, it is important to combine information across series or risk missing important

changes due to lack of power. Matteson and James, 2014; T. Wang and Samworth,

2018 use multivariate methods to detect changepoints in this setting. In Figure 3.0.1,

we can see the resulting segmentations for the first individual using a univariate and

multivariate method, where the multivariate method assumes every variable is affected

by the change. Looking at the results, it appears as if the multivariate approach over-

fits changepoints, particularly when compared with the univariate approach. However

this is not actually the case. The multivariate methods are detecting true changes

in the whole data, however the first individual is not affected by these changes. To

accurately represent the data shown in Figure 3.0.1, we need a method that can detect

multivariate changepoints and identify whether or not each variable changes at that

changepoint. For this example in particular, we would like to identify the changes

29
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Figure 3.0.1: (a) Segmentation using a univariate method for the first individual.

(b) Segmentation using a multivariate method for the same individual. Since the

first individual is not affected by many of the changes the multivariate segmentation

appears to overfit the data.

that affect the majority of individuals as these are more likely related to the disease in

question. This leads us to the idea of subset multivariate changepoints, changepoints

in multivariate data where only a subset of the channels are affected by a change.

In this chapter, we consider the problem of detecting subset multivariate change-

points via the penalised cost function framework introduced by Pickering, 2016. This

framework formulates the problem of locating subset multivariate changepoints as a

discrete optimisation problem, which can be solved using a dynamic program. How-

ever the computational cost of this dynamic program is extremely high and scales

poorly. As a result, the proposed approach is infeasible for even small datasets.

Therefore we propose a new preprocessing algorithm which significantly reduces the

cost of optimising this penalised cost function. We propose a simple set of rules which

identify sets of suboptimal solutions within the search space for the dynamic program.

We then use a dynamic program to identify the optimal solution within the reduced

search space significantly reducing the computational cost. This chapter is structured

as follows. In Section 3.1, we review an important method for detecting changepoints,

which has inspired the work that follows. This approach has significant limitations
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in the multivariate setting, namely that it assumes every variable is affected by the

change. Therefore in Section 3.2, we discuss a related method, Subset Multivariate

Optimal Partitioning (SMOP), which does not make this assumption. The computa-

tional cost of SMOP is prohibitive, even for small datasets. Therefore in Section 3.3,

we introduce novel techniques for reducing the computational cost and propose a new

more efficient algorithm. In Section 3.4, we analyse the performance of our method

on a range of simulated datasets and demonstrate that our proposed approach can

detect subset multivariate changepoints at a significantly reduced computational cost.

In Section 3.5, we use the new method to identify changes in growth rates of confirmed

Covid-19 cases in Great Britain. Finally in Section 3.6, we review the contributions

we have made in this chapter and discuss some remaining limitations.

3.1 Single Penalty Framework

We now review one of the most popular methods in changepoint analysis, the single

penalty cost function. There are two reasons why this review will be useful. Firstly

it allows us to address some limitations of this approach, which are relevant in the

multivariate setting. Secondly, throughout this chapter we draw inspiration from ideas

from the single penalty cost function literature, and as such understanding these ideas

in the single penalty setting provides intuition for later discussions.

Throughout this section we will consider data X = {Xl}l=1,...,n, where each Xl can

be scalar or vector valued. We also introduce a cost function C({Xl}l=s+1,...,t) which

measures goodness of fit. For simplicity of notation we define

C(s, t) := C({Xl}l=s+1,...t). (3.1.1)

A typical choice for the cost function C is twice the negative log likelihood of an

appropriate model for the data, X. A standard approach to segmenting the data, X,

is to solve the following optimisation problem,

min
τ ,m

m+1∑
k=1

C(τk−1, τk) +mβ, (3.1.2)
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where β is a penalization term set by the user to prevent overfitting of changepoints,

τ := {τ0, τ1, . . . , τm, τm+1} is the vector of changepoint locations, τ0 = 0, τm+1 = n and

m is the number of changepoints. In other words the problem of detecting changes in

the dataset, X, can be formulated as a discrete optimisation problem.

The optimisation of (3.1.2) has been addressed by a number of authors and the

optimal solution can be determined via a dynamic program (Jackson et al., 2005).

The key idea is to construct a recursion by conditioning on the location of the last

changepoint prior to time n. Let F (t) denote the cost of the optimal segmentation of

the data {Xl}l=1,...,t. If we knew that t was the optimal last changepoint prior to the

time point T , then we could calculate F (T ) as follows,

F (T ) = F (t) + C(t, T ) + β.

We do not know which time point t is the optimal prior changepoint so we search over

all prior values, ΛT := {t ∈ Z : 0 ≤ t < T}. Then we can calculate F (T ) by solving

the following recursion,

F (T ) = min
t∈ΛT

 F (t)︸︷︷︸
Optimal Cost up to time t

+ C(t, T )︸ ︷︷ ︸
Cost of data after t

+ β︸︷︷︸
Cost of extra change at time t

 .

(3.1.3)

In other words, identifying the optimal segmentation of X up to time n is equivalent

to identifying the most recent change prior to n. The cost of calculating F (n) if we

know F (t) for all t < n is thus an order n calculation. We can identify the optimal

segmentation by calculating F (t) for all t ∈ Λn in order. The computational complex-

ity of this calculation is O(K(n)n2), where K(n) is the computational complexity of

evaluating C. Note that a number of commonly used cost functions (e.g. likelihood

for a change in mean) can be evaluated using summary statistics and as a result have

computational complexity O(1).

There has been significant work examining how the computational cost of this dy-

namic program can be reduced. This is achieved by reducing the number of candidate

last changepoints that need to be considered i.e. reducing the size of the set Λt for

each t ≤ n. In particular, Killick, Fearnhead, et al., 2012 and Maidstone et al., 2017
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introduce simple time dependent conditions on each time point t, which if satisfied

at some time s > t, imply that t can not be the optimal prior changepoint for any

T ≥ s, and as a result t can be removed from each set ΛT reducing the computational

cost of the dynamic program. These simple conditions can, under certain conditions,

reduce the computational cost of a dynamic program from quadratic in the length of

the data to linear. In Section 3.3, we examine how these ideas can be extended to the

dual penalty framework.

The single penalty cost function provides accurate segmentations for univariate

data, with little computational cost. However in the multivariate setting it has a

significant limitation; it assumes every variable is affected by the changepoint. This

produces segmentations such as the one illustrated in Figure 3.1.1 (a). The single

penalty cost function partitions each variable at time t = 125. However we can see

that variable 2 is unaffected by the change. Allowing every variable to be affected

by each change, whether 1 or all variables are affected, will automatically produce a

better model fit. Therefore in order to detect subset multivariate changes, we must

also penalise the number of variables affected by each change. In the next section,

we discuss the dual penalty penalised cost function introduced by Pickering, 2016 for

detecting subset multivariate changepoints and how this function can be optimised

via a dynamic program.

3.2 Dual Penalty Framework

Throughout this section we will consider data X = {Xl}l=1,...,n, where each Xl is

vector of length p. For each variable 1 ≤ j ≤ p, we have a corresponding cost function

Cj({Xj
l }l=s,...,t) which measures the goodness of fit in variable j. Note that these cost

functions can differ across variables. Again for simplicity of notation we define

Cj(s, t) := Cj({Xj
l }l=s+1,...t).

Pickering, 2016 propose to detect subset multivariate changepoints by solving a

generalization of the discrete optimisation problem in (3.1.2). Let mj be the number
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Figure 3.1.1: (a) Multivariate segmentation using the single penalty cost function.

Note that the change must affect every variable. (b) Multivariate segmentation using

the dual penalty cost function.

of changepoints and τ j := {τ j0 , τ
j
1 , . . . , τ

j
mj , τ

j
mj+1
} be the set of changepoints that

affect variable j, where τ j0 = 0 and τmj+1 = n. Furthermore, let m := {m1, . . . ,mp}

and T := {τ j}j=1,...,p. Then the optimal subset multivariate segmentation for the

dataset, X, is given by the solution to the following optimisation problem,

min
m,T

p∑
j=1

mj+1∑
k=1

(
Cj
(
τ jk , τ

j
k+1

)
+ α

)
+ βψ(T ) (3.2.1)

where β penalises the number of changepoints, α penalizes each series affected by the

change, and ψ is a function which counts the number of unique elements in a set. This

cost function penalises the number of changepoints through the β parameter and the

number of variables affected by a change through α.

In this chapter, we focus on solving the optimisation problem and do not consider

appropriate values for the hyperparameters α and β, however we do note a number of

interesting features of the penalty structure. Firstly the cost of having an additional

variable be affected by a change is indepedent of the total number of variables affected

by the change. This allows us to recover the set of affected variables for both dense and

sparse changes. However in some settings this penalty structure may be suboptimal.

If all the changes are dense and p is large, it may be better to have the cost of each

additional affected variable decrease as the total number of affected variables increase,
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so that the cost of adding an 11th variable is larger than the cost of adding a 12th

variable.

Secondly this framework includes a number of interesting special cases. If β = 0,

there will be no incentive to fit common changepoint locations across the different

series, and the model is thus equivalent to estimating changepoint locations indepen-

dently for each series. Similarly if α = 0, then the model is equivalent to the single

penalty framework with C(s, t) :=
∑p

j=1 Cj(s, t). With the selection of an appropriate

cost function, it is possible to detect changes in a wide range of datasets. Further-

more we note that different variables can use different cost functions meaning that this

approach can also be applied to multivariate datasets of mixed type and distribution.

Similar to the single penalty setting, we can detect subset multivariate change-

points in X by identifying the segmentation that minimises (3.2.1). Furthermore we

can identify the optimal segmentation with respect to (3.2.1) via a dynamic program.

However unlike the single penalty cost framework, it is not possible to condition on

a single time point. Instead we construct a recursion by conditioning on the location

of the most recent change in each variable. Suppose we wished to calculate the cost

of the optimal subset multivariate segmentation of data {Xl}l=1,...,n, which we denote

by F (cn) where cn := (n, . . . , n). The vector cn denotes the last point for which the

likelihood is calculated at for each variable. Furthermore suppose we knew a priori

that the optimal last changepoint in each variable j prior to time n was cj?. Let

c? := (c1
?, . . . , c

p
?). Then the cost of the optimal subset multivariate segmentation can

be computed as,

F (cn) = F (c?) +

p∑
j=1

[
I
(
cj? 6= cjn

) (
Cj
(
cj?, c

j
n

)
+ α

)]
+m(c?, cn)β

where m(c?, cn) is the number of changepoints between c? and cn (including the

changes at c? but not the changes at cn).

It is useful here to compare the segmentation above with the single penalty seg-

mentation by looking at Figure 3.1.1. Both equations split the data into two sections,

a left section with known cost and a right section with a single segment for each vari-

able. However under the single penalty framework, the end point for the left section is
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the same in each variable, whereas the dual penalty framework allows for different end

points for each variable. These end points are encoded through the vector c? which

we call a changepoint vector. For clarity, we formally define a changepoint vector as

well as a partial ordering on the set of changepoint vectors.

Definition 3.2.1 (Changepoint Vectors). We say that c := (c1, . . . , cp) is a change-

point vector with respect to the data X if cj ∈ Z and 0 ≤ cj ≤ n for all 1 ≤ j ≤ p.

Furthermore for any two changepoint vectors ca and cb, we have a well defined partial

ordering ≺ such that,

ca ≺ cb ⇐⇒ cja ≤ cjb ∀ 1 ≤ j ≤ p and cja < ub ∀1 ≤ j ≤ p where ub = max
1≤j≤p

cjb.

If ca ≺ cb, we say that ca is prior to cb.

In practice we do not know the optimal prior changepoint vector c?, and instead

must search over all possible changepoint vectors prior to cn. This leads to the follow-

ing recursive formula for calculating the optimal subset multivariate segmentation.

Theorem 3.2.2 (Pickering, 2016). For any given changepoint vector cf , let Λcf :=

{c ≺ cf}. Then we have that

F (cf ) = min
c∈Λcf

[
F (c)︸︷︷︸

Optimal Cost up to c

+

p∑
j=1

I(cj 6= cjf )C
j
(
cj, cjf

)
︸ ︷︷ ︸

Cost of data after c

+

p∑
j=1

I(cj 6= cjf )α︸ ︷︷ ︸
Cost of variable j being affected by a change

+ m(c, cf )β︸ ︷︷ ︸
Cost of any new changepoints

]
. (3.2.2)

We denote the optimal changepoint vector prior to cf (i.e. the optimizer of (3.2.2))

as `(cf ).

The problem of calculating the optimal subset multivariate segmentation is equiv-

alent to solving (3.2.2) for F (cn) where cjn = n for all 1 ≤ j ≤ p. We therefore need

to first compute F (c) for all c ∈ Λcn . To construct a dynamic program, we need to

generate the changepoint vectors in an ordering such that if ca is generated after cb,

then ca 6≺ cb. Such an ordering is given by the following result.
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Proposition 3.2.3. Let

ajτ := {c|max
1≤k≤p

ck = τ and cj = τ} and Aτ := ∪
1≤j≤p

ajτ . (3.2.3)

Then for changepoint vectors c, c′,

c, c′ ∈ Aτ =⇒ c 6≺ c′ and c′ 6≺ c, (3.2.4)

c′ ∈ Aτ and c ≺ c′ =⇒ c ∈ At for some t < τ. (3.2.5)

Proof. Proof in Appendix, Section A.2.

The set Aτ is the set of all changepoint vectors that have a change at τ , but do

not have a change after τ . Equation (3.2.4) states that no element of Aτ is prior to

another element of Aτ , while equation (3.2.5) states that any changepoint vector prior

to c ∈ Aτ must be contained in one of the sets {At}t=1,...,τ−1. Thus in order to solve

the recursion for some changepoint vector cf , we must solve the recursion for all

c ∈ At|c ≺ cf for 1 ≤ t ≤ u where u := max
1≤j≤p

cjf .

Combining this list with the recursive formula defined in (3.2.2) produces a dynamic

program, Subset Multivariate Optimal Partitioning (SMOP), for computing the op-

timal subset multivariate segmentation which is described in Algorithm 1. Let

Ωn := {Aτ}1≤τ≤n,

a complete set of appropriately ordered changepoint vectors. The computational cost

of this algorithm is a function of two components, the number of changepoint vectors

cf ∈ Ωn and the size of each set Λcf . For any cf ∈ Ωn, the set of changepoint vectors

prior to cf is equal to a modified cross product of time points prior to each cjf and the

computational cost of solving (3.2.2) grows rapidly with n. For example, assuming we

knew a priori F (c) for all c ∈ Λcn , the computational cost of solving the recursion for

cn is O((n− 1)p). Furthermore, the number of changepoint vectors in Ωn also grows

rapidly with n. As a result, this method is computationally infeasible for even small

datasets and, an efficient implementation of the algorithm requires over 3.5 hours to
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compute the optimal subset multivariate segmentation for data of length n = 100 with

p = 3 variables compared with less than a second for the single penalty approach.

In the next section, we introduce a preprocessing algorithm that substantially

reduces the computational cost of calculating the optimal subset multivariate seg-

mentation. This procedure reduces the computational cost in two ways. Firstly, it

reduces the number of changepoint vectors in Ωn for which we must solve (3.2.2). Sec-

ondly, it reduces the number of changepoint vectors in each Λc, reducing the cost of

solving (3.2.2) for each c. We achieve this computational improvement by extending

search space reduction methods from the single penalty setting to the dual penalty

setting, as well as introducing novel conditions which exploit the structure of the dual

penalty setting.

3.3 Search Space Reduction

In the single penalty setting, a number of authors have explored how the compu-

tational cost of dynamic programs can be reduced. Typically this involves defining

necessary conditions under which a given candidate change, t, may be an optimal so-

lution to (3.1.2). If the condition is tight then a large number of points will not satisfy

it and thus can be excluded, resulting in a significant reduction in the computational

cost. In this section we demonstrate how a similar approach can significantly reduce

the computational complexity of the subset multivariate algorithm discussed in the

previous section.

A natural extension to the dual penalty setting would be to construct conditions

which remove changepoint vectors. However checking whether each individual change-

point vector satisfies a given rule would have cost comparable to that of the original

algorithm, negating any benefit (Pickering, 2016). Therefore we develop conditions

which indicate whether or not complete sets of changepoint vectors are suboptimal.

By focusing on sets of changepoint vectors, we substantially reduce the number of

conditions that must be checked and thus the computational cost of checking them.

As a result, this approach can be used to substantially reduce the computational cost
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Algorithm 1: Subset Multivariate Optimal Partitioning (SMOP)

Input : Data X of length n, dimension p, Cost functions {Cj}, Penalties α,

β

for 1 ≤ τ ≤ n do

Aτ := ∪
1≤j≤p

ajτ ;

end

F ((0, . . . , 0)) = 0 ;

for 1 ≤ τ ≤ n do

for cc ∈ Aτ do

F (cc) = min
c≺cc

F (c) +
∑p

j=1 I(cj 6= cjc) (Cj (cj, cjc) + α) +m(c, cc) ;

`(cc) = arg min
c≺cc

F (c) +
∑p

j=1 I(cj 6= cjc) (Cj(cj, cjc) + α) +m(c, cc) ;

O(cc) = `(cc) ∪O(`(cc));

end

end

F (cn) = min
c≺cn

F (c) +
∑p

j=1 I(cj 6= cjn) (Cj (cj, cjn) + α) +m(c, cn) ;

`(cn) = arg min
c≺cn

F (c) +
∑p

j=1 I(cj 6= cjn) (Cj(cj, cjn) + α) +m(c, cn);

O(cn) = `(cn) ∪O(`(cn));

Output: Set of optimal changepoint vectors O(cn)
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of computing the optimal segmentation.

We construct two types of conditions which are described in Section 3.3.1 and

Section 3.3.2. Throughout this section we assume that each cost function is convex

with respect to data Xt:v, i.e. each Cj satisfies the following equation,

Cj(t, s) + Cj(s, v) ≤ Cj(t, v). (3.3.1)

This is a common assumption in the univariate setting (Killick, Fearnhead, et al.,

2012; Maidstone et al., 2017). An algorithm for testing these conditions and solving

the reduced optimisation problem is discussed in Section 3.3.3.

3.3.1 Pruning Rule

The recursion in (3.2.2) seeks to identify the most recent changepoint in each variable.

If there is significant evidence of a changepoint at time t in variable j, then we should

be able to ignore changepoint vectors with changes prior to t in variable j as these

would be suboptimal. If the series changes frequently then this computational saving

may be substantial. In the single penalty literature, this idea is referred to as pruning.

We extend this idea to the dual penalty setting via the following proposition.

Proposition 3.3.1. Let P j
t denote the following set of changepoint vectors,

P j
t := {c|cj = t}. (3.3.2)

for some 1 ≤ j ≤ p. Suppose Cl satisfies (3.3.1) for 1 ≤ l ≤ p, and for some triple

0 ≤ t < s < v we have that,

Cj(t, v)− Cj(t, s)− Cj(s, v) > β + α. (3.3.3)

Then if cf is a changepoint vector such that cjf = v and cp is changepoint vector,

cp ∈ P j
t =⇒ cp 6= `(cf ).

Proof. Proof in Appendix, Section A.3.
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If the conditions in Proposition 3.3.1 are satisfied by any 0 ≤ t < s < v, then

changepoint vectors in P j
t can be safely excluded when solving the recursion for any

changepoint vector with a change at v in variable j, reducing the cost of solving

the recursion. In the univariate setting, pruning conditions allow you to prune the

candidate for the end point (in this case v) as well as all future end points (values

greater than v). Proposition 3.3.1 does not allow for this type of pruning, however we

can achieve this type of pruning via a more stringent condition.

Proposition 3.3.2. Let P j
t be defined as in (3.3.2). Suppose Cl satisfies (3.3.1) for

1 ≤ l ≤ p and, for some triple 0 ≤ t < s < v we have that,

Cj(t, v)− Cj(t, s)− Cj(s, v) > 2β + 2α. (3.3.4)

Then if cf is a changepoint vector such that cjf ≥ v

cp ∈ P j
t =⇒ cp 6= `(cf ).

Proof. Proof in Appendix, Section A.3.

If the conditions in Proposition 3.3.2 are satisfied for some 0 ≤ t < s < v, then

changepoint vectors in P j
t can be safely excluded when solving the recursion for any

changepoint vector with a change after v in variable j. Thus the savings obtained from

Proposition 3.3.2 are potentially much greater than 3.3.1. The previous two results

address the issue of reducing the cost of solving the recursion for a given changepoint

vector. The following result demonstrates that the conditions in Proposition 3.3.2

can be used to reduce the number of changepoint vectors for which we must solve the

recursion.

Corollary 3.3.3. Suppose Cj satisfies (3.3.1) for 1 ≤ j ≤ p andthat the condition

(3.3.4) holds for some t, s, v, c ∈ P j
t and ck ≥ v for some k 6= j. Then there does not

exist a changepoint vector cf such that c = `(cf ).

Proof. Proof in appendix, Section A.3.

Corollary 3.3.2 states that if the condition (3.3.4) holds, then we can significantly

reduce the number of changepoint vectors for which we must solve (3.2.2), by excluding
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any changepoint vector which satisfies Corollary 3.3.2 from all future partial orderings.

The computational gains from this type of pruning can be considerable.

The worst case complexity of checking conditions (3.3.3) and (3.3.4) is O(pn3).

However because of the forward looking nature of Proposition 3.3.2 the cost of checking

the conditions is likely to be smaller in practice. In particular, if condition (3.3.4)

is satisfied for a given t < s < v and variable j, the set P j
t can be pruned for all

future values v. Thus, under the common assumption of a linear increasing number

of changepoints (Killick, Fearnhead, et al., 2012), the expected cost would be linear

in the length of the data. Furthermore as we shall see in the simulation study, the

computational benefits of pruning via these conditions are substantial.

The pseudocode for a procudure which checks these conditions is described in

Algorithm 2. The outputs of this procedure are the following sets,

SL := {SLv,j}1≤v≤n,1≤j≤p and CL := {CLv,j}1≤v≤n,1≤j≤p,

where

SLv,j :=
{
t|Cj(t, v)− Cj(t, s)− Cj(s, v) < β + α for t < s < v

}
,

CLv,j :=
{
t|Cj(t, v)− Cj(t, s)− Cj(s, v) < 2β + 2α for t < s < v

}
. (3.3.5)

In other words, each SLv,j gives the candidates which do not satisfy (3.3.3) in variable

j given an end point v. These sets are used to generate the candidate prior changepoint

vectors for a given changepoint vector when solving (3.2.2). Similarly, the set CLv,j

indicate which time points in variable j have not been pruned at time v. These sets

are used to generate the set of changepoint vectors for which we must solve (3.2.2).

3.3.2 Selection Rule

The pruning rules address datasets which change frequently, however we also want

computational savings when changes are infrequent. One approach is to consider how

much a changepoint improves the model fit. For a changepoint vector to be optimal,

it must improve the model fit by more than the minimum penalty for a change. If the

improvement does not exceed this threshold, then we can safely exclude them. We
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Algorithm 2: Prune: Prune Changepoint Vectors

Input : Data X of length n and dimension p, Cost functions {Cj},

Penalties α, β

for 1 ≤ j ≤ p do

CL0,j = 0;CL1,j = 0 ; SL0,j = 0;SL1,j = 0 ;

for 1 < v < n do

CLv,j := (CLv−1,j, v) ; SLv,j := CLv,j ;

for t ∈ CLv,j do

D = max
t<s<v

Cj(t, v)− Cj(t, s)− Cj(s, v);

if D > 2β + 2α then

CLv,j = CLv,j \ {t};

else if D > β + α then

SLv,j = SLv,j \ {t};

end

end

end

end

Output: Checklist CL, Selectionlist SL



CHAPTER 3. EXACT SUBSET MULTIVARIATE CHANGEPOINTS 44

can build a search space reduction rule from this intuition, however first, for every

candidate t and variable j, we need an upper bound on how much including a change

at t in variable j improves the model fit. For a given set of points t < s < v, this

upper bound can be computer as follows,

πjs,v := max
t∈SLs,j

(
Cj(t, v)− Cj(t, s)− Cj(s, v)

)
.

The value πjs,v can be thought of as a bound on the marginal gain from having a

segment from s to v in variable j. Note that we are exploiting the fact that some

candidates have already been pruned via the set SLs,j to get a tighter bound. The

following proposition states that if πjs,v does not exceed α (the minimum cost of having

a change affect variable j at s), then changepoint vectors in P j
s can be safely excluded

when solving the recursion for any changepoint vector in P j
v .

Proposition 3.3.4. Suppose Cj satisfies (3.3.1) for 1 ≤ j ≤ p and, that for some

s < v and 1 ≤ j ≤ p we have that

πjs,v < α.

Then if cc and cf are changepoint vectors such that cjc = s and cjf = v,

cc 6= `(cf ).

Proof. Proof in appendix, Section A.4.

Most candidate changes will violate the constraint πjs,v < α. Thus Proposition

3.3.4 is unlikely to substantially reduce the computational cost by itself. However we

can combine this with another rule to produce a much more effective subset reduction

strategy. For a changepoint vector to be optimal, the improvement in model fit across

all affected variables must exceed the minimum penalty for a changepoint (in this case

the β penalty). If the improvement does not exceed this threshold then we can safely

exclude them. We compute an upper bound on the profit from having a changepoint

at time s across all variables as follows,

Πs :=

p∑
j=1

max
{v≥s|πj

s,v>0}

(
πjs,v − α

)
I(πjs,v > α). (3.3.6)
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where I is an indicator function. The following proposition describes how, we can use

the bound Πs to significantly reduce the number of changepoint vectors, for which we

must solve (3.2.2).

Proposition 3.3.5. Suppose Cj satisfies (3.3.1) for 1 ≤ j ≤ p and for some s < n

we have that

Πs ≤ β (3.3.7)

Then if cc is a changepoint vector such that cc ∈ P j
s for some 1 ≤ j ≤ p, there does

not exist a changepoint vector cf such that

cp = `(cf ).

