1	Mechanistic insights into ethidium bromide removal by palygorskite from contaminated
2	water
3	
4	Po-Hsiang Chang ^{<i>a</i>,*} , Binoy Sarkar ^{<i>b</i>,*}
5	
6	^a School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning
7	West Road, Xi'an, Shaanxi, 710049, P.R. China
8	^b Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
9	

^{*} Corresponding author. Email: <u>tectonicion@xjtu.edu.cn</u> (P.-H. Chang); <u>b.sarkar@lancaster.ac.uk</u> (B. Sarkar)

11 Highlights

12	٠	PFI-1 palygorskite was used for ethidium bromide (EtBr) removal from water.
13	•	EtBr removal was as high as 275 mmol/kg corresponding to 108 mg/g.
14	٠	Cation exchange was the main adsorption mechanism.
15	•	EtBr dimerization facilitated adsorption at high adsorbate concentration.
16	•	Kinetic equilibrium reached in 1 h; followed pseudo-second order model.
17		

18 Abstract

Ethidium bromide (EtBr)-containing wastewater can be hazardous to biodiversity when released 19 20 into the soil and water bodies without treatment. EtBr can mutate living microbial cells and pose toxicity to even higher organisms. This work investigated the removal of EtBr from aqueous 21 solutions by a naturally occurring palygorskite (PFl-1) clay mineral via systematic batch 22 23 adsorption experiments under different physicochemical conditions. EtBr existed in an undissociated form at pH ~ 7, and was adsorbed on PFI-1 obeying the Freundlich isotherm 24 model. The maximum EtBr adsorption capacity was 285 mmol/kg. The best fitted kinetic model 25 26 for EtBr adsorption was the pseudo-second order model. The amounts of exchangeable cations desorbed from PFI-1 during EtBr adsorption was linearly correlated to the amounts of EtBr 27 28 adsorbed, with a slope of 0.97, implying that a cation exchange-based adsorption mechanism was dominating. Additionally, dimerization of EtBr molecules via bromide release assisted an 29 increased EtBr removal by PFI-1 at high adsorbate concentrations. Detailed x-ray diffraction, 30 31 Fourier transform infrared, scanning electron imaging and energy dispersive x-ray analyses confirmed that EtBr adsorption occurred dominantly on the surface of palygorskite which 32 mineralogically constituted 80% of the bulk PFI-1 adsorbent. A small portion of EtBr was also 33 adsorbed by PFI-1 through intercalation on the smectite impurity (10%) in PFI-1. This study 34 suggested that PFI-1 could be an excellent natural material for removing EtBr from 35

36 pharmaceutical and laboratory wastewater.

Keywords: Adsorption; Cation exchange; Contaminants removal; Ethidium bromide;
Palygorskite; Pharmaceutical wastewater.

1. Introduction

42	Ethidium bromide (EtBr, 3,8-diamino-6-phenyl-5-ethylphenanthridine bromide) is an aromatic
43	compound, and had a tricyclic structure with aniline on either side of a pyridine moiety (Fig.
44	S1a). EtBr is the most commonly used nucleic acid fluorescent dye for single cell gel
45	electrophoresis (SCGE), which is a micro-assay technology with high diagnostic value for DNA
46	damage of mononuclear cells (Ge et al., 2014, Singer et al., 1999, Thititananukiji et a., 2010,
47	Waring, 1975). However, EtBr has high toxicity and carcinogenicity to human cells (Singer et
48	al., 1999, Thititananukiji et al., 2010, Waring, 1975). It is also considered to be a teratogen, and a
49	positive chemical mutagen (Armand et al., 2004). Contamination of drinking water with EtBr has
50	become a slowly emerging problem in the water environment, especially in urban areas
51	(Dobaradran et al., 2010, Kikuchi, 2001, Nakano et al., 2000). Taken on a global scale, the
52	widespread practice of SCGE assay may cause a lot of untreated EtBr leaving from research
53	laboratories each year. Therefore, there is a certain hazard to the operator and the laboratory

54	environment from EtBr, and harmless treatment of the compound is an important task in the
55	laboratory. Additionally, if EtBr-containing wastewater is deliberately or accidentally released
56	into the soil or water bodies, that may cause a tremendous hazard to biodiversity because EtBr
57	can mutate living microbial cells and pose toxicity to higher organisms (Li et al., 2020). Removal
58	of EtBr from laboratory wastewater is therefore a matter of immense importance.
59	The use of clay minerals for removing contaminants from wastewater has been extensively
60	studied for decades. Easy availability across continents, minimal pretreatment needed for use,
61	and inexpensiveness of clay minerals give them an edge over other materials in contaminants
62	removal applications (Sarkar et al., 2019; Yuan et al., 2013). Depending on the type, composition
63	and modification of clay minerals, they remove contaminants from water by adsorption, catalytic
64	degradation, or redox-transformation (Zhu et al., 2016). Among the above removal methods,
65	adsorption has been found as the most popular one because of its easy operational requirements,
66	and relatively higher contaminant removal efficiency compared to other methods without much
67	investment for complex modification of the adsorbent or requirement for additional chemicals
68	(Chang et al., 2012, 2014, 2016; Li et al., 2020).
69	Although clay minerals have been applied for removing numerous organic and inorganic
70	contaminants in aqueous media, reports on their use for the adsorptive removal of EtBr from
71	water has been limited in the literature. EtBr adsorption by swelling and mixed-layer clay

72	mineral such as rectorite was recently studied (Li et al., 2020), and the results showed that EtBr
73	could be intercalated in the interlayers of rectorite. Additionally, bromide ions present in EtBr
74	molecules played a significant role in the formation of dimers which enhanced the EtBr
75	adsorption capacity of the clay mineral (Li et al., 2020). The authors reported that the maximum
76	EtBr adsorption capacity by rectorite was 400 mmol/kg corresponding to 160 mg/g at pH 4.6,
77	and the ratio of solid/solution was 0.2 g/20 mL (Li et al., 2020). The study by Li et al. (2020)
78	showed encouraging results for using natural clay minerals to remove EtBr contaminants from
79	wastewater, and suggested further investigations to test other commonly occurring swelling and
80	non-swelling type clay minerals for this purpose. The key mechanistic difference between
81	swelling and non-swelling clay minerals to remove EtBr ought to be the lack of EtBr
82	intercalation within the interlayers of non-swelling clay minerals (Chang et al., 2009).
83	Nevertheless, both swelling and non-swelling clay minerals in their natural form would have
84	negative surface charges which might also participate in EtBr adsorption via electrostatic
85	interaction with the ethidium (Et ⁺) cations. However, due to paucity of reported studies, the
86	mechanisms of EtBr adsorption by natural clay minerals are still least understood.
87	Palygorskite is a non-swelling clay mineral which has been less explored for environmental
88	applications in comparison to swelling type clay minerals such as montmorillonite and rectorite.
89	Palygorskite is a 2:1 type (two tetrahedral sheets and one octahedral sheet) clay mineral with a

90	unique fibrous structure. Due to its non-swelling nature, palygorskite ought to have better
91	permeability under flow conditions than swelling type clay minerals, and this property might
92	give an edge to the application of palygorskite for EtBr removal in a column set up (Sarkar et al.,
93	2010; Sarkar et al., 2012; Sarkar and Naidu, 2015). It could be hypothesised that unlike rectorite
94	(Li et al., 2020), palygorskite would adsorb EtBr on the outer surface through electrostatic
95	attraction and EtBr dimer formation but not via intercalation in the interlayers. Compared to
96	rectorite, the palygorskite adsorption system would have a different influence of the clay
97	morphology and unique relationship between the clay-desorbed cations and adsorbed EtBr
98	molecules, which were never studied earlier. Therefore, the current study aims to: (1) explore the
99	adsorptive removal of EtBr by a palygorskite clay mineral (PFI-1) in aqueous media via
100	investigating the adsorption isotherm, kinetics, thermodynamics, and effects of pH on
101	adsorption, and (2) deduce the plausible mechanisms of EtBr adsorption by palygorskite through
102	adsorption modelling and extensive adsorbent characterization studies. To the best of the
103	authors' knowledge, there was no previous study reporting EtBr adsorption by palygorskite clay
104	mineral. Therefore, this study has the potential to come up with a new inexpensive adsorbent for
105	efficient removal of EtBr from wastewater.

