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ABSTRACT

Context. Future astrophysical surveys such as J-PAS will produce very large datasets, the so-called “big data”, which will require the deployment
of accurate and efficient Machine Learning (ML) methods. In this work, we analyze the miniJPAS survey, which observed about ∼1deg2 of the
AEGIS field with 56 narrow-band filters and 4 ugri broad-band filters. The miniJPAS primary catalogue contains approximately 64000 objects in
the r detection band (magAB . 24), with forced-photometry in all other filters.
Aims. We discuss the classification of miniJPAS sources into extended (galaxies) and point-like (e.g. stars) objects, a necessary step for the
subsequent scientific analyses. We aim at developing an ML classifier that is complementary to traditional tools based on explicit modeling. In
particular, our goal is to release a value added catalog with our best classification.
Methods. In order to train and test our classifiers, we crossmatched the miniJPAS dataset with SDSS and HSC-SSP data, whose classification
is trustworthy within the intervals 15 ≤ r ≤ 20 and 18.5 ≤ r ≤ 23.5, respectively. We trained and tested 6 different ML algorithms on the two
crossmatched catalogs: K-Nearest Neighbors (KNN), Decision Trees (DT), Random Forest (RF), Artificial Neural Networks (ANN), Extremely
Randomized Trees (ERT) and Ensemble Classifier (EC). EC is a hybrid algorithm that combines ANN and RF with J-PAS’s stellar/galaxy loci
classifier (SGLC). As input for the ML algorithms we use the magnitudes from the 60 filters together with their errors, with and without the
morphological parameters. We also use the mean PSF in the r detection band for each pointing.
Results. We find that the RF and ERT algorithms perform best in all scenarios. When analyzing the full magnitude range of 15 ≤ r ≤ 23.5 we find
AUC = 0.957 (area under the curve) with RF when using only photometric information, and AUC = 0.986 with ERT when using photometric and
morphological information. Regarding feature importance, when using morphological parameters, FWHM is the most important feature. When
using photometric information only, we observe that broad bands are not necessarily more important than narrow bands, and errors (the width of the
distribution) are as important as the measurements (central value of the distribution). In other words, the full characterization of the measurement
seems to be important.
Conclusions. ML algorithms can compete with traditional star/galaxy classifiers, outperforming the latter at fainter magnitudes (r & 21). We use
our best classifiers, with and without morphology, in order to produce a value added catalog available at j-pas.org/datareleases via the ADQL table
minijpas.StarGalClass.

Key words. methods: data analysis – catalogs – galaxies: statistics – stars: statistics

1. Introduction

An important step in the analysis of data from wide-field surveys
is the classification of sources into stars and galaxies. Although
challenging, this separation is crucial for many areas of cosmol-
ogy and astrophysics. Different classification methods have been
proposed in the literature, each having their respective advan-
tages and disadvantages. One of the most used methods is based
on morphological separation, where parameters related to the ob-
ject structure and photometry are used (Bertin & Arnouts 1996;
Henrion et al. 2011; Molino et al. 2014; Díaz-García et al. 2019;
López-Sanjuan et al. 2019). In these methods one assumes that
stars appear as point sources while galaxies as extended sources.
This has been shown to be consistent with previous spectro-
scopic observations (Le Fevre et al. 1995; Dawson et al. 2013;
Newman et al. 2013). However, at fainter magnitudes, the differ-

? These authors contributed equally to this work.

ences between these point-like and extended structures decrease
and this method becomes unreliable. In what follows, by “stars”
we mean point-like objects that are not galaxies, that is, both
stars and quasars.1

Future photometric surveys such as the Javalambre-Physics
of the Accelerating Universe Astrophysical Survey (J-PAS, Ben-
itez et al. 2014)2 and the Vera Rubin Observatory Legacy Survey
of Space and Time (LSST, Marshall et al. 2017)3 will detect a
large number of objects and are facing the management of data
produced at an unprecedented rate. The LSST, in particular, will
reach a rate of petabytes of data per year (Garofalo et al. 2016).
This wealth of data demands very efficient numerical methods
but also gives us the opportunity to deploy Machine Learning

1 Also very compact galaxies such as Green Peas fall into the category
of point-like objects (Cardamone et al. 2009; Amorín et al. 2010).
2 www.j-pas.org
3 www.lsst.org
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(ML) algorithms, which, trained on big astronomical data, have
the potential to outperform traditional methods based on explicit
programming, if biases due to potentially unrepresentative train-
ing sets are kept under control.

ML has been widely applied in the context of cosmology and
astrophysics, see Ishak (2017). A non-exhaustive list of applica-
tions is photometric classification of supernovae (Lochner et al.
2016; Charnock & Moss 2017; Vargas dos Santos et al. 2019),
gravitational wave analysis (Biswas et al. 2013; Carrillo et al.
2015), photometric redshift (Bilicki et al. 2018; Cavuoti et al.
2015), morphology of galaxies (Gauci et al. 2010; Banerji et al.
2010), and determination of atmospheric parameters for stellar
sources (Whitten et al. 2019).

ML applications to star-galaxy separation have been success-
fully performed on many surveys. Vasconcellos et al. (2011), for
example, used various tree methods to classify SDSS sources.
Kim et al. (2015) used classifiers that mix supervised and unsu-
pervised ML methods with CFHTLenS data. Recently, Convolu-
tional Neural Networks (CNN) have been adopted: using images
as input, they achieve an Area Under the Curve (AUC) > 0.99 for
CFHTLenS and SDSS data (Kim & Brunner 2017). For more
ML applications in the context of star/galaxy classification see
Costa-Duarte et al. (2019); Sevilla-Noarbe et al. (2018); Cabayol
et al. (2019); Fadely et al. (2012); Odewahn et al. (2004).

Our goal here is to classify the objects detected by Pathfinder
miniJPAS (Bonoli et al. 2020), which observed ∼1deg2 of the
AEGIS field with the 56 narrow-band J-PAS filters and the 4
ugri broad-band filters, for a total of approximately 64000 ob-
jects (magAB . 24). The ML algorithms that we consider in this
work are supervised and, for the learning process, need an exter-
nal trustworthy classification. We adopt Sloan Digital Sky Sur-
vey (SDSS, Alam et al. 2015) and Hyper Suprime-Cam Subaru
Strategic Program (HSC-SSP, Aihara et al. 2019) data. We com-
pare different ML models to each other and to the two classi-
fiers adopted by the JPAS survey: the CLASS_STAR provided by
SExtractor (Bertin & Arnouts 1996) and the stellar/galaxy loci
classifier (SGLC) introduced in López-Sanjuan et al. (2019).