Proof. Proof in appendix, Section A.4.

Proposition 3.3.5 states that if Πs does not exceed β, then we do not need to solve

(3.2.2) for any changepoint vector in the set ∪1≤j≤pP
j
s , substantially reducing the cost

of computing the optimal segmentation.

The worst case computational cost of calculating πjs,v is again O(pn3). However in

practice this computation is likely to be much smaller as the procedure benefits twice

from the pruning described in the previous section. Firstly the cost of calculating

πjs,v depends on SLv,j which is reduced by the pruning. Secondly we only need to

calculate πjs,v for each s ∈ SLv,j reducing the cost further.

Using the Propositions 3.3.4 and 3.3.5, we can reduce the size of each SLv,j and

CLv,j as follows,

SLv,j = {s ∈ SLv,j|πjs,v > α and Πs > β} and CLv,j = {s ∈ CLv,j|Πs > β}.

As a final point we note that the bound πjs,v is defined as a minimum of a function

over the set SLv,j. However we have just seen that the set SLv,j may be reduced by

applying the results from the previous section. Thus we can now recompute πjs,v (and

by extension Πs) to get a tighter bound and further reduce the size of the sets SL

and CL. Therefore rather than testing the conditions described above just once, the
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conditions can be applied a fixed number of times or until the following condition is

satisfied

Πs > β for all s ∈ ∪
1≤t≤n

∪
1≤j≤p

SLt,j.

Note checking this condition is trivial. Pseudocode for a procedure which iteratively

checks whether the conditions in Propositions 3.3.4 and 3.3.5 are violated is given in

Algorithm 3.

3.3.3 Implementation

We now describe how we use the sets SL and CL to calculate the optimal subset

multivariate segmentation. The set SL is used to generate optimal prior changepoint

vectors for a given changepoint vector. If we wish to solve the recursion in (3.2.2) for

the changepoint vector c, we can replace the set of prior changepoint vectors Λc with

the smaller set,

Λ′c = ∪
1≤j≤p

∪
t∈SL

cj ,j

P j
t .

The set CL is used to generate the ordered list of changepoint vectors for which we

must solve the recursion. Let

L = ∪nt=1 ∪
p
j=1 CLt,j and Lj = ∪1≤t≤nCLt,j. (3.3.8)

Then an ordered set of changepoint vectors can be constructed as follows,

bjτ := {c|cj = τ and ck ∈ CLτ,k for k 6= j} and Bτ := ∪
j|τ∈Lj

bjτ . (3.3.9)

Thus to solve the recursion in (3.2.2) for cn, we must solve the recursion for all c ∈ Wn,

where

Wn := {Bτ}τ∈L

is a reduced set of appropriately ordered changepoint vectors. We refer to this proce-

dure as Pruned Subset Multivariate Optimal Partitioning (PSMOP) and pseudocode

is given in Algorithm 4.



CHAPTER 3. EXACT SUBSET MULTIVARIATE CHANGEPOINTS 47

Algorithm 3: Select: Select profitable changepoint vectors

Input : Data X of length n and dimension p, Cost functions {Cj},

Penalties α, β, Checklist CL, Selectionlist SL

while Improvement > 0 do

Improvement = 0 ;

for 0 ≤ j ≤ p do

for 1 < v < n do

for s ∈ SLv,j do

πjs,v = max
t∈SLs,j

Cj(t, v)− Cj(t, s)− Cj(s, v)− α;

if πjs,v < 0 then

SLv,j = SLv,j \ {s};

end

end

end

end

for 1 ≤ s ≤ n do

Πs =
∑p

j=1 max
s<v

πjs,v;

if Πs > β then

Improvement = Improvement + 1 ;

SLv,j = SLv,j \ {s} for 1 ≤ j ≤ p, v > s ;

end

end

end

Output: Checklist CL, Selectionlist SL
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Algorithm 4: Pruned Subset Multivariate Optimal Partitioning (PSMOP)

Input : Data X of length n and dimension p, Cost functions {Cj},

Penalties α, β

(CL, SL) = Prune(X, n, p, α, β);

(CL, SL) = Select(X, n, p, α, β, CL, SL);

Lj = ∪nt=1CLt,j for 1 ≤ j ≤ p;

L = ∪pj=1Lj ;

A0 = (0, . . . , 0);

for τ ∈ L do

Bτ := ∪
j|τ∈Lj

bjτ Defined in equation (3.3.9)

end

F ((0, . . . , 0)) = 0 ;

for 1 ≤ τ < n do

for cc ∈ Bτ do

Λ = ∪
1≤j≤p

∪
t∈SL

cj ,j

P j
t Defined in equation (3.3.2)

F (cc) = min
c∈Λ

F (c) +
∑p

j=1 I(cj 6= cjc) (Cj (cj, cjc) + α) +m(c, cc) ;

`(cc) = arg min
c∈Λ

F (c) +
∑p

j=1 I(cj 6= cjc) (Cj(cj, cjc) + α) +m(c, cc) ;

O(cc) = `(cc) ∪O(`(cc));

end

end

F (cn) = min
c≺cn

F (c) +
∑p

j=1 I(cj 6= cjn) (Cj (cj, cjn) + α) +m(c, cn) ;

`(cn) = arg min
c≺cn

F (c) +
∑p

j=1 I(cj 6= cjn) (Cj(cj, cjn) + α) +m(c, cn);

O(cn) = `(cn) ∪O(`(cn));

Output: Set of optimal changepoint vectors O(cn)
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3.4 Simulations

In this section, we study the effectiveness of the dual penalty framework on a range

of simulated data sets. We begin by measuring the computational savings achieved

via the pruning and selection procedures introduced in Section 3.3, and then examine

whether the dual penalty changepoint estimator accurately locates changepoints and

affected subsets. To facilitate this analysis we now define a number of error metrics,

which we use throughout the section.

Firstly throughout we use τ := {τ1, . . . , τm} and τ̂ := {τ̂1, . . . , τ̂m̂} to denote the

set of true changepoints and the set of estimated changepoints respectively. Note m̂

need not equal m. A common approach for evaluating changepoint methods is to

examine true and false discovery rates. We say that the changepoint estimate τi has

been detected if

min
1≤j≤m̂

|τ̂i − τj| ≤ h.

Throughout this section we set h = 10, although it should be noted that in reality

the desired accuracy would be application specific. We denote the set of correctly

estimated changes by τc. Then we define the true discovery rate (TDR) and false

discovery rate (FDR) as follows,

TDR :=
|τc|
|τ |

, FDR :=
|τ̂ | − |τc|
|τ̂ |

.

The TDR is the proportion of the correctly estimated true changes, while the FDR

is the proportion of estimated changes that correctly estimate a true change. An

important concern is whether or not the segmentation allows us to accurately estimate

the model parameters. Therefore we also report the Mean Square Error (MSE) for

all variables,

MSE :=
1

n

p∑
j=1

n∑
i=1

‖θji − θ̂
j
i ‖2

2.

Note we use this metric to compare fully multivariate methods with the dual penalty

approach. This measure will favour the dual penalty approach if it correctly estimates

all the subsets, as the subset segmentation does not overfit the data. However if the
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dual penalty approach does not correctly estimate all the subsets, this metric may

prefer a fully multivariate approach which only needs to detect changepoints.

3.4.1 Computational Savings from Preprocessing

The search space reduction techniques introduced in Section 3.3 should reduce the

computational cost of solving the subset multivariate optimization problem exactly.

However we have yet to quantify how large these savings are in practice. Quantifying

the savings is important for two reasons. Firstly, we need to demonstrate that the

computational savings from the preprocessing algorithm exceed the cost of running

the preprocessing step. Secondly, we would like to understand how the computational

cost of the algorithm scales with respect to the dimension of the data in practice.

Finally, it is important to acknowledge that the computational cost of both SMOP

and PSMOP are very large in practice (even thought PSMOP is much quicker). In

particular, both algorithms scale poorly as the dimension increases. As a result, for

all these simulations we only consider p = 3 to ensure computational feasibility.

Comparison of pruned and unpruned computational cost

We generated 100 datasets of length n = 100 and dimension p = 3. The data is

normally distributed with unit variance and changes in mean. There are 3 segments

with lengths (33, 33, 34). The segment parameters for each variable respectively are

as follows,

(0, δ, δ), (0, 0,−δ), (0, δ, 0)

where δ = 1.25. We use a cost function based on the likelihood for normal data with

unit variance i.e.

Cj(s, t) :=
t∑

i=s+1

x2
i −

(∑t
i=s+1 xi

)2

t− s
.

For each dataset we computed the optimal subset multivariate segmentation with and

without the preprocessing algorithm and recorded the time taken to solve the optimi-

sation problem for each case as well as the the computation time for the preprocessing
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algorithm. The results of this analysis are shown in Table 3.4.1. Looking at the ta-

ble, it is immediately clear that the preprocessing algorithm substantially reduces the

cost of solving the optimisation problem. In fact, on average the unpruned algorithm

takes almost 500 times longer to run, demonstrating that the preprocessing algorithm

substantially reduces the cost of computing the optimal subset partition.

Scaling with respect to size of change

Pruning rules remove candidate changepoints if they identify a candidate change (s

in Proposition 3.3.1) that dramatically improves the model fit. However if the change

is small, the improvement may not exceed the pruning threshold and the method

will not prune any changes. Note this impacts the selection rules as well, through

the marginal profit term. This intuition indicates that the computational cost of our

approach may depend on the size of the change. To investigate this we repeated the

above simulation and varied the δ parameter. In particular, we generated 100 datasets

as above for each δ = {.5, .75, 1, 1.25, 1.5, 1.75, 2}. We computed the optimal subset

segmentation using the PSMOP algorithm and recorded the time taken (including

preprocessing). The results are shown in Figure 3.4.1(a). We can see that as the size

of the change increases, the computational cost drops substantially.

Scaling with respect to the dimension of the data

We are interested in how the method scales with respect to the length of the data n,

particularly when the number of changepoints increases linearly with n and when the

number of changepoints is fixed (the best and worst case scenarios for pruning in the

univariate setting). We consider the increasing case first. We generated 100 datasets

for each n = {100, 200, 300, 400, 500, 600, 700, 800} and p = 3. The sequence from the

first experiment is repeated n/100 times to obtain a linearly increasing number of

changepoints. We ran the preprocessing algorithm on each dataset and calculated the

number of times we need to solve the recursion (3.2.2) in order to compute the optimal

subset segmentation. The results are shown in Figure 3.4.1(b). We can see that in

this scenario the number of recursions increases as a linear function of the data. This
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Method Minimum Time (s) Mean Time (s) Max Time(s)

SMOP 11224.2 14130.61 22530.24

Preprocessing 9.33 22.44 38.7

Dynamic Program .038 8.45 53.51

PSMOP 9.41 30.89 73.91

Table 3.4.1: Computational runtime for the pruned and non pruned dynamic program

with n = 100 and p = 3.

matches results for the single penalty framework, which state that the computational

cost of the dynamic program is O(n) when the number of changepoints grows linearly

with n.

For the scenario with a fixed number of changes the segment parameters were

(0, δ, δ), (0, 0,−δ), (0, δ, 0),

with lengths (33n/100, 34n/100, 33n/100). The results of this analysis can be seen

in Figure 3.4.1(c). The required number of recursions remains roughly constant as n

grows indicating that the selection rule is successfully restricting the set of feasible

changepoints to those close to the true change. Note that because there are fewer

changepoints the preprocessing procedure takes much longer to run in the second

scenario as less pruning occurs. It is useful here to compare the results for the two

settings. The number of recursions required when the number of changes is constant

is much smaller (by a factor of 10) than the number of recursions required when the

number of changes grows with n. This is the reverse of what we typically find in

the single penalty setting and is due to the fact that the selection rules significantly

reduce the search space. In particular, the selection rules remove all the points outside

a narrow window around the change. However since each change gets a window, if

there are a lot of changes than the procedure will be slower.
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Figure 3.4.1: (a) Boxplot of time to run PSMOP (including the preprocessing step)

vs the size of the change. (b) Boxplot of number of recursion solves vs n where the

number of changes increases with n. (c) Same where the number of changes is fixed.

Note that unlike in the single penalty setting the dynamic program is faster when

there are fewer changes. This is due to the selection procedure discussed in Section

3.3.2

3.4.2 Performance of Dual Penalty framework

We now meaure how capable our proposed approach is at detecting subset multivariate

changepoints. We consider two changepoint problems that have received significantly

less attention than the problem of detecting changes in mean of normal data. In

particular, we examine changes in variance of normal data and changes in rate of

Poisson data. One advantage of the cost function approach is that we do not need to

transform the data before applying the method. Instead we can define cost functions

based on the likelihood for these data. In theory, this should increase our ability to

detect changes.

Changes in variance of normally distributed data

We generated 100 datasets of length n = 400 and dimension p = 3. The data is

normally distributed with changes in variance. We use a cost function based on the

likelihood for normal data with zero mean and unknown variance i.e.

Cj(s, t) := (t− s)
(
log σ̂2

s,t − log (t− s) + 1
)

where σ̂2
s,t :=

t∑
i=s+1

(
xi −

t∑
i=s+1

xi

)2

.
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It is possible to treat this changepoint problem as a change in mean problem by first

squaring the data. However, this approach is likely to be ineffecient, as the data will

feature nuisance changes in variance which make it more difficult to select a threshold

and increase the probability of getting a false positive. There are 5 segments with

lengths (25, 50, 150, 75, 100). The segment parameters for each variable respectively

are as follows,

(1, 2.2, 2.2, 0.5, 1.3), (1, .4, 1, 1, 1.5, 1.5), (1, 1, 2, 1.5, 0.8).

An example dataset is shown in Figure 3.4.2. Note there is no correlation between the

three variables. Examining the parameters we can see that each dataset has 4 change-

points with τ = {25, 75, 225, 300} and τ 1 = {25, 255, 300}, τ 2 = {25, 75, 225}, τ 3 =

{75, 225, 300}. Examining Figure 3.4.2 we can see that there is a mix of small and

large changes, and short and long segments. We apply the dual penalty estimator to

each of the datasets. For comparison purposes we also applied the univariate PELT

method to each variable separately. For the dual penalty estimator, we used a BIC

type penalty that adds log n for each extra parameter. This is equivalent to setting

α = log n and β = log n.

A histogram of estimated changepoint locations for the PELT (red) method and

the dual penalty approach (green) are shown in Figure 3.4.2 (b). Looking at the plot,

we can see that the dual penalty approach consistently does a better job detecting

changepoints across the replications. This is particularly noticeable for the change

at t = 225. The univariate approach struggles to detect the subtle changes in the

second and third variables, whereas the dual penalty approach is able to detect the

changes by combining information across the different variables. This improvement

in performance can also be in the performance metrics for this dataset shown in

Table 3.4.2. We can see that there is a statistically significant difference between

the methods for the TPR and MSE error metrics for the second and third variables,

with the dual penalty approach performing the best. The dual penalty also reports

a statistically lower FPR for the second variable. In summary, the dual penalty

approach successfully shares information across variables improving the accuracy of
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Figure 3.4.2: (a) Multivariate normally distributed data with four changes in variance.

(b) Estimated subset multivariate segmentation via the dual penalty approach (green)

and estimated univariate segmentation from the PELT algorithm (red).

the method. This improvement in accuracy does not cause the FPR to increase and

the dual penalty method accurately reports the subset structure of the changepoints.

Changes in rate of Poisson data

From the above results, we can see that the dual penalty approach successfully detects

changes in variance of normal data. However it is worthwhile also studying the per-

formance of the dual penalty approach on other datasets, as a significant advantage of

the dual penalty framework is the flexibility of the method. One important example

from the literature is the problem of detecting changes in count data (Franke et al.,

2012), which can be modelled as changes in the mean level of Poisson data.

We generated 100 datasets of length n = 300 and dimension p = 3. Examining

Figure 3.4.3, we can see that there is a mix of small and large changes, and short and

long segments. We use a cost function based on the likelihood for Poisson data with
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Method Variable TPR FPR MSE

PELT 1 (0.93, 0.98) (0.02 , 0.08) (10.05, 14.45)

Dual Penalty 1 (0.98, 1.00) (0.01 , 0.04) (7.65 , 12.10)

PELT 2 (0.79, 0.88)* (0.10 , 0.19)* (6.71 , 9.55)*

Dual Penalty 2 (0.94, 0.99)* (0.02 , 0.07)* (4.02 , 6.15)*

PELT 3 (0.63, 0.72)* (0.07 , 0.17) (16.28, 19.25)*

Dual Penalty 3 (0.73, 0.82)* (0.05 , 0.14) (11.69, 15.20)*

Table 3.4.2: 95% confidence intervals for mean errors for the dual penalty approach

and PELT on normally distributed data with changes in variance. A statistically

significant difference is indicated by ∗ and the best value is in bold.

unknown rate i.e.

Cj(s, t) := fs,t (log (t− s)− log fs,t + 1) where fs,t :=
t∑

i=s+1

xi.

As in the previous example, it is possible to treat this is a change in mean problem

by transforming the data. In particular, the Anscombe transform should produce ap-

proximately normal data with unit variance provided that the rate is sufficiently large.

However a cost function based on the likelihood function of the data should provide

greater statistical accuracy. There are 4 segments with lengths (50, 125, 50, 75). The

segment rates for each variable respectively are as follows,

(3.5, 5, 5, 7), (10, 10, 8.5, 6.5), (1.5, 3, 5, 5).

Each dataset has 3 changepoints with τ = {50, 175, 225} and τ 1 = {50, 225}, τ 2 =

{175, 225}, τ 3 = {50, 175}. We compare the dual penalty approach with the Inspect

method (T. Wang and Samworth, 2018) and the E.divisive method (Matteson and

James, 2014). Note the Inspect method assumes the data is Gaussian, while the

E.divisive method is non-parametric. There is not to our knowledge a parametric

method for detecting changes in multivariate count data, thus we argue that these

are a reasonable comparison. We use the same default penalties as before with α =
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β = log n. Furthermore we set the cost function equal to twice the negative Poisson

likelihood.

A histogram of estimated changepoint locations for the dual penalty approach

(green) is shown in Figure 3.4.3 (b). Looking at the plot, we can see that the dual

penalty approach detects changepoints and subsets reliably. Looking at the second

change (which is smaller in magnitude than the others), we can see that the variance

of the changepoint location depends on the size of the change as expected. However

we note that the method struggles to detect the first change in the second variable.

We can see the performance metrics for our method and the competitor methods are

shown in Table 3.4.3. Both our method and Inspect are able to detect the changepoint

locations as noted by the TPR, while the E.divisive method performs worse (although

this difference is not significant). However our approach reports a statistically smaller

FPR than the other approaches. For the Inspect method, the larger FPR is unsur-

prising as it does not take account of the fact that the data has a Poisson distribution.

The larger FPR reported by the E.divisive method is more surprising as the dataset

satisfies the assumptions of this approach. Although our approach does a better job

in detecting changepoints, it reports the largest MSE. This is due to the fact that

it regularly misses a change for the second variable. In summary, the dual penalty

approach with default penalties can detect changepoints and subsets in count data,

without an increase in false positives that can affect other change in mean methods.

Method TPR FPR MSE

1 Dual Penalty (.87,.9) (.04,.07)* (66.36,79.2)*

2 Inspect (.87,.9) (.08,.12)* (49.24,54.52)*

3 E.divisive (.8, .88) (.11, .19)* (52.75, 64.88)*

Table 3.4.3: 95% confidence intervals for mean errors for the dual penalty approach

and Inspect and E.divisive on Poisson data with changes in rate. A statistically

significant difference is indicated by ∗ and the best value is in bold.
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Figure 3.4.3: (a) Multivariate count data with three sparse changes in mean. (b)

Estimated subset multivariate segmentation via the dual penalty approach.

3.5 Application to Covid 19 data in the UK

The current Covid-19 pandemic has presented a number of cascading social, political,

economic and humanitarian crises. As a result, there has been significant interest in

measuring changes in the spread of the disease. Increases in the spread of the disease

present a serious concern for policymakers, while decreases can reflect effective policy

interventions. Previous work utilised univariate changepoint models to study changes

in the spread of Covid-19 within each of the 50 US states (Wagner et al., 2020). Given

the similarity between some states, we would expect changes to occur at the same

time across multiple locations, motivating a multivariate approach.

In this work, we study the daily case reports for the three constituent countries

within Great Britain; Scotland, England and Wales which can be seen in Figure

3.5.1. Our goal is to detect changes in the doubling rate of the daily cases i.e. the

slope of the log2 of daily cases. A significant challenge with this dataset is that the

mean level of the data is time dependent, which means that there is nonstationary

temporal behaviour within segments. Many multivariate methods do not allow for

this type of behaviour and are limited to settings with either temporal independence
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Figure 3.5.1: New cases of Covid-19 by day for England, Scotland and Wales on a log

scale with detected changepoint.

or a stationary dependence in the noise. A significant advantage of the dual penalty

framework is that it can be applied directly to this problem by selecting an appropriate

cost function. Let

log2(Xj
t ) = θk,0 + θk,1t+ εt

where θk,0 and θk,1 are segment specific intercept and slope terms respectively and

{εt}nt=1 is a sequence of IID standard normal variables. Then we can let Cj be twice

the negative log likelihood given by this model and we are interested in detecting

changes in the intercept and slope term. We again use a BIC type penalty and set

β = log n and α = 2 log n (since each segment has two parameters).

Our analysis finds a single changepoint which affects each country on April 2nd.

This is 10 days after the goverment announced the stay at home period on March

23rd and indicates that there is a 10 day delay period between the public health

intervention and a response in the data. This is similar to results from previous work

which found an 11-12 day delay between a public intervention and outcome in Covid-

19 case data (Wagner et al., 2020). Finally we note that this approach could be used

to detect future changes in the number of cases, such as a future outbreak as well as

differing impacts in the countries due to different local approaches.
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3.6 Conclusions

In this chapter we have discussed the subset multivariate segmentation model for de-

tecting multivariate changepoints, examined how subset multivariate segmentations

can be estimated via a dynamic program and introduced a number of techniques which

substantially reduce the computational cost of this dynamic program. In simulations,

we demonstrated the advantages of this approach over current univariate and multi-

variate methods. Finally, we used this method to study changes in the growth rate

of Covid 19 within Great Britain, demonstrating the value of a cost function based

approach to multivariate segmentations.

While the proposed dual penalty approach has a number of advantages there

is still a significant limitation; despite the savings achieved through the proposed

preprocessing algorithm, the computational cost of the procedure scales poorly with

both n and (especially) p. As a result, there are a number of applications where this

approach may be useful but is infeasible due to the size of the data. To address such

applications, in the next chapter we introduce a computationally efficient approximate

algorithm for calculating subset multivariate segmentations based on this dual penalty

framework. This algorithm uses an approximate cost function to produce a much

simpler dynamic program, which can be solved in at worst quadratic time while still

providing good solutions to the original dual penalty optimisation problem.



Chapter 4

Approximate Subset Multivariate

Changepoints

4.1 Introduction

In the age of Big Data, datasets of increasing length, dimension and complexity are

being collected. Often, the underlying distributional properties of these datasets

can change over time. In order to accurately model these datasets it is necessary

to take account of this heterogenity. One approach is to assume that the changes

occur at a small number of time points known as changepoints. Changepoints are

relevant in a wide range of applications including finance (J. Chen and Gupta, 1997),

network traffic analysis (Kwon et al., 2006) and oceanography (Killick, Eckley, et al.,

2010), and a significant literature has been developed on the problem of detecting and

locating them. Much of this literature is focused on the univariate setting. A number

of papers have examined this problem such as Killick, Fearnhead, et al., 2012, Frick

et al., 2014 and Fryzlewicz, 2014.

In the univariate setting, a common approach to detecting changepoints is to define

a cost function for a segmentation and then minimise a penalised version of this cost

function. If, conditional on the locations of the changes, the costs of the segments are

independent, then this optimisation can be solved exactly via dynamic programming

with computational cost O(K(n)n2) where n is the length of the data and K(n) is the

61
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cost of evaluating the cost function. Note many commonly used cost functions can be

evaluated using summary statistics and thus K(n) = O(1). The computational cost

of this dynamic program can be significantly reduced to O(n) (Killick, Fearnhead,

et al., 2012; Maidstone et al., 2017) in certain settings. This approach is flexible

since it utilises a generic cost function without placing assumptions on the underlying

distribution of the data or the type of change. Due to the speed and flexibility of the

method, it has become popular among practitioners.

The literature on detecting changepoints in multivariate time series has grown

substantially in recent years. Multivariate datasets with changepoints have appeared

in a wide range of applications including modelling fMRI scans in a dynamic setting

(Cribben and Yu, 2017) and measuring the effect of blindness treatments on mice

(Storchi et al., 2019). Subsequently there has also been greater interest in changepoint

methods for multivariate time series. Methods have been developed for detecting

changes in a range of different settings. These include changes in covariance structure

(Aue, Hörmann, et al., 2009 and D. Wang, Yu, and Rinaldo, 2017), graphical models

(Gibberd and Nelson, 2017) and network structure (D. Wang, Yu, and Rinaldo, 2018).

The multivariate nature of the problem brings with it additional challenges. Unlike

the univariate case, it is not necessary for every time series under observation to be

affected by a change. This makes it much more difficult to aggregate information

across series. Methods that assume every variable changes will lose statistical power

if only a subset of the variables are actually affected. Furthermore, depending on the

application, it may be interesting to determine which series are (or are not) affected

by a change.

A number of authors have considered the problem of detecting changepoints in

multivariate time series where there is some dependence between series. Matteson

and James, 2014 utilise a nonparametric energy statistic based on pairwise distances

between points to detect changes in the underlying distribution of multivariate time

series. Arlot et al., 2019 utilise cost functions based on semi-positive definite kernels

to detect changepoints without assumptions on the distribution. This work has been

extended by Celisse et al., 2018, who develop more computationally efficient approxi-
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mate methods based on the kernel approach and by Garreau, Arlot, et al., 2018, who

prove that the resulting method is consistent under certain regularity assumptions.

