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Production Planning and Control in Multi-Stage Assembly Systems: 

An Assessment of Kanban, MRP, OPT (DBR) and DDMRP by 

Simulation 

 

Abstract 

Multi-stage assembly systems where the demand for components depends on the market-driven 

demand for end products, are commonly encountered in practice. Production Planning and 

Control (PPC) systems for this production context include Kanban, Materials Requirement 

Planning (MRP), Optimized Production Technology (OPT), and Demand Driven MRP 

(DDMRP). All four of these PPC systems are widely applied in practice and literature abounds 

on each of these systems. Yet, studies comparing these systems are scarce and remain largely 

inconclusive. In response, this study uses simulation to assess the performance of all four PPC 

systems under different levels of bottleneck severity and due date tightness. Results show that 

MRP performs the worst, which can be explained by the enforcement of production start dates. 

Meanwhile, Kanban and DDMRP perform the best if there is no bottleneck. If there is a 

bottleneck then DDMRP and OPT perform the best, with DDMRP realizing lower inventory 

levels. If there is a severe bottleneck, then the performance results for DDMRP and OPT 

converge. This identification of contingency factors not only resolves some of the 

inconsistencies in the literature but also has important implications for the applicability of these 

four PPC systems in practice.  
 

Keywords:  Production Control; Kanban; MRP; Theory of Constraints; Demand Driven 

Material Requirements Planning. 
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1. Introduction 

This study uses simulation to assess the performance of different Production Planning and 

Control (PPC) systems in multi-stage assembly systems where the demand for components or 

product parts depends on the market-driven demand for end products. Our focus is hereby on 

a multi-item, multi-level production system that produces an unknown quantity of a fixed set 

of end products on a to-order basis. The objective is twofold: to provide guidance to companies 

regarding which PPC system to choose; and, to identify contingency factor that influence this 

decision. The study was triggered by observations in a major air-conditioner producer in 

Guangdong, PR China, which currently uses Material Requirements Planning (MRP; Orlicky, 

1975, Vollmann et al., 1997), part of its Enterprise Resource Planning system, to control 

production. MRP is generally considered to be particularly suitable to this kind of production 

context, where component parts need to be coordinated for final assembly (Guide & Srivastava, 

2000). However, the firm struggled to control production without having to maintain high 

levels of in-process and finished goods inventories. It therefore decided to consider other 

alternatives suitable for its production context, such as Kanban (Sugimuri et al., 1977; Monden, 

1983; Ohno, 1988), the Theory of Constraints’ Optimized Production Technology solution 

(OPT; Goldratt & Cox, 1984; Goldratt, 1990; Schragenheim & Ronen, 1990; Simons Jr. & 

Simpson III, 1997; Watson et al., 2007), and Demand Driven MRP (DDMRP; Ptak & Smith, 

2016; Miclo et al., 2019; Acosta et al., 2020). This study sets out to support this company and 

others in choosing between PPC alternatives, identifying contingency factors that likely 

influence implementation outcomes.  

All of the above four PPC systems are widely applied in practice. For example, MRP 

continues to act as an important backbone of most PPC approaches in practice (Guide & 

Srivastava, 2000; Hopp & Spearman, 2011) since it can significantly improve the inventory 

and customer service levels of a production system (Whybark & Williams, 1976; Ho, 1989). 

Meanwhile, White et al. (1999) reported that about 50% of small and medium-sized 

manufacturers and around 70% of large manufacturers they surveyed have adopted some form 

of Kanban system. Similarly, White & Prybutok (2001) reported that about 60% of non-

repetitive and 70% of repetitive manufacturers surveyed had adopted Kanban. Further, Mabin 

& Balderstone (2003) reviewed the literature on more than 80 successful implementations of 

the Theory of Constraints, with 80% reporting improvements in lead times and due date 

performance. Finally, Miclo et al. (2019) presented a list of companies that had successfully 

used DDMRP.  
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Although all of the systems referred to above have been widely applied, literature comparing 

the different production planning and control systems remains scarce. Gupta & Snyder (2009) 

identified only 20 articles comparing two or more of these systems and even found that most 

studies were inconclusive. Moreover, the available literature does not include the most recent 

advances in PPC systems, particularly DDMRP (Miclo et al., 2019), which has shown much 

early promise. In response, we use simulation to compare the performance of Kanban, MRP, 

OPT and DDMRP under different levels of bottleneck severity and due date tightness. Using 

different environmental factors and performance measures we seek to identify contingency 

factors that can be used to guide the choice of managers in practice, such as the managers of 

the company in our initial observations. Bottleneck severity was chosen since it influences 

complexity (Tenhiälä, 2011). Due date tightness was chosen given that realizing short customer 

lead times whilst maintaining high service rates is a key concern for the type of company under 

study. 

The remainder of this study is structured as follows. Section 2 outlines the different PPC 

systems to be considered in this study. Section 3 then presents the simulation model used to 

evaluate performance, before the results are presented and discussed in Section 4. Finally, 

conclusions are summarized in Section 5, where managerial implications, limitations and future 

research directions are also outlined. 

 

2. Literature Review 

This section outlines the different PPC systems considered in this study. Section 2.1 introduces 

Kanban systems, Section 2.2 introduces MRP, Section 2.3 introduces OPT, and Section 2.4 

introduces DDMRP. A discussion of the literature is then presented in Section 2.5, where we 

also outline the research question that motivated our study. Note that we do not aim to provide 

a comprehensive literature review of each system. There exists a broad literature on each of the 

different PPC systems, and providing a comprehensive review is beyond the scope of this study. 

For a literature review on Kanban, the reader is referred to, e.g. Lage Junior & Godinho Filho 

(2010), for TOC to, e.g. Watson et al. (2007) or Ikeziri et al. (2019), while a review of the 

literature on DDMRP can be found in Miclo et al. (2019). Although there exist several reviews 

on the history of MRP and its origins (e.g. Jacobs & Weston Jr, 2007; Wilson, 2016), no 

systematic review of the MRP literature could be identified. Finally, Lage Junior & Godinho 

Filho (2010) identified more than 30 different Kanban systems. Clearly, including all of these 

systems in a comparison is beyond the scope of a single study. Thus, in our work, we attempt 

to stay as close as possible to the original description of a PPC system.    
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2.1 Kanban Systems 

There are several different Kanban systems presented in the literature. For a review and 

performance assessment, the reader is referred to Lage Junior & Godinho Filho (2010) and 

Piplani & Ang (2018), respectively. In this study, we focus on the use of Kanban as a 

replenishment system, as presented for example in Shingo (1989), since this is arguably the 

most commonly used version of Kanban in practice. This Kanban system uses inventory 

buffers, or so-called “supermarkets”, that are replenished based on card signals. Kanban cards 

signal: (i) that parts have been consumed (and need to be replenished); and, (ii) which parts 

need to be replenished. Each part has an associated Kanban and there is no part without a 

Kanban (Ohno, 1988). The Kanban system described is inherently linked to a re-order point 

system (Shingo, 1989), as depicted in Figure 1. The main difference compared to a re-order 

point system is that: the number of Kanban cards represents the maximum inventory in the 

system (Imin + R.O.Q.); and there is a granularity in the measurement of the inventory level 

since it has to be expressed in terms of Kanban cards.  

