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Abstract

Markov chain Monte Carlo (MCMC) algorithms are generally regarded as the gold
standard technique for Bayesian inference. They are theoretically well-understood
and conceptually simple to apply in practice. The drawback of MCMC is that per-
forming exact inference generally requires all of the data to be processed at each
iteration of the algorithm. For large data sets, the computational cost of MCMC can
be prohibitive, which has led to recent developments in scalable Monte Carlo algo-
rithms that have a significantly lower computational cost than standard MCMC. In
this paper, we focus on a particular class of scalable Monte Carlo algorithms, stochas-
tic gradient Markov chain Monte Carlo (SGMCMC) which utilises data subsampling
techniques to reduce the per-iteration cost of MCMC. We provide an introduction to
some popular SGMCMC algorithms and review the supporting theoretical results, as
well as comparing the efficiency of SGMCMC algorithms against MCMC on bench-
mark examples. The supporting R code is available online1.

Keywords: Bayesian inference, Markov chain Monte Carlo, scalable Monte Carlo, stochastic
gradients.

1https://github.com/chris-nemeth/sgmcmc-review-paper
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1 Introduction

The Bayesian approach to modelling data provides a flexible mathematical framework for

incorporating uncertainty of unknown quantities within complex statistical models. The

Bayesian posterior distribution encodes the probabilistic uncertainty in the model parame-

ters and can be used, for example, to make predictions for new unobserved data. In general,

the posterior distribution cannot be integrated analytically and it is therefore necessary to

approximate it. Deterministic approximations, such as the Laplace approximation (Bishop

2006, see Section 4.4), variational Bayes (Blei et al. 2017) and expectation-propagation

(Minka 2001), aim to approximate the posterior with a simpler tractable distribution (e.g.

a normal distribution). These deterministic approximations are often fit using fast optimi-

sation techniques and trade-off exact posterior inference for computational efficiency.

Markov chain Monte Carlo (MCMC) algorithms (Brooks et al. 2011) approximate the

posterior distribution with a discrete set of samples generated from a Markov chain whose

invariant distribution is the posterior distribution. Simple MCMC algorithms, such as

random-walk Metropolis (Metropolis et al. 1953), are easy to apply and only require that

the unnormalised density of the posterior can be evaluated point-wise. More efficient

MCMC algorithms, which offer faster exploration of the posterior, utilise gradients of the

posterior density within the proposal mechanism (Roberts & Tweedie 1996, Neal 2011,

Girolami & Calderhead 2011). Under mild conditions, the samples generated from the

Markov chain converge to the posterior distribution (Roberts & Rosenthal 2004) and for

many popular MCMC algorithms, rates of convergence based on geometric ergodicity have

been established (see Meyn et al. 1994, Roberts & Rosenthal 1997, for details).

Whilst MCMC algorithms have the advantage of providing asymptotically exact poste-

rior samples, this comes at the expense of being computationally slow to apply in practice.
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This issue is further exacerbated by the demand to store and analyse large-scale data sets

and to fit increasingly sophisticated and complex models to these high-dimensional data.

For example, scientific fields, such as population genetics (Raj et al. 2014), brain imaging

(Andersen et al. 2018) and natural language processing (Yogatama et al. 2014), commonly

use a Bayesian approach to data analysis, but the continual growth in the size of the data

sets in these fields prevents the use of traditional MCMC methods. Computational chal-

lenges such as these have led to recent research interest in scalable Monte Carlo algorithms.

Broadly speaking, these new Monte Carlo techniques achieve computational efficiency by

either parallelising the MCMC scheme, or by subsampling the data.

If the data can be split across multiple computer cores then the computational challenge

of inference can be parallelised, with an MCMC algorithm run on each core to draw samples

from a partial posterior that is conditional on only a subset of the full data. The challenge

is then to merge these posterior samples from each computer to generate an approximation

to the full posterior distribution. It is possible to construct methods to merge samples that

are exact if the partial posteriors are Gaussian (Scott et al. 2016); for example with update

rules that just depend on the mean and variance for each partial posterior. However, it is

hard to quantify the level of approximation such rules introduce due to non-Gaussianity

of the partial posteriors. Alternative merging procedures, that aim to be more robust to

non-Gaussianity, have also been proposed (Neiswanger et al. 2014, Rabinovich et al. 2015,

Minsker et al. 2017, Srivastava et al. 2018, Nemeth & Sherlock 2018), but it is hard to

quantify the level of approximation accuracy such merging procedures have in general.

Bespoke methods are also needed when interest in the joint posterior of the parameters

relates to subsets of the data, or individual data points, for example when inferring clusters

(Zuanetti et al. 2019)
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Alternatively, rather than using multiple computer cores, a single MCMC algorithm can

be used, where only a subsample of the data is evaluated at each iteration (Bardenet et al.

2017). For example, in the Metropolis-Hastings algorithm, the accept-reject step can be

approximated with a subset of the full data (Korattikara et al. 2014, Bardenet et al. 2014,

Quiroz et al. 2018). Again these methods introduce a trade-off between computational

speed-up and accuracy. For some models, it is possible to use subsamples of the data at

each iteration with the guarantee of sampling from the true posterior; e.g., continuous-time

MCMC methods (Fearnhead et al. 2018, Bierkens et al. 2019, Bouchard-Côté et al. 2018).

These exact methods can only be applied if the posterior satisfies strong conditions, e.g.

the derivative of the log-posterior density can be globally bounded. To date, these methods

have only been successfully applied to relatively simple models, such as logistic regression.

Perhaps the most general and popular class of scalable, subsampling-based algorithms

are stochastic gradient MCMC (SGMCMC) methods. These algorithms are derived from

diffusion processes which admit the posterior as their invariant distribution. A discrete-time

Euler approximation of the diffusion is used for Monte Carlo sampling. Many such meth-

ods have been based on the over-damped Langevin diffusion (Roberts & Tweedie 1996).

Simulating from the Euler approximation gives the unadjusted Langevin algorithm. Due to

the discretisation error, the invariant distribution of unadjusted Langevin algorithm is only

an approximation to the posterior; though adding a Metropolis-type correction produces

an MCMC sampler with the correct invariant distribution (Besag 1994). Even without the

Metropolis correction, the unadjusted Langevin algorithm can be computationally expen-

sive as it involves calculating the gradient of the log-posterior density at each iteration and

this involves a sum over the full data. Inspired by stochastic gradient descent (Robbins

& Monro 1951), Welling & Teh (2011) proposed the stochastic gradient Langevin algo-
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rithm, where the gradient component of the unadjusted Langevin algorithm is replaced by

a stochastic approximation calculated on a subsample of the full data. An advantage of

SGMCMC over other subsampling-based MCMC techniques, such as piece-wise determin-

istic MCMC (Fearnhead et al. 2018), is that it can be applied to a broad class of models

and, in the simplest case, only requires that the first-order gradient of the log-posterior

density can be evaluated point-wise. A drawback of these algorithms is that, while produc-

ing consistent estimates (Teh et al. 2016), they converge at a slower rate than traditional

MCMC algorithms. In recent years, SGMCMC algorithms have become a popular tool

for scalable Bayesian inference, particularly in the machine learning community, and there

have been numerous methodological (Ma et al. 2015, Chen et al. 2014, Dubey et al. 2016,

Baker et al. 2019a) and theoretical developments (Teh et al. 2016, Vollmer et al. 2016,

Dalalyan & Karagulyan 2019, Durmus & Moulines 2017) along with new application areas

for these algorithms (Balan et al. 2015, Gan et al. 2015, Wang et al. 2015). This paper

presents a review of some of the key developments in SGMCMC and highlights some of the

opportunities for future research.

This paper is organised as follows. Section 2 introduces the Langevin diffusion and its

discrete-time approximation as the basis for SGMCMC. This section also presents theoret-

ical error bounds on the posterior approximation and an illustrative example of stochastic

gradient Langevin dynamics on a tractable Gaussian example. In Section 3, we show

how the SGMCMC framework has been extended beyond the Langevin diffusion, with

many popular SGMCMC algorithms given as special cases. Like many MCMC algorithms,

SGMCMC has tuning parameters which affect the efficiency of the algorithm. Standard

diagnostics for tuning traditional MCMC algorithms are not appropriate for SGMCMC

and Section 4 introduces the kernel Stein discrepancy as a metric for both tuning and as-
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sessing convergence of SGMCMC algorithms. Section 5 reviews some of the recent work on

extending SGMCMC to new settings beyond the case where data are independent and the

model parameters are continuous on the real space. A simulation study is given in Section

6, where several SGMCMC algorithms are compared against traditional MCMC methods

to illustrate the trade-off between speed and accuracy. Finally, Section 7 concludes with a

discussion of the main points in the paper and highlights some areas for future research.

