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Abstract

The Dynamics of Saturn’s Ultraviolet Aurorae

Alexander Bader
Doctor of Philosophy

October 2020

Saturn’s aurorae are highly dynamic, controlled fromwithin Saturn’s magnetosphere and

by its interaction with the solar wind. This thesis investigates ultraviolet observations of

these auroral emissions and corresponding in situ measurements of fields and particles,

both mostly obtained by the Cassini mission, in order to separate different components

of the aurorae and determine their origin. The brightest emissions are found to be

generated by recurring magnetotail reconnection, the occurrence of which is controlled

by solar wind conditions and the phasing of Saturn’s planetary period oscillation systems

of rotating magnetic field perturbations and electric currents. The auroral signature

resembles a series of bright patches emerging near local midnight and subcorotating with

the planet’s rotation. Underlying these is a steady auroral band which may be driven by

flow shears in the outer magnetosphere and is modulated in intensity and location by

the rotating planetary period oscillation systems, accompanied by a dim equatorward

outer emission which is suggested to be related to wave scattering of electrons in the

inner ring current. Observations further show various small-scale transients such as

short-lived ∼ 1 h quasiperiodic flashes possibly indicative of magnetodisc reconnection

occurring predominantly near dusk, or numerous fine arcs only visible in the highest

resolution imagery obtained by Cassini which may be related to interchange injection

events. The relation between the source of auroral particles in the magnetosphere and

the auroral emissions they generate upon impacting the atmosphere was investigated,

with in situ measurements close above the aurorae revealing the presence of energetic

field-aligned ion beams and conics as well as complex wave-particle interactions which

may be responsible for their energization. While this thesis uncovers much unknown

detail on the workings of Saturn’s aurorae, many questions remain to be answered in

future research.
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Preface

Colourful aurorae appearing in the terrestrial skies have been known to humankind for a

long time, as evidenced by plenty of associated myths of a just as colourful nature. While

in modern times named after the Roman goddess of dawn, Aurora, many different

cultures have found a variety of names and explanations for this stunning phenomenon –

spanning from battles between dragons in East Asian lore to a fast running firefox whose

tail caused sparks lighting up the sky in Finnish mythology.

Onamore scientific note, descriptive accounts of aurorae are known since theGreek and

Roman natural philosophers. Suggested explanations of their origin however included a

fair amount of guesswork for many more centuries, until Scandinavian scientists slowly

began to unravel the relationship between this colourful light display and the Earth’s

magnetic field back in the 1800s. The foundation for our modern understanding of the

terrestrial auroras has subsequently been lain by Kristian Birkeland who formulated

the first theories of atmospheric electric currents exciting atmospheric particles to emit

visible light.

It was only recently that humankind’s technological advance provided us access to

space-based observations, with modern spacecraft orbiting our planet and others in

the solar system to return to us ever increasing amounts of data on small-scale and

large-scale conditions in various planetary magnetospheres. This led to the discovery of

aurorae on other planets, from the rather diffuse emissions on Mars and Venus to the

bright and dynamic light spectacles at Jupiter and Saturn.

Until the arrival of the Cassini spacecraft at Saturn, little was known of the planet’s

auroral displays. Observations were limited to some spectral measurements obtained

during the Voyager flybys and sparse imagery from the Hubble Space Telescope (HST),

making it challenging to gain significant insight into auroral dynamics or generation

mechanisms. This changed drastically once Cassini’s Ultraviolet Imaging Spectrograph

(UVIS) began to return entire sequences of crisp images from a variety of different

perspectives, allowing us to observe the temporal evolution of the auroral morphology

1
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while also investigating parameters of the magnetospheric environment related to its

generation.

This thesis summarizes a thorough investigation of this dataset of auroral imagery,

aided by other in situ and remote sensing measurements of the Cassini spacecraft and

auroral observations of the HST. After a short introduction to space plasmas and the

heliosphere in chapter 1, the current understanding of Saturn’s magnetosphere and

aurorae is presented in chapter 2. Chapter 3 gives an overview over the instrumentation

and methodology used in this thesis. Studies describing the insights gleaned from

the detailed scientific analyses performed over the course of this doctorate have been

published in different journals and can be found attached in chapters 4 to 9. The results

are summarized and discussed in the final chapter 10.

A. Bader performed all analysis work and drafted all publications contained in

this thesis under guidance of S. V. Badman and L.C. Ray. Co-contributors both from

Lancaster University and other research institutions assisted this work by providing

further expertise on specific topics surrounding giant planet magnetospheres and

aurorae, by sharing raw and processed data from the Cassini mission for use in the

analyses presented, andbyproviding invaluable knowledge about capabilities, limitations

and quirks of the instruments collecting these data to allow for their proper use and

interpretation.

This thesis is written in an alternative format. While most parts follow the traditional

style, chapters which would normally lay out the scientific analyses and discuss their

results have been replaced with peer-reviewed research articles which are included in

their originally published form. Each publication can as such be considered its own

well-contained science chapter, followed by the final chapter 10 in which the results are

combined and discussed.

2



Chapter1
Introduction

1.1 Space Plasmas

The Plasma State

Plasma is one of the four fundamental states of matter, the others being solid, liquid

and gas. In the plasma state, atoms are at least partly dissociated into their positive

and negative components, i.e., ions and electrons. As charge is conserved, plasma is

electrically “quasi-neutral” on the whole.

The interactions between single charged particles within an ideal plasma are deter-

mined by electromagnetic forces acting between them. The spatial scale over which

one ion can influence its surroundings, limited by collective shielding of its potential by

nearby electrons, is given by the Debye length,

λD �

√
ε0kBTe

ne e2 . (1.1)

Hereby ε0 is the permittivity of free space and kB is Boltzmann’s constant, while Te ,

ne and e are the electron temperature, density and charge, respectively. Shielding of a

plasma ion can only occur if the number of electrons within the Debye sphere, a sphere

of radius λD around the considered ion, is sufficiently large. This is given when

ND �
4π
3 neλ

3
D � 1, (1.2)

which is essentially the case for plasma at high temperatures and low densities and

certainly true for solar wind and magnetospheric plasmas considered in this thesis.

Plasma does not need to be fully ionized in order to behave like an ideal plasma,

but may also contain neutral particles. It is only required that the collision frequency

between charged and neutral constituents is lower than the plasma frequency,

ωpe �

√
ne e2

meε0
, (1.3)

3



1 Introduction

which describes the natural oscillation frequency of electrons of mass me about the ions

in a quasi-neutral plasma.

As plasma predominantly consists of charged particles and is assumed collisionless

due to the typically low number density, its behaviour is governed by electric and

magnetic fields, E and B. These are described by Maxwell’s equations,

∇ · E �
ρq

ε0
(1.4)

∇ · B � 0 (1.5)

∇ × E � −∂B
∂t

(1.6)

∇ × B � µ0

(
j + ε0

∂E
∂t

)
, (1.7)

with ρq as the charge density, µ0 as the permeability of free space and j as the current

density. Hereby equations (1.4) and (1.5) are Poisson’s law and Gauss’ law for magnetic

fields, (1.6) is the Maxwell-Faraday equation and (1.7) is the Ampère-Maxwell law.

Single Particle Motion

In this section the motion of individual charged particles in the presence of electric and

magnetic fields will be described, unaffected by interactions with surrounding particles

like in a real plasma. A single particle with charge q and velocity v in an electromagnetic

field will experience the Lorentz force,

F � m
dv
dt

� q (E + v × B) . (1.8)

In presence of a uniform magnetic field and absence of an electric field, the resulting

motion reduces to a simple gyration about the magnetic field lines whose direction

depends on the sign of the particle’s charge. The angular frequency of this motion is

known as gyrofrequency,

ωg �
|q |B
m

, (1.9)

4



1 Introduction

with B as the magnetic field strength, while the center of the gyration is known as the

guiding center. The kinetic energy of the particle remains constant during the gyration,

as the Lorentz force acts perpendicular to the particle’s direction of motion,

d
dt

(
1
2 mv2

)
� mv dv

dt
� qv · (v × B) � 0. (1.10)

The velocity vector v is hereby always oriented perpendicular to the magnetic field, such

that v � v⊥.

Figure 1.1: Illustration of a charged particle’s

helical motion in a homogeneous magnetic field.

Modified from Prölss [2004].

If the particle has an additional veloc-

ity component v‖ parallel to the mag-

netic field, the total velocity is given by

v � v⊥+v‖ and the particle gyrates around

the field lines while moving along them,

describing a helical path such as shown in

Figure 1.1. The angle at which it moves

with respect to the magnetic field,

α � arctan
(
v⊥
v‖

)
, (1.11)

is called pitch angle. Values of α � 0◦ and

α � 180◦ then describe particles moving

parallel and antiparallel, respectively, to

the background magnetic field (i.e., field-

aligned), while α � 90◦ corresponds to

pure gyration.

The motion of individual charged particles becomes more complicated in the presence

of electric fields or other nonelectromagnetic forces. Any additional force F will result in

a drift motion of the particle’s guiding center, perpendicular to both B and F itself. The

drift velocity vD of the charged particle is given by

vD �
F × B
qB2 . (1.12)

5



1 Introduction

For an electric field E perpendicular to B, the additional force experienced by a charged

particle is FE � qE such that

vD �
E × B

B2 . (1.13)

We find that the drift velocity is in this case independent of both charge and mass of

the particle, such that electrons and ions will drift in the same direction with a common

velocity and no currents are induced; this is known as the “E × B drift”.

Other forces typically acting on charged particles in planetary magnetospheres are

related to the gradient and curvature of themagnetic field and to gravity and polarization,

i.e.,

F∇ � −µ∇B (1.14)

FC � mv2
‖
RC

R2
C

(1.15)

FG � −mg (1.16)

FP � −m
dE
dt
, (1.17)

with RC as the local radius of magnetic field curvature and g as the gravitational

acceleration. The gradient force is dependent on the magnetic moment,

µ �
mv2
⊥

2B
�

W⊥
B
, (1.18)

with W⊥ as the kinetic energy associated with the perpendicular gyration. The magnetic

moment is a characteristic constant also known as the first adiabatic invariant, as it is

conserved if changes in the magnetic field are small compared to the time scale of the

gyromotion.

As a charged particle moves slowly from a low into a high magnetic field strength

region, its perpendicular velocity will increase to conserve its magnetic moment. With

the particle’s total energy W � W‖ + W⊥ being unchanged in the absence of parallel

electric fields, this can only occur through a reduction of its parallel velocity. The motion

along the magnetic field line hence slows down as the magnetic field becomes stronger,
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up to the point where v‖ � 0 and all kinetic energy is associated with the perpendicular

gyration with a pitch angle of α � 90◦. As the mirror force F∇ continues acting on the

particle regardless of its parallel velocity v‖ , it is reflected back into regions of lower

magnetic field, or “mirrored”.

Figure 1.2: Schematic of a charged particle’s

bounce motion in a planetary magnetic field, con-

fined by magnetic mirrors at either end. Modified

from Prölss [2004].

Pitch angle and magnetic field strength

along the particle’s trajectory are hereby

related through

B
sin2(α)

� const., (1.19)

such that the field strength at the mirror

point (sin2(α) � 1) can easily be deter-

minedwith knowledge of a particle’s pitch

angle at a location of knownmagnetic field

strength. For a dipole field such as found

in planetary magnetospheres, there are

two mirror points on each field line, es-

sentially forming a magnetic bottle and

trapping charged particles which bounce

between them such as shown in Figure 1.2.

However, depending on the initial/equatorial pitch angle a particle may not reach a

region of large enough field strength to mirror before entering the atmosphere where it

loses its energy in collisions with atmospheric neutrals and causes aurorae. At a point

along the magnetic field line where the magnetic field strength is B, all particles with a

pitch angle smaller than the loss cone angle

αLC � arcsin

(√
B

Bmax

)
(1.20)

are lost to the atmosphere. Here Bmax denotes the magnetic field strength just above the

atmosphere.
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Kinetic Theory and Phase Space

A macroscopic plasma, essentially a collection of particles, is difficult to describe in

terms of the single particle behaviour detailed above. It is much easier to characterize

the state of a plasma in terms of phase space density, i.e. by counting the number of

particles located at a certain point in configuration space r �
( x

y
z

)
which have a velocity

v �

( vx
vy
vz

)
. The phase space density for a collection of particles i located at ri with velocity

vi , respectively, is given by

f (r, v, t) �
∑

i

δ
(
r − ri(t)

)
δ
(
v − vi(t)

)
, (1.21)

with δ(r−ri) � δ(x−xi)δ(y− yi)δ(z− zi) and δ(v−vi), similarly, as the three-dimensional

Dirac delta functions.

This description allows the derivation of ensemble properties by calculating the

moments of the distribution. Hereby the first moment gives the number density,

n(r, t) �
∫

f (r, v, t)dv, (1.22)

and the second moment the bulk velocity,

u(r, t) � 1
n(r, t)

∫
v f (r, v, t)dv, (1.23)

while the third moment relates to the kinetic energy,

〈12 mv2〉 � 1
n(r, t)

∫
1
2 mv2 f (r, v, t)dv. (1.24)

Phase space distributions cannot be directly measured, but can be inferred from the

differential particle flux J(W,Ω, r, t)within an energy band dW about W and within a

solid angle dΩ observed at position r and at time t; this is the quantity typically measured

by spacecraft-borne particle detectors. It is clear that the number density of particles
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depends on the phase space density as

dn � f (r, v, t)dv, (1.25)

or

dn � f (r, v, t)v2dv dϕ sin ϑdϑ � f (r, v, t)v2dvdΩ (1.26)

in spherical coordinates. Multiplying this quantity by v provides the differential flux,

such that

J(W,Ω, r, t)dWdΩ � f (r, v, t)v3dvdΩ. (1.27)

Finally, simplifying this expression using dW � mvdv yields

f (r, v, t) � m2

2W
J(W,Ω, r, t), (1.28)

a straightforward relation between differential particle flux and phase space distribution

function.

Magnetohydrodynamics

In the theoretical concept of magnetohydrodynamics (MHD), the collective behaviour

of charged particles in a plasma is described by treating plasma as a conducting fluid.

This framework is applicable if the gyroperiod of the plasma constituents is smaller

than the characteristic time scale of changes in the fluid and the scale size of the plasma

significantly exceeds the charged particles’ gyroradius. Similar to unmagnetised fluids,

mass and momentum are conserved and viscous and pressure forces act on the particles;

furthermore, charge conservation applies and the Lorentz force acts within a conducting

plasma.

In MHD, the macroscopic plasma properties are described by the mass density, ρm ,

the bulk velocity, u, and the pressure, P. We assume a plasma which is quasineutral

within the characteristic length and time scales, such that ne ≈ ni � n. The continuity
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equation, describing the conservation of mass, is then

∂ρm

∂t
+ ∇ · (ρmu) � 0 (1.29)

while the momentum conservation equation is given by

ρm

(
∂u
∂t

+ (u · ∇)u
)
� −∇P + j × B + ρmg. (1.30)

The first two terms on the right hand-side of equation (1.30) describe the effects of a

thermal pressure gradient and the magnetic forces, respectively. We can find another

expression for the second term by taking the cross product of Ampère’s law (1.7) with B,

giving

j × B � −∇
(

B2

2µ0

)
+

1
µ0
(B · ∇)B. (1.31)

Here pB �
B2

2µ0
can be identified as the magnetic pressure, such that the first term on the

right hand-side becomes the magnetic pressure force similar to the thermal pressure

force in equation (1.30). The second term describes the magnetic tension force, acting as

a restoring force in response to the deformation of the magnetic field. These equations

are accompanied by the simplified Ohm’s law,

j � σ(E + u × B) (1.32)

which describes the relationship between the electric field and the current density with

σ as the conductivity.

Combining Ohm’s law (1.32) with Faraday’s law (1.6) and Ampère’s law (1.7) yields

the induction equation describing the temporal change of the magnetic field,

∂B
∂t

� ∇ × (u × B) + 1
µ0σ
∇2B. (1.33)

The terms on the right hand-side are hereby the convective and diffusive terms, respec-

tively. Their ratio is also known as the Reynolds number, which indicates the relative

importance of convection and diffusion to the evolution of the magnetic field. It is given
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by

Rm �
|∇ × (u × B)|
|∇2B/µ0σ |

� µ0σuL, (1.34)

where u is the characteristic perpendicular velocity of the plasma and L the length scale

of variations in B. In typical collisionless space plasmas with σ ∼ ∞ and very large L, we

find Rm � 1 indicating that convection dominates over diffusion. This means that the

motion of the plasma and the magnetic field are connected to one another; the magnetic

flux is “frozen in” to the fluid. As a result of this, particles initially located on the same

field line will remain “attached” to it as the plasma convects through space.

Figure 1.3: Schematic showing

the magnetic reconnection pro-

cess between the interplanetary

magnetic field andmagnetospheric

field lines, the current sheet high-

lighted in grey. Modified from

Masters et al. [2012].

However, this frozen-in flux approximation breaks

down in the process ofmagnetic reconnectionwhere op-

positely directed magnetic fields neighbouring another

mix and the field topology is reconfigured. The change

in magnetic field across the boundary between two

such magnetic fields results in a current flowing within

the boundary, forming the current sheet. Compressed

by thermal and magnetic pressure, this current sheet

becomes thinner, decreasing the characteristic length

scale and hence also the Reynolds number until the

diffusion term dominates the convection term in equa-

tion (1.33). The frozen-in flux approximation is broken,

and the magnetic field can diffuse from both sides into

the current sheet where the oppositely directed field

lines essentially break up and reconnect with one an-

other before being ejected from the diffusion region due

to magnetic tension forces. The reconnection site in the

center of the diffusion region is free of any magnetic

field and also known as “X-line”. A two-dimensional

schematic illustrating the theoretical Sweet-Parker geometry of this process [Parker, 1957;

Sweet, 1958] is shown in Figure 1.3.
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Field-aligned Currents

Electrical currents are essential for facilitating various coupling mechanisms in planetary

magnetospheres, such as momentum coupling through the Lorentz force and electric

coupling through induction. Field-aligned currents (FACs) in specific couple the

magnetosphere to the ionosphere and are closely related to the generation of auroral

emissions.

The deep physical connection between electrical currents and plasmamotion precludes

a clear identification of cause and effect, but it may be useful to view currents as the effect

of plasma motions distorting the magnetic field. From this perspective, the generation

of currents can be described by combining Faraday’s law (1.6) and Ampère’s law (1.7),

neglecting the displacement current in order to exclude high-frequency waves. With the

electric field in a fixed frame of reference dominated by −v × B, one obtains

∂j
∂t

� − 1
µ0
∇ × [B(∇ · v) + (v · ∇)B − (B · ∇)v] (1.35)

as a general description. Considering small perturbations of an initially uniformmagnetic

field, an FAC can be obtained from the first order terms of (1.35) as

∂j‖
∂t

�
1
µ0
(B · ∇)Ω‖ (1.36)

with Ω‖ as the field-aligned component of the flow vorticity Ω � ∇ × v. This means that

field-aligned currents (FACs) can for example be formed by a clockwise twisting of a

magnetic flux tube which decreases in the direction of the magnetic field [Paschmann

et al., 2003]. A discussion of the generation of FACs specifically in the context of

magnetosphere-ionosphere coupling at Saturn can be found in section 2.2.

Plasma Waves and Wave-Particle Interactions

In the typically collisionless space plasmas, waves play an important role for the transfer

of energy between different spatial regimes, particles and fields. On Earth we are used

to waves occurring in neutral fluids such as air and water, where pressure perturbations

12
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excite compressional sound waves. In space plasmas however, the dynamics are

additionally connected to electromagnetic fields – space plasmas can hence support

a variety of waves with very different properties. In a magnetized plasma waves can

propagate parallel or perpendicular to the magnetic field, the electric field perturbation

they excite can occur longitudinal or transverse to their wave vector k, and they may be of

an electromagnetic or electrostatic nature depending onwhether they involve a perturbation

of the magnetic field or not.

In a warm MHD plasma three different electromagnetic wave modes can be found.

One of these is the transverse shear Alfvén mode whose waves propagate parallel or

oblique to the magnetic field with a phase velocity vp � vA cos θ, where θ is the angle

between k and B and

vA �
B

√
µ0ρm

(1.37)

is the so called Alfvén velocity. The magnetic field perturbations associated with shear

Alfvén waves are perpendicular to both B and k, with magnetic tension acting as the

restoring force. Thiswavemode has no effect on the plasma density/pressure ormagnetic

field magnitude and is hence dispersionless, but it may act to accelerate auroral particles

if the time and length scales of the waves are similar to the basic scales of the plasma

[e.g., Saur et al., 2018]. The two other wave modes are the longitudinal fast magnetosonic

and slow magnetosonic modes which carry changes of plasma and magnetic pressure and

plasma density.

Other wave modes associated with ion oscillations are electrostatic ion cyclotron waves,

low-frequency waves which are most intense near the ion gyrofrequencies and their

harmonics, and (electrostatic) ion acoustic waves which are typically broadband with

frequencies up to the ion plasma frequency. Both are longitudinal wave modes, propa-

gating nearly perpendicular and parallel to the magnetic field, respectively. They are

typically observed in ion pickup regions and on auroral field lines where field-aligned

ion beams are present and energy transfer between waves and local auroral particles

may occur [e.g., Kindel and Kennel, 1971; Kintner et al., 1979; André et al., 1987;Wahlund

et al., 1994].

Auroral hiss emissions are broadband whistler mode waves at frequencies below the
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electron gyrofrequency (∼ 10s − 100s kHz at Saturn) which are right-hand polarized and

propagate within a cone angle relative to the magnetic field. They are also observed on

auroral field lines at Earth, Jupiter and Saturn, where they are thought to interact with

field-aligned electron beams leading to electron scattering and acceleration [e.g., Maggs,

1976; Gurnett et al., 1983; Kopf et al., 2010; Tetrick et al., 2017; Elliott et al., 2018].

Another signature of wave-particle interactions is the occurrence of auroral radio

emissions, known as auroral kilometric radiation at Earth, Jovian hectometric radiation at

Jupiter and Saturn kilometric radiation (SKR) at Saturn. They are thought to be generated

through the cyclotron maser instability, driven by antiplanetward beams of accelerated

electrons in an environment of low-density magnetized plasma such as present in auroral

regions, and are observed at frequencies above the local electron gyrofrequency. Remote

observation of these auroral radio emissions can provide global insight into auroral and

magnetospheric dynamics [e.g., Wu, 1985; Zarka, 1998; Louarn et al., 2017; Lamy et al.,

2018b].

1.2 The Heliosphere

At the center of the solar system, the Sun produces a large amount of energy through

fusion of Hydrogen in its core where pressure and temperature are sufficiently high. The

so generated energy is transported to the surface and heats the solar corona, essentially

the Sun’s atmosphere. The high gas pressure arising in this region continuously pushes

magnetised coronal plasma away from the Sun, driving the solar wind [Parker, 1958]. The

solar wind flow accelerates up to ∼ 400 − 800 km/s within a few solar radii, after which

it travels radially outward with relatively constant velocity. It eventually breaks down as

it reaches the termination shock, marking the transition from the heliosphere into the

heliosheath, beyondwhich the heliopause is the only separation between the solar system

and interplanetary space [e.g., Krimigis et al., 2019]. The shape of the heliosphere is still

uncertain, but recent measurements from the Voyager and Cassini spacecraft suggest

that it is of bubble-like shape instead of the previously proposed magnetosphere-like

shape with an extended tail shaped by the interstellar flow [e.g., Dialynas et al., 2017]. An

illustration of this is shown in Figure 1.4.
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Figure 1.4:Concept of the bubble-like heliosphere based onVoyager 1 and 2 observations.

The trajectories of the two spacecraft are indicated in green and orange; from their

departure in the inner solar system passing the termination shock (TS), heliosheath (HS)

and heliopause (HP) out of the heliosphere. Taken from Krimigis et al. [2019].
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Figure 1.5: The occurrence of sunspots over time. The top panel shows their latitudinal

distribution and the bottom panel shows their total area. Image credit: NASA / David

Hathaway.

The Sun has a roughly dipolar magnetic field which is thought to be generated by the

convection of plasma in the solar interior, acting as a dynamo. Its polarity periodically

reverses every ∼ 11 years, with solar activity decreasing and increasing over the course

of this so called solar cycle. One indicator of solar activity is the occurrence of dark

spots on the Sun’s surface which mark cooler regions featuring intense magnetic field

strengths. They are known as sunspots and are typically the origin of transient energetic

phenomena such as solar flares and coronal mass ejections. Both sunspot number and

location vary characteristically over the course of a solar cycle, as shown in Figure 1.5.

Periods of low solar activity are marked by the near absence of sunspots; sunspots appear

at higher latitudes in the inclining phase and at lower latitudes in the declining phase of

the solar cycle.

The solar wind plasma is characterized by high conductivities and large length

scales, such that the frozen-in flux approximation is satisfied. This means that plasma

ejected from the Sun carries with it the Sun’s internal magnetic field, then known as

interplanetary magnetic field (IMF). With the Sun rotating at a period of ∼ 24.5 days at

the equator [Snodgrass and Ulrich, 1990], the IMF is coiled into a spiral-like configuration
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Figure 1.6: Structure of the solar wind in the ecliptic, viewed from above the Sun.

Dashed lines illustrate the shape of the Parker spiral. Taken from Prölss [2004].

as the footpoint of a magnetic flux tube rotates while the associated solar wind plasma

moves radially outward. This is known as the Parker spiral [Parker, 1958] and illustrated

in Figure 1.6. The spiral angle of the magnetic field, defined as arctan(Btan/Brad)with

Btan and Brad as the tangential and radial IMF components, respectively, increases with

distance from the Sun. While the field is almost radial near the Sun with a Parker spiral

angle of ∼ 0◦, the angle is typically ∼ 45◦ at Earth and ∼ 87◦ at Saturn [Jackman et al.,

2008b]. However, this simplified description does not account for the variable tilt of the

Sun’s magnetic dipole field relative to its rotation axis or for the complex field structure

observed during solar maximum.

The solar wind is typically found to exhibit a bimodal velocity structure. Slow solar

wind, of the same composition as the solar corona and emerging from the solar equatorial

region, has a typical velocity of ∼ 400 km/s at the Earth orbit. Fast solar wind is of

photospheric composition, is thought to originate from coronal holes and has a velocity
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of ∼ 750 km/s. Fast solar wind may “catch up” to slow solar wind, forming a large

scale compression also known as corotating interaction region (CIR), also illustrated in

Figure 1.6. A CIR is typically preceded by a forward shock in the slow solar wind and

followed by a reverse shock and a rarefaction region.
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Chapter2
Saturn’s Magnetosphere

2.1 The Magnetospheric Structure of Saturn

Saturn’s magnetosphere is the second largest magnetosphere in our solar system. After

several flyby missions, Cassini was the first and until now only spacecraft orbiting Saturn

(2004-2017) and performing extensive observations of its plasma environment.

The magnetosphere, an illustration of which is shown in Figure 2.1, is formed as

the solar wind is countered by Saturn’s intrinsic magnetic field and locally produced

plasma, representing an obstacle in the steady solar wind flow. The solar wind plasma

is slowed down and diverted around the magnetosphere, separated from Saturn’s

Figure 2.1: Detailed illustration of the global configuration of Saturn’s magnetosphere.

Image credit: NASA/JPL.
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magnetospheric plasma by the magnetopause. Magnetospheric neutrals and plasma

are largely provided by the moon Enceladus with its numerous geysers, releasing water

vapor and ice into Saturn’s inner magnetosphere. Outside of Enceladus’ orbit, in the

middle magnetosphere, the ejected material mass- and momentum-loads the system

and the plasma angular velocity begins to depart from rigid corotation. This region also

includes the ring current. The subcorotating plasma takes the shape of a magnetodisc,

stretching the magnetic field in the equatorial plane. The outer magnetosphere, beyond

Titan’s orbit, is dominated by highly stretched field lines and a thin hinged magnetodisc.

Quasi-periodic magnetotail reconnection of the nightside magnetodisc is thought to

control the plasma outflow, balancing the plasma loading from Enceladus. This section

reviews the current understanding of the structure of Saturn’s magnetosphere and details

its most relevant components.

The Internal Magnetic Field

Saturn’s magnetic field was first investigated during the Pioneer 11 flyby in 1979 [Smith

et al., 1980a;Acuña et al., 1980], and soon after during the two Voyager flybys in 1980/1981

[Connerney et al., 1982]. These observations showed a close alignment between the dipolar

magnetic field and the planet’s spin axis as well as a significant quadrupole moment,

describing a northward shift of the magnetic equator from the planetary equator.