H. Chen and Zhang, 2015 introduce a graph based approach for multivariate change-

point detection. Their method can be applied to any dataset where an appropriate

similarity measure can be defined.

Another approach is to consider how to combine or aggregate information across

multiple series in order to estimate changepoints. These methods do not allow for

dependence between series. Zhang et al., 2010, Horváth and Hušková, 2012 and Eni-

keeva and Harchaoui, 2019 develop test statistics for detecting changes in the mean

of normal data with homogenous variance. These methods aggregate information by

taking a pointwise mean or max of univariate statistics. Cho and Fryzlewicz, 2015

and T. Wang and Samworth, 2018 consider how to combine information across series

whilst taking account of the fact that not every series may be affected by the change.

Cho and Fryzlewicz, 2015 only aggregates information across series if a univariate

statistic exceeds a wavelet based threshold. T. Wang and Samworth, 2018 aggregate

information using a weighted average. The weights are estimated by solving an op-

timisation problem with an `1 penalty. As a result the weights for unaffected series

should be zero. In both approaches, the subset of affected series is not of interest nor

output by software.

In this chapter, we consider how to simultaneously estimate multivariate change-

points and the set of variables affected by changes. Bardwell et al., 2018 study detect-

ing changes in panel data where changepoints are allowed to affect only a subset of

the data. This method detects multiple changepoints, but only outputs the most re-

cent change in each series ignoring prior changes. This is inappropriate in our setting

where we would like to locate all changes. As in the univariate setting, there is bene-

fit to considering the optimisation problem. Pickering, 2016 develop a penalised cost

function framework that incorporates two penalties, one for introducing a changepoint

and another for having a variable affected by the change. The changepoints and set of

affected subsets can be estimated by optimising this function via a dynamic program.

This penalised cost function framework is flexible, however due to the computational
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cost of the optimisation, this approach is infeasible for datasets of even moderate

size. An ideal method would have this flexibility, while still being feasible for large

datasets.

In this paper we propose an approximate optimisation algorithm for the penalised

optimisation problem introduced by Pickering, 2016. Much effort in the univariate

setting has been devoted to approximating the optimisation step. We take an alter-

native approach and consider an approximation of the cost function for each segment.

This is based on the idea of windowed cost functions, where the model parameters

are estimated on a subset of the data. These cost functions provide a basis for an

approximate dynamic program with worst case complexity O(pn2), comparable to

O(n2) in the univariate setting. Furthermore, under mild conditions, the algorithm

has computational cost which is O(np).

The paper is organised as follows. We begin in Section 4.2, by discussing the

subset multivariate approach introduced by Pickering, 2016. In Section 4.3, we define

windowed cost functions for detecting changepoints. We then introduce our new

efficient approximate search method, SPOT. We demonstrate that this method always

finds better solutions than comparable fully multivariate methods and discuss the

computational cost. In Section 4.4, we demonstrate the accuracy and efficiency of our

approach via simulations, Section 4.5 applies SPOT to real world datasets.

4.2 Multivariate Changepoint Model

As we use the same framework for our optimisation, this section discusses the sub-

set multivariate changepoint model introduced in Pickering, 2016. In particular, we

discuss how a multivariate penalised cost function framework can be used to locate

subset multivariate changepoints, and examine how this function can be optimised

using a dynamic program.

We begin by defining notation. Suppose we have ordered data X1,X2, . . . ,Xn ∈

Rp. We use xji to denote the jth element of the vector Xi. Note, throughout we use

the subscript to refer to time and the superscript to refer to the variate. We denote
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the number of changepoints by m and their locations by τ = {τ0, τ1, τ2, . . . , τm, τm+1}.

We assume that each τk is integer valued with τk < τl for k < l and τ0 = 0 and

τm+1 = n. For each changepoint τk, we associate a set Sk ⊆ {1, . . . , p} and a vector

Sk := {S1
k , . . . , S

p
k} where Sjk = 1 if j ∈ Sk and Sjk = 0 otherwise. If j ∈ Sk then

we say that the variable j is affected by the change at τk. For notational simplicity

we let S0 = Sm = {1, . . . p}. We are interested in accurately estimating m, τ and

S := {S1, . . . ,Sm}.

We use Cj to refer to a cost function for the jth variable of a multivariate time se-

ries. Note, we allow cost functions to vary across variables. For simplicity of notation,

given a dataset X we define

Cj(s, t) := C(xjs+1 : xjt) := C({xjs+1, . . . , x
j
t}).

Pickering, 2016 use changepoint vectors, to encode information about the affected

subsets into their penalised cost function framework. Changepoint vectors are non-

negative integer valued vectors. We denote the jth entry of the changepoint vector

c, by cj. This entry gives the location of a changepoint that affects variable j. Given

two changepoint vectors ca and cb we can define a strict partial ordering as follows,

ca ≺ cb ⇐⇒ cja ≤ cjb ∀ 1 ≤ j ≤ p and cja < ub ∀1 ≤ j ≤ p where ub = max
1≤j≤p

cjb

Then, an ordered collection of changepoint vectors describes the location of each of

the changepoints, as well as the set of affected variables.

4.2.1 Penalised Cost Function

We now review some important background material for this chapter. These concepts

have been covered in depth in the previous two chapters and but are shown here for

clarity. Readers familiar with these concepts are encouraged to skip ahead to Section

4.3. A common approach to locating changepoints for univariate data x1, . . . xn is to

minimise
m+1∑
i=1

[C(τi−1, τi)] + βm (4.2.1)
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where C is a cost function and β is a penalty to guard against overfitting. Pickering,

2016 extend this approach to the subset multivariate setting. Let τ j and mj be the

set and number of changepoints that affect variable j i.e.

τ j = ∪
{0≤k≤m+1|Sj

k=1}
τk and mj =

m∑
k=1

Sjk.

Similarly, let m := {m1, . . . ,mp} and T := {τ 1, . . . , τ p}. Then given data X, the

optimal subset multivariate segmentation is given by the solution to the following

opimisation problem

min
m,T

p∑
j=1

mj+1∑
k=0

(
Cj
(
τ jk , τ

j
k+1

)
+ α

)
+ βψ(T ) (4.2.2)

where Cj is a cost function for variable j, α and β are penalty parameters to guard

against overfitting, and ψ is a function which counts the number of unique elements in

a set. This approach allows a different cost function for each variable, which implies

that variables need not be identically distributed.

The novel addition here is the second penalty parameter, α. In this framework,

each changepoint location incurs a fixed cost of β and with a further α cost incurred

for each variate that is affected. In this work, we are not concerned with how these

penalties should be set, focusing instead on how to optimise (4.2.2).

This approach is flexible, since any cost function that can be used in the univariate

setting can also be used in this setting. However the value of Cj(s, t) is exclusively

a function of the data Xj
(s+1):t and as such the model does not allow for dependence

between cost functions. Hence whilst we allow dependence structures within series

(such as auto correlation), we do not allow dependence structures between series (such

as cross correlation).

4.2.2 Subset Multivariate Optimal Partitioning

Pickering, 2016 develop a dynamic program, Subset Multivariate Optimal Partitioning

(SMOP), using a recursion based on changepoint vectors that can be used to minimse

(4.2.2). They demonstrate that the penalised cost of the segmentation of data up to
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the changepoint vector cu, denoted by F (cu), is given by,

min
c≺cu

F (c) +

p∑
i=1

[
I
(
cj 6= cju

) (
Cj
(
cj, cju

)
+ α

)]
+m(c, cu)β (4.2.3)

where m(c, cu) is the number of unique positive elements of the vector cu − c.

Intuitively, the cost of a changepoint vector can be expressed as the cost of a prior

changepoint vector and the cost up to the new change. Whereas in the univariate case,

we obtain a recursion by conditioning on the location of the most recent changepoint,

we now condition on the locations of the most recent changepoint in each variable.

The problem of finding the optimal segmentation is, therefore, equivalent to finding

F (cn) by recursively calculating F (c) for all c ≺ cn. These sets explode in size as

n increases. Unfortunately this means that the dynamic program has prohibitively

expensive computational cost which is infeasible for even small datasets.

Conditioning on changepoint vectors creates difficulties, since the set of change-

point vectors explodes as n and p increase. It would be more efficient to condition on

the last changepoint location, as this is a much smaller set. However for a generic cost

function this is impossible. Suppose the jth variable was not affected by a change

at t. Then the cost of that segment would depend on data before and after t. In

particular, since a generic cost function can use all the data for parameter estimation,

the cost of the data up to time t would depend on data after this point. This means

conditioning on a change at time t is meaningless since the cost of the data before

t is constantly changing as we observe new data. In order to condition on the last

changpoint location we therefore need to restrict our attention to cost functions that

can be more easily partitioned.

4.3 Subset Partitioning Optimal Time (SPOT)

We saw in the previous section how the exact dynamic program was computationally

infeasible due to the size of the set of possible changepoint vectors. In this section,

we approximate the cost function to give a computationally feasible solution.
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4.3.1 Windowed Cost Functions

Let Cj(·, ·|θj) denote a parametric cost function with parameters θj and θj(p, q) denote

the parameter estimates using the data xjp:q. Then the windowed cost for a segment

is given by

Ĉj(p, q, w) =

C
j (p, q|θ(p, p+ w)) for q − p ≥ w

Cj (p, q|θ(p, q)) for q − p < w

where w > 0 is a given window length. A windowed cost function estimates the

parameters on a fixed window, rather then using the whole data. Note that if the

length of a segment is less than w, the cost is the standard cost for this segment.

Unlike a generic cost function, a windowed cost function does not use all the data

for parameter estimation. As a result, the cost function can be easily partitioned.

Given any q > p > w we have

Ĉj(t, t+ q, w) = Cj(t, t+ p| θ(t, t+ w)) + Cj(t+ w, t+ q| θ(t, t+ w)).

In other words, we can always split the windowed cost function of data Xj
t:q into two

terms, where the first term is independent of data after the split. Note, the first term

on the right hand side is independent of data after t + p. Thus, after w points have

been observed, the windowed cost of a segment can be partitioned into a left cost that

does not change as new data is observed, and a right cost that does.

Restricting parameter estimation to a given window seems like a significant restric-

tion, since it increases the variance for parameter estimators making it more difficult

to detect changes. However, if this increase in variance is not too large, then the win-

dowed cost functions may still be useful for changepoint estimation. Furthermore, we

note that other authors within the literature use subsets of the data for changepoint

detection (Eichinger and Kirch, 2018).

In order to explore the accuracy of the windowed approximation, we demonstrate

that a classic result in univariate changepoint analysis from Yao, 1988 holds for win-

dowed cost functions. Let Xi be a random variable and τ be a vector of changepoint
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locations with length m0. We assume that

Xi ∼ N (µ0
s, σ

2) for τs−1 < i ≤ τs,

for s = 1, . . . ,m and, that we have some known upper bound on the number of changes

mU . For 1 ≤ s ≤ mU , we have a window length ws such that τi−1 + ws < τi ∀i =

1, . . . ,m0. Finally, let m̂ be the solution of the following optimisation problem,

m̂ := arg min
1≤m≤mU

min
|τ |=m

m+1∑
s=1

[
C̄(τs−1, τs|ws)

]
+ βm (4.3.1)

where C̄(p, q) :=

q∑
i=p+1

(Xi − θ(p, p+ w))2, θ(p, q) =
1

q − p

q∑
i=p+1

Xi.

The following result shows that m̂ is a consistent estimator for the number of changes

m.

Theorem 4.3.1. Suppose we have m0 ≤ mU changepoints with mean levels µ0
s 6=

µ0
s+1 (1 ≤ s ≤ m0). Furthermore assume that (τs−τs−1)/n converge to qs (1 ≤ s ≤ m0)

and w/n→ 1 as n→∞ for some 0 < q1 < · · · < qm0 < 1. Then Pr(m̂ = m0)→ 1 as

n→∞.

Proof. Proof in Section 4.7.

To demonstrate this result holds, we show that the error from using the windowed

cost function C̄ in (4.3.1) (as opposed to the true cost) is small with high probability.

As a result, the windowed estimator for the number of changes is equal to the non

windowed estimator with high probability. However the windowed cost function uses

less data, and hence has larger variance. Due to this increased variance, in the finite

sample setting there is a greater chance of both overfitting and missing changes.

However as we shall see in the next section, the partitioning property can lead to

significant improvements in the computational cost.

4.3.2 Multivariate Dynamic Program

We now show how windowed cost functions can be incorporated into the subset pe-

nalised cost function framework. An important consideration is how to choose the
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window size w for the cost functions. In order to maximise the accuracy of our pa-

rameter estimates, we need to have the window as large as possible. Therefore for

variable j, we choose wji = τi − τi−1. If the next changepoint affects variable j then

the cost of the segment will be the standard cost. However if variable j is not affected

by the next changepoint then we will estimate the parameters θji using the window

of data and in effect, introduce an artificial partition. Thus the optimal windowed

subset segmentation is given by

min
τ ,S

m+1∑
k=1

(
p∑
j=1

[
I
(
Sjk−1 = 1

) (
Cj
(
τk−1, τk|θ̂jk

)
+ α

)
+

I
(
Sjk−1 = 0

) (
Cj
(
τk−1, τk|θ̂jk−1

)) ]
+ β

)
(4.3.2)

where

θ̂jk := θ(τ jk−1, τ
j
k)I
(
Sjk = 1

)
+ θ̂jk−1I

(
Sjk = 0

)
.

We optimise (4.3.2) using an approximate recursion. We define W (s) as the solu-

tion to the following recursion.

W (0) := −pα− β,

W (s) := W (τ(s)) + Ĉ(τ(s), s) + β

where

τ(s) := arg min
0≤t<s

{
W (t) + Ĉ(t, s) + β

}
, (4.3.3)

Ĉ(t, s) :=

p∑
j=1

I(Sj(t, s) = 1)
(
Cj (t, s|θ(t, s)) + α

)
+ I(Sj(t, s) = 0)

(
Cj
(
t, s|θ̂jt

))
, (4.3.4)

Sj(t, s) := I
(
Cj (t, s|θ(t, s)) + α < Cj

(
t, s|θ̂jt

))
, (4.3.5)

θ̂js := θ(τ(s), s)I
(
Sj(τ(s), s) = 1

)
+ θ̂jτ(s)I

(
Sj(τ(s), s) = 0

)
. (4.3.6)

The value W (s) can be evaluated by solving (4.3.3) for s = 1, . . . , n. The cost of solv-

ing this recursion is dependent on the cost of evaluating Ĉ(t, s), which is an O(K(n)p)
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calculation. Thus, the cost of solving the recursion for time s, is O(K(n)sp). Then

the overall cost of finding W (n) is O(K(n)pn2).

There are aspects of this approach that are worth highlighting. Firstly the win-

dowed cost function approach does not produce the same segmentation if the data is

read backwards rather than forewards. While this is an undesirable property for a

changepoint method, we note that if the approximation error is small then the dif-

ference between the segmentations should be marginal. Secondly, if two changes are

close together, the approximation may break down as we will have a smaller window

to evaluate the model parameters. Finally there are some limitations to the procedure

for updating the segment parameters given in (4.3.6). Suppose we have three change-

points τk < τk+1 < τk+2 where τk affects variable j while the other two changepoints

do not. Then our approach only uses the data between τk and τk+1 to calculate the

model parameters when evaluating Ĉ(t, s) for any s, t > τk+2. If there is not much

data between τk and τk+1, this approach will be inefficient and we may overfit changes

as a result. Alternatively, we could update the model parameters and use the data be-

tween τk and τk+2 to calculate the relevant model parameters. This approach should

reduce the approximation error and may lead to a better segmentation. However

there are other settings where this approach may be less effective.

The solution to the recursion above does not produce an exact minimizer of (4.3.2).

However it is guaranteed to produce a solution at least as good, in terms of (4.2.2),

as a comparable full multivariate segmentation. This result is stated formally below.

Theorem 4.3.2. Let C(t, s) =
∑p

j=1 Cj(s, t) and let F (n) be the optimal solution

to (4.2.1) for data of length n with penalty pα + β. Similarly let W (n) be defined as

before. Then we have that

W (n) ≤ F (n).

Proof. Proof in Section 4.7.

This result follows directly from the fact that this dynamic program contains the

full set of possible fully multivariate results within its search space. Furthermore this
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is a lower bound on the performance of the algorithm. In practice, as we demonstrate

through simulations, this approach can produce significantly better solutions.

4.3.3 Pruning Step

We can solve the approximate recursion introduced above with a worst case compu-

tational complexity of O(pn2). This can be improved further by reducing the search

space in the optimisation problem (4.3.3). In particular, this optimisation problem is

equivalent to identifying the optimal changepoint prior to s. Intuitively, if we have

strong evidence that a change has occured at some time t < s, then it is unlikely that

the optimal changepoint prior to s will occur before t. This is the intuition for prun-

ing. Pruning is a technique used to speed up the computational cost of the dynamic

programs used for detecting changepoints. The following theorem describes when a

candidate prior change can be pruned.

Theorem 4.3.3. Assume that there exists a constant K such that for all t < s < T ,

Cj(t, s) + Cj(s, T ) +K ≤ Cj(t, T )

If the following inequality holds at a future time T > s

W (t) + Ĉ(t, s)− pα ≥ W (s), (4.3.7)

then t can never be the optimal last changepoint prior to T .

Proof. Proof in Section 4.7.

We can explore the theoretical computational cost of SPOT using a similar frame-

work to Killick, Fearnhead, et al., 2012. We restrict our attention to models where

segment parameters are independent across segments and the cost function for a seg-

ment is negative the maximum log-likelihood values for the data in the segment. An

underlying stochastic model for the data generating process is defined. The compu-

tational cost is the cost of analysing n data points generated by this process. Note

that the dimension p is assumed to be fixed. Our result also assumes for j = 1, . . . , p,

that the parameters associated with a given segment are IID with density function
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πj(θj). Similarly for notational simplicity, we assume that, given the parameter θj,

the data points within the segment are IID with density function f j(y|θ). Finally we

have that

Cj(t, s) = −max
θj

s∑
i=t+1

log f j(Xj
i |θj)

We also place assumptions on the changepoint locations, τ . For s = 1, 2 . . . let

Qs = τs−τs−1. We assume the Qs are IID copies of a random variable Q. Furthermore

the Qs are assumed to be independent of the parameters associated with a segment.

Theorem 4.3.4. Define θ∗ to be the value that maximises the expected log likelihood

θ∗ = arg max
θ

∫ ∫
f(X|θ)f(X|θ0)dXπ(θ0)dθ0.

Let θi be the true parameter associated with the segment containing Xi and θ̂n be the

maximum likelihood estimate for θ given data X1:n and an assumption of a single

segment,

θ̂n = arg max
n∑
i=1

p∑
j=1

log f j(xji |θj) and Bn =
n∑
i=1

[
log f(Xi|θ̂n)− log f(X|θ̂j∗)

]
Then if we have

(A1) E(Bn) = O(n), E([Bn − E(Bn)]4) = O(n2) (A2) E([log f(Xi|θi)− log f(X|θ∗)]) <∞

(A3) E(log f(Xi|θi)− log f(Xi|θ∗)) >
β + pα

E(Q)
(A4) E(Q4) <∞

where Q is the expected segment length, the expected CPU cost of SPOT for analysing

n data points of fixed dimension p is bounded above by Lpn for some constant Lp <∞

dependent on p.

Proof. Proof in Section 4.7.

Conditions (A1) and (A2) are weak technial conditions. Condition (A3) states that

expected penalised likelihood value obtained with the true changepoint and parameter

values with a fully multivariate penalty will be greater than the expected penalised

cost given by fitting a single segment. Condition (A4) restricts the probability of

observing very large segments. As a consequence the expected number of changepoints

is an increasing linear function of n.
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4.4 Simulations

We now explore the performance of our method through a range of simulations. We be-

gin by defining our performance metrics. Firstly throughout we use τ := {τ1, . . . , τm}

and τ̂ := {τ̂1, . . . , τ̂m̂} to denote the set of true changepoints and the set of estimated

changepoints respectively. A common approach for evaluating changepoint methods

is to examine true and false discovery rates. We say that the changepoint estimate τi

has been detected if

min
1≤j≤m̂

|τ̂j − τi| ≤ h.

Throughout this section we set h = 10 although it should be noted that in reality

the desired accuracy would be application specific and whilst the specific values vary

with h the conclusions of the study do not. We denote the set of correctly estimated

changes by τc. Then we define the true discovery rate (TDR) and false discovery rate

(FDR) as follows,

TDR :=
|τc|
|τ |

, FDR :=
|τ̂ | − |τc|
|τ̂ |

.

The TDR and FDR describes how accurately a method locates multivariate change-

points. However we are also very interested in whether or not the methods return

accurate subsets. Let τ k and τ̂ k denote the set of true and estimate changepoints

that affect variable k respectively. Then for each k we have the corresponding true

and false positive rates TDRk and FDRk. Then we define the Variable Average True

Detection Rate (VATDR) and the Variable Average False Detection Rate (VAFDR)

as

V ATDR :=
1

p

p∑
k=1

TDRk, V AFDR :=
1

p

p∑
k=1

FDRk.

Intuitively if a method correctly estimates subsets then we would expect the VATDR

to be close to one and the VAFDR to be close to zero.

An important concern is whether or not the segmentation allows us to accurately

us to estimate the model parameters. Therefore we also report the Mean Square Error

(MSE),

MSE :=
1

n

n∑
i=1

‖θi − θ̂i‖2
2.
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Unless otherwise indicated, In order to satisfy the assumptions for a computational

cost of O(n), the number of changes is proportional to the length of the data. For

a given change, the probability of a variable being affected by a change is either

{.2, .5, .8}, with probabilities {1/2, 3/8, 1/8} respectively.

4.4.1 Optimality Gap

We begin by examining the optimality gap incurred from solving (4.2.2) via our ap-

proximate method SPOT, that is, the difference in penalised cost between the approx-

imate solution and the exact solution. We compute exact solutions using the SMOP

dynamic program. Due to the large computational cost of SMOP, we are limited in

the size and range of datasets we can consider. We simulated 100 datasets of size

n = 100 and p = 3. The data is normally distributed with two changes in mean.

The magnitudes of the changes are uniformly distributed on [0.8, 1.3]. We use a cost

function based on the log likelihood for normal data with known variance.

Results from this simulation are shown in Figure 4.4.1. For over sixty of the

examples, we observe no optimality gap. The largest gap observed is less than five

percent. For 89 examples, the gap is less than a single percent. The advantage of this

optimality gap is a much lower computational cost. The average computation time

for SPOT is .0995 seconds compared with almost four hours for SMOP.

In order to measure the changepoint accuracy we compared the performance of

the algorithms in two scenarios. In both scenarios, we observe two changes in the

mean of normally distributed data. The first scenario has changepoints at 33 and

66, while the second has changepoints at 20 and 85. For all the datasets the affected

subsets are S1 = (0, 0, 1) and S2 = (0, 1, 1). The first set of datasets represent an ideal

setting with a large minimum segment length, meaning the approximation error from

our method should be small. The second set of datasets represent a more challenging

case as the first and final segment lengths are short. Because of the short segment

lengths we would expect the approximation from our method to be poorer.

The results of this simultation are presented in Figure 4.4.1 (b) and (c). In both

examples, the exact approach correctly locates more changes. Furthermore, the vari-
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Figure 4.4.1: (a) Histogram of observed percentage optimality gap for SPOT; His-

togram of estimated changepoints using SMOP (black) and SPOT (grey) over 100

repetitions. Example (b) has large segment lengths while (c) has short minimum

segment lengths.

ance of the exact changepoint location estimates is lower than the variance of the

approximate estimates. This is evidence that the approximation does in fact reduce

statistical power. However the difference in accuracy between the methods is small.

4.4.2 Comparison with Fully Multivariate Model

Although simulation studies on small datasets have value, it is necessary to evaluate

the performance of SPOT on larger datasets. Since an exact optimisation is compu-

tationally infeasible for larger datasets, we compare our approximate optimisation of

(4.3.2) with an exact optimisation of (4.2.1) (i.e. assuming a change in all variables

at each changepoint).

For this simulation, we consider datasets with length ranging from n = 1000 to

n = 100000 and and dimension p = 250, 1000, 2500. For each n, p pair we simulated

100 datasets with changes in mean. The size of the changes are uniformly distributed

between .5 and .8. Finally the minimum segment length is 10.

Some results from this simulation are shown in Figure 4.4.2. Boxplots were gen-

erated using the ggplot2 package (Wickham, 2016) using default settings. For each

method and n, p pair, we plot a box consisting of a bold black line in the center, lower
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Figure 4.4.2: Boxplot comparison of SPOT and fully multivariate segmentations

for different metrics over n = {1000, 2000, 5000, 10000, 50000, 100000} and p =

{250, 1000, 2500}.
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and upper hinges (bottom and top lines of the box) and whiskers which extend out

from the hinges. The bold black line gives the median. while the lower and upper

hinges correspond to the 25th and 75th percentiles respectively. The lower/upper

whisker extends from the 25/75th percentile to the smallest/largest value no further

than 1.5 times the length of the box from the lower/upper hinge. Points beyond the

whiskers are outliers. There are clear improvements in MSE, VATDR and VAFDR.

SPOT achieves a lower MSE for every n, p pair. Furthermore the magnitude of this

improvement increases with p and n. SPOT takes variables not changing into ac-

count, which means more data can be used to estimate the parameters producing

more accurate estimates and a lower MSE.

We also observe improvements in the variable average detection rates. As the

length of the data increases SPOT achieves a substantially lower VAFDR. We expect

this metric to favour our approach, as the fully multivariate approach will falsely

detect changes in variables that do not change. However there is also an improvement

in the VATDR, implying that our approach accurately locates more changepoints for

individual series. However, SPOT does miss some changes. The VATDR plateaus at

around .8, implying that one fifth of the changepoints for each time series are missed

on average.