2 Langevin-based Stochastic Gradient MCMC

2.1 The Langevin Diffusion

We are interested in sampling from a target density π(θ), where we assume θ ∈ Rd and

the unnormalised density is of the form,

π(θ) ∝ exp{−U(θ)}, (1)

and defined in terms of a potential function U(θ). We will assume that U(θ) is continuous

and differentiable almost everywhere, which are necessary requirements for the methods we

discuss in this paper. In our motivating applications from Bayesian analysis for big data,

the potential will be defined as a sum over data points. For example, if we have independent

data, y1, . . . , yN then π(θ) ∝ p(θ)
∏N

i=1 f(yi|θ), where p(θ) is the prior density and f(yi|θ)

is the likelihood for the ith observation. In this setting, we can define U(θ) =
∑N

i=1 Ui(θ),

where Ui(θ) = − log f(yi|θ)− (1/N) log p(θ).

One way to generate samples from π(θ) is to simulate a stochastic process that has π

as its stationary distribution. If we sample from such a process for a long time period and

throw away the samples we generate during an initial burn-in period, then the remaining
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samples will be approximately distributed as π. The quality of the approximation will

depend on how fast the stochastic process converges to its stationary distribution from the

initial point, relative to the length of the burn-in period. The most common example of

such an approach to sampling is MCMC (Hastings 1970, Dunson & Johndrow 2020).

Under mild regularity conditions (Roberts & Tweedie 1996, Pillai et al. 2012), the

Langevin diffusion, defined by the stochastic differential equation

dθ(t) = −1

2
∇U(θ(t))dt+ dBt, (2)

where ∇U(θ(t)) is the drift term and Bt denotes d-dimensional Brownian motion, has π

as its stationary distribution. This equation can be interpreted as defining the dynamics

of a continuous-time Markov process over infinitesimally-small time intervals. That is, for

a small time-interval h > 0, the Langevin diffusion has approximate dynamics given by

θ(t+ h) ≈ θ(t)− h

2
∇U(θ(t)) +

√
hZ, k = 0, . . . , K (3)

where Z is a vector of d independent standard Gaussian random variables.

The dynamics implied by (3) give a simple recipe to approximately sample from the

Langevin diffusion. To do so over a time period of length T = Kh, for some integer K, we

just set θ0 to be the initial state of the process and repeatedly simulate from (3) to obtain

values of the process at times h, 2h, . . . ,Kh. In the following, when using such a scheme

we will use the notation θk to denote the state at time kh. If we are interested in sampling

from the Langevin diffusion at some fixed time T , then the Euler discretisation will become

more accurate as we decrease h; and we can achieve any required degree of accuracy if we

choose h small enough. However, it is often difficult in practice to know when h is small

enough, see Section 4 for more discussion of this.
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2.2 Approximate MCMC using the Langevin Diffusion

As the Langevin diffusion has π as its stationary distribution, it is natural to consider

this stochastic process as a basis for an MCMC algorithm. In fact, if it were possible to

simulate exactly the dynamics of the Langevin diffusion, then we could use the resulting

realisations at a set of discrete time-points as our MCMC output. However, for general

π(θ) the Langevin dynamics are intractable, and in practice people often resort to using

samples generated by the Euler approximation (3).

This is most commonly seen with the Metropolis-adjusted Langevin Algorithm, or

MALA (Roberts & Tweedie 1996). This algorithm uses the Euler approximation (3) over

an appropriately chosen time-interval, h, to define the proposal distribution of a standard

Metropolis-Hastings algorithm. The simulated value is then either accepted or rejected

based on the Metropolis-Hastings acceptance probability. Such an algorithm has good the-

oretical properties, and in particular, can scale better to high-dimensional problems than

the simpler random walk MCMC algorithm (Roberts & Rosenthal 1998, 2001).

A simpler algorithm is the unadjusted Langevin algorithm, also known as ULA (Parisi

1981, Ermak 1975), which simulates from the Euler approximation but does not use a

Metropolis accept-reject step and so the MCMC output produces a biased approximation

of π. Computationally, such an algorithm is quicker per-iteration, but often this saving

is small, as the O(N) cost of calculating ∇U(θ), which is required for one step of the

Euler approximation, is often at least as expensive as the cost of the accept-reject step.

Furthermore, the optimal step size for MALA is generally large, resulting in a poor Euler

approximation to the Langevin dynamics – and so ULA requires a smaller step size, and

potentially many more iterations. One advantage that ULA has is that its performance is

more robust to poor initialisations; by comparison a well-tuned MALA algorithm often has
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a high rejection probability if initialised in the tail of the posterior.

The computational bottleneck for ULA is in calculating∇U(θ), particularly if we have a

large sample size, N , as U(θ) =
∑N

i=1 Ui(θ). A solution to this problem is to use stochastic

gradient Langevin dynamics (SGLD Welling & Teh 2011), which avoids calculating ∇U(θ),

and instead uses an unbiased estimate at each iteration. It is trivial to obtain an unbiased

estimate using a random subsample of the terms in the sum. The simplest implementation

is to choose n << N and estimate ∇U(θ) with

∇̂U(θ)(n) =
N

n

∑
i∈Sn

∇Ui(θ), (4)

where Sn is a random sample, without replacement, from {1, . . . , N}. We call this the

simple estimator of the gradients, and use the superscript (n) to denote the subsample size

used in constructing our estimator. The resulting SGLD is given in Algorithm 1, and allows

for the setting where the step size of the Euler discretisation depends on iteration number.

Welling & Teh (2011) justified the SGLD algorithm by giving an informal argument that

if the step size decreases to zero with iteration number, then it will converge to the true

Langevin dynamics, and hence be exact; see Section 2.4 for a formal justification of this.

The advantage of SGLD is that, if n << N , the per-iteration cost of the algorithm can

be much smaller than either MALA or ULA. For large data applications, SGLD has been

empirically shown to perform better than standard MCMC when there is a fixed computa-

tional budget (Ahn et al. 2015, Li et al. 2016). In challenging examples, performance has

been based on measures of predictive accuracy on held-out test data, rather than based on

how accurately the samples approximate the true posterior. Furthermore, the conclusions

from such studies will clearly depend on the computational budget, with larger budgets

favouring exact methods such as MALA – see the theoretical results in Section 2.4.
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Algorithm 1: SGLD

Input: θ0, {h0, . . . , hK}.

for k ∈ 1, . . . , K do

Draw Sn ⊂ {1, . . . , N} without replacement

Estimate ∇̂U(θ)(n) using (4)

Draw ξk ∼ N(0, hkI)

Update θk+1 ← θk − hk
2
∇̂U(θk)

(n) + ξk

end

The SGLD algorithm is closely related to stochastic gradient descent (SGD) (Robbins

& Monro 1951), an efficient algorithm for finding local maxima of a function. The only

difference is the inclusion of the additive Gaussian noise at each iteration of SGLD. With-

out the noise, but with a suitably decreasing step size, stochastic gradient descent would

converge to a local maxima of the density π(θ). Again, SGLD has been shown empirically

to out-perform stochastic gradient descent (Chen et al. 2014) at least in terms of prediction

accuracy – intuitively this is because SGLD will give samples around the estimate obtained

by stochastic gradient descent and thus can average over the uncertainty in the parameters.

This strong link between SGLD and stochastic gradient descent, and the good peformance

the stochastic gradient descent often has for prediction, may also explain why the former

performs well when compared to exact MCMC methods in terms of prediction accuracy.

2.3 Estimating the Gradient

A key part of SGLD is replacing the true gradient with an estimate. The more accurate

this estimator is, the better we would expect SGLD to perform, and thus it is natural to
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consider alternatives to the simple estimator (4).

One way of reducing the variance of a Monte Carlo estimator is to use control variates

(Ripley 1987), which in our setting involves choosing a set of simple functions ui, i =

1, . . . , N , whose sum
∑N

i=1 ui(θ) is known for any θ. As

N∑
i=1

∇Ui(θ) =
N∑
i=1

ui(θ) +
N∑
i=1

(∇Ui(θ)− ui(θ)) ,

we can obtain the unbiased estimator
∑N

i=1 ui(θ) + (N/n)
∑

i∈Sn(∇Ui(θ) − ui(θ)), where

again Sn is a random sample, without replacement, from {1, . . . , N}. The intuition behind

this idea is that if each ui(θ) ≈ ∇Ui(θ), then this estimator can have a much smaller

variance.

Recent works, for example Baker et al. (2019a) and Huggins & Zou (2017) (see Bardenet

et al. 2017, Pollock et al. 2020, Bierkens et al. 2019, for similar ideas used in different Monte

Carlo procedures), have implemented this control variate technique with each ui(θ) set as

a constant. These approaches propose (i) using stochastic gradient descent to find an

approximation to the mode of the distribution we are sampling from, which we denote as

θ̂; and (ii) set ui(θ) = ∇Ui(θ̂). This leads to the following control variate estimator,

∇̂cvU(θ)(n) =
N∑
i=1

∇Ui(θ̂) +
N

n

∑
i∈Sn

(
∇Ui(θ)−∇Ui(θ̂)

)
.

