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Abstract

In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred
to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization
of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice
unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit
mobilities above 106 cm2V−1s−1 and the mean free path exceeding several micrometers. The exceptional
quality of our devices allows us to show that Brown-Zak minibands are 4q times degenerate and all the
degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1K. We also found
negative bend resistance at 1/q fractions for electrical probes placed as far as several micrometers apart.
The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in
high fields along straight trajectories, just like electrons in zero field.

Introduction

Van der Waals assembly offers a possibility to create
materials by stacking atomically-thin layers of differ-
ent crystals1–3. One of the simplest and most studied
van der Waals heterostructures is graphene encapsu-
lated between two hexagonal boron nitride (hBN) crys-
tals. The encapsulation protects graphene from extrin-
sic disorder4,5, allowing ultra-high electronic quality
and micrometer-scale ballistic transport often limited
only by edge scattering6,7. A special case of encapsu-
lated graphene heterostructures is graphene superlat-
tices where crystallographic axes of graphene and hBN
are intentionally aligned. A small (1.8%) mismatch be-
tween graphene and hBN crystal lattices results in a
periodic moiré potential acting on charge carriers in

graphene and leading to the formation of electronic
minibands1–3,8–17.

A relatively large (≈14 nm) periodicity of
graphene-on-hBN superlattices has also made it pos-
sible to study the regime of Hofstadter butterflies,
which requires the magnetic flux φ per superlattice
unit cell to be comparable to the flux quantum φ0
in experimentally-accessible magnetic fields B. At
B = Bp/q corresponding to φ = φ0p/q, where p and
q are integer, the translational symmetry of the elec-
tronic system is restored (despite the presence of a
quantizing magnetic field) and the superlattice’s elec-
tronic spectrum can again be described in terms of
Bloch states18–29, just like in B = 0. These high-field
Bloch states are characterized by their own miniband
spectra25–29 different from the zero-B spectrum of
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graphene-on-hBN superlattices. The associated quasi-
particles are referred to as Brown-Zak (BZ) fermions.
According to the group-theory analysis, an electronic
spectrum for each realization of BZ fermions should
have an additional q-fold degeneracy18–27,30,31 (that
is, contains q equivalent mini-valleys). This degener-
acy is additional to the 4-fold spin and valley degen-
eracy of graphene’s original spectrum. Importantly,
BZ fermions are Bloch quasiparticles, like electrons
in solids or Dirac fermions, and, at B = Bp/q, they
move through the superlattice as if the applied field is
zero. Away from these exact values, BZ fermions ex-
perience an effective magnetic field Beff = B − Bp/q

(refs18–27,30,31).

Results

Experimental devices and measurement
setup

We report the electronic properties of BZ fermions
with different p and q using high-quality graphene su-
perlattices. These devices were fabricated using the
standard dry transfer procedures, where the studied
graphene crystal was carefully aligned with one of the
encapsulating hBN crystals using the crystallographic
edges11. The alignment was verified by Raman spec-
troscopy32 prior to encapsulation with the second hBN
crystal. The latter was intentionally misaligned to
avoid competing moiré patterns33–35. The assembled
stacks were placed on an oxidized Si wafer, which al-
lowed us to apply the back-gate voltage Vg to con-
trol the carrier density n. We studied six devices that
were shaped into the multiterminal Hall bar geome-
try and had the main channel widths W ranging from
2 to 17 µm (see Fig. 1a and Supplementary Note 1).
The devices were first characterized by measuring their
longitudinal resistivity ρxx in zero B and Hall resistiv-
ity ρxy in small non-quantising B below 0.1 T. The
latter enabled us to find the n(Vg) dependences, ex-
cept for gate voltages close to the neutrality points
(NPs) and van Hove singularities (vHS), where ρxy re-
versed its sign and could no longer be described by the
standard dependence ρxy = B/ne (e is the electron
charge). All our devices exhibited very high carrier
mobilities µ = (ρxxne)

−1 of the order of 106 cm2 V−1

s−1, which were still somewhat reduced by edge scat-
tering because of finite W (Fig. 1b). We corroborated
the high quality of our devices using transverse mag-
netic focusing measurements (Supplementary Note 2).
In the main text, we focus on two large-width devices
(D1 and D2) exhibiting highest µ.