4.4.3 Comparison with Other Methods

We now compare the performance of SPOT against two other state of the art algo-

rithms, E-Divisive (T. Wang and Samworth, 2018) and Inspect (T. Wang and Sam-

worth, 2018). We use the default values in the InspectChangepoint (T. Wang and

Samworth, 2016) and ECP (James and Matteson, 2015) packages. When measuring

computation time for Inspect, we do not count the time taken to identify the optimal

penalty. This increases the computational time by a further order of magnitude. Both

of these methods are fully multivariate and thus it is not relevant to report VATDR

and VAFDR. We consider datasets of size n = {200, 400, 600, 800} and p = {5, 10, 20}.

For each parameter set, we generate 1000 normally distributed datasets with changes

in mean. The size of the changes are uniformly distributed between 0.5 and 0.8, which
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satisfies the minimum step size assumption utilised in (T. Wang and Samworth, 2018).

The results are shown in Figure 4.4.3, where again we use boxplots to compare

the different methods. The E-Divisive method performs the worst across all metrics.

In particular the TDR for the nonparametric method is significantly lower. This

reflects the fact that a nonparametric approach has lower power. Furthermore the

computational cost of E-Divisive is much larger. Our algorithm achieves significantly

lower MSE than both Inspect and E.divisive. On the other hand, both methods

achieve similar performance across the other metrics.

The Inspect method is designed primarily for high dimensional datasets. It is

natural therefore to compare SPOT with Inspect in this setting. We ran both methods

on datasets ranging in size n = {200, 500, 1000, 2000, 10000} and p = {50, 250, 750}.

The size of the changes are uniformly distributed between .5 and .8. Due to the

computational cost we were not able to run E-Divisive. The results of this simulation

are shown in Figure 4.5.1. We can see that Inspect performs much better in this

setting. Inspect reports a higher TDR at the cost of a higher FDR. SPOT achieves a

lower MSE, particularly for larger values of n, however this difference decreases as p

grows. Finally, we note that SPOT has a much shorter runtime.

4.5 Applications

4.5.1 Genetics Data

We begin by considering the comparative genomic hybridisation (CGH) dataset from

Bleakley and Vert, 2011 available in the ecp R package (James and Matteson, 2015).

This dataset has been previously analysed in the literature (T. Wang and Samworth,

2018) and thus makes a useful comparison. CGH is a technique that detects abnor-

malities in chromosomal copy number by comparing the fluorescence intensity levels

of DNA fragments from a test sample against a reference sample. This dataset ex-

amines the log intensity ratio measurements of 43 individuals at 2215 loci on their

genome. Each individual has a bladder tumour. Copy number variations that are

shared across multiple individuals are more likely to be related to the disease, thus it
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Figure 4.4.3: Boxplot comparison of SPOT, E-Divisive and Inspect for different met-

rics over n = {400, 600, 800} and p = {5, 10, 20}
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Figure 4.5.1: Boxplot comparison of SPOT and Inspect for different metrics over

N = {500, 1000, 2000, 10000} and p = {50, 250, 750}



CHAPTER 4. APPROXIMATE SUBSET MULTIVARIATE CHANGEPOINTS 82

is interesting to detect changepoints in this dataset, as well as identify which series

the changepoints affect.

The observations for the first and third patients are shown in Figure 4.5.2. As in

previous analysis, we assume the data is normally distributed and changes in copy

number variation correspond to changes in mean. We note that the variance of the

underlying dataset does not equal one, and thus standard penalties are inappropriate

for the penalised cost framework. Therefore, we scale our penalties by the mean

standard deviation for the series. This is equivalent to the penalties α = 2(.143) log p

and β = 2(.143) log n, where n = 2215 and p = 43. Finally we removed some outliers

from the dataset. Both the transformed and raw data are available on request.

We applied SPOT and Inspect to the full standardized data. Under default set-

tings, as implemented in the ECP package, E.divisive locates 54 changepoints. In

their paper T. Wang and Samworth, 2018 report the test statistic for each change-

point, only accepting changepoints whose test statistic is above a certain threshold.

The default threshold for Inspect produces far too many changepoints as it is too low.

Therefore the authors only include the thirty most significant changepoints which we

repeat here.

The resulting segmentations for three individuals are shown below in Figure 4.5.2

Comparing the segmentations, we can immediately see the advantage of the subset

approach. SPOT produces a segmentation with 67 changepoints, but still produces

parsimonius segmentations for individual series. In particular we can see that the sec-

ond series is only affected by two of these changes. On the other hand even restricting

to the thirty changepoints with the largest test statistics, Inspect clearly still overfits

on a series by series basis.

4.5.2 Syrian Civil War

The Violations Documentation Center in Syria (VDC) is a humanitarian organisation

that records violence due to the Syrian Civil War (Violations Documentation Center

in Syria, 2019). As part of this work, they have created an open source dataset of

confirmed deaths. This dataset includes the name of the victim, the date and region
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Figure 4.5.2: Segmentations for three individuals obtained from applying SPOT (dot-

ted) and Inspect (dashed) to the normalised CGH dataset.

where they died as well as other information such as the organisation responsible.

Using this data we can construct a time series of deaths per day for each of the 16

regions defined by the VDC. Note that as before we remove some outliers and both

the original data and the standardized data are available on request.

The data for eight regions is shown in Figure 4.5.3. Note that these regions account

for over ninety six percent of the deaths. Guha-Sapir et al., 2018 use this dataset to

measure the number of deaths due to different weapons, as well as the number of

deaths in different regions. This analysis is primarily focused on high level statistics.

While this is useful, there is also a benefit in analysing the data at a more granular

level. In particular we can see that the average number of deaths per day changes

drastically and frequently over time. Identifying these changes is useful as it provides

a simple, data driven way to understand the evolution of the war over time.

There are a number of challenges with modelling this data. The data is discrete

and non negative. Therefore it is inappropriate to model it as Normal. Secondly there

a large number of zeros. Therefore we use a cost function based on the likelihood for

the Zero Inflated Poisson model i.e. if Xi,j is the number of deaths in jth location on
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Figure 4.5.3: Deaths per day due to Syrian Civil War in eight regions as defined by

the VDC. Changepoints as located by SPOT are indicated by the dotted lines.
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the ith day and belongs to the kth segment we have that

Pr(Xi,j = 0) = πk + (1− πk) exp−λk (4.5.1)

Pr(Xi,j = xi) = (1− πk)
λxik exp−λk

xi!
. (4.5.2)

Note each segment features two parameters, the rate parameter λk and the inflation

parameter πk. We use the EM algorithm to fit these parameters, when evaluating

the cost function. Finally the data is also overdispersed. Therefore, in order to apply

SPOT, we scale our penalties by the square root of the average dispersion value. The

resulting segmentation is shown in Figure 4.5.3

Using these penalties we locate forty changepoints. However, as with the previous

example, the method still returns a parsimonius segmentation for each of the individ-

ual series. In order to validate the results, we showed them to an expert on the Syrian

conflict. We identified two aspects of the segmentation which match expert under-

standing of how the war developed over time. Firstly, there is a period of over two

years where the level of violence in Damascus is at a constant low level. Damascus, as

the capital of Syria, is the center of power for the goverment and as goverment forces

started winning the war, violence in the region substantially reduced. We note that

a fully multivariate method would not be able to capture this pattern, as other loca-

tions do feature changes during this time. Secondly during the same period we see a

number of dramatic changes in Deir Ezzor. The expert recognised this as a strategic

pattern of violence in the region, where periods of intense fighting are punctuated

with strategic calm. Thus, we argue that the segmentation given by SPOT does a

good job of capturing the evolution of the war over time.

4.6 Conclusion

In this paper we have presented the SPOT method, a dynamic program for detecting

changes in multivariate data where only a subset of the variables may change at

any point. This approach has a number of positive qualities. The algorithm can be

applied to a range of different types of datasets and distributions. It is computationally
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efficient, with cost that under certain conditions is linear in the number of data points.

Finally, despite being an approximation it is accurate, always recovering a better

segmentation than the equivalent approach which assumes every variable changes.

In simulations, SPOT outperforms other state of the art methods across a range of

metrics.

4.7 Proof of Main Results

Proof of Theorem 4.3.1. Given m changepoints (τ1, . . . , τm), we define the sum of

squares,

Sn(τ1, . . . , τm) =

m0+1∑
j=1

τj∑
i=τj−1+1

{
Xi − X̄(τj−1, τj)

}2
.

Similarly let (τ̂1,m, . . . , τ̂m,m) denote the set ofm changepoints that minimise Sn(τ1, . . . , τm).

Then the maximum likelihood estimate for σ2 given m changepoints is given by

σ̂2
m :=

Sn(τ̂1, . . . , τ̂m)

n
.

Yao, 1988 demonstrates that a consistent estimate of m0 is given by the m that

minimises

SC(m) = 2−1n log σ̂2
m +m log n

subject to m ≤ mU . We can define windowed equivalents of these estimators as

follows,

σ̂2
w,m :=

Ŝn(τ1, . . . , τm)

n
and Ŝn(τ1, . . . , τR) :=

R+1∑
r=1

τr∑
i=τr−1+1

{
Xi − X̄(τr−1, τr−1 + w)

}2
.

We are interested in how these estimators behave. Lemma B.1.4 in the appendix

shows that the windowed variance estimator converges to the true variance, i.e. that

σ̂2
w,m0

→ σ2 in probability. Then by Lemma B.1.5 we have that Pr(m̂ ≥ mo)→ 1. In

other words the estimator does not underestimate the number of changes asymptoti-

cally.

Now we only need to show that asymptotically the windowed estimator does not

overestimate the number of changes. Let Yi = Xi− θi for all 1 ≤ i ≤ n. Then for any
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ε > 0 with probability approaching one,

n∑
i=1

Y 2
i > n(σ2 − ε).

Using Yao’s bound B.1.3, for m0 < m < mU , for any ε > 0, with probability ap-

proaching one,

2{ŜC(m)− ŜC(m0)} ≥ 2{SC(m)− ŜC(m0)}

= n log σ̂2
m − n log σ̂2

w,m0
+ 2(m−m0) log n

≥ n log σ̂2
m − n log

(
n∑
i=1

Y 2
i + log n

)
+ 2(m−m0) log n

= n log

{
1−

(∑n
i=1 Y

2
i − nσ̂2

m + log n∑n
i=1 Y

2
i + log n

)}
+ 2(m−m0) log n

≥ n log

{
1−

(
{ε+ (m−m0 − 1)2(1 + ε)}σ2 log n+ log n

n(σ2 − ε) + log n

)}
+ 2(m−m0) log n.

Using the fact that log 1− x > (1 + ε)(−x) for small x > 0 we have that the right

hand side is greater than

−(1 + ε)
{ε+ (m−m0 − 1)2(1 + ε)}σ2 log n+ log n

σ2 − ε+ logn
n

+ 2(m−m0) log n

for large n. Since this is positive for small ε, we have that Pr(ŜC(m) − ŜC(m0) >

0)→ 1, completing the proof.

Proof of Theorem 4.3.2. Firstly since F̂ (n) is a penalised log likelihood with sub op-

timal parameters,

G(τ̂ , Ŝ) ≤ F̂ (n).

Then we only need to show that

F̂ (n) ≤ G(τFMV ,SFMV ) = F FMV (n).

We proceed via strong induction. For data of length one there is only a single possible

segmentation, hence the statement holds for n = 1. Assume that for all k < n that

F̂ (k) ≤ F FMV (k).

Now by definition we have that

Ĉ(t, s) ≤ C(t, s).
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Then

F̂ (n) = min
0≤k<n

F̂ (k) + Ĉ(k, n) + β ≤ min
0≤k<n

F (k) + C(k, n) + β = F FMV (n)

This completes the proof.

Proof of Theorem 4.3.3. Suppose that (4.3.7) holds for some T > s. Then we have

that,

F̂ (t) + Ĉ(t, s)− pα ≥ F̂ (s).

Adding Ĉ(s, T ) + β to both sides of this equation gives,

F̂ (t) + Ĉ(t, s) + Ĉ(s, T )− pα + β ≥ F̂ (s) + Ĉ(s, T ) + β

However by Lemma B.1.6 in the appendix we have that

F̂ (t) + Ĉ(t, T ) + β ≥ F̂ (t) + Ĉ(t, s) + Ĉ(s, T )− pα + β ≥ F̂ (s) + Ĉ(s, T ) + β

Hence t cannot be the most recent changepoint prior to T .

Proof of Theorem 4.3.4. Let G(s, t) denote the minimum value of the approximate

cost function defined in the original text for data Xs:t. By definition G(s, t) is inde-

pendent of data occuring before s and after t since it starts at s. Furthermore

F̂ (t) ≤ F̂ (s) +G(s, t) + pα,

since the right hand term is equivalent to having a fully multivariate change at time

s and F̂ (t) = G(0, t).

The pruning condition described in Theorem 4.3.4 is difficult to work with as it is

dependent on the time t. Therefore we use a more stringent pruning condition that

is independent of t. In particular we say that time point t− k is pruned if

C(t− k, t)− 2pα ≥ G(t− k, t), where C(s, t) =

p∑
j=1

t∑
i=s+1

Dj(s, t).

To see why this condition is more stringent note that if this condition holds we have

that

F̂ (k) + Ĉ(t− k)− pα ≥ F̂ (k) + C(t− k)− pα ≥ F̂ (k) +G(t− k, t) + pα ≥ F̂ (t).
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For a positive integer k ≤ t, let It,k be an indicator of whether or not the ob-

servation k has not been pruned at time t. Then the overall computational cost of

processing an observation at time t + 1 is O(1 +
∑t

j=1 It,k). Furthermore since the

data-generating process is time invariant, and our pruning condition only depends on

the data X(t−k+1):t we have that E(It,k) = Ek independent of t. Hence the expected

computational cost is bounded by nLn where

Ln = 1 +
n−1∑
j=1

Ej.

By Lemma B.1.7 we have that

L := lim
n→∞

Ln <∞

Then since Ln is an increasing sequence we have that the computational cost of

analysing n points is bounded above by Ln.



Chapter 5

Changepoint Analysis of

Promotions

5.1 Introduction

The data science team at Tesco is modelling and forecasting data at ever greater

granularity. As a result, business decisions can be made with greater accuracy and

confidence. In this chapter, we consider the problem of modelling sales of individual

products. A significant difficulty with modelling individual products is that the be-

haviour can change over time. For example, the sales of an individual product will be

significantly impacted by whether or not there is a promotion going on. Therefore,

in order to be able to accurately model and forecast at the individual product level,

it is important to be able to take such changes into account.

In the previous two chapters, we studied a changepoint model that allows for some

series to not be affected by the change. This feature is particularly valuable when

analysing sales data of products that may be affected by promotions. For such data,

we would expect that related or similar products may change at the same time. For

example, changes in price due to promotions occur on a single date across multiple

products. However, we would not expect sales of every product to be affected by a

change. For example, a change in the price of an ice cream product should not have a

large effect on sales of bread. This may also be different across time, sales of cranberry

90
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sauce may be linked to a discount in the price of Turkey joints around Christmas time,

but not at other times of the year. In all these examples, it is important to be able

to detect changes across multiple series without fitting changes.

In this chapter, we explore and highlight some of the challenges associated with

analysing real data via a changepoint analysis. In particular we use dual penalty

changepoint model discussed in Chapters 3 and 4 to analyse the effect of promotions

on sales data. We use the SPOT algorithm discussed in the previous chapter for

this problem as it detects changes in multivariate time series, where changes occur

in just a subset of the variables under observation. Crucially these subsets are not

required to be specified in advance and may vary across changepoints. Although

the SPOT algorithm is general we still need to preprocess the data to account for

missing values, seasonality and trend which we assume do not change over time.

After preprocessing, we use the SPOT algorithm to detect multivariate changes in

mean, which are associated with increases (or decreases) of sales.

We are particularly interested in analysing how sales promotions for a single prod-

uct can affect sales of similar products which are not affected by the promotion.

Therefore we investigate whether there are interesting patterns in the resulting seg-

mentation, such as whether some series frequently change together and whether or

not these changes can be explained by promotions. Patterns that are not explained

by promotions may indicate that there is an interesting relationship between the

products, such as substitution effects. Finally we note that this application nicely

illustrates some of the challenges involved with applying the SPOT method to a real

world problem.

The structure of this chapter is as follows. In Section 5.2, we describe the data,

highlighting any issues that make modelling the data more difficult. In particular,

we highlight features of the data that we need to take account of via preprocessing.

The preprocessing steps are then described in Section 5.3. In Section 5.4 we discuss

the resulting multivariate segmentation, and explore whether or not the segmentation

identifies any interesting patters. Finally we give concluding remarks in Section 5.5.
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5.2 Data

We examine product level data over a 4 year period. In particular, we examine the

daily sales data for products, aggregated across all stores of the same type in the

estate. During this period, there are over 4 million different unique product codes.

Rather than working with the entire dataset, we focus on products within a single

product area which contains the majority of food products within Tesco; over 2600

products.

Within this group, there are products that are not sold throughtout the entire

period. Therefore, we restrict our dataset to products with at least 1500 days of

sales. From discussions with the Data Science Team, we learned that the Christmas

and Easter periods are currently modelled separately to the rest of the year. Since

these periods are very short, lasting no more than two weeks, it is very difficult to

detect changes during these periods but they may drastically affect the detection of

changes near to these periods. Furthermore, it would be very difficult to attribute

changes to anything other than the holiday effect. Therefore, we do not include the

Christmas and Easter periods in our analysis.

For each product and store type, we have the daily quantity of product sold at the

store type and, the daily sales value of the product sold at the store type. Dividing

these we can calculate the price of each product, as well as locate any changes in the

price that would indicate a promotion. This data takes into account any multibuy

offers as the price per unit would show a decrease. The unit price for a single product

over this time period is shown in Figure 5.2.1. This shows clear separation of higher

average price (which increases over time) and a lower sales prices. There may also be

some smaller offers that results in more local changepoint effects.

The time series of total quantity, sold across all EXTRA stores for two further

products from the cereal category, is shown in Figure 5.2.2. The data is clearly non

stationary and the effects differ across products. Common to both series are trend,

seasonality and weekday effects. Furthermore, there are periods where the sales jump,

before returning to their previous levels shortly after. These jumps correspond with
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Figure 5.2.1: Daily price for a single product. Note that it has multiple price regimes

that it switches between. The variance in the price is likely due to the effect of

multibuys.

changes in the price of the product, indicating that a promotion was occuring which

increased sales.

The trend, seasonality and weekday effects of the data make a changepoint analysis

more difficult. In particular, we would expect that the trend, seasonality and week-

day effects to be constant over time. This mixture of local effects (changepoints) and

global effects (seasonality) complicates modelling and there are currently no change-

point methods that address this problem sufficiently. Therefore, rather than run a

changepoint analysis on the raw data, which would necessitate a change in these global

features, we first model the global features of the data and then run a changepoint

analysis on the fitted residuals. This is further detailed in the following section.

5.3 Analysis

In this section we describe how we analyse the raw data. Our analysis has two

components. Firstly, we estimate a set of promotion dates from the price data using

a univariate changepoint analysis. These estimates become a ground truth for which

we compare our later multivariate analysis. Note this comparison is only valid for

series which are affected by the promotions. We then use a log linear model to

remove the effects of seasonality, trend and day of the week. To capture the weekday
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Figure 5.2.2: Daily quantity sold for two products across all EXTRA stores. The

colour indicates the day of the week. Note that in both series there is a persistent

day of the week effect, while in the first we can also observe trend and seasonality.

Furthermore, the second series has prominent jumps that correspond with changes in

the price.

effect, we include a categorical weekday variable in the design matrix. The assumed

linear trend is captured via the difference between the start date and the date of an

observation. For seasonality we model a yearly frequency using sine and cosine waves

as the weekday effect is captured by the weekday dummy variables. We chose this

approach due to the fact that we only observe 4 years worth of data, and thus a more

complex model may overfit the data and obscure changes. However we accept that

other approaches for modelling seasonality may be appropriate and even preferable.

One difficulty in fitting this model is that changes in level due to promotions will

worsen the model fit and produce less accurate parameter estimates. This will increase

the variance of the residuals making it more difficult to locate changes. Therefore, we

also include the univariate promotion segmentation from the first step as a feature in

our model, allowing us to model the impact of discounts separately.

Examining the data in Figure 5.2.2, we can see that the variance of the series

changes over time. In particular, the variance appears proportional to the average

sales. This is unsurprising, since we are working with count data. Therefore we
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apply a log transform to the data to standardise the data. Again we note that other

transforms, such as the Box-Cox or Anscombe transforms, may be appropriate. The

full model can be expressed as

log (Quantity) = Trend+Seasonality+Weekday Effect+Discount Effect+Full Residuals

or more mathematically as

log(yt,j) = β0,j + β1,jt+ β2,j sin
t

365
+ β3,j cos

t

365

+
6∑

k=1

β3+k,jI(day(t) == k) + β10δt,j + εt,j

where εt,j ∼ N (0, σ2
j )

where Yt,j is the quantity sold for product j at time t, I is an indicator function, δt,j

is an indicator variable equal to one if there is a discount in variable j at time t.

We are primarily interested in detecting changes in products that cannot be ex-

plained by promotions. However these changes are likely to be caused by promotions

in similar products and occur at the same time. Removing the effect of these promo-

tions makes it more difficult to locate changes in products for which the price does

not change but sales are affected by the promotion. Thus applying a changepoint

analysis directly to the full residuals of this dataset is inefficient. Therefore we fit the

changepoint analysis to the sum of the fitted residuals and the discount effect i.e.

Partial Residuals = Discount Effect + Full Residuals

or more mathematically as

pt,j = β10δt,j + εt,j.

We handle the issue of missing data by sampling from the above model. Whether

or not a discount is occuring is inferred from the previous time point, as discounts

last longer than a single day. Then a residual component is sampled from a normal

distribution with mean zero and variance equal to the variance of the residuals for

the series. We do not take dependence between the residuals into account for this

example, however it may be possible to improve the analysis by doing so.
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This approach gives us a full set of partial residuals, which we model in the follow-

ing section using the multivariate changepoint techniques discussed in the previous

chapters. In particular, we will apply the dual penalty approach, discussed in Chapter

3, to detect subset multivariate changepoints. Due to the size of the data, we will

apply the approximate method, SPOT, to solve the resulting optimisation problem.

5.4 Results

The results presented here apply the methods in the previous sections to the data

described in Section 5.2. We begin by demonstrating that we can estimate the dates

of promotions from the price data for each series, using a changepoint analysis. For

each time series of prices we fit a univariate changepoint analysis. Recall that we do

not use a multivariate approach as the signal to noise ratio for these series is very

high, as seen in Figure 5.2.1. For each series we look to identify changes in mean

using the PELT algorithm. We use a minimum segment length of 15 days, as we do

not expect the effect of promotions to be shorter than this. Finally due to the small

variance we do not use standard penalties. Instead the β penalty is set to 0.2. Note

this procedure is not optimal and it would be preferable to scale the data so that it

has variance one. This is difficult in this situation, due to the fact that the within

segment variance of the price for some series is zero.

The result of this analysis for a single product is shown in Figure 5.4.1. We can

see that the changepoint analysis picks up the majority of large shifts in the price.

However, we note that more subtle shifts in price may be missed. We argue that this

is acceptable, since small shifts in price are less likely to correspond with promotions.

Before studying the multivariate changepoint analysis, it is important to consider

whether the model described in the previous section fits the data well. The model

fit for four series from the Cereal category is shown in Figure 5.4.2. We can see that

the trend and seasonality effects have been estimated well. However the model shows

some bias. We can see that sales for Sundays (orange) tend to be overestimated. Fur-

thermore, the model for the second series, overestimates the quantity sold during the
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Figure 5.4.1: Daily price for a single product with fitted changepoints. We can see

that the model picks up large changes in price that likely correspond with promotions.

Furthermore, the model does not seem to overfit changes i.e. there are not many

changes that do not seem to correspond with a promotion. Note however that more

subtle changes are missed by the algorithm (such as at the start of the data due to

the minimum segment length).

first year. These modelling issues mean that we do not have an ideal setting for apply-

ing a multivariate changepoint analysis. However, this is a significant improvement

over the raw data and, the residuals should still give a good segmentation.

The full residuals for these series are shown in Figure 5.4.3. Examining these plots

we can see that the full residuals are not always stationary. Furthermore, we can see

that the orange points are more likely to be lower than the points for other days,

reflecting the bias seen in Figure 5.4.2.

Finally, we also observe some large outliers. For example in series 2 we observe

a very small value near the middle of the series which significantly distorts the view

of the series. These very large outliers may introduce false changes in the analysis.

Therefore, before applying the changepoint analysis, we first remove these outliers.

We cannot assume the full residuals are stationary, since there may be change-

points in the data that are not due to discount effects. Therefore, we utilise windowed

median and maximum absolute deviation (mad) estimators, to get the mean and

variance at a point in time. We say a point is an outlier if it is 3.5 (mad) standard

deviations or more away from the median. The residuals for the same series after
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removing outliers are shown in Figure 5.4.4.

Finally, we note that there are some days where sales of products are unexpectedly

zero. In order to apply our multivariate changepoint analysis we require all the series

to have the same length. We treat this as a missing data problem. Therefore we

sample from our full residual model, in order to fill in values for missing dates.

We apply our changepoint analysis to the partial residuals (i.e. the sum of the

residuals and the discount effect). In this example, we just consider products in the

junior area ”Cereal”, across four different store types. This gives p = 360 series of

length n = 1478. We apply the SPOT algorithm using a cost function that detects

changes in mean and variance of normally distributed data. We set β = 4 log n and

α = 4 log p, the default penalties for this approach.