Implementing such an estimator involves an up-front of cost of finding a suitable θ̂ and

calculating, storing and summing ∇Ui(θ̂) for i = 1, . . . , N . Of these, the main cost is

finding a suitable θ̂. Though we can then use θ̂ as a starting value for the SGLD algorithm,

replacing θ0 with θ̂ in Algorithm 1, which can significantly reduce the burn-in phase (see

Figure 2 for an illustration).
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The advantage of using this estimator can be seen if we compare bounds on the variance

of this and the simple estimator. If ∇Ui(θ) and its derivatives are bounded for all i and θ,

then there are constants C1 and C2 such that

Var
[
∇̂U(θ)(n)

]
≤ C1

N2

n
, Var

[
∇̂cvU(θ)(n)

]
≤ C2||θ − θ̂||2N

2

n
,

where || · || denotes Euclidean distance. Thus, when θ is close to θ̂, we would expect the

latter variance to be smaller. Furthermore, in many settings when N is large we would

expect a value of θ drawn from the target to be of distance O(N−1/2), thus using control

variates will reduce the variance from O(N2/n) to O(N/n). This simple argument suggests

that, for the same level of accuracy, we can reduce the computational cost of SGLD by

O(N) if we use control variates. This is supported by a number of theoretical results (e.g.

Nagapetyan et al. 2017, Baker et al. 2019a, Brosse et al. 2018) which show that, if we

ignore the pre-processing cost of finding θ̂, the computational cost per-effective sample size

of SGLD with control variates has a computational cost that is O(1), rather than the O(N)

for SGLD with the simple gradient estimator (4).

A further consequence of these bounds on the variance is that they suggest that if θ is

far from θ̂ then the variance of using control variates can be larger, potentially substantially

larger, than that of the simple estimator. Two ways have been suggested to deal with this.

One is to only use the control variate estimator when θ is close enough to θ̂ (Fearnhead

et al. 2018), though it is up to the user to define what “close enough” is in practice. The

second is to update θ̂ during SGLD. This can be done efficiently by using ui(θ) = ∇Ui(θki),

where θki is the value of θ at the most recent iteration of the SGLD algorithm where∇Ui(θ)

was evaluated (Dubey et al. 2016). This involves updating the storage of ui(θ) and its sum

at each iteration; importantly the latter can be done with an O(n) calculation. A further

possibility, which we are not aware has yet been tried, is to use ui(θ) that are non-constant,
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and thus try to accurately estimate ∇Ui(θ) for a wide range of θ values.

Another possibility for reducing the variance of the estimate of ∇U(θ) is to use pref-

erential sampling. If we generate a sample, Sn, such that the expected number of times i

appears is wi, then we could use the unbiased estimator

∇̂wU(θ)(n) =
∑
i∈Sn

∇Ui(θ)

wi
.

The simple estimator (4) is a special case of this estimator where wi = n/N for all i. This

weighted estimator can have a lower variance if we choose larger wi for ∇Ui(θ) values that

are further from the mean value. A natural situation where such an estimator would make

sense would be if we have data from a small number of cases and many more controls,

where giving larger weights to the cases is likely to reduce the variance. Similarly, if we

have observations that vary in their information about the parameters, then giving larger

weights to more informative observations would make sense. Note that using weighted

sampling can be combined with the control variate estimator – with a natural choice of

weights that are increasing with the size of the derivative of ∇Ui(θ) at θ̂. We can also

use stratified sampling ideas, which try to ensure each subsample is representative of the

full data (Sen et al. 2020), or adapt ideas from stochastic optimisation that uses multi-arm

bandits to learn a good sampling distribution (Salehi et al. 2017).

Regardless of the choice of gradient estimator, an important question is how large should

the subsample size be? A simple intuitive rule, which has some theoretical support (e.g.

Vollmer et al. 2016, Nagapetyan et al. 2017), is to choose the subsample size such that

if we consider one iteration of SGLD, the variance of the noise from the gradient term is

dominated by the variance of the injected noise. As the former scales like h2 and the latter

like h then this suggests that as we reduce the step size, h, smaller subsample sizes could

be used – see Section 2.5 for more details.
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2.4 Theory for SGLD

As described so far, SGLD is a simple and computationally efficient approach to approxi-

mately sample from a stochastic process whose asymptotic distribution is π; but how well

do samples from SGLD actually approximate π? In particular, whilst for small step sizes

the approximation within one iteration of SGLD may be good, do the errors from these

approximations accumulate over many iterations? There is now a body of theory address-

ing these questions. Here we give a brief, and informal overview of this theory. We stress

that all results assume a range of technical conditions on π(θ), some of which are strong

– see the original references for details. In particular, most results assume that the drift

of the underlying Langevin diffusion will push θ towards the centre of the distribution,

an assumption which means that the underlying Langevin diffusion will be geometrically

ergodic, and an assumption that is key to avoid the accumulation of error within SGLD.

There are various ways of measuring accuracy of SGLD, but current theory focuses on

two approaches. The first considers estimating the expectation of a suitable test function

φ(θ), i.e. Eπ [φ(θ)] =
∫
π(θ)φ(θ)dθ, using an average over the output from K iterations

of SGLD, (1/K)
∑K

k=1 φ(θk). In this setting, we can measure the accuracy of the SGLD

algorithm through the mean square error of this estimator. Teh et al. (2016) consider this

in the case where the SGLD step size hk decreases with k. The mean square error of the

estimator can be partitioned into a square bias term and a variance term. For large K, the

bias term increases with the step size, whereas the variance term is decreasing. Teh et al.

(2016) show that in terms of minimising the asymptotic mean square error, the optimal

choice of step size should decrease as k−1/3, with the resulting mean square error of the

estimator decaying as K−2/3. This is slower than for standard Monte Carlo procedures,

where a Monte Carlo average based on K samples will have mean square error that decays
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as K−1. The slower rate comes from needing to control the bias as well as the variance,

and is similar to rates seen for other Monte Carlo problems where there are biases that

need to be controlled (e.g. Section 3.3 of Fearnhead et al. 2008). In practice, SGLD is

often implemented with a fixed step size h. Vollmer et al. (2016) give similar results on

the bias-variance trade-off for SGLD with a fixed step size, with a mean square error for K

iterations and a step size of h being O(h2 + 1/(hK)). The h2 term comes from the squared

bias and 1/hK from the variance term. The rate-optimal choice of h as a function of K

is K−1/3, which again gives an asymptotic mean square error that is O(K−2/3); the same

asymptotic rate as for the decreasing step size. This result also shows that with larger

computational budgets we should use smaller step sizes. Furthermore, if we have a large

enough computational resource then we should prefer exact MCMC methods over SGLD:

as computing budget increases, exact MCMC methods will eventually be more accurate.

The second class of results consider the distribution that SGLD samples from at it-

eration K with a given initial distribution and step size. Denoting the density of θK by

π̃K(θ), one can the measure an appropriate distance between π̃K(θ) and π(θ). The most

common distance used is the Wasserstein distance (Gibbs & Su 2002), primarily because it

is particularly amenable to analysis. Care must be taken when interpreting the Wasserstein

distance, as it is not scale invariant – so changing the units of our parameters will result

in a corresponding scaling of the Wasserstein distance between the true posterior and the

approximation we sample from. Furthermore, as we increase the dimension of the parame-

ters, d, and maintain the same accuracy for the marginal posterior of each component, the

Wasserstein distance will scale like d1/2.

There are a series of results for both ULA and SGLD in the literature (Dalalyan 2017,

Dalalyan & Karagulyan 2019, Durmus & Moulines 2017, Chatterji et al. 2018, Brosse et al.
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2018). Most of this theory assumes strong-convexity of the log-target density (see Raginsky

et al. 2017, Majka et al. 2020, for similar theory under different assumptions), which means

that there exists strictly positive constants, 0 < m ≤M , such that for all θ, and θ′,

||∇U(θ)−∇U(θ′)||2 ≤M ||θ−θ′||2, and U(θ)−U(θ′)−∇U(θ′)>(θ−θ′) ≥ m

2
||θ−θ′||22,

(5)

where || · ||2 denotes the Euclidean norm. If U(θ) is twice continuously differentiable, these

conditions are equivalent to assuming upper and lower bounds on all possible directional

derivatives of U(θ). The first bound governs how much the drift of the Langevin diffusion

can change, and is important in the theory for specifying appropriate step-lengths, which

should be less than 1/M , to avoid instability of the Euler discretisation; it also ensures that

the target density is uni-modal. The second bound ensures that the drift of the Langevin

will push θ towards the centre of the distribution, an assumption which means that the

underlying Langevin diffusion will be geometrically ergodic, and consequently is key to

avoiding the accumulation of error within SGLD.

For simplicity, we will only informally present results from Dalalyan & Karagulyan

(2019), as these convey the main ideas in the literature. These show that, for h < 1/(M +

m), the Wasserstein-2 distance between π̃K(θ) and π(θ), denoted by W2(π̃K , π) can be

bounded as

W2(π̃K , π) ≤ (1−mh)KW2(π̃0, π) + C1(hd)1/2 + C2σ(hd)1/2, (6)

where m, C1 and C2 are constants, d is the dimension of θ, and σ2 is a bound on the variance

of the estimate for the gradient. Setting σ2 = 0 gives a Wasserstein bound for the ULA

approximation. The first term on the right-hand side measures the bias due to starting

the SGLD algorithm from a distribution that is not π, and is akin to the bias due to finite
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burn-in of the MCMC chain. Providing h is small enough, this will decay exponentially

with K. The other two terms are, respectively, the effects of the approximations from using

an Euler discretisation of the Langevin diffusion and an unbiased estimate of ∇U(θ).