 

[Take in Figure 1] 

 

A major issue with replenishment systems, such as the described Kanban system, is that 

inventory is always present. Kanban systems constantly seek to keep the inventory buffers at 

each stage of the manufacturing system full. While this ensures fast fulfillment of demand at 

downstream processes (including the end customer), it implies that there is inventory present 

even if there is no demand for parts or end products (Thürer et al., 2016). Moreover, product 

variability has to be limited since parts are produced in advance – otherwise, if there is a large 

number of different parts the inventory buffers become unmanageable (Suri, 1998). 

 

2.2 Material Requirements Planning (MRP) 

The development of MRP was triggered by the creation of unnecessary inventory in 

replenishment systems such as Kanban. Although MRP emerged in the late 1960s (Koh et al. 

2002), it was only popularized after Orlicky (1975). While it is typically portrayed as being in 

contrast to just-in-time (Golhar & Stamm, 1991; Gupta & Snyder, 2009), MRP actually realizes 

the just-in-time principle by theoretically only producing parts when they are needed. In fact, 

MRP logic appears to preclude the use of any buffering mechanism (Guide & Srivastava, 2000). 

It uses backward scheduling to calculate production start dates so that parts are available at the 

inventory points just when they are needed, instead of all the time (as in the above described 

Kanban system). Note that even if the MRP logic precludes inventory, safety stocks and safety 
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lead times are often used to account for variability and nervousness (Whybark & Williams 

1976). There exist extensive publications concerning safety stock calculations for random 

demand of finished products (Louly & Dolgui, 2013). Meanwhile the setting of the safety lead 

time is dependent on the quality of the lead time estimation, which should consider capacity 

and workloads (Rossi et al., 2017; Missbauer, 2020). In general, utilizing a time buffer results 

in better delivery performance when there is a variable supply, whereas having a safety stock 

results in improved delivery performance when there is unreliable demand information (van 

Kampen et al., 2010). 

The MRP planning procedure relies on the basic tenet that there is both independent demand 

(the end product) and dependent demand (its parts or components), which are linked by a so-

called bill-of-materials (BOM). Once the future demand for final products is known, MRP uses 

the BOM and a so-called lead time offset to backward schedule (or explode) the production 

requirements for each component. In this sense, MRP is not a replenishment policy that treats 

demand for all parts as being independent; rather, it is a scheduling procedure that creates a 

plan based on realized or forecasted future demand. The lead time offset is the equivalent to 

trep in Figure 1. But instead of replenishing a fixed number of consumed parts, MRP produces 

a variable number of specific parts for future consumption.  

 

2.3 Optimized Production Technology (OPT) - Theory of Constraints 

When MRP emerged, computer power was a major issue (Jacobs & Weston Jr, 2007). 

Moreover, the question remained regarding why all resources needed to be controlled, given 

that systems are typically constrained by a limited number of resources. In response, Eli 

Goldratt developed a production scheduling package called optimized production technology 

(OPT) in 1979 (Simons Jr. & Simpson III, 1997). In contrast to MRP, where components are 

planned and released on a level-by-level basis (Steele et al., 2005), OPT schedules only the 

resource(s) that constrain(s) the system (later called the “Drum”). This drum schedule can be 

based on urgency or load-based considerations (Thürer & Stevenson, 2018a). All non-

constraint resources are subordinated to the constraint schedule. OPT uses both a constraint 

buffer (i.e. the buffer before the bottleneck), to protect the bottleneck from starvation, and a 

shipping buffer (i.e. the finished goods buffer; see, e.g. Watson et al., 2007), to protect the 

customer. These buffers are either time (e.g. Radovilsky, 1998; Rahman, 1998; Schragenheim 

& Ronen, 1990; Chakravorty & Atwater, 2005; Golmohammadi, 2015) or a time-equivalent 

amount of work-in-process. 
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For the simple case that there is a dominant flow and only one constraint, all parts 

downstream of the constraint are scheduled (similar to MRP), while all parts upstream of the 

constraint are replenished (similar to Kanban). This replenishment is triggered by the drum and 

communicated upstream by the so-called “Rope”, which is the time offset between the 

scheduling of the drum and the release of raw materials (Ronen & Starr, 1990). This offset is 

equivalent to trep in Figure 1 and thus inherently linked to the buffer level. The rope ensures 

that the constraint buffers are kept small and stable and that jobs will pass through to the drum 

in the correct order. OPT is therefore now more commonly known as Drum-Buffer-Rope 

(DBR), a descriptor of the way in which it is realized (Simons Jr. & Simpson III, 1997). 

 

2.4 Demand Driven MRP (DDMRP) 

The OPT approach puts a strong emphasis on resources and determining whether or not a 

particular resource is a constraint. But rather than taking such a resource-oriented approach, 

one could focus on the criticality of parts. In fact, it appears reasonable to retain critical parts 

in inventory to protect the system while permitting non-critical parts to be produced only when 

they are needed based on backward scheduling. This is the approach that is adopted by DDMRP, 

which was first presented as an appendix to the 3rd edition of Orlicky’s Material Requirements 

Planning book in 2011 (see Ptak & Smith, 2011) and later detailed by Ptak & Smith (2016).  

DDMRP keeps critical parts in inventory. If there are several critical parts in the production 

process then the system is decoupled by inventory buffers of these critical parts, as in the 

Kanban system described above. The main difference with DDMRP is that the Kanban system 

described above decouples all parts at all production stages, whereas DDMRP only decouples 

subsets of dependent parts (so called “pathways”) in the product structure. The inventory 

buffers of critical parts are controlled by re-order points, which are calculated based on a so-

called “net flow equation”. As in MRP, time buckets (e.g. daily) are used, and for each bucket, 

the remaining inventory is calculated as the inventory on-hand plus the inventory on-order 

minus qualified demand. If the net flow position falls to a re-order point, a production order for 

the replenishment of critical parts is generated. The replenishment lead time for the re-order 

point calculation is based on the “decoupling lead time”, which is defined as the longest, 

unprotected (unbuffered) lead-time in the BOM (Miclo et al., 2019) until the next decoupling 

point (or raw material). Once the production of critical parts is triggered, the production of non-

critical parts (until the next decoupling point or raw material) is scheduled using MRP logic, 

which is referred to as a “decoupled explosion”.  
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In summary, DDMRP treats critical parts as independent and non-critical parts as dependent. 