Fig. 1c shows a map of the longitudinal conductiv-
ity σxx = ρxx/(ρ

2
xx +ρ2xy) as a function of Vg and B in

fields up to 18 T. The main features on such maps have
been well understood in terms of the Hofstadter spec-
trum for Dirac fermions in moiré superlattices11–17,22.
One can see numerous Landau levels (LLs) fanning out
from the main and secondary NPs (miniband edges)
which are located at Vg near 0 and ±45 V, respec-
tively. There are also pronounced funneling features
near van Hove singularities at Vg ≈ -60, -35, +40 and
+55 V in both hole (−) and electron (+) parts of the
spectrum. Another important attribute of the map
is horizontal yellow streaks that occur at φ = φ0p/q
(Fig. 1c). If temperature T is increased above 100 K so
that Landau quantization is strongly suppressed, the
horizontal streaks become the only dominant feature
on such transport maps28,29. In the high-T regime,
the streaks represent oscillations in both ρxx(B) and
ρxy(B) at a constant Vg. Their 1/B frequency is inde-
pendent of n, and they were named BZ oscillations28.
The horizontal streaks are seen in Fig. 1c correspond
to maxima in σxx and zeros in ρxy and, as explained in
the introduction, reflect the recovery of translational
symmetry (p flux quanta penetrate through q superlat-
tice unit cells) and the emergence of Bloch states expe-
riencing zero Beff . Along each horizontal streak, one
can find numerous NPs and vHS, which reflect differ-
ent realizations of BZ fermions at each Bp/q. Landau
mini-fans radiate from these NPs in both directions
along the B axis (Fig. 1c), representing Landau quan-
tization of BZ electronic spectra by non-zero Beff (see
below)18–29. Another notable feature of the shown σxx
map is a repetitive triangular-like pattern seen most
clearly between 2 and 12 T, especially for positive Vg.
The yellow triangles are made of horizontal streaks at
zero Beff , vertical streaks emerging from NPs for BZ
fermions and slanted streaks originating from vHS.

Ballistic transport

The transport properties of BZ fermions can be ana-
lyzed in the same way as in Fig. 1b for Dirac fermions.
The results are plotted in Fig. 1d for the case of
φ/φ0 = 1/2 and show that, away from NPs and vHS,
BZ fermions in our devices exhibit µ reaching a few
106 cm2 V−1 s−1. This is comparable to µ of Dirac
fermions in zero B. Another important characteristic
of charge carrier transport is the mean free path l. It
can be evaluated for both Dirac and BZ fermions, using
the standard expression σxx = ge2/h((kF l)/2) where
h is the Planck constant, kF is the Fermi momentum
and g is the degeneracy. In zero B, g = 4 because
of the spin and valley degeneracy of Dirac fermions.
BZ fermions are expected to have an additional, mini-
valley degeneracy18–27,30,31, which is equal to q (that
is, g = 8 for the case of Fig. 1d). Using these g, we
calculated l as shown in the bottom panels of Figs.
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Figure 1: High-quality graphene superlattices and their transport properties. a, Optical micro-
graph of one of our devices (D1; twist angle θ between graphene and hBN of about 0.4◦). The Hall bar is
seen in violet with golden electrical contacts. b, Mobility and mean free path for D1 measured at zero B
and 10 mK. Semitransparent vertical strips indicate the doping regions around NPs and vHS where n could
not be extracted directly from Hall measurements and charge inhomogeneity also plays a role. To calculate µ
and l within the shaded regions, we assumed a constant gate capacitance and linearly extrapolated the n(Vg)
dependences found sufficiently far from NPs and vHS (Supplementary Note 3). The noisy behavior at large
values of µ and l arises from ρxx becoming small (≈1 Ω, about 4 orders of magnitude smaller than that at the
NPs). The horizontal black line indicates the device width W . c, σxx(Vg, B) measured by sweeping Vg and
varying B in small steps of 40 mT. T = 10 and 250 mK below and above 14 T, respectively. Indigo-to-yellow
colors: Log scale truncated between 38 nS and 16 mS for B < 14 T and between 4 nS and 0.4 mS above 14 T.
White rectangles: these regions are shown in finer detail in Figs. 3 and 4. d, Same as in panel b but for
φ/φ0 = 1/2 (B ≈ 15 T); T = 250 mK. In addition to NPs and vHS, the grey strips also cover a wide region
of the quantum Hall regime (|Vg| < 20 V), which is dominated by large cyclotron gaps in the main graphene
spectrum. The transport data used to calculate µ and l in panel (b) and (d) are shown in Supplementary Note
3.
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1b and 1d. The mean free path in zero B reached >
20 µm, implying that ballistic transport in our devices
is limited by W rather than impurity scattering. For
some realizations of BZ fermions, their mean free path
also exceeds 10 µm, marginally smaller than l for Dirac
fermions (cf. Figs 1b and 1d). Supplementary Note 4
provides similar analysis for µ and l at other values of
q.