A natural question is, what do we learn from results such as (6)? These results give

theoretical justification for using SGLD, and show we can sample from an arbitrarily good

approximation to our posterior distribution if we choose K large enough, and h small

enough. They have also been used to show the benefits of using control variates when

estimating the gradient, which results in a computational cost that is O(1), rather than

O(N), per effective sample size Baker et al. (2019a), Chatterji et al. (2018). Perhaps the

main benefit of results such as (6) is that they enable us to compare the properties of

the different variants of SGLD that we will introduce in Section 3, and in particular how

different algorithms scale with dimension, d (see Section 3 for details). However, they only

tell us how these hyper-parameters need to scale with different factors, (e.g., smoothness

and dimension), with no specific guidance on the constants in front of those factors.

Perhaps more importantly than having a quantitative measure of approximation error

is to have an idea as to the form of the error that the approximations in SGLD induce.

Results from Vollmer et al. (2016) and Brosse et al. (2018), either for specific examples or

for the limiting case of large N , give insights into this. For an appropriately implemented

SGLD algorithm, and for large data size N , these results show that the distribution we

sample from will asymptotically have the correct mode but will inflate the variance. We

discuss ways to alleviate this in the next section when we consider a specific example.
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2.5 A Gaussian Example

To gain insight into the properties of SGLD, it is helpful to consider a simple tractable

example where we sample from a Gaussian target. We will consider a 2-dimensional Gaus-

sian, with variance Σ and, without loss of generality, mean zero. The variance matrix can

be written as P>DP for some rotation matrix P and diagonal matrix D, whose entries

satisfy the condition σ2
1 ≥ σ2

2. For this model, the drift term of the Langevin diffusion is

∇U(θ) = −Σ−1θ = −P>D−1Pθ.

The kth iteration of the SGLD algorithm is

θk = θk−1 +
h

2
∇̂U(θk−1) +

√
hZ = θk−1 −

h

2
P>D−1Pθk−1 + hνk +

√
hZk, (7)

where Zk is a vector of two independent standard normal random variables and νk is the

error in our estimate of ∇U(θk−1). The entries of D−1 correspond to the constants that

appear in condition (5), with m = 1/σ2
1 and M = 1/σ2

2.

To simplify the exposition, it is helpful to study the SGLD algorithm for the transformed

state θ̃ = Pθ, for which we have

θ̃k = θ̃k−1−
h

2
D−1θ̃k−1+hPν+

√
hPZ =

 1− h/(2σ2
1) 0

0 1− h/(2σ2
2)

 θ̃k−1+hPνk+
√
hPZk.

As P is a rotation matrix, the variance of PZk is still the identity.

In this case, the SGLD update is a vector auto-regressive process. This process will

have a stationary distribution provided h < 4σ2
2 = 4/M , otherwise the process will have

trajectories that will go to infinity in at least one component. This links to the requirement

of a bound on the step size that is required in the theory for convex target distributions

described above.
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Now assume h < 2σ2
2, and write λj = h/(2σ2

j ) < 1. We have the following dynamics for

each component, j = 1, 2

θ̃
(j)

k = (1− λj)kθ̃
(j)

0 +
k∑
i=1

(1− λj)k−i
(
h(Pνi)

(j) +
√
h(PZi)

(j)
)
, (8)

where θ̃
(j)

k is the jth component of θ̃k, and similar notation is used for νi and Zi. From this,

we immediately see that SGLD forgets its initial condition exponentially quickly. However,

the rate of exponential decay is slower for the component with larger marginal variance,

σ2
1. Furthermore, as the size of h is constrained by the smaller marginal variance σ2

2, this

rate will necessarily be slow if σ2
2 << σ2

1; this suggests that there are benefits of re-scaling

the target so that marginal variances of different components are roughly equal.

Taking the expectation of (8) with respect to ν and Z, and letting k → ∞, results in

SGLD dynamics that have the correct limiting mean but with an inflated variance. This

is most easily seen if we assume that the variance of Pν is independent of position, V say.

In this case, the stationary distribution of SGLD will have variance

Varπ̃

[
θ̃
]

=

 (1− (1− λ1)2)−1 0

0 (1− (1− λ2)2)−1

 (h2V + hI),

where I is the identity matrix. The marginal variance for component j is thus

σ2
j

1 + hVjj

1− h/(4σ2
j )

= σ2
j (1 + hVjj) +

h

4
+O(h2).

The inflation in variance comes both from the noise in the estimate of ∇U(θ), which is

the hVjj factor, and the Euler approximation, through the additive constant, h/4. For

more general target distributions, the mean of the stationary distribution of SGLD will not

necessarily be correct, but we would expect the mean to be more accurate than the variance,
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with the variance of SGLD being greater than that of the true target. The above analysis

further suggests that, for targets that are close to Gaussian, it may be possible to perform

a better correction to compensate for the inflation of the variance. Vollmer et al. (2016)

suggest reducing the driving Brownian noise (see also Chen et al. 2014). That is, we replace

Zk by Gaussian random variables with a covariance matrix so that the covariance matrix

of hνk +
√
hZ is the identity. If the variance of νk is known, then Vollmer et al. (2016)

show that this can substantially improve the accuracy of SGLD. In practice, however, it is

necessary to estimate this variance and it is an open problem as to how one can estimate

this accurately enough to make the idea work well in practice (Vollmer et al. 2016). As

suggested by a reviewer, an alternative is to estimate the rough size of the variance of νk

and use this to guide the choice of h so that the impact of the stochastic gradient would

be below some acceptable tolerance.

3 A General Framework for Stochastic Gradient MCMC

So far we have considered SGMCMC based on approximating the dynamics of the Langevin

diffusion. However, we can write down other diffusion processes that have π as their sta-

tionary distribution, and use similar ideas to approximately simulate from one of these. A

general approach to doing this was suggested by Ma et al. (2015) and leads to a much wider

class of SGMCMC algorithms, including stochastic gradient versions of popular MCMC al-

gorithms such as Hamiltonian Monte Carlo (Neal 2011, Carpenter et al. 2017).

The class of diffusions we will consider may include a set of auxiliary variables. As such,

we let ζ be a general state, with the assumption that this state contains θ. For example,

for the Langevin diffusion ζ = θ; but we could mimic Hamiltonian MCMC and introduce
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an auxiliary velocity component, ρ, in which case ζ = (θ,ρ). We start by considering a

general stochastic differential equation for ζ,

dζ =
1

2
b(ζ)dt+

√
D(ζ)dBt, (9)

where the vector b(ζ) is the drift component, D(ζ) is a positive semi-definite diffusion

matrix, and
√

D(ζ) is any square-root of D(ζ). Ma et al. (2015) show how to choose b(ζ)

and D(ζ) such that (9) has a specific stationary distribution. We define the function H(ζ)

such that exp{−H(ζ)} is intergrable and let Q(ζ) be a skew-symmetric curl matrix, so

Q> = −Q. Then the choice

b(ζ) = − [D(ζ) + Q(ζ)]∇H(ζ) + Γ(ζ) and Γi(ζ) =
d∑
j=1

∂

∂ζj
(Dij(ζ) + Qij(ζ)), (10)

ensures that the stationary distribution of (9) is proportional to exp{−H(ζ)}. Ma et al.

(2015) show that any diffusion process with a stationary distribution proportional to

exp{−H(ζ)} is of the form (9) with the drift and diffusion matrix satisfying (10). To

approximately sample from our diffusion, we can employ the same discretisation of the

continuous-time dynamics that we used for the Langevin diffusion (3),

ζt+h ≈ ζt −
h

2
[(D(ζt) + Q(ζt))∇H(ζt) + Γ(ζt)] +

√
hZ, t ≥ 0, (11)

where Z ∼ N(0,D(ζt)). The diffusions we are interested in have a stationary distribution

where the θ-marginal distribution is π. If ζ = θ then this requires H(ζ) = U(θ). If,

however, ζ also includes some auxiliary variables, say ρ, then this is most easily satisfied

by setting H(ζ) = U(θ) + K(ρ) for some suitable function K(ρ). This choice leads to a

stationary distribution under which θ and ρ are independent.

We can derive a general class of SGMCMC algorithms, where we simply replace the

gradient estimate ∇H(ζt) with an unbiased estimate ∇̂H(ζt), based on data subsampling.
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Ma et al. (2015) suggest that one should also correct for the variance of the estimate of the

gradient, as illustrated in the example from Section 2.5, to avoid the inflation of variance

in the approximate target distribution. If the variance of our estimator ∇̂H(ζt) is V(θt),

then this inflates the conditional variance of ζt+h given ζt in (11) by h2B(ζt) where

B(ζt) =
1

4
(D(ζt) + Q(ζt))V(θt)(D(ζt) + Q(ζt))

>.