It subdivides a system, where demand for parts depends on the market-driven demand for end 

products, into subsystems, where demand for non-critical parts depends on the demand for 

critical parts. The critical parts for which there are decoupling inventories are then controlled 

by a re-order point while non-critical parts are controlled using MRP (i.e. by backwards 

scheduling).  

 

2.5 Discussion of the Literature 

All four PPC systems discussed above are widely applied in practice in multi-stage assembly 

systems where the demand for components depends on the market-driven demand for end 

products, and literature abounds on each of these individual systems (see, e.g. Lage Junior & 

Godinho Filho, 2010; Ikeziri et al., 2019). There are however few studies that compare the 

different systems, and those that are available are generally inconclusive in their findings 

(Gupta & Snyder, 2009). There are two major studies that emerged after Gupta & Snyder 

(2009); i.e. that were not included in their review: Jodlbauer & Huber (2008) and Miclo et al. 

(2019). Our study differs from these two by identifying contingency factors that impact the 

applicability of the different PPC systems (and thus allow us to interpret the results of the 

studies discussed in Gupta & Snyder (2009)). In contrast, Jodlbauer & Huber (2008) focused 

on parameter sensitivity and Miclo et al (2019) on comparing more traditional PPC systems 

with DDMRP. Jodlbauer & Huber (2008) compared the service levels of MRP, Kanban and 

OPT, concluding that MRP outperforms OPT and Kanban. This extends Steele et al. (2005) 

who compared MRP with OPT (or DBR) finding that OPT can outperform MRP, but that this 

depends on how MRP is implemented, i.e. how parameters are set. However, this finding is in 

contrast to Miclo et al. (2019) who compared MRP, Kanban and DDMRP and concluded that 

Kanban outperforms MRP (and that DDMRP overall performs the best). Hence, findings 

remain largely inconclusive even to-date.  

It is argued here that the inconclusive nature of the findings is explained by the presence of 

contingency factors that determine the impact of a PPC system on performance. For example, 

in terms of factors external to the production control mechanisms, the existence and strength 

of bottlenecks has long since been shown to affect performance. Still, whether or not a 

bottleneck exists is not explicitly discussed in Jodlbauer & Huber (2008) nor in Miclo et al 

(2019). Meanwhile, there is a clear bottleneck in Steele et al. (2005), but the impact of this 

factor is not assessed. Similarly, none of these studies considered the impact of due date 

tightness, although realizing short customer lead times while maintaining high service rates is 
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a main concern of many companies in practice. This neglect of contingency factors is 

considered a major shortcoming, since these contingency factors determine the applicability of 

the different PPC systems to a given production context. As a consequence, managers are 

provided with very limited guidance in terms of how they should choose an appropriate system 

for their company. In response, this study asks: 

 

What is the performance of Kanban, MRP, OPT and DDMRP in a multi-stage assembly system 

where the demand for components or product parts depends on the market-driven demand for 

end products, and how is this performance influenced by contingency factors? 

 

Discrete event simulation is chosen to compare our four PPC systems and answer our 

research question. Kanban could be modelled by extending existing analytical models of base-

stock systems. However, the other three PPC systems use backward infinite loading to schedule 

production start dates. One approach to model these systems would be to extend Graves’ (1986) 

Tactical Planning Model (TPM) as, for example, in Teo et al. (2011, 2012) for MRP. But the 

TPM is not easily extendable to OPT and DDMRP. We therefore argue that simulation is the 

best choice for our purpose of comparing the performance of the four PPC systems. We will 

use SIMIO software to build a generalized simulation model of a multi-stage assembly system 

where the demand for components or product parts depends on the market-driven demand for 

end products. To ensure verification, the simulation model can be requested from the 

corresponding author. 

 

3. Simulation Model 

The company that triggered our study produces 5 different categories of air conditioners, 

involving over 100 different products. The production process can slightly differ for the 

different categories and products and might be adapted to specific customer orders. Figure 2 

shows the overall structure of the production process that consists of four different production 

lines – the mould injection, the condenser, the sheet metal and the control production – which 

feed into a central assembly line. The sheet metal production involves both the production 

process in the sheet metal plant as well as a subsequent painting process in a different plant and 

is therefore split in Figure 2. Each of the four production lines can be characterized as a 

disconnected flow line since production occurs on a limited number of routings through the 

process, while movement between the production steps is not fully automated so that inventory 

can build up between the steps. The same observation holds true for the final assembly 

operation.  
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[Take in Figure 2] 

 

Given the sheer size of the production system, we did not build a detailed model that 

accurately represents all aspects of the real system. Small systems provide a better insight into 

the role of operating variables and, in practice, large systems can often be decomposed into 

several smaller systems (Bokhorst et al. 2004). We therefore scanned the literature for a 

generalized model that matches this production system. This generalized model is based on 

Jodlbauer & Huber (2008).  However, there will be some modifications to allow for a fair 

comparison and the isolation of our two external contingency factors: bottleneck severity and 

due date tightness. First, we will use a shop with a single bottleneck, where non-bottleneck 

stations are balanced. This means that the processing times of parts are different when 

compared to Jodlbauer & Huber (2008), where most stations had differing utilization rates. 

Second, the number of end products and part quantities will also be adjusted to create a 

symmetrical situation. Third, we will not consider set-up times, machine breakdowns or the 

scrap rate since we do not focus on robustness to stochastic factors (as in Jodlbauer & Huber, 

2008). To retain the capture of sources of variability, we will use stochastic rather than 

deterministic processing times. 

 

3.1 Job and Shop Characteristics 

The shop contains six stations, where each is a single, constant capacity resource. As in 

Jodlbauer & Huber (2008), the shop has one bottleneck station – Station 3. There are eight 

different end products, with the structure of the products summarized in Table 1. For example, 

Product 1 needs two units of item B1 to be assembled at Station 1 (the final station). B1 is 

produced at Station 2 and requires three units of item C1. In total, each end product needs six 

assembly operations to be completed across stations 1 to 6. Raw materials for Station 6 (the 

gateway station) are always available and there is an output buffer after each station. 

 

[Take in Table 1] 

 

Operation processing times before the adjustment to create the bottleneck follow a 2-Erlang 

distribution with a mean of 0.5 time units at stations 1 and 2 and 1.0 time units at the remaining 

four stations. Given the part quantities in Table 2, this results in a balanced shop. As in previous 

literature on bottleneck shops (e.g. Enns & Prongue-Costa, 2002), non-bottlenecks are created 

by reducing the corresponding processing times. Three levels of bottleneck severity are 

considered: (i) no bottleneck, where processing times are not adjusted; (ii) moderate bottleneck, 
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where processing times at all non-bottlenecks are reduced by 5%; and, (iii) severe bottleneck, 

where processing times at all non-bottlenecks are reduced by 10%. An equal adjustment was 

applied to all non-bottlenecks since the positioning of protective capacity is argued to have no 

effect on flow times (see Craighead et al., 2001).  