We corroborate the existence of ballistic BZ
fermions using so-called bend resistance geometry5,36

sketched in Fig. 2a. The geometry allows one to detect
if charge carriers can move ballistically over the entire
channel width W , along straight trajectories connect-
ing current and voltage contacts (see caption of Fig.
2a). If this is the case, ballistic transport gives rise
to the negative sign of the bend resistance Rb(ref36)
in contrast to its conventional, positive sign for diffu-
sive (ohmic) transport. As expected from very long l
of Dirac fermions, Rb was negative in zero B every-
where away from NPs and vHS (Fig. 2b), confirming
further the high quality of our superlattice devices.
Finite B bend Dirac fermion trajectories and, as ex-
pected, Rb rapidly reversed its sign36 with increasing
B (inset of Fig. 2b). Remarkably, our devices exhib-
ited negative Rb also in high B = Bp/q, thus revealing
straight trajectories over distances of several µm (Figs.
2c,d and Supplementary Note 5). For comparison, the
corresponding map of ρxx is provided in Supplemen-
tary Note 6, which shows that the measured longitudi-
nal resistance always remained positive. The profound
negative pockets in Rb(Vg, B) appeared only around B
corresponding to φ/φ0 = 1/2, 1/3, 1/4 and 1/5. This
is the regime where the existence of BZ fermions, expe-
riencing zero Beff , was previously inferred28,29 from
maxima in σxx and zeros in σxy. The possibility of
ballistic transport of BZ fermions was also suggested
using numerical simulations15. The observed nega-
tive Rb prove the previous conjectures unequivocally.
The negative pockets in Fig. 2c are located between
NPs and vHS for BZ fermions, similar to the case of
Dirac fermions. Away from B = Bp/q, non-zero Beff

bends the BZ fermion trajectories and the negative
signal disappeared (inset of Fig. 2d), again like in the
case of other Bloch quasiparticles (electrons and Dirac
fermions). Our devices exhibited long-range ballistic
transport of BZ fermions only for unit fractions, φ0/q.
For example, Fig. 2c reveals a pronounced set of neg-
ative Rb pockets at φ/φ0 = 1/5 but no negative signal
was observed for 2/5 and 3/5. This behavior probably
stems from lower µ of BZ fermions with p > 1, which
can be attributed to their larger effective masses29.