With the arrival of Cassini at Saturn, the magnetic field could be characterized more

accurately - data obtained during the Grand Finale phase of the Cassini mission revealed

a dipole tilt < 0.0095◦ and a 0.0466 RS � 2808 km northward shift of the magnetic dipole

[Dougherty et al., 2018]. There is no evidence of longitudinal variation in the field [Cao

et al., 2011], preventing an accurate determination of the planet’s rotation rate.

The perfect axisymmetry of Saturn’s internal magnetic field is puzzling, as Cowling’s

theorem precludes the generation of an axisymmetric field through a dynamo process

[Cowling, 1933]. A widely accepted explanation for this non-conformity proposes that

nonaxisymmetric magnetic moments are electromagnetically shielded by differential

rotation in an electrically conducting layer above the deep dynamo region [Stevenson, 1980,

1982]. Cassini’s Grand Finale measurements revealed latitudinally banded magnetic
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fields, supporting this theory [Dougherty et al., 2018].

Saturn’s internal field B outside of the dynamo region is modelled as the gradient of a

magnetic scalar potential V ,

B � −∇V, (2.1)

assuming that the field is approximately curl-free (i.e., the effects of external current

systems are negligible). This potential is then

V(r, θ, φ) �
∞∑

n�1

n∑
m�0

RS

(
RS
r

)n+1

Pm
n (cos θ)

[
gm

n cos(mφ) + hm
n sin(mφ)

]
, (2.2)

with RS as the radius of Saturn and r, θ and φ as the spherical planetocentric coordinates.

Pm
n (cos θ) are hereby Schmidt-normalised Legendre polynomials, while gm

n and hm
n are

Gauss coefficients describing the contribution of each spherical mode to the field.

The values of n and m indicate the degree and order of the spherical harmonic field

expansion, respectively. The Gauss coefficients of the most recent “Cassini 11” field

model are given in Table 2.1. In spherical planetocentric coordinates,

Br � −
∂V
∂r
, Bθ � −1

r
∂V
∂θ

, Bφ � − 1
r sin θ

∂V
∂φ

(2.3)

gives the magnetic field components corresponding to the modelled potential V(r, θ, φ).

Enceladus: The Main Source of Magnetospheric Plasma

Enceladus is a small moon (∼ 500 km diameter) located in Saturn’s inner magnetosphere

at a radial distance of ∼ 4 RS. The first flybys performed by Cassini in 2005 revealed

significant cryovolcanic activity - dozens of distinct water-rich jets were found to erupt

from the moon’s southern polar terrain (see Fig. 2.2) where ice grains and water vapor

are ejected from four prominent surface fractures, dubbed “tiger stripes” [e.g., Dougherty

et al., 2006; Hansen et al., 2006; Porco et al., 2006]. The cause of Enceladus’ dynamic

outgassing is thought to be the tidal deformation and energy dissipation arising from its

orbital resonance with the moon Dione, upholding the eccentricity of Enceladus’ orbit

and causing diurnal variations in the magnitude and direction of the tidal distortion.
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This energy input likely maintains a global or regional subsurface ocean, providing ejecta

and enhancing the tidal stresses imposed on the moon’s icy shell [e.g., Hedman et al.,

2013; Porco et al., 2014; Patthoff et al., 2019].

Table 2.1: Gauss coefficients of the Cassini

11 internal magnetic field model, derived from

Cassini Grand Finale magnetic field measure-

ments [Dougherty et al., 2018]

Value (nT) Uncertainty (nT)

g0
1 21140.2 1.0

g0
2 1581.1 1.2

g0
3 2260.1 3.2

g0
4 91.1 4.2

g0
5 12.6 7.1

g0
6 17.2 8.2

g0
7 -59.6 8.1

g0
8 -10.5 8.7

g0
9 -12.9 6.3

g0
10 15.0 7.0

g0
11 18.2 7.1

The atmospheric plumes are dominated

by water and contain significant amounts

of carbon dioxide, an unidentified species

with a mass-to-charge ratio of 28 (either

carbon monoxide or molecular nitrogen),

and methane [Waite et al., 2006]. The total

mass flux is estimated at ∼ 200 kg/s for

water vapor [Hansen et al., 2011] and ∼
50 kg for water ice [Ingersoll and Ewald,

2011], although the emission rates were

found to be highly variable over time [e.g.,

Saur et al., 2008; Smith et al., 2010] and the

solid-to-gas ratio varies between different

geysers [Hedman et al., 2018]. The ejected

particles easily escape Enceladus’ weak

gravitational field and populate a neutral

torus [Johnson et al., 2006] and Saturn’s E-ring [Spahn et al., 2006;Mitchell et al., 2015a].

Only a minority of the produced neutrals will eventually be ionized. Neutrals can be

directly ionized by either electron impact ionization or photoionization, adding new ions

and mass-loading the plasma environment. Charge exchange (neutral-ion collisions)

on the other hand keeps the ion population constant and instead momentum-loads the

system as the newly ionized particles are generally moving slower than the surrounding

plasma [e.g., Blanc et al., 2015] and the neutrals created in this process escape themagnetic

field unimpeded as energetic neutral atoms (ENAs). The fraction of neutrals which is

converted into plasma ranges between 17 − 38% [e.g., Jurac and Richardson, 2005; Cassidy

and Johnson, 2010]; Enceladus hence provides plasma at a rate of 12 − 250 kg/s [Bagenal

and Delamere, 2011] if a neutral production rate of 70 − 750 kg/s [Smith et al., 2010] is
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Figure 2.2:Water plumes on Enceladus. (Left) Mosaic of Cassini’s ISS images of the

south polar terrain, at a resolution of ∼ 80m/pixel and (right) Basemap of the south

polar terrain, showing the “tiger stripes”. Observed jet sources are marked with colored

circles. Modified from Porco et al. [2014].

assumed.

Radiation Belts

Saturn’s inner and middle magnetosphere is dominated by ion and electron radiation

belts (see Figure 2.3) which have first been observed during the Pioneer 11 flyby [Fillius

and Ip, 1980]. The main radiation belts extend from the outer edge of the F-ring (2.3 RS) to

roughly the orbit of the moon Tethys (4.9 RS); they are clearly separated from one another

by the major moon orbits (Janus at 2.5RS, Mimas at 3.1RS, and Enceladus at 4.0RS) as

the moons remove charged particles while they orbit close to the equatorial plane [e.g.,

Krupp et al., 2009; Roussos et al., 2011]. Due to this separation, the main radiation belts

are very stable as they are to some degree protected by external dynamics. However,

between the orbits of Tethys and Dione (6.4 RS) an additional transient radiation belt has

been observed to appear in response to interplanetary events caused by solar eruptions

[Roussos et al., 2008].

The formation process of Saturn’s ion radiation belts is not entirely understood. At

least the high energy part of the ion distribution in the main belts and the small but

energetic D-ring radiation belt [Roussos et al., 2018] are thought to originate from the

comic ray albedo neutron decay (CRAND) process [Kollmann et al., 2013] - galactic cosmic
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Figure 2.3: Differential intensities of energetic protons (black, labelled with “p”) and

electrons (grey, labelled with “e”) versus L-shell. The intensities shown are median

averages from the entire Cassini mission, obtained from the Cassini MIMI instrument

during times when Cassini passed the equatorial region. The energy ranges and

instrument channels considered are given next to the graphs. Taken from Krupp et al.

[2018].

rays impact material in Saturn’s atmosphere, moons and rings, and cause energetic

secondary neutrons to be emitted into space, which then decay into protons and electrons

populating the radiation belts. This is supported by observations showing that the

proton radiation belt intensity follows the solar cycle [Roussos et al., 2011], as the access

of galactic cosmic rays to Saturn’s magnetosphere and hence also the CRAND process

are directly related to solar activity. Recent modelling also proposed in-situ acceleration

through wave-particle interaction as a possible source of trapped electron radiation belts

[Woodfield et al., 2018].
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Ring Current

Outside of about 6RS, Saturn’s magnetic field configuration starts to become more

stretched due to the existence of an azimuthal ring current. This has been observed in

magnetic field and particle data from the Pioneer 11 and Voyager flybys [e.g., Smith

et al., 1980b; Connerney et al., 1981; Ness et al., 1981, 1982; Krimigis et al., 1983] and was

investigated in more detail during the Cassini era [e.g., Bunce et al., 2007, 2008b; Kellett

et al., 2010, 2011; Sergis et al., 2010].

The ring current is carried by magnetospheric ions and electrons drifting azimuthally

around the planet at different speeds and in different directions depending on their

charge. In Saturn’s rapidly rotating nonuniform magnetospheric field, this drift occurs

due to the single particle curvature drift and the inertia drift associated with plasma

corotation with the planet. The magnetic perturbation field induced by this current

points northward at the inner edge of the ring current and southward at the outer

edge. This reduces the magnetic field close to the planet but increases it in the outer

magnetosphere, essentially stretching the planetary magnetic field lines away from the

planet in the equatorial plane [e.g., Gombosi et al., 2009; Sergis et al., 2018]. The ring

current statistically carries 9.2 ± 1.0MA in total and maximizes at a radial distance of

∼ 9.5 RS, although it can extend from ∼ 3 − 20 RS with an estimated half-thickness of

∼ 1.5 RS [Carbary et al., 2012].

It is worth pointing out that the ring current is highly dynamic and often asymmetric.

Imaging of ENAs, which allows for remote observations of the global equatorial ring

current from above or below the planet, revealed that the ring current frequently exhibits

distinct and persistent azimuthal intensity variations [e.g., Krimigis et al., 2007; Carbary

et al., 2008b]. Furthermore, the asymmetric ring current has been shown to be enhanced

in a periodic manner at roughly the planetary rotation period [e.g., Paranicas et al., 2005;

Carbary et al., 2008a; Mitchell et al., 2009a].

Magnetodisc and Magnetotail

In the outer magnetosphere, the magnetic field is distorted into a non-dipolar current

sheet configuration as the magnetic tension cannot maintain balance with the outward
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Figure 2.4: Schematic illustrating the distortion of Saturn’s magnetodisc. (Left) View of

the noon-midnight meridian and (right) three-dimensional illustration of the bowl-shaped

current sheet. Taken from Arridge et al. [2008a].

plasma pressure and centrifugal forces. Newly added plasma, centrifugally confined

to the equatorial region, is driven outward and the plasma corotation with the planet

breaks down. Consequently, the closed magnetic field lines become highly stretched and

bent back azimuthally due to the increasing subcorotation of the plasma populations in

the outer magnetosphere, forming the magnetodisc [e.g., Vasyliūnas, 1983; Arridge et al.,

2008b]. Due to the steady flow of the solar wind, the magnetodisc is displaced from

the rotational equator such that it takes the shape of a bowl [Arridge et al., 2008a], as is

illustrated in Figure 2.4.

The extent of the magnetodisc is on the dayside limited by the magnetopause standoff

distance, as the solar wind pressure counters the outward centrifugal forces acting on

the plasma in the magnetodisc current sheet. The location of Saturn’s magnetopause

was found to be highly variable depending on both the internal plasma pressure and

the solar wind conditions, varying by several Saturn radii around roughly 25 RS [e.g.,

Arridge et al., 2006; Achilleos et al., 2008; Pilkington et al., 2015]. On the nightside however,

solar wind drag acts to elongate the already stretched magnetosphere to much larger

distances from Saturn, forming the magnetotail. The magnetic field lines become parallel,

pointing radially outward above the current sheet and radially inward below. Outside

the current sheet are the lobes, containing the open flux of the system - magnetic field

lines connected to Saturn’s ionosphere on one end and to the solar wind magnetic field
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on the other [e.g., Gombosi et al., 2009].

2.2 The Dynamics of Saturn’s Magnetosphere

Global Transport of Mass and Energy

Most plasma in Saturn’s magnetosphere is provided by the moon Enceladus in the inner

magnetosphere and lost downtail through magnetic reconnection and the associated

plasmoid ejections in the magnetotail. The processes responsible for the transport of

plasma between these stages are diverse and the topic of ongoing investigation.

From its origin near Enceladus’s orbit, plasma is transported through the magneto-

sphere mainly by radial interchange. “Fingers” of hot and tenuous plasma from the

middle magnetosphere are hereby injected into the rather cold and dense plasma of

the inner magnetosphere, driven by the centrifugal interchange instability [e.g., Gold,

1959; Southwood and Kivelson, 1987; Thomsen, 2013]. These injections are relatively small

with a width of ∼ 1RS and are observed at radial distances between 6 − 10RS, occurring

roughly once per day [e.g., Hill et al., 2005; Chen and Hill, 2008]. No clear ordering in local

time (LT) has been observed, although some studies suggest that such events may occur

more frequently at the nightside [Kennelly et al., 2013; Azari et al., 2019].

A second class of injections, unfortunately indistinguishable by name, can be observed

at somewhat larger radial distances of 15 − 20RS. These events occur less frequently,

but they are larger and more persistent and involve more energetic plasma populations

[e.g., Mauk et al., 2005; Paranicas et al., 2007; Carbary et al., 2008c]. After their appearance

typically at Saturn’s nightside, their ENA signatures can extend across several Saturn

radii and several hours LT and are observed to rotate around the planet, sometimes more

than once, before dispersing [e.g., Mitchell et al., 2009a; Kinrade et al., 2020]. They appear

to be associated with magnetotail activity and are hence likely related to dynamics

further out in the magnetosphere.

Large-scale magnetic flux circulation in Saturn’s middle and outer magnetosphere

is driven by two main sources: the antisunward flow of the solar wind and the rapid

rotation of the planet itself. The former drives the Dungey cycle, which is the main

27



2 Saturn’s Magnetosphere

Figure 2.5: Sketches of (left) plasma flows in Saturn’s equatorial magnetosphere and

(right) plasma flows and field aligned currents in Saturn’s polar ionospheres. Both

sketches describe the system seen from above the north pole and with the Sun toward the

bottom. Plasma flows are indicated with solid arrowed lines, while boundaries between

different flow regimes are shown with dashed lines. The red circle marks the location of

the auroral oval and the OCB. Upward and downward current regions are indicated

with circled dots and crosses, respectively. Modified from Cowley et al. [2004b].

transport mechanism at Earth [Dungey, 1961]; the latter powers the Vasyliūnas cycle,

dominating the Jovian magnetosphere [Vasyliūnas, 1983].

In the Dungey cycle process [Dungey, 1961], magnetospheric flux tubes reconnect with

the oppositely directed IMF at the daysidemagnetopause, creating open flux tubeswhose

ends are locked in the solar wind. These are dragged over the polar caps by the solar

wind flow, stretching them and depositing them in the long magnetotail. Meanwhile,

the flux tubes’ ionospheric ends move into the polar cap to join preexisting regions of

open flux and eventually are carried into the nightside as additional open flux is added

to the dayside and eroded from the nightside polar cap. The magnetic field, directed

oppositely on the two sides of the magnetotail current sheet, can then reconnect again.

This leads to magnetic flux and plasma being ejected downtail, while the newly closed

magnetospheric flux tubes contract toward the planet into a more dipolar configuration

due to magnetic tension (“magnetic dipolarization”). The flux tubes, now empty of

magnetic flux, then flow back to the dayside to begin the described process anew.

The Dungey cycle is the main process of flux circulation at Earth, but it is of much

smaller importance for the rotating giant planet magnetospheres of Jupiter and Saturn.
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With a magnetic field strength ten times larger than that of Earth, a magnetosphere

nearly a hundred times as voluminous as Earth’s and a rotation period of less than ten

hours, especially Jupiter’s magnetosphere is almost entirely controlled by its internal

dynamics [Brice and Ioannidis, 1970].

Global plasma circulation is here described with the Vasyliūnas cycle [Vasyliūnas,

1983]: Magnetospheric plasma is added internally by ionization of cryovolcanic ejecta

from the moon Io [e.g., Thomas et al., 2004, and references therein]. This continuous

mass and momentum loading stretches the magnetic field into a disc shape, facilitating

reconnection through the thin equatorial current sheet as a result of rotational stresses

and the related plasma instabilities [Kivelson and Southwood, 2005]. Plasma is released,

the magnetic field dipolarizes and the remaining plasma continues to subcorotate. As

the solar wind limits the outward expansion of the magnetosphere at the dayside, the

magnetodisc is considered thicker than in themagnetotail - Vasyliūnas-type reconnection

is therefore suggested to occur mainly at the nightside. However, recent investigations at

Saturn have proposed this process to be active at all local times [Delamere et al., 2015] and

in-situ signatures of dayside magnetodisc reconnection have also been observed [Guo

et al., 2018a,b].

Saturn’s magnetosphere is thought to be controlled by a combination of these two

processes [Cowley et al., 2004a,b]; their relative importance varies depending on, e.g., solar

wind conditions and the internal plasma loading rate. It has been suggested that Dungey

cycle reconnection voltages are comparable to Vasyliūnas cycle voltages under strong

solar wind driving [Jackman and Cowley, 2006], but less significant during periods of low

to average solar wind activity [Badman and Cowley, 2007]. Figure 2.5 shows sketches of

the expected plasma flows in Saturn’s equatorial magnetosphere and polar ionospheres

resulting from a combination of the Dungey and Vasyliūnas cycles. Both are associated

with their own ionospheric flow regions; the Dungey cycle dominating the polar cap

region and the Vasyliūnas cycle controlling the corotating plasma flow just equatorward

of the open-closed field line boundary (OCB).

As a result, the polar cap ionosphere is found to rotate at angular velocities of only

∼ 30 − 50% of rigid corotation [e.g., Stallard et al., 2004], transferring angular momentum
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to the tail by twisting the tail lobe field lines [Isbell et al., 1984]. With the closed

magnetosphere just equatorward of the OCB rotating much more rapidly, a shear in

ionospheric plasma flows is maintained which is thought to set up a system of FACs

driving Saturn’s main aurorae [e.g., Cowley et al., 2004a; Stallard et al., 2007b; Talboys et al.,

2009b; Hunt et al., 2014; Bradley et al., 2018b].

Corotation Breakdown and Magnetosphere-Ionosphere Coupling

Figure 2.6: Azimuthal flow speeds for three dif-

ferent ion species versus L shell; the values were

derived from Cassini CAPS measurements close

to the equatorial plane. Solid lines indicate rigid

corotation. Taken from Thomsen et al. [2010].

Most plasma is confined close to the mag-

netic equator by the centrifugal force, form-

ing the magnetodisc [e.g., Persoon et al.,

2006]; especially heavier ions are concen-

trated at very low latitudes [e.g., Thomsen

et al., 2010; Persoon et al., 2013]. The con-

fined plasma largely flows in the direction

of corotation [e.g., Thomsen et al., 2010,

2014; Livi et al., 2014], but the flow speeds

are generally below rigid corotation speed

as shown in Figure 2.6. Full corotation is

observed until ∼3.3RS, while the plasma

begins to lag the planet’s angular velocity

further outward [e.g., Wilson et al., 2009].

The subcorotation of the plasma relative

to the neutral atmosphere is a direct con-

sequence of mass and momentum loading

and the outward transport of plasma un-

der conservation of angular momentum

[e.g., Hill, 1979; Pontius and Hill, 2009].

The angular flow shear arising from this

differential plasma corotation sets up a current system which acts to transfer angular

momentum from the planet to the surrounding magnetospheric plasma. A brief
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description will be given below, but the reader is referred to other works for more

detailed discussions on this topic [e.g., Hill, 1979, 2001; Cowley and Bunce, 2001, 2003; Ray

et al., 2010, 2014; Ray and Ergun, 2012; Vasyliūnas, 2016; Ray, 2018].

Newly ionized plasma orbits Saturn at the Keplerian velocity, which is lower than rigid

subcorotation. Upon its ionization, the bulk flow speed of the local plasma population

hence decreases and a motional electric field is generated. In the corotating frame, this

field points radially in toward the planet (EM in Figure 2.7); in the ionosphere, this relates

to an equatorward pointing latitudinal field (EI).

The ionospheric field is associated with latitudinal Pedersen currents, which are fed by

FACs diverging into the magnetodisc. The upward current is hereby carried by electrons

precipitating into the ionosphere; most assuredly generating the steady main aurorae at

Jupiter [e.g., Cowley and Bunce, 2001] but likely too weak to produce auroral emissions at

Saturn [Cowley and Bunce, 2003].

Figure 2.7: Diagram of the magnetosphere-

ionosphere coupling currents and fields. EI and

EM are the perpendicular electric fields in the

ionosphere and magnetosphere, respectively. KI
denotes the ionospheric Pedersen current and

KM the radial current in the magnetodisc. The

field-aligned potential between the ionosphere

and magnetosphere is given by Φ‖ , the FACs by
J‖ . Modified from Ray et al. [2010].

The current circuit is closed by electrons

flowing radially outward in the magne-

todisc [e.g., Martin and Arridge, 2019] and

back into the ionosphere along the mag-

netic field. Radial currents in the mag-

netodisc are associated with a J × B force

which, for the case of outward directed cur-

rents, acts to accelerate the subcorotating

plasma. The angular momentum for this

azimuthal acceleration is supplied from

the planet’s rotation, transferred into the

ionosphere through ion-neutral collisions and from there into themagnetosphere through

the magnetosphere-ionosphere coupling current system described here. However, this

current system is not able to enforce rigid corotation throughout the magnetosphere as it

is limited by, e.g., the conductance of the ionosphere and the density of current carriers

along the magnetic field lines [e.g., Ray and Ergun, 2012; Ray, 2018].
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Rotational Modulation

SKR measurements from the first Saturn flybys of Voyager 1 and 2 revealed periodic

oscillations which were assumed to represent the planetary rotation period [Desch and

Kaiser, 1981]. However, further observations unexpectedly showed the SKR period to

vary by ∼ 1◦ over several years [Galopeau and Lecacheux, 2000]; and the first Cassini SKR

observations indeed verified a shift in the period from ∼ 10.66 h to ∼ 10.76 h [Gurnett,

2005]. The puzzling appearance of a secondary period [Kurth et al., 2008] later led to

the discovery of separate periods corresponding to SKR sources in the northern and

southern hemisphere, respectively [Gurnett et al., 2009a]. These can be separated by

the circular polarization of the extraordinary mode emission, with left-hand-polarized

SKR being generated in the southern and right-hand-polarized SKR in the northern

hemisphere [e.g., Lamy et al., 2008]. Both the northern and the southern period vary

slowly over time (see Figure 2.9); at Cassini’s arrival the two were clearly separated, but

with the approach of Saturn’s equinox they became more similar and eventually seemed

to merge [Gurnett et al., 2010], suggesting a seasonally dependent driver [Brooks et al.,

2019].

Figure 2.8: Power spectra of Voyager SKR time

series, (top) high-resolution and (bottom) low-

resolution. Taken from Desch and Kaiser [1981].

These so-called planetary period oscil-

lation (PPO) periodicities and their evolu-

tion through time can also be trackedusing

magnetic field measurements from within

Saturn’s magnetosphere [e.g., Espinosa and

Dougherty, 2000;Giampieri et al., 2006]. The

specific phase relation between the mag-

netic components hereby precludes that

the periodicities may be generated by a

tiltedmagnetic dipole [Espinosa et al., 2003];

instead, magnetic perturbation fields were

found to model the magnetic PPO perturbations rather closely.

Both the northern and southern PPO systems are associated with one perturbation

field each, dominant in their respective polar hemisphere but double-modulating the
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magnetic field in the equatorial plane. Their perturbation dipoles are hereby oriented

perpendicular to Saturn’s rotation axis and rotate with their respective PPO period; they

are associated with a complex array of FACs [e.g., Southwood and Kivelson, 2007; Andrews

et al., 2008, 2010a,b, 2012; Provan et al., 2009a, 2011; Southwood and Cowley, 2014; Hunt

et al., 2014, 2015; Bradley et al., 2018b].

Figure 2.9: (a) Saturnian latitudes of the Sun and
Ulysses, (b) SKR periods over time as measured

by the Voyager 1 and 2, Ulysses and Cassini

spacecraft. Modified from Gurnett et al. [2010].

The origin of Saturn’s periodicities is a

matter of ongoing investigation. Global

MHD simulations could model the ob-

served double modulation of the magnet-

osphere with vortical flow structures in

Saturn’s polar ionospheres as a driver [Jia

and Kivelson, 2012; Jia et al., 2012; Kivelson

and Jia, 2014]. The proposed system is pow-

ered by double vortices in the polar caps

which rotate at the observed PPO periods;

the FACs associated with the PPO systems

were shown to flow in the right sense to

communicate the related modulations out into the magnetosphere [e.g., Hunt et al., 2014;

Southwood and Cowley, 2014]. The PPO-associated FACs close partly in the equatorial

plane and partly in the opposite hemisphere, pervading the entire magnetosphere [e.g.,

Southwood and Kivelson, 2007, 2009; Hunt et al., 2015; Bradley et al., 2018b]. A sketch of

PPO-related magnetic field perturbations and electric currents in accordance with the

currently accepted model is shown in Figure 2.10. However, it is unclear how these

ionospheric flow patterns could be generated - although it is likely that the driver may

be unconnected with magnetospheric processes and instead be found in the neutral

thermosphere or stratosphere [e.g., Smith, 2011, 2014; Stallard et al., 2018].

The effects of this periodic modulation prevail in virtually all measurements within

Saturn’s magnetosphere. As already mentioned, rotational modulation is observed in

magnetic field measurements [e.g., Espinosa and Dougherty, 2000; Espinosa et al., 2003;

Andrews et al., 2008, 2010b,a, 2012; Provan et al., 2009a, 2011, 2013, 2014, 2015, 2016, 2018]
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Figure 2.10: PPO-related magnetic field perturbations and electric currents of the

(a-c) northern and (d-f) southern PPO systems. Red arrowed lines and symbols show

electric currents and blue arrowed lines and symbols magnetic fields, with circled

dots and crosses indicating vectors pointing out of and into the plane of the figure,

respectively. (a) View onto Saturn’s northern polar ionosphere and (d) view from north

“through” the planet into the southern ionosphere, yellow arrowed lines indicating

the atmospheric/ionospheric flow patterns thought to generate PPOs. (b,e) Fields and

currents in theΨN,S � 90◦— 270◦ meridian plane and (c,f) fields and currents in the

ΨN,S � 0◦— 180◦ meridian plane. Detailed descriptions of PPO phase angles and

longitude systems are given in section 3.7. The background magnetic field is indicated

in black. Modified from Provan et al. [2018].

as well SKR variations [e.g., Lamy, 2011; Lamy et al., 2013; Ye et al., 2016]. The FACs flowing

on auroral field lines connect the entire magnetosphere with the supposed atmospheric

drivers in Saturn’s polar ionospheres, and hence show clear PPO periodicities as well

[e.g., Hunt et al., 2014, 2015, 2016, 2018a,b; Bradley et al., 2018b]. The PPO-associated

variation of the current density on these field lines manifests as a periodic modulation

of the auroral intensity [e.g., Nichols et al., 2010a; Badman et al., 2012b; Nichols et al.,

2016; Bader et al., 2018] and of the latitude of the main emission in phase with the PPO

modulation [e.g., Provan et al., 2009b; Nichols et al., 2010b, 2016; Bader et al., 2019b]. The

oscillations introduced by these rotating current systems propagate through the entire

magnetosphere, such that the nightside plasma sheet can be observed to flap about the

magnetic equator and periodically vary in thickness [e.g., Arridge et al., 2011; Provan et al.,
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2012; Cowley and Provan, 2017; Thomsen et al., 2017; Sorba et al., 2018]. At its thinnest, the

plasma sheet is found more conducive to reconnection; plasmoid release and magnetic

dipolarizations are hence more probable at certain PPO phases [e.g., Jackman et al.,

2016; Cowley and Provan, 2017; Bradley et al., 2018a; Bader et al., 2019a]. These global

magnetospheric periodicities also emerge in the variation of the magnetopause location

[Clarke et al., 2010a], the bow shock location [Clarke et al., 2010b] and the OCB [Jasinski

et al., 2019]. Finally, comparable periodicities are observed in all kinds of measurements

of charged particles and ENAs [e.g., Paranicas et al., 2005; Carbary et al., 2008a, 2011;

Carbary, 2017] and even in the structure of Saturn’s rings [Chancia et al., 2019].