Given an estimate B̂(ζt), we can correct for the inflated variance by simulating Z ∼

N(0,D(ζt)−hB̂(ζt)). Obviously, this requires that D(ζt)−hB̂(ζt) is positive semi-definite.

In many cases this can be enforced if h is small enough. If this is not possible, then that

suggests the resulting SGMCMC algorithm will be unstable; see below for an example.

The diffusion D(ζ) and curl Q(ζ) matrices can take various forms and the choice of

matrices will affect the rate of convergence of the MCMC samplers. The diffusion matrix

D(ζ) controls the level of noise introduced into the dynamics of (11). When ||D(ζ)|| is large,

there is a greater chance that the sampler can escape local modes of the target, and setting

||D(ζ)|| to be small increases the accuracy of the sampler within a local mode. Between

modes of the target, the remainder of the parameter space is represented by regions of low

probability mass where we would want our MCMC sampler to quickly pass through. The

curl matrix Q(ζ) controls the sampler’s non-reversible dynamics which allows the sampler

to quickly traverse low-probability regions, this is particularly efficient when the curl matrix

adapts to the geometry of the target.

In Table 1 we define H(ζ), D(ζ) and Q(ζ) for several gradient-based MCMC algo-

rithms. The two most common are SGLD, which we introduced in the previous section,

and SGHMC (Chen et al. 2014). This latter process introduces a velocity component that

can help improve mixing, as is seen in more standard Hamiltonian MCMC methods. The

closest link with the dynamics used in Hamiltonian MCMC is when D(ζ) is set to be the
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zero-matrix. However (Chen et al. 2014) show that this leads to an unstable process that

diverges as a result of the accumulation of noise in the estimate of the gradient; a property

linked to the fact that D(ζ) − hB̂(ζ) is not positive semi-definite for any h. The choice

of D(ζ) given in Table 1 avoids this problem, with the resulting stochastic differential

equation being the so-called under-damped Langevin diffusion.

As discussed in Section 2.5 with regard to SGLD, re-parameterising the target distri-

bution so that the components of θ are roughly uncorrelated and have similar marginal

variances, can improve mixing. An extension of this idea is to adapt the dynamics locally to

the curvature of the target distribution – and this is the idea behind Riemannian versions of

SGLD and SGHMC, denoted by SGRLD (Patterson & Teh 2013) and SGRHMC (Ma et al.

2015) in Table 1. The challenge with implementing either of these algorithms is obtaining

an accurate, yet easy to compute, estimate of the local curvature. A simpler approach is the

stochastic gradient Nose-Hoover thermostat (SGNHT) (Ding et al. 2014) algorithm, which

introduces state dependence into the curl matrix. This can be viewed as an extension of

SGHMC which adaptively controls for the excess noise in the gradients. Naturally, there

are many other algorithms that could be derived from this general framework.

[Table 1 about here.]

3.1 Theory for SGHMC

It is natural to ask which of the algorithms presented in Table 1 is most accurate. We

will study this question empirically in Section 6, but here we briefly present some the-

oretical results that compare SGHMC with SGLD for smooth and strongly log-concave

target densities. These results are for bounds on the Wasserstein distance between the

target distribution and the distribution of the SGMCMC algorithm samples at iteration

23



k, for an optimally chosen step size (Cheng et al. 2018). The simplest comparison of the

efficiencies of the two algorithms is for the case where the gradients are estimated without

error. For a given level of accuracy, ε, measured in terms of Wasserstein distance, SGLD

requires O(d2/ε2) iterations, whereas SGHMC requires O(d/ε) iterations. This suggests

that SGHMC is to be preferred, and the benefits of SGHMC will be greater in higher

dimensions. Similar results are obtained when using noisy estimates of the gradients, pro-

viding the variance of the estimates is small enough. However, Cheng et al. (2018) show

that there is a phase-transition in the behaviour of SGHMC as the variance of the gradient

estimates increases: if it is too large, the SGHMC behaves like SGLD and needs a similar

order of iterations to achieve a given level of accuracy.

4 Diagnostic Tests

When using an MCMC algorithm the practitioner wants to know if the algorithm has con-

verged to the stationary distribution, and how to tune the MCMC algorithm to maximise

the efficiency of the sampler. In the case of SGMCMC, the target distribution is not the

stationary distribution and therefore our posterior samples represent an asymptotically bi-

ased approximation of the posterior. Standard MCMC diagnostic tests (Brooks & Gelman

1998) do not account for this bias and therefore are not appropriate for either assessing

convergence or tuning SGMCMC algorithms. The design of appropriate diagnostic tests

for SGMCMC is a relatively new area of research, and currently methods based on Stein’s

discrepancy (Gorham & Mackey 2015, Gorham et al. 2019, Gorham & Mackey 2017) are the

most popular approach. These methods provide a general way of assessing how accurately

a sample of values approximate a distribution.

24



Assume we have a sample, say from an SGMCMC algorithm, (θ1,θ2, . . . ,θK) ∈ Rd, and

denote the empirical distribution that this sample defines as π̃. We can define a measure of

how well this sample approximates our target distribution of interest, π, by comparing how

close expectations under π̃ are to the expectations under π. If they are close for a broad

class of functions, H, then this suggests the approximation error is small. This motivates

the following measure of discrepancy,

dH(π̃, π) := sup
}∈H
|Eπ̃ [}(θ)]− Eπ [}(θ)] |, (12)

where Eπ̃ [}(θ)] = 1
K

∑K
k=1 }(θk) is an approximation of Eπ [}(θ)]. For appropriate choices

of H, it can be shown that if we denote the approximation from a sample of size K by π̃K ,

then dH(π̃K , π)→ 0 if and only if π̃K converges weakly to π. Moreover, even if this is not

the case, if functions of interest are in H then a small value of dH(π̃, π) would mean that

we can accurately estimate posterior expectations of functions of interest.

Unfortunately, (12) is in general intractable as it depends on the unknown Eπ [}(θ)].

The Stein discrepancy approach circumvents this problem by using a class, H, that only

contains functions whose expectation under π are zero. We can construct such functions

from stochastic processes, such as the Langevin diffusion, whose invariant distribution is

π. If the initial distribution of such a process is chosen to be π then the expectation of the

state of the process will be constant over time. Moreover, the rate of change of expectations

can be written in terms of the expectation of the generator of the process applied to the

function: which means that functions that can be written in terms of the generator applied

to a function will have expectation zero under π.

In our experience, the computationally most feasible approach, and easiest to imple-

ment, is the kernel Stein set approach of Gorham & Mackey (2017), which enables the

discrepancy to be calculated as a sum of some kernel evaluated at all pairs of points in the
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sample. As with all methods based on Stein discrepancies, it also requires the gradient of

the target at each sample point – though we can use unbiased noisy estimates for these

(Gorham & Mackey 2017). The kernel Stein discrepancy is defined as

KSD(π̃K , π) :=
d∑
j=1

√√√√ K∑
k,k′=1

k0j (θk,θk′)

K2
, (13)

where the Stein kernel for j ∈ {1, . . . , d} is given by

k0j (θ,θ
′) =(∇θ(j)U(θ)∇θ′(j)U(θ′))k(θ,θ′) +∇θ(j)U(θ)∇θ′(j)k(θ,θ′)

+∇θ′(j)U(θ′)∇θ(j)k(θ,θ′) +∇θ(j)∇θ′(j)k(θ,θ′).

The kernel k has to be carefully chosen, particularly when d ≥ 3, as some kernel choices,

e.g. Gaussian and Matern, result in a kernel Stein discrepancy which does not detect non-

convergence to the target distribution. Gorham & Mackey (2017) recommend using the

inverse multi-quadratic kernel, k(θ,θ′) = (c2 + ||θ − θ′||22)β,which they prove detects non-

convergence when c > 0 and β ∈ (−1, 0). A drawback of most Stein discrepancy measures,

including the kernel Stein method, is that the computational cost scales quadratically with

the sample size. This is more computationally expensive than standard MCMC metrics

(e.g. effective sample size), however, the computation can be easily parallelised to give

faster calculations.

We illustrate the kernel Stein discrepancy on the Gaussian target introduced in Section

2.5, where we choose diagonal and rotation matrices

D =

 2 0

0 1

 and P =

 cos π
4

sin π
4

− sin π
4

cos π
4

 .

[Figure 1 about here.]
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We iterate the Langevin dynamics (7) for 10,000 iterations, starting from θ = (0, 0)

and with noisy gradients simulated as the true gradient plus noise, νk ∼ N(0, 0.01). We

test the efficiency of the Langevin algorithm in terms of the step size parameter h and use

the kernel Stein discrepancy metric (13) to select a step size parameter which produces

samples that most closely approximate the target distribution. We consider a range of

step size parameters h = {10−3, 10−2, 10−1, 100} which satisfy the requirement that h <

4σ2
2 to prevent divergent chains. In Figure 1, we plot the samples generated from the

Langevin algorithm for each of the step size parameters. We also calculate the kernel Stein

discrepancy (13) and effective sample size for each Markov chain. Visually, it is clear from

Figure 1 that h = 0.1 produces samples which most closely represent the target distribution.