By way of example, consider the four series in Figure 5.4.4, we depict the full

multivariate changepoint analysis of these in Figure 5.4.6. The changepoints detected

by the SPOT algorithm are denoted by the dotted lines while the dashed lines indicate

changes in price as detected in the univariate analysis, which indicate promotions. The

second and fourth products feature a number of discount periods which are all located

by SPOT. The method also detects changes which are not explained by discounts. The

first and third products feature very few price changes. However, the SPOT method

still locates a large number of changes. Some of these changes can be attributed to

structure in the data not captured by the linear model. For example, the first and

third series have clear downward trends which the model reports as changes mean. We

note that there is a positive correlation between these two products. The multivariate

changepoint analysis we employ assumes independence between series. As a result,

we are more likely to report false changes due to the dependence.

The changes in price provide a ground truth for when promotions occur. We are

interested in understanding how the changes reported by SPOT and the ground truth

differ. We begin by considering how the model performs on series with a large number

of changes in price. In particular, we focus on series with between 30 and 40 changes

in price over the period. The changepoint analysis results for five series is shown in

Figure 5.4.7. In order to compare the results from the price analysis, to those from
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SPOT, we partition the changes. We say that a change in price is predicted by SPOT,

if SPOT reports a change within three days of the discount. Changes in price which

have been detected by SPOT are shown in green (dashed lines), while changes in

price which have been missed are in red (solid lines). Finally, we also report changes

detected by SPOT which do not correspond to any change in price. These are denoted

by the purple (dotted lines).

Examining the results, we can see that SPOT detects most of the changes in price.

However, there are instances where the method struggles. In particular, if changes

in price occur close to each other in the same series, the method is less effective

especially with the minimum segment length of 15 days. This is a weakness of the

SPOT method discussed in the previous chapter. This can be seen in the first few

red lines in series 1,2 and 5. SPOT often returns many more changes than there are

changes in price. There are multiple possible reasons for this. Firstly, the algorithm

may be responding to signals not fully captured by the model. For example, the

first two series have a slight trend which the model reports as a change in mean.

Secondly there may be inaccuracies due to the approximation used by SPOT. For

example, SPOT locates many changes in the third series which do not correspond to

discounts. We would expect some of these to be due to overfitting by SPOT. Finally,

some of these changes are accurate representations of the data. For example, there

are changes in the fourth series, which do not correspond to changes in price, but do

correspond with clear changes in the quantity sold. Given the abruptness and scale of

these changes, it seems likely that this product is responding to changes in the price

of similar products or some external marketing by the individual manufacturers.

We also consider series that have relatively few changes in price. SPOT performs

worse for these series. We report a large number of missed changes and few detected

changes. The method appears to estimate the changepoint location with less accuracy.

For example in the fifth series, we can see that SPOT misspecifies the location of a

large change. This is due to the fact that SPOT tries to group changes together and

a large number of series have a change near that time. We could attempt to control

this by varying the penalty values, moving away from the defaults. While this is a
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clear issue, we note that changes in price for these series are less reliable indicators of

large changes in quantity sold. For example, the second and third series do not seem

to be affected by changes in price. These may be series whose price changes do not

affect sales.

In Figure 5.4.8, we identified a series with multiple abrupt, large changes which

were unexplained by changes in price, which we shall refer to as the target product.

We would like to investigate whether or not there is any correlation between when

these changes occur and when explained changes occur for a different product. If

this correlation were strong, then we would say there is a relationship between the

products, such as competition between the products. We now explore whether this

approach works in practice. We separate the changes detected by SPOT, into changes

that are predicted by price and those that are not. Then for each series, we count the

number of predicted changes which co-occur with unpredicted changes in the series.

If this number is high, then the products should be related and vice versa. We then

sort the products by this number.

The target product is an affordable health cereal and thus we would expect changes

in other health cereals to explain the changes. In fact, we do observe a strong correla-

tion between the target product and a number of other affordable health cereals. Upon

showing these results to members of the Data Science team, we were informed that

they would expect there to be relationships between the target product and the iden-

tified products. We argue that this is evidence the method is finding actual patterns

between the products. However we note that other variants of the target product are

less predictive under this measure which is surprising, and this is potentially evidence

that the method is not accurately identifying relationships which one would expect.

In order to further examine the relationship between the target product and identified

products, we also plot the top four products and the target product in Figure 5.4.9.

We can see that these products are so predictive because they have discount periods

so frequently, thus the comparison is not necessarily appropriate. Further work could

consider whether a different measure could more accurately identify related series

from the changepoint analysis.
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5.5 Conclusion

In this chapter, we consider whether a multivariate changepoint analysis can be used

to study the impact of promotions on products unaffected by the promotion. Using

changes in price as a ground truth, we examined whether a multivariate analysis

can identify promotions that do occur. We also investigated whether there was any

interesting patterns in the changes that don’t correspond with promotions.

Our results show that a multivariate changepoint analysis reliably detects changes

in product sales due to promotions. Particularly for series where they occur frequently,

the method identified promotions with high accuracy. Furthermore the segmentation

locates changes in products that are not affected by promotions. These changes

are particularly interesting as they may indicate relationships between products. We

investigated a simple approach for identifying such relationships given a segmentation.

Using domain knowledge provided by the Data Science team, we validated that this

approach may in fact identify real relationships between products. However we note

that the evidence was mixed and the true relationships we detected may have been

identified by chance.

We note that there was a significant challenge with this approach. The method

reported a large number of changes where no promotion occured, especially for series

with few promotions. In some cases, these changes may correspond with interesting

changes (i.e. changes due to a promotion in a related product), however they may

also be caused by overfitting changes. There are two possible causes for overfitting

of changes. Firstly, extra changes may be fitted due to approximation error in the

fitting method. Secondly, there may be extra structure in the data, not captured by

the model, which induces changes. It is challenging to separate overfitted changes

from interesting changes without examining each product individually. As a result,

it is difficult to determine whether or not, interesting patterns occur in the changes

that do not correspond to promotions.

Future work may want to consider, whether a more complex model for the data

can reduce the issue of overfitting changes, without reducing the accuracy of the
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changepoint estimates. Consideration of a joint estimation of the global and local

parameters may have benefits here. Furthermore a significant difficultly with a mul-

tivariate changepoint analysis, is the difficulty in understanding the output given

that only a small subset of the analysed series can be visually examined. Therefore,

it may be worthwhile investigating new ways of plotting and analysing multivariate

changepoint output.



Chapter 6

Changes in Covariance

6.1 Introduction

Data of increasing size and complexity are being collected in an ever growing list of

fields. A common issue in handling such data is that the underlying distributional

properties can change over time. Statistical models must take account of this hetero-

genity for accurate inference. One approach is to assume that the changes occur at

a small number of discrete time points known as changepoints. Changepoint meth-

ods are relevant in a wide range of applications including genetics (Hocking et al.,

2013), network traffic analysis (Rubin-Delanchy et al., 2016) and oceanography (Carr

et al., 2017). We consider the specific case where the covariance structure of the

data changes at each changepoint. This problem is relevant in a number of applica-

tions. For example, Stoehr et al. (2020) examine changes in the covariance structure

of functional Magnetic Resonance Imaging (fMRI) data, where a failure to satisfy sta-

tionarity assumptions can significantly contaminate any analysis. Furthermore, Wied

et al. (2013) and Berens et al. (2015) examine how detecting changes in the covariance

structure of financial time series can be used to improve stock portfolio optimisation.

The changepoint problem has a long history in the statistical literature, dating

back at least as far as Page (1954). The literature contains two distinct but closely

related problems, online changepoint detection and offline changepoint detection. On-

line changepoint detection considers the case where data is observed sequentially over

111
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time and the aim is to detect any changes as quickly as possible. In the offline set-

ting, the data is observed as a single batch and we aim to locate potentially multiple

changepoints. We focus on the latter problem however, readers interested in the

former should see Tartakovsky et al. (2014) for a thorough review.

The literature on detecting changes in multivariate time series has grown substan-

tially in the last few years. In particular, many authors consider changes in the high

dimensional setting, that is, where the number of the parameters of the model, is sig-

nificantly larger than the number of data points. Much of this work considers changes

in expectation where the series are uncorrelated (Grundy et al., 2020; Horváth and

Hušková, 2012). Furthermore a number of authors have examined changes in ex-

pectation where only a subset of variables under observation change (Enikeeva and

Harchaoui, 2019; Jirak et al., 2015; T. Wang and Samworth, 2018). Separately a

number of authors have considered changes in second order structure of high dimen-

sional time series models including auto-covariance and cross-covariance (Cho and

Fryzlewicz, 2015), changes in graphical models (Gibberd and Nelson, 2014, 2017) and

changes in network structure (D. Wang, Yu, and Rinaldo, 2018).

The problem of detecting changes in the covariance structure has been examined

in both the low dimensional and high dimensional setting. In the low dimensional

setting J. Chen and Gupta (2004) and Lavielle and Teyssiere (2006) utilise a likelihood

based test statistic and the Schwarz Information Criterion (SIC) to detect changes

in covariance of normally distributed data. Aue, Hörmann, et al. (2009) consider

a nonparameteric test statistic for changes in the covariance of linear and non-linear

multivariate time series. Matteson and James (2014) study changes in the distribution

of (possibly) multivariate time series using a clustering inspired nonparametric test

statistic that claims to handle covariances. In the high dimensional setting, Avanesov

and Buzun (2018) and D. Wang, Yu, and Rinaldo (2017) study test statistics based

on the distance between sample covariances, utilising the operator norm and `∞ norm

respectively.

In this work, we propose a novel method for detecting changes in the covariance

structure of high dimensional time series. We study a test statistic inspired by a
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distance metric intuitively defined on the space of positive definite matrices. The

primary advantage of this metric is that under the null hypothesis of no change, it

is independent of the underlying covariance structure which is not the case for other

methods in the literature. Using results from Random Matrix Theory (RMT), we

study the asymptotic properties of this test statistic, when the dimension of the data

is of comparable size to (but still smaller than) the sample size. The structure of this

discussion is as follows. In Section 6.2, we discuss an important limitation of current

state of the art methods, and introduce a two sample test statistic that does not

suffer this limitation. In Section 6.3, we derive an asymptotic distribution for the test

statistic using Random Matrix Theory (RMT). In Section 6.4, we discuss how this

test statistic can be used to detect changes in the covariance structure of time series.

In Section 6.5, we study the finite sample performance of our approach on simulated

datasets and compare it with other state of the art methods. Finally in Section 6.6,

we use our method and other state of the art methods to examine how changes in the

covariance structure of pixel intensities can be used to detect changes in the amount

of water on the surface of a plot of soil.

6.2 Two Sample Tests for the Covariance

Let X1, . . . ,Xn ∈ Rp be independent p dimensional vectors with

Cov (Xi) = Σi,p, for 1 ≤ i ≤ n. (6.2.1)

where each Σi,p ∈ Rp×p is full rank. Furthermore, let Xn,p denote an n × p matrix

defined by Xn,p := (XT
1 , . . . ,X

T
n ). Our primary interest in this paper is to develop a

testing procedure that can identify a change in the covariance structure of the data

over time. For now, let us consider the case of a single changepoint. We compare a

null hypothesis of the data sharing the same covariance versus an alternative setting

that allows a single change at time τ . Formally we have

H0 :Σ∗0 = Σ1,p = · · · = Σn,p (6.2.2)

H1 :Σ∗1 = Σ1,p = · · · = Στ,p 6= Στ+1,p = · · · = Σn,p = Σ∗2, (6.2.3)
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where τ is unknown. We would like to be able to distinguish between the null and

alternative hypothesis, and locate the changepoint τ under the alternative. We are

interested in the setting where the dimension of the data p, is of comparable size to

the length of the data, n. In particular, we require that for all pairs n, p, the set

Tn,p(α) := {t ∈ Z+ such that p+ α < t < n− p− α} (6.2.4)

is non empty, where α ∈ Z+ is a problem dependent positive constant. Note Tn,p(α)

defines the set of possible candidate changepoints, while p + α is the minimum dis-

tance between changepoints or minimum segment length. Then for each candidate

changepoint t ∈ Tn,p(α), a two sample test statistic T (t) can be used to determine if

the data to the left and right of the changepoint have different distributions. If the

two sample test statistic for a candidate exceeds some threshold, then we say a change

has occured and an estimator for τ is given by the value t ∈ Tn,p(α) that maximises

T (t).

Let Σ̄(·, ·) be a sample covariance estimator defined as follows,

Σ̄(p, q) :=
1

q − p

q∑
i=p+1

XiX
T
i .

For a given changepoint candidate τ , we can detect whether a change has occured by

measuring the distance between the sample covariance estimates, Σ̄(0, τ) and Σ̄(τ, n).

A natural choice for the distance measure is given by the magnitude of the matrix

Σ̄(0, τ) − Σ̄(τ, n). Indeed, we can express three of the most important test statistics

in the literature, Aue, Hörmann, et al. (2009), Avanesov and Buzun (2018), and D.

Wang, Yu, and Rinaldo (2017) as,

max
`<τ≤n−`

‖ατ,1Σ̄(0, τ)− ατ,2Σ̄(τ, n)‖, (6.2.5)

where {γτ,1}n−ατ=α+1, {γτ,2}n−ατ=α+1 are sequences of normalizing constants, α is the mini-

mum segment length and ‖·‖ is some norm which measures the size of the difference

matrix (such as the operator norm or infinity norm), .

The difference matrix above may seem like an intuitive approach to detect change-

points, however it can be difficult to use in practice. Under the null hypothesis, we
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can express (6.2.5) as

max
α<τ≤n−α

‖Σ
1
2
0 (W1 −W2)‖

where W1 ∼ Wp(τ, I) and W2 ∼ Wp(n − τ, I) and Wp(t,V ) is the p dimensional

Wishart distribution with t degrees of freedom and scale matrix V . As a result, the

scale of the difference matrix is a function of the underlying covariance, Σ0, and a test

statistic based on the difference matrix must be corrected to account for this. For

example, Aue, Hörmann, et al., 2009 normalize their test statistic using the sample

covariance for the whole data, Avanesov and Buzun, 2018 use a bootstrap procedure

which assumes knowledge of Σ0 and D. Wang, Yu, and Rinaldo, 2017 use a threshold

which is a function of Σ0. All these approaches require estimating Σ0 in practice. This

is impractical under the alternative setting, since estimating the segment covariances

requires knowledge of the changepoint.

Therefore, it is natural to ask whether there are alternative ways of measuring the

distance between covariance matrices. In the univariate setting, a common approach

is to evaluate the logarithm of the ratio of the segment variances (J. Chen and Gupta,

1997; Inclan and Tiao, 1994; Killick, Eckley, et al., 2010). This is in contrast with the

change in expectation problem where it is more common to measure the difference

between sample means. In the variance setting, a ratio is more appropriate for two

reasons. Firstly, since variances are strictly positive, if the underlying variance is

quite small then the absolute difference between the mean values will also be small

whereas the ratio is not affected. Secondly, under the null hypothesis of no change,

the variances will cancel and the test statistic will be independent of the variance.

Thus, there is no need to estimate the variance when calculating the threshold.

We propose to extend this ratio idea from the univariate setting to the multivariate

setting by studying the multivariate ratio matrix,

R(A,B) := (BTB)−1ATA, (6.2.6)

where A ∈ Rn×p and B ∈ Rm×p. Ratio matrices are widely used in multivariate

analysis to compare covariance matrices (Finn, 1974). In particular, we are often

interested in functions of the eigenvalues of these matrices (Lawley, 1938; Potthoff
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and Roy, 1964; Wilks, 1932). Here we are interested in the following test statistic,

T (A,B) =

p∑
j=1

(1− λj(R(A,B)))2 +
(
1− λ−1

j (R(A,B))
)2
, (6.2.7)

where λj(R(A,B)) is the jth largest eigenvalue of the matrix R(A,B).

The proposed test statistic has two valuable properties that may not be immedi-

ately obvious. Firstly it is symmetric i.e T (X1,X2) = T (X2,X1). This is impor-

tant for a changepoint analysis as the segmentation should be the same regardless

of whether the data is read forewards or backwards. Secondly, the distribution of

the test statistic, T (X1,X2) is independent of the covariances of X1 and X2, if the

covariances of these matrices are equal. This is extremely valuable in the changepoint

setting as under the null hypothesis of no change, the two samples will have the same

covariance and thus the test statistic for each candidate will not depend on the un-

derlying covariance Σ0. Therefore this test statistic has the same useful properties

that the ratio approach has in the variance setting. The following result demonstrates

that the test statistic in (6.2.7) does indeed have these properties.

Proposition 6.2.1. Let X1 ∈ Rn1×p and X2 ∈ Rn2×p be random matrices drawn

from some distribution L1 with covariance Σ. Then we have that

1. T (X1,X2) = T (X2,X1) (Symmetry)

2. The distribution of T (X1,X2) does not depend on the covariance matrix Σ

Proof. Proof in Appendix C.2.

Note test statistics that can be expressed via equation (6.2.5) do not have this

property. However these properties are clearly not unique to our chosen test statistic

T , and there are many other possible choices (such as log2 x).

It is both possible and interesting to study the properties of this test statistic in

the finite dimensional setting (i.e. where p is fixed). However in this work, our focus

is on high dimensional problems where the dimension of the data is of comparable size

to the length of the data. In the next section, we consider the properties of this test

statistic as a two sample test under the null hypothesis of no change and compute the
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Figure 6.3.1: Test statistic T defined in (6.2.7) applied to a 100 different data sets

before (left) and after standardisation (right) using (6.3.4) under the null setting (top)

and alternative setting (bottom) with n = 2000, p = 100 and τ = 666.

asymptotic moments of the distribution using results from Random Matrix Theory.

We have chosen T as it is possible to compute these moments analytically, which is

not true for other functions.

6.3 Random Matrix Theory

We now describe some foundational concepts in Random Matrix Theory (RMT),

before discussing how these ideas are utilised to identify the asymptotic distribution

of our test statistic under the null hypothesis. RMT concerns the study of matrices

where each entry is a random variable. In particular, RMT is often concerned with

the behaviour of the eigenvalues and eigenvectors of such matrices. Interested readers

should see Tao (2012) for an introduction and Anderson et al. (2010) for a more

thorough review.

A key object of study in the field is the Empirical Spectral Distribution (ESD),
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defined for a p× p matrix A as

FA(x) :=
1

p

p∑
j=1

I(λp−j(A) ≤ x) (6.3.1)

where I is an indicator function. In other words, the ESD of A is a discrete uniform

distribution placed on the eigenvalues of A. Several authors have established results

on the limiting behaviour of the ESD as the dimension tends to infinity, the so called

Limiting Spectral Distribution (LSD). For example, Wigner (1967) demonstrate that

if the upper triangular entries of a Hermitian matrix A have mean zero and unit

variance, then F 1/
√
pA(x) converges to the Wigner semicircular distribution.

The LSD of the ratio matrix, defined in (6.2.6), was shown to exist in Yin et al.,

1983 and computed analytically in Silverstein, 1985. The following two assumptions

are sufficient for the LSD of an F matrix to exist.

Assumption 6.3.1. Let Xn1,p ∈ Rp×n1 and Xn2,p ∈ Rp×n2 be random matrices with

independent not necessarily identically distributed entries {Xn1,i,j, 1 ≤ i ≤ n1, 1 ≤ j ≤

p} and {Xn2,k,j, 1 ≤ k ≤ n2, 1 ≤ j ≤ p} with mean 0, variance 1 and fourth moment

1 + κ. Furthermore, for any fixed η > 0,

1

n1p

p∑
j=1

n1∑
i=1

E|Xn1,i,j|4I(|Xn1,j,k| ≥ η
√
n1)→ 0 (6.3.2)

1

n2p

p∑
j=1

n2∑
i=1

E|Xn2,i,j|4I(|Xn2,j,k| ≥ η
√
n2)→ 0 (6.3.3)

as n1, n2, p tend to infinity subject to Assumption 6.3.2.

Assumption 6.3.2. The sample sizes n1, n2, and the dimension p grow to infinity

such that

γn1 :=
p

n1

→ γ1 ∈ (0, 1), γn2 :=
p

n2

→ γ2 ∈ (0, 1) and γ := (γ1, γ2).

For simplicity, we will refer to the limiting scheme described in Assumption 6.3.2

as n→∞.

Let Xn1,p,Xn2,p be matrices satisfying Assumptions 6.3.1 and 6.3.2. Furthermore,

let Fn denote the ESD of R(Xn1,p,Xn2,p). Then Silverstein, 1985 demonstrate that
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Fn converges almost surely to the non random distribution function

Fγ(dx) =
1− γ2

2πx(γ1 + γ2x)

√
(b− x)(x− a)I[a,b](x)dx as n→∞

where

a =
(1− h)2

(1− γ2)2
, b =

(1 + h)2

(1− γ2)2
, h =

√
γ1 + γ2 − γ1γ2.

The LSD, Fγ provides an asymptotic centering term for functions of the eigenvalues

of random ratio matrices. In particular, for any function f , we have that,

EFn (f) =
1

p

p∑
i=1

f(λi(R(Xn1,p,Xn2,p)))→
∫
f(x)dFγ(x) = EFγ (f) as n1, n2, p→∞

by the definition of weak convergence. This allows us to account for bias in the

statistic as seen in Figure 6.3.1.

The rate of convergence of |EFn (f)− EFγ (f)| to zero was studied in Zheng, 2012

and found to be 1/p. In particular, the authors establish a central limit theorem for

the quantity,

Gn(x) := p [Fn(x)− Fγ(x)] .

We can apply this result to our problem in order to demonstrate that our two sample

test statistic converges to a normal distribution with known mean and variance terms.

Theorem 6.3.1. Let Xn1 ∈ Rn1×p and Xn2 ∈ Rn2×p be random matrices satisfying

Assumptions 6.3.1 and 6.3.2 and T (,̇)̇ be defined as in (6.2.7). Then we have that as

n→∞,

T (Xn1 , Xn2)− p
∫
f ∗(x)dFγ(x)→ N(µ(γ), σ2(γ))

where

f ∗(x) = (1− x)2 + (1− 1/x)2

µ(γ) = 2K3,1

(
1− y2

2

h2

)
+

2K2,1y2

h
+ 2K3,2

(
1− y2

1

h2

)
+

2K2,2y1

h
1

2
σ2(γ) = K2

2,1 + 2K2
3,1 +K2

2,2 + 2K2
3,2+

J1K2,1

h
+

J1K2,1

h(h2 − 1)
− J1K3,1(h2 + 1)

h2
− J1K3,1

h2(h2 − 1)
+

J2K2,12h

(h2 − 1)3
+
J2K3,1

h2
+
J2K3,1(1− 3h2)

h2(h2 − 1)3
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and

K3,1 =
h2

(1− y2)4
, K2,1 =

2h(1 + h2)

(1− y2)4
− 2h

(1− y2)2
,

K3,2 =
h2

(1− y1)4
, K2,2 =

2h(1 + h2)

(1− y1)4
− 2h

(1− y1)2
,

J1 = −2(1− y2)2 and J2 = (1− y2)4

h =
√
y1 + y2 − y1y2, y1 =

p

n1

and y2 =
p

n2

.

Proof. Proof in Appendix C.2.

Using Theorem 6.3.1, we can properly normalise T such that it can be applied to

a changepoint analysis. In particular, we have that under the null hypothesis

T (Σ̄(0, t), Σ̄(t, n))− p
∫
f ∗(x)dFγt/n → N(µ(γt/n), σ2(γt/n)) (6.3.4)

as n, p tend to infinity, where γt/n := (p/t, p/(n− t)) and f is as defined in Theorem

6.3.1. Thus we utilise the normalised test statistic, T̃ ,

T̃ (t) := σ−1/2(γt/n)

(
T (Σ̄(0, t), Σ̄(t, n))− p

∫
f ∗(x)dFγt/n − µ(γτ/n)

)
,

which under the null hypothesis converges pointwise to a standard normal random

variable.

The asymptotic moments of the test statistic, T , depend on the parameter γt/n,

and as t approaches p (or equivalently n−p) the mean and variance of the test statistic

dramatically increase. In the context of changepoint analysis, this implies that the

mean and variance increase at the edges of the data. We note that this is a common

result for changepoint test statistics. We can significantly reduce the impact of this

by the above standardisation. This can be seen empirically in Figure 6.3.1. After

standardisation, the test statistics for the series with no change, do not appear to

have any structure. Similarly, the test statistics for the series with a change show a

clear peak at the changepoint. Importantly we can now easily distinguish the test

statistic under the null and alternative hypotheses, and this normalization does not

require knowledge of the underlying covariance structure.
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6.4 Practical Considerations

Before we can apply our method to real and simulated data, we need to address three

practical concerns. In particular, we need to choose a threshold for rejecting the

null hypothesis of no change, determine an appropriate minimum segment length and

address the issue of multiple changepoints.

6.4.1 Threshold for Detecting a Change

Firstly, we need to select an appropriate threshold for determining whether or not

to reject the null hypothesis. We choose to utilise the asymptotic distribution of the

test statistic, and assume independence between the test statistic value for different

candidates. In particular, we say that

max
α<t<n−α

T̃ (t) ≈ max
α<t<n−α

Zt

where Zt are standard normal variables. Thus, we need to choose a threshold, βn,

dependent on the length of the data, such that

P

(
max

α<t<n−α
Zt > βn

)
→ 0 as n→∞.

Note however, that if we choose β to be too large then our method will be overly

conservative. Motivated by results from univariate changepoint analysis (Csorgo and

Horváth, 1997), we choose β = log(n) to balance these competing priorities. As we

shall see in the simulation study, this choice gives high probability of detection with

a low risk of false positives.

6.4.2 Minimum Segment Length

Secondly, we must also consider an appropriate choice for the minimum segment

length parameter, α. In many applications, domain specific knowledge may be used

to increase this parameter. However, it is also important to consider the smallest

value that will give reliable results in the general case. The minimum segment length

must grow sufficiently fast to ensure that T̃ (t) converges to a normal distribution.
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Figure 6.4.1: Histogram of values of max
α<t<n−α

T̃ (t) applied to 100 datasets of length

n = 2000 with no change for p = {10, 20, 50, 100} with α = p (top) and α = 4p

(bottom).