2.3 Saturn’s Ultraviolet Aurorae - an Overview

Auroral Acceleration

As touchedupon in the previous sections, themagnetosphere is coupled to the ionosphere

by different systems of FACs on both global and local scales. These currents are largely

carried by upgoing cold ionospheric electrons in downward current regions and by

precipitating hot magnetospheric electrons in upward current regions. However, the

current density which can be carried by thermal electrons is limited by the electron

density in high latitudes, such that the carriers may need to be accelerated to maintain

current continuity and charge neutrality [e.g., Paschmann et al., 2003; Ray and Ergun, 2012].

The auroral acceleration region, located above the auroral ionosphere, is characterized

by a multitude of small-scale processes which are not well understood and a topic of

intensive research. Most of our knowledge of the processes involved is based on the

terrestrial aurorae, although the Juno spacecraft recently revealed the first details of

Jupiter’s auroral acceleration region which may be similar to Saturn’s.

At Earth, auroral electrons are accelerated into the ionosphere by static electric fields

parallel to the magnetic field [e.g., Knight, 1973; Carlson et al., 1998b; Ergun et al., 1998;

McFadden et al., 1999; Marklund et al., 2001] such that precipitating electron populations

are observed to be monoenergetic [McIlwain, 1960; Evans, 1968]. It is not clear how these

fields are generated and maintained or what determines their spatial and temporal
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variability. The energetic environment above the auroral region is conducive to wave-

particle interaction processes in which plasma waves are generated through instabilities

in the typically beam-like particle distributions and, vice versa, charged particles are

energized through couplingwithwaves [e.g.,Kintner et al., 1979;Okuda andAshour-Abdalla,

1981; Vago et al., 1992; Chang, 1993; André, 1997; Shen et al., 2018].

Figure 2.11:Conceptual sketch of neighbouring upward
and downward current regions in Saturn’s auroral

acceleration region. Also published in Bader et al.

[2020a].

Before the arrival of Juno at

Jupiter, the Jovian auroral acceler-

ation process was expected to be

of a similar nature albeit operating

at much higher energies [e.g., Ray

et al., 2010, 2012; Cowley et al., 2017].

While strong parallel electric fields

and coherent particle acceleration

can be observed [Clark et al., 2017a,

2018; Ebert et al., 2017; Mauk et al.,

2018; Paranicas et al., 2018], broad-

band acceleration likely caused by

plasma waves seems to be the domi-

nant mechanism through which au-

roral particles are energized [Allegrini et al., 2017;Mauk et al., 2017a,b]. Recent studies

suggest that Alfvén waves may be the main source of energy for these processes [Saur

et al., 2018; Gershman et al., 2019].

The situation is even less clear at Saturn, with Cassini’s orbit geometry severely

limiting our ability to study the acceleration region. However, energetic electron and ion

beams were observed above the aurorae, suggesting powerful energization processes

to take place [Saur et al., 2006; Mitchell et al., 2009b; Badman et al., 2012a]. In situ

measurements remained inaccessible until the end of the mission when two low-altitude

auroral crossings revealed some more detail highlighting the complexity of energization

mechanisms. While no Alfvén wave activity was observed, the accelerated particle

populations appeared to be broadband like observed at Jupiter [Bader et al., 2020a].
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Generation of Auroral Emissions

Energetic electrons, constituting the majority of auroral precipitation into Saturn’s

hydrogen-dominated atmosphere, interact with atmospheric neutrals through both

elastic scattering and inelastic collisions including ionization, excitation and dissociation

[e.g., Galand et al., 2011]. These interactions eventually lead to the generation of optical

emissions in different wavebands ranging from the infrared (IR) through the visible

and into the ultraviolet (UV) wavelengths. Figure 2.12 shows a simplified flowchart

describing the different processes involved in the generation of these.

Figure 2.12: Flowchart of different auroral emis-

sion processes driven by auroral particle precip-

itation into a hydrogen-dominated atmosphere.

Modified from Badman et al. [2015].

A significant fraction of the energy

brought into Saturn’s upper atmosphere

by primary auroral electrons is lost in in-

elastic collisionswithneutralH2 molecules

resulting in ionization. This produces sec-

ondary electrons, which can again interact

with the neutral atmosphere to either ion-

ize other H2 molecules or excite them into

upper electronic levels. The de-excitation

of excited molecules to the ground elec-

tronic level then produces photons in the

visible and UV wavebands, which are ob-

servable as auroral emission. The emission

is hereby dominated by the H2 Lyman and Werner bands and the H2 continuum in the

800− 1800Å wavelength range as well as the H Lyman atomic lines (Lyman-α at 1216Å);

excited H atoms are thought to be produced by dissociative excitation of H2 [e.g., Gustin

et al., 2009, 2012, 2017; Stallard et al., 2018]. Saturn’s atmosphere contains a hydrocarbon

layer, dominated by methane (CH4), which causes a partial absorption of the UV auroral

emission as the auroral photons travel away from the planet, depending on their energy

and the length of their path through this layer. The auroral spectrum observed outside

of the atmosphere hence contains information about the penetration depth and initial

energy of the precipitating electron population [e.g., Gustin et al., 2012, 2013].
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IR auroral emission is radiated byH+

3 , which is created through chemical reaction of the

H+

2 ions produced by electron impact ionization with the neutral hydrogen atmosphere,

H2 + H+

2 → H+

3 + H. (2.4)

The newly created H+

3 ions are quickly thermalized within the neutral atmosphere [Tao

et al., 2011], leading to their excitation and subsequent de-excitation through radiation in

the IR, forming specific emission lines. Due to its short lifetime of ∼500 s, H+

3 density

is closely related to the local ionization rate such that the morphology of UV and IR

aurorae are generally comparable [e.g., Melin et al., 2011, 2016; Lamy et al., 2013], with

differences mainly arising due to the strong dependence of H+

3 emission on atmospheric

temperature [e.g.,Miller et al., 2013].

Auroral Signatures and Morphology

Part of this

section was

published as

introduc-

tion in

Publication

VI.

Saturn’s UV aurorae consist of various components located around the planet’s poles.

Some of these components are rather static and long-lived, while others are more

transient indicating explosive energy release somewhere along the associated magnetic

field lines. The current understanding of the great variety of observable signatures and

their possible origins has previously been reviewed by, e.g., Badman et al. [2015] and

Grodent [2015] and will be summarized and slightly updated here. Figure 2.13 shows

examples of most of the features which will be described in the following paragraphs; all

images are taken from the rich dataset obtained with the Cassini UVIS detector. The

choice of images is limited to Cassini’s high-latitude orbits in 2008 and its Grand Finale

mission in 2017, when auroral imaging provided the highest spatial resolution.

Main Emission: Appropriate to it dominating the overall auroral morphology, the so

called “main auroral oval” or “main emission” is the first structure characterized here.

Panel 2.13e shows a full view of Saturn’s typical UV aurorae, with the main emission

forming an incomplete relatively circular bright band around the pole. Located at

typically 15 − 20◦ colatitude from either pole [e.g., Carbary, 2012; Bader et al., 2019b],

the main emission is colocated with the infrared main aurorae [e.g., Melin et al., 2011;
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Figure 2.13: Examples of typical signatures in Saturn’s UV aurorae from Cassini’s

UVIS instrument. The view is from above the north pole, down onto the northern

or “through” the planet into the southern polar region. Local noon (12 LT) is at the

bottom and midnight at the top as indicated in the center panel. Grey concentric rings

mark colatitude from the pole in steps of 5
◦
, radial lines mark LT in steps of 1 h. The

timestamp and hemisphere of the observation are noted below each panel. The center

panel (e) shows the typical morphology of Saturn’s ring-shaped main emission with

some spread near dusk. The surrounding panels highlight auroral signatures which are

discussed in the text: (a) injection, (b) auroral beads, (c) outer emission, (d) poleward

arc, (f) bifurcations, (g) Enceladus footprint, (h) cusp spot and (i) “bunch of grapes”.
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Badman et al., 2011a,b] and expected to map to equatorial distances beyond the middle

ring current [e.g., Belenkaya et al., 2014]. The exact mechanism causing the acceleration of

electrons into Saturn’s polar ionospheres and thus generating the aurorae is unclear, but

it is presumed that azimuthal flow shears between plasma populations subcorotating at

different angular velocities in the outer magnetosphere may provide the required electric

fields driving the observed auroral FACs [e.g., Cowley et al., 2004a; Stallard et al., 2007b;

Talboys et al., 2009b; Hunt et al., 2014; Bradley et al., 2018b].

The auroral brightness varies with LT, which may partly be due to the interaction

of Saturn’s magnetosphere with the solar wind flow. Both a static flow shear between

the solar wind and magnetospheric plasma populations [e.g., Cowley et al., 2004b] and

viscous interaction through Kelvin-Helmholtz (KH) waves [e.g., Delamere and Bagenal,

2010; Delamere et al., 2013] could cause asymmetries arising between the dawn and dusk

aurorae. Further dynamic asymmetries are known to be imposed by the rotating patterns

of FACs imposed by the two PPO current systems [e.g.,Hunt et al., 2014; Bader et al., 2018].

As visible in some of the examples shown in Figure 2.13, the main emission usually

does not assume a fully closed circular shape, but consists of multiple structures

subcorotating with the planet [e.g., Grodent et al., 2005]. It is thereby not centered on

Saturn’s magnetic/spin pole, but slightly displaced toward the midnight-dawn direction

due to the compression of the dayside magnetosphere by the solar wind; the location of

the oval is modulated about this average position by the rotating PPO current systems

[e.g., Nichols et al., 2008, 2016; Bader et al., 2019b]. The size of the main oval is dependent

on the amount of open magnetic flux contained within the polar cap and magnetotail

lobes [e.g., Belenkaya et al., 2007]; it changes if there is an imbalance between open flux

creation at the dayside magnetopause and open flux closure in the magnetotail [e.g.,

Badman et al., 2005, 2014; Cowley et al., 2005]. The frequently observed spiral shape of

the main emission could be caused by this change in open flux content from the day- or

nightside combined with the planet’s rotation [Cowley et al., 2005], although partial ring

current structures in the equatorial plane may similarly result in a broken spiral-shaped

main emission as found at Earth [Gkioulidou et al., 2009]. Furthermore, increased solar

activity has been found to relate to a smaller auroral oval size [Bader et al., 2019b]. Due to
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the significant quadrupole moment of Saturn’s internal magnetic field, effectively an

offset of the internal dipole field toward the northern hemisphere, the southern oval is

typically larger than the northern one [e.g., Carbary, 2012; Bader et al., 2019b].

The structure of the main emission is highly variable. The dawn side generally features

a thin well-defined arc, while the aurorae cover a wider swath post-noon. In either

of those regions the arc can include interesting substructures such as “auroral beads”

(see Fig. 2.13b), multiple detached and consecutive auroral spots located along the

main emission which may be related to shear flow-ballooning instabilities [Radioti et al.,

2019]. Similar small isolated features are sometimes observed in the dayside aurora

(see Fig. 2.13i); Grodent et al. [2011] termed this the “bunch of grapes” configuration and

proposed FACs driven by nonuniform plasma flow in the equatorial plane and vortices

triggered by magnetopause KH waves as possible drivers.

Outer Emission: Equatorward of the main aurorae a rather permanent band of emission

can often be observed, the so called “outer emission” (visible in Fig. 2.13b-f, highlighted

in Fig. 2.13c). While it was first observed in HST imagery [Grodent et al., 2005, 2010;

Lamy et al., 2018a], detections with the HST are quite limited as the relatively faint outer

emission is usually above the detection threshold only on the nightside. The Cassini

UVIS detector provided many more observations [e.g., Radioti et al., 2017b; Bader et al.,

2020b]. It is believed to be caused by suprathermal electrons between 7-10RS [Schippers

et al., 2008] which may reach the ionosphere through pitch angle scattering by plasma

waves [Grodent et al., 2010; Grodent, 2015; Tripathi et al., 2018].

Enceladus Footprint: At Jupiter, the footprints of the moons Io, Europa and Ganymede

are frequently visible in the UV aurora [e.g., Clarke et al., 2002], generated as the slowly

orbiting moons perturb the rapidly corotating plasma in the equatorial magnetodisc.

This induces Alfvén waves propagating along the magnetic field line, which in turn cause

electrons to precipitate into the ionosphere [e.g., Kivelson, 2004]. A similar interaction

happens in the vicinity of the moon Enceladus at Saturn, but the signature is very weak

and barely detectable - only on 26 August 2008 could Enceladus’ faint auroral footprint

be observed with the Cassini UVIS detector (Pryor et al. [2011], see Fig. 2.13g). Through
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the three images in which the spot could be observed, the brightness varied by a factor

of about three - most likely reflecting variations in Enceladus’ water plume activity.

Dayside Transients: The dayside aurorae frequently feature transient brightenings

which may be indicative of the interaction between Saturn’s dayside magnetosphere and

the solar wind. Even before the arrival of the Cassini spacecraft, HST images revealed the

irregular appearance of a bright spot slightly poleward of the main aurorae near noon

[Gérard et al., 2004, 2005]. An example from the UVIS dataset is shown in panel 2.13h.

This feature may be related to magnetic reconnection of the magnetospheric lobe at high

latitudes [Bunce et al., 2005a; Kinrade et al., 2017], similar to the lobe cusp spot observed at

Earth [Milan et al., 2000; Fuselier et al., 2002], and is often termed the “cusp spot”. This

spot can at times be observed to pulsate [Palmaerts et al., 2016a], which could indicate

that the lobe reconnection events generating it occur in a pulsed fashion as proposed

earlier by Bunce et al. [2005a]. Closely related to this signature is the appearance of

bifurcations in the post-noon sector (see Fig. 2.13f), which take the shape of parallel

arcs protruding into the polar cap. These seem to frequently develop after a cusp spot

is observed, and may be a signature of multiple magnetic reconnection events at the

low-latitude magnetopause [e.g., Radioti et al., 2011, 2013; Badman et al., 2013].

Dawn brightenings: Magnetotail reconnection is the main process through which

plasma can be released from Saturn’s magnetosphere, and is hence observed rather

frequently [e.g., Bunce et al., 2005b; Jackman et al., 2007, 2008a, 2011; Thomsen et al.,

2015a; Smith et al., 2016]. Following a reconnection event and the associated release of a

plasmoid, the newly closed field lines are rapidly accelerated back toward Saturn. This

is thought to cause a sudden brightening of the nightside aurorae, which subsequently

subcorotates into dawn LTs before slowly dispersing [e.g., Mitchell et al., 2009a; Jackman

et al., 2013]. Possible differences between Dungey cycle and Vasyliūnas cycle-related

reconnection events are not entirely clear, but poleward arcs and possibly also bright

patches at colatitudes near themain auroral oval (see panels 2.13d and 2.13a, respectively)

may be associated with plasmoid release in context of the Vasyliūnas cycle [e.g., Radioti

et al., 2016]. These features are observed on planetary rotation time scales [Bader et al.,
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Figure 2.14:UVIS example sequence from 2017-257 showing the sudden commencement

(red arrow) and following evolution of an auroral storm at dawn. Noon is again toward

the bottom and dusk to the right, the start of each exposure is given on top of each panel.

Note that the color scale is extended to an upper limit of 100 kR compared to the previous

figure.

2019a]. Dungey-cycle reconnection on the other hand is likely associated with so called

“dawn storms” - strong aurorae which, starting from the nightside, quickly cover the

entire dawn half of the polar region and extend up to the pole (see Fig. 2.14). These are

likely triggered by solar wind compressions or changes in the IMF direction, typically

last for more than one Saturn rotation and are observed comparably infrequent on solar

rotation time scales [e.g., Badman et al., 2005; Clarke et al., 2009; Kidder et al., 2012;Meredith

et al., 2014b; Nichols et al., 2014; Palmaerts et al., 2018]. These brightenings at dawn have

been shown to affect the statistical LT brightness distribution of Saturn’s aurorae much

more than any static asymmetries imposed by, e.g., the solar wind flow [Bader et al.,

2019a].
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Figure 2.15: Example sequence from 2008-195 showing the appearance of short-lived

bright auroral flashes near dusk (c,h), taken by the UVIS instrument. Noon is again

toward the bottom and dusk to the right, the start of each exposure is given on top of

each panel.

Transient auroral flashes: The last auroral signature considered here is the appearance

of short-lived localized auroral brightenings predominantly at dusk LTs as shown in

Fig. 2.15. First observed as single events in HST imagery [Radioti et al., 2009a], they

were suggested to be related to energetic particle injections or magnetic reconnection

processes. A later study proposed these features to be located on field lines newly opened

bydayside reconnection, consistentwith the strict north-southnon-asymmetries observed

[Meredith et al., 2013]. Recently, Bader et al. [2019c] revealed the continuous and roughly

1-hour quasiperiodic occurrence of these brightenings in phase with intensifications of

electron flux and auroral hiss as well as with sawtooth-shaped signatures in magnetic

field measurements. An internal driver is suggested, such as small-scale magnetodisc

reconnection thought to occur predominantly near dusk. However, the origin of the

relatively stable periodicity of these auroral flashes remains unknown.
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Chapter3
Instrumentation and Methods

3.1 The Cassini-Huygens Mission

The Cassini-Huygens mission was a flagship-class planetary science mission to the

Saturnian system, a collaboration between the National Aeronautics and Space Admin-

istration (NASA), the European Space Agency (ESA), and the Agenzia Spaziale Italiana

(ASI). The project comprised both NASA’s Cassini orbiter and ESA’s Huygens probe,

which entered the atmosphere of Saturn’s biggest moon Titan and descended to its

surface via parachute.

Following its launch in October 1997, the spacecraft performed flybys of Venus, Earth,

and Jupiter in order to gain enough momentum to reach Saturn. Cassini-Huygens was

inserted into Saturn orbit on the 1st of July 2004 after more than six years of cruise time

through the solar system. The primary mission was completed in 2008, and several

mission extensions ensured continued scientific investigations during the Equinox mission

(until September 2010), Solstice mission (until April 2017), and the Grand Finale mission

(until September 2017). On the 15th of September 2017, the extraordinarily productive

project ended with Cassini’s controlled plunge into Saturn’s atmosphere.

A schematic of the Cassini spacecraft is shown in Figure 3.1. Cassini was a three-axis

stabilized robotic spacecraft powered by three radioisotope thermoelectric generators

(RTGs). With a launch mass of nearly 6 tonnes, it was one of the largest interplanetary

spacecraft ever built. The Cassini probe was equipped with twelve interrelating science

instruments that addressed many major scientific questions about the Saturn system.

The remote sensing pallet comprised the following instruments used mainly for optical

imaging in different wavelength ranges:

• CIRS (Composite Infrared Spectrometer) measured infrared emissions from

atmospheres, rings and surfaces and analyzed their temperature and composition

[Flasar et al., 2004]

• ISS (Imaging Science Subsystem) was a camera system operating in the visual and
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Figure 3.1: Schematic of the Cassini-Huygens mission, most of the key components

are labelled. Instruments of specific interest in the context of this thesis are highlighted

in red. Image credit: NASA/JPL.
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infrared wavelength range and photographing Saturn, its rings and its moons

[Porco et al., 2004]

• UVIS (Ultraviolet Imaging Spectrograph) imaged Saturn’s rings and auroral

emissions [Esposito et al., 2004]

• VIMS (Visible and Infrared Mapping Spectrometer) mapped the surface spatial

distribution of mineral and chemical features of different targets in high spectral

resolution [Brown et al., 2004]

A second group of instruments was dedicated to studying dust and plasma in the

environment of Saturn:

• CAPS (Cassini Plasma Spectrometer) measured the properties of ion and electron

populations in Saturn’s plasma environment [Young et al., 2004]

• CDA (Cosmic Dust Analyzer) investigated the properties of small ice and dust

particles [Srama et al., 2004]

• INMS (Ion and Neutral Mass Spectrometer) determined the composition and

structure of ions and neutrals in the moons’ environments and the magnetosphere

of Saturn [Waite et al., 2004]

• MAG (Cassini Magnetometer) measured the magnetic field properties of Saturn’s

environment [Dougherty et al., 2004]

• MIMI (Magnetosphere Imaging Instrument) measured the properties of high-

energy ions and electrons and imaged energetic particles in Saturn’smagnetosphere

[Krimigis et al., 2004]

• RPWS (Radio and PlasmaWave Spectrometer) determined electrical andmagnetic

fields and perturbations in Saturn’s plasma environment [Gurnett et al., 2004]

Lastly, two radio wave instruments were part of the payload:

• Cassini Radarmapped the surface of Titan [Elachi et al., 2004]
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• RSS (Radio Science Subsystem) conducted radio measurements of atmospheric

and ionospheric properties as well as of the masses of objects in the Saturn system

using NASA’s Deep Space Network ground antennas [Kliore et al., 2004]

Instruments of interest to the reader of this thesis are highlighted in red in Figure 3.1.

UVIS, which the majority of the results presented here are based on, is described in more

detail in the following section.

3.2 Cassini’s Ultraviolet Imaging Spectrograph

Figure 3.2: Schematic of the UVIS instrument,

with the different sensors labelled. Image taken

from Esposito et al. [2004]

UVIS was a spectral imaging instrument

in the UV wavelength range and was

comprised of two moderate-resolution

telescope-spectrographs operating in the

wavelength ranges 56 to 118 nm (extreme

ultraviolet, or EUV) and 110 to 190 nm (far

ultraviolet, or FUV), a high speed pho-

tometer, and a hydrogen deuterium ab-

sorption cell. Figure 3.2 shows the assem-

bly of the different components.

The UVIS instrument had a broad range

of scientific objectives. It proved a useful

tool for determining the atmospheric and

cloud properties and composition, and

for analysing the atmospheric circulation

and physics of Titan and Saturn. Using

stellar occultation and spectroscopy, UVIS

contributed greatly to the investigation

of the configuration and composition of

Saturn’s rings and their interrelation with Saturn’s satellites. Furthermore, UVIS data

helped unravelling the characteristics of Saturn’s icy moons.
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Figure 3.3: Schematic of the UVIS FUV sensor. Image taken from Esposito et al. [2004]

Of a greater importance to this thesis however are the capabilities of UVIS in observing

Saturn’s UV auroral emissions, as the far ultraviolet (FUV) channel covers the wavelength

range in which much of the UV auroral emission falls. The signal in the FUV’s spectral

range is dominated by the H2 Lyman and Werner bands and includes the H Lyman-α

line; the FUV sensor is therefore perfectly suited to capture the bulk of Saturn’s auroral

emissions.

The FUV telescope-spectrograph, a schematic of which is shown in Figure 3.3, has an

aperture of 20 × 20 mm2. The incident light first reaches an off-axis parabolic mirror and

is deflected through an interchangeable entrance slit of width 75/150/800µm, providing

a field of view (FOV) of 0.75/1.5/8 × 64 mrad2, onto a toroidal grating. The grating has

a 300mm horizontal radius of curvature and acts as a spectrometer. Both the mirror

and the grating are coated with Al and MgF2. Finally, the diffracted light falls onto

a two-dimensional coded anode array converter (CODACON) detector. This detector

plate counts and locates impinging photons with a resolution of 64 spatial pixels × 1024

spectral pixels. At one instance in time, the FUV sensor can therefore image a line of 64

pixels at its full spectral resolution of 1024 frequency bins between 110 and 190 nm.

All intensities measured by the detector need to be corrected in several steps. While the

sensitivity of the CODACON has been measured in a laboratory environment before the

launch of Cassini, it was observed to change as a function of wavelength and time such

that continuous in-flight re-calibrations were necessary. This was achieved by observing

the star Spica on a regular basis and adjusting calibrations following an exponential decay
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of sensitivity. After accounting for the detector sensitivity, the constant background

caused by the RTGs has to be subtracted from the data. Lastly, anomalous CODACON

pixels have to be invalidated and the missing data interpolated.

Observations of auroral emissions on giant planets may also be considerably affected

by hydrocarbon absorption, skewing the detectable emission. However, with some

knowledge of the ionospheric composition it is possible to infer the total unabsorbed

H2 emission intensity in the UV range (70 − 170 nm) from the observed UVIS spectra.

For this reason, all UVIS data used in this thesis is integrated between 155 − 162 nm

and multiplied by a factor 8.1 as described in Gustin et al. [2016, 2017]. A single UVIS

exposure is thereby reduced to a row of 64 pixel intensities of the total unabsorbed H2

emission in the UV, without any spectral information remaining.

Combination of Auroral Images

In order to obtain two-dimensional images, the spacecraft was slewed such that the UVIS

slit sweeped across the auroral region. Combining consecutive slit exposures yields a

pseudo-image – named such because different parts of the image have been recorded at

different times and not over the same period such as for “real” images.

Each image is projected onto a 0.5◦ × 0.25◦ (lon× lat) planetocentric polar grid at

an altitude of 1100 km above Saturn’s 1 bar level (RE � 60, 268 km, RP � 54, 364 km)

where the auroral emission profile was observed to maximize [Gérard et al., 2009]. Figure

3.4a shows an example dataset from 2016DOY278. The data has been calibrated and

spectrally integrated as described above, such that only two dimensions remain (1151

slit exposures × 64 pixels). Shown here is the emission rate in kR observed by each pixel

during each exposure (color scale shown in Fig. 3.4b), with the consecutive slit exposures

arranged from the top downwards. Note that the two outermost pixels on both sides of

the slit are unused – they have shown anomalous signals and were therefore excluded

in most auroral observations. In this example, UVIS scanned over the auroral emission

three times, imaging different parts of the auroral oval. After each scan, marked with

a blue-dashed frame, Cassini quickly slewed back across the auroral oval to prepare

for the following scan. These sections, marked with red-dashed frames, are excluded
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Figure 3.4: UVIS polar projection procedure. (a) Calibrated and spectrally integrated

dataset from 2016 DOY 278, 09:22-11:56 UTC (southern hemisphere), with UTC time

on the vertical axis and the 64 UVIS pixels on the horizontal. All single slit exposures

are simply arranged below one another, the integrated emission rate of each pixel shown

in a logarithmic color scale (same scale as in panel b). Blue and red boxes frame the

sections of the original dataset which were eventually projected or discarded, respectively.

(b) Polar projection resulting from this dataset, with the same color scale. The view is

from above the northern pole, observing the southern hemisphere through the planet.

Local midnight is on the top, the Sun / local noon is at the bottom. Concentric grid rings

mark the colatitude from the pole in steps of 10
◦
. (c) Cassini’s elevation angle above the

horizon as seen from each grid bin.
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from the projection procedure due to the high attitude uncertainty and the lower spatial

resolution during the quick attitude change. All data within the blue-dashed frames

is then polar projected onto a planetocentric grid. This is done using Cassini SPICE

pointing information available on the NASA Planetary Data System to determine the

exact viewing direction of each pixel (boresight and corners) and its intersection with the

aurorae’s ionospheric layer. The polar projection of the example dataset from Fig. 3.4a is

shown in Figure 3.4b. Panel 3.4c shows Cassini’s elevation angle above the horizon at

the location of each longitude-latitude grid bin.

It is important to note that this projection does not conserve photon counts, which

means that auroral emission powers can only be obtained with knowledge of the

spacecraft viewing geometry. A detailed analysis of this problem is given in appendix A.

Dayglow Removal

Depending on the hemisphere and season at Saturn, some auroral images obtained by

UVIS may be contaminated with dayglow. The choice of UV wavelength range used to

derive the UV brightness as described in the previous section mitigates this effect to

some degree, but some contamination remains nevertheless. This dayglow is visible

as a clear gradient in background brightness, increasing from midnight to noon. If the

radiant flux, or “auroral power”, is to be integrated from such images (see appendix A)

or absolute brightness values are to be compared, it may be necessary to remove this

background in order to obtain reliable values.

Figure 3.5 demonstrates a simple algorithm which proved to reliably remove dayglow

from UVIS images. Using all UVIS images of the same hemisphere obtained during a

±3 h window centered on the image which is to be corrected, we determine a distribution

of SZA versus background brightness. This is achieved by collecting all pixels situated

at colatitudes > 23◦ (red-dashed line in Figure 3.5a) – covering only regions well

equatorward of the statistical equatorward boundary of auroral emissions [e.g., Badman

et al., 2006; Carbary, 2012; Nichols et al., 2016; Kinrade et al., 2018; Bader et al., 2019b]. By

median-filtering the SZA-brightness distribution with a box 10◦ wide in SZA, we obtain

a smooth, rather linear relation (see Fig. 3.5b) which is used to model the background
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Figure 3.5: Demonstration of an algorithm removing dayglow from UVIS images. (a)

Polar-projected UVIS image from 2016 DOY 277, looking down onto the northern pole

with midnight towards the top. Shown is the total unabsorbed H2 emission intensity

of Saturn’s northern aurorae with a logarithmic color scale as defined with the large

colorbar to the right. Concentric rings mark the colatitude from the northern pole in

steps of 10◦. All data outside of the red-dashed line at 23◦ colatitude is considered
background emission and used for estimating the brightness of dayglow. (b) SZA versus

brightness histogram of all background pixels of all images within a ±3 h window around

this observation, with the median overlaid in red. (c) Brightness map of dayglow derived

from the median of the distribution in (b). (d) The original image with the derived

background brightness (c) subtracted.
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of dayglow for the entire region covered by the UVIS image (Fig. 3.5c). This modelled

background brightness is subtracted from the original image, leaving only true auroral

emissions (Fig. 3.5d).