Lifting degeneracy in BZ minibands

The high mobility of BZ fermions resulted in their
Landau quantization in small Beff < 1 T, which al-
lowed us to find experimentally the spectral degener-
acy g for different p/q. To this end, Fig. 3a shows
a high-resolution map of σxx between φ/φ0 = 1/2
and 1/4 (part of Fig. 1c). One can clearly see many
Landau mini-fans originating from NPs for different
realizations of BZ fermions. For example, there are
three profound mini-fans spreading from B ≈ 9.7 T
(φ/φ0 = 1/3) for both negative and positive Beff .
For clarity, the conductivity map in Fig. 3a is replot-
ted in Fig. 3b by tracing all well-defined minima in
σxx. Each minimum can be described by its integer fill-
ing factor ν, which we calculated from the minimum’s
slope. This representation of the Hofstadter spectrum,
where LLs are plotted as a function of n or Vg rather
than energy, is usually referred to as the Wannier di-
agram11–17,21,22. In the diagram of Fig. 3b, one can
identify LLs for BZ-fermion realizations at q = 2, 3, 4,
5, 7, 8, 9 and 11, and for p= 1, 2, 3, 4 and 5. The differ-
ence in ν between the nearest LLs yields directly their
g. For example, all LLs found for φ/φ0 = 1/2 were sep-
arated by ∆ν = 2 whereas those at φ/φ0 = 1/3 and 1/4
by ∆ν = 3 and 4, respectively (see Fig. 3b). Therefore,
the observed degeneracies were equal to q. Note that
the measured Hall conductance also exhibited quan-
tized values in steps of qe2/h (Supplementary Note 7).
Examining the Wannier diagram further, we find that
∆ν was equal to q, independently of numerator p and
for all LLs stemming from the same Bp/q. This ob-
servation agrees with the theoretical expectation that
there should be q equivalent mini-valleys for each real-
ization of BZ fermions18–27,30,31. The agreement takes
into account that both spin and valley degeneracies for
BZ fermions were lifted by exchange interactions14, as
in the case of the main Dirac spectrum with its clearly
lifted degeneracies (see the LLs marked in black in Fig.
3b). Therefore, the total degeneracy for BZ minibands
in Fig. 3 was g = 4q. This is further supported by our
measurements at a relatively high T of 2 K that sup-
pressed LLs with lifted spin and valley degeneracies
(Supplementary Note 6). The same behavior (Landau
mini-fans exhibiting the sequence ∆ν = q) was also
observed in other parts of the Wannier diagram for
both electron and hole doping (see, e.g., Fig. 4).

There is however one notable exception, which
was observed for φ/φ0 = 1/3 (left part of the Wan-
nier diagram in Fig. 3b; dashed lines). In this
case, LLs of BZ fermions with q = 3 are separated
only by ∆ν = 1 so that all consecutive LLs from
3 to 12 are present on the fan diagram. The indi-
cated minima in σxx were rather fragile, being rapidly
smeared by T or excitation current (Supplementary
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Figure 2: Ballistic transport of BZ fermions over micrometer distances. a, Schematic of bend
resistance measurements. Current I is applied between contacts 3 and 4, and voltage Vb is measured between
2 and 1, yielding the bend resistance, Rb = Vb/I. The voltage is positive for diffusive transport but becomes
negative, if charge carriers move directly from current injecting contact 3 into voltage probe 1 (as shown by
the red arrow). b, Bend resistance for Dirac fermions in zero B (device D2 with W = 4 µm and θ ≈ 0◦). Inset:
Rb(B) taken at the minimum indicated by the arrow in the main plot. c, Map Rb(Vg, B) for the same device.
B was changed in steps of 50 mT. Pockets of negative Rb appear along φ/φ0 = 1/q and are seen in magenta.
d, Cross-sections from panel c for q = 2 and 3. The inset shows sign reversals in Rb plotted as a function of
Beff = B–Bp/q for the minima marked by the color-coded arrows. T = 2 K for all the plots.
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Figure 3: Landau quantization in BZ minibands at 10 mK. a, High-resolution map σxx(Vg, B) for the
electron-doped region indicated in Fig. 1c by the white rectangle (device D1). To better resolve LLs around
q = 3, B was changed in steps of 10 to 20 mT whereas data in other regions were acquired using 40 to 80 mT
steps. This has resulted in the contrast discontinuities seen in the map. Log color scale: indigo (230 nS)
to yellow (7.8 mS) for the entire map. b, Minima from panel (a) are shown schematically. The color-coded
numbers are the filling factors for the corresponding LLs. Thick black lines correspond to the main sequence
of LLs for graphene’s Dirac spectrum (spin and valley degeneracy lifted). The green, red, navy, blue, orange,
magenta, pink and yellow lines correspond to q = 2, 3, 4, 5, 7, 8, 9 and 11, respectively. Dashed red lines:
minima due to lifted mini-valley degeneracy. 6