Outside the asymptotic regime, it is possible for the ratio matrix to have very large

eigenvalues. Thus for candidate changepoints t close to p (or by symmetry n−p), the

probability of observing spuriously large values of T̃ (t) becomes much larger. This

can be seen in Figure 6.4.1. When α = p (the smallest possible value), we observe

extremely large values of the test statistic that would make identifying a true change

almost impossible. On the other hand, when α = 4p, the test statistic behaves more

reliably.

We need p/(p + αn,p) to converge to γα ∈ (0, 1) or equivalently αn,p = O(p) for

the asymptotic results to hold. However it is important that αn,p not be too small

in the finite sample setting as this may significantly limit the types of datasets that

we can apply the method to. Therefore, we require a sequence αn,p that appropriate

manages this trade off. In Section 6.5, we analyse the effect of different sequences

in the finite sample setting via a simulation study. D. Wang, Yu, and Rinaldo, 2017

choose . We demonstrate that the sequence proposed by D. Wang, Yu, and Rinaldo,

2017, αn,p = p log n, is also appropriate for our setting producing a low false positive

rate. However, we find that it is quite conservative for larger values of p.
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6.4.3 Multiple Changepoints

Finally, we also consider the extension to multiple changes. In this setting, we have a

set of m unknown ordered changepoints, τ := {0 = τ0, τ1, . . . τm, τm+1 = n} such that,

Σi = Σ∗k, τk < i ≤ τk+1, 1 ≤ k ≤ m+ 1,

where Σt is the covariance matrix of the ith vector. We are interested in estimating

the number of changes m, and the set of changepoints τ . The classic approach to

this problem is to extend a method defined for the single changepoint setting to the

multiple changepoint setting, via an appropriate search method such as dynamic pro-

gramming (Killick, Fearnhead, et al., 2012) or binary segmentation (Scott and Knott,

1974). For this work, we do not consider the dynamic programming approach. The

dynamic programming approach minimises the within segment variability through a

cost function for each segment. This is not compatible with our approach which max-

imises the distance between segments. Therefore, for our simulations with multiple

changepoints, we utilise the classic binary segmentation procedure.

The binary segmentation method extends a single changepoint test as follows.

Firstly, the test is run on the whole data. If no change is found then the algorithm

terminates. If a changepoint is found, it is added to the list of estimated changepoints,

and the binary segmentation procedure is then run on the data to the left and right of

the candidate change. This process continues until no more changes are found. Note

the threshold β, and the minimum segment length α, remain the same.

Finally, we note that a number of extensions of the traditional binary segmentation

procedure have been proposed in recent years (Fryzlewicz, 2014, 2020; Olshen et al.,

2004). We do not use these search methods in our simulations, as they incorporate

additional hyperparameters that affect performance. However it is not difficult to

incorporate our proposed test statistic into these methods.
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6.5 Simulations

In this section, we compare our method with other state of the art methods in the

literature, namely the methods of Aue, Hörmann, et al., 2009; Avanesov and Buzun,

2018; D. Wang, Yu, and Rinaldo, 2017. Software implementing these methods is

not currently available and as a result, we have implemented each of these methods

according to the descriptions in their respective papers. More complete descriptions

of these methods are provided in Section 2.3.2. The methods have been implemented

in the R programming language.

Simulation studies in the current literature for changes in covariance structure are

very limited. D. Wang, Yu, and Rinaldo, 2017 do not include any simulations. Aue,

Hörmann, et al., 2009; Avanesov and Buzun, 2018 only consider the single changepoint

setting, and do not consider random parameters for the changes. Furthermore to

our knowledge, no papers compare the performance of different methods. While

theoretical results are clearly important, it is also necessary to consider the finite

sample performance of any estimator, and we now study the finite sample properties

of our approach on simulated datasets. For all our simulations, we sample an initial

covariance matrix, Σ0 from a Wishart distribution with diagonal covariance. For the

ith changepoint, we sample a positive definite transition matrix ∆i as follows,

Wi ∼Wishart(Ip, p) Wi = QiRi

λj(∆i) ∼ Gamma(5, 0.2) ∆i = QT
i ΛiQi

where Λi is a diagonal matrix with Λjj = λj. Note taking the QR decomposition

from a random Wishart is equivalent to uniformly sampling from the set of real

valued orthonormal matrices. The Gamma distribution was chosen to ensure that

the eigenvalues are positive, and that the determinant of the matrix does not get too

large or small. The covariance matrix for the new segment is given by,

Σi = ∆
1/2
i Σi−1∆

1/2
i .

Throughout this section, the significance thresholds for each method are set as

follows unless otherwise stated. The threshold for our method is set to the default



CHAPTER 6. CHANGES IN COVARIANCE 125

setting of log n as discussed in the Section 6.5. In Remark 2.1, Aue, Hörmann, et al.,

2009 state that the asymptotic distribution of their test statistic after standardisa-

tion can be approximated by a standard normal distribution. Therefore we set the

threshold for detecting a change to be the 95% quantile or 1.96. Note this could be

increased, reducing the probability of overfitting changes but also reducing the power

of the method. This approach also requires a plug in estimator for the long run co-

variance of the vectorized second moment of the data. Since there is no temporal

structure in the simulated datasets we consider, this long run covariance is exactly

the covariance of the vectorized second moment and we use the empirical estimate as

our plug in estimator. This should improve the performance of the method compared

with a generic plug in estimator for the long run covariance. This matrix has dimen-

sion p(p + 1)/2 where p is the dimension of the data, and must be inverted which

significantly limits the size of datasets we can consider with this method. As a result,

we do not include this method in simulations with large datasets.

D. Wang, Yu, and Rinaldo, 2017 do not provide a practical default threshold for

their method, instead providing an interval of consistent thresholds which is defined by

theoretical quantities such as the minimum size of a change, the minimum distance

between changes and a bound on the tails of the data, B. A lower bound on the

minimum threshold is given by B2
√
p log n. The value B bounds the square root

of the largest eigenvalue of the covariance of the underlying data, which implies the

largest eigenvalue is a lower bound for B. Note this value is not available in practice

so we approximate this quantity with the largest eigenvalue of the data. Thus a

lower bound for the threshold is given by λmax(X)
√
p log n. Again if this value was

increased, the method would lose power but be less likely to overfit changes.

The rest of the section is structured as follows. We begin by assessing the chosen

default values for the minimum segment length parameter and threhold for determin-

ing a change proposed in Section 6.4. We then study the properties of our method

and previously discussed methods in the single changepoint setting, considering both

random and fixed changepoint locations. Finally we examine the performance of the

different methods in the multiple changepoint setting.
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6.5.1 Assesment of minimum segment length and threshold

In order to control the false positive rate of the method, we need appropriate choices

of the minimum segment length, α, and the threshold, β. In the previous section, we

proposed a default value of β = log n. For this threshold to be appropriate, it should

produce a low false positive rate, that goes to 0 as n grows. We generated 100 datasets

of length n = {200, 500, 1000, 2000, 5000, 10000} and p = {3, 5, 10, 20, 50, 100} and

applied the proposed method to each. We set αn,p = p log n for all scenarios.

The results of this analysis can be seen in Figure 6.5.1. We can see that for all

values of p, the FPR decreases as n grows. However, we do note that the FPR is

higher for smaller values of p. This is likely due to the fact that, for small values

of p, the test statistic has not reached the limiting regime and thus, the threhold is

misspecified.

From the above experiments we can see that, setting α = p log n suitably controls

the FPR. However, this may be overly conservative. For large values of p, this min-

imum segment length becomes very large. Therefore, it is worthwhile investigating

whether lower values can be used. With this in mind, we repeated the experiment

with αn,p = 1.5p. The results of this analysis can be seen in Figure 6.5.1. For small

and moderate values of p, this produces a much larger FPR. However for large values

(p >= 20), the method performs equally well. This indicates that for large values of

p, smaller values of α can be considered. In settings where smaller values of α are

required, it is necessary to ensure that the results are robust to small changes in the

value of α.

6.5.2 Single Changepoint

We now compare our approach with some state of the art methods Aue, Hörmann,

et al., 2009; Avanesov and Buzun, 2018; D. Wang, Yu, and Rinaldo, 2017, which are

labelled in graphs as Aue, Av.Buzun and Wang. Our approach is labelled Ratio i.e.

Ratio matrix. For all our simulated examples, we let the minimum segment length or

distance between changes be 2p log n as this is required by the method of D. Wang,
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Figure 6.5.1: (a) False postive rate for our approach for 100 datasets with no change

with αp,n = p log n; (b) Same with αp,n = 1.5p.

Yu, and Rinaldo, 2017.

We compare the four approaches on a set of 100 datasets with a change at τ =

bn/3c. We consider two settings with the first case having a moderate value for p

(p = 15, n = 500), and the second case having a larger value for p (p = 100, n = 2000).

Importantly in the second setting, we should be closer to the asymptotic regime for

our method as n and p are larger. For each dataset we computed the test statistic

as well as the difference between the truth and the changepoint estimates for each

method. Note that the method of Aue, Hörmann, et al., 2009 is not computable for

the p = 100 case, and as a result is not included for this case. The results of this

simulation can be seen in Figure 6.5.2.

In the small p case, our approach and the method of Aue, Hörmann, et al., 2009

clearly outperform the other methods. Looking at Figure 6.5.2 (a), the methods la-

belled Wang and Av.Buzun are very poorly peaked indicating they have not detected

a change. On the other hand, the methods labelled Aue and Ratio have large peaks in-

dicating clear localization of the change. Neither the Wang nor the Av.Buzun method

accurately locates the changepoints as can be seen in Figure 6.5.2 (b). However the

Av.Buzun method performs particularly poorly. It is not entirely clear why this is the

case, however we offer two possible explanations. Firstly the method was developed
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for the truly high dimensional setting and thus may lack power in this application.

Secondly the method incorporates hyperparameters which we set to default settings.

The method may be more effective if these were fine tuned to the problem. Finally

we note that our approach gives the most accurate changepoint estimates in terms of

concentration around the true value. This is likely due to the fact that the Aue test

statistic decays slowly after the change, which leads to changepoint estimates which

are biased to the right.

In the large p setting (Figure 6.5.2b), the proposed Ratio approach clearly out-

performs the Wang method. As in the low dimensional case, the Wang test statistic

is nearly completely flat and fails to estimate the changepoint location, while the Av

Buzun method completely fails to detect any signal. On the other hand, our ap-

proach is clearly peaked and gives very accurate changepoint estimates. However we

note that there is a slight bias to the right in the changepoint location.

In order to further compare these approaches, we also apply the methods to ex-

amples with a single changepoint at a random location. We generated 1000 datasets

of length n = {200, 500, 1000, 2000, 5000} and p = {3, 5, 10, 20, 50, 100}, where the

change is sampled uniformly over {bp log nc+ 2, . . . , n− bp log nc}. For each dataset

and method we computed a changepoint candidate (ignoring whether the change was

significant or not). We then calculated the error in estimating the changepoint loca-

tion as the absolute difference between the true change and the estimate. The results

for the different approaches are shown in Figure 6.5.3. We can see that for larger

values of n and p, our approach gives estimates with the lowest error. The error

for our approach reduces substantially as p increases. This is very clear for p ≥ 10,

however there is also a substantial improvement going from p = 3 to p = 10. This

improvement is not seen in the other methods.

6.5.3 Multiple Change Points

We now explore the performance of our method on simulated data sets with multiple

changepoints. We begin by defining our performance metrics. Firstly throughout

we use we use τ := {τ1, . . . , τm} and τ̂ := {τ̂1, . . . , τ̂m̂} to denote the set of true
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Figure 6.5.2: (a) Test statistic at each time point from a 100 different data sets

under the alternative setting with p = 15, n = 500 and a changepoint at n/3. (b)

Histogram of the difference between the estimated changepoint location and the true

changepoint. (c) Same as (a) for p = 100 and n = 2000. (d) Same as (b) for p = 100

and n = 2000.
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Figure 6.5.3: Mean absolute difference between the estimated and true changepoint

locations from 100 different data sets (ignoring whether the changepoint is significant)

for three different methods over increasing values of p and n.

changepoints and the set of estimated changepoints respectively. A common approach

for evaluating changepoint methods is to examine true and false discovery rates. We

say that the changepoint τi has been detected correctly if

min
1≤j≤m̂

|τ̂j − τi| ≤ h.

Note that this is an adaptation of the changepoint location error used in the previous

section for the multiple changepoint setting. Throughout this section, we set h = 20

although it should be noted that in reality the desired accuracy would be application

specific and while the specific values vary with h, the conclusions of the study do

not. We denote the set of correctly estimated changes by τc. Then we define the true

discovery rate (TDR) and false discovery rate (FDR) as follows,

TDR :=
|τc|
|τ |

, FDR :=
|τ̂ | − |τc|
|τ̂ |

.

We also consider whether or not the resulting segmentation allows us to estimate the

true underlying covariance matrices. Therefore for each method, we also compute the

mean absolute error (MAE) and spectral mean absolute error (SMAE) as follows,

MAE :=
1

n

n∑
i=1

‖Σ̂i − Σi‖1 and SMAE :=
1

n

n∑
i=1

p∑
j=1

|λj(Σ̂i)− λj(Σi)|

We consider datasets with 5 changepoints uniformly sampled with minimum seg-

ment length p log n, where p = {5, 10, 20, 50, 100} and n = {200, 500, 1000, 2000, 5000}.
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Figure 6.5.4: Each error bar gives a bootstraped 95% confidence intervals for the

average error for that method across 1000 replications each with 4 changepoints.

Note our approach out performs the others across almost all parameter combinations.
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The true covariance matrices are generated as in the previous section. For each (n, p)

pair, we generated 1000 datasets and applied our method, the Aue method and the

Wang method to each dataset. As it performed so poorly in the single changepoint

setting, we do not include the Av.Buzun method in this simulation. Furthermore for

p = 50, the minimum segment length for the Aue method is 1275, which means the

minimum data length is 6375. This is longer than the longest data set we consider.

Therefore we do not run the Aue method for p > 50. Using the resulting segmen-

tations, we then calculated the error metrics for each method. In order to compare

the different approaches in a statistically sound manner, we calculated confidence in-

tervals for the mean error across the replications for each method and (n, p) pair via

bootstrap resampling. If there is no overlap in the confidence intervals then there is

a statistically significant difference in the average error for the methods.

The results of this analysis are shown in Figure 6.5.4. The worst performer across

all metrics is the Wang method. Notably the true positive rate for the method de-

creases as p grows. This is in striking contrast with the other methods which become

more accurate for larger values of p as one may expect. This may be due to the fact

that, the Wang method only considers the first principal component of the difference

matrix, ignoring the remainder of the spectrum. For larger values of p, this quan-

tity may account for less of the overall change. Furthermore, the method also has

the highest false positive rate, indicating that adapting the threshold would not lead

to more accurate changepoint estimates. The Aue method outperforms the Wang

method and is competitive with our approach for small values of n and p. However

for larger values of n and p, our method outperforms it with higher TPR and much

lower FPR. Importantly, the FPR for the Aue method increases with n. This is due

to the fact that the threshold is based on the asymptotic distribution and does not

take the length of the data into account.
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6.6 Application: Detecting changes in moisture lev-

els in soil

In this section, we investigate whether changes in the covariance structure of soil data

correspond with shifts in the amount of moisture in the soil. There is significant

interest in developing new techniques to better understand how water is absorbed

and travels through soil. This is an important question and is relevant to a variety of

industrial applications such as farming and construction (Hillel, 2003). An important

challenge in this area is measuring the level of moisture in the soil. A widely used

approach is to place probes at different depths and locations in the soil which measure

the level of moisture. However this approach has a number of limitations. Firstly we

only measure soil near the probe, which means a lot of information is lost. Secondly

the probes do not give any information about what happens at the surface. This

issue becomes particularly important if the soil is very dry as moisture can struggle

to move through dry soil and the water can stay on the surface. Similarly when the

soil reaches saturation water can also stay on the surface. How fast water drains from

the surface is indicative of the moisture level of the soil. To measure this across a site

more easily, scientists are investigating the use of cameras to capture the soil surface.

We analyse images from an experiment studying moisture on the surface of the

soil. A camera was placed over a large plot of soil and took a set of 589 pictures

over a day. Examples of these photos can be seen in Figure 6.6.1. At different times,

different amounts of rainfall are simulated and the amount of water on the soil surface

changes. This is particular obvious in the small trench that runs through the center

of the plot. At different times during the observation period, streams of water of

different volumes appear in the trench. We wish to segment the data based on the

flow of the stream, partitioning the data into wet and dry periods.

The intensity of a set of pixels over time is shown in Figure 6.6.2 . We can see

that the mean level is clearly nonstationary. This nonstationary behaviour may be

attributed to two causes, changes in the background light intensity (due to a cloud

passing by) and changes in the wetness of the soil which changes how much light



CHAPTER 6. CHANGES IN COVARIANCE 134

Figure 6.6.1: Soil at different times with different levels of moisture. The soil starts

off dry and then at different times varying amounts of moisture are added. The red

dots indicate the 30 pixels we analyse for changes in covariance.

Figure 6.6.2: (a) Raw grayscale intensities for three pixels. (b) Standardised intensi-

ties for the same three pixels.
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is reflected. Since changes in the mean intensity are not necessarily associated with

changes in the wetness, we instead focus on changes in the covariance structure. When

pixels become wet, we expect that the correlation between the pixels should increase

as they become more alike as the surface becomes uniformly water instead of the

variable soil surface. Thus changes in the covariance structure of the pixels may

correspond with changes in the wetness.

The data consists of 589 images with resolution 1480× 690. The original pictures

are in colour but were transferred to grayscale for computational purposes. Each

pixel provides information about a very small part of the pit. In order to increase the

amount of information in each image, we compressed the images further by averaging

over each 3 × 3 block, which gives an image with resolution 690 × 230. Note this

approach to compression is naive and more advanced approaches may lead to better

results. We analysed two subsets of pixels (p = 10, 30) in the center of the images

which can be seen in Figure 6.6.2. These pixels are arranged in a grid with space

between the pixels to to reduce the correlation between pixels. We run a multiple

changepoint analysis on the smaller subset using our approach as well as the Aue and

Wang methods. We also ran a multiple changepoint analysis on the larger subset.

However due to the dimension of the larger dataset, the Aue method can only identify

a single changepoint for this data. Since we know that there are more changes we do

not use the Aue method when analysing the larger dataset.

In order to analyse the covariance structure of the data, we first need to transform

the data to have stationary mean. There are two obvious approaches to this task,

calculating a time varying estimate of the mean and differencing until stationary. The

latter approach induces autocorrelation into the data which is problematic, therefore

we choose the former approach. Estimating the mean of this series is challenging as

there is stochastic volatility and the smoothness of the function appears to change

over time. As a result, standard smoothing methods such as LOESS and windowed

mean estimators may be inappropriate. We use a Bayesian Trend Filter with Dynamic

Shrinkage (Kowal et al., 2019) which is robust to these issues. We use this method

as implemented in the DSP package (Kowal, 2020). We then transform the data to
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stationary, by taking the difference between the raw data and the estimated mean.

The transformed data for a subset of the pixels can be seen in Figure 6.6.2. We

can see that the transformed data has a stationary mean, however the variance is

clearly nonstationary. We combined the three methods with the standard binary seg-

mentation procedure in order to detect multiple changes in covariance. The minimum

segment length was set to 25. The thresholds for significance for each method were

again set to the defaults as discussed in the previous section. The results of this

analysis are shown in Table 6.6.1. We begin by discussing the results for the smaller

subset and then move on to the larger subset afterwards.

In order to validate our results we worked with scientists currently studying this

data and and identified three clear time points where there is a substantial change

in the amount of water on the surface at the relevant pixels. The first change is

somewhat gradual going from very dry at time t = 64 to very wet from time t = 76.

The second and third changes are more abrupt, with a substantial increase in the

amount of water at time t = 350 and a corresponding sharp decrease at time t = 450.

The Aue method reports 7 changepoints, the Wang method reports 5 changepoints

and our method locates 8 changepoints. All methods detect the first and last changes.

However the Wang method does not detect any change near the second anticipated

changepoint. All of the methods appear to overfit changepoints, in the sense that they

report changes that do not correspond with clear changes in the amount of water on

the surface. For our method and the Aue method, the majority of these overfitted

changes occur when the soil is dry (before t=64 and after t=450). During these

periods the amount of light exposure varies much more from image to image which

may explain these nuisance changes.

For the larger dataset, the minimum segment length was set to 60 (twice the

number of variables) and the thresholds were set to their defaults. The results were

broadly similar for our method and quite different for the Wang method. Our ap-

proach reports 6 changes again detecting the three obvious changes in the video. We

note that the reduced number of changepoints is primarily due to the increased min-

imum segment length. The Wang method only reports a single changepoint. This
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Method Small subset (p = 10) Larger subset(p = 30)

Aue 66, 101, 243, 354, 451, 514, 589 NA

Wang 52,79, 184, 237, 445 445

Ratio 49, 77, 244, 347, 452, 493, 532,562 64, 125, 184, 255, 340, 450, 527

Table 6.6.1: Detected changepoints for each of the three methods when applied to the

soil image data. Note the dimension of the larger subset means the Aue method can

detect at most one changepoint.

drop in reported changes is caused by the largest eigenvalue of the sample covariance

being much larger. As a result, the threshold for detecting a change is 3.5 times larger

to account for this and consequently, it appears that the method loses power.

6.7 Conclusion

In this work, we have presented a novel test statistic for detecting changes in the co-

variance structure of high dimensional data. This geometrically inspired test statistic

has a number of desirable properties that are not features of competitor methods.

Most notably our approach does not require knowledge of the underlying covariance

structure. We utilise results from Random Matrix Theory to derive a limiting dis-

tribution for our test statistic. The proposed method outperforms other methods on

simulated datasets, in terms of both accuracy in detecting changes and estimation

of the underlying covariance model. We then use our method to analyse changes in

the amount of surface water on a plot of soil. We find that our approach is able to

detect changes in this dataset that are visible to the eye and locates a number of

other changes. It is not clear whether these changes correspond to true changes in

the surface water and we are investigating this further.

While our method has a number of advantages, it is important to recognise some

limitations. Firstly, our method requires calculating the inverse of a matrix at each

time point, which is a computationally and memory intensive operation. As a result,

our approach is infeasible for larger datasets that can be considered by other methods,
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which only require the first principle component. However, as we demonstrate through

simulations, there are a wide range of settings where our method produces better

results for a marginal increase in computational time. Finally we note that a limitation

of our method is that the minimum segment length is bounded below by the dimension

of the data. This means that the method cannot be applied to tall datasets (p > n)

or datasets with short segments.



Chapter 7

Conclusion

In this thesis, we have presented new methodology for detecting changepoints in mul-

tivariate data. We have considered two distinct settings; firstly we consider data with

changepoints where not every variable under observation is affected by the change,

and secondly high dimensional data with changes in covariance structure. Our goal

in this work has been to introduce new computationally efficient algorithms that can

detect changes in these settings with high accuracy for potentially very large datasets.

The vast majority of methodology available for detecting changes in multivariate

data assumes that every variable is affected by each changepoint and ignores the

question of estimating affected variables. In Chapters 3 and 4 we consider the subset

multivariate changepoint model, which uses a doubly penalised cost function approach

in order to simultaneously estimate both the locations of changepoints and the set of

variables affected by each change. While this approach offers a number of advantages

from a statistical perspective, it requires solving a challenging discrete optimisation

problem via a computationally intensive dynamic program, SMOP, that is infeasible

for even small datasets. We make two key contributions to the literature on this

problem. Firstly in Chapter 3 we introduce a new algorithm, PSMOP, for computing

an exact solution to the discrete optimisation problem. This method incorporates a

preprocessing step which utilises novel search space reduction techniques to remove

bad candidate changepoints. In simulations, we demonstrate that the preprocessing

step significantly reduces the computational cost of computing an exact solution and,

139
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PSMOP has a much lower computational cost than the original dynamic program

SMOP. Furthermore, we demonstrate the subset multivariate changepoint approach

can outperform both state of the art univariate and multivariate methods.

Although the PSMOP procedure is considerably more efficient than the original

dynamic program, it is still infeasible for datasets of moderate size. Therefore in

Chapter 4, we introduce an approximate dynamic program, SPOT, which can effi-

ciently compute near optimal solutions to the discrete optimisation problem for even

very large datasets. This approximation uses windowed cost functions, which evalu-

ate model parameters on a subset of the data. Although our approach is not exact,

we demonstrate that a classic consistency result can be extended to windowed cost

functions and that SPOT is guaranteed to outperform equivalent methods which as-

sume every variable is affected by the change. Furthermore, under mild conditions

on the number of changepoints, we demonstrate that the computational cost of the

algorithm is linear in both the number of datapoints and the dimension of the data. In

simulations, we observe that SPOT can identify changepoints and affected variables

in very large datasets and outperforms other multivariate methods.

In Chapter 6 we consider the problem of detecting changes in the covariance struc-

ture of data, where the dimension of the data is large compared to the length of the

data. Our key contribution in this chapter is a new test statistic for detecting changes,

for which the distribution under the null hypothesis of no change is independent of

the structure of the underlying covariance of the data. As a result the threshold for

determining a change does not depend on the data. To our knowledge, there are

no other methods for detecting changes in covariance that have this property. Using

results from Random Matrix Theory, we derived a limiting distribution for our test

statistic. We then developed a rigourous simulation study, to analyse the finite sam-

ple properties of our estimator and compare our approach with other state of the art

methods. To our knowledge, this simulation study is the first to rigourously compare

methods for detecting changes in covariance. Finally we used the new method to

detect changes in the amount of moisture on the surface of soil.
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7.1 Further Directions

We now discuss three possible directions in which the work presented in this thesis

could be extended and developed further in the future:

• Develop data driven strategies for selecting the penalty parameters α and β

• Detecting subset multivariate changepoints in data with dependence between

variables

• Further develop the theoretical results presented in Chapter 6

7.1.1 Data Driven Penalty Selection

In the univariate setting, selecting an approriate value for the penalty parameter β

can be very challenging. One solution to this problem is to use data driven strategies

to set the parameter value. For example, Haynes et al., 2017 propose a procedure

that efficiently solves the univariate penalised optimisation problem for a range of

penalties. Then the optimal parameter value can be determined via an elbow plot

or by comparing the segmentations with domain knowledge. Given that both SMOP

and SPOT use two parameters, identifying optimal parameter values may be more

challenging and a strategy for correctly setting them even more valuable. There are

two key challenges with developing such a strategy for the dual penalty setting.