3.3 The Cassini Magnetometer

The Cassini orbiter was equipped with two magnetometers: a fluxgate magnetometer

and a vector heliummagnetometer, bothmounted on themagnetometer beam at different

distances to allow for proper subtraction of the spacecraft’s magnetic field contribution

[Dougherty et al., 2004]. However, the vector helium magnetometer failed soon after

Cassini’s arrival at Saturn, leaving only the fluxgate magnetometer and necessitating

more complex calibration and data cleaning procedures.

Figure 3.6: Photo of Cassini’s fluxgate magne-

tometer and its electronics board. Taken from

Dougherty et al. [2004].

The fluxgate magnetometer consisted

of three single-axis ring core fluxgate sen-

sors mounted orthogonally to each other,

allowing the measurements of the mag-

netic field in three dimensions. A drive

coil, wound around the high permeability

ring core, generated a modulated mag-

netic field driving the core into saturation

with alternating polarity at a frequency of

∼ 15 kHz. A second coil around the ring

core then measured changes in the sym-

metry of the core’s saturation as voltage

changes which were analysed by the on-board electronics.

The magnetometer operated in four dynamic ranges, allowing magnetic field observa-

tions up to ±44, 000 nT at 5.4 nT resolution. Smaller dynamic ranges allowed for better

resolutions, reaching down to 4.9 pT in the ±40 nT range. The time resolution at which

magnetic field vectors were downlinked to Earth was typically 32 measurements per

second.
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Figure 3.7: Schematic of theMIMI-CHEMS detector. Taken from Krimigis et al. [2004].

3.4 Cassini’s Magnetosphere Imaging Instrument

Cassini’s Magnetosphere Imaging Instrument (MIMI) was an instrument package

designed for performing in situ measurements of neutral and charged particles as well

as global imaging of Saturn’s magnetosphere [Krimigis et al., 2004]. Its three detector

systems will be introduced below.

Charge Energy Mass Spectrometer

The Charge Energy Mass Spectrometer (CHEMS) was designed to measure the three-

dimensional distribution of suprathermal ion populations in Saturn’s magnetosphere. It

consisted of three telescopes placed around the spacecraft body, resulting in a nearly full

4π steradian FOV when Cassini was spinning.

Each telescope was equipped with an electrostatic analyser followed by a time of

flight detection system and a solid state detector. This allowed CHEMS to determine an

incoming particle’s energy per charge, speed of motion and residual energy, respectively

– providing knowledge of its mass, charge state and energy. A sketch of one detector is

shown in Figure 3.7. CHEMS was capable of measuring ions with energy per charge
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Figure 3.8: Schematic of the MIMI-LEMMS detector head. Taken from Krimigis et al.

[2004].

between 3 − 220 keV and ion species as heavy as Fe.

Low-Energy Magnetospheric Measurement System

The Low-Energy Magnetospheric Measurement System (LEMMS) was a two-ended

telescope used for measuring ions with energies > 30 keV and electrons with energies

between 15 keV and 1MeV. Each telescope end was equipped with solid state detectors,

with one telescope end designed to cover the lower and the other covering the higher

end of the measurable energy ranges. The entire telescope was heavily shielded against

penetrating particles and mounted on a rotating platform to maximize its pitch angle

coverage in combination with spacecraft rolling. However, the rotation mechanism

unfortunately malfunctioned partway through Cassini’s Saturn tour, such that for the

rest of the mission only specific viewing directions could be observed.

In the low energy end of the telescope, electronswere separated from ions and deflected

by a static inhomogeneous magnetic field to hit different side-facing detectors while ions

proceeded to detectors at the end of the telescope. The electron and ion signals were

processed by a pulse height analyser to provide 64-channel energy spectra. The high

energy end of the telescope was equipped with a stack of solid state detectors which

measured the energy loss of energetic electrons and ions along their trajectory through

the detector stack.
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Ion and Neutral Camera

MIMI’s Ion and Neutral Camera (INCA) was a time of flight sensor capable of detecting

both ions and ENAs with energies from 7keV/nucleon to 3MeV/nucleon. It could

provide information on the mass of each detected particle as well as its direction of

motion and energy.

Figure 3.9: Schematic of MIMI-INCA. Taken

from Krimigis et al. [2004].

With an instantaneous FOV of 120◦×90◦

and an angular resolution of up to 64 ×
64 pixels, it was able to either resolve a

significant part of the local ion pitch angle

distribution or to provide remote imagery

of the global distribution of energetic ions

using a technique known as ENA imaging

[e.g., Roelof , 1987]. Switching between

these twomodeswasdoneby changing the

potential applied to the collimator plates

(“Ion, e− sweeping plates” in Figure 3.9)

to either allow charged particles to pass into the detector or let them instead be deflected

into the collimator walls.

The time of flight detector was triggered when incoming particles penetrated the thin

start foil – secondary electrons were produced which entered the start multichannel

plate (MCP) to provide the start time. The original incident particle traveled further

through the instrument until it encountered a second foil, located in front of the stop

MCP. Again, secondary electrons were produced and entered the MCP, registering

the stop time. The mass of an incident particle was determined by the pulse height

of the MCP signal, as the number of secondary electrons produced increases with the

particle mass. The pulse height was sufficient to distinguish between the two most

common neutrals in Saturn’s magnetosphere, hydrogen and oxygen, but further mass

discrimination was not feasible.
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Figure 3.10: Sketch of radio and plasma wave features observable in Saturn’s magneto-

sphere. Taken from Gurnett et al. [2004].

3.5 The Cassini Radio and Plasma Wave Spectrometer

The Radio and Plasma Wave Spectrometer (RPWS) was used to study radio emissions

and plasma waves in Saturn’s magnetosphere [Gurnett et al., 2004]. A sketch of the

different radio and plasma wave features known to occur is shown in Figure 3.10.

It was equipped with three nearly orthogonal electric field antennas measuring electric

fields at frequencies between 1Hz and 16MHz, three orthogonal search coil magnetic

antennas measuring magnetic fields at frequencies between 1Hz and 12 kHz as well as a

Langmuir probe used for determining the electron density and temperature.

A number of different receiver systems was used to analyse the antenna signals.

The high frequency, medium frequency and low frequency receiver together covered a

frequency range from 1Hz to 16MHz, while a five-channel waveform receiver could

process observations from up to five antennas simultaneously in different spectral ranges.

A wideband receiver completed the set of receivers, making RPWS the most advanced

radio spectrometer to investigate Saturn’s magnetosphere to date.
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Figure 3.11: Schematic highlighting the HST’s main components. The imaging

instruments used for auroral observation campaigns are indicated as “Axial Science

Instruments” at the rear of the telescope. Image taken from [Lallo, 2012].

3.6 The Hubble Space Telescope

TheHubble Space Telescope (HST) is a 2.4m reflecting telescope observing in the near-UV,

visible, and near-IR bands, built by the NASA and operated in a coordinated programme

together with the ESA. It was placed into orbit in 1990 and remains in operation,

providing scientific data of immense importance to the astronomical community. It

is positioned in a geocentric low Earth orbit at an altitude of about 540 km, allowing

observations unimpeded by atmospheric effects.

A basic schematic of the HST is shown in Figure 3.11. The optical assembly constitutes

the biggest part of the spacecraft, with the scientific instruments located towards the

rear. Currently there are four instruments in operation:

• ACS (Advanced Camera for Surveys) is a highly versatile imaging instrument

operating between the near-UV and near-IR bands
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• COS (Cosmic Origins Spectrograph) performs UV spectroscopy of faint point

sources

• STIS (Space Telescope Imaging Spectrograph) is mainly used for imaging and

spectrography in the UV spectrum and is the main instrument used for observing

aurorae on the outer planets

• WFC3 (Wide Field Camera 3) is designed for imaging in the visible spectrum

Most auroral observations from Saturn used in this thesis were taken by the Space

Telescope Imaging Spectrograph (STIS), described in detail in Woodgate et al. [1998].

It was installed on HST in 1997 and is still in operation. Its optics are designed to

correct for the spherical aberration of HST’s primary mirror before the beam of light

entering the instrument is directed according to the observation mode and detector

required. After passing either gratings for the spectroscopy modes or apertures for the

imaging modes, the beam eventually hits one of STIS’ three detectors: two multianode

microchannel array (MAMA) detectors for the UV and a charge-coupled device (CCD)

for the visible bands. Auroral emissions at Saturn maximize in the FUV wavelength

range, which is covered by one of the MAMA detectors designed for observations within

115 − 170 nm. Incident photons produce electrons as they hit the CsI photocathode,

which are accelerated into an MCP where the charge is detected by an anode array. The

MAMA detector is hence able to record the time and position on the detector of each

incident photon (time tag mode) or simply integrate the signal to an image over a fixed

exposure time. For auroral observations, a SrF2 filter (bandpass 125 − 190 nm) is often

used to block the H Lyman-α line (121 nm) in order to remove potential geocoronal

contamination.

All HST images were background subtracted, corrected for geometric distortion and

projected onto a planetocentric polar grid [Clarke et al., 2009]. A comparison between a

raw HST image and its projection is shown in Figure 3.12.

60



3 Instrumentation and Methods

Figure 3.12: HST polar projection procedure. (a) HST STIS image from 2014 DOY

100, 02:29 Saturn UTC (northern hemisphere). The original photon count rate per

pixel, smoothed with a 11× 11 pixel2 box, is shown in an arbitrary color scale. (b) Detail

of the same image, highlighting the auroral region. (c) Background-subtracted polar

projection resulting from this image, the emission rate color-coded. The view is from

above the northern pole, with local midnight on the top and the Sun / local noon at the

bottom. Concentric grid rings mark the colatitude from the pole in steps of 10
◦
. (d)

HST’s elevation angle above the horizon as seen from each grid bin.
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Figure 3.13: Sketch showing the northern PPO system as seen from above the northern

hemisphere. (a) Saturn’s equatorial magnetosphere, with noon towards the bottom and

dusk towards the right. The magnetopause is indicated with a grey dash-dotted line,

following the model of Arridge et al. [2006] with pdyn � 0.05nPa. The inner grey

dashed circle marks the approximate location where the main PPO-related FACs pass

through the equatorial plane at ∼ 15RS. At the instant shown, the northern PPO phase

is ΦN(t) � 30◦, a black arrow marking the orientation of the associated equatorial model

perturbation dipole. The magnetic perturbation field lines of the northern PPO system

are shown as solid grey lines, following, e.g., Provan et al. [2009b] and Andrews et al.

[2010b]. The principal meridians of the PPO phase function are shown by the black

arrow and its perpendicular, the phase valuesΨN increasing clockwise as indicated. The

direction of FACs passing the equatorial plane due to the perturbation field is marked in

red, with circled crosses indicating a flow into and circled dots a flow out of the plane of

the figure. (b) The corresponding view of Saturn’s northern ionosphere as seen from

above the north pole, again with noon towards the bottom. Bold numbers around the edge

of the panel indicate the LT, dashed circles mark the northern colatitude from the pole

in 10◦ steps. The orientation of the model perturbation dipole and the PPO principal

meridians are marked in black as in panel (a). Ionospheric upward (downward) FAC

regions at auroral latitudes are indicated with red circled dots (crosses). Blue lines and

arrows sketch the driving neutral atmospheric and ionospheric flows in the northern

hemisphere [Jia et al., 2012; Jia and Kivelson, 2012; Hunt et al., 2014, 2015].
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3.7 Planetary Period Oscillation Longitude Systems

This section describes longitude systems which are based on PPO magnetic field

periodicities. The momentary orientation of each PPO system is hereby defined by

the PPO dipole phase angle ΦN,S(t), which describes the azimuthal angle at time t at

which the northern/southern PPO-related equatorial magnetic perturbation fields point

radially outward from the planet. ΦN,S(t) is hereby measured from noon and in the

direction of Saturn’s rotation. Figure 3.13 shows the northern PPO system atΦN(t) � 30◦,

a black arrow indicating the PPO perturbation dipole in the equatorial plane.

The PPO phases ΨN,S(ϕ, t) then provide longitude systems rotating with the PPO

dipoles. They are defined as

ΨN,S(ϕ, t) � ΦN,S − ϕ (3.1)

with ϕ being the azimuthal angle of any spatial point measured from local noon. In

Fig. 3.13, fourΨN longitudes are marked in black.

PPO-associated FACs are always located at the same PPO phase. The FACs related

to the northern PPO system are indicated in red in Fig. 3.13, with 3.13a showing the

currents (partly) passing through the equatorial plane from the northern to the southern

hemisphere (circled red crosses) and in the opposite direction (circled red dots) - roughly

half of the PPO-associated currents diverge from the field-aligned direction and close in

the equatorial plane [Bradley et al., 2018b]. Figure 3.13b shows the footpoints of these

currents in Saturn’s northern polar ionosphere, upward (downward) currents being

indicated with red circled dots (crosses). The atmospheric/ionospheric vortical flow

pattern thought to generate the northern PPO perturbations are shown in blue. The

southern PPO system, generated by oppositely directed atmospheric/ionospheric flows

in the southern hemisphere, effects the same pattern of FACs in the northern hemisphere

in its own longitude system (see Figure 3.14).

The PPO dipole phase angles ΦN,S(t) used in this study were derived from sinusoidal

fits to Cassini magnetic field data as thoroughly described in, e.g., [Andrews et al., 2012;

Provan et al., 2013, 2014, 2015, 2016, 2018].
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Figure 3.14: PPO-related rotating FAC patterns in Saturn’s polar ionospheres, shown in

PPO longitude systems. (Left) PPO-associated FACs in the northern polar ionosphere.

Red-circled dots (crosses) mark FACs flowing out of (into) the figure plane, corresponding

to upward (downward) currents relative to Saturn’s surface. The section highlighted in

redmarkswhere an intensification of the aurorae is expected. The atmospheric/ionospheric

flow pattern in northern hemisphere, driving the northern PPO perturbations, is drawn

in blue. (right) Corresponding sketch for the southern hemisphere, looking through

the planet from the north. Circled dots (crosses) mark downward (upward) currents

now, and blue lines and arrows mark the atmospheric/ionospheric flows in the southern

hemisphere which drive the southern PPO system.
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Statistical Planetary Period Oscillation Signatures in Saturn’s

UV Auroral Intensity
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Abstract Saturn’s auroral emissions are a good measure of field-aligned current (FAC) systems in the

planet’s magnetospheric environment. Previous studies based on magnetic field data have identified

current systems rotating with the planetary period oscillations (PPOs) in both hemispheres, superimposed

onto the local time-invariant current system producing the main auroral emission. In this study we analyze

the statistical behavior of Saturn’s ultraviolet auroral emissions over the full Cassini mission using all suit-

able Cassini-UVIS images acquired between 2007 and 2017. We examine auroral intensities by organizing

the data by the two PPO coordinate systems. Strong statistical intensifications are observed close to the

expected locations of upward FACs in both hemispheres, clearly supporting the main assumptions of the

present theoretical model. We furthermore find clear signatures of modulation due to interhemispheric

current closure from the PPO system in the opposite hemisphere, although with a weaker modulation

amplitude. The auroral intensity in the northern hemisphere is shown to be modulated by a superposition

of the FACs associated with both PPO systems, as the modulation phase and amplitude varies as

expected for different relative orientations (beat phases) of the two PPO systems.

1. Introduction

Saturn’s ring of main auroral emission is located approximately at the open-closed field line boundary (e.g.,

Cowley et al., 2004). This region maps magnetically to the outer magnetosphere where flow shears between

hot plasma populations, subcorotating at different angular speeds with Saturn’s planetary rotation, are the

largest (e.g., Belenkaya et al., 2014; Hunt et al., 2014). These flow shears are thought to set up a system of

field-aligned currents (FACs), of which the upward component is carried by downward electrons precipitating

onto the upper atmosphere. The electron impact excitation of hydrogen then generates auroral emissions in

a range of wavelengths spanning IR, visible, and UV bands. The same accelerated electron populations are

thought to generate the Saturn Kilometric Radio (SKR) emissions through the cyclotronmaser instability (e.g.,

Galopeau et al., 1989).

This largely local time (LT)-fixed FAC system is controlled by internal plasma production and flow as described

by the Vasyliunas cycle and by the interaction of Saturn’s magnetosphere with the solar wind (e.g., Belenkaya

et al., 2011; Cowley et al., 2004, and references therein). How exactly the factors internal and external to Sat-

urn’s magnetosphere contribute to the observed LT asymmetries as observed, for example, in ultraviolet and

infrared auroral emissions (e.g., Badman, Andrews, et al., 2012; Kinrade et al., 2018; Lamy et al., 2018) remains

unsolved. However, it is presumed that the Dungey cycle reconnection near the high-latitudemagnetopause

occurs mostly in the prenoon sector, leading to larger auroral intensities in this LT regime. This is thought to

happen due to a blockage near noon, preventing empty flux tubes returning from the nightside from cross-

ing into the postnoon sector. As the flux tubes can only flowpast noon once reconnection has been triggered,

auroral emissions could largely be confined to the prenoon sector (Radioti et al., 2017; Southwood & Chané,

2016).

The Kronian aurora is furthermore characterized bymany different transient features on both the dayside and

nightside of Saturn. These are usually associated with magnetic reconnection events in the magnetotail, the

dayside magnetopause, and the cusp (e.g., Badman et al., 2013; Jackman et al., 2013; Meredith et al., 2013).

It is also assumed that plasma wave activity, possibly induced by the noon blockage of the plasma return

flow,might be responsible for transient brightenings (Yao et al., 2017). Recently, Guo et al. (2018) furthermore

observed signatures of near-noon reconnection within Saturn’s magnetodisk. These findings indicate that
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transient dayside emissions might not only be controlled by solar wind interaction as previously thought but

also by the internally controlled Vasyliunas cycle plasma flow.

Furthermore, auroras on Saturn are expected to be modulated by the planetary period oscillations (PPOs).

These are periodicities close to Saturn’s rotation period which can be observed frequently in all particle, field,

and radio wavemeasurements around Saturn (e.g., Carbary &Mitchell, 2013, and references therein). Possible

driving mechanisms for this phenomenon could be a vortical flow structure in the ionosphere of Saturn (e.g.,

Jia & Kivelson, 2012; Jia et al., 2012) or the plasma pressure of periodically injected energetic particles (Brandt

et al., 2010). The PPO behavior can be modeled rather well by two magnetic perturbation fields, one located

in each hemisphere and independently rotating in the direction of planetary rotation in both hemispheres at

close to the planetary rotation rate—thereby generating a rotating system of FACs superimposed on the LT

fixed system thought responsible for themain auroral emission (e.g., Andrews et al., 2010; Provan et al., 2016).

These rotating FAC systems were found to produce upward and downward FAC regionsmapping to themain

auroral oval—modulating the intensity and location of the auroral oval in a sinusoidal manner (Hunt et al.,

2014, 2015, 2016).

It has so far been challenging to study the PPO-induced modulation of the Kronian aurora to a significant

extent, as this continuous modulation is superimposed on LT asymmetries in the auroral emission pattern,

as well as with transient effects like solar wind compressions and sudden reconnection events. First stud-

ies investigating a possible intensity modulation of auroral emissions due to the PPO-induced FAC systems’

phases have been performed but often produced inconsistent results. A physical association of the UV aurora

and SKR emissions has been observed in preequinox HST data (Nichols, Cecconi, et al., 2010). Nichols et al.

(2016), using HST imagery from 2011 to 2013, found somemodulation of the observed UV intensities in both

hemispheres—but as this study was performed on a comparably small dataset with incomplete PPO phase

coverage, no hard conclusions could be drawn. An earlier study by Carbary (2013) used Cassini UVIS imagery

from 2006 to 2009 to investigate rotational modulation of Saturn’s auroral intensities with respect to SKR

phase, but observed clear dependencies only for the southern hemisphere. Lastly, Badman, Andrews, et al.

(2012) observed rotational modulation of infrared emissions in Cassini VIMS data between 2006 and 2009,

although out of phase with the expected auroral response.

In this study,we expandon the previous investigations of auroralmodulation due to PPO influences. Section 2

presents a short backgroundon theongoing investigationsof PPOand the reference framesused in this study.

Drawing on the full Cassini UVIS data set covering the time span from 2007 to 2017, described in section 3,

we are able to statistically investigate auroral intensity modulations in great detail. The results of this analysis

are presented in section 4. Finally, we summarize and discuss our findings and their implications for present

theoretical models in section 5.

2. The PPO Systems and Their Reference Frames

With the arrival of Cassini at Saturn, it became clear that most magnetospheric data exhibit oscillatory sig-

natures at rates close to Saturn’s rotation rate. After Kurth et al. (2008) had found two distinct SKR rotation

periods, Gurnett et al. (2009) suggested that these emanate from the two polar hemispheres of Saturn. Exten-

sive studies showed that in the northern (southern) polar cap regions, only magnetic field oscillations due to

the northern (southern) PPO systemare observed (Andrews et al., 2012), but in the equatorial regions, a super-

position of both systems’ oscillations is found (Provan et al., 2011). Provan et al. (2018) observed southern

oscillations in the northern hemisphere on the proximal and F-ring orbits. Such interhemispheric coupling is

believed tobeobservedon these orbits due to the trajectory of Cassini, where the spacecraftmoves very close

to the FAC regions. The relative amplitude of the two systems has been found to vary over time (Provan et al.,

2013), which can largely be attributed to seasonal effects (Provan et al., 2015) and, to some degree, changes

in the upstream solar wind properties (Zarka et al., 2007). From mid-2013 to mid-2014, the two PPO systems

have been shown to rotate in coalescence, locked nearly in relative antiphase (Provan et al., 2016).

Both PPO systems are thought to be associated with a system of rotating current systems, with currents flow-

ing into one side of the ionosphere along the magnetic field, crossing the polar cap as ionospheric Pedersen

currents and returningoutward into themagnetosphere as FACson theother side. Current closure is expected

to occur partly in the equatorial plane in the outer magnetosphere and partly in the opposite hemisphere. In

each hemisphere’s ionosphere, currents associated with either PPO system flow on the same field lines and

are therefore not latitudinally separated (e.g., Bradley et al., 2018; Hunt et al., 2015). A comprehensive and illus-
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Figure 1. Sketch of the PPO-related rotating FAC patterns in Saturn’s polar ionosphere. To the left (right), the northern

(southern) polar region is shown as viewed from above the north pole. With the near-equatorial PPO perturbation fields

directed toward the bottom of the figure, ΨN/S increases in clockwise direction. Green/purple-circled crosses and dots

represent FACs flowing into and out of the plane of the diagram, respectively. For example, in the northern hemisphere,

upward FACs and therefore increased auroral intensities are expected at around ΨN = 90∘ and at around ΨS = 90∘ . The

relative orientation of the two PPO systems determines whether their associated upward FAC regions are colocated or

not. PPO = planetary period oscillation; FAC = field-aligned current.

trated description of these current systems is given in, for example, Hunt et al. (2015). Both these PPO systems

can bemodeledwith horizontally orientated dipole fields and rotate azimuthally in the direction of planetary

rotation with their respective PPO rotation rates 𝜏N/S. The orientation of each system is hereby defined by the

counterclockwise azimuthal angle of the equatorial perturbation fieldΦN/S(t). This angle is referenced to local

noon, increases in the direction of planetary rotation, and is often referred to as PPO dipole angle or phase

angle.

For locating an auroral feature in this rotating frame, a PPO “longitude” system can then be defined with

ΨN/S(𝜑, t) = ΦN/S(t) −𝜑with𝜑 as the LT-referenced planetary longitude. The location of a feature is therefore

referenced to the PPO system’s dipole orientationΦN/S(t) at a specific time t. An auroral feature rotating with

the same speed as the PPO dipole, for example, would therefore have a constantΨN/S value.

From the PPO model initially proposed by Andrews et al. (2010) and more recently described by Hunt et al.

(2015), it is clear that the associated FACswill have different strengths and flowdirections at differentΨN/S. The

expected FAC patterns are sketched in Figure 1. In the northern hemisphere, the upward FACs are expected to

maximize close toΨN = 90∘ for the northern (primary) PPO system, with the downward currents maximizing

aroundΨN = 270∘. Interhemispheric currents from the southern (secondary) PPO systemclosing thenorthern

hemisphere are thought to cause the same FAC pattern, with upward currents maximizing near ΨS = 90∘

and downward FACs peaking aroundΨS = 270∘. Conversely, upward FACs are expected to maximize close to

ΨS/N = 270∘ and downward FACs nearΨS/N = 90∘ in the southern hemisphere (Hunt et al., 2015). With auroral

brightness being directly related to upward currents associated with downward-precipitating electrons, we

therefore expect toobserve relatively higher auroral intensities atΨN/S = 90∘ for thenorthernhemisphere and

ΨN/S = 270∘ for the southern hemisphere and relatively lower intensities on the other side of the polar cap.

The relative strength of the current systems associatedwith the primary and secondary PPO systems changes

with season (Provan et al., 2013). Over the course of the Cassini mission, the two PPO systems switched dom-

inance several times, with often one system being stronger than the other by a factor 2 or larger. In case of

equal strengths, we expect the primary PPO system to dominate the rotational modulation of the UV auroral

intensity in each hemisphere, since the secondary system’s currents are partly closed in the equatorial plane.

Bradley et al. (2018) found that about half the current associated with each PPO system is closed in the equa-

torial plane, while the remaining half closes in the opposite hemisphere—the FACs in each hemisphere are

therefore expected to be modulated twice as strongly by the primary than by the secondary PPO system. If

however the strengths of the two PPO systems differ significantly, the currents associated with the dominat-
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ing system and crossing over into the other hemispheremight be as strong or even stronger than the currents

associated with the (primary) PPO system in that hemisphere. For a more detailed description, the reader is

referred to, for example, Nichols et al. (2016).

3. Data Set
3.1. General

This study is based on the complete data set of auroral imagery obtained by the Cassini UVIS spectrographic

imager (Esposito et al., 2004) betweenorbit insertionon1 July 2004andendofmissionon15September 2017.

The UVIS instrument consists of two telescope-spectrographs covering the wavelength ranges 56–118 nm

(extreme ultraviolet) and 110–190 nm (far ultraviolet or FUV). All observations used in this study have been

taken with the FUV channel.

The UVIS FUV sensor consists of 64 × 1,024 pixels, providing 64 spatially distinct spectra arranged along

a single line. Each of the 64 spatial pixels has an angular resolution of 1.0 × 1.5mrad. A two-dimensional

pseudo-image is obtained by slowly slewing the spacecraft such that the detector sweeps over the area of

interest. Depending on the apparent size of the auroral oval from the spacecraft’s point of view, repeated

sweepsmay be necessary to attain full coverage of the auroral region. Latitude-longitude grids of each image

are calculated by projecting each pixel onto an ellipsoid located at an altitude of 1,100 km above Saturn’s

1 bar level (RE = 60, 268 km, RP = 54, 364 km)—the altitude at which auroral emissions are thought to be

generated (Gérard et al., 2009). This is performed using Cassini SPICE pointing information available on the

Planetary Data System.

During one exposure, each spatial pixel provides an intensity spectrumwith a resolution of up to 1,024 spec-

tral bins equally spread over the 110–190-nm range. In order to obtain the total unabsorbed H2 emission in

the 70–170-nm range, we first determine the brightness in the 155–162-nm range from the measured spec-

tra. Multiplying the resulting intensity by the factor 8.1 then gives the unabsorbed H2 emission intensity over

the whole UV wavelength range (Gustin et al., 2016, 2017).

After discarding images with poor coverage of the auroral region and unsuitable viewing geometries, we

are left with 4,192 images suitable for our analysis. From mid-2013 to mid-2014, the northern and south-

ern PPO systems were rotating at the same rate, locked in near antiphase (Provan et al., 2016). Images taken

during this interval would therefore introduce a strong statistical bias, as the two phase systems are not

quasi-independent anymore. We therefore exclude all imagery taken during this time from our data set,

leaving us with 2,777 images—still a much larger set than used in comparable previous studies.