2. Materials and methods

- 108 2.1 Materials
- 109 Ethidium bromide (EtBr, C₂₁H₂₀BrN₃, CAS No. 1239-45-8) has a molecular weight of 394.294
- 110 (Fig. S1a). The aqueous solubility of EtBr is 40 g/L. Different forms of EtBr can be found at pKa
- 111 values 0.71 and 2.43 at 20 °C (Fig. S1b) (Zimmermann and Zimmermann, 1976). The molecular
- size of EtBr is 10.0 x 11.0 x 0.5 Å derived from the calculation using ChemSketch software. The
- 113 palygorskite (PFI-1) was obtained from the Clay Minerals Society (Chantilly, VA, USA), and
- 114 was used in this study without any purification. The chemical composition (%) of PFI-1 was:
- 115 SiO₂: 60.9, Al₂O₃: 10.4, TiO₂: 0.49, Fe₂O₃: 2.98, FeO: 0.40, MnO: 0.058, MgO: 10.2, CaO: 1.98,
- 116 Na₂O: 0.058, K₂O: 0.80, F:0.542, P₂O₅: 0.80, S: 0.11
- 117 (http://www.clays.org/sourceclays_data.html). It contained 80% palygorskite, 10% smectite, 7%
- 118 quartz, 2% feldspar, and 1% other minerals (Chipera and Bish, 2001). The reported cation
- exchange capacity (CEC) and specific surface area (SSA) values of PFI-1 were 195 meq/kg and
- 120 136.35 m^2/g , respectively, with Ca as the major exchangeable cation
- 121 (http://www.clays.org/sourceclays_data.html).
- 122
- 123 2.2 Batch EtBr adsorption experiments
- 124 To each 50 mL centrifuge tube, 0.2 g of PFI-1 and 20 mL of EtBr solution were added. All tubes
- 125 were wrapped with aluminum foils to prevent light-induced decomposition of the compound. For

126	all experiments, except the isotherm study, the initial EtBr concentration was 4 mmol/L. Previous
127	studies reported that the isothermal EtBr adsorption curve reached the plateau at around 4
128	mmol/L concentration (Chang et al., 2014; Donğan et al., 2009; Li et al., 2020). The initial pH of
129	EtBr solution was 8.12. After adsorption tests without any pH adjustment, the final solution pHs
130	were almost close to 8 (pH~ 7.9 to 8.18), which were higher than the pK_{a2} value of EtBr, except
131	in the pH dependent adsorption study. For the kinetic study, the mixing time was 0.016, 0.033,
132	0.083, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 and 24.0 h. For pH adsorption edge experiment, the
133	equilibrium solution pH was varied between 2 and 11 adjusted by adding 2M NaOH or 2M HCl
134	drop-wise, and pH was checked periodically. The purpose of using high concentration of NaOH
135	or HCl was to minimize the change in total liquid volume. For ionic strength experiment, NaCl
136	and CaCl ₂ were used as the ionic strength adjustor with concentrations of 0.001 M, 0.01 M, 0.1
137	M, and 1.0 M. For temperature dependent adsorption test, the temperature was maintained at
138	303, 318, and 333 K. For the isotherm study, the initial EtBr concentrations were 1, 2, 3, 4, 5, 6,
139	7, and 8 mmol/L. The mixtures were shaken on a reciprocal shaker at 150 rpm for 24 h for all
140	experiments other than the kinetic study. After equilibration, the mixtures were centrifuged at
141	5000 rpm for 5 min, and the supernatants were passed through 0.22 μm nylon filters before being
142	analyzed by an UV-Vis spectrometer (EtBr concentration) and ion chromatography (metal cation
143	concentration). All adsorption experiments were run in duplicate.

145 *2.3 Methods of analyses*

EtBr was quantified by an DR5000 UV-Vis spectrophotometer (Hach, Loveland, USA). A UV 146 detector at the wavelength of 480 nm was used (Carbajo et al., 2011). The standards were 147 adjusted to the same pH as the sample supernatants. Calibration curve was made with five 148 standard EtBr concentrations between 0.01 and 0.2 mmol/L with r^2 value no less than 0.998. 149 The metal cations desorbed from PFI-1 during the adsorption of EtBr were analyzed by an 150 Integrion[™] high-pressure ion chromatography (HPIC) system (Dionex, Thermo Fisher 151 Scientific[™], Waltham, USA) equipped with a Dionex IonPac[™] CS12A-5µm column (3 x 150 152 mm). A mobile phase made of 1.922 mL of 20 mM methanesulfonic acid in 1L of water was 153 used. At a flow rate of 0.5 mL/min, the retention time for Na⁺, K⁺, Mg²⁺, and Ca²⁺ was 2.7, 3.78, 154 5.92, and 7.38 min, respectively. The bromide (Br⁻) anion in the EtBr adsorption media was 155 analyzed by the same HPIC system using a Dionex IonPacTM AS22-Fast-4 μ m column (2 × 150 156 mm), and a mobile phase made of 4.5 mM Na₂CO₃ in 1L of water. At a flow rate of 0.5 mL/min, 157 the retention time for Br was 2.2 min. 158 159

160 2.4 Characterization of palygorskite

161 Powder X-ray diffraction (XRD) patterns of samples were recorded on a Bruker D8 Advance

162	A25 Diffractometer (Bruker, Hamburg, Germany) equipped with the LYNXEYE XE detector,
163	using Cu Ka1 radiation in the 2°-10° 2 θ range, and a counting time of 0.01 s/step.
164	The field emission scanning electron microscope (FE-SEM) observation was made on a
165	TESCAN MAIA3 instrument (TESCAN, Brno, Czech Republic) using an acceleration voltage of
166	15 kV. Energy-dispersive X-ray spectroscopy (EDS) analysis was conducted using X-Max ^N
167	Silicon Drift detector (Oxford Instruments NanoAnalysis, High Wycombe, UK) attached to the
168	SEM. Platinum (Pt)-coated samples (~10 nm) was prepared before the SEM observation.
169	Thermogravimetric (TG) analyses were performed on a NETZSCH STA 449 F5 Jupiter
170	instrument (Netzsch, Deutschland, Germany) with a heating rate of 10 $^{\circ}\text{C/min}$ under N_2
171	condition. The initial sample weight was between 5 and 10 mg.
172	Fourier transform infrared (FTIR) spectra were acquired on a Nicolet iS10 spectrometer (Thermo
173	Fisher Scientific [™] , Waltham, USA) using KBr pressing method. The spectra were obtained in
174	the wavelength range of $4000 - 400 \text{ cm}^{-1}$ by accumulating 256 scans at a resolution of 4 cm ⁻¹ .
175	