The arrival of demand follows a stochastic process. The demand rate follows a Poisson 

distribution and all end products have the same probability of arrival. As in previous literature 

comparing these kinds of PPC systems (e.g. Steele et al., 2005; Jodlbauer & Huber, 2008) there 

are fixed periods (e.g. weekly) in which demand occurs. In our study, the average demand 

arrival rate is 9 end products per period of 10 time units. The average demand has been set such 

that it deliberately results in a utilization level of 90% at the bottleneck station. Three settings 

for due date tightness are considered: tight, i.e. end products need to be delivered within 40 

time units after the arrival date; medium, i.e. end products need to be delivered within 45 time 

units; and, loose, i.e. end products need to be delivered within 50 time units. These values are 

based on the realized average throughput times in preliminary simulation experiments. 

 

3.2 Production Planning and Control 

For all four PPC systems, demand is only satisfied at the due date. Finished products remain in 

a finished goods buffer until the due date. We acknowledge that at least part of the demand can 

be immediately fulfilled if there is an output buffer at the final station and that this may be an 

advantage. However, to create comparability across PPC systems, a due date (and thus a lead 

time allowance) is introduced to allow for a PPC system to plan and to execute the plan. 

Different parameter settings are considered for each PPC system since we cannot predict in 

advance which setting will lead to the best performance. To allow for a fair comparison a 

spectrum of the parameters was chosen for each PPC system such that we capture the best 

performance across the performance measures considered in this study. These parameter values 

were obtained through preliminary simulation experiments. The four systems are implemented 

as follows: 

 Kanban: Products from Station 1’s output buffer can immediately be moved into the finished 

goods inventory, which means demand is satisfied from this buffer (although the product is 

still not delivered to the customer prior to the due date). This frees up Kanban cards to move 

to the board of Station 1. Available parts for replenishment at the output buffer of Station 2 

receive a Kanban from Station 1, detach the Kanban from Station 2 and move to Station 1 

where they are processed. The Kanbans from Station 2 now trigger production at Station 3, 

and so on. The total number of Kanban cards, which defines the buffer size at each station, 



12 

 

is tested at three levels and set to: 8, 16 and 24 cards. The minimum buffer size is 8 since 

there must be a minimum inventory in the system for each product given that Kanban is a 

replenishment system. We consider Kanban cards to be part number-specific, with the total 

number of Kanbans being equally distributed over the number of part types.  

 MRP: Production start dates are calculated for each part by backward scheduling using the 

lead-time offset. Production is then executed at each station according to the calculated start 

date (i.e. production cannot start if this start date is not reached). If the scheduled production 

start date of a station is reached, but not all parts are yet available from the upstream station, 

then and only then can safety stock be used. So, in contrast to a Kanban system where a 

given amount of inventory (the output buffer) is kept at a station to buffer demand, safety 

stock is a given amount of inventory that is kept at a station to buffer against a capacity 

shortage. As in Jodlbauer & Huber (2008), we use safety stock for all parts (including the 

end products). The lead-time offset is given by the cumulative moving average, i.e. the 

average of all operation throughput times realized until the current simulation time plus a 

time buffer which is set to 0, 2 and 4 time units. The safety stock level or buffer size at each 

stage is set to 0, 8 and 16 items. Again, the total stock level is equally distributed over the 

number of part types.  

 OPT (or DBR): We use two buffers – an output buffer at Station 1 and an output buffer at 

Station 4. As in a Kanban system, both buffer against demand variation. Products from 

Station 1’s output buffer can be moved into the finished goods inventory immediately, which 

means demand is satisfied from this buffer (although the product is still not delivered to the 

customer before the due date). Release dates are then calculated for each part at Station 3 

(our bottleneck) by backward scheduling using the same lead time offset as for MRP. This 

creates the drum schedule. There is an output buffer at Station 4 protecting the bottleneck. 

The rope is calculated, again using the same lead time offset as for MRP. Identical buffer 

sizes are considered at both the finished goods buffer and at Station 4, and tested at three 

levels, namely with 16, 24 and 32 items. Again, the total buffer level is equally distributed 

over the number of part types. 

 DDMRP: The first decision is the positioning of the buffer inventory. While there exists a 

vast literature on bottleneck detection (e.g. Roser & Nakano, 2015), the matter of how to 

explore criticality is less explored. In general, the DDMRP literature buffers the vast 

majority of parts, e.g. 14 out of 16 in Miclo et al. (2019). To create a fair comparison with 

the other approaches, in this study we buffer all parts needed at Station 3 (the bottleneck) 
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identically to OPT. To create completely decoupled sub-systems we also use an output 

buffer at Station 1. Products from Station 1’s output buffer can immediately be moved into 

the finished goods inventory, which means demand is satisfied from this buffer (although 

the product is still not delivered to the customer before the due date). If the remaining 

inventory in the output buffer at Station 1 falls to a re-order point level, then a production 

order for the replenishment of critical parts is generated. This replenishment consumes parts 

that are buffered at the output buffer of Station 4. If the remaining inventory at this buffer 

falls to its re-order point level, then a production order for producing these critical parts from 

raw materials is generated. We use a min-max inventory policy (Lee & Rim, 2019) with 

three levels for the re-order point (the Min): 1, 2 and 3 items. As for Kanban, one is the 

minimum level required. We use a continuous review policy, i.e. production orders are 

placed as soon as the inventory drops to or below the re-order point. Meanwhile, identical 

buffer sizes (the Max) are considered at both the output buffer at Station 1 and Station 4, 

and tested at three levels, namely 24, 32 and 40 items. Again, the total buffer level is equally 

distributed over the number of part types. 

 

3.3 Dispatching 

Each PPC system is typically evaluated using a different dispatching rule. Kanban is typically 

implemented with First Come First Served dispatching, MRP typically uses production start 

dates, as does OPT, while DDMRP uses the calculated net-requirements for prioritizing orders. 

However, there is no particular reason to restrict the combination of dispatching rule and PPC 

system. For example, dispatching based on net-requirements has also been used with Kanban 

systems (e.g. Ardalan & Diaz, 2012). Since our focus is not on the dispatching rule itself, and 

we want to reduce its impact, we chose to use only one simple dispatching rule to prioritize 

order on the shop floor in combination with all four PPC systems: production start dates. The 

production start dates are calculated for each part by backward scheduling from the due date 

using a lead-time offset, which is given by the cumulative moving average, i.e. the average of 

all operation throughput times realized until the current simulation time. 

 

3.4 Experimental Design and Performance Measures 

Our study considers two external contingency factors: (i) three levels of the severity of the 

bottleneck (no bottleneck, moderate bottleneck, and severe bottleneck); and, (ii) three levels of 

due date tightness (tight, medium, and loose). For each PPC system, we used a full factorial 

design considering these two factors and the specific parameter settings. Each scenario of the 
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experimental design was replicated 100 times. Results were collected over 13,000 time units 

following a warm-up period of 3,000 time units. These simulation conditions allow us to obtain 

stable results while keeping the simulation run time to a reasonable level. 