The PPO phase for each UVIS image was determined using the most recent PPO model described in Provan

et al. (2018). The initial determination of the PPO phase values employed in this study includes some inherent

uncertainty due to the use of sliding windows with a size of several months, but the errors are relatively small

and well described in the corresponding publications (e.g., Provan et al., 2016, 2018).

Additional inaccuracies are introduced due to the exposure time of UVIS UV imagery. High-resolution scans

can take up to 3 hr—during this period, the PPO phaseΦN/S(t)will have changed bymore than 90∘. Different

pixels covering the auroral oval have likely been measured at different PPO phase angles, and the PPO phase

used in our calculations might in some extreme cases be in error by up to 45∘ (the center time of the UVIS

exposure is used to define its corresponding PPO orientations). These are rather rare cases, however—the

mean exposure time of all imagery used is below 1,000 s, resulting in a PPO phase angle change of less than

10∘ throughout the exposure of a typical image. With a large enough data set like ours, we therefore expect

these effects to largely average out.

3.2. Temporal and PPO-Phase Sampling

As most UVIS imagery has not been collected continuously but only in campaign-style whenever Cassini’s

orbital position was favorable and there was a justifiable scientific interest, the temporal coverage of the data

set is very uneven. Figure 2 shows the number of images per year used in this study for both hemispheres.

The number of images varies strongly throughout themission, with, for example, only∼20 images from 2009

but close to 1,000 from the second half of 2014 for the northern hemisphere (imagery between 2014-0 and

2014-180 having been excluded due to the PPO phase lock as indicated in section 3.1). During the years

2010–2012, no UVIS images are available as Cassini’s orbit was positionedmostly in the equatorial plane, and

Saturn’s polar regionswere simply not visible to the instrument.Overall, we therefore cannot take into account
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Figure 2. Number of UVIS images available for this study, (a) for the northern and (b) for the southern hemisphere. Note

the logarithmic scale of the y axis. The temporal sampling is clearly quite uneven, with the years 2009–2012 providing

barely any auroral imagery useful for our purpose.

temporal changes in relative PPO strengths and rotation rates between the two perturbation fields in any sig-

nificant manner, apart from excluding the statistically biased data from mid-2013 to mid-2014 coalescence

period as noted above. Note the unequal coverage between the northern and southern hemispheres—our

data set encompasses 2,245 images in the north and 532 in the south.

Figure 3 shows the distribution of the used images across different PPO phase angles ΦN(t) and ΦS(t). As

uneven as the temporal coverage may be, the full range of PPO phase angles has been sampled quite evenly

Figure 3. Coverage of planetary period oscillation phase angles ΦN/S in both hemispheres; same data set as shown in

Figure 2. (a) and (b) show the number of UVIS images per planetary period oscillation phase angle ΦN and ΦS bin,

respectively. (c) and (d) show the same statistics for the southern hemisphere. The color scale in all plots corresponds to

the year-coloring in Figure 2. Note the different vertical scaling between the top and bottom plots.
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Figure 4. Example UVIS image of the southern hemisphere from 2016-232 on which the binning procedures are

visualized. The view is from the above the north pole, looking “through” the planet into the southern hemisphere; the

Sun/noon is toward the bottom of the figure. Concentric rings around the pole mark 10∘ colatitude steps. Information

about Cassini’s location (radius, latitude, and LT) is given in the bottom left corner; time stamp, hemisphere, and

exposure time are given on top. Note the logarithmic intensity scale. (a) shows a 3-hr LT grid superimposed on the

original image, with two exemplary PPO bins (45∘ bin size) overlaid in shades of white (the actual bin size used for this

study is 4∕3 h, and 20∘ , respectively. The orientation of the southern PPO system for this time period is indicated by a

bold purple line, by definition coinciding with Ψ = 0∘. The superposition of the LT and PPO bin grids creates a pattern of

LT-PPO bins of alternating sizes; marked in blue and red and annotated accordingly. (b) defines the beat phases of the

two PPO systems. Red and blue sections mark which beat phase this image would correspond to depending on the

orientation of the northern PPO system. The actual orientation of the northern PPO system for this time stamp is

marked in green, this image would therefore be assigned the beat phase in phase. Note that the beat phase does not

depend on which hemisphere one considers, it is well defined only by comparing the orientations of the two PPO

systems. PPO = planetary period oscillation; LT = local time.

in the northern hemisphere due to the large number of images. The coverage in the south is more uneven,

but all PPO phases have been sampled a number of times.

4. Analysis

When analyzing the modulation of the auroral intensity due to the two rotating PPO systems, one has to

take into account the clear LT differences which the Kronian aurora statistically exhibits (e.g., Grodent et al.,

2005). In order to separate LT and PPO modulation as well as possible, we analyze the auroral intensity in

an LT-PPO phase space—similar to previous studies using HST and Cassini VIMS data (Badman, Achilleos, et

al., 2012; Nichols et al., 2016). The binning algorithm employed in this study is illustrated in Figure 4a. Each

image is sectioned in longitude according to a combination of equally sized LT and PPO ΨN/S binning grids.

We choose bin sizes of ΔLT = 4∕3 hr and ΔΨN/S = 20∘, respectively, resulting in 18 LT and 18 PPO “magnetic

longitude”,ΨN/S, bins.Note that superposing these twogrids leads to the imagebeing sectioned in36 sections

of alternating size as shown in Figure 4a. Each section is averaged in longitude before its intensity maximum

is determined; all these maxima of all relevant images are then sorted into LT-PPO bins. The average intensity

maximum in each LT-PPO bin is then calculated by taking a mean of all values in the corresponding bin.

The LT-PPO intensity histograms for the northern hemisphere are shown in Figure 5. Both histograms are

based on the same set of 2,245 UVIS images of the northern aurora. A first look at the LT histogram on the top

of bothplots shows the typical LT distribution of the Kronian auroral intensity, with a clear peak near dawnand

a small bump between dusk and midnight. This agrees with previous studies of both the UV (e.g., Kinrade et

al., 2018; Nichols et al., 2016) and IR auroral emissions (Badman, Andrews, et al., 2012). The secondary emission

peak behind dusk could be associated with periodic auroral spots caused by magnetopause reconnection or

Kelvin-Helmholtz waves (e.g., Mitchell et al., 2016).
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Figure 5. Mean of northern UV auroral intensity maxima per local time (4/3-hr bin size) and PPO phase ΨN/S = ΦN∕S − 𝜑 (20∘ bin size), shown in a logarithmic

color scale. (a) Northern hemisphere auroral intensity ordered by the northern PPO system and (b) northern hemisphere auroral intensity ordered by the

southern PPO system. Two Ψ phase cycles are plotted for clarity; the expected locations of maximum upward current are indicated by white-dashed lines. On the

top and to the side of each 2-D histogram, the averages of the mean intensity maxima over the ΨN/S and LT dimensions are shown in black, respectively.

Separate histograms showing the PPO intensity modulation in the dawn-noon (blue) and dusk-midnight (red) regions are calculated from the accordingly

marked parts of the histogram and shown to the right side (note the logarithmic intensity scale). The histogram over the full LT range (black) has been fitted with

a simple sine (gray). Its maxima are marked with vertical dash-dotted lines; its peak-to-peak (pk-pk) amplitude and the ΨN angle with the highest intensity are

given in the top right corner of each figure.

More interestingly, the northern auroral intensity shows a clear modulation in terms of both ΨN and ΨS. In

Figure 5a, showing the auroral intensity ordered by LT and ΨN, the mean auroral intensity maximum varies

with a peak-to-peak amplitude of about 5.8 kR. We find the sinusoidal fit on the histogram to maximize at

ΨN = 114∘, slightly lagging behind the expected location where maximum upward FAC is expected to occur,

at ΨN ≈ 90∘ (e.g., Andrews et al., 2010; Hunt et al., 2014). This intensity modulation is however significantly

higher and more ordered than observed in previous studies (Badman, Achilleos, et al., 2012; Nichols et al.,

2016). The modulations are most intense near dawn (blue box/histogram) but clearly also present between

dusk andmidnight (red box/histogram). The phase of themodulation is largely consistent through LT and fits

reasonably well to the regions of FACs identified by Hunt et al. (2014) using Cassini MAG data.

The northern auroral response associated with interhemispheric current closure of the southern PPO sys-

tem, shown in Figure 5b, is very similar to the modulation imposed by the primary system. The peak-to-peak

intensitymodulation amplitude is approximately 4.5 kR, slightly smaller thanwhatwe observe for the primary

system, and the peaks themselves seem less pronounced inΨS. The intensity maxima are again located close

to their expected location atΨS ≈ 90∘ throughout all LTs, with the highest intensities occurring atΨS = 113∘.

In the southern hemisphere, considerably fewer UVIS images were available for this analysis—only 532

images, about 24% of what were used from the northern hemisphere. The corresponding histograms are

shown in Figure 6. Nevertheless, modulations both due to the primary (Figure 6b) and secondary (Figure 6a)

PPO system are clearly visible and mostly consistent with what was observed in the north. Again, intensity

maxima in the primary (secondary) PPO system are found at ΨS = 299∘ (ΨN = 317∘) close to their expected

locations at ΨN/S ≈ 270∘, and the amplitude of the modulation is slightly higher for the primary PPO system

(5.6 kR) than for the secondary one (4.2 kR). It does seem that themodulation phase is slightly shifted between

the dawn-noon and dusk-midnight sectors, although this might well be an effect due to the much smaller

size of the data set compared to the northern hemisphere.

A feature shared between all the histograms shown however is the shift of the intensity peak inΨN/S relative

to where the largest FACs are expected from the initial model deduced by Andrews et al. (2010), sketched in

Figure 1. In both hemispheres and for both the primary and secondary PPOmodulation, the intensity peak is

consistently observed at largerΨN/S than expected from this model. The offset is in the range ofΨmax–ΨN/S ≈

25–50∘ in most histograms, such that the intensity maximum is always lagging behind the expected FAC

maximum. Supporting this offset, Hunt et al. (2014) observed the magnetic signatures of the parallel upward

BADER ET AL. 8465



Journal of Geophysical Research: Space Physics 10.1029/2018JA025855

Figure 6. Mean of southern UV auroral intensity maxima per local time and PPO phase ΨN/S = ΦN∕S − 𝜑, in the same format as Figure 5. (a) Southern hemisphere

auroral intensity ordered by the northern PPO system and (b) southern hemisphere auroral intensity ordered by the southern PPO system. Note the different

intensity scales compared to Figure 5. PPO = planetary period oscillation.

current density of the main current sheet in the southern hemisphere to maximize at roughly ΨS ≈ 300∘,

perfectly fitting to the intensity maximum in Figure 6b. In the northern hemisphere, the exact phase ΨN at

which the upward current density maximizes was not determined (Hunt et al., 2015)—assuming a similar lag

as in the southern hemisphere, the upward current can be expected to maximize at ΨS ≈ 120∘, coinciding

very closely with the location of the observed UV intensitymaximumwe find (Figure 5a). It is unclear how this

lag between the expected (Andrews et al., 2010) and observed FAC maxima, seen in both the magnetic field

data (Hunt et al., 2014) and auroral emissions, can be explained.

We also want to note here that the auroral intensifications we observe in Figures 5 and 6 are not necessar-

ily caused directly by PPO-associated FACmaxima rotating around the planet. PPOmodulations pervade the

entire magnetosphere and therefore entail a whole host of magnetospheric dynamics which could influence

the auroral intensity in a periodicmanner. Themost obvious or best explored process in this contextmight be

magnetotail reconnection, the occurrence of which is ordered by PPO phase (Jackman et al., 2016). Magne-

totail reconnection events have been shown to occur preferentially atΨN ≈ 0∕360∘ and at ΨS ≈ 90∘, that is,

they happen preferentially∼90∘ ahead in phase of the peak in the upward current for both PPO systems.With

magnetotail reconnection generally causing short-lived and localized intense auroral features (Jackman et al.,

2013), wewould also observe statistical brightenings of the UV aurora at certain PPO phases—depending on

the reconnection site as well as the lifetime and corotation speed of the associated auroral feature.

We have nomeans of separating direct PPO FAC-related auroral intensifications from indirect ones caused by

PPO-modulatedmagnetospheric dynamics, and the impact of indirectly caused intensifications on our results

cannot be judged reliably. The size of the data set and the typically rather low exposure time of the UVIS

images compared to the occurrence rate of tail reconnectionmay seem to indicate that the fraction of images

in which associated auroral emissions are observed is rather small—but depending on their lifetime, these

auroral features might (sub)corotate for a significant time and, for example, lead to an auroral intensification

when passing through dawn, “compromising” whole imaging sequences with indirect auroral brightenings.

The large number of UV images in the north additionally provides us with the chance to further investigate

interactions between the primary and secondary PPO systems. In order to look at the interhemispheric inter-

actions inmore detail, we split the data set in four groups according to the relative orientation of the two PPO

systems, the beat phase. Each image is binned into in phase, in antiphase, S leading N, and S lagging N beat

phase bins as demonstrated in Figure 4b.

Depending on thebeat phase, one can expect someoverlaps between the FACs of both PPO systems, enhanc-

ing or attenuating the overall FACs flowing at certainΨN/S. A sketch illustrating the anticipated behavior in the

northern hemisphere is shown in Figure 7. Note that the latitudinal offsets of the current regions shown are
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Figure 7. Sketch of expected FAC flows in the northern hemisphere for different beat phases. The view is onto the north

pole, with the observer rotating with the primary PPO system (PPO north, in green). The northern PPO perturbation field

is directed toward the bottom of each plot, with “magnetic longitude” ΨN increasing in clockwise direction. The relative

orientation of the secondary PPO system (PPO south) is marked in purple. Circles with dots represent upward FACs,

while circles with crosses indicate downward FACs; both colored according to the PPO system they are associated with.

The radial/latitudinal offset of the FAC markers for both systems is only for clarity; in reality, both systems’ FAC regions

map to similar latitudes (e.g., Hunt et al., 2015). Regions where both systems’ upward FACs overlap are highlighted with

hatching. (a) shows how the upward FACs of the two PPO systems overlap around ΨN = 90∘ if they are beating in phase,

increasing the overall current density and leading to an enhancement of the intensity modulation expected due to the

primary PPO system. At the same time, downward currents on the other side of the pole overlap. (b) In antiphase, the

primary PPO upward FAC region coincides with the secondary PPO downward FAC region and vice versa; attenuating

the modulation of auroral intensity due to the primary PPO system. (c) and (d) show overlaps between the two rotating

FAC systems for the intermediate beat phases S leading N and S lagging N. The overlaps are thought to create regions of

enhanced upward FACs offset to smaller/larger ΨN angles than expected if only primary PPO modulation was present.

PPO = planetary period oscillation; FAC = field-aligned current.

only for clarity and have no physical background (the reader shall be reminded that FACs associatedwith both

the primary and secondary PPO system flow on the same field lines, i.e., map to the same latitude; ; Bradley

et al., 2018; Hunt et al., 2015). If both PPO systems are aligned in phase (Figure 7a), an increase in the FAC

modulation due to the primary PPO system can be expected, while in the case of antiparallel orientation (in

antiphase Figure 7b), the modulation should be attenuated by a factor depending on the relative strength of

the two current systems at that time. For the intermediate beat phases (Figures 7c and 7d), shifts of the peak

upward FAC regions caused by primary PPOmodulation to lower (higher)ΨN are expected for PPO S leading

(lagging) PPO N.
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Figure 8. Contour plots of the median northern auroral intensity in the PPO north frame, for the four different beat

phases. The format is the same as in Figure 7, with (a) the mean of all images taken while the two PPO systems were in

phase and (b) for the in antiphase case. (c) and (d) show the mean auroral intensity for the S leading N and S lagging N

beat phases, respectively. The white-hatched regions are very rough estimates of where the upward current regions of

the northern (primary) and southern (secondary) PPO systems overlap and the UV auroral emission is expected to

increase, as explained in Figure 7 and the accompanying text. Numbers in parentheses correspond to the number of

UVIS images on which each median image is based. PPO = planetary period oscillation.

Figure 8 shows the average auroral emissions observed in the northern hemisphere. Each plot shows the

mean of all UVIS images of the northern auroral oval and used in this study which were obtained when the

two PPO systems were orientated in phase, in antiphase, and so on. If both PPO systems are aligned in phase

(see Figure 8a), we find a clear increase of the auroral emission strength close toΨN = 90∘; directly opposite,

we observe a strong depression in the emission strength near ΨN = 270∘. This whole pattern is, as already

observed previously, tilted to slightly largerΨN than expected.

Figure 8b shows that the auroral emissions are considerably less ordered in the northern PPO frame if the

northern and southern PPO systems are orientated in relative antiphase. While we expect the intensity maxi-

mumtobe lower than for the inphase case, this cannotbeobserved. Instead, the emission ismostly unordered

inΨN, and themean overall intensity seems to be higher compared towhen the twoPPO systems are in phase.

It is to note however that the set of images on which Figure 8b is based is less than half the size of the set cor-

responding to Figure 8a. And while the number of images may still seem quite large, it is worth mentioning

again that these are by no means continuous data sets. Of the 296 UVIS images used in Figure 8b, 73 have

been acquired on 2014 DOY 289-290 and 56 on 2008 DOY 201. This strong grouping of images is on one hand

fortunate, as it allows us to track several planetary rotations and directly investigate PPO-relatedmodulations

under near constant magnetospheric conditions. On the other hand, this obviously introduces a clear bias

toward effects external to PPO such as different solar wind input between different image groups, and the

absolute intensities between the different beat phase averages are therefore not really comparable.
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Figure 9. Comparison of ΨN versus mean intensity maximum histograms for different PPO beat phases for auroral

observations in the northern hemisphere, ordered by the northern PPO system. Again, two ΨN cycles are shown for

clarity. (a) compares the overall intensity modulation (black) with the modulations observable when the northern and

southern PPO systems are in phase (blue) and when they are in antiphase (red). Numbers in parentheses show the

number of UVIS images included in each subset. Note that the black line plot is identical to the black plot in the right

side histogram in Figure 5a. The three histograms have been fitted with a simple sinusoid to clarify similarities and

differences in modulation phase and amplitude. The fits’ peak-to-peak modulation amplitudes and phases are given in

boxes in the bottom left corner. The locations where maximum upward FACs are expected are marked with

vertical-dashed lines. (b) is of the same format, comparing the northern auroral intensity modulations when the

southern PPO system is leading (blue) or lagging (red) the northern PPO system with respect to the direction of

planetary rotation. PPO = planetary period oscillation; pk-pk = peak-to-peak.

In Figures 8c and 8d, we see the observed auroralmaximum in the northern PPO frame to be clearly displaced

from its average location at about ΨN = 90∘. As the hatched regions indicate, the displacement follows the

direction predicted by the simple model of overlapping currents described in Figure 7. Please be aware that

the hatched regions are only an approximation to guide the eye, and their width and location are by nomeans

exact or based on any observations or calculations.

We now perform the same intensity analysis as shown previously (e.g., Figure 5) but this time, for a separate

data set for each beat phase. Here we focus on analyzing the auroral intensity modulation in the northern

hemisphere due to the northern PPO system (i.e., we calculate histograms identical to the one shown in

Figure 5awith beat phase subsets of the full data set). For brevity, the full histograms are not shown—weonly

compare the LT-averaged histograms such as found, for example, on the side of Figure 5a. A comparison of

these histograms for the different beat phases is shown in Figure 9. Figure 9a compares the averaged auroral

intensity maximum of the in phase and in antiphase beat phases to the overall intensity histogram shown in

Figure 5a. For clarity, all histograms have been fittedwith a simple sinusoid. It is clear that the phase of the pri-

mary PPO-inducedmodulation does not shift noticeably, but the amplitude of themodulation is enhanced if

both PPO systems beat in phase compared to when they are in relative antiphase. The modulation amplitude

for the latter case is comparable to the overall modulation amplitude drawn in black. The intensity baselines

of the colored curves are significantly offset, with the in phase intensities oscillating about an average inten-

sitymaximumof approximately 10 kR and the in antiphase curve being centered on approximately 15 kR. This

differencemight well be explained by the comparably small number of in antiphase images, making the over-

all histogram visibly noisy and possibly introducing a bias toward certain time periods, solar wind conditions

or other non-PPO related effects.

Figure 9b compares the two intermediate beat phases with the overall average. In both cases, themodulation
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amplitude is largely comparable to the overall modulation amplitude. The slight differences in modulation

amplitude may again be accounted for by the differing number of UVIS images going into each histogram,

together with a possible bias due to varying image resolutions. However, the important detail in this figure is

the phase shift of the two histograms compared to the overall average. As sketched in Figures 7c and 7d, we

expect the auroral intensity peak to move to smaller ΨN if the southern PPO system is leading the northern

(primary) one and to largerΨN values for the opposite case—consistent with what we observe in Figure 9b.

5. Summary and Discussion

Following previous studies investigating PPO-modulation of Saturn’s auroral emissions usingHSTUV imagery

(Nichols et al., 2008, 2016; Nichols, Cowley, et al., 2010) and Cassini VIMS IR imagery (Badman, Andrews, et al.,

2012), we employed the full Cassini UVIS data set to analyze the rotational modulation of Saturn’s northern

and southern UV aurora between 2007 and 2017. In order to avoid introducing a statistical bias due to the

phase lock of the northern and southern PPO systems in near antiphase betweenmid-2013 andmid-2014, no

data from this timewindow are included. This left us with 2,777 UVIS images which were used to qualitatively

and quantitatively investigate modulations of the auroral intensity, due to the two PPO systems.

In both hemispheres, the auroral intensity was found to be strongly modulated by the primary PPO system

(i.e., the system originating in the same hemisphere). The UV intensity generally maximizes close toΨN = 90∘

in the northern hemisphere and ΨS = 270∘ in the southern hemisphere—coinciding with regions where

upward FAC signatures have been observed (Andrews et al., 2010; Hunt et al., 2014). Concurrently, the inten-

sities minimize on the opposite side of the pole where downward FACs have been observed. These intensity

modulations are persistent throughout LT, albeit with varying modulation amplitudes in the dawn-noon and

dusk-midnight regions.

Similarly, we observe clear UV auroral intensitymodulations causedby the secondary PPO system (i.e., the sys-

tem located in the opposite hemisphere) in both hemispheres. Again, intensity maxima (minima) are found

close to where upward (downward) FAC currents associated with the secondary PPO systems have been

observed tomaximize (Bradley et al., 2018; Hunt et al., 2015)—with intensity maxima in the northern (south-

ern) hemisphere occurring at about ΨS = 90∘ (ΨN = 270∘). Our observations are therefore clearly consistent

with the present model of interhemispheric closure of PPO-associated currents (Bradley et al., 2018; Hunt et

al., 2015). It seems as though the intensity modulation of the auroral emissions is slightly weaker for the sec-

ondary PPO systems than for the primary ones—indicating that not all PPO-associated currents close in the

opposite hemisphere. Instead, this confirms that current closure must partly occur in the equatorial region

just as observed by Bradley et al. (2018).

Interestingly, in both hemispheres and for both primary and secondary PPOmodulations, the observedmod-

ulation of the UV auroral intensity is slightly phase shifted with respect to the sinusoidal modulation of

FAC currents proposed by, for example, Hunt et al. (2014, 2015). This phase shift corresponds to an angu-

lar displacement of about 30–45∘ by which the observed auroral maxima and minima lag behind their

expected locations. While we cannot readily explain this observation, we note that Hunt et al. (2014) found

the upward FACs associated with the primary PPO system in the southern hemisphere tomaximize at around

ΨS = 300∘—lagging the model expectation by about 30∘ as well. However, this analysis could be performed

neither for the northern hemisphere or for interhemispheric modulations due to the complexity of the data

set. Relying on this one analysis though, we can assume that the FAC and UV emission maxima are colocated

and altogether lagging the model proposed by Andrews et al. (2010; see their Figure 12). Furthermore, it is

worth pointing out that the FACs they observed in the equatorial plane are by no means as clearly organized

as this first-order model assumes—the lag we observe in the UV auroral intensity is therefore well within the

prediction error of this model.

A more in-depth analysis of the intensity modulation of the northern UV aurora during different relative ori-

entations of the two PPO systems (beat phases) shows the expected higher (lower) modulation amplitude

when the two systems are in phase (in antiphase); the expected phase shift of the modulation during times

when the southern PPO system is leading/lagging the northern PPO system is also clearly observable. This

serves as further proof that both the FACs associated with the primary and secondary PPO systems flow on

the same field lines and that the auroral intensity depends on the combined current density of the two.
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Overall, the UV auroral intensity observations analyzed in this study clearly support observations of FAC flows

in both hemispheres. Despite some offsets between the locations of FACmaxima proposed by the initial sim-

ple model by Andrews et al. (2010) and the intensity maxima observed in auroral emissions, the results of

this investigation provide the best overall evidence to date in auroral data for the application of the present

simple PPO model (e.g., Andrews et al., 2010; Bradley et al., 2018; Hunt et al., 2014, 2015). This highlights the

importance of continuous auroral observations for tracking PPO-related features on Saturn, as large data sets

are required to successfully perform the necessary statistical analyses.
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Modulations of Saturn’s UV Auroral Oval Location by
Planetary Period Oscillations

A. Bader1 , S.V. Badman1 , J. Kinrade1 , S.W.H. Cowley2 , G. Provan2 , andW. Pryor3
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Abstract It is well known that Saturn's magnetospheric dynamics are greatly influenced by the

so-called planetary period oscillations (PPOs). Based on Cassini Ultraviolet Imaging Spectrograph (UVIS)

imagery, it has been shown previously that the UV auroral intensity is clearly modulated in phase with

rotating field-aligned current (FAC) systems associated with the PPOs. Here we expand upon this

investigation by using the same data set to examine the PPO-induced spatial modulation of the main

auroral oval. We present a robust algorithm used for determining the location of the main emission in

Cassini-UVIS images. The location markers obtained are then used to calculate the statistical location of

the auroral oval and its periodic displacement due to the PPO FACs and the related ionospheric flows. We

find that the largest equatorward displacement of the main arc lags behind the PPO-dependent statistical

brightening of the UV aurora by roughly 45–90◦ in both hemispheres and is not colocated with it as the

present model based on magnetometer observations suggests. We furthermore find the center of the auro-

ral oval by fitting circles to the main emission and analyze its elliptic motion as the entire oval is displaced

in phase with the PPO phases. It is demonstrated that the periodic displacements of both the auroral oval

arc and its center are larger when the two PPO systems rotate in relative antiphase than when they are in

phase, clearly indicating that interhemispheric PPO FAC closure modulates not only the intensity but also

the location of the main UV auroral emission.

1. Introduction

Even though Saturn's magnetic dipole tilt relative to its rotational axis is negligibly small (Burton et al., 2010;

Dougherty et al., 2018), the surrounding magnetosphere is permeated with periodic phenomena occurring

mostly at periods close to the planetary rotation period of∼ 10.5 hr. These features are effects of the so-called
planetary period oscillations (PPOs) modulating, i.a., magnetic fields, particle populations, plasma waves,

and radio emissions detected around Saturn (e.g., Andrews, Cowley, et al., 2010; Arridge et al., 2011; Carbary,

2017; Carbary & Mitchell, 2013; Cowley & Provan, 2017; Lamy, 2011; Ye et al., 2016). These periodic mod-

ulations have been shown to exhibit two close but distinct periods, each of which are associated with one

of the two polar hemispheres (e.g., Andrews, Coates, et al., 2010; Gurnett et al., 2009). The origin of these

periodic phenomena is therefore thought to be vortical flow structures in Saturn's polar ionospheres (e.g.,

Jia & Kivelson, 2012; Jia et al., 2012).

Saturn's auroral emission is a good proxy for the global state of the surrounding magnetosphere.

The main emission is generated by flow shears between different plasma populations in the outer

magnetosphere—subcorotating with the planet at different angular speeds, this sets up a system of

field-aligned currents (FACs) causing electrons to precipitate into the polar upper atmosphere (e.g., Badman

et al., 2015; Belenkaya et al., 2014; Hunt et al., 2014). Superimposed on this local time (LT)-fixed FAC sys-

tem are the two rotating FAC systems, associated with one PPO system each (e.g., Andrews, Coates, et al.,

2010; Provan et al., 2016). These FAC systems independently rotate at close to the planetary rotation rate in

both polar hemispheres, modulating the currents responsible for the generation of auroral emission in their

local as well as in the opposite hemisphere (e.g., Bradley et al., 2018; Hunt et al., 2014, 2015, 2016).