176 **3. Results and discussion**

177 *3.1 Kinetic adsorption*

Many studies about the adsorption of contaminants on clay minerals showed that the adsorption
equilibrium was reached almost always in less than 24 h interaction time (Chang et al., 2009,

Donğan et al., 2004, Figueroa et al., 2004, Li et al., 2011a, b). Based upon those previous reports, 180 kinetic experiment was conducted up to 24 h in this study. However, the adsorption of EtBr on 181 PFI-1 reached equilibrium in about only 1 h (Fig. S2). The pseudo-second-order kinetic model 182 yielded the best fitting with a high coefficient of determination ($R^2 > 0.999$). The integrated rate 183 law for the pseudo-second-order model is (Eq. 1) (Ho and McKay, 1999): 184 $q_t = \frac{kq_e^2 t}{1 + kq_t}$ (Eq. 1) 185 where, k (kg/mmol.h) is the rate constant of adsorption, q_e (mmol/kg) is the amount of EtBr 186 adsorbed at equilibrium, and q_t (mmol/kg) is the amount of EtBr adsorbed on the adsorbent 187 188 surface at any time, t. Eq. 1 is based on the adsorption capacity which is proportional to the number of active sites occupied on the adsorbent, and can be re-arranged into a linear form (Eq. 189 190 2):

191
$$\frac{t}{q_t} = \frac{1}{kq_e^2} + \frac{1}{q_e}t$$
 (Eq. 2)

where, kq_e^2 is the initial rate (mmol/g.h). For EtBr adsorption, the initial rate was 7143 mmol kg⁻¹ h⁻¹, the rate constant was 0.1415 kg mmol⁻¹ h⁻¹, and the q_e was 225 mmol/kg, when the adsorption data were fitted to Eq. (2) (Fig. S2). The q_e value agreed with the calculated value of 215 mmol/kg (Fig. S2) obtained from the adsorption isotherm of EtBr. By virtue of the exchange or sharing of electrons between the adsorbent and adsorbate, the pseudo-second-order kinetic model describes chemical sorption as the rate-limiting step which may also involve valence

198	forces (Ho and McKay, 1999, Park et al., 2013). The equilibrium time was 8 min for EtBr
199	adsorption on CuO nanoparticles at an initial concentration of 0.3 mg/L, final pH 9, and
200	adsorbent dose 0.03 g/20 mL (Fakhri, 2014). Besides, the equilibrium time was 3 h for EtBr
201	adsorption on both natural pumice and aluminium-coated pumice at initial concentrations of 30
202	and 100 mg/L, initial pH 8, and adsorbent dose 8 g/L (Heibati et al., 2016). For PFI-1, the EtBr
203	adsorption reached to 88% of its maximum capacity within just 15 min, which indicated that
204	the clay mineral had advantage over other adsorbents in terms of quick removal of EtBr from
205	aqueous solutions.

3.2 Equilibrium adsorption 207

The EtBr adsorption data were fitted using the Langmuir and Freundlich isotherm models (Fig. 208

1). The Langmuir model is described as (Eq. 3): 209

210
$$C_{S} = \frac{K_{L} S_{m} C_{L}}{I + K_{L} C_{L}}$$
(Eq. 3)

where, C_S is the amount of adsorbate adsorbed on solid phase at equilibrium (mmol/kg), C_L is the 211 equilibrium solute concentration (mmol/L), S_m is the apparent adsorption capacity or adsorption 212 maximum (mmol/kg), and K_L is the Langmuir coefficient (L/mg). Eq. (3) can be rearranged to a 213 linear form Eq. 4 so that K_L and S_m can be determined by a linear regression. 214

215
$$\frac{C_L}{C_S} = \frac{1}{K_L S_m} + \frac{C_L}{S_m}$$
(Eq. 4)

216 The Freundlich adsorption equation can be written as (Eq. 5):

217
$$C_s = K_F C_L^{1/n}$$
 (Eq. 5)

where, K_F is the Freundlich adsorption constant, and n is the Freundlich exponent. A non-linear 218 regression fitting of the isotherm models was conducted using the least squares method 219 (Mukhopadhyay et al., 2019). As for EtBr, the Freundlich model seemed to have the best fitting 220 with a R^2 value of 0. 935, compared to $R^2 = 0.587$ for the Langmuir model (Fig. 1). The 221 maximum EtBr adsorption capacity calculated from the Langmuir model was 275 mmol/kg, 222 which was well above 149 mmol/kg (58.82 mg/g) and 195 mmol/kg (76.92 mg/g) for EtBr 223 adsorbed on a natural pumice, and aluminium-coated pumice, respectively, at pH=8 (Heibati et 224 al., 2016). Fitting of the adsorption isotherm data to the Freundlich model suggested that EtBr 225 adsorption on PFI-1 followed a multi-layer adsorption pattern on heterogeneous adsorption 226 sites (Figueroa et al, 2004; Heibati et al., 2016). 227

228

229 3.3 Desorbed cations

The amount of Ca^{2+} desorbed from PFI-1 showed a positive correlation (R²=0.88) with the amount of EtBr adsorbed at the first two initial EtBr concentrations of 1 and 2 mmol/L (Fig. 2).

232	The amounts of K^+ and Na^+ released from the clay mineral were lower than Ca^{2+} , and almost
233	invariable with respect to the amount of EtBr adsorbed. The amount of Mg ²⁺ released was also
234	slightly correlated (R ² =0.99) with the amount of EtBr adsorbed, which was likely because of the
235	higher MgO content in the bulk adsorbent. The results corresponded to the trend of
236	chlorpheniramine (Li et al., 2011a), diphenhydramine (Li et al., 2011b) and amitriptyline (Tsai et
237	al., 2016) adsorption on PFI-1, and further suggested that Mg^{2+} was present in the interlayers of
238	the clay mineral. The ratio of the total desorbed cations to adsorbed amounts of EtBr was 0.97
239	(Fig. 2) at initial EtBr concentration $< 2 \text{ mmol/L}$, which indicated that cation exchange was the
240	main mechanism for EtBr adsorption on PFI-1 at those adsorbate concentrations. In terms of
241	adsorption capacity, the maximum adsorption capacity was 160 mmol/kg below the initial EtBr
242	concentration of 2 mmol/L, and accompanied by cation desorption (Fig. 2). However, the cation
243	desorption from the clay mineral was decreased above the initial EtBr concentration of 2
244	mmol/L, while the EtBr adsorption still was continuing, implying that a second mechanism was
245	also involved to improve the EtBr adsorption capacity at high initial adsorbate concentrations.
246	
247	3.4 Effect of solution pH and competing cation on EtBr adsorption

248 The point of zero charge (PZC) of many adsorbents significantly influence their contaminant

249 adsorption capacities when electrostatic attraction is the key mechanism of reaction (Castaldo et