A large value for h leads to over-dispersed samples and a small h prevents the sampler from

exploring the whole target space within the fixed number of iterations. Setting h = 0.1 also

gives the lowest kernel Stein discrepancy, whereas h = 1 maximises the effective sample

size. This supports the view that effective sample size and other standard MCMC metrics,

which do not account for sample bias, are not appropriate diagnostic tools for SGMCMC.

5 Extending the SGMCMC framework

Under the general SGMCMC framework outlined in Section 3, it is possible to extend

the SGLD algorithm beyond Langevin dynamics and consider a larger class of MCMC

algorithms, which aim to improve the mixing of the Markov chain. In this section, we will

focus on ways to extend the applicability of SGMCMC algorithms to a wider class of models.

Given our choice of target (1), we have made two key assumptions, i) the parameters exist

in θ ∈ Rd and ii) the potential function U(θ) is a summation over independent terms. The
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first assumption implies that SGMCMC cannot be used to estimate θ on a constrained

space (e.g. θ ∈ [0, 1]) and the second assumption that our data y1, . . . , yN are independent

or have only certain-types of dependence structure, which means that SGMCMC cannot

be applied to many time series or spatial models. We will give a short overview of some of

the current research in this area.

SGMCMC sampling from constrained spaces

Many models contain parameters which are constrained, for example, the variance parame-

ter τ 2 in a Gaussian distribution (τ ∈ R+), or the success probability p in a Bernoulli model

(p ∈ [0, 1]). Simulating these constrained parameters using the Langevin dynamics (3) will

produce samples which violate their constraints, for example, if τ 2t = θt ' 0, then with

high probability, τ 2t+1 < 0. One solution would be to let h→ 0 when τ 2 → 0, however, this

would lead to poor mixing of the Markov chain near the boundary of the constrained space.

A natural solution to this problem is to transform the Langevin dynamics in such a way

that sampling can take place on the unconstrained space, but care is needed as the choice

of transformation can impact the mixing of the process near the boundary. Alternatively

we can project the Langevin dynamics into a constrained space (Brosse et al. 2017, Bubeck

et al. 2018), however, these approaches lead to poorer non-asymptotic convergence rates

than in the unconstrained setting. Recently, a mirrored Langevin algorithm (Hsieh et al.

2018) has been proposed, which builds on the mirrored descent algorithm (Beck & Teboulle

2003), to transform the problem of constrained sampling to an unconstrained space via a

mirror mapping. Unlike previous works, the mirrored Langevin algorithm has convergence

rates comparable with unconstrained SGLD (Dalalyan & Karagulyan 2019).

The structure of some models naturally leads to bespoke sampling strategies. A popu-
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lar model in the machine learning literature is the latent Dirichlet allocation (LDA) model

(Blei et al. 2003), where the model parameters are constrained to the probability simplex,

meaning θ(j) ≥ 0, j = 1, . . . , d and
∑d

j=1 θ
(j) = 1. Patterson & Teh (2013) proposed the

first SGLD algorithm for sampling from the probability simplex. Their algorithm, stochas-

tic gradient Riemannian Langevin dynamics (see Table 1) allows for several transformation

schemes which transform θ to Rd. However, this approach can result in asymptotic biases

which dominate in the boundary regions of the constrained space. An alternative approach

is to use the fact that the posterior for the LDA can be written as a transformation of in-

dependent gamma random variables. Using an alternative stochastic process instead of the

Langevin diffusion, in this case the Cox-Ingersoll-Ross (CIR) process, we take advantage

of the fact that its invariant distribution is a gamma distribution. We can apply this in

the large data setting by using data subsampling on the CIR process rather than on the

Langevin diffusion (Baker et al. 2018).

SGMCMC sampling with dependent data

Key to developing SGMCMC algorithms is the ability to generate unbiased estimates of

∇U(θ) using data subsampling, as in (4). Under the assumption that data yi, i = 1, . . . , N

are independent, the potential function U(θ) =
∑N

i=1 Ui(θ), and its derivative, are a sum of

independent terms (see Section 2.1) and therefore, a random subsample of these terms leads

to an unbiased estimate of the potential function, and its derivative. For some dependence

structures, we can still write the potential as a sum of terms each of which has an O(1) cost

to evaluate. However for many models used for network data, time series and spatial data,

using the same random subsampling approach will result in biased estimates for U(θ) and

∇U(θ). To the best of our knowledge, the challenge of subsampling spatial data, such that
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both short and long term dependency is captured, has not been addressed in the SGMCMC

setting. For network data, an SGMCMC algorithm has been developed (Li et al. 2016)

for the mixed-member stochastic block model, which uses both the block structure of the

model, and stratified subsampling techniques, to give unbiased gradient estimates.

In the time series setting, hidden Markov models are challenging for SGMCMC as the

temporal dependence in the latent process precludes simple random data subsampling.

However, such dependencies are often short range and so data points yi and yj will be

approximately independent if they are sufficiently distant (i.e. j >> i). These properties

were used by Ma et al. (2017), who proposed using SGMCMC with gradients estimated

using non-overlapping, subsequences of length 2s + 1, yi,s = {yi−s, . . . , yi, . . . , yi+s}. In

order to ensure that the subsequences are independent, Ma et al. (2017) extend the length

of each subsequence by adding a buffer of size B, to either side, i.e. {yLB,yi,s,yRB}, where

yLB = {yi−s−B, . . . , yi−s−1} and yRB = {yi+s+1, . . . , yi+s+B}. Non-overlapping buffered

subsequences are sampled, but only yi,s data are used to estimate ∇̂U(θ). These methods

introduce a bias, but one that can be controlled, with the bias often decreasing exponentially

with the buffer size. This approach has also been applied to linear (Aicher, Ma, Foti & Fox

2019) and nonlinear (Aicher, Putcha, Nemeth, Fearnhead & Fox 2019) state-space models,

where in the case of log-concave models, the bias decays geometrically with buffer size.

6 Simulation Study

We compare empirically the accuracy and efficiency of the SGMCMC algorithms described

in Section 3. We consider three popular models. Firstly, a logistic regression model for

binary data classification tested on simulated data. Secondly, a Bayesian neural network
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(Neal 2012) applied to image classification on a popular data set from the machine learn-

ing literature. Finally, we consider the Bayesian probabilistic matrix factorisation model

(Salakhutdinov & Mnih 2008) for predicting movie recommendations based on the Movie-

Lens data set. We compare the various SGMCMC algorithms against the STAN software

(Carpenter et al. 2017), which by default implements the NUTS algorithm (Hoffman &

Gelman 2014) as a method for automatically tuning the Hamiltonian MCMC sampler. We

treat the STAN output as the ground truth posterior distribution and assess the accu-

racy and computational advantages of SGMCMC against this benchmark. Additionally,

using STAN, we can sample from a variational approximation to the posterior using the

automatic differentiation variational inference (ADVI) algorithm (Kucukelbir et al. 2015),

which selects an appropriate variational family and optimises the corresponding variational

objective. All of the SGMCMC algorithms are implemented using the R package sgmcmc

(Baker et al. 2019b) with supporting code available online2.

6.1 Logistic regression model

Consider a binary regression model where y = {yi}Ni=1 is a vector of N binary responses

and X is a N ×d matrix of covariates. If θ is a d−dimensional vector of model parameters,

then the likelihood function for the logistic regression model is,

p(y,X | θ) =
N∏
i=1

[
1

1 + exp(−θ>xi)

]yi [
1− 1

1 + exp(−θ>xi)

]1−yi
where xi is a d−dimensional vector for the ith observation. The prior distribution for θ is a

zero-mean Gaussian with covariance matrix Σθ = 10Id, where Id is a d×d identity matrix.

We can verify that the model satisfies the strong-convexity assumptions from Section 2.4,

2https://github.com/***
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where m = λ−1max(Σθ) and M = 1
4

∑N
i=1 x>i xi + λ−1min(Σθ), and λmin(Σθ) and λmax(Σθ) are

the minimum and maximum eigenvalues of Σθ.

We compare the various SGMCMC algorithms where we vary the dimension of θ, d =

{10, 50, 100}. We simulate N = 105 data points and fix the subsample size n = 0.01N for

all test cases. We simulated data under the model described above, with xi ∼ N(0,Σx)

and simulated a matrix with Σ(i,j)
x = Unif[−ρ, ρ]|i−j| and ρ = 0.4. We tune the step size h

for each algorithm using the kernel Stein discrepancy metric outlined in Section 4 and set

the number of leapfrog steps in SGHMC to five. We initialise each sampler by randomly

sampling the first iteration θ0 ∼ N(0, 1).