These modulations are expected to manifest as periodicities in the auroral emissions. It has, for example,

been shown that the auroral brightness exhibits a rotational modulation (Sandel et al., 1982), which is in

phase with the rotation of the two PPO systems as expected from Saturn kilometric radiation (SKR) and

FAC measurements (Bader et al., 2018; Nichols, Cecconi, et al., 2010). Each hemisphere's auroral intensity
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exhibits dual modulation controlled by the superposition of the primary (same hemisphere) and secondary

(opposite hemisphere) PPO systems' FACs.

Several studies based on limited Hubble Space Telescope (HST) data sets have investigated themotion of the

auroral oval by analyzing the displacement of the oval's boundaries and centers in relation to periodicities

in SKR emissions and magnetic field data (Nichols et al., 2016; Nichols, Cecconi, et al., 2010; Nichols et al.,

2008; Nichols, Cowley, & Lamy, 2010; Provan et al., 2009). Correlations between SKR and auroral emissions

are expected as the ionospheric footprints of observed SKR sources are colocated with the UV aurora and

both are associated with accelerated electrons at high latitudes (Lamy et al., 2009). Analyzing HST images

from 2007–2008, Nichols et al. (2008) found clear evidence of an oscillatory motion of the auroral oval with

a period close to the planetary rotation, and Provan et al. (2009) showed that the southern oval is generally

tilted away from the southern hemisphere's magnetic perturbation field. These findings could be confirmed

with 2011–2013 HST data (Nichols et al., 2016), but not with the 2014 HST data set (Kinrade et al., 2018).

However, many images in the latter data set did not exhibit a dawn arc, preventing reliable circle fits and

cutting down the usable data set such that the PPO phase coverage was rather limited.

The strength of these auroral modulations is expected to depend on the relative strength of the two

PPO-associated current systems. In the case of equal modulation amplitudes, about half the current of each

system closes in the equatorial region and half in the opposite hemisphere (Bradley et al., 2018). It can there-

fore be assumed that in each hemisphere the primary system's FACs are twice as strong as the secondary

system's. In this case, the primary PPO modulation would dominate. However, the relative strength of the

two systems has been shown to change over time (e.g., Provan et al., 2013).With one system frequently dom-

inating the other by a factor 2 or larger, the auroral modulation might well be controlled by the secondary

PPO system depending on time and hemisphere.

Using a large set of Cassini UVIS data, we want to expand on previous studies by analyzing the statistical

location and displacement of Saturn's UV aurora due to PPO current modulation. In section 2 we present a

new algorithm for automatically determining the location of Saturn's main emission auroral arcs, describe

how the auroral oval is fitted with a circle based on the locationmarkers determined in the previous step and

characterize the data set used. Drawing on all appropriate Cassini UVIS data, we determine the statistical

location of the main auroral oval in section 3.1, estimate the seasonal and solar cycle influence on this

statistical location (section 3.2), and investigate how themain emission is displaced due to PPOmodulations

(section 3.3). Lastly, we analyze the PPO-induced oscillatory motion of the auroral oval in section 3.4 by

employing circle fits of the auroral oval. Section 4 summarizes and discusses our findings and conclusions.

2. Data Set and Analysis Methods

The data set employed in this study is initially identical to the one used in Bader et al. (2018)—containing

all auroral imagery obtained with the FUV channel (far ultraviolet, 110–190 nm) of the UVIS spectrographic

imager (Esposito et al., 2004) during the whole Cassini Saturn tour between July 2004 and September 2017.

For a more detailed overview describing the instrumentation and the projection and integration methods

we refer the reader to Bader et al. (2018).

2.1. Determining the Location of the Auroral Oval

The poleward and equatorward boundaries of Saturn's auroral oval have been determined in several previous

studies based on HST auroral imagery. Starting with Badman et al. (2006), these boundaries were usually

determined by the full-width half-maximum (FWHM) (co)latitudes of the auroral brightness distribution.

This technique was later improved by Nichols et al. (2016), who first fitted Gaussians to the latitudinal

brightness distribution before calculating the FWHM values representing the poleward and equatorward

boundaries of the oval.

However, in combination with the quite different UVIS auroral imagery this method proved to be unreliable

and too rigid to capture the dynamic morphologies observed. Hot pixels and poleward injections can easily

throw off the resulting main emission boundaries, and the highly variable viewing geometries with often

large pixel sizes frequently produce jagged boundaries following the pixel outline. It is furthermore not

possible to remove “wrong” data pointsmanually simply due to the size of the data set. Overall, the boundary

points determined using the de facto standardmethod often did not fit to what would be selected by eye and
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Figure 1. Ultraviolet Imaging Spectrograph (UVIS) image of the northern hemisphere from 2008 DOY 239 at 03:37.
The gray grid is spaced in 90◦ longitude and 10◦ colatitude. The UV auroral intensity is shown with a logarithmic color
scale. (a) Cassini's magnetic footprint is indicated with a yellow-and-black diamond, its trajectory ±2 days drawn in
white. Green and purple lines show the orientation of the two PPO systems' perturbation dipoles at the time of the
image. Positional data for Cassini in KRTP coordinates is given on the bottom left. (b) The initial guess of the auroral
oval location is marked with a black-and-white line. The poleward and equatorward limits of the extracted region are
marked with a red and blue line, respectively. (c) The arc center locations are shown with black markers, and the
poleward and equatorward boundaries with red and blue markers, respectively. (d) The yellow circle represents the
best fit circle to the given center points (black markers), the circle center being marked with a small yellow cross close
to the planet's pole. DOY = day of year; LT = local time.

cleaning the results by hand was not feasible. We therefore developed a quite different method of detecting

the location of the auroral oval and its boundaries, based on basic image processing and filtering algorithms.

Figure 1a shows an example UVIS image, which will be used here to explain the processing stages involved.

As a first step, we calculate an initial guess of the main emission's location. Since Saturn's auroral “oval”

is nearly circular and centered around the pole, we simply bin the original intensity distribution into 0.5◦

longitude (2-min LT) bins and determine at which colatitude the brightness maximizes. Running a simple

median box filter of size 60◦ in longitude (4-hr LT) over this series of colatitude values gets rid of outliers, fills

some missing values, and provides a satisfying first guess of where we expect the auroral oval to be located.

In Figure 1b, this initial guess is indicated with a black-and-white rather circular line.

Next we “extract” a part of the image for further processing—following the initial guess line, we keep all data

within a great-circle distance of 8◦ of the guess and discard the rest. For each point of the initial guess (0.5◦

longitude/2-min LT binning), the perpendicular to the guess line is calculated using neighboring points.
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Figure 2. Extracted region of the original image, with local time (LT) along the x axis and pseudolatitude along the y
axis (negative values indicating a poleward direction). The processing steps involved are explained in the text.
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Along this perpendicular, we note the brightness of the original image in 150 equal steps. This results in a

brightness grid of 720 longitudes/LTs (0◦ to 360◦, 0 to 24 LT) and 150 “pseudolatitudes” (−8◦ to 8◦ great-circle
distance from the guess line). The poleward and equatorward limits of the extracted region are shown in red

and blue, respectively, in Figure 1b.

The extracted region with its original brightness distribution is shown in Figure 2a. Depending on the qual-

ity of the initial guess, the auroral oval should be somewhat horizontally in the center of the image. This

extracting and “stratifying” of a subimage from the original is necessary so that we can apply asymmetric

filters later on, for example, smoothing operations with a box wide in pseudolatitude but narrow in LT.

Note the small sections with invalid values in the top left and right corners—as these occur quite fre-

quently and are not supported by most image processing algorithms, they need to be filled. In this case

we calculate a filler image by replacing the missing values with zeros, mean filtering it with a 12 hr × 8◦

(LT × pseudolatitude) box filter and scaling it such that the maximum values of the original and the filler

image are the same. The original's missing values are then filled with the corresponding values of the filler

array. This way we smooth the transition between valid and invalid values in dimmer regions such as to

avoid false detections at a later stage. Figure 2b shows the original with missing values filled in as described.

Now we use an adaptive thresholding algorithm as a basic means of feature detection. We choose a win-

dow size of 151 × 151 pixels (median filter boxes need to have uneven side lengths), or about 5 hr × 16◦

(LT × pseudolatitude). This window covers the whole pseudolatitude range so that in most cases only the

main emission with its generally clear brightness peak is picked out as a feature. The rather limited LT size

ensures that there is not too much smearing in this direction. The threshold value is a sum of all values in

the window, weighted with a Gaussian distribution according to the pixel distance from the window center.

The result of this adaptive thresholding is shown in Figure 2c. A simple median filter of size 15 × 15 pixels,

or 0.5 hr × 1.6◦, cleans the result of small patches and joins nearby detections (see Figure 2d).

Figure 2e shows the original extractionmultiplied with the patch detection result, Figure 2d. Wemean filter

this result with a 20×15 pixel, or 40min× 1.6◦, window such as to smooth out the noise of the original UVIS

pixels and to create a smooth transition between regions corresponding to detections and non-detections

of patches (see Figure 2f). The boundaries and arc center location of the auroral oval are then obtained by

determining the FWHM boundaries and the maximum, respectively, along pseudolatitude for every LT bin.

Median filtering the obtained values with a 40-min LT window yields our final result, shown in Figures 2g

and 2h plotted onto the processed and original extracted images, respectively. Lastly, we bin and median

average the pseudolatitudes into 72 longitude/LT bins of size 5◦/20min LT and retransform them into true

colatitudes. By removing points which deviate from the mean of the set by more than 3 times the standard

deviation, we exclude all poleward and equatorward patches which are definitely not related to the main

emission. These final poleward and equatorward boundaries and the arc center locations of the auroral oval

as determined by the described algorithm are shown in Figure 1c, overplotted on the original image.

We note here that the givenwindow sizes are partly justified by logical reasoning as described in the previous

paragraphs, but sometimes also simply chosen by trial-and-error such that the algorithm is as robust as

possible and that the calculated oval locations fit best to what would be chosen visually.While the calculated

arc center (co)latitudes of the auroral oval are unaffected by this, we expect the poleward and equatorward

boundaries to be influenced by the window size of the mean filter applied between Figures 2e and 2f. These

boundaries are consistent within this data set and study, but we advise caution when applying these values

and their difference (the width of the auroral arc) to results of previous studies.

2.2. Circle Fitting

In order to track the motion of the auroral oval's center, we utilize the points determined with the presented

algorithm and fit a circle to them. We use the arc center colatitude markers of the auroral oval and find

the circle center point close to the pole which minimizes the average radial distance of all markers to it

using a simple least squares minimization. Note that previous studies (Kinrade et al., 2018; Nichols et al.,

2008, 2016) have used the equatorward boundary of the auroral oval instead of the arc center in order to

avoid taking into account poleward emissions. However, as our detection method suppresses the detection

of poleward emission, we prefer to use the center of the arc such as to not introduce an additional error due

to the varying width of the auroral oval. Figure 1d shows the same image as before, this time with only the

arc center colatitude markers of the auroral oval shown with their corresponding circle fit. The error of the
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Figure 3. Number of Ultraviolet Imaging Spectrograph (UVIS) images per year available for this study, (a) for the
northern and (b) for the southern hemispheres, outside of the planetary period oscillation coalescence period. Shown is
the number of images providing boundary and arc center points (nonhatched bars) and the number of images on
which circle fits were successful (hatched bars). Note the logarithmic scale of the y axis.

circle center is assumed to be equal to the average distance of the fit markers to the final optimal fit circle.We

do not take into account any errors arising from the image projection, as we exclude uncertain projections

beforehand (see section 2.3).

Several constraints had to be put in place in order to avoid poor circle fits. We require that at least 36 out

of the possible 72 boundary points should be defined, and the available points have to be spread such that

there are more than 3 in at least three of the four quadrants (dawn, noon, dusk, and midnight). This way we

prevent fitting when the circle is unconstrained to one side.

Due to the inconsistency of the data set it was nevertheless necessary to sort the remaining successful fits

manually—discarding several observation days with unusually low auroral activity and no main emission

arcs, as well as observations with bad viewing geometries, where the main emission was partly observed

close to the terminator and its colatitude is associated with a large projection error.

We also tried fitting the data with an ellipse instead of a circle. However, the results were not noticeably

impacted by this, and the number of usable images was reduced because any ellipse fitting algorithm is

generally less robust against, for example, missing values than a circle fitting algorithm due to its increased

degrees of freedom. Hence we favored simple circle fits to improve statistics.

2.3. Data Set Selection

The existing set of 4,192 images is downselected in order to exclude images taken when Cassini was more

than 40 RS from the planet (when the pixel size begins to exceed the typical width of the auroral oval). For

an image to be considered suitable for our analysis, we also require Cassini to be located at latitudes at least

30◦ above/below the equatorial plane such that the projection error is limited (i.e., the auroral oval was not

observed too close to the planetary limb). This leaves 2,613 images (1,990 in northern hemisphere; 623 in the

southern hemisphere) available for the calculation of the statistical location and boundaries of the auroral

oval. For investigating PPO-related features this data set reduces to 2,160 (1,611 in the northern hemisphere;

549 in the southern hemisphere) images, as some images fall into the coalescence period when the two PPO

systems were rotating locked in antiphase between mid-2013 and mid-2014. In this time period, the two

PPO phases were not statistically independent anymore, and the analysis of the auroral oval center's motion

which we undertake in this study is not justifiable. Of the remaining images, 574 (416 in the northern hemi-

sphere; 158 in the southern hemisphere) exhibited a clear enoughmain emission oval with good enough LT

coverage to be fitted with a circle. These have been chosen manually as described in section 2.2.

The temporal distribution of these sets of images is shown in Figure 3. We note that there are several years

during which no data suitable for locating the auroral oval are available, for example, during Cassini's

equatorial orbits in the years 2009–2012.

2.4. PPO Phases

Each of the two rotating PPO systems is associated with a system of electrical currents, flowing as a down-

ward FAC into one side of the ionosphere. The current then crosses the polar cap as a Pedersen current

before returning out into the magnetosphere as an upward FAC on the opposite side of the polar cap
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Figure 4. Planetary period oscillation (PPO)-related rotating field-aligned current (FAC) patterns in Saturn's polar
ionosphere. To the left (right), the northern (southern) polar region is shown as seen from above the north pole. The
near-equatorial magnetic PPO perturbation dipoles are directed toward the bottom of the figure and indicated with
black arrows. ΨN/S increases in clockwise direction. Green/purple circled crosses and dots represent FACs flowing into
and out of the diagram plane, respectively. For example, in the northern hemisphere, upward FACs and therefore
increased auroral intensities are expected at around ΨN = 90◦ for the primary system and at around ΨS = 90◦ for the
secondary system. The relative orientation of the two PPO systems determines whether their associated upward FAC
regions are colocated or not. Red lines and arrows sketch the driving neutral atmospheric and ionospheric flows in the
respective hemisphere. Adapted from Bader et al. (2018) and Provan et al. (2018).

(e.g., Hunt et al., 2014, 2015). This current circuit closes partly in the equatorial region, and partly in the

other hemisphere where it enters the ionosphere, crosses the polar cap, and exits into the magnetosphere

in a similar fashion. The currents associated with the two PPO systems flow on the same field lines and are

not latitudinally separated (e.g., Bader et al., 2018; Bradley et al., 2018). A good sketch of the PPO systems

and their associated currents is given in, for example, Provan et al. (2018, Figure 1).

Each PPO current system has an associated magnetic dipole moment directed transverse to the planetary

dipolemoment, which rotates in the azimuthal direction in the sense of planetary rotationwith its respective

PPO rotation period 𝜏N/S. We define the instantaneous orientation of each system by the azimuthal angle

of the perturbation field's dipole vector ΦN/S(t). This angle increases eastward (in the direction of planetary
rotation), is referenced to local noon, and is frequently referred to as PPO dipole angle or phase angle.

We also define PPO dipole-fixed frames in order to position auroral features with respect to the PPO per-

turbation fields. The so-called “magnetic longitude” of a certain location in the LT frame at a certain point

in time is given by ΨN/S(𝜑, t) = ΦN/S(t) − 𝜑 with 𝜑 as the noon-referenced planetary longitude, such that

ΨN/S = 0◦ is aligned with the transverse dipole of the respective perturbation system. As this describes the

rest frame of the PPO rotation, all PPO-associated FACs are located at constant values of ΨN/S.

Figure 4 shows where upward and downward FACs are expected to be located in the two hemispheres in the

respective magnetic longitude frames (e.g., Andrews, Coates, et al., 2010; Hunt et al., 2015). In each hemi-

sphere, the FAC patterns associated with the primary and secondary systems are the same. However, they

rotate at different rates 𝜏N and 𝜏S together with the northern and southern PPO perturbation dipoles such

that there is an arbitrary angle between the dipoles; the FAC patterns therefore may or may not overlap (see

also Bader et al., 2018, Figure 7, and Provan et al., 2016, Figure 10). The upward FACs in the northern hemi-

sphere were found tomaximize aroundΨN ≈ 90◦ for the northern/primary PPO system, with the downward

currents peaking near ΨN ≈ 270◦. Interhemispheric currents from the southern/secondary PPO system

closing in the northern hemisphere are thought to cause the same FAC pattern, with upward (downward)

currents maximizing at ΨS ≈ 90◦ (ΨS ≈ 270◦). Conversely, upward (downward) currents in the southern

hemisphere maximize close to ΨS/N ≈ 270◦ (ΨS/N ≈ 90◦). Note that auroral emissions occur in regions with

upward currents, i.e. due to precipitating electrons.

The PPO phases for all UVIS images were determined using the empirical PPO model described in Provan

et al. (2018), which encompasses magnetic field measurements from the full Cassini mission. Their phases
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Figure 5. Coverage of PPO phase angles ΦN/S in both hemispheres using the same data set as shown in Figure 3.
Panels (a) and (b) show the number of Ultraviolet Imaging Spectrograph (UVIS) images per 30◦ PPO phase angle ΦN

and ΦS bin, respectively. Panels (c) and (d) show the same statistics for the southern hemisphere. The color scale in all
plots corresponds to the year coloring in Figure 3. Nonhatched bars show the number of images providing boundary
and arc center points, hatched bars the number of images with successful circle fits. Note the different vertical scaling
between the top and bottom plots. PPO = planetary period oscillation.

include some uncertainty due to the use of sliding windowswith sizes of up to several months, but the phase

errors are relatively small and well described in the corresponding studies (e.g., Provan et al., 2016, 2018).

Additional inaccuracies might arise based on the exposure time of the UVIS images, which can be up to 3 hr

long. However, as shown in Bader et al. (2018), the mean error due to exposure time is expected to be less

than 10◦.

Figure 5 shows the distribution of the images in our data set across different PPO phase angles ΦN(t) and
ΦS(t). The whole range of PPO phase angles has been sampled rather evenly in both hemispheres, more

evenly in the north than in the south due to the different size of the data sets. In the northern (southern)

hemisphere, in each PPOphase binwith size 30◦ there are at least∼ 120 (∼ 35) imageswith locationmarkers

and boundary points available, and ∼ 20 (∼ 5) images with successful circle fits.

3. Analysis and Discussion
3.1. Statistical Auroral Oval Location

Several studies have determined the statistical location of the auroral oval based onHST (e.g., Badman et al.,

2006; Kinrade et al., 2018; Nichols et al., 2016) and UVIS imagery (Carbary, 2012). Here we want to update

these results with all suitable UVIS data, the largest data set used to date for this purpose, including statistics

for the full nightside unlike most HST data.

Our poleward and equatorward boundary points and arc center locations are available in 5◦

longitude/20-min LT steps. We find the statistical boundaries and arc centers by median averaging all avail-

able points in each longitude bin. The error is determined using the median absolute deviation on the

respective data subsets. Figures 6a and 6b show the resulting statistical arc center in black, and the statis-

tical poleward and equatorward boundaries in red and blue, respectively. The values with their associated

uncertainties are also given in Table 1.
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Figure 6. (a, b) Median poleward (red) and equatorward (blue) boundaries and arc centers (black) of Saturn's northern
and southern auroral ovals in a local time (LT) frame. Median absolute deviation (MAD) uncertainties are indicated
with shaded envelopes; numbers in brackets represent the number of boundary points/arc center points on which each
graph is based (one image with full LT coverage yielding 72 points). (c, d) The northern/southern oval's median arc
center and its MAD calculated from all imagery obtained before (green) and after equinox (yellow) in 2009. (e, f) The
northern/southern oval's median arc center and its MAD calculated from all imagery obtained during low solar activity
periods (2007–2009 and 2016–2017, green) and high solar activity periods (2012–2014, yellow).

The boundaries we determined in this study generally agree with the previous investigations. We can con-

firm that the auroras in both hemispheres are found most equatorward between midnight (0 LT) and dawn

(6 LT) LTs and that it is most poleward in the postnoon sector (12–18 LT). The southern auroral oval is found

to be more extended than the northern one due to the presence of a significant axial quadrupole compo-

nent in Saturn's magnetic field, corresponding to a northward shift of the magnetic dipole (e.g., Dougherty

et al., 2018).
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Table 1
Statistical Location of Saturn's Auroral Oval for All Local Times

North South

𝜑LT (LT) 𝜃p Δ𝜃p 𝜃c Δ𝜃c 𝜃e Δ𝜃e 𝜃p Δ𝜃p 𝜃c Δ𝜃c 𝜃e Δ𝜃e
5 (00:20) 14.6 1.3 16.2 1.1 17.7 1.2 16.1 1.9 17.9 1.8 19.3 1.9

15 (01:00) 14.9 1.2 16.4 1.1 17.8 1.1 16.4 1.9 18.1 1.7 19.5 1.9

25 (01:40) 15.0 1.1 16.5 1.0 17.9 1.0 16.5 1.8 18.2 1.8 19.6 1.9

35 (02:20) 15.1 1.0 16.5 0.9 17.9 1.0 16.6 1.8 18.2 1.8 19.6 1.9

45 (03:00) 15.2 1.0 16.5 0.8 17.9 0.9 16.7 1.9 18.3 1.8 19.7 1.8

55 (03:40) 15.2 0.9 16.5 0.8 17.8 0.8 16.8 1.9 18.2 1.8 19.6 1.8

65 (04:20) 15.2 0.9 16.4 0.8 17.7 0.8 17.0 1.7 18.3 1.7 19.5 1.7

75 (05:00) 15.2 0.9 16.3 0.8 17.5 0.8 17.0 1.7 18.3 1.6 19.4 1.7

85 (05:40) 15.1 1.0 16.2 0.9 17.3 0.8 16.7 1.7 18.0 1.7 19.1 1.7

95 (06:20) 14.9 1.0 15.9 0.9 17.0 0.8 16.4 1.8 17.4 1.7 18.6 1.6

105 (07:00) 14.6 1.0 15.7 0.9 16.8 0.9 16.2 1.8 17.1 1.7 18.2 1.4

115 (07:40) 14.3 1.2 15.5 1.0 16.6 0.9 15.7 1.7 16.9 1.5 17.9 1.2

125 (08:20) 14.0 1.3 15.2 1.1 16.4 0.9 15.4 1.7 16.6 1.3 17.8 1.2

135 (09:00) 13.7 1.5 15.0 1.2 16.3 1.0 15.3 1.6 16.5 1.1 17.6 1.2

145 (09:40) 13.4 1.6 14.8 1.3 16.0 1.2 15.0 1.5 16.3 1.1 17.3 1.1

155 (10:20) 13.0 1.7 14.5 1.4 15.8 1.3 14.9 1.5 16.1 1.1 17.2 1.0

165 (11:00) 12.7 1.8 14.1 1.6 15.4 1.4 14.8 1.5 16.0 1.2 17.1 1.2

175 (11:40) 12.5 1.9 13.8 1.7 15.2 1.5 14.7 1.6 15.7 1.4 16.9 1.3

185 (12:20) 12.1 1.9 13.3 1.8 14.8 1.5 14.6 1.6 15.6 1.5 16.7 1.4

195 (13:00) 12.0 1.9 13.2 1.8 14.6 1.6 14.6 1.6 15.5 1.4 16.7 1.3

205 (13:40) 11.8 1.9 13.0 1.7 14.5 1.6 14.7 1.6 15.6 1.5 16.7 1.3

215 (14:20) 11.9 1.8 13.0 1.8 14.4 1.7 14.7 1.7 15.6 1.6 16.7 1.4

225 (15:00) 11.9 1.9 13.0 1.8 14.4 1.8 14.9 1.7 15.8 1.7 16.9 1.5

235 (15:40) 12.0 2.0 13.3 2.0 14.7 1.9 15.1 1.7 16.2 1.7 17.3 1.6

245 (16:20) 12.1 2.1 13.4 2.1 14.8 2.0 15.3 1.7 16.6 1.7 17.6 1.6

255 (17:00) 12.3 2.1 13.7 2.1 15.1 2.2 15.4 1.7 16.9 1.6 18.1 1.6

265 (17:40) 12.4 2.3 13.9 2.2 15.4 2.2 15.5 1.8 17.2 1.6 18.5 1.8

275 (18:20) 12.6 2.3 14.1 2.3 15.7 2.2 15.7 1.8 17.2 1.6 18.6 1.7

285 (19:00) 12.7 2.2 14.2 2.2 15.8 2.2 15.8 1.7 17.3 1.5 18.6 1.7

295 (19:40) 12.8 2.0 14.4 2.1 16.0 2.0 15.7 1.7 17.3 1.6 18.4 1.5

305 (20:20) 13.0 1.9 14.7 1.9 16.3 1.8 15.7 1.8 17.2 1.7 18.4 1.7

315 (21:00) 13.4 1.8 15.0 1.7 16.6 1.7 15.8 1.8 17.3 1.7 18.6 1.7

325 (21:40) 13.6 1.7 15.3 1.5 16.8 1.5 15.9 1.8 17.5 1.7 18.7 1.9

335 (22:20) 13.9 1.6 15.5 1.4 17.0 1.4 15.9 1.9 17.4 1.9 18.7 2.0

345 (23:00) 14.2 1.5 15.8 1.3 17.2 1.4 15.8 1.9 17.4 1.8 18.8 1.9

355 (23:40) 14.4 1.5 16.0 1.2 17.4 1.3 15.9 1.9 17.8 1.9 19.1 1.9

Note. We present the median poleward and equatorward boundaries as well as the statistical center colatitudes 𝜃 together with their median absolute deviations
�𝜃, indicated with subscripts p, e, and c, respectively. All values are given in degrees colatitude from the corresponding pole. LT = local time.

While we find the largest equatorward extent of the equatorward boundaries to be 17.9◦ (19.7◦) for the

northern (southern) hemisphere, Nichols et al. (2016) determined values of 17.7◦ (18.3◦) for the same. The

difference is only small and can likely be explained by the different detection methods, and with differ-

ent definitions of the boundary itself. While in previous studies the boundary is solely determined by the

FWHM of the brightness distribution in each longitude sector, our results depend on more parameters. The

raw brightness is still the most determining factor, but the extent of the corresponding patch detected with

adaptive thresholding clearly also has an impact on where exactly the boundary is eventually placed. Lastly,

the window size of the box filter applied between Figures 2e and 2f influences the final processed intensity
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distribution from which the FWHM boundaries are calculated. However, this window size was deliberately

chosen very small to minimize this effect.

In comparison with Carbary (2012), who found the corresponding equatorward peaks of the equatorward

boundaries at approximately 18◦ (20◦), we can confidently conclude that the boundary detection method

newly presented in this paper seems to complement the previous analysis methods.

The statistically most poleward extent of the poleward boundaries was 11.8◦ (14.6◦) for the northern (south-

ern) hemisphere, Nichols et al. (2016) determined values of 5.9◦ (9.9◦) for the same. Carbary’s (2012)

poleward boundaries reach minimum values of approximately 9◦ (8◦). This clearly shows one of the limi-

tations of the previously employed methods for the determination of boundaries: frequent observations of

transient polar emissions attributed to dayside and cusp reconnection (e.g., Badman et al., 2013; Gérard

et al., 2005; Kinrade et al., 2017;Meredith et al., 2014; Radioti et al., 2011). As these can be rather bright, they

are easily picked out as “main emission” using simple FWHM or Gaussian fits on the raw brightness distri-

bution. Our new algorithm instead employs several (median) filtering steps to minimize the impact of small

poleward or equatorward features; therefore, the statistical location of the main auroral oval as determined

in this study exhibits a smaller poleward displacement in the corresponding local time region. Of course,

larger poleward features will still be detected—posing the question of which part of the auroral emission in

this local time sector is even considered the “main emission.”