250	al., 2019; Vasudevan et al., 2009). The pH _{pzc} of PFI-1 was reported to be 4.1 (Panagiota et al.,
251	2007). The EtBr adsorption capacities on PFI-1 at various pH values are shown in Fig. S3a. The
252	descending trend of adsorption capacity with decreasing pH values indicated that pH_{pzc} was an
253	influencing factor for EtBr adsorption on PFI-1, which was different from results reported in
254	previous studies where the adsorption capacities were unchanged between pH 2 to 11 (Chang et
255	al., 2014, Wang et al., 2010). The positive charge of PFI-1 below pH 4.1 seemed to repulse the
256	positively charged Et^+ ions, and abruptly reduce the EtBr adsorption capacity from 200 mmol/L
257	(at pH = 5) to 133 mmol/L (at pH < 4.1), accounting about 33% drop in adsorption capacity (Fig.
258	S3a). This 33% decline of adsorption capacity at low pH could also be caused by the abundance
259	of H ⁺ which was added drop-wise through 2M HCl during adjusting pH value of the system. The
260	excess H ⁺ likely provided a competition to Et ⁺ for adsorption sites at low pH. However, it was
261	not possible to determine the respective contributions of PFI-1 surface charge alternation and
262	solution H ⁺ competition toward the ultimate decline of EtBr adsorption at low pH values. On the
263	other hand, the increased negative charge of PFI-1 at high pH values attracted the positively
264	charged Et^+ , and increased the adsorption capacity from 200 to 240 mmol/L at pH 5 to 11. Thus,
265	pH_{pzc} of PFI-1 and solution H ⁺ competition both played significant roles in controlling EtBr
266	adsorption ability of the clay mineral below pH 4.1 and above pH 9 (Fig. S3a).

The CEC of PF1-1 also was a key factor for EtBr adsorption on the clay mineral (Fig. S3b). 267

268	Addition of a second cation in the system was expected to decrease the EtBr adsorption through
269	competition effect. However, the competition was not obvious with an increase in concentrations
270	of Na ⁺ and Ca ²⁺ (Fig. S3b). At the lowest concentration of NaCl and CaCl ₂ (0.001 M), the
271	adsorption capacity of EtBr was 230 mmol/kg, which observed a decrease by only 17% (190
272	mmol/kg) with the addition of cations (Fig. S3b). These results showed that in addition to the
273	cation exchange mechanism, there was a high affinity between PFI-1 and EtBr in the aqueous
274	system, possibly originating from the Br ⁻ in EtBr (explained later in the paper).

276 *3.5 Effect of temperature on EtBr adsorption*

EtBr adsorption capacities decreased with increasing temperature at an initial EtBr concentration
of 4 mmol/kg at neutral pH condition (Fig. S4), suggesting an exothermic adsorption process.
The thermodynamic parameters of EtBr adsorption on PFI-1 were inferred from the partitioning
coefficient values using (Eq. 5):

281
$$\ln K_d = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$$
(Eq. 5)

where, *T* is the temperature in K, *R* is the gas constant (8.314 J/mol•K), ΔH is the change in

enthalpy, and ΔS is the change in entropy after adsorption. The free energy of adsorption ΔG is

284 linked to these thermodynamic parameters by (Eq. 6):

$$\Delta G = \Delta H - T \Delta S \tag{Eq. 6}$$

286	Negative ΔG values obtained in this study (Table 1) suggested a spontaneous adsorption process,
287	and also indicated the high affinity between PFI-1 and EtBr during the adsorption process
288	(Eldaroti et al., 2013, Li et al., 2020, Moradi et al., 2013, Zhu et al., 2016). The negative ΔH
289	values (Table 1) indicated an exothermic adsorption process, which was different from an
290	endothermic reaction for EtBr adsorption on carbon nanotubes (Moradi et al., 2013), but agreed
291	with the result of its adsorption on rectorite (Li et al., 2020). Besides, the order or disorder of
292	molecular morphologies depended on the parameter ΔS ; the small positive ΔS value (Table 1)
293	indicated that the adsorption was spontaneous by virtue of an increase in the system randomness,
294	as EtBr molecules interacted with the PFI-1 surface.
295	
296	3.6 XRD analysis
297	Non-expandable clay minerals such as illite or palygorskite are not expected to exhibit any

swelling phenomenon after adsorption of organic molecules (Wick et al., 2018, Youcef et al.,

299 2019). As a result, the strongest reflection position at $2\theta = 8.4^{\circ}$, corresponding to $d_{110} = 10.53$ Å

300 of palygorskite, in the XRD pattern of PFl-1 did not change after EtBr adsorption (Fig. 3). These

301 results indicated that the adsorption of EtBr occurred on the external surface of palygorskite

- which was the most abundant (80%) clay mineral in the PFI-1 sample (Fig. 3a, b). However, the
- 303 palygorskite sample (PFI-1) used in this study contained about 10% smectite (a swelling type

304	clay) as an impurity (Chipera and Bish, 2001). The smectite thus provided its doo1 reflection at 15
305	Å in the XRD pattern of PFI-1 (Chipera and Bish, 2001). No analysis was conducted in this
306	study to confirm the exact type of smectitic clay mineral present in the PFI-1 sample. However,
307	from the observed d_{001} reflection (15 Å), and Mg^{2+} and Ca^{2+} being the major exchangeable
308	cations in the sample (Tsai et al., 2016), a Ca-montmorillonite similar to the source clay SAz-2
309	$(d_{001} = 15.2 \text{ Å}; \text{Li et al., 2010})$ could be present. Inevitably, the smectite also participated in EtBr
310	adsorption. As a result, the d_{001} reflection of smectite at 15.0 Å shifted to 17.7 Å, and finally to
311	18.4 Å after EtBr adsorption at different concentrations and times (Fig. 3a, b). The change of d-
312	values was attributed to the 10% content of smectite in the bulk PFI-1 sample instead of the
313	palygorskite itself. The d-value stopped changing at 0.25 h (Fig. 3b) indicating that the
314	interlayers of smectitic clay mineral were full of EtBr due to the less content of smectite in the
315	bulk adsorbent, and from this point onward the adsorption happened only on the external surface
316	of palygorskite. In other words, most of the EtBr adsorption occurred on the external surface of
317	palygorskite.
219	

- 318
- 319 3.7 Derivative thermogravimetric (DTG) analyses
- 320 The decomposition temperature (T_{peak}) of raw EtBr was 355°C with a mass loss of 57%
- 321 continuing up to 600° C (Fig. 4a). The DTG curve of PFI-1 showed three T_{peak} values at 70, 210,

322	and 430°C (Fig. 4b) which corresponded to two steps of dehydration and dehydroxylation
323	temperatures, respectively (Frost and Ding, 2003). Guggenheim and Gross (2001) observed T _{peak}
324	of palygorskite at 83, 220, and 420°C due to dehydration and dehydroxylation of the clay
325	mineral. The T _{peak} of intercalated EtBr on rectorite was observed at 420°C in a previous study (Li
326	et al., 2020). Therefore, it was possible that the T_{peak} of intercalated EtBr on the smectite
327	component (10%) of PFl-1 still happened, but was blinded by the T_{peak} of the palygorskite
328	dehydroxylation at around same temperature (Fig. 4b). This argument was partially supported by
329	the fact that the T _{peak} was slightly uplifted to 440°C with increased EtBr adsorption capacity of
330	PF1-1 (Fig. 4b).