For our simulations, we ran STAN for 2, 000 iterations and discarded the first 1, 000

iterations as burn-in, as these iterations are part of the algorithms tuning phase. For the

SGMCMC algorithms, we ran each algorithm for 20, 000 iterations except in the case of

the control variate implementations, where we ran the SGMCMC algorithm for 10, 000

iterations after iterating a stochastic gradient descent algorithm for 10, 000 iterations to

find the posterior mode θ̂. Combining the optimisation and sampling steps of the control

variate method results in an equal number of iterations for all SGMCMC algorithms. Figure

2 gives the trace plots for MCMC output of each algorithm for the case where d = 10 and

N = 105. Each of the SGMCMC algorithms is initialised with the same θ0 and we see

that some components of θ, where the posterior is not concentrated around θ0, take several

thousand iterations to converge. Most notably SGLD, ULA, SGHMC and SGNHT. Of these

algorithms, SGHMC and SGNHT converge faster than SGLD, which reflects the theoretical

results discussed in Section 3.1, but these algorithms also have a higher computational cost

due to the leap frog steps (see Table 2 for computational timings). The ULA algorithm,

which uses exact gradients, also converges faster than SGLD in terms of the number of
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iterations, but is less efficient in terms of overall computational time. The control variate

SGMCMC algorithms, SGLD-CV, SGHMC-CV and SGNHT-CV are all more efficient than

their non-control variate counterparts in terms of the number of iterations required for

convergence. The control variate algorithms have the advantage that their sampling phase

is initialised at a θ0 that is close to the posterior mode. In essence, the optimisation phase

required to find the control variate point θ̂ replaces the burn-in phase of the Markov chain

for the SGMCMC algorithm.

[Figure 2 about here.]

The results from Figure 2 are shown for a fixed number of iterations, however, the

computational cost per iteration varies between the algorithms. In Figure 3 we run STAN,

SGLD, SGLD-CV and ULA for 10 minutes, treating the first minute as the burn-in phase

and a longer 1-hour run of STAN as the truth. We can see in this experiment that over short

time-periods SGLD performs well, whereas STAN underestimates the posterior variance due

to fewer iterations, which results in less time for the chain to mix. SGLD and SGLD-CV

produce good estimates of the mean, but as discussed in Section 2.5, SGLD and SGLD-CV

over-estimate the variance. Using exact gradients with ULA performs poorly as it does not

have the same gains in computational efficiency of SGLD and still has an approximation

error.

[Figure 3 about here.]

As well as the visual comparisons (Figure 2), we can compare the algorithms using

diagnostic metrics. We use the kernel Stein discrepancy as one of the metrics to assess the

quality of the posterior approximation for each of the algorithms. Additionally, the log-loss
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is also a popular metric for measuring the predictive accuracy of a classifier on a held-out

test data set T∗. In the case of predicted binary responses, the log-loss is

l(θ, T∗) = − 1

|T∗|
∑

(y∗,x∗)∈T∗

y∗ log p(x∗,θ) + (1− y∗) log(1− p(x∗,θ)),

where p(x∗,θ) = (1 + exp(−θ>x∗))
−1 is the probability that y∗ = 1 given covariate x∗.

Table 2 gives the diagnostic metrics for each algorithm, where the log-loss and kernel

Stein discrepancy metrics are calculated on the final 1, 000 posterior samples from each algo-

rithm. We also include a variational Bayes approximation using STAN’s ADVI algorithm.

The variational Bayes approaches are generally faster than MCMC as they use optimisation

techniques rather than sampling to approximate the posterior. These variational techniques

work particularly well when the posterior is close to its approximating family of distribu-

tions, which are usually assumed to be Gaussian. The most notable difference between the

algorithms is the computational time. Compared to STAN, all SGMCMC algorithms, and

ADVI, are between 10 to 100 times faster when d = 100. As expected, given that STAN

produces exact posterior samples, it has the lowest log-loss and kernel Stein discrepancy

results. However, these results are only slightly better than the SGMCMC results and the

computational cost of STAN is significantly higher. All of the SGMCMC results are simi-

lar, showing that this class of algorithms can perform well, with significant computational

savings, if they are well-tuned. Similarly, we note that the variational approximations pro-

duce accuracy results similar to SGMCMC and are significantly computationally cheaper

than STAN. One of the advantages of STAN, is that the NUTS algorithm (Hoffman &

Gelman 2014) allows the HMC sampler to be automatically tuned, whereas the SGMCMC

algorithms have to be tuned using a pilot run over a grid of step size values. As the step

size h is a scalar value, the SGMCMC samplers give an equal step size to each dimension.
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As discussed in Section 2.5, a scalar step size parameter will mean that the SGMCMC

algorithms are constrained by the θ component with the smallest variance. This could be

improved if either the gradients were pre-conditioned (Ahn et al. 2012), or the geometry of

the posterior space were accounted for in the sampler (e.g. SGRHMC), which would result

in different step sizes for each component of θ, thus improving the overall efficiency of the

sampler.

[Table 2 about here.]

6.2 Bayesian neural network

We consider the problem of multi-class classification on the popular MNIST data set (LeCun

et al. 2010). The MNIST data set consists of a collection of images of handwritten digits

from zero to nine, where each image is represented as 28× 28 pixels (a sample of images is

shown in Figure 4). We model the data using a two layer Bayesian neural network with 100

hidden variables (using the same setup as Chen et al. (2014)). We fit the neural network

to a training data set containing 55, 000 images and the goal is to classify new images as

belonging to one of the ten categories. The test set contains 10, 000 handwritten images,

with corresponding labels.

[Figure 4 about here.]

Let yi be the image label taking values yi ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and xi is the vector

of pixels which has been flattened from a 28 × 28 image to a one-dimensional vector of

length 784. If there are N training images, then X is a N × 784 matrix representing the

full data set of pixels. We model the data as categorical variables with the probability mass
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function,

p(yi = k |θ,xi) = βk(θ,xi), (14)

where βk(θ,xi) is the kth element of β(θ,xi) = σ
(
σ
(
x>i B + b

)
A+ a

)
and σ(xi) =

exp (xi)/(
∑N

j=1 exp (xi)) is the softmax function, a generalisation of the logistic link func-

tion. The parameters θ = (A,B, a, b) will be estimated using SGMCMC, where A, B, a

and b are matrices of dimension: 100× 10, 784× 100, 1× 10 and 1× 100, respectively. We

set normal priors for each element of these parameters

Akl|λA ∼ N(0, λ−1A ), Bjk|λB ∼ N(0, λ−1B ), al|λa ∼ N(0, λ−1a ), bk|λb ∼ N(0, λ−1b ),

j = 1, . . . , 784; k = 1, . . . , 100; l = 1, . . . , 10; where λA, λB, λa, λb ∼ Gamma(1, 1) are

hyperparameters.

Similar to the logistic regression example (see Section 6.1), we use the log-loss as a

test function. We need to update the definition of the log-loss function from a binary

classification problem to the multi-class setting. Given a test set T∗ of pairs (y∗,x∗), where

now y∗ can take values {0− 9}. The log-loss function in the multi-class setting is now

l(θ, T∗) = − 1

|T∗|
∑

(y∗,x∗)∈T∗

9∑
k=0

1y∗=k log βk(θ,x∗), (15)

where 1A is the indicator function, and βk(θ,x∗) is the kth element of β(θ,x∗).

[Figure 5 about here.]

As in Section 6.1, we compare the efficacy of the SGLD, SGHMC and SGNHT al-

gorithms, as well as their control variate counterparts. We ran each of the SGMCMC

algorithms for 104 iterations and calculated the log-loss (14) for each algorithm. The stan-

dard algorithms have 104 iterations of burn-in while the control variate algorithms have no
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burn-in, but 104 iterations in the initial optimisation step. Note that due to the trajectory

parameter L = 5 of SGHMC and SGHMC-CV, these algorithms will have approximately

five times greater computational cost. In order to balance the computational cost, we ran

these algorithms for 2,000 iterations in order to produce comparisons with approximately

equal computational time. The results are plotted in Figure 5. As with the logistic regres-

sion example, we note that there is some indication of improved predictive performance of

the control variate methods. Among the standard methods, SGHMC and SGNHT have the

best predictive performance, which is to be expected given the apparent trade-off between

accuracy and exploration.

6.3 Bayesian probabilistic matrix factorisation

Collaborative filtering is a technique used in recommendation systems to make predictions

about a user’s interests based on their tastes and preferences. We can represent these pref-

erences with a matrix where the (i, j)th entry is the score that user i gives to item j. This

matrix is naturally sparse as not all users provide scores for all items. We can model these

data using Bayesian probabilistic matrix factorisation (BPMF) (Salakhutdinov & Mnih

2008), where the preference matrix of user-item ratings is factorised into lower-dimensional

matrices representing the users’ and items’ latent features. A popular application of BPMF

is movie recommendations, where the preference matrix contains the ratings for each movie

given by each user. This model has been successfully applied to the Netflix data set to

extract the latent user-item features from the historical data in order to make movie recom-

mendations for a held-out test set of users. In this example, we will consider the MovieLens

data set 3 which contains 100, 000 ratings (taking values {1, 2, 3, 4, 5}) of 1, 682 movies by

3https://grouplens.org/data sets/movielens/100k/
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943 users, where each user has provided at least 20 ratings. The data are already split into

5 training and test sets (80%/20% split) for a 5−fold cross-validation experiment.