Firstly we need to be able to efficiently compute segmentations for a range of

penalties. In the single penalty setting, given an interval of possible penalty val-

ues, there is a discrete (and typically small) number of possible segmentations. The

CROPS algorithm proposed by Haynes et al., 2017 efficiently computes a set of penal-

ties {β1, . . . , βf} such that for all β ∈ (βi−1, βi) the optimal segmentation is the same.

Thus it is possible to evaluate every possible optimal segmentation within the interval.

We could propose a similar method for the dual penalty setting, which would look to

identify a discrete set of pairs {(α1, β1, ), . . . , (αf , βf )} such that for all α ∈ (αi−1, αi)

and β ∈ (βi−1, βi) the implied segmentations would be the same. Note a further

extension would be to extend such work to the approximate method SPOT.
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The second challenge would be to understand the relationship between the pa-

rameters α and β. In the univariate setting, the relationship between the number

of changepoints and the penalty parameter value is well understood. If βu > βl,

the optimal segmentation implied by βu will have at most as many changes as the

optimal segmentation implied by βl. However it is not possible to make a similar

statement about the dual penalty framework. In particular, we do not fully under-

stand how changes in the α and β parameters change the segmentations. For example,

we might assume that by increasing the α penalty, the number of variables affected

by each change will decrease. However as the α parameters increases, changepoint

locations may become unprofitable. As a result, the number of variables affected by

each changepoint increases. Quantifying the impact of changes in the parameters on

the resulting segmentation would thus significantly help in analysing and comparing

the resulting segmentations.

7.1.2 Dual Penalty Framework with Dependence

The dual penalty framework assumes that the variables under observation are un-

correlated. However in many applications we are interested in examining multiple

variables precisely because they are correlated and, in such an application it is neces-

sary to take account of this dependence. If this dependence structure is ignored, the

dual penalty approach will be more likely to overfit changepoints (as spuriously large

test statistic values may occur across multiple variables) or miss true changes.

There are a range of different possible methods for taking account of this de-

pendence structure, depending on what kind of assumptions we can make about the

dependence. If we knew the underlying covariance matrix, we could apply a whitening

transformation to the data and then apply the standard dual penalty framework to

the transformed data. Note as we saw in Chapter 6, in many settings we do not know

a priori the underlying covariance matrix and estimating this quantity in the subset

multivariate setting may be quite challenging. Therefore for this to be a workable

strategy, we would need a method for estimating the covariance matrix that is robust

to the changes in the distribution.
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7.1.3 Finite Sample Results for the Covariance Test Statistic

In Chapter 6 we used a key result from Random Matrix Theory to obtain a conver-

gence result for our test statistic. This result allows us to properly normalise the test

statistic and develop an appropriate threshold for distinguishing between the null and

alternative hypotheses. However this asymptotic result has a significant limitation, it

only demonstrates pointwise convergence for the sequence of test statistic values. As

a result, the threshold for significance is based on approximating the distribution of

the test statistic with the asymptotic distribution. By obtaining a stronger conver-

gence result (such as uniform convergence), we could get valuable information about

how the method performs such as the error in the aforementioned approximation.

Furthermore, if the results were finite sample in nature, we could derive confidence

intervals which are very important in any analysis.

We suggest two possible directions for developing such a convergence rate. The

primary result in Chapter 6 is based on results from Z. Bai and Silverstein, 2004

and Zheng, 2012 which develop central limit theorems for tests of the spectra of

covariance matrices. These results are limited to the two sample setting, however by

extending the results to the multiple testing setting, we would simultaneously get a

uniform convergence result for the covariance test statistic. However these results are

not finite sample. There has been significant work done on developing concentration

inequalities for the trace of functions of random matrices (Guionnet, Zeitouni, et al.,

2000). Thus strong finite sample results for our test statistic could be derived by

applying these concentration inequalities. Note these results could be used to develop

confidence intervals. One limitation of these results is that they are only suitable

for Lipschitz functions. Since the F matrix is not bounded, it is not Lipschitz and

therefore we would instead have to work with a bounded variant. However these

results would still provide valuable information about the method.
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Appendix for Chapter 3

A.1 Useful Results

Lemma A.1.1. Let cf be changepoint vector such that ckf = v and clf = v′ < v.

Furthermore suppose that cp is a changepoint vector such that ckp = s where v′ < s < v

and clp < v′. Then there exists c such that cl = v′ and

F (c) +

p∑
j=1

[
I
(
cj 6= cjf

) (
Cj (c, cf ) + α

)]
+m(c, cf )β

≤F (cp) +

p∑
j=1

[
I
(
cj 6= cjf

) (
Cj (cp, cf ) + α

)]
+m(cp, cf )β

and if there is equality then the segmentation implied by having cp prior to cf is equal

to the segmentation implied by c.

Proof. Firstly let c be a changepoint vector defined as

cj =

c
j
f if cjf ≤ v′

cjp otherwise.

Similarly let c̃ be a changepoint vector defined as

c̃j =

`(cp)
j if cjp = cj

cjp otherwise.

144
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By construction we have that `(cp) ≺ c̃ ≺ c ≺ cf . Thus we have two implied

segmentations given by,

cf , cp, `(cp) and cf , c, c̃, `(cp).

By construction these two segmentations give the same set of changepoints which

proves the second claim. Furthermore it is not guaranteed that c̃ = `(c), which

proves the first claim.

Lemma A.1.2. Let cp, cf , c be changepoints such that ckp = t < v = ckf , cp ≺ cf and

if cjf = t then cjp = t. Furthermore let ck = s and cj = cjp for j 6= k. Then

m(cp, c) +m(c, cf ) ≤ m(cp, cf ) + 1.

Proof. We break this proof into two cases, the case where cj = t for some j 6= k and

the complement. In the former case, we have that m(cp, c) = 0. Then since c and cp

disagree on at most one changepoint location, we have that

m(cp, c) +m(c, cf ) = m(c, cf ) ≤ m(cp, cf ) + 1.

For the second case we have that,

cj 6= t for 1 ≤ j ≤ p =⇒ cjp 6= t for j 6= k and cjf 6= t for 1 ≤ j ≤ p.

Then

m(c, cf ) = m(cp, cf ) and m(cp, c) = 1,

which gives

m(cp, c) +m(c, cf ) = m(cp, c) + 1.

A.2 Proofs for Section 3.2

Proof of Proposition 3.3.1. Firstly note that if cjf = t for some j 6= k, then by Lemma

A.1.1 it must be the case that cjp = t or there exists c′ such that c′j = t, c′ gives
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an equivalent segmentation to c and the cost of having c′ be the changepoint vector

prior to cf is bounded above by the equivalent cost for cp. If the latter case is true,

let cp = c′. Then let c be a changepoint vector such that cj = s for some 1 ≤ j ≤ p

and cj = cjp otherwise. Note by construction cp, c and cf satisfy Lemma A.1.2. Then

F (cp) +

p∑
j=1

[
I
(
cjp 6= cjf

) (
Cj (cp, cf ) + α

)]
+m(cp, cf )β

= F (cp) +
∑
j 6=k

[
I
(
cjp 6= cjf

) (
Cj (cp, cf ) + α

)]
+m(cp, cf )β + Ck(t, v) + α

= F (cp) +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj (c, cf ) + α

)]
+m(cp, cf )β + Ck(t, v) + α

> F (cp) + Ck(t, s) + α + (m(cp, cf ) + 1)β+∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj (c, cf ) + α

)]
+ Ck(s, v) + α

≥ F (cp) + Ck(t, s) + α +m(cp, c)β+∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj (c, cf ) + α

)]
+ Ck(s, v) + α +m(c, cf )β

≥ F (c) +

p∑
j=1

[
I
(
cj 6= cjf

) (
Cj (c, cf ) + α

)]
+m(cc, cf )β ≥ F (cf ).

Proof of Proposition 3.2.3. Firstly by the definition of Aτ we have that

c, c′ ∈ Aτ =⇒ ∃1 ≤ k, l ≤ p such that ck = τ ≥ c′k and c′l = τ ≥ cl,

which implies the result. Secondly if c ≺ c′ we have that cj < τ for 1 ≤ j ≤ p which

completes the proof.

A.3 Proofs for Section 3.3.1

The proof of Proposition 3.3.1 is quite technical but the motivation is simple. We

demonstrate that, given any model that includes a segment starting from t+ 1 to v in

variable k, we can construct a better model by breaking this segment into two parts,

if Proposition 3.3.1 is satisfied.
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Proof of Proposition 3.3.2. To begin with assume for a contradiction that cp = `(cf ).

By Lemma A.1.1 one of the following two statements must be true, cjf ≥ v or there

exists a sequence of changepoint vectors,

cf = cf,0, cf,1, . . . , cf,g−1, cf,g

such that

cf,q−1 = `(cf,q) for 1 ≤ q ≤ g, ckf,q = t for 0 ≤ q < g and ckf,g ≥ v.

In the latter case, proving that cp 6= `(cf ) is equivalent to showing that cf,g−1 6=

`(cf,g). Note this is equivalent to the former case. Thus going forward we assume that

ckf ≥ v.

Now let c be a changepoint vector such that ck = s and cj = cjp otherwise. By the

same argument as in the proof of Proposition 3.3.1, we have that cp, c and cf satisfy

Lemma A.1.2. Similarly, let cv be a changepoint vector such that ckv = v and cj = cj

otherwise and note that c, cv and cf satisfy Lemma A.1.2. Then by the following
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chain of inequalities, we have a contradiction.

F (cf ) = F (cp) +

p∑
j=1

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β

= F (cp) +
∑
j 6=k

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β + Ck(t, ckf ) + α

= F (cp) +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj (c, cf ) + α

)]
+m(cp, cf )β + Ck(t, ckf ) + α

≥ F (cp) +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β + Ck(t, v) + Ck(v, ckf ) + α

> F (cp) +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β+

Ck(t, s) + Ck(s, v) + 2α + 2β + Ck(v, ckf ) + α

> F (cp) + Ck(t, s) + α + (m(cp, cf ) + 1)β+∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+ Ck(s, v) + α + β + Ck(v, ckf ) + α

≥ F (cp) + Ck(t, s) + α + (m(cp, c))β+∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(c, cf )β + Ck(s, v) + α + β + Ck(v, ckf ) + α

≥ F (c) + Ck(s, v) + α + (m(c, cf ) + 1)β +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+ Ck(v, ckf ) + α

≥ F (c) + Ck(s, v) + α +m(c, cv)β +

p∑
j=1

[
I
(
cjv 6= cjf

) (
Cj
(
cjv, c

j
f

)
+ α

)]
+m(cv, cf )β

≥ F (cv) +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cj, cjf

)
+ α

)]
+m(cv, cf )β ≥ F (cf ).

Proof of Corollary 3.3.3. Firstly let cf be a changepoint vector such that c ≺ cf . If

cjf ≥ v Proposition 3.3.2 states that c is not the optimal prior changepoint vector.

Therefore we can safely assume that cjf < v. Now since c ≺ cf it must be the case that

ckf ≥ v. Therefore by Lemma A.1.1 there exists another changepoint c∗ with penalised

cost at least as good as c. If the inequality is strict then c is not the optimal prior
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changepoint vector. If there is equality, then c∗ gives the same segmentation as c and

so we set c∗ = `(cf ) completing the proof.

A.4 Proofs for Section 3.3.2

Proof of Proposition 3.3.4. Firstly let co = `(cp) and c be a changepoint vector such

that ck = cko and cj = cjp for j 6= k. By the definition of `(cp) either cko < s or cko = s.

If the former case holds, let t = cko . If the latter case holds, since s > 0 there exists a

sequence of vectors

co = co,1, . . . , co,g

such that

co,i = `(co,i−1) and cko,g < ckp.

Then let t = cko,g. The rest of the proof demonstrates that c gives a better solution to

the recursion for cf then cp and is the same for both cases.

The sequence of changepoint vectors co, c, cf has less or equal unique changepoints

than the sequence co, c, cf , so

m(co, c) +m(c, cf ) ≤ m(co, cp) +m(cp, cf ).
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Then

F (cp) +

p∑
j=1

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β

= F (co) +

p∑
j=1

[
I
(
cjo 6= cjp

) (
Cj
(
cjo, c

j
p

)
+ α

)]
+m(co, cp)β

+

p∑
j=1

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β

= F (co) + Ck(t, s) + Ck(s, v) + 2α +
∑
j 6=k

[
I
(
cjo 6= cjp

) (
Cj
(
cjo, c

j
p

)
+ α

)]
+m(co, cp)β

+
∑
j 6=k

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β

> F (co) + Ck(t, v) + α +
∑
j 6=k

[
I
(
cjo 6= cjp

) (
Cj
(
cjo, c

j
p

)
+ α

)]
+m(co, cp)β

+
∑
j 6=k

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β

≥ F (co) +

p∑
j=1

[
I
(
cjo 6= cj

) (
Cj
(
cjo, c

j
)

+ α
)]

+m(co, c)β

+ Ck(t, v) + α +
∑
j 6=k

[
I
(
cj 6= cjf

) (
Cj
(
cj, cjf

)
+ α

)]
+m(c, cf )β

≥ F (c) +

p∑
j=1

[
I
(
cj 6= cjf

) (
Cj
(
cj, cjf

)
+ α

)]
+m(c, cf )β ≥ F (cf ).

Proof of Proposition 3.3.5. We again consider two cases for this proof, the case where

cjf 6= s for all 1 ≤ j ≤ p and the complement. In the complement case, since s < n

there exists a sequence of vectors

cf = cf,0, . . . , cf,g

such that

cf,i−1 = `(cf,i) for 1 ≤ i ≤ g and cf,g 6= s for 1 ≤ j ≤ p.

Now if we can show that cf,g is not the optimal prior changepoint vector for any cf,g+1,

then cp is not an element of an optimal segmentation. Thus by letting cp = cf,g and

cf = cf,g+1, this case is equivalent to proving the case where cjf 6= s for all 1 ≤ j ≤ p.
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Now let co = `(cp) and let c be a changepoint vector such that

cj =

c
j
o if cjp = s

cjf otherwise.

The sequence of changepoint vectors co, cp, cf has exactly one more change then the

sequence co, c, cf , so

m(co, c) +m(c, cf ) + 1 = m(co, cp) +m(cp, cf ).

Finally by the definition of Πs, we have that for any subset of variables J ,∑
j∈J

[Cj(cjo, s) + C(s, cjf ) + α] + β >
∑
j∈J

Cj(cjo, c
j
f ).

Then

F (cp) +

p∑
j=1

[
I
(
cjp 6= cjf

) (
Cj
(
cjp, c

j
f

)
+ α

)]
+m(cp, cf )β

= F (co) +

p∑
j|cjp 6=s

I
(
cjo 6= cjp

) [
Cj(cjo, cjp) + α

]
+

p∑
j|cjp 6=s

I
(
cjp 6= cjf

) [
Cj(cjp, c

j
f ) + α

]
+

p∑
j|cjp=s

[
Cj(cjp, s) + α + Cj(s, cjf ) + α

]
+m(co, cp)β +m(cp, cf )β

> F (co) +

p∑
j|cjp 6=s

I
(
cjo 6= cjp

) [
Cj(cjo, cj) + α

]
+

p∑
j|cjp 6=s

I
(
cjp 6= cjf

) [
Cj(cj, cjf ) + α

]
+

p∑
j|cjp=s

[
Cj(cj, cjf ) + α

]
+m(co, c)β +m(c, cf )β

= F (co) +

p∑
j=1

I
(
cjo 6= cj

) [
Cj(cjo, cj) + α

]
+m(co, c)β+

p∑
j=1

I
(
cj 6= cjf

) [
Cj(cj, cjf ) + α

]
+

p∑
j|cjp=s

[
Cj(cj, cjf ) + α

]
+m(c, cf )β

≥ F (c) +

p∑
j=1

I
(
cj 6= cjf

) [
Cj(cj, cjf ) + α

]
+m(c, cf )β ≥ F (cf ).
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Appendix for Chapter 4

B.1 Appendix

Lemma B.1.1. As n tends to infinity with probability approaching one,

n∑
i=1

Y 2
i + log(n) ≥ Ŝn(τ 0

1 , . . . , τ
0
m0

).

Proof. To begin with note that

Ŝn(τ 0
1 , . . . , τ

0
m0

)− Sn(τ 0
1 , . . . , τ

0
m0

) = (B.1.1)

m0+1∑
j=1

τj∑
i=τj−1+1

{
Xi − X̄(τj−1, τj)

}2 −
{
Xi − X̄(τm−1, τm−1 + w)

}2

=

m0+1∑
j=1

τj∑
i=τj−1+1

X2
i − 2XiX̄(τj−1, τj−1 + w) + X̄2(τj−1, τj−1 + w)−

X2
i + 2XiX̄(τj−1, τj)− X̄2(τj−1, τj)

=

m0+1∑
j=1

li
(
X̄(τj−1, τj)− X̄(τj−1, τj−1 + w)

)2
(B.1.2)

where lj = τj − τj−1. Now,

X̄(τj−1, τj)− X̄(τr−1, τr−1 + w) ∼ N
(

0,
1

w
+

1

li − w

)
(B.1.3)

which along with (B.1.2) implies

Ŝn(τ 0
1 , . . . , τ

0
m0

)− Sn(τ 0
1 , . . . , τ

0
m0

) ∼
m0+1∑
r=1

li

(
σ2

w
+

σ2

li − w

)
χ2

1. (B.1.4)
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In other words the error at the true set of change points is distributed as a weighted

chi-squared distribution. The weights are constant with respect to n,

li

(
σ2

w
+

σ2

li − w

)
=
li
n

(
σ2

w
n

+
σ2

li−w
n

)
= qi

(
σ2

t
+

σ2

qi − t

)
.

Then trivially we have that with probability approaching one,

Ŝn(τ 0
1 , . . . , τ

0
m)− Sn(τ 0

1 , . . . , τ
0
m) ≤ log n.

Hence with probability approaching one

n∑
i=1

Y 2
i + log(n)− Ŝn(τ 0

1 , . . . , τ
0
m0

) =

n∑
i=1

Y 2
i − Sn(τ 0

1 , . . . , τ
0
m0

) + Sn(τ 0
1 , . . . , τ

0
m0

)− Ŝn(τ 0
1 , . . . , τ

0
m0

) + log n

≥ Sn(τ 0
1 , . . . , τ

0
m0

)− Ŝn(τ 0
1 , . . . , τ

0
m0

) + log n ≥ 0.

This completes the proof.

Note that since the error term is independent of n the log(n) rate is more for

convenience then anything else and it could be replaced by any unbounded function

of n.

Yao provides two results that we use to prove the consistency of our estimator

which we present here for clarity.

Theorem B.1.2 (Yao’s Lemma). Suppose that Z1, . . . , Zn are iid normal with com-

mon mean 0 and variance σ2. Then for any ε > 0, as n→∞,

Pr

{
max

0≤i<j≤n
(Zi+1 + . . . Zj)

2/(j − i) > 2(1 + ε)σ2 log n

}
→ 0.

Theorem B.1.3 (Yao’s bound). For every m(m0 < m < mU) and for any ε with

probability approaching one,

0 ≤
n∑
i=1

Y 2
i − nσ̂2

m ≤ {ε+ (m−m0 − 1)2(1 + ε)}σ2 log n
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We also need two other results which we prove below. For both proofs we restrict

our attention to the subset, An, which denotes the datasets of size n such that

n∑
i=1

Y 2
i + log n ≥ Ŝn(τ 0

1 , . . . , τ
0
m0

).

Proving convergence in probability follows from the fact that the measure of this set

tends to one by B.1.1.

Lemma B.1.4. As n→∞,

0 ≤
n∑
i=1

Y 2
i − nσ̂2

w,m0
= Op(log n).

Proof. Let λ = bn/wc and choose w1, . . . , wλ such that

max
0≤i≤λ

wi+1 − wi < ω.

Then on the set An we have that
n∑
i=1

Y 2
i + log n ≥ Ŝn(τ̂1, . . . , τ̂m0), Sn(τ 0

1 , . . . , τ
0
m0

) ≥ Sn(τ̂1, . . . , τ̂m0 , τ
0
1 , . . . , τ

0
m0
, w1, . . . , wλ).

(B.1.5)

However,

Sn(τ̂1, . . . , τ̂m0 , τ
0
1 , . . . , τ

0
m0
, w1, . . . , wλ) = Ŝn(τ̂1, . . . , τ̂m0 , τ

0
1 , . . . , τ

0
m0
, w1, . . . , wλ),

so we have that
n∑
i=1

Y 2
i + log n ≥ Ŝn(τ̂1, . . . , τ̂m0 , τ

0
1 , . . . , τ

0
m0
, w1, . . . , wλ) (B.1.6)

Now let v(1, s) < · · · < v(V (s), s) be the elements of {τ̂1, . . . , τ̂m0} ∪ {w1, . . . , wλ}

which are greater then τ 0
s−1 but less than τ 0

s . Then,

Ŝn(τ̂1, . . . , τ̂m0 , τ
0
1 , . . . , τ

0
m0
, w1, . . . , wλ)

=

m0∑
s=1

V (s)+1∑
k=1

v(k,s)∑
i=v(k−1,s)

{
Xi − X̄ (v(k − 1, s), v(k, s))

}2

=
n∑
i=1

Y 2
i −

m0∑
s=1

V (s)+1∑
k=1

(v(k, s)− v(k − 1, s))
(
Ȳ 2(v(k − 1, s), v(k, s))

)
≥

n∑
i=1

Y 2
i −

m0∑
s=1

(V (s) + 1) max
τ0r−1≤i<j≤τ0r

(
(j − i)Ȳ 2(i, j)

)
.
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Now by Yao’s Lemma we have that the final term is O(log n), so

Ŝn(τ̂1, . . . , τ̂m, τ
0
1 , . . . , τm, w1, . . . , wλ) ≥

n∑
i=1

Y 2
i −Op(log n). (B.1.7)

Hence the lemma follows from (B.1.5) and (B.1.7).

Lemma B.1.5. For every m < m0 there exists ε > 0 such that Pr(σ2
w,m > σ2 +ε)→ 1

as n→∞.

Proof. Let δ > 0 be such that qj + 2δ < qj+1 − 2δ for j = 0, . . . ,m0 and 2[nδ] < w.

Similarly let

Bj(n, δ) =
{

(τ1, . . . , τm) : 0 < τ1 < · · · < τm, and |τ 0
j − τs| > [nδ] for 1 ≤ s ≤ m

}
.

Since m < m0 we have that (τ̂1, . . . , τ̂m) ∈ Bj(n, δ) for some j = 1, . . . ,m. Then we

only need to demonstrate that for each j = 1, . . . ,m we have that

min
(τ1,...,τm)∈Bj(n,δ)

Ŝ(τ1, . . . , τm)

n
> σ2 + ε.

Let w1 = τ 0
j − [ω/2] and w2 = τ 0

j + [ω/2]. Then choose w3, . . . , wλ + 1 such that

max
0≤i≤λ

wi+1 − wi < ω.

Then we have that

Ŝn(τ̂1, . . . , τ̂m) ≥ Ŝn(τ̂1, . . . , τ̂m, τ
0
1 , . . . , τ

0
j−1, τ

0
j−[nδ], τj+[nδ], τj+1, . . . , τm0 , w1, . . . , wλ+1)

Note since every segment on the right hand side has max length w we have that

Ŝn(τ̂1, . . . , τ̂m, τ
0
1 , . . . , τ

0
j−1, τ

0
j − [nδ], τj + [nδ], τj+1, . . . , τm0 , w3, . . . , wλ+1)

= Sn(τ̂1, . . . , τ̂m, τ
0
1 , . . . , τ

0
j−1, τ

0
j − [nδ], τj + [nδ], τj+1, . . . , τm0 , w3, . . . , wλ+1)

We can break up the right hand side of this equation into segments of common mean

along with one segment with two means. More explicitly it can be expressed as the

sum of T1 + · · · + Tm0+2 where Ts (s = 1, . . . j − 1, j + 2, . . . ,m0 + 2) denotes the

sum of squares relating to data Xi(τ
0
s−1 < i ≤ τ 0

s ), Tj is the sum of squares involving

Xi(τ
0
j−1 < i ≤ τ 0

j − [nδ]), Tj+1 is the sum of squares involving Xi(τ
0
j + [nδ] < i ≤ τ 0

j+1)
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and Tm0+2 is the sum relating to Xi(τ
0
j − [nδ] < i ≤ τ 0

j + [nδ]). For the sum of squares

involving homogenous segments i.e. Ts(s = 1, . . . j − 1, j + 2, . . . ,m0 + 2) using the

same argument as Lemma 2 we have that,

τ0s∑
i=τ0s +1

Y 2
i + ≥ Ts ≥

τ0s∑
i=τ0s +1

Y 2
i − (m0 + λ+ 1) max

τ0s +1<i,j≤τ0s
(j − i)Ȳ 2(i, j)

≥
τ0s∑

i=τ0s +1

Y 2
i −Op(log n).