331

3.8 SEM and EDS analyses 332

333	In order to confirm the T _{peak} of clay-intercalated EtBr, and understand the fate of Br ⁻ during EtBr
334	adsorption, SEM (Fig. 5a-f), EDS (Fig. 5g) and further XRD (Fig. 5h-j) investigations were
335	carried out (Fig. 5). The Br ⁻ ions (denoted by Br in EDS) were spread out everywhere on the
336	surface of PFI-1 after adsorption (Fig. 5d), which implied the co-adsorption of Br ⁻ and Et ⁺ on the
337	adsorbent. After heating the EtBr-loaded sample at 500°C for 2 h (Fig. 5e), the Br ⁻ distribution
338	had not disappeared (Fig. 5f, g). Following the heat treatment, the d-value of smectite (d_{001}) and
339	palygorskite (d110) in PFl-1 was maintained at 13.5 Å and 9.7 Å, respectively (Fig. 5j). The

340	decomposition of intercalated EtBr located in the interlayers of smectite in PFl-1 rendered the d-
341	value to gradually decrease from 18.4 to 13.5 Å (Fig. 5h-j). These results confirmed that Br^{-} still
342	existed after heating the EtBr-loaded sample at 500°C for 2 h, and the T _{peak} of smectite-
343	intercalated EtBr was 440°C for PFI-1 although it was blinded by the peak of palygorskite
344	dehydroxylation at around 430°C (Fig. 4b).

3.9 FTIR analyses

347	The chemical environment of the adsorption complexes on PFI-1 surfaces was examined by IR
348	spectroscopy on the basis of the absorption band properties of individual samples (Fig. 6). The
349	characteristic bands of EtBr should occur at 3302 and 3192 cm ⁻¹ assigning to $-NH_2$ asymmetric
350	and symmetric stretching vibrations, respectively (Swaminathan et al., 2009). These two bands
351	were not displayed after adsorption of EtBr on PF1-1 (Fig. 6a). It was likely that the -NH2 bands
352	were overlapped by the board bands of PFI-1, and thus did not clearly prove the participation of
353	NH ₂ groups in EtBr adsorption (Eldaroti et al., 2013). The disappearance of v(NH),
354	$v_{deformation}(NH_3^+)$, $\delta_{symmetrical}(NH_3^+)$ and $\rho(NH_3^+)$ bands at about 3200, 1600, 1300 and 800 cm ⁻¹
355	(Fig. 6b) could also be due to the overlapping of PFl-1 and EtBr bands. Therefore, the above
356	bands did not also confirm the possible protonation of -NH2 groups of EtBr donor via a proton-
357	transfer reaction (from the acidic center of each acceptor to form NH4 ⁺ based on acid–base

358	theory) (Adam, 2012, Adam et al., 2012, Bellamy, 1975, Bharathikannan et al., 2008, Gaballa et
359	al., 2012). However, the band position of raw EtBr at 1318 cm ⁻¹ , which was attributed to Ph-N-
360	(CH ₃) ₂ stretching vibration (Sali et al., 2015), remained intact and did not significantly shift after
361	EtBr adsorption on PFI-1. Other band assignments such as 1499, 1463, 1408, 1352, 1319, and
362	1262 cm ⁻¹ were related to v(C=N), v(C=C), v(C-H), v _{as} (C-N), v _s (C-N), and δ (C-H), respectively,
363	and all of them also did not shift in the spectra of EtBr-loaded PFl-1 (Fig. 6b). The FTIR
364	investigation thus suggested that only C-H groups participated in the interaction between EtBr
365	and PFl-1 surfaces rather than the -NH2 groups. However, EtBr adsorption on a swelling type
366	clay mineral rectorite involved the participation of -NH2 groups as the main contact site when
367	EtBr existed in its monomer form (Li et al., 2020).
368	
369	3.10 Adsorption mechanism and the role of bromide on contact model
370	The molecular size of EtBr is 11.0 Å x 10.0 Å x 0.5 Å, and its maximum occupied area is 110
371	Å ² . At the maximum EtBr adsorption capacity of 275 mmol/kg, and with a SSA of 136.35 m ² /g
372	for PF1-1, the occupied area of each EtBr molecule was calculated to be 83 $Å^2$, which was less
373	than the ideal 110 $Å^2$ area of the molecule. Therefore, the SSA of PF1-1 was not enough to
374	inhabit all the EtBr molecules in parallel direction at the maximum EtBr adsorption capacity.
375	One possible model could be the vertical contact, which would touch on the PFI-1 surface with

376	one side of the EtBr molecules. However, the results from FTIR study showed that the NH ₂
377	groups did not serve as the contact sites, as should be happening in case of the postulated vertical
378	contact model. As a result, the only feasible contact model was that the EtBr molecules were
379	laying on the PFI-1 surface in parallel direction via dimer formation at high EtBr adsorption
380	capacities (Fig. 7). The concept was supported by the fitting of the adsorption data to the
381	Freundlich isotherm model which indicated multi-layer adsorption (Fig. 1). On the other hand,
382	the occupied area per EtBr molecule would be 228, 148, and 123 $Å^2$ corresponding to 0.51, 0.78,
383	and 0.94 CEC coverage of EtBr on PFI-1, respectively. These occupied areas on the PFI-1
384	surface were enough to contain the maximum size of EtBr molecules in a free style (Fig. 7).
385	The maximum adsorption capacity was 0.8 and 0.96 CEC of PFI-1 at the initial concentration of
386	2 and 3 mmol/L, respectively. The slope of the desorbed cations vs adsorbed EtBr line was 0.97
387	(Fig. 2a), suggesting that 97% of cations were desorbed from the PFI-1 surface below the 0.8
388	CEC equivalent EtBr concentration (Fig. 2a), which indicated that cation exchange was the main
389	adsorption mechanism at that adsorbate concentration. Interestingly, the desorption of cations
390	ceased at EtBr concentrations of 0.8 to 1.40 CEC equivalent of PFl-1 (Fig. 2a), while the
391	adsorption of EtBr still continued. As a result, the adsorption seemed to involve a second
392	mechanism to boost up the adsorption capacity above the 0.96 CEC equivalent EtBr
393	concentration. The FTIR results suggested that there was no hydrogen bonding between the

394	adsorbent and adsorbate. The hydrophobicity might be one possible interaction, but there was no
395	evidence of such phenomenon in this study. In order to unearth the contributory mechanism, the
396	analysis of Br ⁻ concentration in the adsorption system was therefore undertaken. The adsorption
397	reached equilibrium at the initial EtBr concentration of 8 to 14 mmol/L (Fig. 1), meanwhile, the
398	desorption of cations was stopped during adsorption from these four adsorbate concentrations
399	(Fig. 2a). However, the adsorption of Br ⁻ progressively increased from the initial concentration
400	of 8 to 14 mmol/L (Fig. 2b). The EtBr molecules could form dimers via the parallel orientation
401	of Br ⁻ (Thomas and Roques, 1972), which was supported by the calculation of the electronic
402	structure (occupancy area) of EtBr (Giacomoni and Bret, 1973). The dimer concentration would
403	be 3 mM while the monomer concentration would be 7 mM at the initial EtBr concentration of
404	10 mM, according to the theoretical calculation (Benfield et al., 2011). Besides, the dimer
405	concentration would be calculated as 5.5 mM using the 133 M ⁻¹ dimerization constant for EtBr at
406	its initial concentration of 10 mM (Veselkov et al., 1994). The residue of Br ⁻ was 4.4 mM in the
407	solution under the initial EtBr concentration of 10 mM (Fig. 2b), leaving 5.6 mM of Br
408	adsorbed. Therefore, the monomers and dimers of EtBr should have been co-adsorbed on PFI-1,
409	which was also supported by the results of SEM and EDS. This mechanism agreed with the fact
410	that the adsorption still increased while the cation desorption ceased under initial EtBr
411	concentrations from 8 to 14 mM (Fig. 2a). Consequently, the Br ⁻ played an important role in

412	EtBr adsorption on the clay mineral by participating in the dimerization reaction, which
413	enhanced the adsorption up to the tune of 1.39 CEC of PFI-1. Consequently, the dimer formation
414	mechanism corroborated with the Freundlich model fitting of the EtBr adsorption data in this
415	study, which was different from the Langmuir model fitting for EtBr adsorption on rectorite (Li
416	et a., 2020).