3.2. Seasonal and Solar Cycle Variation of the Auroral Oval Location

Before investigating PPO-induced modulations of the auroral oval position, we consider possible seasonal

and solar cycle-related changes. Figures 6c and 6d show the statistical arc centers of the northern and south-

ern auroral for the time intervals before 2010 (green) and after 2010 (yellow). They are calculated in the

sameway as the statistical arc centers shown in Figures 6a and 6b, only based on the pre-2010 and post-2010

subsets of the complete data set.With equinox having occurred inAugust 2009, this division effectively sepa-

rates the data into preequinox (southern summer) and postequinox (northern summer) sets since no usable

imagery was available in 2010–2011 (see Figure 3). Figures 6e and 6f show the statistical arc centers for

periods of low solar activity (2007–2009 and 2016–2017, green) and high solar activity (2012–2014, yellow),

calculated in the same fashion as the seasonal auroral oval locations in Figures 6c and 6d.

Splitting the data set according to season (Figures 6c and 6d), we find a similar behavior for the northern

and the southern hemispheres. In both, the auroral oval seems to be located more poleward around noon

and more equatorward around midnight in the postequinox data compared to the preequinox locations.

Generally, the oval appears to be more centered on Saturn's spin pole during the preequinox period. This

does not correspond to a seasonal effect, for which one would expect the hemispheres to act oppositely

and not in the same way as seen here—i.e. one would expect a “summer-shaped” and a “winter-shaped”

oval switching between the hemispheres. The effect we see here, apparent or real but certainly significant,

therefore cannot be directly related to the angle of attack of the solar wind onto the Kronianmagnetosphere.

We therefore consider solar activity as a possible influence and investigate how the oval center location

differs between high and low solar activity periods (Figures 6e and 6f). We clearly see that the auroral oval

is quite consistently smaller (more poleward at most LTs) during high solar activity than during low solar

activity, the largest difference between the two occurring at noon for both hemispheres. This effect could be

a sign of increased magnetopause and cusp reconnection rates during high solar activity, effecting poleward

auroral signatures to occur more frequently, as well as more prevalent tail reconnection closing thereby

“accumulated” open flux more quickly than during low solar activity (see, e.g., Badman et al., 2005, 2014).

Close similarities between Figures 6d and 6f for the southern hemisphere arise due to the similarity of the

data sets used. This is because all preequinox data are from low solar activity periods, and about 75% of poste-

quinox data corresponds to high solar activity periods—the “seasonal” modulations observed in Figure 6d

are hence most likely solar activity related and not truly seasonal. By extension, the same reasoning lets

us assume that the northern hemispheric “seasonal” changes in Figure 6c might largely be explained with

biases toward certain solar activity periods. These inevitably result from the uneven temporal and spatial

sampling of our data set (see Figure 3).

We therefore conclude that there is a consistent solar activity-related modulation of the statistical oval loca-

tion but cannot find conclusive evidence of a seasonal effect. We note, however, that some auroral features

have indeed been shown to be directly controlled by the interaction of Saturn's magnetosphere with the
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Figure 7.Median latitudinal displacement of the auroral oval’s arc center location from its median position depending
on planetary period oscillation (PPO) magnetic longitude ΨN/S for the (a) northern and (b) southern hemispheres. The
thick line marks the displacement ordered by the primary PPO system (i.e., the system located in the same hemisphere,
respectively), and the thin line the displacement ordered by the secondary PPO system (i.e., the system located in the
opposite hemisphere, respectively). Shaded envelopes mark the median absolute deviation uncertainties. Vertical
dashed lines mark the expected location of maximum upward field-aligned currents. Numbers in brackets give the
number of boundary points/arc center points each graph is based on.

solar wind; both cusp emissions (e.g., Bunce et al., 2005; Gérard et al., 2005; Kinrade et al., 2017; Palmaerts

et al., 2016) and magnetopause reconnection (e.g., Badman et al., 2013; Radioti et al., 2013) were observed

to be modulated by the solar wind conditions and might hence vary not only with solar activity but also

with season. These features are however of a transient nature and often comparably small; they are there-

fore partly excluded from this analysis due the filtering procedures applied in the arc detection algorithm

presented here.

3.3. Statistical Oval DisplacementWith PPO Phase

In order to investigate the displacement of the auroral oval caused by the two PPO systems, we examine the

boundary and arc center markers which have been calculated as presented in section 2.1. Instead of simply

rotating all images with their markers into the PPO frames, we first take into account the underlying local

time patterns determined in section 3.1. We therefore first calculate the difference between each image's

arc center markers and the statistical centers of the auroral oval in the corresponding hemisphere, using

the “low solar activity” or “high solar activity” center locations shown in Figure 6 depending on when the

imagewas obtained. The resulting displacements are then rotated into the two PPO frames. Statistical offsets

are obtained by median averaging the resulting set of displacement values, and errors are again calculated

usingmedian absolute deviation.We did not observe clear changes in the statistical PPO-induced latitudinal

offsets depending on whether the overall statistical center locations or the statistical locations separated by

season or solar activity were used as a baseline.

The median displacements of the auroral oval's arc centers from their statistical location are shown in

Figure 7, for both hemispheres, and ordered by both the north and south PPO systems. Clear modulations

due to the primary PPO systems are visible in both hemispheres (Figures 7a and 7b, bold lines). Interhemi-

spheric current closure of the secondary PPO systems, however, does not seem to have a noticeable impact

on the arc center locations of the auroral oval (Figures 7a and 7b, thin lines), as the statistical displacements

are comparably small and barely ordered. The median offsets of the boundaries from their median location

due to the primary PPO systems vary between roughly ±1◦ colatitude for the northern oval, and slightly
more for the southern for both the northern and the southern auroral oval.

In both hemispheres we observe noticeablemodulation induced by the primary PPO systems (Figure 7, bold

lines). Themodulation seems to be notably sawtoothed and shifted by∼ 180◦ between the two hemispheres.

Based on Cassini MAG results from the southern hemisphere, we would expect the largest equatorward

displacement in the northern hemisphere (Figure 7a, bold line) to occur near ΨN ≈ 90◦ (Hunt et al., 2014,

2015). We observe a peak at around ΨN ≈ 45◦, agreeing fairly well although with a non-negligible offset.
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Figure 8.Median latitudinal displacement of the auroral oval’s arc center location from its median position. Panel
(a) shows the displacements in the northern hemisphere ordered by ΨN, (b) the displacements in the southern
hemisphere ordered by ΨS. Otherwise the same format as Figure 7.

Themodulation of the southern boundaries due to southern PPO (Figure 7b, bold line) shows a broad region

of enhanced equatorward displacement. The largest equatorward offset from the median oval location is

observed at about ΨS = 225◦. This agrees rather well with Hunt et al.’s (2014) direct observations of FAC

regions in the postmidnight sector, in that they observed the largest equatorward displacement of the FAC

current sheets thought to generate auroral emission close to ΨS ≈ 270◦.

We note, however, that in both hemispheres we observe offsets between the peak (equatorward) displace-

ments and their expected ΨN/S location. These offsets are consistent in both hemispheres, with the largest

equatorward displacements occurring about 45◦ ahead of where most equatorwardly displaced FACs were

found (Hunt et al., 2014). Considering that the auroral intensity maximum has been shown to be lagging its

expected location by some 30◦ (Bader et al., 2018), we conclude that the largest equatorward displacement

of the auroral oval is not colocated with the auroral intensity maximum. This actually agrees with direct

FAC observations (Hunt et al., 2014), which showed that the upward FAC density maximum of the major

FAC sheet lags its largest equatorward displacement by roughly 45◦ in the southern hemisphere.

The larger size of this data set further allows us to take a closer look at possible interhemispheric PPO

modulations of the auroral oval's latitudes. As shown in Figure 7, there is no clear and ordered modulation

visible when directly considering the arc center displacements in terms of their secondary PPO system. As

an indirect means of picking out secondary PPO modulations, we instead examine how the modulation

caused by the primary PPO system changes with beat phase, i.e., the relative orientation of the two systems.

Each image has an associated northern and southern PPO phase, and therefore an associated beat phase

depending on the relative orientation of the two PPO systems' magnetic perturbation dipoles. We bin our

data set into four groups: in phase including all images where the two PPO dipoles were in parallel (0◦ ± 45◦)
orientation, and in antiphase where the two dipoles were antiparallel (180◦ ± 45◦) relative to one another.

The two intermediate beat phases, also of 90◦ bin size, are S leadingN and S laggingN, depending onwhether

the southern dipole is leading or lagging the northern one with respect to the direction of planetary rotation.

We then calculate the same statistical displacements as shown by the bold graphs in Figure 7 separately for

the different beat phase bins. The resulting statistical auroral oval arc center displacements are shown in

Figure 8. Note that the results for the southern hemisphere are rather noisy, as there are significantly fewer

boundary points included than from the northern hemisphere.

There are clearly some differences between the beat phases. The overall statistical displacements from

Figure 7 are shown in black for reference, and the colored beat phase graphs of Figure 8 follow the overall

result rather closely. There seem to be some slight phase-shifts, but they do not show any obvious ordering

and aren't consistent through both hemispheres.

Yet, looking at themodulation amplitudes,we observe that in bothhemispheres the boundary displacements

are largest when the two PPO systems are in antiphase, and comparably small when they are in phase.
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Figure 9. Displacements of the circle-fitted center locations of the northern and southern auroral ovals depending on the phase angle ΦN and ΦS, respectively
(primary PPO system). (a) Northern hemisphere displacements in the midnight-noon direction and (b) northern hemisphere displacements along the
dawn-dusk axis. (c) Southern hemisphere displacements in the midnight-noon direction and (d) southern hemisphere displacements along the dawn-dusk axis.
A black line shows the best cosine fit to our data; the fit parameters are given on the bottom right. The number of images/data points is given in parentheses on
top. Purple lines show the corresponding fits from Nichols et al. (2008, 2016).

This agrees with the standard picture of the fields and driving atmospheric flows in the two PPO systems

as indicated with red lines and arrows in Figure 4 (e.g., Hunt et al., 2014; Jia & Kivelson, 2012; Jia et al.,

2012)—showing directly that when the two PPO systems are in phase, the ionospheric/atmospheric flows in

the two hemispheres are reduced, given that one hemisphere acts to impose its sense of flow on the other. A

reduced flow then would imply reduced boundary displacements. This conclusion may seem at odds with

having enhanced ionospheric currents flowing under that condition, but one has to note that the ionospheric

current depends on the difference in velocity of the neutral and ionized components (i.e., j = 𝜎E′
, where

E
′
is the electric field in the rest frame of the neutrals, proportional to the difference in plasma and neutral

velocity). While the absolute velocities are reduced, the difference is increased, and hence so is the current.

3.4. Oval CenterMotion

Wherever possible, we fitted circles to the detected auroral oval arc centers as described in section 2.2. We

take the center point of each of these fits to be the center of the auroral oval, or “oval center,” and examine

its motion relative to the respective primary PPO system in both hemispheres.

The oscillation of the oval center is then analyzed similarly to previous studies where circles were fitted

to HST data (Nichols et al., 2008, 2016; Nichols, Cowley, & Lamy, 2010). The longitude-latitude position of

each center point is converted into Cartesian coordinates describing the displacement from the planet's pole

along the midnight-noon and dawn-dusk axes, in units of degrees. These displacements depending on the

PPO phase anglesΦN/S are shown in Figure 9 for both the northern and southern hemispheres. The clearly

visible modulation was fitted with cosine functions similar to previous studies (Nichols et al., 2008, 2016).

In the northern hemisphere, our results clearly agree with recent observations based on 2011–2013 HST

imagery (Nichols et al., 2016)—both fits are largely in phase (within 45◦), although the amplitudes differ

significantly in the y/dawn-dusk direction. As the data points in Figures 9a and 9b show, the circle fitting

procedure is associated with significant errors. In addition, the oscillation is likely variable throughout time

as well, depending on the relative strengths of the two PPO systems. It is apt to note that the oscillation

we examine has an amplitude of the order 1◦, which is at the limit of the HST resolution due to the large
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Figure 10. Fitted motion of the auroral oval center as derived from Figure 9. The view is from above the north pole,
(a) onto the northern polar cap and (b) through the planet into the southern polar cap, with local noon toward the
bottom of the figure and dawn to the left. A location is defined by its colatitudinal displacement from the pole along the
dawn-dusk and noon-midnight axes. The pole is located at the intersection of the vertical and horizontal dashed lines.
The fitted elliptic motion of the auroral oval center through one planetary period oscillation (PPO) rotation is displayed
with a color scale, an inset reminds the reader of the corresponding orientation of the PPO dipoles (same view as the
main plots, looking from above the north pole with noon toward the bottom). The mean position of the auroral oval's
center is indicated with a black cross in the center of each ellipse. The range of ΨN/S describing the offset angle
between the PPO dipole direction and the direction in which the center of the auroral oval is displaced relative to its
mean position over a full PPO rotation is given in a box at the bottom of each plot.

distance of Saturn from Earth, and most of the UVIS data set does not provide a better resolution either.

Altogether, this difference in amplitude is likely to be accounted for by all these limitations.

The results for the southern hemisphere (cf. Nichols et al., 2008) are less clear (see Figures 9c and 9d).

While both data sets agree rather well concerning phase and amplitude of the dawn-dusk modulation, the

midnight-noon center displacements are phase offset by more than 90◦. A reason for this might be that

the center displacements along this axis are inherently uncertain in HST data, as generally only a partial

auroral oval can be observed from Earth and the circle fits are unconstrained on the nightside. In addition,

the Nichols et al. (2008) data set is considerably smaller than ours.

To better visualize the motion of the auroral oval, the trajectory described by the cosine fits on the oval cen-

ter displacements is shown in Figure 10 for both hemispheres. The two fits combined result in a motion

following the shape of a Lissajous ellipse (see Nichols et al., 2008, and references therein). In both hemi-

spheres the mean location of the auroral oval centers is displaced from the pole toward the nightside, likely

due to solar wind pressure (Badman et al., 2006; Nichols et al., 2008). We also observe a dawnward displace-

ment of the mean center location, agreeing with Nichols et al. (2008, 2016) and Kinrade et al. (2018). The

center oscillation seems to be more pronounced in the south, likely due the northward offset of Saturn's

magnetic dipole increasing both the size and visible spatial oscillation of the oval. The “center trajectory”

in the southern hemisphere appears to be much more circular than in the north, where it is quite elliptical

with the semimajor axis oriented in approximately azimuthal direction.

The relative orientation of the PPO systems over one rotation period is indicated by a color map imposed

on the elliptic trajectories. The location of the oval's center for ΦN/S = 0◦ is implied by the brightest color,

darkening with increasing PPO phase angle up toΦN/S = 360◦, shown in black. As observed previously, the

motion of the auroral oval's center follows the counterclockwise (seen from above the north pole) direction

of planetary rotation/PPO system rotation.
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Figure 11. Oval center trajectories for the different beat phases overlaid over the average (white-to-black trajectory).
Panel (a) shows the trajectories in the northern hemisphere and (b) in the southern hemisphere. The format is the
same as in Figure 10. The brightest marker of each trajectory corresponds to the location of the oval center at
ΦN/S = 0; the color darkens with increasing ΦN/S angles. Numbers in parentheses show the number of Ultraviolet
Imaging Spectrograph (UVIS) images/circle fits each ellipse trace is based on.

In order to allow for some comparison with the boundary displacements from section 3.1, we also calculate

the magnetic longitude ΨN/S toward which the oval's centers are displaced relative to the mean location of

the oval's center (indicated by the cross in the center of each ellipse). This is done by comparing the angle

between a position on the oval center displacement trajectory, the mean oval center location and the noon

direction with the PPO angle corresponding to this particular displacement. The range of ΨN/S we obtain

this way depends on the eccentricity of the ellipse and the offset of the mean oval center location from

the pole—for a circular motion of the oval center about the pole, ΨN/S of the displacement direction will

be constant throughout a PPO phase cycle, while for a more elliptical trajectory ΨN/S will change within a

certain range. The ΨN/S angles toward which the oval's centers are displaced in each hemisphere are given

in the bottom right corner of both Figures 10a and 10b.

We find that in the northern hemisphere, the center of the auroral oval is generally displacedmore or less in

the direction of the primary PPO dipole. With the oval centers being displaced towardΨN = 339–29◦ relative

to the mean location of the oval center, this fits reasonably well with our observations of the main oval

arc displacements—the maximum equatorward displacement from the median arc position having been

observed at ΨN ≈45◦. The oscillation of the southern auroral oval seems to be such that the oval's center
is generally displaced away from the primary PPO dipole direction ΦS as already observed by Provan et al.

(2009), found at slightly larger magnetic longitudes ΨS = 178–203◦ than the exact opposite of the dipole

direction. Again, this agrees rather well with the maximum equatorward displacement of the oval arcs,

which we observed at around ΨS ≈ 225◦. Seeing that the displacement directions of the oval center with

respect to PPO phase are consistent between the two hemispheres, we assume that our fits from Figure 9

are reasonable.

As for the statistical displacement of the auroral arc centers in section 3.3, we separate our available data

points into four beat phase bins (in phase, in antiphase, S lagging N, and S leading N) and perform the same

analysis as shown in Figures 9 and 10. The oscillations of the circle centers are shown in Figure 11. We

do not show the cosine fits on the dawn-dusk and midnight-noon displacements here and instead refer the

reader to the supporting information available for this paper. Of course, due to the sometimes very limited

number of points (e.g., only 19 center locations for the in antiphase beat period in the southern hemisphere)

some of these fits are not very reliable and the results should be taken with caution.

We find that for all beat phases, the oval centers always oscillate about a mean location displaced toward

the midnight-dawn side; furthermore, all ellipse traces follow the direction of planetary rotation. This can

be taken as a sort of “sanity check” concerning the sometimes rather unconstrained cosine fits. The shape

of the ellipse trajectories that the oval center follows seems to stay fairly constant through the beat phases as

well, as does the displacement direction relative to the respective primary PPO system in each hemisphere.
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The amplitude of the oval center motion in both hemispheres seems to be much larger when the two PPO

systems are in antiphase (green) than when they are in phase (blue). This agrees well with what we observed

in section 3.3, where we found that the main emission arcs are displaced furthest from their statistical loca-

tion under the same conditions. This observed arc displacement can therefore be explained by an enhanced

auroral oval oscillation and we can quite safely rule out a contraction/an expansion of the main emission

oval when the two PPO systems are in phase/antiphase.

We furthermore observe that the oval center oscillation in the northern hemisphere is more pronounced

when the southern PPO system is lagging the northern one (yellow) than it is in the opposite case (S lead-

ing N, red). For the southern hemisphere, this behavior is inverted—so the oscillation seems to be more

pronounced when the primary PPO system is leading the secondary one.

4. Summary

In continuation of the recent investigation of PPO-induced UV auroral intensity modulations based on all

available Cassini UVIS data with exception of the mid-2013 to mid-2014 coalescence period (Bader et al.,

2018), we now used a subset of the same data set to determine the spatial modulation of the main auroral

emission.

We extract the central location of the main emission arc and its poleward and equatorward boundaries

from each UVIS image using a newly developed algorithm based on adaptive thresholding and filtering

methods. Using the set of location points obtained, we calculate the statistical location of the auroral oval

and its boundaries in a local time frame. The results agree fairly well with previous results based on HST

and UVIS data (e.g., Badman et al., 2006; Kinrade et al., 2018; Nichols et al., 2016) and show the same

pattern characterized by a rather circular shaped oval displaced toward the midnight-dawn direction, with

a more poleward location in the postnoon sector presumably due to transient poleward features caused

by magnetopause and cusp reconnection. We find no significant seasonal variation of the statistical oval

location, but observe the auroral oval to be more contracted during high solar activity periods in agreement

with earlier investigations of the open flux content (Badman et al., 2005, 2014).

After subtracting the statistical location from all location markers, the average displacement of the auroral

oval from its median location could be determined in a PPO-fixed frame. In both hemispheres, the most

equatorward displacement of the auroral oval arc is observed roughly 45◦ ahead of the region where the

highest upward current is expected (ΨN ≈ 90◦ in the northern, ΨS ≈ 270◦ in the southern hemisphere).

Considering that the UV auroral intensity was shown to peak about 30◦ behind thismodelmaximum (Bader

et al., 2018), we have to conclude that the largest equatorward displacement of the auroral oval and its inten-

sitymaximum seem to be displaced significantly.We could not find direct evidence of oval arc displacements

in phase with the respective secondary PPO systems. However, a beat phase analysis of these displace-

ments revealed that the spatial modulation seems to be largest when the two PPO systems are oriented in

relative antiphase, and somewhat smaller when they are in phase—possibly indicating interhemispheric

modulations of the oval's location.

By fitting circles to the extracted auroral oval location markers, we also investigate the motion of the oval

center with PPO phase. Our results largely verify previous investigations based on HST data (Nichols et al.,

2008, 2016), with the exception of a ≈ 90◦ phase shift of the midnight-noon oscillation in the southern

hemisphere. It is confirmed that the southern auroral oval oscillates with a significantly larger amplitude

than the northern oval. In good agreement with our observations of auroral oval arc displacements we find

that the oval center in the northern hemisphere is generally displaced roughly in the pointing direction of

the northern PPO dipole, and in the southern hemisphere generally away from the pointing direction of the

southern dipole.

We again conducted a beat phase analysis to evaluate possible interhemispheric PPO coupling and found

that the oval center oscillation is more pronounced when the two PPO systems are in antiphase than when

they are in phase—agreeingwith the increased oval arc displacements. In accordancewith the presentmodel

of PPO current flows (e.g., Hunt et al., 2014, 2015; Provan et al., 2018), the oval center oscillation is smallest

in both hemispheres when the systems are in phase, as each system acts to impose its sense of flow on

the other—reducing the absolute ionospheric flow velocities and thereby reducing the displacement of the

auroral oval. We note, however, that separating the data sets into beat phases greatly worsens the statistical
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properties and limits the credibility of these findings. While the results may be fairly consistent between the

two hemispheres, many features remain unexplained.

It is obvious that the coupling between the two PPO systems significantly influences the modulations of

the UV aurora and likely the entire magnetospheric environment—considering the two PPO systems in

isolation does not provide the full picture.
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Abstract Saturn's aurora represents the ionospheric response to plasma processes occurring in the

planet's entire magnetosphere. Short-lived ∼1-hr quasiperiodic high-energy electron injections, frequently
observed in in situ particle and radio measurements, should therefore entail an associated flashing

auroral signature. This study uses high time-resolution ultraviolet (UV) auroral imagery from the Cassini

spacecraft to demonstrate the continuous occurrence of such flashes in Saturn's northern hemisphere and

investigate their properties. We find that their recurrence periods of order 1 hr and preferential occurrence

near dusk match well with previous observations of electron injections and related auroral hiss features. A

large spread in UV auroral emission power, reaching more than 50% of the total auroral power, is observed

independent of the flash locations. Based on an event observed both by the Hubble Space Telescope and

the Cassini spacecraft, we propose that these auroral flashes are not associated with low-frequency waves

and instead directly caused by recurrent small-scale magnetodisc reconnection on closed field lines. We

suggest that such reconnection processes accelerate plasma planetward of the reconnection site toward the

ionosphere inducing transient auroral spots while the magnetic field rapidly changes from a bent-back to a

more dipolar configuration. This manifests as a sawtooth-shaped discontinuity observed in magnetic field

data and indicates a release of magnetospheric energy through plasmoid release.

1. Introduction

The Cassini mission, in orbit around Saturn between 2004 and 2017, gradually revealed the high complex-

ity of the Kronian magnetosphere. One of the many dynamical processes that yet remain to be understood

is the occurrence of ∼1-hr quasiperiodic features observed in a variety of magnetospheric measurements.
The observed features include magnetic field fluctuations (Yates et al., 2016), signatures in ion and electron

measurements (e.g., Badman et al., 2012; Mitchell et al., 2009; Palmaerts et al., 2016; Roussos et al., 2016),

pulses in radio emissions/auroral hiss (e.g., Carbary et al., 2016; Mitchell et al., 2016), and periodic brighten-

ings in Saturn's ultraviolet (UV) and visible auroral intensity (e.g., Dyudina et al., 2016; Mitchell et al., 2016;

Palmaerts et al., 2016; Radioti et al., 2013). All these have been reported to occur periodically at a relatively

fixed period of ∼60 min, but their origin is still unclear.

Recent surveys have statistically investigated the occurrence of such short periodicities throughout the Kro-

nian magnetosphere. Roussos et al. (2016) and Palmaerts et al. (2016) analyzed quasiperiodic injections of

relativistic electrons and found that most events occurred at ∼1-hr periodicities and outside of Titan's orbit
(∼20RS), spread through almost all the outer magnetosphere—although with a significant location bias

toward dusk local times (LTs). Palmaerts et al. (2016) further observed strong radio bursts in the auroral

hiss collocated with the electron injections and higher growth rates of the pulses at high latitudes, suggest-

ing a high-latitude acceleration region. The observed location at which these injections take place points

to magnetopause or Vasyliunas-cycle reconnection as possible trigger mechanisms (Roussos et al., 2016).

Kelvin-Helmholtz waves are deemed unlikely to effectuate the observed LT disparity.

Based on radio measurements from the entire Cassini mission, Carbary et al. (2016) observed similarly

increased occurrence rates of periodicities in plasmawave intensity near dusk and at high latitudes, although

noting that this bias might be explained with higher auroral hiss observation rates in these regions. They
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Table 1
Northern Hemisphere UVIS Image Sequences Used for This Study With UTC Start and Stop
Time of Each Sequence, the Number of Images Included and Their Median Exposure Time
Tmedian, the Number of Peaks Recorded, and the Peak Percentage of Auroral Power Pmax
Contributed by the Pulsing Emissions

Start time Stop time Images Tmedian Peaks Pmax

(UTC) (UTC) # (min) # (%)

2008-04-18 09:43 2008-04-18 13:46 21 12.1 2 33.7

2008-05-08 07:59 2008-05-08 13:47 24 15.1 4 32.7

2008-07-13 03:50 2008-07-13 10:48 29 14.9 1 26.7

2008-07-19 03:26 2008-07-19 13:21 54 11.1 5 18.5

2014-03-20 01:07 2014-03-20 04:14 19 10.4 3 25.8

2014-03-28 09:45 2014-03-28 19:08 54 10.4 9 52.2

2014-05-10 02:25 2014-05-10 17:12 70 12.8 6 32.7

2014-05-25 05:08 2014-05-25 22:36 96 11.0 18 30.3

2014-05-27 04:16 2014-05-27 22:44 116 9.6 11 51.9

2014-05-29 04:16 2014-05-29 22:25 114 9.6 17 41.6

2014-05-30 17:01 2014-05-30 22:31 37 9.2 6 36.8

2014-05-31 17:01 2014-05-31 22:23 35 9.4 4 34.2

2014-06-01 16:54 2014-06-01 22:07 34 9.4 3 41.3

2014-06-02 17:34 2014-06-02 23:44 40 9.4 7 71.1

2014-06-03 17:34 2014-06-03 23:44 40 9.4 5 54.0

2014-06-05 07:45 2014-06-06 04:25 120 10.4 12 35.7

2014-06-07 14:56 2014-06-08 04:08 77 10.4 5 31.8

2014-06-09 10:48 2014-06-10 04:09 93 11.3 5 40.3

2014-06-10 15:49 2014-06-11 09:33 90 11.9 11 33.6

2014-09-05 11:52 2014-09-05 20:59 73 7.6 10 35.0

2014-09-13 06:07 2014-09-13 14:13 60 8.2 7 30.1

2014-10-16 16:18 2014-10-17 05:32 73 11.0 11 27.7

2014-11-06 23:08 2014-11-07 12:32 123 6.3 6 46.7

2014-11-23 12:39 2014-11-23 16:46 42 6.1 5 27.8

2014-11-27 19:56 2014-11-28 10:30 136 6.3 12 33.6

2014-12-01 01:28 2014-12-01 09:02 69 6.7 3 31.9

2016-06-25 02:05 2016-06-25 06:47 28 10.4 2 27.1

2016-09-06 22:05 2016-09-07 05:31 28 16.5 4 20.3

2016-09-29 17:49 2016-09-29 20:38 18 9.9 1 39.5

2016-09-30 09:17 2016-09-30 16:38 37 12.2 1 46.0

2016-10-01 11:49 2016-10-02 02:24 50 17.2 2 35.8

2016-10-29 02:32 2016-10-29 10:29 40 12.3 2 23.9

2017-01-14 16:57 2017-01-14 22:39 29 12.3 1 26.2

2017-03-20 03:36 2017-03-21 04:46 89 16.1 9 42.4

2017-04-02 15:51 2017-04-02 21:48 48 7.6 4 22.9

2017-04-18 05:39 2017-04-18 11:16 26 13.4 0 10.8

Note. UVIS = ultraviolet spectrographic imager.

suggest interhemispheric Alfven waves as a possible source, similar to Yates et al. (2016), who used mag-

netic field data to show that second harmonic standing Alfven waves could be responsible for the periodic

phenomena observed. Yates et al. (2016) also observed the intensity of the quasiperiodicmagnetic field oscil-

lations to depend on the phase of the ∼10.7-hr planetary period oscillation (PPO) and related this to PPO
modulation of Cassini's distance from the magnetospheric current sheet.
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Figure 1. Removal of dayglow procedure. (a) Polar-projected UVIS image, looking down onto the northern pole with midnight toward the top. Concentric rings
mark the colatitude from the northern pole in steps of 10◦. The total unabsorbed H2 emission intensity of Saturn's northern aurora is shown with a logarithmic
color map as defined with the large color bar to the right. Pixels outside of the red-dashed line at 23◦ colatitude are considered background emission and used
for estimating the brightness of dayglow. (b) Solar zenith angle versus brightness histogram of all background emission of all UVIS images within a ±3-hr
window of this observation, with the filtered median shown in red and and the median absolute deviation shown with red shading. (c) Brightness map of
dayglow derived from the median of the distribution in (b). (d) The original image with the derived dayglow brightness (c) subtracted. UVIS = Ultraviolet
Imaging Spectrograph.