This paper is organized as follows. In Section 2, we briefly
describe J-PAS and miniJPAS and we review the classifiers
adopted in miniJPAS. In Section 3 we present the ML algorithms
used in this work, and in Section 4 we define the metrics that we
use to assess the performance of the classifiers. Our results are
presented in Sections 5 and 5.3, and our conclusions in Section 6.

2. J-PAS and miniJPAS

J-PAS is a ground-based imaging survey that will observe 8500
deg2 of the sky via the technique of quasi-spectroscopy: by ob-
serving with 56 narrow-band filters and 4 ugr(i) broad-band fil-
ters4 it will produce a pseudo-spectrum (R ∼ 50) for every pixel
(for the filters’ specifications see Bonoli et al. 2020). It features
a dedicated 2.5m telescope with an excellent étendue, equipped
with a 1.2 Gigapixel camera with a very large field of view of
4.2 deg2. The observatory is on the mountain range “Sierra de
Javalambre” (Spain), at an altitude of approximately 2000 me-
ters, an especially dark region with the very good median see-
ing of 0.7′′ (Cenarro et al. 2010). Therefore, J-PAS sits between
photometric and spectroscopic surveys, fruitfully combining the
advantages of the former (speed and low cost) with the ones of
the latter (spectra). In particular, thanks to its excellent photo-
z performance, it will be possible to accurately study the large

4 miniJPAS features also the i band, while J-PAS is not expected to
have it.
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Fig. 1. Distributions of stars and galaxies for the miniJPAS catalog
crossmatched with the SDSS (top) and HSC-SSP (bottom) catalogs.
Classification by SDSS and HSC-SSP, resepctively.

scale structure of the universe using the galaxy and quasar cata-
logs produced by J-PAS (Bonoli et al. 2020).

Between May and September 2018, the 2.5m J-PAS tele-
scope with its filter set was equipped with the Pathfinder camera,
used to test the telescope performance and execute the first sci-
entific operations. The camera features a 9k × 9k CCD, with a
0.3 deg2 field-of-view and 0.225 arcsec pixel size. This led to the
miniJPAS survey which covered a total of ∼ 1deg2 of the AEGIS
field,5 reaching the target depth planned for J-PAS (magAB, 5σ in
a 3” aperture, between 21.5 and 22.5 for the narrow-band filters
and up to 24 for the broad-band filters). miniJPAS consists of the
4 fields/pointings AEGIS1-4, each of approximately 0.25 deg2

field-of-view. The miniJPAS primary catalogue contains 64293
objects in the r detection band, with forced-photometry in all
other filters. See Bonoli et al. (2020) for the presentation paper.
The miniJPAS Public Data Release was presented to the public
in December 2019.6

2.1. Crossmatched catalogs

The goal of this paper is to develop an ML model that can ac-
curately classify the objects detected by Pathfinder miniJPAS.
As we will consider supervised ML algorithms, we need, for the
learning process, a trustworthy classification by some other sur-
vey that has a sufficiently high overlap with miniJPAS. We use
SDSS7 and HSC-SSP8 data, whose classification is expected to

5 See Davis et al. (2007) for informations on the All-wavelength Ex-
tended Groth strip International Survey (AEGIS).
6 j-pas.org/datareleases/minijpas_public_data_release_pdr201912
7 sdss.org/dr12/
8 hsc-release.mtk.nao.ac.jp/doc/
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Fig. 2. Redshift distribution of galaxies for the miniJPAS catalog cross-
matched with the SDSS and HSC-SSP catalogs.

be trustworthy within the intervals 15 ≤ r ≤ 20 and 18.5 ≤ r ≤
23.5, respectively. As said earlier, by “stars” we mean point-like
objects that are not galaxies, that is, both stars and quasars. We
assume that the classification by SDSS and HSC-SSP is trust-
worthy within this definition (Alam et al. 2015; Aihara et al.
2019).

We found 1810 common sources with SDSS, 691 galaxies
and 1119 stars, and 11089 common sources with HSC-SSP, 9398
galaxies and 1691 stars. See Fig. 1 for the r-band distributions
of stars and galaxies and Fig. 2 for the redshift distribution of
galaxies.

2.1.1. SDSS classification

SDSS is a photometric and spectroscopic survey conducted at
the Apache Point Observatory (New Mexico, USA) with a 2.5-
m primary mirror. We used the SDSS DR12 photometric cata-
log minijpas.xmatch_sdss_dr129. Stars are defined accord-
ing to an extendedness (difference between the CModel and PSF
magnitudes) less than 0.145.10

In order to test the photometric calibration by SDSS we
crossmatched the latter with the catalog from the ALHAMBRA
(Advance Large Homogeneous Area Medium Band Redshift As-
tronomical) survey (Moles et al. 2008).11 We obtained 1055
sources after imposing mask and saturation flags. As discussed
in Molino et al. (2014), ALHAMBRA provides a trustworthy
classification in the magnitude range 15 ≤ r ≤ 21.

As one can see from Fig. 3 (top) ALHAMBRA covers the
relevant magnitude range and agrees with SDSS well till r = 20
(bottom). Indeed, within 15 ≤ r ≤ 20, the percentages of false
negatives and false positives are 0.2% and 1.9%, respectively
(positive refers to the object being a galaxy). Note that, for the
value added catalog, we will use SDSS in the more limited range
15 ≤ r ≤ 18.5 so that the percentages of false negatives and false
positives are 0% and 0.7%, respectively (using pcut = 0.5, see
Section 4.1).

2.1.2. HSC-SSP classification

The HSC-SSP is a photometric survey with a 8.2-m pri-
mary mirror located in Hawaii, USA. We crossmatched the
miniJPAS data with the wide field from the Public Data
Release 2. Stars are defined according to an extendedness

9 For details, see archive.cefca.es/catalogues/minijpas-pdr201912
10 www.sdss.org/dr12/algorithms/classify/#photo_class
11 svo2.cab.inta-csic.es/vocats/alhambra
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Fig. 3. Top: crossmatch between the SDSS catalog used in this pa-
per and ALHAMBRA. Bottom: disagreement between SDSS and AL-
HAMBRA as a function of r magnitude.

less than 0.015.12 We used the following data quality con-
straints: isprimary = True, r_extendedness_flag!=1 and
r_inputcount_value>=4 for HSC-SSP, and flag=0 and
mask=0 for miniJPAS. The crossmatch was performed with the
TOPCAT13 software with a tolerance of 1 arcsec.

In order to test the photometric calibration by HSC-SSP we
crossmatched the latter with the spectroscopic catalogs from the
DEEP2 Galaxy Redshift Survey (Matthews et al. 2013) (1992
sources). We could not use this spectroscopic catalog to check
the photometric SDSS calibration because it does not cover the
required magnitude range.

As one can see from Fig. 4 (top) DEEP2 covers the relevant
magnitude range and agrees with HSC-SSP well (bottom). In-
deed, for the range 18.5 ≤ r ≤ 23.5, the percentages of false
negatives and false positives are 1.9% and 0%, respectively.