4. Conclusions

419	The current study showed that the adsorption of EtBr on PFI-1 happened quickly within 1 h, and
420	with a spectacular adsorption capacity of 275 mmol/kg corresponding to 108 mg/g. The
421	adsorption capacity was greater than the CEC value of the clay mineral. The desorption of
422	inorganic cations agreed with Et ⁺ adsorption, confirming the main mechanism of EtBr removal
423	occurred through the exchange for Et ⁺ by Ca ²⁺ on PFI-1. Adsorption of counterion Br ⁻
424	accompanying Et ⁺ suggested the formation of dimers of Et ⁺ on the external surface of PFI-1 at
425	higher adsorption capacities. Moreover, the dimer alignment rendered an adsorption capacity
426	enhancement, which was supported by fitting of the adsorption data to the Freundlich isothermal
427	model. Results of this study thus suggested that PFI-1 could be used as a potential natural
428	adsorbent for removing EtBr and similar cationic organic contaminants (e.g., dye compounds)
429	from pharmaceutical and laboratory wastewater. The non-swelling and easy liquid flow

430	behaviors of PFI-1 could facilitate practical application of this natural material in a fixed-bed
431	wastewater treatment system. Future research is needed to further understand the matrix effects
432	of laboratory and pharmaceutical wastewater on the performance for EtBr removal by PFI-1 in
433	batch and pilot scale studies.
434	
435	Acknowledgement
436	This research was financially supported by the Grant No. 1191319102 from Xi'an Jiaotong
437	University, Shaanxi, P.R. China. The authors are thankful to the core facilities sharing platform
438	of Xi'an Jiaotong University for their instruments such as HPIC, XRD, FE-SEM, TGA, and FT-
439	IR used in this research.
440	
441	Declaration of interest
442	The authors declare no competing financial interests for this study.
443	

References 445

446	Adam, A.A., 2012. Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-
447	transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid
448	and TCNQ. J. Mol. Struct. 1030, 26–39.
449	Adam, A.A., Refat, M.S., Sharshar, T., Heiba, Z.K., 2012. Synthesis and characterization of
450	highly conductive charge-transfer complexes using positron annihilation spectroscopy.
451	Spectrochim. Acta, Part A 95, 458–477.
452	Armand, R., Channon, J.Y., Kintner, J., White, K.A., Miselis, K.A., Perez, R.P., Lewis, L.D.,
453	2004. The effect of ethidium bromide induced loss of mitochondrial DNA on
454	mitochondrial phenotype and ultrastructure in a human leukemia T-cell line (MOLT4
455	cells). Toxicol. Appl. Pharm. 196, 68–79.
456	
457	Bellamy, L.J., 1975. The Infrared Spectra of Complex Molecules, Chapman & Hall, London.
458	Benfield, C.T., Mansur, D.S., McCoy, L.E., Ferguson, B.J., Bahar, M.W., Oldring, A.P., Grimes,
459	J.M., Stuart, D.I., Graham, S.C., Smith, G.L., 2011. Mapping the I κ B kinase β (IKK β)-
460	binding interface of the B14 protein, a vaccinia virus inhibitor of IKKβ-mediated activation
461	of nuclear factor κB. J. Biol. Chem. 286, 20727–20735.
462	Bharathikannan, R., Chandramohan, A., Kandhaswamy, M.A., Chandrasekaran, J., Renganathan,

463	R., Kandavelu, V., 2008. Synthesis, crystal growth and properties of the charge transfer
464	complex adduct of 2-nitro aniline with picric acid – An organic non-linear optical material.
465	Cryst. Res. Technol. 43, 683–688.
466	Carbajo, J., Adán, C., Rey, A., Martínez-Arias, A., Bahamonde, A., 2011. Optimization of H ₂ O ₂
467	use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped
468	TiO ₂ catalysts. Appl. Catal. B: Environ. 102, 85–93.
469	Castaldo, R., Ambrogi, V., Gentile, G., 2019. Composite Nanoadsorbents. Chapter 2-
470	Microporous Organic Polymer Nanocomposites for Adsorption Applications. Composite
471	Nanoadsorbents-Micro and Nano Technologies, p.25–47.
472	Chang, PH., Li, Z. Yu, TL., Munkhbayer, S., Kuo, TH., Hung, YC., Jean, JS., Lin, KH.,
473	2009. Sorptive removal of tetracycline from water by palygorskite. J. Hazard. Mater. 165,
474	48–155.
475	Chang, PH., Li, Z., Jean, JS., Jiang, WT., Wang, CJ., Lin, KH., 2012. Adsorption of
476	tetracycline on 2:1 layered non-swelling clay mineral illite. Appl. Clay Sci. 67-68, 158-
477	163.
478	Chang, PH., Jiang, WT., Li, Z., Kuo, CY., Jean, JS., Chen, WR., Lv, G., 2014.
479	Mechanism of amitriptyline adsorption on Ca-montmorillonite (SAz-2). J. Hazard. Mater.
480	277, 44–52.

481	Chang, PH., Jiang, WT., Li, Z., Kuo, CY., Wu, Q., Jean, JS., Lv, G., 2016. Interaction of
482	ciprofloxacin and probe compounds with palygorskite. J. Hazard. Mater. 303, 55-63.
483	Chipera, S.J., Bish, D.L., 2001. Baseline studies of the Clay Minerals Society source clays:
484	powder X-ray diffraction analyses. Clays Clay Min. 49, 398–409.
485	Dobaradaran, S., Nabizadeh, R., Mahvi, A.H., Mesdaghinia, A.R., Naddafi, K., Yunesian, M.,
486	Rastkari, N., Nazmara, S., 2010. Survey on degradation rates of trichloroethylene in
487	aqueous solutions by ultrasound. Iran J. Environ. Health Sci. 7, 307–312.
488	Donğan, M., Alkan, M., Turkyilamz, A., Ozdemir, Y., 2004. Kinetic and mechanism of removal
489	of methylene blue by adsorption onto perlite. J. Hazard. Mater. 109, 141–148.
490	Fakhri, A., 2014. Assessment of ethidium bromide and ethidium monoazide bromide removal
491	from aqueous matrices by adsorption on cupric oxide nanoparticles. Ecotoxicol. Environ.
492	Saf. 104, 386–392.
493	Figueroa, R.A., Leonard, A., MacKay, A.A., 2004. Modeling tetracycline antibiotic sorption to
494	clays. Environ. Sci. Technol., 38, 476–483.
495	Eldaroti, H.H., Gadir, S.A., Refat, M.S., Adam, A.M.A., 2013. Preparation, spectroscopic and
496	thermal characterization of new charge-transfer complexes of ethidium bromide with π -
497	acceptors: In vitro biological activity studies. Spectrochim. Acta, Part A 109, 259-271.
498	Frost, R.L., Ding, Z., 2003. Controlled rate thermal analysis and differential scanning