As in previous literature comparing these PPC systems (e.g. Steele et al., 2005; Jodlbauer 

& Huber, 2008; Miclo et al., 2019), three main performance measures are considered: the 

Service Level (SL), referring to the fraction of the number of customer orders delivered on time; 

the Finished Goods Inventory (FGI), which is the number of end products completed and 

assigned to a customer order; and the Work-In-Process (WIP) inventory, which is the number 

of parts (and end products) in the production system that departed from raw materials but did 

not yet enter into the FGI. 

 

4. Results 

This section first assesses the performance of each PPC system in isolation before a discussion 

is provided in Section 4.5. Here, we compare the different systems and reassess the PPC system 

used in the company that triggered this study. 

 

4.1 Performance Assessment: Kanban 

The performance results obtained for Kanban are summarized in Table 2. The following can 

be observed from the results: 

 Bottleneck Severity: If there is a bottleneck, then the overall system utilization reduces, 

which leads to the expected improvement in performance observed. 

 Due date tightness: This environmental factor has a negligible effect on performance. The 

due date tightness does not impact realized operation throughput times while the total 

throughput time is in general lower than the due date allowance.  

 Parameter Setting: As expected, FGI and WIP measures increase with the inventory buffer 

size. At the same time, service levels are close to 100% for most settings. The only exception 

is an inventory buffer of 8, if there is no bottleneck. Note that a lower inventory buffer was 

not possible given that we need at least 1 Kanban card for each of the eight end products. 

 

[Take in Table 2] 

 

4.2 Performance Assessment: MRP 

The performance results obtained for MRP are summarized in Table 3. The following can be 

observed from the results: 
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 Bottleneck Severity: If there is a bottleneck then overall system utilization reduces, which 

leads to the expected improvement in performance observed for all settings, except the 

setting where the time buffer and inventory buffer are zero. Here, service levels actually 

deteriorate. At non-bottleneck stations, realized operation throughput times get shorter, 

which leads to later releases of jobs to the system. This in turn reduces WIP levels, but at 

the cost of a deterioration in service level performance. This negative effect disappears if a 

time buffer or an inventory is used. 

 Due date tightness: This environmental factor has a negligible effect on the service level 

under most settings. This comes somewhat as a surprise given that MRP backward schedules 

from the due date. Since production start dates are enforced, i.e. production cannot start 

before the production start date is reached, the system can only fulfil demand during the lead 

time allowance, i.e. the due date minus the calculated release date at the first station in the 

routing. This lead time allowance is not affected by due date tightness and simply given by 

the sum of the lead time offsets. The main effect is that slightly longer operation throughput 

times are realized for loose due dates (given our dispatching rule), which leads to longer 

lead time offsets. This in turn leads to earlier releases to the system and higher WIP levels. 

 Parameter Setting: As expected, FGI and WIP measures increase with an increased 

inventory buffer size. Meanwhile, an increase in the time buffer leads to lower WIP levels 

and higher FGI levels since jobs are released earlier to the system. Both buffers have a 

positive impact on service level performance. However, an inventory buffer should be used 

to ensure high service levels in our modelled environment. Even when using a time buffer 

of 4 for each operation, the service level barely reached 50% on-time delivery. Meanwhile, 

using an inventory buffer of 16 items without a time buffer yields a service level of more 

than 90%. This aligns with van Kampen et al. (2010) who found that a safety stock results 

in a higher delivery performance compared to a time buffer where there is unreliable demand 

information. Another issue is that a time buffer equivalent to the inventory buffer (i.e. the 

time it needs to produce an equivalent amount of inventory) would require much larger 

planning periods and thus customer lead times. 

 

[Take in Table 3] 

 

4.3 Performance Assessment: OPT (DBR) 

The performance results obtained for OPT are summarized in Table 4. The following can be 

observed from the results: 
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 Bottleneck Severity: There is a very strong improvement in performance if there is a 

bottleneck. This improvement is likely to be higher than the improvement expected from the 

reduction in the system utilization, which can be explained by the PPC system’s clear 

emphasis on the bottleneck constraint. 

 Due date tightness: This environmental factor has a negligible effect on performance. The 

system can only fulfil demand during the lead time allowance, which is not affected by due 

date tightness. Meanwhile, any effect on the drum schedule caused by the realized operation 

throughput times is accommodated by the inventory buffer. 

 Parameter Setting: As expected, FGI and WIP measures increase with the inventory buffer. 

Meanwhile, an increase in the time buffer leads to lower WIP levels and higher FGI levels 

since jobs are released earlier to the system. Both buffers have a positive impact on service 

level performance; however, as for MRP an inventory buffer should be used to ensure high 

service levels. 

 

[Take in Table 4] 

 

4.4 Performance Assessment: DDMRP 

The performance results obtained for DDMRP are summarized in Table 5. The following can 

be observed from the results: 

 Bottleneck Severity: If there is a bottleneck, then we can observe the expected improvement 

in performance. 

 Due date tightness: This environmental factor has a negligible effect on the service level 

under most settings. The due date tightness does not impact realized operation throughput 

times. If the total throughput time is shorter than the lead time allowance, as for a re-order 

point of 1, then the service level performance deteriorates at tighter due dates. 

 Parameter Setting: As expected, FGI and WIP measures increase with the inventory buffer 

and re-order point. Increasing both the inventory buffer and re-order point has a positive 

impact on service level performance; however, the re-order point has the strongest effect. 

The re-order point should be set in such a way as to allow for the replenishment time. If the 

re-order point is too low then prolonged stock-outs may occur and the service level will 

suffer. 

 

[Take in Table 5] 
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4.5 Discussion of Results 

4.5.1 Performance Comparison 

Using Thompson (1967) as a theoretical lens, we can observe that the above systems differ in 

terms of the type of co-ordination mechanism applied. The Kanban system (as described above) 

controls production by mutual adjustment, i.e. responding to a deviation in the inventory level 

by attempting to stabilize this level through continuous replenishment. Meanwhile, MRP 

controls production via planned production start dates, i.e. MRP uses backward scheduling to 

produce parts only when they are needed whilst seeking to minimize the safety stock to account 

for variability and MRP nervousness. Finally, OPT and DDMRP use a combination of both 

approaches, as summarized in Table 6. 