2.2. Input parameters for the ML algorithms

The features that are used as input for our algorithms can be
grouped into photometric and morphological classes. Besides
these two sets of features, we also consider the average PSF in
the r detection band of the 4 fields of miniJPAS, which is 0.70"
for AEGIS1, 0.81" for AEGIS2, 0.68" for AEGIS3 and 0.82"
for AEGIS4. The different PSF values signal different observing
conditions: by including the PSF value we let the ML algorithms
know that data is not homogeneous.

12 hsc-release.mtk.nao.ac.jp/doc/index.php/stargalaxy-separation-2/
13 www.star.bris.ac.uk/ mbt/topcat/
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Fig. 4. Top: crossmatch between the HSC-SSP catalog used in this pa-
per and DEEP2. Bottom: disagreement between HSC-SSP and DEEP2
as a function of r magnitude. No object was classified as galaxy by
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2.2.1. Photometric information

As photometric information we consider the MAG_AUTO magni-
tudes associated to the 60 filters together with their errors. The
rationale behind including the errors is that, in this way, one
can characterize the statistical distribution associated to a mag-
nitude measurement. Indeed, observations may suffer from in-
homogeneity due to varying observing conditions and the mea-
surement errors should be able to account, at least in part, for
this potential bias. As we will see, how well can one measure
the magnitude associated to a filter may be more important than
the actual measurement.

As said earlier, sources are detected in the r band so that
one may have non-detection in the other filters. Null or negative
fluxes (after background subtraction) are assigned a magnitude
value of 99. The ML algorithms are expected to learn that 99
marks missing values.

2.2.2. Morphological information

We consider the following 4 morphological parameters:

– concentration cr = r1.5′′−r3.0′′ , where r1.5′′ and r3.0′′ are the r-
band magnitudes within fixed circular apertures of 1.5” and
3.0”, respectively,

– ellipticity A/B, where A and B are the RMS of the light dis-
tribution along the maximum and minimum dispersion direc-
tions, respectively.

– the full width at half maximum FWHM assuming a Gaus-
sian core,

– MU_MAX/MAG_APER_3_0 (r band), where MU_MAX and
MAG_APER_3_0 are the peak surface brightness above back-
ground and the magnitude within 3.0", respectively. Note
that here we are taking the ratio in order to have a param-
eter that is complementary to cr.

Figures 5 and 6 show their distributions for stars and galax-
ies and the two catalogs. The stellar bimodality in cr and
MU_MAX/MAG_APER_3_0 is due to the fact that the four fields
feature a different average PSF. We discuss these figures when
examining feature importance in Section 5.4.

2.3. J-PAS star/galaxy classifiers

Here, we briefly discuss the star/galaxy classifiers available for
miniJPAS. However, first we show how HSC-SSP classifies ob-
jects into stars and galaxies. This is performed by drawing a
“hard cut” in the source parameter space. In Figure 7 we plot
the difference between magPS F and magcmodel as a function of
magcmodel for the HSC-SSP data using their r band (for the
definitions see Aihara et al. 2019). Stars are expected to have
magPS F ' magcmodel while galaxies, due to their extended struc-
ture, should feature magPS F > magcmodel. Therefore, one can
separate stars from galaxies via a cut in the extendedness param-
eter magPS F − magcmodel, which we show with a yellow line in
Figure 7. The disadvantage of this model is that it provides an
absolute classification for a scenario in which the uncertainties
increase as we move toward weaker magnitudes. Note that for
rcmodel & 24 the separation is not reliable as stars do not cluster
anymore around a null extendedness.

2.3.1. CLASS_STAR

SExtractor (Source Extractor, Bertin & Arnouts 1996) is a soft-
ware developed for processing large images (60k × 60k pix-
els). It has been widely applied to photometric surveys includ-
ing miniJPAS. Besides detecting sources, SExtractor also clas-
sifies objects into stars and galaxies. The software has two in-
ternal classifiers, CLASS_STAR and SPREAD_MODEL. miniJPAS
includes the classification via CLASS_STAR which is based on
neural networks (see Section 3.5).14 The network has 10 inputs:
8 isophotal areas, the peak intensity and the “seeing” control pa-
rameter. The output is probabilistic and quasars are classified as
stars (in agreement with our convention). CLASS_STAR is reli-
able up to r ∼ 21 (see also Bertin & Arnouts 1996).

2.3.2. Stellar/galaxy loci classifier

miniJPAS includes the Bayesian classifier (SGLC) developed by
López-Sanjuan et al. (2019) for J-PLUS data.15 The concen-
tration versus magnitude diagram presents a bimodal distribu-
tion, corresponding to compact point-like objects and extended
sources. López-Sanjuan et al. (2019) models both distributions
to obtain the probability of each source to be compact or ex-
tended. The model with suitable priors is then used to estimate
the Bayesian probability that a source is a star or a galaxy. Also
in this case quasars are expected to be classified as “stars.” This
method was updated to miniJPAS data, in particular a different
galaxy population model was adopted. See Bonoli et al. (2020)
for more details.

14 sextractor.readthedocs.io/en/latest/ClassStar.html
15 j-plus.es/datareleases
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Fig. 5. Distributions of the morphological parameters of stars and
galaxies for the miniJPAS catalog crossmatched with SDSS.

3. Machine learning

Machine learning is a branch of artificial intelligence that in-
cludes statistical and computational methods dedicated to pro-
viding predictions or taking decisions without being explicitly
programmed to perform the task. Machine learning is employed
in a variety of computing tasks, for which the explicit program-
ming of well-performing algorithms is difficult or unfeasible.
ML methods can either be supervised or unsupervised. The for-
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Fig. 6. Distributions of the morphological parameters of stars and
galaxies for the miniJPAS catalog crossmatched with HSC-SSP.

mer learn from pre-classified data that has known inputs and out-
puts. When classification is unavailable, one relies instead on
unsupervised methods, which can group items that are related
in the parameter space, i.e., learn without the need of external
information.

In this paper, we focus on binary supervised classification
methods. In this case, the model (the internal parameters of the
algorithm) is implicitly adjusted via the “training set.” Its perfor-
mance is then tested with the remaining part of the dataset—the
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“test set.” Specifically, the internal parameters of the prediction
function f : Rn → Y are trained via the training dataset xi ∈ R

n

(n is the dimensionality of the feature space, i labels the ele-
ments of the training set) with classifications yi ∈ {0, 1}, where
1 stands for galaxy and 0 for star. Classifiers are divided into
non-probabilistic and probabilistic classifiers. The former type
of classifier outputs the best class while the latter the probability
of the classes (the best class is taken as the one with the high-
est probability). Here, we will consider only binary probabilistic
classifiers so that it is f : Rn → [0, 1], that is, f gives the prob-
ability that an object is a galaxy. The probability of being a star
is simply 1 − f . A value of f close to 1 means that the object is
likely a galaxy.