499	calorimetry of sepiolites and palygorskites. Thermochim. Acta 397, 119–128.
500	Gaballa, A.S., Teleb, S.M., Nourc, E.M., 2012. Preparation and spectroscopic studies on charge-
501	transfer complexes of famciclovir drug with different electron acceptors. J. Mol. Struct.
502	1024, 32–39.
503	Ge, J., Prasongtanakij, S., Wood, D.K., Weingeist, D.M., Fessler, J., Navasummrit, P.,
504	Ruchirawat, M., Engelward, B.P., 2014. CometChip: a high-throughput 96-well platform
505	for measuring DNA damage in microarrayed human cells. J. Vis. Exp. 92, 50607–50607.
506	Giacomoni, P.U., Bret, M., 1973. Le electronic structure of ethidium bromide. FEBS Lett. 29,
507	227–23.
508	Guggenheim, S., Groos, A.F.K., 2001. Baseline studies of the clay minerals society source clays:
509	thermal analysis. Clay Clay Miner. 49, 433–443.
510	Heibati, B.K., Yetilmezsoy, K., Zazouli, M.A., Rodriguez-Couto, S., Tyagi, I., Agarwal, S.,
511	Gupta, V.K., 2016. Adsorption of ethidium bromide (EtBr) from aqueous solutions by
512	natural pumice and aluminium-coated pumice. J. Mol. Liq. 213, 41-47.
513	Ho, Y.S., McKay, G., 1999. Pseudo-second order model for sorption processes. Process
514	Biochem. 34, 451–465.
515	Kikuchi, H., 2001. The investigation about the nature measurement result of 1999 groundwater

517	Li, Z., Chang, PH. Jiang, WT., Liu, YJ., 2020. Enhanced removal of ethidium bromide (EtBr)
518	from aqueous solution using rectorite. J. Hazard. Mater. 384, 121254.
519	Li, Z. Chang, PH., Jean, JS., Jiang, WT., Hong. H., 2011a. Mechanism of chlorpheniramine
520	adsorption on Ca-montmorillonite. Colloid Surf. A-Physicochem. Eng. Asp. 385, 213-218.
521	Li, Z., Chang, PH., Jean, JS., Jiang, WT., Wang, CJ., 2010. Interaction between tetracycline
522	and smectite in aqueous solution. J. Colloid Interface Sci. 341, 311-319.
523	Li, Z. Chang, PH., Jiang, WT., Jean, JS., Hong, H., Liao, L., 2011b. Removal of
524	diphenhydramine from water by swelling clay minerals. J. Colloid Interface Sci. 360, 227-
525	232.
526	Moradi, O., Fakhri, A., Adami, S., Adami, S., 2013. Isotherm, thermodynamic, kinetics, and
527	adsorption mechanism studies of Ethidium bromide by single-walled carbon nanotube and
528	carboxylate group functionalized single-walled carbon nanotube. J. Colloid Interface Sci.
529	395, 224–229.
530	Mukhopadhyay, R., Manjaiah, K.M., Datta, S.C., Sarkar, B., 2019. Comparison of properties and
531	aquatic arsenic removal potentials of organically modified smectite adsorbents. J. Hazard.
532	Mater. 377, 124-131.
533	Nakano, Y., Li, Q.H., Nishijima, W., Shoto, E., Okada, M., 2000. Biodegradation of
534	trichloroethylene (tce) adsorbed on granular activated carbon (gac). Water Res, 34, 4139-

535 4142.

536	Panagiota, S., Kiriaki, L., Dimitrios, G., Thomas, S.G., Yiannis, D., 2007. Physicochemical study
537	of novel organoclays as heavy metal ion adsorbents for environmental remediation. J.
538	Colloid Interf. Sci. 316, 298–309.
539	Park, Y., Ayoko, G.A., Horváth, E., Kurdi, R., Kristof, J., Frost, R.L., 2013. Structural
540	characterisation and environmental application of organoclays for the removal of phenolic
541	compounds. J. Colloid Interf. Sci. 393, 319–334.
542	Refat, M.S., El-Korashy, S.A., El-Deen, I.M., El-Sayed, S.M., 2011. Experimental and
543	spectroscopic studies of charge transfer reaction between sulfasalazine antibiotic drug with
544	different types of acceptors. Drug Test. Anal. 3, 116–131.
545	Sali, R., Naik, L.R., Bhajantri, R.F., Kamanavalli, C.M., Premakshi, S.G., 2015. Optical and
546	fluorescence study of ethidium bromide doped poly (vinyl alcohol). Int. J. Luminesc. Appl.
547	5, 131–133.
548	Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G.S.R., Naidu, R., 2010. Synthesis and
549	characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous
550	solution: Isothermal studies. J. Colloid Interf. Sci. 350, 295–304.
551	Sarkar, B., Megharaj, M., Xi, Y., Naidu, R., 2012. Surface charge characteristics of organo-
552	palygorskites and adsorption of p-nitrophenol in flow-through reactor system. Chemical

553	Engineer. J.	185–186,	35-43.
	0		

554	Sarkar, B., Naidu, R., 2015. Organopalygorskites prepared from quaternary ammonium
555	compounds and their environmental uses. In: Pasbakhsh, P., Churchman, G.J. (Eds.),
556	Natural Mineral Nanotubes: Properties and Applications. Apple Academic Press, pp. 323-
557	340.
558	Sarkar, B., Rusmin, R., Ugochukwu, U.C., Mukhopadhyay, R., Manjaiah, K.M., 2019. Chapter 5
559	- Modified clay minerals for environmental applications, in: Mercurio, M., Sarkar, B.,
560	Langella, A. (Eds.), Modified Clay and Zeolite Nanocomposite Materials. Elsevier, pp.
561	113-127.
562	Singer, V.L., Lawlor, T.E., Yue, S., 1999. Comparison of SYBR Green I nucleic acid gel stain
563	mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian
564	microsome reverse mutation assay. Mutat. Res. 439, 37–47.
565	Swaminathan, J., Ramalingam, M., Sethuraman, V., Sundaraganesan, N., Sebastian, S., 2009.
566	Vibrational spectroscopic studies and DFT calculations of 4- aminoantipyrine.
567	Spectrochim. Acta, Part A 73, 593–600.
568	Thititananukiji, S. Vejarafpjmol, R. Pewnjm, T., 2010. Ethidium bromide nuclear staining and
569	fluorescence micmscopy: an alternative method for triploidy detection in fish. J. world.
570	Aquac. Soc. 27, 213–217.