 

[Take in Table 6] 

 

Our results re-emphasize that some form of mutual adjustment is required if there is 

variability and market-driven demand resulting, e.g. from make-to-order production. MRP 

performs far worse than the other three PPC systems tested in our study. Good service level 

performance can only be achieved by MRP with high inventories. The biggest issue however 

is not so much that production is planned. In fact, if the planning period is short enough, some 

form of mutual adjustment is realized by MRP, leading to improved performance (Steele et al., 

2005). The major issue in our study is that no further adjustment to the plan is possible. In fact, 

the enforcement of production start dates, i.e. only starting processing at a station if the start 

date at this station has been reached, may often lead to worse performance than using the 

production start date as a priority measure, as for a dispatching rule (Thürer et al. 2019). In the 

latter case, variability in realized operation throughput times is levelled across stations. A major 

shortcoming of MRP systems in high-variety contexts is the assumption that individual 

production orders can be combined, as in repetitive contexts, and that predetermined lead-time 

offsets can be used when determining production start dates (Thürer et al., 2020). In high-

variety contexts, the lead-time offset should consider the current workload situation (Teo et al., 

2012; Missbauer, 2020) for each individual job. If this is not possible then the production start 

dates should allow for mutual adjustment.  

The enforcement of production start dates in our study explains the discrepancy in results 

when compared to Jodlbauer & Huber (2008), where MRP outperformed Kanban systems. 

Jodlbauer & Huber (2008) did not enforce production start dates at stations, rather they applied 

a dispatching rule. Our study thus extends Jodlbauer & Huber (2008) by arguing that it is 

specifically the enforcement of the production start dates that causes the worse performance of 
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MRP. Meanwhile, our results align with Miclo et al. (2019), where MRP is clearly 

outperformed by Kanban and DDMRP. It is also this effect that partly explains the better 

performance observed for OPT and DDMRP for the scenarios in our study that do not have a 

bottleneck constraint. Both OPT and DDMRP also have a planning component but restrict 

enforced production start dates to a limited set of stations. 

If there is a bottleneck then both OPT and DDMRP clearly outperform all other PPC systems 

considered in our study, since they realize high service levels at lower WIP and FGI levels than 

Kanban. It is apparent that there is no need for an inventory buffer if there is a capacity buffer. 

So, Kanban creates ‘obvious’ inventory waste (Hopp & Spearman, 2004). However, the 

additional inventory is only obvious waste if the bottleneck is also obvious as in our study. As 

soon as there are shifting bottlenecks, Kanban may outperform PPC systems that only focus on 

the bottleneck, such as OPT and DDMRP, since the bottleneck may shift out of the control 

sphere of the PPC system (Thürer & Stevenson, 2018b). Kanban leads to similar performance 

to OPT and DDMRP but without this risk. Meanwhile, DDMRP performs better than OPT, i.e. 

it realizes higher service levels at lower FGI and WIP levels, if there is a moderate bottleneck. 

This is mainly due to the use of a re-order point, which leads to lower average levels in the 

inventory buffer. DDMRP and OPT converge and become equivalent if there is a severe 

bottleneck. In fact, if criticality of a part is defined by the risk that the bottleneck starves then 

DDMRP and OPT become quite similar. 

Finally, a summary of the applicability of the different PPC systems resulting from our 

discussion is provided in Table 7. 

 

[Take in Table 7] 

 

4.5.2 Reassessment of the Triggering Case 

After the simulations and the performance comparison we reassessed the PPC system used in 

the company that triggered our study: the major air-conditioner producer in Guangdong, PR 

China. This company uses MRP, which is part of its Enterprise Resource Planning system. Yet, 

while it struggles with inventory, its performance appears to be much better than it should be, 

based on our simulation results. After closer analysis we observed that the company is not in 

fact using MRP per se. Rather, it is using some form of OPT or DDMRP system, informed by 

the calculations provided by the MRP system. Which perspective is taken, OPT or DDMRP, 

depends on whether or not final assembly is perceived to be the bottleneck – something we 

could not fully assess. In fact, the company has mainly two inventory buffers: a finished goods 

inventory, to protect the customer; and a deliberate parts buffer (of one day), to protect the final 
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assembly line. This final assembly line has a fixed schedule and acts as the ‘Drum’ for OPT or 

provides the input for DDMRP’s decoupled explosion. The production start dates for upstream 

stations are only used for priority dispatching. This reassessment highlights that all four PPC 

systems use similar elements: inventory and time buffers. They differ in terms of which element 

is used, where it is used, and what emphasis is given to each element. This study has focused 

on well-established PPC systems while future research could deconstruct these systems into 

their underlying elements, reconstruct new systems, or assess the contingency factors for each 

element. 

 

5. Conclusion 

Multi-stage assembly systems where the demand for components or product parts depends on 

the market-driven demand for end products, are commonly encountered in practice. Arguably 

the most commonly used PPC systems to control the flow of materials in this production 

context include Kanban, MRP, OPT, and DDMRP. But although all four PPC systems are 

widely applied in practice and there is a large body of literature on these systems, studies 

comparing these different systems are scarce and remain largely inconclusive. In response, this 

study asked: What is the performance of Kanban, MRP, OPT and DDMRP in a multi-stage 

assembly system where the demand for components or product parts depends on the market-

driven demand for end products, and how is this performance influenced by contingency 

factors? Simulation results were first analyzed for each PPC system in isolation before a 

comparison of all four PPC systems was provided. The results support our argument that there 

are indeed contingency factors that determine the impact of a PPC system. For example, the 

existence of a bottleneck, its severity and the degree of bottleneck shiftiness all have a strong 

impact on the choice of PPC system to implement. Meanwhile, our study has highlighted that 

due date tightness has a largely negligible impact on PPC system performance, i.e. due date 

tightness has only a minor or even no impact on realized operation throughput times. This does 

not however mean that due date tightness does not impact applicability – tighter due dates 

require PPC systems that realize shorter operation throughput times. These findings not only 

resolve some of the inconsistencies in the literature but also have important implications for 

the applicability of PPC systems in practice.  

 

5.1 Limitations and Future Research 

A first major limitation is our focus on only four PPC systems. More PPC systems, or different 

variants of the chosen PPC systems, could have been assessed. We focussed on these four 
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systems since they are arguably the four most applied and well-known PPC systems for the 

production context under study, i.e. multi-stage assembly systems where the demand for 

components or product parts depends on the market-driven demand for end products. Future 

research could extend our study by also including other systems in the comparison, for example 

Constant Work-in-Process (ConWIP). Another important limitation is our choice of 

experimental factors, i.e. due date tightness and bottleneck severity. Although we consider 

these two factors the most likely to impact performance across PPC systems, future research 

could extend our study by including other environmental factors, such as processing time 

variability, machine failures, deterministic demand, bottleneck shiftiness etc. Finally, future 

research could also work on the integration of the different PPC systems. We observed 

significant overlap in the elements that constitute all four systems, with the main difference 

being in terms of which element is used, where it is used, and the degree of emphasis given to 

each element. We focused on well-established PPC systems whereas future research could 

deconstruct these systems into their underlying elements and assess the contingency factors for 

each element, thereby providing an architectural guide for PPC design. 
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Table 1: Product Structure 

 