We consider six supervised methods: K-Nearest Neighbors
(KNN), Decision Trees (DT), Random Forest (RF), Extremely
Randomized Trees (ERT), Artificial Neural Networks (ANN)
and Ensemble Classifier (EC). These algorithms can be used
for both regression and classification.16 Here, we will only
consider classification. We implemented these algorithms us-
ing the scikit-learn17 package written in python (Pedregosa
et al. 2011). For more information about supervised learning see
Mitchell (1997); Hastie et al. (2009). For the training and test
sets we use 80% and 20% of the crossmatched catalogs, respec-
tively. The division is performed randomly. This guarantees a
good training and an accurate testing. A 70%-30% split is also a
viable alternative. As mentioned in Section 2.1, the training sets
are unbalanced as they feature a different number of galaxies and
stars. We will show the purity curves for stars and galaxies in or-
der to estimate the performance for each class. We now briefly
review the 6 ML algorithms adopted in this paper.

16 While classification is used to predict if an object belongs to a class,
regression is used to predict real valued outputs that do not belong to
a fixed set. For example, regression is used when one uses photometric
information in order to predict the source’s redshift.
17 scikit-learn.org

3.1. K-Nearest-Neighbors

The KNN algorithm is one of the most simple ML methods (Alt-
man 1992; Hastie et al. 2009). It calculates the distance between
the element to be classified (within the test set) and the ones be-
longing to the training set. The predicted class will be calculated
using the k nearest neighbors. Although in this work we use the
Euclidean metric, it is possible to choose others metrics to com-
pute the distances. This method is very fast and its computational
cost is proportional to the size of training set.

The output of the model is discrete if one uses the majority
vote from the k nearest neighbors.18 Here, we use the probabilis-
tic version which assigns a probability to each class. In this case
the classification is given by the average of the nearest k neigh-
bors:

f (xq) =

∑k
i=1 wi f (xi)∑k

i=1 wi
with wi =

1
d(xq, xi)2 , (1)

where the sum over the k nearest neighbors is weighted by the
weights wi which are the inverse of the square of the distance
d(xq, xi) from the neighbors (xi) to the element to be classi-
fied (xq, q labels the test set), and f (xi) = yi are the classifications
of the training set. As discussed in Section 4.3, the number k of
neighbors is optimized via k-fold cross-validation.

3.2. Decision Trees

DT methods (see Breiman et al. 1984; Hastie et al. 2009) divide
recurrently the parameter space according to a tree structure, fol-
lowing the choice of minimum class impurity of the groups at
every split. To build a Decision Tree we first define an Informa-
tion Gain (IG) function:

IG(Dp, xt) = I(Dp) −
Nleft

Np
I(Dleft) −

Nright

Np
I(Dright) , (2)

where Dp is the parent dataset of size Np, Dleft and Drigth are
the child datasets of sizes Nleft and Nright, respectively, and I is
a function called impurity. At every step the dataset is divided
according to the feature and threshold xt

19 that maximize the IG
function, or, equivalently, that minimize the children’s impurity.
We considered several impurity functions, such as entropy, clas-
sification error and Gini. For example, the latter is:

IG(m) = 1 −
∑
i=0,1

p(i|m)2 , (3)

where p(i|m) is the fraction of data belonging to the class i (0 or
1) for a particular node m that splits the parent dataset into the
child datasets. After the growth of the tree is completed, the fea-
ture space is divided with probabilities associated to each class,
and the probability for a test element is exactly the one of the
region to which it belongs.

During the branching process described above, some features
appear more often than others. Using this frequency we can mea-
sure how important each feature is in the prediction process. We
define the importance of each feature as:

Imp(x) =
∑

t

Np

Ntot
IG(Dp, xt) , (4)

18 A vote is a classification by a neighbor.
19 Within our notation, xt is the threshold for the feature that maxi-
mizes IG (there are n features).
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where Ntot is the size of the dataset. The higher the number of
times a feature branches a tree, higher its importance. Note that
the first features that divide the tree tend to be of greater impor-
tance because the factor Np/Ntot in Eq. (4) decreases as the tree
grows (Np decreases).

3.3. Random Forest

Random Forest (Breiman 2001; Hastie et al. 2009) is an ensem-
ble algorithm built from a set of decision trees (the forest). Each
tree generates a particular classification and the RF prediction is
the combination of the different outputs. Each tree is different
because of the stochastic method used to find the features when
maximizing the IG function. Moreover, using the bootstrap sta-
tistical method, different datasets are built from the original one
in order to grow more trees. For the discrete case the output is
built from the majority vote, as seen with the KNN algorithm.
For the probabilistic case we calculate the RF output as the av-
erage of the probabilities of each class for each tree. Finally, one
computes the feature importances Imp(x) for each tree of the
ensemble and then averages them to obtain the RF feature im-
portance.

3.4. Extremely Randomized Trees

Extremely Randomized Trees (Geurts et al. 2006) is an ensemble
method similar to RF. There are only two differences between RF
and ERT. The first is that ERT originally does not use bootstrap,
although the implementation in scikit-learn allows one to
insert it in the analysis. The second is that, while RF tries to find
the best threshold for a features via the IG function, in ERT the
division is done randomly. Then, of all the randomly generated
splits, the split that yields the highest score is chosen to split the
node.

3.5. Artificial Neural Networks

Artificial Neural Networks mimic the functioning of the ner-
vous system, being able to recognize patterns from a repre-
sentative dataset (for an introduction see Mitchell 1997; Hastie
et al. 2009). Due to their success, neural networks have gained
so much attention that today they constitute a separate branch
within ML, called Deep Learning (DL). In Deep Learning there
are several algorithmic structures. The model we will use in our
analysis consists of a simple supervised model called Multilayer
Perceptron (MLP).

MLP consists of a set of perceptrons arranged in different
layers. A perceptron, or artificial neuron, is a binary classifier
algorithm. The data features are inserted in the input layer, the
learning process occurs in the hidden layers, and the object clas-
sification is performed by the output layer. The information in
the hidden layers is passed through each perceptron several times
until convergence. In this algorithm, we can have several layers
containing hundreds of perceptrons. To train the neural network,
one uses a Cost Function that should be minimized. As learning
method we use backpropagation (Rumelhart et al. 1986).