Note 7). Landau levels with ∆ν = 1 at φ/φ0 = 1/q do
not exist within the single-particle Hofstadter-Wannier
model16,17,21,22. Such extra LLs have been observed
previously and referred to as the fractional Bloch
quantum Hall effect (FBQHE)16 or symmetry-broken
Chern insulator (SBCI)17. Theoretically, the many-
body states can arise from interaction effects that lift
the mini-valley degeneracy of BZ fermions. This may
happen via mini-valley mixing due to the formation
of charge-density waves (commensurate with the mag-
netic superlattice composed of q unit cells of the un-
derlying moiré pattern) or a Wigner crystal37 (states
localized in a part of the magnetic supercell). Alterna-
tively, the fully lifted degeneracy may occur through
spontaneous mini-valley polarization of BZ LLs, anal-
ogous to spin/valley ferromagnetism in graphene 14.
In the latter case, the BZ fermion states localize in the
momentum space around one of the mini-valleys but
remain delocalized across the magnetic supercell.

Discussion

Some Landau mini-fans exhibited highly anomalous
behavior at low T , which cannot be understood ei-
ther within the Hofstadter-Wannier model or by con-
sidering LLs of non-interacting BZ fermions and, to
the best of our knowledge, was never reported before.
From either perspective, individual LLs must evolve
linearly in Vg and B, as indeed seen in most cases (e.g.,
Fig. 3). This is because the density of states on each
BZ-fermion LL is proportional to Beff = B − Bp/q.
Also, the long (≈300 nm) distance from graphene to
the gate in our devices makes quantum capacitance
corrections38,39 negligible, leading to the n ∝ Vg de-
pendence. Unexpectedly, we found that some Landau
fans of BZ fermions exhibited bending and staircase-
like features. Figure 4 shows examples of such behavior
for the case of hole doping. Both bending and stair-
cases appear away from NPs, in the regions close to
BZ fermions’ vHS. The observed bending towards the
gate-voltage axis indicates that, in addition to the visi-
ble LLs, there can be some other electronic states that
are populated in parallel. Because electron-electron
interactions clearly play a significant role under the re-
ported experimental conditions (e.g., they lift all the
spectral degeneracies), it is reasonable to expect that
interactions are also involved in the described anoma-
lies. However, the usual suspects, such as negative
compressibility cannot possibly explain our findings
(in the latter case, LLs would bend toward the B axis).
The anomalous behavior is possibly due to an interplay
of BZ-fermion LLs with quantized states originating
from nearby vHS, which would lead to redistribution of
charge carriers between states with the light and heavy

effective masses. One possible scenario is localization
of electrons within some parts of the magnetic super-
cell, because its size becomes notably larger than the
magnetic length at B > 10 T (Wigner crystallization
mentioned above). Unfortunately, we could not find
any additional features that would enable us to deci-
pher origins of the described anomalies and, therefore,
have to leave them for further investigation.

Methods The reported graphene-on-hBN superlat-
tices were assembled using the standard dry transfer
procedures and polydimethylsiloxane (PDMS) stamps
coated with a polypropylcarbonate (PPC) layer7. The
thicknesses of the used hBN crystals was between 20
and 70 nm. After the trilayer stack was assembled, we
used the standard electron beam lithography and re-
active ion etching to define trenches for electrical con-
tacts. Cr/Au films were evaporated into the trenches.
Finally, using ion etching again, the trilayer stack was
shaped into a Hall bar mesa. For electrical measure-
ments, the standard low-frequency lock-in technique
was employed. At temperatures below 100 mK, we
used excitation currents of ≈10 nA, and between 0.1
to 1 µA at higher T . The carrier concentration was
controlled by applying a DC gate voltage between
graphene and the silicon substrate.
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Supplementary information

Supplementary note 1: Studied devices. We studied six different superlattice devices as summarized
in Supplementary Table 1. Here W refers to the device width, Cg is its gate capacitance and θ is the angle
between the crystallographic axes of hBN and graphene. The latter was calculated from the measured period
of BZ oscillations1.