Station 1 (Final) Station 2 Station 3 Station 4 Station 5 Station 6 

Output 
Input 

Output 
Input 

Output 
Input 

Output 
Input 

Output 
Input 

Output 
Type Q1) Type Q Type Q Type Q Type Q 

Product 1 B1 2 B1 C1 3 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 2 B2 2 B2 C1 1 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 3 B3 2 B3 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Product 4 B4 2 B4 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Product 5 B1 2 B1 C1 3 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 6 B2 2 B2 C1 1 C1 D1 1 D1 E1 1 E1 F1 1 F1 

Product 7 B3 2 B3 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Product 8 B4 2 B4 C2 2 C2 D2 1 D2 E2 1 E2 F2 1 F2 

Q1) – Quantity 

 

 

 

Table 2: Simulation Results – Kanban 

 

Due Date K1) 
No Bottleneck Moderate Bottleneck Severe Bottleneck 

SL2) (%) FGI3) WIP4) SL (%) FGI WIP SL (%) FGI WIP 

Loose 8 96.5 3.2 40.4 99.3 3.9 41.3 99.6 4.4 41.5 

Medium 8 95.7 3.2 40.4 99.0 3.9 41.3 99.5 4.4 41.5 

Tight 8 94.7 3.2 40.4 98.7 3.9 41.3 99.3 4.4 41.5 

Loose 16 99.6 9.3 84.6 99.9 10.4 84.3 100.0 11.0 83.7 

Medium 16 99.5 9.3 84.6 99.9 10.4 84.3 99.9 11.0 83.7 

Tight 16 99.4 9.3 84.6 99.9 10.4 84.3 99.9 11.0 83.7 

Loose 24 99.9 16.2 126.7 100.0 17.6 125.8 100.0 18.6 124.9 

Medium 24 99.9 16.2 126.7 100.0 17.6 125.8 100.0 18.6 124.9 

Tight 24 99.8 16.2 126.7 100.0 17.6 125.8 100.0 18.6 124.9 

K1) – Total Number of Kanbans; SL2) – Service Level; FGI3) – Finished Goods Inventory; WIP4) – Work-In-Progress Inventory 
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Table 3: Simulation Results – MRP 

 

Due Date TB1) IB2) 
No Bottleneck Moderate Bottleneck Severe Bottleneck 

SL3) (%) FGI4) WIP5) SL (%) FGI WIP SL (%) FGI WIP 

Loose 0 0 20.5 0.4 48.3 18.9 0.3 38.1 18.5 0.2 32.5 

Medium 0 0 20.4 0.4 47.2 19.0 0.3 38.4 18.6 0.2 32.7 

Tight 0 0 19.1 0.4 44.0 18.7 0.3 37.7 18.7 0.2 32.7 

Loose 0 8 77.6 7.9 86.5 81.6 8.0 83.1 83.7 8.0 77.3 

Medium 0 8 78.1 8.1 81.8 81.9 8.0 81.2 83.5 7.9 77.5 

Tight 0 8 77.8 8.0 77.3 81.7 8.0 76.9 83.7 8.0 76.4 

Loose 0 16 92.2 16.1 125.4 95.0 16.1 123.8 96.1 16.0 118.2 

Medium 0 16 92.3 16.0 120.9 94.9 16.1 120.6 96.0 16.0 118.3 

Tight 0 16 92.2 16.0 116.5 94.9 16.0 116.2 96.1 16.0 116.0 

Loose 2 0 30.9 0.9 48.4 33.0 0.8 38.1 35.2 0.7 32.9 

Medium 2 0 30.4 0.9 46.0 32.8 0.8 38.4 34.8 0.7 32.6 

Tight 2 0 28.7 0.8 42.6 33.0 0.8 38.1 34.4 0.7 32.6 

Loose 2 8 83.4 9.5 84.6 88.0 9.5 82.7 90.2 9.5 77.6 

Medium 2 8 83.6 9.4 80.2 88.2 9.5 79.4 90.4 9.5 77.4 

Tight 2 8 83.4 9.4 75.6 88.0 9.5 82.7 90.4 9.5 74.8 

Loose 2 16 94.3 17.7 123.7 96.9 17.8 122.9 98.0 17.8 118.5 

Medium 2 16 94.3 17.8 119.0 96.8 17.7 118.9 97.9 17.8 118.1 

Tight 2 16 94.5 17.9 114.5 96.9 17.8 114.3 98.0 17.8 114.3 

Loose 4 0 40.9 1.5 48.0 46.0 1.5 38.0 49.9 1.5 32.6 

Medium 4 0 39.4 1.5 44.9 45.9 1.5 38.0 50.2 1.5 32.7 

Tight 4 0 37.0 1.3 41.6 45.9 1.5 37.4 50.5 1.5 32.4 

Loose 4 8 87.6 11.0 82.9 92.4 11.1 81.7 94.6 11.2 77.5 

Medium 4 8 87.8 11.0 78.3 92.5 11.1 77.7 94.7 11.2 76.8 

Tight 4 8 87.4 10.9 73.9 92.3 11.1 73.2 94.5 11.2 73.0 

Loose 4 16 96.0 19.5 121.8 98.0 19.5 121.4 98.9 19.5 118.5 

Medium 4 16 95.8 19.4 117.3 98.1 19.5 117.1 98.9 19.6 116.8 

Tight 4 16 95.9 19.4 112.8 98.1 19.5 112.6 98.9 19.5 112.5 

TB1) – Time Buffer; IB2) – Inventory Buffer; SL3) – Service Level; FGI4) – Finished Goods Inventory; WIP5) – Work-In-Progress 
Inventory 
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Table 4: Simulation Results – OPT (DBR) 

 