3.6. Ensemble Classifiers

The Ensemble method aims to construct a meta classifier from
the union of different algorithms. Generally, when efficiently
combined, these classifiers can perform better than the single
best algorithm. In order to combine the classifiers we adopt the

weighted sum rule with equal weights. The probability predic-
tion function f can be written as:

f (xq) =

∑m
j=1 w j f j(xq)∑m

j=1 w j
, (5)

where f j(xq) is the probabilistic binary classification from the
classifier j and m is the number of classifiers considered. We im-
plemented this algorithm using the VotingClassifier func-
tion from scikit-learn. In the following, the ensemble clas-
sifier (EC) comprises ANN, RF and SGLC methods with equal
weight (w j = 1/3). Note that EC is not a pure ML classifier as it
uses SGLC, see Section 2.3.2.

4. Performance metrics

We will now introduce the metrics that we adopt in order to
assess the performance of the classifiers. See Mitchell (1997);
Hastie et al. (2009) for more details.

4.1. Confusion Matrix

As we are considering probabilistic classifiers, the classification
of sources into stars or galaxies depends on a probability thresh-
old pcut to be specified. In our case, all objects with f > pcut will
be classified as galaxies. The choice of pcut depends on com-
pleteness and purity requirements.

Once pcut is specified, one can summarize the classification
performance using the confusion matrix, which thoroughly com-
pares predicted and true values. For a binary classifier the con-
fusion matrix has four entries: True Positives (TP), True Neg-
atives (TN), False Positives (FP) and False Negatives (FN). TP
are sources correctly classified as galaxies by the model. TN are
sources correctly classified as stars. FN are sources classified
as stars by the model when, actually, they are galaxies. FP are
sources classified as galaxies when they are stars.

4.2. Metrics

The receiver operating characteristic (ROC) curve represents a
comprehensive way to summarize the performance of a classi-
fier. It is a parametric plot of the true positive rate (TPR) and
false positive rate (FPR) as a function of pcut:

T PR(pcut) =
T P

T P + FN
FPR(pcut) =

FP
FP + T N

(6)

with 0 ≤ pcut ≤ 1. TPR is also called “recall” and, in astronomy,
is the completeness. The performance of a classifier can then be
summarized with the area under the curve (AUC). The AUC can
assume values between 0 and 1. A perfect classifier has a value
of 1, while a random classifier, on average, a value of 1/2.

The purity curve is a useful method to assess the performance
of an unbalanced classifier (as the training set does not feature
the same number of stars and galaxies). It is a parametric plot
of the completeness (or recall) and the purity (or precision) as a
function of pcut:

Purity =
T P

T P + FP
. (7)

In order to summarize the purity curve, we consider the average
precision (AP) which is the area under the purity curve and takes
values between 0 and 1.
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Finally, one can measure the algorithm performance with the
mean squared error (MSE) defined as:

MSE =
1

Ntest

Ntest∑
q=1

(
yq − f (xq)

)2
, (8)

where yq are the test-set classifications and Ntest is the test-
set size. MSE = 0 characterizes a perfect performance. In the
present case of a binary classifier it is MSE = (FP + FN)/Ntest.

4.3. k-fold cross-validation

We use the k-fold cross-validation method in order to optimize
the algorithm’s hyperparameters, test for overfitting and under-
fitting and estimate the errors on AUC and AP. k-fold cross-
validation separates the training data in k equal and mutually
exclusive parts (we adopt k = 10). The model is trained in k − 1
parts and validated in the remaining one, called validation. This
process is repeated cyclically k times. The final result is the mean
and standard deviation of the metric.

The ML methods described in Section 3 depend on several
internal hyperparameters (for example, the number k of neigh-
bors in KNN). In order to optimize them we performed k-fold
cross-validation for several hyperparameter configurations. The
results of the next Section are relative to the best configuration
according to the AUC.

We also tested the ML algorithms against overfitting and un-
derfitting. The former happens when the training is successful
(low MSE) but not the testing (high MSE). The latter when train-
ing and testing are not successful (both MSE’s are high). We
checked that the average AUC from the k-fold cross-validation
agrees with the AUC from the test set; all the methods pass this
test.

Finally, we can use k-fold cross-validation in order to esti-
mate the error in the determination of the AUC and AP. This
will help us understand if the differences between two estima-
tors are significative and also how sensitive a classifier is with
respect to the division of the dataset into training and test sets.

5. Results

We now present our results for the algorithms introduced in Sec-
tions 3 applied to the crossmatched catalogs described in Sec-
tion 2.1. Regarding stars and galaxy number counts we refer the
reader to the miniJPAS presentation paper (Bonoli et al. 2020).

5.1. miniJPAS-SDSS catalog

The performance of the star/galaxy classifiers considered in this
paper for the miniJPAS catalog crossmatched with the SDSS cat-
alog in the magnitude interval 15 ≤ r ≤ 20 is excellent. The re-
sults are summarized in Table 1, where the best result are marked
in bold (EC is not considered as it is not a pure ML classifier).20

The errors on the pure-ML classifiers are estimated via k-fold
cross-validation. In order to assess the importance of photomet-
ric bands and morphological parameters, the analysis consid-
ers two cases: only photometric bands (P subscript in the table)
and photometric bands together with morphological parameters
(M + P subscript in the table). Note that this distinction does not
apply to SGLC and CLASS_STAR as they always include the use
of morphological parameters.
20 We omit the corresponding figures as they are not informative given
the excellent performance.
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Fig. 8. Stellar locus for objects classified as stars (p ≤ pcut = 0.5)
for the miniJPAS catalog crossmatched with the SDSS catalog in the
magnitude interval 15 ≤ r ≤ 20. The top panel is relative to the analysis
that uses only photometric bands, while the bottom panel is relative to
the analysis that also uses morphological information. For comparison it
is shown also the classification by CLASS_STAR and SGLC that always
use morphological parameters.

Regarding the analysis with photometric bands only, the best
ML methods are RF and ERT, showing the power of combin-
ing several trees when making a prediction. Remarkably, using
only photometric information, RF and ERT outperform SGLC
and CLASS_STAR. If now we add morphological information, the
almost perfect performance of RF and ERT does not improve,
showing again that, in this magnitude range, photometric infor-
mation is sufficient. In Table 1 we also show the MSE, whose
results agree with the ones from the ROC and purity curves.