Table S1

Device W (µm) θ (◦) Cg (µF/m2)

D1 17 0.4 101
D2 4 0 98
D3 3 0.2 104
D4 3.2 0.5 96
D5 2 0.2 106
D6 2 0.3 98

Supplementary note 2: Magnetic focusing in graphene superlattices. As a further confirmation of the
devices’ high quality, we report transverse magnetic focusing (TMF) experiments at low B (Supplementary Fig.
1). The observation of resistance oscillations due to TMF confirms that Dirac fermions travel ballistically across
the device2,3, forming skipping orbits extending over hundreds of superlattice unit cells. TMF measurements
are also known to provide information about the Fermi surface topography in clean metals, including graphene
superlattices2,3. Our TMF results are in agreement with those reported previously2,4.

Figure S1: Transverse magnetic focusing. Measurements using contacts separated by 1.5 µm (closest
contacts for device D1 pictured in Fig. 1a of the main text); T = 10 mK.
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Supplementary note 3: Determining mobility and mean free path of BZ fermions. To evaluate
the mobility of Brown-Zak fermions, we use the standard formula µ = σxx/(nBZF e) where nBZF is the carrier
density of BZ fermions and σxx = 1/ρxx . Note that the latter expression is exact at φ = φ0p/q (that is, it
does not contain ρxy because the effective magnetic field Beff acting on BZ fermions is zero). To determine
nBZF for a given Vg, we first used Hall measurements at small fields B ≤ 0.1 T to determine the geometrical
capacitance. Then, using longitudinal conductivity maps around the p/q fractions, we identified positions of
the neutrality points (NPs) as Vg into which Landau mini-fans converged (see Fig. 1c and Fig. 3a of the main
text). Finally, vHS were identified from Hall effect measurements as Vg where ρxy changed its sign without
exhibiting mini-fans (Supplementary Fig. 2b). As nBZF varies linearly across NPs and exhibits jumps at vHS,
the known geometrical capacitance allowed us to reconstruct nBZF (Vg) as shown in Supplementary Fig. 2a.
The mean free path l was calculated using the standard formula σxx = ge2/h((kF l)/2) where the Fermi wave
vector kF = (4πnBZF /g

(1/2) also depends on the BZ fermion degeneracy g. The final expression reads

l =
2

ρxx

h̄

e2

√
π

g nBZF
(S1)

Figure S2: Evaluating density of BZ fermions. Dependence of nBZF on gate voltage at φ/(φ0 = 1/2)
for device D1. b, Measured maps for the Hall resistivity around φ/(φ0 = 1/2). Colour scheme: blue and red
represent negative and positive ρxy, respectively. Regions around NPs are indicated by the grey semi-transparent
strips. The yellow strips mark vHS. The central green area covers the region dominated by the quantum Hall
effect of Dirac fermions from the main graphene spectrum (see Fig. 1c of the main text).
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Figure S3: Longitudinal resistivity ρxx for device D1. a, Measurements in zero field and b, for φ/φ0 =
1/2. These data were used to calculate the mobilities and mean free paths in Fig. 1 of the main text.

Supplementary Note 4: BZ fermions at higher order fractions. In Fig. 1 of the main text, we
presented µ and l for Dirac fermions and for BZ fermions at φ/φ0 = 1/2. For completeness, Supplementary Fig.
4 shows the same analysis for the case of φ/φ0 = 1/3 and 1/4. One can see that mobilities of BZ fermions with
the larger q still remain of the order of 106 cm2/Vs and their mean free path approaches values comparable to
the device width W , which suggests a notable contribution from edge scattering.