Let R ∈ RN×M be a matrix of observed ratings for N users and M movies where Rij

is the rating user i gave to movie j. We introduce matrices U and V for users and movies

respectively, where Ui ∈ Rd and Vj ∈ Rd are d−dimensional latent feature vectors for user

i and movie j. The likelihood for the rating matrix is

p(R|U,V, α) =
N∏
i=1

M∏
j=1

[
N(Rij|U>i Vj, α

−1)
]Iij

where Iij is an indicator variable which equals 1 if user i gave a rating for movie j. The

prior distributions for the users and movies are

p(U|µU,ΛU) =
N∏
i=1

N(Ui|µU,Λ
−1
U ) and p(V|µV,ΛV) =

M∏
j=1

N(Vj|µV,Λ
−1
V ),

with prior distributions on the hyperparameters (where W = U or V) given by,

µW ∼ N(µW|µ0,ΛW) and ΛW ∼ Gamma(a0, b0).

The parameters of interest in our model are then θ = (U, µU,ΛU,V, µV,ΛV) and the

hyperparameters for the experiments are τ = (α, µ0, a0, b0) = (3, 0, 1, 5). We are free to

choose the size of the latent dimension and for these experiments we set d = 20.

The predictive distribution for an unknown rating R∗ij given to movie j by user i, is

found by marginalising over the latent feature parameters

p(R∗ij|R, τ ) =

∫
p(R∗ij|Ui,Vj, α)π(θ|R, τ )dθ.
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We can approximate the predictive density using Monte Carlo integration, where the pos-

terior samples, conditional on the training data, are generated using the SGMCMC algo-

rithms. The held-out test data can be used to assess the predictive accuracy of each of

the SGMCMC algorithms, where we use the root mean square error (RMSE) between the

predicted and actual rating as an accuracy metric.

[Figure 6 about here.]

We ran each of the SGMCMC algorithms for 105 iterations, where for SGLD-CV and

SGHMC-CV we applied a stochastic gradient descent algorithm for 50, 000 iterations to

find the posterior mode and used this as the fixed point for the control variate, as well as

initialising these SGMCMC samplers from the control variate point (i.e. θ0 = θ̂). Given

the size of the parameter space, we increase the subsample size to n = 0.1N per iteration

and tune the step size parameter for each SGMCMC algorithm using diagnostic tests (see

Section 4) on a pilot run with 104 iterations. As a baseline to assess the accuracy of the

SGMCMC algorithms we applied the NUTS sampler from the STAN software to the full

data set and ran this for 104 iterations, discarding the first half as burn-in. We also tested

a fast variational approximation using STAN’s ADVI algorithm. Figure 6 gives the RMSE

for STAN, ADVI, SGLD and SGHMC along with their control variate versions. The re-

sults show that SGHMC produces a lower RMSE than SGLD on the test data with equally

improved results for their control variate implementations. ADVI, SGLD and SGHMC

quickly converge to a stable RMSE after a few thousand iterations with SGLD-CV and

SGHMC-CV producing an overall lower RMSE immediately as they are both initialised

from the posterior mode, which removes the burn-in phase. Most notable from these re-

sults is that all of the SGMCMC algorithms, and ADVI, outperform the STAN baseline
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RMSE. The poorer performance of STAN is attributable to running the algorithm for fewer

iterations than the SGMCMC algorithms which could mean that the MCMC sampler has

not converged. Running STAN for 10% of the iterations of the SGMCMC algorithms took

3.5 days, whereas SGLD, SGLD-CV, SGHMC and SGHMC-CV took 3.1, 1.9, 16.4 and

14.8 hours, respectively. The ADVI algorithm has a similar computational time to the

SGMCMC algorithms, but as it is an optimisation rather than sampling routine, the algo-

rithm stops after it has converged, which in this example occurs after approximately 1,000

iterations. Overall, while SGMCMC algorithms produce biased posterior approximations

compared to exact MCMC algorithms, such as STAN’s NUTS sampler, they can produce

accurate estimates of quantities of interest at significantly reduced computational cost.

7 Discussion

In this paper we have provided a review of the growing literature on SGMCMC algorithms.

These algorithms utilise data subsampling to significantly reduce the computational cost

of MCMC. As shown in this paper, these algorithms are theoretically well-understood and

provide parameter inference at levels of accuracy that are comparable to traditional MCMC

algorithms. SGMCMC is still a relatively new class of Monte Carlo algorithms compared

to traditional MCMC methods and there remain many open problems and opportunities

for further research in this area.

Some key areas for future development in SGMCMC include:

• New algorithms - as discussed in Section 3.1, SGMCMC represents a general class

of scalable MCMC algorithms with many popular algorithms given as special cases,

therefore it is possible to derive new algorithms from this general setting which may
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be more applicable for certain types of target distribution.

• General theoretical results - most of the current theoretical results which bound the

error of SGMCMC algorithms assume that the target distribution is log-concave.

Relaxing this assumption is non-trivial and may need completely different arguments

in order to show similar non-asymptotic error bounds for a broader class of models.

• Tuning techniques - as outlined in Section 4, the efficacy of SGMCMC is dependent

on how well the step size parameter is tuned. Standard MCMC tuning rules, such as

those based on acceptance rates, are not applicable and new techniques, such as the

Stein discrepancy metrics, can be computationally expensive to apply. Developing

robust tuning rules, which can be applied in an automated fashion, would make it

easier for non-experts to use SGMCMC methods in the same way that adaptive HMC

has been applied in the STAN software.

A major success of traditional MCMC algorithms, and their broad appeal in a range of

application areas, is partly a result of freely available software, such as WinBUGS (Lunn

et al. 2000), JAGS (Plummer 2003), NIMBLE (de Valpine et al. 2017) and STAN (Carpen-

ter et al. 2017). Open-source MCMC software, which may utilise specials features of the

target distribution, or provide automatic techniques to adapt the tuning parameters, make

MCMC methods more user-friendly to general practitioners. Similar levels of development

for SGMCMC, which provide automatic differentiation and adaptive step size parameter

tuning, would help lower the entry level for non-experts. Some recent developments in this

area include sgmcmc in R (Baker et al. 2019b) and Edward in Python (Tran et al. 2016),

but further development is required to fully utilise the general SGMCMC framework.
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Figure 1: Top: Samples generated from the Langevin dynamics (7) are plotted over the
bivariate Gaussian target. The samples are thinned to 1,000 for the ease of visualisation.
Bottom: The kernel Stein discrepancy (log10) and effective sample size are calculated for
each Markov chain with varying step size parameter h.
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Figure 2: Trace plots for the STAN output and each SGMCMC algorithm with d = 10 and
N = 105.
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Figure 3: The mean and variance of the first parameter calculated at each second over 600
seconds, where d = 10 and N = 105.

Figure 4: Sample of images from the MNIST data set taken from
https://en.wikipedia.org/wiki/MNIST database
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Figure 5: Log-loss calculated on a held-out test data set for each SGMCMC algorithm and
its control variate version.
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Figure 6: Root mean square error on the predictive performance of each SGMCMC algo-
rithm averaged over five cross-validation experiments.
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Table 1: A list of popular SGMCMC algorithms highlighting how they fit within the general
stochastic differential equation framework (9)-(10). Most of the terms are defined in the
text, except: C � hV(θ), which is a positive semi-definite matrix; G(θ) is the Fisher
information metric; A is a tuning parameter for SGNHT.
Algorithm ζ H(ζ) D(ζ) Q(ζ)

SGLD θ U(θ) I 0
SGRLD θ U(θ) G(θ)−1 0

SGHMC (θ,ρ) U(θ) + 1
2
ρ>ρ

(
0 0
0 C

) (
0 −I
I 0

)
SGRHMC (θ,ρ) U(θ) + 1

2
ρ>ρ

(
0 0
0 G(θ)−1

) (
0 −G(θ)−1/2

G(θ)−1/2 0

)
SGNHT (θ,ρ, η)

U(θ) + 1
2
ρ>ρ

+ 1
2d

(η − A)2

 0 0 0
0 A · I 0
0 0 0

  0 −I 0
I 0 ρ>/d
0 −ρ>/d 0



Table 2: Diagnostic metrics for each SGMCMC algorithm, plus STAN, with varying di-
mension of θ where N = 105

d STAN SGLD SGLDCV SGHMC SGHMCCV SGNHT SGNHTCV ULA ADVI
10 21.64 1.74 1.46 11.24 6.53 2.56 1.54 8.05 0.76

Time (mins) 50 157.24 2.55 2.06 13.43 7.76 3.33 1.93 29.21 2.37
100 229.76 3.42 2.60 16.01 9.63 4.38 2.36 51.25 4.15
10 0.10 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Log-loss 50 0.04 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.07
100 0.04 0.06 0.05 0.06 0.05 0.05 0.05 0.06 0.07
10 6.12 6.26 6.24 6.18 6.25 6.21 6.23 6.19 6.97

KSD 50 9.24 11.73 11.05 11.59 11.11 11.00 11.33 11.30 11.66
100 11.62 15.70 15.53 15.64 15.07 15.14 15.07 15.97 13.61
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