Another way to analyze qualitatively the performance of a
classifier is via a color-color diagram for objects classified as
stars (p ≤ pcut = 0.5). Figure 8 shows the stellar locus in the g−r
versus r − i color space. The blue line is a fifth-degree polyno-
mial interpolation, based on miniJPAS data that were classified
as stars by SDSS. The various markers represent the averages
of each classifier for different bins. We observe a small disper-
sion around the curve, which decreases when morphological pa-
rameters are included. This indicates that the classifiers and the
classification from SDSS are in good agreement.
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Table 1. Performance of the classifiers considered in this paper for the miniJPAS catalog crossmatched with the SDSS catalog (15 ≤ r ≤ 20, top)
and with the HSC-SSP catalog (18.5 ≤ r ≤ 23.5, bottom). The best performance is marked in bold (EC is not considered). P stands for the analysis
that uses only photometric bands while M+P stands for the analysis that uses photometric bands together with morphological parameters.

miniJPAS-SDSS AUCM+P AUCP APgal
M+P APgal

P MSEM+P MSEP

SGLC 0.994 – 0.989 – 0.006 –
CLASS_STAR 0.997 – 0.993 – 0.032 –
KNN 0.996±0.003 0.991±0.007 0.990±0.008 0.984±0.009 0.015 0.027
DT 0.992±0.006 0.984±0.012 0.983±0.011 0.974±0.018 0.011 0.032
RF 0.997±0.006 0.996±0.004 0.992±0.009 0.995±0.010 0.006 0.019
EC 0.997 0.997 0.995 0.996 0.006 0.014
ANN 0.997±0.004 0.988±0.009 0.994±0.017 0.983±0.015 0.012 0.043
ERT 0.997±0.002 0.997±0.003 0.993±0.006 0.996±0.004 0.005 0.019

miniJPAS-HSC-SSP AUCM+P AUCP APgal
M+P APgal

P MSEM+P MSEP

SGLC 0.970 – 0.992 – 0.040 –
CLASS_STAR 0.956 – 0.991 – 0.053 –
KNN 0.950±0.010 0.824±0.023 0.989±0.003 0.959±0.006 0.053 0.098
DT 0.961±0.009 0.855±0.017 0.990±0.003 0.959±0.007 0.061 0.132
RF 0.978±0.005 0.938±0.007 0.995±0.002 0.986±0.002 0.032 0.054
EC 0.979 0.967 0.996 0.993 0.031 0.040
ANN 0.970±0.007 0.885±0.014 0.993±0.003 0.969±0.005 0.036 0.070
ERT 0.979±0.006 0.931±0.006 0.995±0.002 0.982±0.002 0.032 0.053

5.2. miniJPAS-HSC-SSP catalog

As shown in the previous Section, star/galaxy classification in
the range 15 ≤ r ≤ 20 is not problematic. However, the scenario
changes when one moves to fainter magnitudes. As the amount
of light decreases, with less information reaching the telescope,
the performance of the algorithms decreases to the point that it
is important to look for alternative solutions such as ML. Here,
we present the analysis of the previous Section applied to the
miniJPAS catalog crossmatched with the HSC-SSP catalog in
the magnitude interval 18.5 ≤ r ≤ 23.5.

Figure 9 and Table 1 show the results. Using photometric in-
formation only, the RF algorithm achieves the remarkable score
of AUC = 0.938. Although it is less performant than SGLC and
CLASS_STAR (that use morphology), this result shows that ML
has the potential of identifying compact galaxies, which share
the same morphology of stars. Also, it has been argued that mod-
els that use just photometry can classify QSO’s as extragalactic
objects better than models that use morphological parameters
(Costa-Duarte et al. 2019). The use of the morphological pa-
rameters improves the performance of the ML methods to the
point that ERT and RF perform better than CLASS_STAR and
SGLC. In Appendix C we repeat the analysis of Figure 9 for
the mJP-AEGIS1 field, which is the miniJPAS pointing with the
best point spread function (PSF).

It is interesting to note that, although the classifiers feature
lower AUC’s and higher MSE’s as compared to the analyses of
the previous Section, the AP’s reach similar values, even when
we use only photometric bands. This is due to this dataset having
many more galaxies and only 15.3% of stars. Therefore, even if
there are contaminations by stars, the impact is lower.

Finally, in Figure 10 we show the stellar locus. We can ob-
serve a greater dispersion as compared with Figure 8, especially
when we use only photometric bands in the analysis. Neverthe-

less, the ML methods return the correct shape of the stellar locus
and their performance is similar to the one by SGLC.

5.3. Value added catalog

The ultimate goal of this work is to release a value added cata-
log with our best alternative classification. In the previous Sec-
tion we studied star/galaxy classification in the (partially over-
lapping) magnitude ranges 15 ≤ r ≤ 20 and 18.5 ≤ r ≤ 23.5.
Here, in order to have a uniform dependence on pcut, we wish to
produce a catalog that is obtained using a single classifier. As
seen in Section 2.1, in the magnitude range 18.5 ≤ r ≤ 20,
the classification by HSC-SSP is more reliable than the one
by SDSS. Therefore, we consider the classification by SDSS
in the range 15 ≤ r < 18.5 and the one by HSC-SSP in the
range 18.5 ≤ r ≤ 23.5. This catalog spans the magnitude range
15 ≤ r ≤ 23.5 and features a total of 11763 sources, 9517 galax-
ies and 2246 stars. We call it XMATCH catalog.

Next, we train and test all the models on this catalog. Us-
ing only photometric information the best classifier is RF, which
reaches AUC = 0.957 ± 0.008, close to the performance of
SGLC that uses morphological information. Using photomet-
ric and morphological information the best classifier is ERT,
which, with AUC = 0.986 ± 0.005, outperforms SGLC. Fig-
ure 11 shows the ROC curve and the purity curve for galax-
ies and stars for the three classifiers above, with the addi-
tion of the probability threshold pcut via color coding. These
plots are meant to help choosing the probability threshold that
best satisfies one’s needs of completeness and purity (see also
Appendix B). These plots were made with the code available
at github.com/PedroBaqui/minijpas-astroclass. As shown in the
bottom panel of Figure 11, the AP of stars is quite good (and sig-
nificantly better than SGLC), showing that the fact that we used
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Fig. 9. ROC curves (left panels) and purity curves for galaxies (right panels) for the classifiers considered in this paper for the miniJPAS catalog
crossmatched with the HSC-SSP catalog in the magnitude interval 18.5 ≤ r ≤ 23.5. The top panels are relative to the analysis that uses only
photometric bands while the bottom panels to the analysis that uses photometric bands and morphological parameters. For comparison it is shown
also the classification by CLASS_STAR and SGLC that always use morphological parameters. The results are summarized in Table 1 (bottom).

an unbalanced set did not affect the results regarding the least
represented class.

Finally, we show in Figure 12 the cumulative purity of the
galaxy and star samples as a function of r magnitude for a fixed
completeness of 95% and 99%, which are achieved by choosing
a suitable pcut. For a completeness of 95% and the ERT classi-
fier, the purity of the galaxy sample remains higher than 99%
throughout the magnitude range, better than SGLC. Regarding
stars, for a completeness of 95% and ERT, purity remains higher
that 90% for r < 22.5. For fainter stars, ERT outperforms SGLC.