Figure S4: Ballistic transport of BZ fermions at unit fractions of the flux quantum. The data are
for device D1 at 10 mK for φ/φ0 = 1/3 (a) and 1/4 (b). The same presentation as in Figs. 1b,d of the main
text. We show the data for positive voltages because for mini-fans and vHS could accurately be identified only
for electron doping.
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Supplementary Note 5: Additional examples of ballistic transfer of BZ fermions. In the main text,
we have emphasized that, at fields B = Bp/q, BZ fermions move through the superlattice as if the applied
field were zero. The effective mass of BZ fermions depends on p/q because electronic spectra differ in different
magnetic minibands. Away from the exact Bp/q values, BZ fermions are expected1 to experience an effective
magnetic field Beff = B–Bp/q and, therefore, replicate magneto-transport effects known for charge carriers in
conventional 2D electronic systems. This includes the negative bend resistance that is one of the most distinct,
qualitative signatures of ballistic transport of charge carriers5–7. The effect can be understood as follows. With
reference to Fig. 2a of the main text, let us for simplicity consider positive charge carriers (hole-doping regime).
If holes injected from contact 3 can travel ballistically over a distance exceeding W (that is, can reach contact
1 without scattering), an extra positive charge would be accumulated near contact 1. As a result, the voltage
difference V21 = V2 − V1 should be negative (see Fig. 2a of the main text). In contrast, if the transport is
conventional (diffusive), holes from contact 3 travel along lines of the electric field and accumulate at contact 4.
Accordingly, the sign of V21 should be conventional (that is, positive). The same consideration for V21 is valid for
electrons. Therefore, the negative sign of Rb signifies ballistic transport over distances larger than W . Negative
Rb was reported in Fig. 2 of the main text for one of our devices (D2). Supplementary Fig. 5 provides further
examples of ballistic transport of BZ fermions using two other superlattices (devices D3 and D4). Pronounced
pockets of negative Rb are seen in Supplementary Fig. 5 at unit fractions of φ0 with q from 2 to 5. Despite
relatively small W ≈ 3 µm, no evidence for ballistic transfer was observed for high-order BZ states (p > 1),
in agreement with the results reported in the main text. Note that occasionally we observed negative bend
resistance away from φ/φ0 = 1/q (see, e.g., the vertical magenta stripe close to zero Vg in Supplementary Fig.
5a). Unlike the ballistic transfer resistance at unit flux fractions, negative signals away from the unit fractions
were not reproducible in different contact configurations. Such extra negative signals are not surprising in our
experimental geometry and well known to appear in the quantum Hall effect regime using narrow (mesoscopic)
devices8.

Figure S5: Ballistic transport of BZ fermions over micrometer distances. Fan diagrams obtained
in the bend resistance geometry for devices D3 (a) and D4 (b) with W = 3 and 3.2 µm, respectively. T =
2 K. Pockets of negative Rb are highlighted in magenta. Indigo-to-yellow: Log scale truncated between 10 and
2,000 Ω to optimize the contrast.

Ballistic transport of BZ fermions was found to be rather sensitive to T , and the pockets of negative Rb

universally disappeared above 30-50 K as shown in Supplementary Fig. 6. This is generally expected because
the mean free path of BZ fermions should become shorter at higher T . However, the exact scattering mechanism
could be nontrivial (see, e.g. Umklapp electron-electron scattering9) and requires further investigation.
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Figure S6: Temperature dependence of BZ fermions’ ballistic transport. An example of the bend
resistance measured at φ/φ0 = 1/2 using device D5 with W = 2 µm.

Supplementary Note 6: Supporting measurements in the longitudinal geometry. To crosscheck our
conclusions about ballistic transport of BZ fermions, we compare the negative bend resistance measurements
shown in Figs. 2c,d of the main text with those made in the conventional longitudinal geometry for the same
device D2 (Supplementary Fig. 7a). The longitudinal resistance Rxx for BZ fermions was found positive in all
the regions of the map where the negative bend resistance was reported, which corroborates the conclusion in
the main text about ballistic transfer of BZ fermions across the device.

Figure S7: Longitudinal resistance for ballistic BZ fermions. a, Rxx as a function of gate voltage and
magnetic field measured at 2 K for device D2. Color scale is the same as in Fig. 2c of the main text. b, Minima
found in the longitudinal conductivity are shown schematically. The color-coding is the same as for device D1
in Fig. 3b of the main text. The thin black lines mark LLs with the lifted spin and valley degeneracy for Dirac
fermions of the main spectrum.