Hence we have that Ts converges uniformly to σ2(qs) on (τ1, . . . , τm) ∈ Bj(n, δ). Sim-

ilarly we have that Tj and Tj+1 converge uniformly to σ2(qj − δ) and σ2(qj+1 − δ)

respectively. Then we only need to show that Tm0+2 converges to something larger

then 2δσ2. Now

Tm0+2 =

τ0j +[nδ]∑
i=τ0j −[nδ]+1

{
Xi − X̄(τ 0

j − [nδ], τ 0
j + [nδ])

}2

=

τ0j∑
i=τ0j −[nδ]+1

{
Yi − Ȳ (τ 0

j − [nδ], τ 0
j + [nδ]) +

µ0
j − µ0

j+1

2

}2

+

τ0j +[nδ]∑
i=τ0j +1

{
Yi − Ȳ (τ 0

j − [nδ], τ 0
j + [nδ]) +

µ0
j+1 − µ0

j

2

}2

=

τ0j +[nδ]∑
i=τ0j −[nδ]+1

{
Yi − Ȳ (τ 0

j − [nδ], τ 0
j + [nδ])

}2
+ (2[nδ])

(
µ0
j+1 − µ0

j

2

)2

.

So Tm0+2/n converges to 2δ{σ2 + (µ0
j+1 − µ0

j)
2
/4}. Therefore

min
(τ1,...,τm)∈Bj(n,δ)

Ŝ(τ1, . . . , τm)

n

≥ min
(τ1,...,τm)∈Bj(n,δ)

Ŝn(τ1, . . . , τm, τ
0
1 , . . . , τ

0
j−1, w1, w2, τ

0
j+1, . . . , τ

0
m0
, w3, . . . , wλ+1)

n

→σ2 + δ(µ0
j+1 − µ0

j)
2
/2

in probability, completing the proof.

Lemma B.1.6. Let
p∑
j=1

D̂j(t, s) +

p∑
j=1

D̂j(s, T )− pα ≤
p∑
j=1

D̂j(t, T )
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Proof. For a segment beginning at time p and ending at time q, for each Sj we have

two possibilities, Sj = 1 or 0. If Sj = 1 we have that

D̂j(p, q) = Dj(p, q) + α.

On the other hand if Sj = 0 we know that

D̂j(p, q) < Dj(p, q) + α.

Case 1: (1,0,0)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α = Dj(t, s|θ) +Dj(s, T |θ)−Dj(t, s)− α−Dj(s, T |θ(t, s)) + α

= [Dj(t, s|θ)−Dj(t, s)− α] + [Dj(s, T |θ)−Dj(s, T |θ(t, s)) + α]

≥ 0

Case 2: (0,1,0)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α = Dj(t, s|θ) +Dj(s, T |θ)−Dj(t, s|θ)−Dj(s, T )− α + α

= [Dj(t, s|θ)−Dj(t, s|θ)] + [Dj(s, T |θ)−Dj(s, T )]

≥ 0

Case 3: (0,0,1)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α =

Dj(t, s|θ(t, T )) +Dj(s, T |θ(t, T )) + α−Dj(t, s|θ)−Dj(s, T |θ) + α

= [Dj(t, s|θ(t, T )) + α−Dj(t, s|θ)] + [Dj(s, T |θ(t, T )) + α−Dj(s, T |θ)]

≥ [Dj(t, s|θ(t, s)) + α−Dj(t, s|θ)] + [Dj(s, T |θ(s, T )) + α−Dj(s, T |θ)]

≥ 0

Case 4: (1,1,0)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α = Dj(t, s|θ) +Dj(s, T |θ)−Dj(t, s)− α−Dj(s, T )− α + α

= [Dj(t, s|θ)−Dj(t, s)− α] + [Dj(s, T |θ)−Dj(s, T )]

≥ 0
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Case 5: (1,0,1)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α =

Dj(t, s|θ(t, T )) +Dj(s, T |θ(t, T )) + α−Dj(t, s)− α−Dj(s, T |θ(t, s)) + α

= [Dj(t, s|θ(t, T ))−Dj(t, s)] + [Dj(s, T |θ(t, T )) + α−Dj(s, T |θ(t, s))]

≥ [Dj(t, s)−Dj(t, s|θ)] + [Dj(s, T ) + α−Dj(s, T |θ(t, s))]

≥ 0

Case 6: (0,1,1)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α =

Dj(t, s|θ(t, T )) +Dj(s, T |θ(t, T )) + α−Dj(t, s|θ)−Dj(s, T )− α + α

= [Dj(t, s|θ(t, T )) + α−Dj(t, s|θ)] + [Dj(s, T |θ(t, T ))−Dj(s, T )]

≥ [Dj(t, s) + α−Dj(t, s|θ)] + [Dj(s, T |θ(t, T ))−Dj(s, T )]

≥ 0

Case 7: (1,1,1)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α =

Dj(t, s|θ(t, T )) +Dj(s, T |θ(t, T )) + α−Dj(t, s)− α−Dj(s, T )− α + α

≥ 0

Case 8: (0,0,0)

D̂j(t, T )− D̂j(t, s)− D̂j(s, T ) + α = Dj(t, T |θ)−Dj(t, T |θ) + α = 0

Lemma B.1.7. Let Ek and It,k be defined as in the proof of Theorem 4.3.4. Further-

more let

L := lim
n→∞

Ln = lim
n→∞

1 +
n−1∑
j=1

Ej

and assume that the conditions (A1)-(A4) defined in Theorem 4.3.4 hold. Then L is

bounded.
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Proof. Firstly by choosing t = k we have that Ek is the probability that Ik,k = 1 i.e.

the probability that a changepoint at time zero has not been pruned after observing

the jth observation. For this to be true we require that,

C(0, k)− 2pα ≤ F̂ (k)

Let mk denote the true number of changepoints prior to time k, and τ1, . . . , τmk
their

locations. Again for simplicity we have that τ0 = 0 and τmk+1 = j. Now

F̂ (k) ≤
mk+1∑
i=1

p∑
j=1

[
Dj(τi−1, τi) + α

]
+ β,

so

Ej ≤ Pr

(
C(0, j)− 2pα ≤

mk+1∑
i=1

p∑
j=1

[
Dj(τi−1, τi) + α

]
+ β

)
.

Now define θji to be the value of the parameter associated with the true segment of

observation i for variable j; and

θ̃i := arg max
θj

τl∑
r=τl−1+1

log f j(yk|θj),

where l is such that τl−1 ≤ i ≤ τl. Now C(0, k) = −
∑p

j=1

∑k
i=1 log f j(Xj

i |θ̂
j
k) where

θ̂jk is the maximum likelihood estimate for parameter θj given data Xj
1:k under an

assumption of a single segment. Similarly we have that

mk+1∑
i=1

p∑
j=1

Dj(τi−1, τi) = −
p∑
j=1

k∑
i=1

log f j(yk|θ̃j).

So we can write

Ak︷ ︸︸ ︷
C(0, k)− 2pα−

mk+1∑
i=1

p∑
j=1

[
Dj(τi−1, τi) + α

]
+ β =

Bk︷ ︸︸ ︷[
p∑
j=1

k∑
i=1

log f j(yi|θ∗j)− log f j(yi|θ̂k)

]
+

Dk︷ ︸︸ ︷[
p∑
j=1

k∑
i=1

log f j(yi|θji )− log f j(yi|θ∗j)

]
− (mj + 1)(β + pα)− 2pα+

Rk︷ ︸︸ ︷[
p∑
j=1

k∑
i=1

log f j(yi|θ̃ji )− log f j(yi|θj)

]
.
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First note that Rk ≤ 0. So Ek = Pr(Ak ≤ 0) ≤ Pr(Bk +Dk ≤ 0). We can bound this

probability using Markov’s inequality.

By (A1), and using that the expected number of changepoints is related to the

expected segment length, E(Mk) = j/E(S) +O(j) (elementary renewal theorem), we

have

E(Bk +Dk) = E

([
p∑
j=1

k∑
i=1

log f j(yi|θji )− log f j(yi|θ∗j)

])
− (β + pα)

k

E(S)
+O(k).

Thus, using (A4), we have that there exists c > 0 such that for sufficiently large k

E(Bk +Dk) > ck.

Let Bj
k = log f j(yi|θ∗j)− log f j(yi|θ̂k), Dj

k = log f j(yi|θji )− log f j(yi|θ∗j), B∗k = Bk −

E(Bk) and D∗k = Dk − E(Dk). Then we have that

E((B∗k +D∗k)
4) ≤ E

( p∑
j=1

B∗k,j +D∗k,j

)4
 (B.1.8)

Killick et al. demonstrate that for any finite k there exists a constant Kj < ∞ such

that E(Bk,j +Dk,j)
4 < Kjk

2 By Minkowski’s inequality we have that

E((B∗k +D∗k)
4) = E

( p∑
j=1

B∗k,j +D∗k,j

)4
 ≤ E

((
pmax

1≤j≤p
B∗k,j +D∗k,j

)4
)
≤ p4 max

1≤j≤p
Kjk

2.

Now using Markov’s inequality we have, for k large enough that E(Bk +Dk) > ck

Ek ≤ Pr(Bk +Dk ≤ 0) ≤ Pr (|B∗k +D∗k| ≥ E(Bk +Dk)) ≤
E
(
(B∗k +D∗k)

4)
E(Bk +Dk)

4 ≤ Tk2

c4k4
,

where T = max
1≤j≤p

Kj. Thus we have that Ek = O(k−2), and hence L = limn→∞
∑n

k=1 Ek

is finite, as required.
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Appendix for Chapter 6

C.1 Auxillary Results

The results in this section are required for the proof of Theorem 6.3.1.

Lemma C.1.1. Let γ := (γ1, γ2) and f1 be the real valued function

f1(x) := (1− x)2.

Then

lim
r↓1

1

4πi

∮
|z|=1

f

(
|1 + hξ|2

(1− γ2)2

)[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
dξ = 2K3

(
1− γ2

2

h2

)
+

2K2γ2

h

where

K2 =
2h(1 + h2)

(1− γ2)4
− 2h

(1− γ2)2
, K3 =

h2

(1− γ2)4
.

161
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Proof. Firstly we have that

f1

(
|1 + hξ|2

(1− γ2)2

)
=

(
1− (1 + hξ)(1 + hξ̄)

(1− γ2)2

)2

= 1− 2
(1 + hξ)(1 + hξ̄)

(1− γ2)2
+

(1 + hξ)2(1 + hξ̄)2

(1− γ2)4

= 1− 2
1 + hξ + hξ̄ + h

(1− γ2)2

+
(1 + 4h2 + h4) + 2h(1 + h2)ξ + 2h(1 + h2)ξ̄ + h2ξ2 + h2ξ̄2

(1− γ2)4

=

(
1− 2

1 + h

(1− γ2)2
+

1 + 4h2 + h4

(1− γ2)4

)
+

(
2h(1 + h2)

(1− γ2)4
− 2h

(1− γ2)2

)
ξ+(

2h(1 + h2)

(1− γ2)4
− 2h

(1− γ2)2

)
ξ̄ +

(
h2

(1− γ2)4

)
ξ2 +

(
h2

(1− γ2)4

)
ξ̄2

= K1 +K2ξ +K2ξ̄ +K3ξ
2 +K3ξ̄

2

Then

1

2πi

∮
|ξ|=1

f1

(
|1 + hξ|2

(1− γ2)2

)[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
=

1

2πi

∮
|ξ|=1

(
K1 +K2ξ +K3ξ̄ +K4ξ

2 +K5ξ̄
2
) [ 1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
where x̄ is the conjugate of x. By linearity of the integral we can handle each term

separately. We can now evaluate the integral using the Cauchy Residue theorem.

Note the first term is a constant function with respect to ξ and thus cancels out.

Then

1

2πi

∮
|ξ|=1

K2ξ

[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
= K2

(
r−1 − r−1 +

2γ2

h

)
=

2K2γ2

h

1

2πi

∮
|ξ|=1

K3ξ
2

[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
= K3(r−2 + r−2 − 2

γ2
2

h2
) = 2K3

(
1− γ2

2

h2

)
1

2πi

∮
|ξ|=1

K2

ξ

[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
= K2(−r + r − 2h

γ2

+ r − r +
2h

γ2

) = 0

1

2πi

∮
|ξ|=1

K3

ξ2

[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
= K3

(
−r2 − r2 +

2h2

γ2
2

+ r2 + r2 − 2h2

γ2
2

)
= 0

Summing these gives

2K3

(
1− γ2

2

h2

)
+

2K2γ2

h
. (C.1.1)
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Lemma C.1.2. Let γ := (γ1, γ2) and f1 be the real valued function

f1(x) := (1− x)2.

Then

−lim
r↓1

2

4π2

∮
|ξ1|=1

∮
|ξ2|=1

1

(ξ1 − rξ2)2
f1

(
|1 + hξ1|2

(1− γ2)2

)
f1

(
|1 + hξ2|2

(1− γ2)2

)
dξ2dξ1 = K2

2 + 2K2
3

where

K2 =
2h(1 + h2)

(1− γ2)4
− 2h

(1− γ2)2
, K3 =

h2

(1− γ2)4
.

Proof. Using a similar strategy to the Lemma C.1.1 we have that

− 1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

f1

(
|1+hξ1|2
(1−γ2)2

)
f1

(
|1+hξ2|2
(1−γ2)2

)
(ξ1 − rξ2)2

dξ1dξ2

=− 1

4π2

∮
|ξ2|=1

f1

(
|1 + hξ2|2

(1− γ2)2

)∮
|ξ1|=1

(
K1 +K2ξ1 +K2ξ

−1
1 +K3ξ

2
1 +K3ξ

−2
1

)
(ξ1 − rξ2)2

dξ1dξ2

=− 2πi

4π2

∮
|ξ2|=1

f1

(
|1 + hξ2|2

(1− γ2)2

)(
K2

r2ξ2
2

+
2K3

r3ξ3
2

)
dξ2

=− 2πi

4π2

∮
|ξ2|=1

(
K1 +K2ξ2 +K2ξ

−1
2 +K3ξ

2
2 +K3ξ

−2
2

)( K2

r2ξ2
2

+
2K3

r3ξ3
2

)
dξ2

=− 2πi

4π2

∮
|ξ2|=1

(
K1 +K2ξ2 +K3ξ

2
2

)( K2

r2ξ2
2

+
2K3

r3ξ3
2

)
+
(
K2ξ

−1
2 +K3ξ

−2
2

)( K2

r2ξ2
2

+
2K3

r3ξ3
2

)
dξ2

=− 2πi

4π2

∮
|ξ2|=1

(
K1 +K2ξ2 +K3ξ

2
2

)( K2

r2ξ2
2

+
2K3

r3ξ3
2

)
+

(
K2

2

r2ξ3
2

+
2K2K3

r2ξ4
2

+
K2K3

r2ξ4
2

+
2K2K3

r2ξ5
2

)
dξ2

Now by the Cauchy Residue Theorem, we have that∮
|ξ2|=1

K2
2

r2ξ3
2

+
2K2K3

r2ξ4
2

+
K2K3

r2ξ4
2

+
2K2K3

r2ξ5
2

dξ2 = 0 and

∮
|ξ2|=1

(
K2

r2ξ2
2

+
2K3

r3ξ3
2

)
dξ2 = 0,

as these expressions can be written as a constant function times a pole of order higher

than two. Now

−2πi

4π2

∮
|ξ2|=1

(
K2ξ2 +K3ξ

2
2

)( K2

r2ξ2
2

+
2K3

r3ξ3
2

)
dξ2

=
2πi

4π2

∮
|ξ2|=1

(
K2

2

r2ξ2

+
2K2

3

r3ξ2

)
dξ2 +

2πi

4π2

∮
|ξ2|=1

(
2K2K3

r3ξ2
2

+
K2K3

r2

)
dξ2

=
2πi

4π2

∮
|ξ2|=1

(
K2

2

r2ξ2

+
2K2

3

r3ξ2

)
dξ2 =

K2
2

r2
+

2K2
3

r3
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Then taking the limit as r ↓ 1 completes the proof.

Lemma C.1.3. Let γ := (γ1, γ2) and f1, f2 be the real valued function

f1(x) := (1− x)2 and f2(x) := (1− 1

x
)2.

Then

−lim
r↓1

1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

1

(ξ1 − rξ2)2
f1

(
|1 + hξ1|2

(1− γ2)2

)
f2

(
|1 + hξ2|2

(1− γ2)2

)
dξ2dξ1 =

J1K2

h
+

J1K2

h(h2 − 1)
+
−J1K3(h2 + 1)

h2
+
−J1K3

h2(h2 − 1)
+

J2K22h

(h2 − 1)3
+
J2K3

h2
+
J2K3(1− 3h2))

h2(h2 − 1)3

where

K2 =
2h(1 + h2)

(1− γ2)4
− 2h

(1− γ2)2
, K3 =

h2

(1− γ2)4

J1 = −2(1− γ2)2 and J2 = (1− γ2)4.

Proof. Firstly we have that,

f2

(
|1 + hξ|2

(1− γ2)2

)
=

(
1− (1− γ2)2

(1 + hξ2)(1 + hξ̄2)

)2

= 1− 2
(1− γ2)2

(1 + hξ2)(1 + hξ̄2)
+

(1− γ2)4

(1 + hξ2)2(1 + hξ̄2)2

= 1 +
J1

(1 + hξ2)(1 + hξ̄2)
+

J2

(1 + hξ2)2(1 + hξ̄2)2

= 1 +
J1ξ2

(1 + hξ2)(ξ2 + h)
+

J2ξ
2
2

(1 + hξ2)2(ξ2 + h)2
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Using the same constants as in Lemmas C.1.1 and C.1.2 we have the following,

− 1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

(
K1 +K2ξ1 +K2ξ

−1
1 +K3ξ

2
1 +K3ξ

−2
1

) (
1 + J1ξ2

(1+hξ2)(ξ2+h)
+

J2ξ22
(1+hξ2)2(ξ2+h)2

)
(ξ1 − rξ2)2

dξ1dξ2

= − 1

4π2

∮
|ξ1|=1

∮
|ξ2|=1

(
K1 +K2ξ1 +K2ξ

−1
1 +K3ξ

2
1 +K3ξ

−2
1

)
(ξ1 − rξ2)2

dξ1

×
(

1 +
J1ξ2

(1 + hξ2)(ξ2 + h)
+

J2ξ
2
2

(1 + hξ2)2(ξ2 + h)2

)
dξ2

= −2πi

4π2

∮
|ξ2|=1

(
K2

r2ξ2
2

+
K3

r3ξ3
2

)(
1 +

J1ξ2

(1 + hξ2)(ξ2 + h)
+

J2ξ
2
2

(1 + hξ2)2(ξ2 + h)2

)
dξ2

= −2πi

4π2

∮
|ξ2|=1

K2

r2ξ2
2

+
K3

r3ξ3
2

+
J1K2

r2ξ2(1 + hξ2)(ξ2 + h)
+

J1K3

ξ2
2(1 + hξ2)(ξ2 + h)

+

J2K2

r2(1 + hξ2)2(ξ2 + h)2
+

J2K3

r2ξ(1 + hξ2)2(ξ2 + h)2
dξ2

= −2πi

4π2

∮
|ξ2|=1

J1K2

r2ξ2(1 + hξ2)(ξ2 + h)
+

J1K3

ξ2
2(1 + hξ2)(ξ2 + h)

+

J2K2

r2(1 + hξ2)2(ξ2 + h)2
+

J2K3

r2ξ2(1 + hξ2)2(ξ2 + h)2
dξ2

= −2πi

4π2

∮
|ξ2|=1

((i) + (ii) + (iii) + (iv))dξ2

These values can be calculated using the residue theorem.

Term (i) (ii) (iii) (iv)

Residue Locations 0, -h 0, -h -h 0, -h

Orders 1,1 2, 1 2 1, 2

Then the integral is given by the following,

J1K2

h
+

J1K2

h(h2 − 1)
+
−J1K3(h2 + 1)

h2
+
−J1K3

h2(h2 − 1)
+ (C.1.2)

J2K22h

(h2 − 1)3
+
J2K3

h2
+
J2K3(1− 3h2)

h2(h2 − 1)3
. (C.1.3)

C.2 Proof of Main Results

In this section, we provide proofs for the main results in the chapter.

Proof of Proposition 6.2.1. Firstly

R(X1,X2) = (XT
2 X2)

−1
XT

1 X1 =
(

(XT
1 X1)

−1
XT

2 X2

)−1

= (R(X2,X1))−1,
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which implies that

λj(R(X1,X2)) = λ−1
j (R(X2,X1))

Then

R(X1,X2) =

p∑
j=1

(1− λj(R(X1,X2)))2 +
(
1− λ−1

j (R(X1,X2))
)2

=

p∑
j=1

(
1− λ−1

j (R(X2,X1))
)2

+ (1− λj(R(X2,X1)))2 .

Now the final term is the definition of the test statistic T (X2,X1). Thus

T (X1,X2) =

p∑
j=1

(
1− λ−1

j (R(X2,X1))
)2

+ (1− λj(R(X2,X1)))2 = T (X2,X1)

proving symmetry.

We can write X1 and X2 as Σ
1
2
1Z1 and Σ

1
2
1Z2 respectively, where E(ZT

· Z·) = Ip.

Then

λj(R(X1,X2)) = λj

((
Σ

1
2
1Z

T
2 Z2Σ

1
2
1

)−1

Σ
1
2
1Z

T
1 Z1Σ

1
2
1

)
= λj

(
Σ
− 1

2
1

(
ZT

2 Z2

)− 1
2 Σ
− 1

2
1 Σ

1
2
1Z

T
1 Z1Σ

1
2
1

)
=

= λj

(
Σ
− 1

2
1

(
ZT

2 Z2

)− 1
2 ZT

1 Z1Σ
1
2
1

)
=

= λj

((
ZT

2 Z2

)− 1
2 ZT

1 Z1Σ
1
2
1 Σ
− 1

2
1

)
= λj

((
ZT

2 Z2

)− 1
2 ZT

1 Z1

)
= λj(R(Z1,Z2)).

We can write Y1 and Y2 as Σ
1
2
2Z3 and Σ

1
2
2Z4, where Z1

D
= Z3 and Z2

D
= Z4. Then by

a similar argument as before we have that

T (Y1,Y2) = T (Z3,Z4)
D
= T (Z1,Z2) = T (X1,X2),

completing the proof

The proof of Theorem 6.3.1 requires the application of Theorem 3.1 Zheng, 2012.

For completeness, we state the this result in full below.

Theorem C.2.1. Zheng, 2012 Let X ∈ Rn1×p and Y ∈ Rn2×p be random matrices

satisfying Assumption 6.3.1, and f1, . . . , fs (s is a fixed integer) be functions analytic
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in an open region in the complex plane containing the interval [aγ, bγ]. Then, as

n→∞, the random vector [∫
fk(x)dGn(x)

]
1 ≤ k ≤ s

converges weakly to a Gaussian vector (Xf1 , . . . Xfs) with means, µfk , and variances,

σ2
fk

,

Efk(γ) := lim
r↓1

1

4πi

∮
|z|=1

f

(
|1 + hξ|2

(1− γ2)2

)[
1

ξ − r−1
+

1

ξ + r−1
− 2

ξ + γ2
h

]
dξ

(C.2.1)

Covfk,fj(γ) := −lim
r↓1

2

4π2

∮
|ξ1|=1

∮
|ξ2|=1

1

(ξ1 − rξ2)2
f

(
|1 + hξ1|2

(1− γ2)2

)
f

(
|1 + hξ2|2

(1− γ2)2

)
dξ2dξ1.

(C.2.2)

We now use the above result, and the results in the previous section to prove the

main result of the chapter.

Proof. Proof of Theorem 6.3.1 Let t1(x) = (1 − x)2 and t2(x) = (1 − 1
x
)2. Then

by Theorem C.2.1 the vector tn(x) := (
∫
f1(x)dFn(x),

∫
f2(x)dFn(x)) converges to

a Normal vector with mean and covariance given by equations (C.2.1) and (C.2.2).

Now our test statistic (at a single time point) can be expressed as 1T tn(x) and thus

by the continuous mapping theorem converges weakly to a Normal random variable

with moments

Ef1(γ) + Ef2(γ) and Covf1,f1(γ) + 2Covf1,f2(γ) + Covf2,f2(γ). (C.2.3)

We also have the following relationship between t1 and t2,

t1(λj(Σ
−1
1 Σ2)) = (1− λj(Σ−1

1 Σ2))2 = (1− λj(Σ−1
2 Σ1))2 = t2(λj(Σ

−1
2 Σ1)).

By Theorem C.2.1, the limiting distributions of f1 and f2 depend on γ which implies

that

Et1(γ1, γ2) = Et2(γ2, γ1) and Cov2
t1,t1

(γ1, γ2) = Cov2
t2,t2

(γ2, γ1). (C.2.4)

By Lemma C.1.1 we have that

Et1(γ) = 2K3,1

(
1− γ2

2

h2

)
+

2K2,1γ2

h
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where

K2,1 =
2h(1 + h2)

(1− γ2)4
− 2h

(1− γ2)2
, K3,1 =

h2

(1− γ2)4
.

By symmetry

Et2(γ) = 2K3,2

(
1− γ2

1

h2

)
+

2K2,2γ1

h

where

K2,2 =
2h(1 + h2)

(1− γ1)4
− 2h

(1− γ1)2
, K3,2 =

h2

(1− γ1)4
.

Combining these values gives the expectation.

By Lemma C.1.2 we have that

Covt1,t1(γ) = 2
(
K2

2,1 + 2K2
3,1

)
and by symmetry we have that

Covt2,t2(γ) = 2
(
K2

2,2 + 2K2
3,2

)
.

Finally by Lemma C.1.3 we have that

Covt1,t2(γ) = 2

(
J1K2,1

h
+

J1K2,1

h(h2 − 1)
+
−J1K3,1(h2 + 1)

h2
+
−J1K3,1

h2(h2 − 1)
+

J2K2,12h

(h2 − 1)3
+
J2K3,1

h2
+
J2K3,1(1− 3h2)

h2(h2 − 1)3

)

where

J1 = −2(1− γ2)2 and J2 = (1− γ2)4.

Plugging these values into (C.2.3) gives the required result.
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