In order to build our catalog, we applied our two best classi-
fiers (RF without morphology and ERT with morphology) to the
29551 miniJPAS sources in the magnitude range 15 ≤ r ≤ 23.5.
It is important to note that, given the completeness of miniJ-
PAS (see Bonoli et al. 2020), sources outside this magnitude
interval are less likely to enter scientific studies. The catalog is
publicly available at j-pas.org/datareleases via the ADQL table
minijpas.StarGalClass. See Appendix D for more informa-
tions and an ADQL query example.

5.4. Feature importance

We use the RF algorithm (see Eq. 4) to assess feature importance
which can give us insights on the way objects are classified. The
15 most important features are listed in Table 2. The full tables
are provided as machine readable supplementary material.

When including morphological parameters, FWHM is the
most important feature. This agrees with the distributions of
FWHM in Figs. 5 and 6 which show a good separation between
stars and galaxies. Although this separation is less evident for the
other parameters, they also contribute to classification. In partic-
ular, the mean PSF is the fourth most importante feature, while
the least important morphological feature is the ellipticity pa-
rameter A/B. To some extent, these results could depend on the
choice of the impurity function (see Eq. (3)). We tested different
impurity functions and confirmed that morphological parameters
are generally more important than photometric bands.

When using photometric information only, the importance
of the features is more evenly distributed as more features work
together towards object classification. In particular, broad bands
are not necessarily more important than narrow bands and errors
(the width of the distribution) are as important as the measure-
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Fig. 10. Stellar locus for objects classified as stars (p ≤ pcut = 0.5) for
the miniJPAS catalog crossmatched with the HSC-SSP catalog in the
magnitude interval 18.5 ≤ r ≤ 23.5. The top panel is relative to the anal-
ysis that uses only photometric bands, while the bottom panel is relative
to the analysis that also uses morphological information. For compari-
son it is shown also the classification by CLASS_STAR and SGLC that
always use morphological parameters.

ments (central value of the distribution). In other words, the full
characterization of the measurement seems to be important.

In order to get a physical insight on the regions of the spec-
trum that matter most for classification, we show in Figure 13
(top) the relative importance of the filters’s magnitudes as func-
tion of the filters’ wavelength together with the median star and
galaxy photo-spectrum. It is clear that there are regions sys-
tematically more important than others (neighboring filters with
higher importance) and that there is correlation between the most
important regions and the average features in the spectra. In the
bottom panel of Figure 13 we show the importance of the magni-
tude errors, which also show regions that are systematically more
important than others. Particularly important is the error on the
i band. In the same panel we also show the fraction of missing
values (magnitude of 99) for each narrow band filter. We can see
that this fraction anti-correlates with the filter importance (top
panel).
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Fig. 11. ROC curve (top panel) and purity curve for galaxies (middle
panel) and stars (bottom panel) for RF (no morphology), ERT (with
morphology) and SGLC for sources in the magnitude range 15 ≤ r ≤
23.5. The color coding indicates the probability threshold pcut.

5.5. Transmission curve variability

The transmission curves of the narrow band filters vary accord-
ing to the relative position in the filters. In particular, the trans-
mission curve variability depends on the SED of each object so
that the map of relative variation in flux for a given filter is dif-
ferent for objects with different SEDs. This effect should affect
classifications that depend strongly on particular narrow spectral
features (even more if they fall in one of the edges of the narrow
band transmission curve) and would have almost no effect when
considering mainly the continuum. As we use photometric data,
our results could be impacted by this effect.
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Fig. 12. Cumulative purity of the galaxy (top) and star (bottom) samples
as a function of magnitude for the ML classifiers of Fig. 11, for a fixed
completeness of 95% (solid line) and 99% (dashed line).

Table 2. Feature importance with (M + P) and without (P) morpho-
logical parameters for the analysis relative to the full crossmatched
catalog XMATCH (15 ≤ r ≤ 23.5, see Section 5.3). The impor-
tance is normalized relative to the best feature. The quantity max/ap3 is
MU_MAX/MAG_APER_3_0. The full tables are provided as machine read-
able supplementary material. See also Figure 13.

XMATCH (P) XMATCH (P + M)
Feature Importance Feature Importance
iSDSSerr 1.00 FWHM 1.00
J0810err 0.31 cr 0.30
J0390 0.22 max/ap3 0.18
J0460err 0.18 PSF 0.10
J0680 0.18 iSDSSerr 0.08
rSDSSerr 0.14 J0820err 0.02
J1007err 0.12 J0390err 0.02
J0820err 0.09 A/B 0.01
gSDSSerr 0.09 J1007err 0.01
iSDSS 0.08 J0810err 0.01
J0720 0.08 J0390 0.01
J0660err 0.07 gSDSS 0.009
uJAVA 0.05 uJAVAerr 0.008
J1007 0.05 J0790err 0.008
uJPAS 0.05 J0680 0.007
... ... ... ...

miniJPAS data, in particular the size of the XMATCH cat-
alog, does not allow us to perform a thorough investigation of
this effect. Therefore, we explore this issue by dividing the test
set into the 4 quadrants of the filter area and compute the AUC
for each quadrant. The filter coordinates are given in pixels via
the X_IMAGE and Y_IMAGE variables (9000 × 9000 pixels). As
can be seen from Table 3, the AUC variation is compatible with
the overall performance of AUC = 0.957 ± 0.008 (RF) and
AUC = 0.986 ± 0.005 (ERT), showing that the effect should
not strongly bias our results.
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Fig. 13. Top: The shaded area represents the relative importance (see
Eq. 4) of the narrow-band filters as function of the filters’ wavelength
for the analysis relative to the full magnitude range 15 ≤ r ≤ 23.5 (see
Section 5.3). The importance of the 4 broad-band filters is shown using
black circles. The red and blue lines show the average photo-spectrum
of stars and galaxies, respectively. Bottom: as the top panels but for the
relative importance of the magnitude errors. The green line shows the
percentage of missing values (magnitude of 99) for the narrow band
filters.

Table 3. Area under the curve (AUC) for the 4 filter quadrants relative
to the best classifiers shown in Figure 11.

RF (P) X < 4500 4500 ≤ X ≤ 9000
Y < 4500 0.9633 0.9592

4500 ≤ Y ≤ 9000 0.9449 0.9588

ERT (P + M) X < 4500 4500 ≤ X ≤ 9000
Y < 4500 0.9917 0.9775

4500 ≤ Y ≤ 9000 0.9822 0.9938

6. Conclusions

In this work we applied different machine learning methods for
the classification of sources of miniJPAS. The goal was to build
models that are competitive with and complementary to those
existing in the literature and to offer to the astronomical com-
munity a value added catalog with an alternative classification.
As we considered supervised ML algorithms, we classified the
miniJPAS objects that are in common with SDSS and HSC-SSP,
whose classifications are trustworthy within the magnitude in-
tervals 15 ≤ r ≤ 20 and 18.5 ≤ r ≤ 23.5, respectively. We
used as input the magnitudes associated to the 60 filters along
with their errors, 4 morphological parameters and the mean PSF
of the pointings. The output of the algorithms is probabilistic.
We tested K-Nearest Neighbors, Decision Trees, Random For-
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est, Artificial Neural Networks, Extremely Randomized Trees
and Ensemble Classifier.