Due Date TB1) IB2) 
No Bottleneck Moderate Bottleneck Severe Bottleneck 

SL3) (%) FGI4) WIP5) SL (%) FGI WIP SL (%) FGI WIP 

Loose 0 16 28.6 3.2 23.1 65.3 9.5 21.4 98.5 8.9 28.2 

Medium 0 16 30.4 3.5 23.1 66.1 9.6 21.3 98.0 8.9 28.2 

Tight 0 16 28.9 3.3 23.1 65.5 9.5 21.4 97.3 8.9 28.2 

Loose 0 24 79.4 17.3 32.0 91.0 21.0 29.9 99.6 12.1 33.7 

Medium 0 24 79.4 17.6 32.2 90.6 20.9 29.9 99.4 12.1 33.7 

Tight 0 24 79.7 17.3 32.3 91.2 21.2 29.9 99.2 12.1 33.7 

Loose 0 32 93.4 28.6 40.7 96.7 30.6 38.0 99.7 12.3 35.7 

Medium 0 32 93.0 28.4 40.8 96.8 30.8 38.0 99.5 12.3 35.7 

Tight 0 32 93.0 28.5 40.6 96.5 30.7 38.1 99.3 12.3 35.7 

Loose 2 16 34.8 4.4 23.1 69.6 10.9 21.4 99.2 11.6 35.4 

Medium 2 16 35.0 4.4 23.0 69.4 10.7 21.4 98.9 11.6 35.4 

Tight 2 16 32.2 3.9 22.9 70.4 10.9 21.4 98.5 11.6 35.4 

Loose 2 24 80.4 18.1 32.2 92.9 22.9 29.9 99.8 15.6 39.9 

Medium 2 24 80.8 18.4 32.2 92.9 22.8 29.9 99.7 15.6 39.9 

Tight 2 24 81.9 18.5 32.2 92.0 22.5 29.9 99.5 15.6 39.9 

Loose 2 32 94.6 30.2 40.7 97.2 32.4 38.1 99.9 19.1 43.2 

Medium 2 32 94.4 30.3 40.7 97.4 32.5 38.1 99.9 19.1 43.2 

Tight 2 32 94.8 30.3 40.6 97.3 32.3 38.1 99.8 19.1 43.2 

Loose 4 16 37.2 4.8 23.1 74.1 12.2 21.4 99.5 14.4 42.1 

Medium 4 16 34.4 4.5 23.0 73.9 12.2 21.4 99.3 14.4 42.1 

Tight 4 16 36.8 5.0 23.1 73.3 12.1 21.4 99.0 14.4 42.1 

Loose 4 24 82.8 20.1 32.2 94.1 24.3 29.9 99.6 18.8 44.6 

Medium 4 24 84.2 20.1 32.0 94.1 24.3 29.9 99.5 18.8 44.6 

Tight 4 24 83.4 20.0 32.2 93.6 24.3 29.9 99.3 18.8 44.6 

Loose 4 32 95.3 31.9 40.6 98.0 34.0 38.1 99.9 23.0 48.8 

Medium 4 32 95.4 32.1 40.7 98.0 34.1 38.1 99.8 23.0 48.8 

Tight 4 32 95.0 31.6 40.7 98.2 34.4 38.1 99.7 23.0 48.8 

TB1) – Time Buffer; IB2) – Inventory Buffer; SL3) – Service Level; FGI4) – Finished Goods Inventory; WIP5) – Work-In-Progress 
Inventory 
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Table 5: Simulation Results – DDMRP 

 

Due Date ROP1) IB2) 
No Bottleneck Moderate Bottleneck Severe Bottleneck 

SL3) (%) FGI4) WIP5) SL (%) FGI WIP SL (%) FGI WIP 

Loose 1 24 77.8 4.2 28.3 95.3 7.3 28.3 98.5 8.9 28.2 

Medium 1 24 75.6 4.2 28.3 94.2 7.3 28.3 98.0 8.9 28.2 

Tight 1 24 73.1 4.2 28.3 92.9 7.3 28.3 97.3 8.9 28.2 

Loose 2 24 96.7 8.7 35.3 99.2 11.0 34.3 99.6 12.1 33.7 

Medium 2 24 95.9 8.7 35.3 99.0 11.0 34.3 99.4 12.1 33.7 

Tight 2 24 94.9 8.7 35.3 98.6 11.0 34.3 99.2 12.1 33.7 

Loose 3 24 97.2 9.1 37.8 99.4 11.1 36.7 99.7 12.3 35.7 

Medium 3 24 96.5 9.1 37.8 99.2 11.1 36.7 99.5 12.3 35.7 

Tight 3 24 95.7 9.1 37.8 98.9 11.1 36.7 99.3 12.3 35.7 

Loose 1 32 88.5 7.0 36.3 97.6 10.2 35.7 99.2 11.6 35.4 

Medium 1 32 86.9 7.0 36.3 97.0 10.2 35.7 98.9 11.6 35.4 

Tight 1 32 85.0 7.0 36.3 96.2 10.2 35.7 98.5 11.6 35.4 

Loose 2 32 98.2 11.9 41.7 99.6 14.3 40.6 99.8 15.6 39.9 

Medium 2 32 97.7 11.9 41.7 99.5 14.3 40.6 99.7 15.6 39.9 

Tight 2 32 97.1 11.9 41.7 99.3 14.3 40.6 99.5 15.6 39.9 

Loose 3 32 99.1 15.5 45.6 99.8 17.6 44.5 99.9 19.1 43.2 

Medium 3 32 98.8 15.5 45.6 99.6 17.6 44.5 99.9 19.1 43.2 

Tight 3 32 98.4 15.5 45.6 99.5 17.6 44.5 99.8 19.1 43.2 

Loose 1 40 92.3 9.4 44.0 98.4 12.6 43.0 99.5 14.4 42.1 

Medium 1 40 91.0 9.4 44.0 98.0 12.6 43.0 99.3 14.4 42.1 

Tight 1 40 89.5 9.4 44.0 97.4 12.6 43.0 99.0 14.4 42.1 

Loose 2 40 96.8 14.4 45.2 99.3 17.4 45.0 99.6 18.8 44.6 

Medium 2 40 96.2 14.4 45.2 99.1 17.4 45.0 99.5 18.8 44.6 

Tight 2 40 95.4 14.4 45.2 98.8 17.4 45.0 99.3 18.8 44.6 

Loose 3 40 99.1 19.0 51.2 99.8 21.5 49.9 99.9 23.0 48.8 

Medium 3 40 98.9 19.0 51.2 99.7 21.5 49.9 99.8 23.0 48.8 

Tight 3 40 98.6 19.0 51.2 99.6 21.5 49.9 99.7 23.0 48.8 

ROP1) – Re-Order Point; IB2) – Inventory Buffer; SL3) – Service Level; FGI4) – Finished Goods Inventory; WIP5) – Work-In-
Progress Inventory 
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Table 6: Summary of Coordination Mechanisms Underpinning Each PPC System 

 

 
Coordination by mutual adjustment 

(replenishment trigger) 
Coordination by plan 

(backward scheduling) 

Kanban All parts None 

MRP None All parts 

OPT Parts produced by non-constraints Parts produced by constraints 

DDMRP Critical parts Non-critical parts 

 

 

Table 7: Summary of Applicability of PPC Systems 

 

Contingency Factor Impact on PPC system performance 

Demand Driven High 

Variability 

Need for some form of mutual adjustment. Kanban, OPT and DDMRP perform 

the best. For MRP, the production start date should not be enforced but used to 

guide dispatching decisions. 

Due Date Tightness Has a negligible effect on realized operation throughput times. This means that 

the impact on the service level can be calculated.  

Bottleneck Severity  Kanban and DDMRP perform the best if there is no bottleneck. If there is a 

bottleneck, then DDMRP and OPT perform the best, with DDMRP realizing lower 

inventory levels. If there is a severe bottleneck, then the performance of DDMRP 

and OPT converges. If there is a shifting bottleneck, then Kanban should be 

chosen since both DDMRP and OPT rely on the bottleneck being known. 

 

 

 

Figure 1: Illustration of a Re-Order System 
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Figure 2: Illustration of Production Process at Triggering Case Company 
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