Let us note here that, according to the group theory of irreducible representations for the group of translations
in a magnetic field, an electronic spectrum for each realization of BZ fermions should have an additional q-fold
degeneracy. This is prescribed by the fact that a group corresponding to any p/q fraction is non-Abelian (due to
Aharonov-Bohm phases acquired upon translations in non-colinear directions) but contains an Abelian subgroup
of translations corresponding to a magnetic superlattice with a q times larger supercell. The additional q-fold
degeneracy takes the form of q mini-valleys in the magnetic mini Brillouin zone with an area q times smaller
than the moiré superlattice Brillouin zone at B = 0. This degeneracy is additional to the 4-fold spin and valley
degeneracy of graphene’s original spectrum.

With this consideration in mind, the measurements in Supplementary Fig. 7 also support our other conclu-
sion that the full degeneracy of BZ fermions is 4q. Indeed, the q-fold degeneracy reported in Fig. 3 of the main
text corresponds to the case where both spin and valley degeneracies of both Dirac and BZ fermions were lifted.
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Figure S8: Quantized Hall conductance for BZ fermions. a, σxy around φ/φ0 = 1/3. b, Hall conductivity
as a function of gate voltage at a number of constant B within the field interval around 11 T (color-coded).
The interval is marked by the horizontal lines in (a).

Supplementary Fig. 7 shows LL fans at 2 K, the temperature much higher than 10 mK for the measurements
in Fig. 3. Dirac fermions of the main spectrum exhibit the lifted spin and valley degeneracies by the relatively
strong B (thin black lines in Supplementary Fig. 7b). At lower fields B < 3 T, these interaction-induced gaps
become progressively smeared. As for BZ fermions, their mini-fans visible in Supplementary Fig. 7b reach
only the effective field |Beff | < 2 T, which does not allow the lifting of spin and valley degeneracies at this
temperature. Accordingly, only the main sequence of LLs for BZ fermions could be observed at 2 K, and it
corresponds to the 4q-fold degeneracy, as expected and explained in the previous paragraph.

Supplementary Note 7: Lifting mini-valley degeneracy. In the main text we reported additional quan-
tum Hall effect minima that cannot be explained within the single-particle Hofstadter-Wannier (dashed lines in
Fig 3b of the main text). Those minima in σxx were attributed to BZ states with lifted mini-valley degeneracy.
As an additional proof for the observed degeneracy lifting, Supplementary Fig. 8 shows measurements of Hall
conductivity σxy for the relevant range of B and Vg where the dashed lines occur in Fig. 3b. One can see well
developed plateaus with the quantized values that are fully consistent with the filling factors reported in the
main text and marked in Fig. 3b. This observation strongly supports our conclusions about lifting of all the
degeneracies of BZ fermions at low T .

The described lifting of mini-valley degeneracy involves very small energy gaps as witnessed by rapid dis-
appearance of the corresponding features with increasing T . Indeed, the quantized Hall plateaus seen in the
above figure and the conductance minima marked by the dashed lines in Fig. 3b of the main text could not
be resolved at 2 K. The features also disappeared rapidly with increasing the excitation current. For example,
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Figure S9: Landau mini-fans for different excitation currents. a and b, σxx(B, Vg) at 10 mK for 10
and 100 nA, respectively. Indigo-to-yellow log scale: 310 nS to 780 µS. c and d, Minima found in (a) and (b)
are shown schematically. The color-coded numbers are the filling factors for the nearby LLs. Thick black lines:
Main sequence of LLs for graphene’s Dirac spectrum.

Supplementary Fig. 9 shows a Landau mini-fan around φ/φ0 = 1/3 for currents of 10 and 100 nA. In the former
case (Supplementary Fig. 9a), there are clear minima associated with to the lifted mini-valley degeneracy. The
higher current (100 nA) resulted in complete smearing of these mini-gaps (Supplementary Fig. 9b), presumably
because of an increase in the electronic temperature.

Finally, let us draw attention to the rather unusual re-entrant behavior seen for the mini-fan around Vg =
28 V in Fig. 3 and Supplementary Fig. 9. The BZ-fermion gaps for ν = 18 and 21 seem to close within a certain
interval B and Vg. We attribute this closure to competition between these BZ states and the ν = 7 state from
the main Dirac sequence. The likely mechanism of the suppression of exchange gaps is discussed in ref.10.
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