Our results show that ML is able to classify objects into stars
and galaxies without the use of morphological parameters. This
makes ML classifiers quite valuable as they can distinguish com-
pact galaxies from stars, differently from methods that necessar-
ily use morphological parameters in the classification process.
Of course, the inclusion of morphological parameters improves
the results to the point that ERT can outperform CLASS_STAR
and SGLC (the default classifier in J-PAS).

We used the RF algorithm to assess feature importance.
When using morphological parameters, FWHM is the most im-
portant feature. When using photometric information only, we
observe that broad bands are not necessarily more important than
narrow bands and errors (the width of the distribution) are as im-
portant as the measurements (central value of the distribution). In
other words, the full characterization of the measurement seems
to be important. We have also shown that ML can give meaning-
ful insights on the regions of the spectrum that matter most for
classification.

After having validated our methods, we applied our
best classifiers, with and without morphology, to the full
dataset. This classification is available as a value added
catalog at j-pas.org/datareleases via the ADQL table
minijpas.StarGalClass. Our catalog both validates the
quality of SGLC and produces an independent classification that
can be useful to test the robustness of subsequent scientific anal-
yses. In particular, our classification uses the full photometric
information, with and without morphology, which is important
for faint galaxies whose morphology is similar to the one of
stars.

We conclude stressing that our methodology can be further
improved both at the algorithmic and at the data input level. A
promising avenue is the direct use of the object images with con-
volutional neural networks. This approach has the potential of
outperforming presently available classifiers.
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Fig. A.1. Purity curves for stars using J-PAS data with HSC-SSP clas-
sification. The top panel uses only photometric information while the
bottom one uses also morphology. For comparison it is shown the clas-
sification by CLASS_STAR and SGLC that always use morphological
parameters.

Appendix A: Purity curves for stars

For completeness we report in Figure A.1 the purity curves rel-
ative to the stars. For a comparison see, for example, Sevilla-
Noarbe et al. (2018); Fadely et al. (2012); Cabayol et al. (2019).

Appendix B: Classification vs. probability threshold

We show in Figure B.1 the histograms of the probabilities that
the objects received from the classifiers. In red we have objects
classified as galaxies and in blue as stars. These plots allow us to
assess the performance of the algorithms from a different point of
view. When one choses a value for pcut, all the objects to the right
of this value will be classified as galaxies while the ones with
lower probability will be classified as stars. It is then clear that an
ideal algorithm should have well separated and non-intersecting
probability distributions for stars and galaxies.

A first remark is that the addition of morphology makes the
distributions tighter and with less intersections. Similar results
were obtained with CFHTLenS data (Kim et al. 2015) . We
observe instead that the probability distribution of galaxies for
CLASS_STAR is more concentrated than the probability distribu-

tion for stars. This leads us to the conclusion that CLASS_STAR
has a tendency to classify galaxies better than stars. It is also
clear that by varying pcut one can sacrifice the completeness of
the dataset in favor of a higher purity of galaxies.

Appendix C: mJP-AEGIS1 field

As said earlier, miniJPAS consists of 4 fields, each of approx-
imately 0.25 deg2 field-of-view (for details see Bonoli et al.
2020). The mJP-AEGIS1 has 20016 objects and features an r-
band PSF which is similar to mJP-AEGIS3 (∼0.7") and better
than mJP-AEGIS2 and mJP-AEGIS4 (∼0.8"). It is then inter-
esting to repeat for mJP-AEGIS1 the analysis relative to HSC-
SSP (see Section 5.2). We do not consider the analysis relative
to SDSS as the crossmatched catalog would be too small.

The crossmatch of mJP-AEGIS1 with HSC-SSP in the range
18.5 ≤ r ≤ 23.5 has 4486 objects, 3809 galaxies and 677
stars. We show the results in Figure C.1, which should be com-
pared with the analysis that considers the full miniJPAS cata-
log in Figure 9. It is clear that the results relative to the various
classifiers improve as expected. In particular, when considering
both morphological and photometric features, ERT goes from
AUC = 0.979 (Fig. 9) to AUC = 0.987 (Fig. C.1).

Appendix D: ADQL query

The value added catalog with the ERT and RF classifications is
publicly available at j-pas.org/datareleases via the ADQL table
minijpas.StarGalClass. The column prob_ert_star gives
the probability 1 − f of being a star provided by the ERT clas-
sifier, using both morphological and photometric information.
The column prob_rf_star gives the probability 1− f of being
a star provided by the RF classifier, using only photometric in-
formation. Note that here, in order to follow the convention of
the minijpas.StarGalClass table, we are using the probabil-
ity 1 − f of being a star and not, as in the rest of this work, the
probability f of being a galaxy.

In order to facilitate access to our results we now report a
simple query example that allows one to access the classifica-
tions generated by ML along with the miniJPAS photometric
bands with flag and mask quality cuts:

SELECT

t1.MAG_AUTO[minijpas::uJAVA] as uJAVA,
t1.MAG_AUTO[minijpas::J0378] as J0378,
t1.MAG_AUTO[minijpas::J0390] as J0390,
t1.MAG_AUTO[minijpas::J0400] as J0400,
t1.MAG_AUTO[minijpas::J0410] as J0410,
t2.prob_ert_star,
t2.prob_rf_star

FROM

minijpas.MagABDualObj t1

JOIN

minijpas.StarGalClass t2

ON

t1.tile_id = t2.tile_id AND
t1.number=t2.number
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Fig. B.1. Histograms of the probability that a source belongs to the class of galaxy. The histograms relative to actual stars and galaxies, as classified
by SDSS (top) and HSC-SSP (bottom), are in blue and red, respectively. The histograms overlap via transparency. The panels on the left use only
photometric information while the ones on the right use also morphology. For comparison it is shown also the classification by CLASS_STAR and
SGLC that always use morphological parameters.

WHERE

t1.flags[minijpas::rSDSS]=0 AND
t1.mask_flags[minijpas::rSDSS]=0
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Fig. C.1. ROC curves (left panels) and purity curves for galaxies (right panels) for the classifiers considered in this paper for the AEGIS1 field
crossmatched with the HSC-SSP catalog in the magnitude interval 18.5 ≤ r ≤ 23.5. The top panels are relative to the analysis that uses only
photometric bands while the bottom panels to the analysis that uses photometric bands and morphological parameters. For comparison it is shown
also the classification by CLASS_STAR and SGLC that always use morphological parameters.
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