571	Thomas, G., Roques, B., 1972. Proton magnetic resonance studies of ethidium bromide and its
572	sodium borohydride reduced derivative. FEBS Lett. 26, 169–175.
573	Tsai, YL., Chang, PH., Gao, ZY., Xu, XY., Chen, YS., Wang, ZH., Chan, XY., Yang,
574	ZY., Wang, ZH., Jean, JS., Li, Z., Jiang, WT., 2016. Amitriptyline removal using
575	palygorskite clay. Chemosphere 155, 292–299.
576	Yuan, G.D., Theng, B.K.G., Churchman, G.J., Gates, W.P., 2013. Chapter 5.1 - Clays and Clay
577	Minerals for Pollution Control, in: Bergaya, F., Lagaly, G. (Eds.), Developments in Clay
578	Science. Elsevier, pp. 587-644.
579	Vasudevan, D., Bruland, G.L., Torrance, B.S., Upchurch, V.G., MacKay, A.A., 2009. pH-
580	dependent ciprofloxacin sorption to soils: Interaction mechanisms and soil factors
581	influencing sorptio. Geoderma 151, 68–76.
582	Veselkov, A.N., Dymant, L.N., Baranovskiy, S.F., 1994. The study of self-association of ethidium
583	bromide in an aqueous solution by H-NMR spectroscopy. Khim Fizika 13, 72-80.
584	Wang, CJ., Li, Z., Jiang, WT., Jean, JS., Liu, CC., 2010. Cation exchange interaction
585	between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater. 183, 309-314.
586	Waring, M., 1975. in Antibiotics (Corcoran, J. W., and Hahn, F. E., Eds.), Vol. 3, pp. 141–165,
587	Springer, New York.

588 Wick, S., Baeyens, B., Fernandes, M. M., Voegelin, A., 2018. Thallium Adsorption onto Illite.

589 Environ. Sci. Technol. 52, 571–580.

- 590 Youcef, L.D., Belarouia, L.S., López-Galindo, A., 2019. Adsorption of a cationic methylene blue
- 591 dye on an Algerian palygorskite. Appl. Clay Sci. 179, 105145.
- 592 Zimmermann, Z. Zimmermann, H.W., 1976. pKa-Werte von Ethidiumbromid und 7-Amino-391
- ⁵⁹³ 9-phenyl-10- äthyl-phenanthridinium-bromid, Zeitschrift für Naturforschung C 31, 656–
- 594 660. ISSN (Online) 1865-7125, ISSN (Print) 0939–5075.
- 595 Zhu, R.L., Chen, Q., Zhou, Q., Xi, Y. Zhu, J., He, H., 2016. Adsorbents based on
- 596 montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 123, 239–
- 597 258.

599 **Figure captions**

- 600 Fig. 1. Uptake of Et⁺ on PFL-1 at pH 8. The triangular symbols are the measured values. Solid
- and dashed lines are the Freundlich and Langmuir fits to the observed data.
- Fig. 2. Desorption of metal cations from PFI-1 as affected by the amount of Et^+ adsorption (a),
- the relationship between cation desorbed, and Br^- and Et^+ adsorbed (b).
- Fig. 3. XRD patterns of PFI-1, and PFI-1 with different amounts of Et⁺ adsorption from isotherm
- adsorption (a), and kinetic adsorption (b), at pH 8.
- Fig. 4. TG (a) and DTG (b) analyses of raw EtBr, and EtBr adsorbed on PFI-1. The vertical scale
- of raw EtBr is on the right side; for others it is on the left side.
- 608 Fig. 5. SEM image of raw PFI-1 (a), raw EtBr (b), 1.39 CEC PFI-1-EtBr (c), its face scan of Br
- (red color) and Al (white color) (d), image after heating the 1.39 CEC PFI-1-EtBr sample at
- 500° C (e), then face scan of Br (red color) and Al (white color) again (f), their EDS spectra (g),
- and d-value changes under three temperatures $(h\sim j)$.
- Fig. 6. FTIR spectra of raw PFI-1, crystalline EtBr, and PFI-1 with various EtBr loadings
- 613 (equivalent to proportion of PFI-1 CEC values) in the wavelength range of 400-4000 cm^{-1} (a),
- 614 and 400–1800 cm⁻¹ (b).
- Fig. 7. Illustration of uptake of EtBr on PFI-1 surfaces via the ribbon-like structure under low
- 616 (left) and high (right) EtBr concentrations.

617 Title of tables

- Table 1. Thermodynamic values of EtBr adsorption on PFI-1 under different temperatures.
- Table 2. Band positions of infrared frequencies (cm⁻¹) of EtBr and their corresponding positions
- 620 after adsorption on PF1-1.

622 Figures

633 Fig. 4

635 Fig. 5

Fig. 6

644 Tables

ъU	$Ln(K_d)$ (L/Kg)		ΔG° (kJ/mol)		A 110 (1-1/m - 1)	A C0 (1-1/1 IZ)	
pm	303K 318K	333K	303K	318K	333K	$\Delta \Pi$ (kJ/mor) 2	ΔS (KJ/IIIOI K)
8	4.73 4.56	4.43	-11.91	-12.09	-12.27	-8.23	0.01

Table 1. Thermodynamic values of EtBr adsorption on PFI-1 under different temperatures.

646

Table 2. Band positions of infrared frequencies (cm⁻¹) of EtBr and their corresponding positions

648 after adsorption on PFI-1.

EtBr (from Raw EtBr		After EtBr adsorption on Possible band assignment ^a		
reference) ^a	(this study)	PFl-1 (this study)		
3302	3278	3378	vs(N-H)	
3192	3196	3207	v _{as} (N–H); v(C–H); aromatic	
1629	1629	1629	δ(N–H)	
1578	1568	1578	v(C=C)(in ring), aromatic	
			v(C=O) + v(C=N)	
			δ (C–H) deformation	
			Ring breathing bands	
1499	1496	1498	ν(C=N)	
1489	1478	1500	v(C=C)	

1408	1404	1406	ν(С–Н)
			δ(С–Н)
1352	1350	1350	$v(C-C) + v_{as}(C-N)$
			C–H rock, alkanes
1319	1317	1317	v _s (C–N)
1262	1261	1265	δ (C–H) in plane bending
1207	1203	1203	δ _{rock} ; NH
837	837	837	C–H out of plane bending
772	771	771	δ_{rock} , C–H rock skeletal
115	//1		vibrations
706	704	704	CNC deformation

650 ^a (Eldaroti et al., 2013).

652	Supplementary Information for:
653	Mechanistic insights into ethidium bromide removal by palygorskite from contaminated
654	water
655	
656	Po-Hsiang Chang ^{a,*} , Binoy Sarkar ^{b,*}
657	
658	" School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28 Xianning West Poad Vi'an Shaanni 710040 P.P. China
660	^b Lancaster Environment Centre Lancaster University Lancaster I 41 4YO United Kingdom
661	Lancuster Environment Centre, Lancuster Oniversity, Lancuster, En1 41Q, Onited Kingdom

^{*} Corresponding author. Email: <u>tectonicion@xjtu.edu.cn</u> (P.-H. Chang); <u>b.sarkar@lancaster.ac.uk</u> (B. Sarkar)

663 Calculation of EtBr surface coverage

668

669

671 (b).

Fig. S2. Kinetics of Et⁺ uptake on PFI-1 at pH 8 under initial EtBr concentration of 4 mmol/L.

The solid line is pseudo-second-order fit to the observed data. Inserts is the linear plot of Eq. (1).

678 from an initial EtBr concentration of 4 mmol/L.

⁶⁸¹ Fig. S4. Et⁺ adsorption on PFl-1 as affected by equilibrium temperature at pH 8 from an initial

682 EtBr concentration of 4 mmol/L.