Several case studies have analyzed periodic brightenings of the high-latitude auroral oval (Mitchell et al.,
2016) and transient auroral spots and bifurcated arcs on the duskside (Radioti et al., 2009, 2013), as well as
pulsating cusp emissions (Palmaerts et al., 2016).Mitchell et al. (2016) demonstrated that these quasiperiodic
auroral brightenings are in phase with auroral hiss and particle signatures, indicating a common generation
process. Energetic neutral atom signatures of this process are expected but could so far not be observed,
likely due to the spatial and time resolution of the Cassini Ion and Neutral Camera (INCA) (Krimigis et
al., 2004) being too limited to capture these small-scale and short-lived features. All these studies favor
magnetic reconnection processes as likely triggers, but the main question—how exactly these quasiperiodic
fluctuations are generated and what determines their periodicity—remains unanswered.

In this study we investigate pulsations in the UV auroral intensity using large sets of to date mostly unused
images from Cassini's Ultraviolet Imaging Spectrograph (UVIS) with the aim of shedding more light on
possible driving mechanisms. In section 2 we present the data set used. Our analysis methods and results
are explained in sections 3 and 4, respectively. We conclude this study in section 5.

2. Data Set
We use a selection of images from the Cassini UVIS spectrographic imager (Esposito et al., 2004), which

intermittently observed Saturn's UV auroras between Cassini's orbit insertion on 1 July 2004 and end of
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mission on 15 September 2017.Auroral imagerywas obtained by scanning the instrument's FUV slit (1.5× 64
mrad, 110–190 nm) across the auroral region. Depending on the viewing geometry and the accumulation

time for each slit exposure, the total exposure time for an image covering the full auroral oval can vary

between 6 and 180min. In this study we only use image sequences withmore than 15 images taken in quick

succession, with the median exposure time of the images included, Tmedian, smaller than 1,000 s ≈ 17 min.

The highest single image exposure time used is 19.7min. Taking only into account images from the northern

hemisphere, this results in a set of 2,130 images spread over 36 sequences, with 14 sequences providing

(near-)continuous observations of the auroral oval over more than one Saturn rotation (∼ 10.66 hr). A list

of the image sequences used is given in Table 1.

Each image was polar projected onto a 0.5◦ × 0.25◦ (lon × lat) planetocentric polar grid at an altitude of

1,100 km above Saturn's 1-bar level (with Saturn's equatorial and polar radii RSEQ = 60,268 km and RSPO =

54,364 km) where auroral emissions are thought to be generated (Gérard et al., 2009) using Cassini SPICE

pointing information available on NASA's Planetary Data System. The intensity recorded by the UVIS FUV

sensor is converted to the total unabsorbed H2 emission intensity (70–170 nm) by multiplying the value

measured in the 155- to 162-nm range by the factor 8.1 as empirically determined by Gustin et al. (2016,

2017) in order to minimize dayglow emission and hydrocarbon absorption effects.

Even so, some dayglow remains in most UVIS images; we remove it in order to obtain accurate auroral

brightnesses and emission powers. This is done by determining the dayglow brightness dependence on solar

zenith angle (SZA) using all UVIS images collected between ±3 hr of the image, which is being corrected
(see Figure 1). We use all pixels equatorward of 23◦ colatitude from the pole-equatorward of the median

equatorward boundary of Saturn's auroral oval and its median absolute deviation (Bader et al., 2019). We

determine an SZA-brightness histogram (Figure 1b) and median-filter the data with a box 10◦ wide in SZA

to obtain a smooth median brightness per SZA distribution, shown with a red line. This is used to model

the dayglow background of an auroral image (Figure 1c), which is then subtracted from the original image

such that only true auroral emissions remain (Figure 1d).

3. Method

A short example sequence of UVIS images is shown in Figure 2. The 25 images displayed have an exposure

time of ∼9 min each, adding up to ∼4.5 hr of near-continuous observations. Quasiperiodic auroral flashes
in the dusk region are visible in panels (b), (f), (l), (p), and (v) and marked with yellow arrows. A high time

resolution for an extended period such as this can only be achieved if Cassini is located close to apoapsis

above one of the poles, since only then the viewing geometry allows UVIS to successively sweep over the

whole auroral oval with short scans for extended periods of time. This naturally implies a greatly reduced

spatial resolution as is clearly visible in the images shown.

In order to mitigate this drawback, we will use the auroral power to track periodic transient auroral intensi-

fications such as those shown in Figure 2. Since each pixel of the UVIS instrument represents an average of

the brightness observed across the area it covers, an integration over a complete image or part of it should

yield a value of the auroral power which is only marginally impacted by the low spatial resolution—only

the relative weights of differently bright areas subtending the pixel can be modified as the polar projection

is performed, skewing the calculated powers to some degree.

After correcting for dayglow as described above, we section each image into 36 LT bins and integrate their

enclosed intensities between 0◦ and 30◦ colatitude from the pole to obtain an LT distribution of radiant

fluxes, or “auroral powers”—noting that the column emission rates observed by each UVIS pixel need to

be corrected for the angle under which the emitting surface (ionospheric layer) was observed such as to

not overestimate the emission rate of regions observed under low elevation angles. By combining LT-power

distributions of several images, we obtain a keogram. The one including all images from Figure 2 is shown

in Figure 3a, with the total emission power Ptot below. The most prominent feature is a strong brightening

occurring at about 11:00 UTC close to the midpoint of the sequence, and subcorotating through noon into

dusk until the end of the sequence. This is likely a large-scale injection event triggered by tail reconnection

(e.g., Mitchell et al., 2009).

However, we focus on the short-lived flashes shown in Figure 2—visible as bright vertical lines between

roughly 15 and 21 LT. In order to separate these highly dynamic features from the more long-lived auroral
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Figure 2. Example sequence of UVIS images from 25 May 2014 (DOY 145). Shown is the total unabsorbed H2 emission intensity of Saturn's northern aurora
with a logarithmic color scale, after the dayglow has been subtracted. The view is from above the north pole, such that the pole is in the center of each image
with local midnight toward the top of the figure and local noon toward the bottom. Concentric rings mark the colatitude from the pole in 10◦ steps. The
northern (southern) PPO system's orientation is indicated with red (blue) lines, which mark the pointing direction of the corresponding magnetic perturbation
dipole (such that ΦN/S is the counterclockwise angle between local noon and the marked line). The time at which a UVIS scan started is noted on top of each
panel, together with the total exposure time of the corresponding sweep. Yellow arrows in panels (b), (f), (l), (p), and (v) indicate short-lived auroral
intensifications at local dusk. LT = local time; UVIS = Ultraviolet Imaging Spectrograph.
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Figure 3. Ultraviolet (UV) power keogram from 25 May 2014 (DOY 145) based on 96 UVIS images, including but not limited to the sequence shown in
Figure 2. (a) The original keogram, with each vertical stripe corresponding to the UV power of a single UVIS image integrated in 36 local time bins between 0◦

and 30◦ colatitude from the northern pole. The total UV power Ptot of each image (the sum of the keogram in vertical direction) is shown below with black
crosses. Overlaid in red is the contribution of the auroral background to the total power, Pbg. (b) The median-filtered background. Diagonal white lines track

the approximate location of upward field-aligned current maxima caused by the two planetary period oscillation (PPO) perturbation systems—the bold
(dashed) line corresponding to the primary (secondary) PPO system located in the same (opposite) hemisphere (e.g., Andrews et al., 2010; Hunt et al., 2014;
Provan et al., 2018). Below the keogram is Pbg, as already plotted in red in panel (a). (c) The difference between the previous panels (a) and (b), corresponding
to the UV pulsing power with the background removed. Below again the sum of the keograms in black, Ppulses, with a 20-min boxcar average overlaid in red.
Gray dashed vertical lines and bars mark the determined pulse locations and heights. The approximate local time (LT) location of these brightenings is marked
with black-and-white circles in the keogram. (d) A filtered version of panel (c) as described in the text, used for determining the approximate LT location of the
auroral flashes. Again, the black-and-white circles mark the LT location in the keogram. Below is a copy of the corresponding graph from panel (c), added for
reference.

background of subcorotating patches, we create a median-filtered version of the keogram using a box of size

3,000 s× 30◦ (2-hr LT), tilting the box according to a subcorotation rate of 65% of Saturn's rotation to account
for the relatively steady motion of Saturn's auroral emissions (Grodent, 2005). Subtracting the so calculated

background (see Figure 3b, summed power Pbg below) from the original keogram yields a keogram of tran-

sient features, shown in Figure 3c. A time series of the UV power attributed to these pulsing features, Ppulses,

is obtained by summing up all LT bins for each image/time step (black graph in Figure 3c); smoothing the

result with a 20-min boxcar average (red graph in Figure 3c) reveals the quasiperiodic intensifications quite

clearly.

Pulses are identified by finding all local maxima in the smoothed result with a prominence larger than 3

GW, an empirically determined limit. This value may seem rather small, but it is to note that the boxcar

averaging significantly decreases the original peak height—most detected peaks have powers >5 GW on an
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Figure 4. Lomb-Scargle periodogram of all Ppulses powers of all image
sequences listed in Table 1.

auroral background of roughly 20–200GW. The uncertainty of the total

UV power can only be estimated based on the noise in the time series

but is likely in the range of only 1–2GW. The peak power is determined

by the closest datapoint in Ppulses. We also try to find the approximate

origin of each pulse using the keogram of transient features (Figure 3c).

These auroral flashes are usually very short lived with a lifetime <10
min (Dyudina et al., 2016) - they are nearly never spread over 2 UVIS

images with exposure times of ∼10 min - but rather wide in LT. Hence,
we apply a median filter of size 600 s × 90◦ (6-hr LT) to highlight the

pulses and exclude other features, followed by a same-sized mean fil-

ter to create smooth peaks. The resulting array is shown in Figure 3d;

the maximum in LT corresponding to each pulse is highlighted with a

black-and-white circle. If the maximum in this array corresponding to a

pulse in UV power does not exceed 5 times themedian absolute deviation

of the array, the location determined in this step is deemed unreliable and

discarded. Figures similar to Figure 3 for all analyzed sequences can be

found in the supporting information.

4. Results and Discussion
4.1. Flash Powers and Periodicities

Table 1 summarizes the results for all sequences analyzed. We find quasiperiodic brightenings in all

sequences, although with highly variable strengths: The largest instantaneous contribution of the pulsing

features to the total emitted UV power per sequence, Pmax = max(Ppulses∕Ptot), ranges between 10.8% and

71.1%, reaching up to 50% or more of the total auroral power emitted in several sequences. In many obser-

vations, the flashes hence seem to be more powerful than the remaining auroral emissions combined. We

note that these values represent lower limits, since the lifetime of such auroral flashes is shorter than or

comparable to the exposure time of the UVIS imagery used. As visible in Figure 2, one flash is usually fully

scanned with only few single slit exposures (8 s each)—in this example, the UVIS slit was aligned roughly

into the dawn-dusk direction and scanned from midnight to noon. With Cassini slewing with a constant

angular velocity and the entire scan taking less than 10min, the time duringwhich theUVIS slit was pointed

toward the flash direction is of order 1 min or less. The recorded power therefore likely corresponds to the

rise or decay phases of a flash and is lower than its actual power maximum.

We determine the periodicity of these features by combining the Ppulses time series of all periods investigated

here and calculating a Lomb-Scargle periodogram (see Figure 4). A wide peak in the periodogram indicates

periodicities close to 54 min, with a noticeable spread a fewminutes either direction, clearly indicating that

these auroral flashes must be closely related to the quasiperiodic features observed in electron, radio, and

magnetic field data in previous studies (e.g., Carbary et al., 2016; Mitchell et al., 2009; Mitchell et al., 2016;

Palmaerts et al., 2016; Roussos et al., 2016; Yates et al., 2016).

As can be seen in Table 1 and the supporting information figures, we identify auroral flashes in nearly every

investigated sequence. Due to UVIS' slit-scanning mechanism, it is likely that some flashes occur but are

not recorded due to their lifetime being too short and the UVIS slit being pointed at a different location

while a flash is active. We hence conclude that this auroral flashing seems to be quasi-continuous just as the

energetic electron and auroral hiss intensifications observed previously.

4.2. Statistical Properties of Auroral Flashes

In the context of this study we could identify 214 auroral intensifications, 149 of which were prominent

enough to be located in LT. We note that the determined LT positions are, due to the pixel size and the size

of the flashes themselves, only approximate; we assume an error of ±1-hr LT. Figure 5 shows a statistical
analysis of the properties of the auroral brightenings observed.We find that their power can reachmore than

30 GW, although values ∼5–10 GW are most common. A histogram of periods between consecutive pulses

(Figure 5b) reveals that intervals as low (high) as∼30min (∼70min) are observed.While this spreadmight to

some degree be accounted for by the still relatively low sampling frequency of the UVIS images, it certainly

seems that the pulsing auroral features are, albeit continuous, not quite as periodic as related signatures

in other data sets. We also observe a clear LT bias toward the dusk side (Figure 5c), in agreement with the
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Figure 5. Basic statistics of the auroral flashes identified in this study. (a) Histogram of the flashes' peak UV powers, the hatched bar combines all those whose
peak power was larger than the upper histogram limit. (b) Histogram of interpulse periods, (c) histogram of local time locations, and (d) mean UV flash power
and associated error in each local time bin. (e) The occurrence, mean power, and errors of northern hemispheric auroral flashes depending on the northern
planetary period oscillation (PPO) phase ΦN and (f) the location of these intensifications in the corresponding PPO-fixed magnetic longitude frame ΨN.
(g), (h) The occurrence, mean power, and errors of northern hemispheric auroral brightenings in the southern PPO system, ΦS and ΨS, respectively.

location bias of electron and plasma wave events (Carbary et al., 2016; Palmaerts et al., 2016; Roussos et al.,

2016). The mean power of the auroral pulses however is largely unchanged through all LTs (Figure 5d).

The occurrence rates and mean powers of northern hemispheric auroral flashes in different PPO frames

(e.g., Andrews et al., 2010; Hunt et al., 2014) are shown in Figures 5e–5h. The angle ΦN/S(t) represents
hereby the instantaneous azimuthal angle between the transverse dipole of the northern/southern PPO
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Figure 6. Cassini in situ data from 9 April 2014 (DOY 99) 18:00 to 10 April 2014 (DOY 100) 18:00. (a–c) The position of Cassini in Saturn-centered
Kronocentric Solar Magnetospheric (KSM) coordinates. The orbit ±10 days is shown in black, with the red section indicating the time period whose data are
shown in the following panels. The modeled magnetopause locations at solar wind pressures of 0.01 and 0.1 nPa (Arridge et al., 2006) are indicated with bold
black lines. (d–f) Magnetic field measurements in Saturn-centered R-Theta-Phi coordinates. (g) The total magnetic field strength. (h) Radio and Plasma Wave
Science (RPWS) electric field spectrogram. (i) High-energy electron fluxes of the Low-Energy Magnetospheric Measurement System (LEMMS) instrument.
Gray-colored and numbered areas indicate when Hubble Space Telescope images were obtained. Cassini's orbital radius (r), latitude (el) and local time (LT) are
noted on the bottom.

perturbation system and local noon; it increases eastward in direction of planetary rotation. ΨN/S describes

the rest frame of the northern/southern PPO rotation; it is defined such that ΨN/S = 0◦ is aligned with the

transverse perturbation dipole andΨN/S increases westward such that increasing values describe increasing

rotational lags with respect to the dipole (see, e.g., Bader et al., 2018; Hunt et al., 2014). The PPO phases

were determined using an empirical PPO model encompassing magnetic field measurements from the full

Cassini mission (e.g., Provan et al., 2018). Since the mean duration of the sequences used is ∼ 10.1 hr, we

can assume even coverage throughout all PPO phases. As visible in the histograms, neither the occurrence

rate nor the power of the quasiperiodic flashes are significantly affected by PPOs. This does not necessarily

disagree with the wave packet structure observed by Yates et al. (2016), as they presumed this to be an effect

of the varying distance between the magnetic dipole equator and the spacecraft. The observation of auroral

features is not affected by this effect.

However, there seems to be a depression of pulse occurrences at aroundΨS ≈ 230 − 360◦—but it is unclear

why the flash occurrence in the northern hemisphere should depend more on the southern than on the

northern PPO system. We note though that a large part of the data used in this study was obtained between

mid-2013 andmid-2014, a period during which the northern and southern PPO systems were locked in near

relative antiphase and their relative strengths were highly variable (Provan et al., 2016). A clear relationship

between the auroral intensity and the PPO phases has been confirmed (Bader et al., 2018), but the situation

has been shown to become more complex when the two periods converge (Kinrade et al., 2018).

4.3. Auroral Flash Evolution: Case Study

Figure 6 shows one day of Cassini in situ data obtained at the same time as several Hubble Space Telescope

(HST) auroral images. The second half of the period shown is clearly dominated by ∼1 hr quasiperiodic
features in all instruments. The clearest signatures are visible in BP, which is the azimuthal component of
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Figure 7. Hubble Space Telescope (HST) images of Saturn's northern hemisphere from 9 April 2014 to 10 April 2014 (DOY 99–100), numbered as in Figure 6.
Exposure times range from 700 to 840 s. Cassini's ionospheric footprint was mapped using the Burton et al. (2010) model of the planetary field plus a
contribution from the ring current modeled by Bunce et al. (2008) and is indicated with a red circle.

the R-Theta-Phi coordinate system used here and positive in the direction of planetary rotation. BP follows

a sawtooth-shape, exhibiting significant dropoffs roughly every hour. The other magnetic field components

change accordingly such that the total magnetic field strength (see Figure 6g) shows no discontinuities,

describing a simple rotation of the magnetic field vector. These features are very similar to those observed

in Figure 1 of Palmaerts et al. (2016). As Cassini was located in the southern hemisphere well below the

current sheet, these signatures correspond to a sudden change of the magnetic field from a bent-back to a

more dipolar configuration, followed by a slow and steady change into the bent-back state. Coincident with

these sharp features Cassini observed clearly enhanced auroral hiss (see Figure 6h) and increased energetic

electron fluxes. All these signatures are also visible at the beginning of the sequence, and one signature was

observed during the exposure of HST image 5.

The HST images corresponding to this sequence of in situ measurements are shown in Figure 7. These

images were acquired by the HST Space Telescope Imaging Spectrograph (STIS), with the STIS FUV multi-

anode microchannel array using the F25SrF2 long-pass filter with an exposure time of 840 s. This filter is a

band-pass filter letting 125- to 190-nmwavelengths pass while blocking the H Lyman-𝛼 emission line at 121
nm. All exposures were background-subtracted and projected on a planetocentric polar grid (e.g., Clarke

et al., 2009; Kinrade et al., 2017). This day clearly featured an exceptionally quiet aurora in the northern

hemisphere, with none of the images including any dawn emission. The dominant feature is a transient

brightening in image 5, coinciding exactly with the in situ signatures described above.

In Figure 8 we present a sequence of HST images showing the dynamic motion of this one auroral flash in

detail. The sequence was obtained by splitting HST image 5, which was acquired in time-tag mode, into six

subexposures of equal length. Figures 8a–8f shows the six subexposures in chronological order. With the

flash just appearing in Figure 8a, we can follow its evolution for about 10min—probablymost of its expected

lifetime. The detailed views of the smoothed auroral intensity (Figures 8g–8l) reveal that this auroral “flash”

is rather a series of short, small-scale injections clustered together. Two of these injections are comparably

long-lived and bright enough to be traced through several images; their central positions were determined
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Figure 8. Time-tag Hubble Space Telescope image from 10 April 2014 03:44:20–03:58:20 (image number 5 in Figures 6 and 7) split into six subexposures of
equal length. (a–f) The background-subtracted and polar-projected subexposures as seen from above the north pole, formatted as in Figure 2. Cassini's
ionospheric footprint is indicated with a red circle. (g–l) Their section between 14–22 local time (LT) and 7–15◦ colatitude, smoothed with a 5 × 5∕8◦
(lon × colat) Gaussian filter. The motion of two spots is traced through some images, with their local brightness maximum marked with red/blue dashed lines.
(m) LT and (n) colatitude motion of the traced spots, colors corresponding to the previous panels, with their uncertainty shown with error bars (Grodent, 2005).
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by their brightness maximum and are marked with red (blue) dashed lines in Figures 8g–8j (Figures 8j–8l).

For their location, we assume an error of 1◦ in colatitude and 5◦ in longitude (20-min LT) based on the HST

projection errors estimated byGrodent (2005).We observe that both injectionsmove at least at full corotation

speed (Figure 8m), with their azimuthal motion accelerating up to their last detection. At the same time,

the first spot (red) is found to move equatorward between its first and second detection, after which is stays

at the same colatitude (see Figure 8n). The second injection (blue) exhibits a somewhat clear equatorward

motion.Wenote however that the (co)latitudinalmotion observedmeasures less than 1◦, with the projection

grid of the original HST images being sized 0.25◦ in colatitude and the projection error being roughly 1◦

in this direction (Grodent, 2005); we therefore abstain from a quantitative analysis here and only conclude

that the auroral features seem to stay at their colatitudinal location or move slightly equatorward but almost

certainly do not move in a poleward direction.

4.4. Discussion

Previous investigations have referred to Alfvèn mode standing waves as a possible driving mechanism of

periodic transient features in Saturn's aurora (Meredith et al., 2013), magnetic field data (Yates et al., 2016),

and auroral hiss (Carbary et al., 2016). It has recently been shown that pulsating auroral emissions could also

be connected to traveling Alfvèn waves inducing pulsating field-aligned currents (Yao et al., 2017), possibly

generated through theKelvin-Helmholtz instability (Masters et al., 2009) or perturbations at Saturn's plasma

circulation blockage near noon (e.g., Southwood & Chané, 2016). However, the magnetic field signatures

shown in Figure 6 do not seem to be wave related. The prominent sawtooth shape does not correspond

to the characteristics of known ULF wave observations in Saturn's magnetosphere (e.g., Kleindienst et al.,

2009; Russell et al., 2006), and the recurrence period of the discontinuities observed in BP (Figure 6f) is less

constant than would be expected for wave-like structures. The “interpulse period” between these features

changes from significantly less than 1 hr at around 09:00 UT to over 1 hr at about 12:00 UT in the sequence

shown in Figure 6, for example.

The auroral flash presented in Figure 8was observed in the northern hemisphere, while coincidentmagnetic

field, energetic electron, and auroral hiss perturbations were observed by Cassini, which was located south

of the magnetodisc—suggesting that these quasiperiodic features occur on closed field lines. Furthermore,

the auroral flash investigated in section 4.3 seems to move equatorward or stay at one latitude but clearly

does not move in a poleward direction as would be expected if it was connected to open field lines. This

conclusion is supported by an observation investigated by Jasinski et al. (2014), who observed the ∼1 hr
quasiperiodic whistler mode intensifications to disappear as Cassini crossed from the closedmagnetosphere

into the cusp region. Based on the at least rigid corotation of the transient brightenings investigated above,

we propose that its clustered spots are attached to planetward sections of a series of reconnectedmagnetodisc

flux tubes. As the bulk of the plasma is being released outward through Vasyliunas-cycle reconnection, the

entropy of the formerly stretched and subcorotating flux tubes is lowered. This allows them to interchange

in a planetward direction (e.g., Gold, 1959; Mitchell et al., 2015, and references therein) and results in an

equatorward motion of the flux tube footprint. The observed dynamic corotation of the auroral spots clearly

indicates that the attached flux tubes must be mostly empty of plasma, allowing the magnetic field to return

from a bent-back into a steady dipolar configuration.

Delamere et al. (2015) analyzed current sheet crossings usingCassinimagnetometer data and found a greatly

increased number of possible magnetodisc reconnection sites near the dusk flank of Saturn. They conclude

that a continuous “drizzle” of small and patchy reconnection events in this region is likely to contribute

significantly to the continuous magnetic flux circulation in the magnetosphere—in line with earlier theo-

retical results (e.g., Bagenal, 2007; Bagenal & Delamere, 2011; Delamere & Bagenal, 2010, and references

therein) and more recent investigations of magnetic turbulence in Saturn's plasma sheet (Kaminker et al.,

2017; von Papen & Saur, 2016). This process is similar to small plasma bubbles breaking off the outer edge

of Jupiter's magnetodisc and moving down the dusk flank as proposed by Kivelson and Southwood (2005).

Furthermore, Guo, Yao, Wei, et al. (2018) and Guo, Yao, Sergis et al. (2018) recently found direct evidence of

dayside magnetodisc reconnection and estimated the resulting energy flux in the reconnection region to be

sufficient to power auroras. They also found ∼1 hr quasiperiodic energetic electron enhancements during
and after the reconnection event investigated. Furthermore, a recent study revealed multiple reconnection

x-line configurations in the premidnight sector, likely indicating recurrent small-scale reconnection events

at the dusk side (Smith et al., 2018). These results clearly support the mechanism suggested above, likely

leading to predominant observations of auroral flashes, energetic electron injections (Palmaerts et al., 2016;
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Roussos et al., 2016), and auroral hiss intensifications (Carbary et al., 2016) near dusk LTs due to increased

magnetodisc reconnection rates.

However, it remains unclear why the observed intensifications on Saturn occur ∼1-hr quasiperiodically. At
Jupiter, Nichols et al. (2017) recently observed recurrent auroral brightenings in the dusk active region and

showed that these features were more prominent during solar wind compressions, but also active during a

solar wind rarefaction. However, the periodicities are observed to be of order∼3min and therefore of higher
frequency than those observed at Saturn in this study.

5. Summary

We have used 36 sequences of altogether more than 2,100 UVIS images with short exposure times <20min
to investigate quasiperiodic changes in UV auroral emission power. Continuous pulsing at periodicities

∼1 hr could be observed in all sequences, suggesting a continuous process largely independent of the

upstream solar wind conditions. The power of the auroral flashes was shown to be highly variable; sev-

eral sequences include pulses accounting for more than 25% of the instantaneous UV auroral emission

power, indicating a significant energy input into the Kronian ionosphere. Locatable auroral flashes exhibit

a significant dawn-dusk asymmetry, clearly favoring occurrences at dusk in agreement with high-energy

electron injections and auroral hiss intensifications (Carbary et al., 2016; Palmaerts et al., 2016; Roussos

et al., 2016). However, the mean pulse power is globally similar within errors, suggesting a common accel-

eration process throughout all LTs activated by an LT-biased trigger. We investigated the evolution of one

such short-lived auroral emission using HST imagery and the associated in situ measurements and found

that it is better described as a patchy network of small injections with lifetimes<10min. The injections were
observed on the northern hemisphere, while corresponding magnetic field, energetic electron, and auroral

hiss signatures were observed by Cassini in the southern hemisphere—suggesting that these features are a

consequence of magnetodisc reconnection events followed by a planetward motion of the reconnected and

largely empty flux tubes through the interchange instability. The dynamic corotation of the patches and

the coincident sawtooth-shaped discontinuities in the azimuthal magnetic field component observed in this

event are likely signatures of a rapid return of the magnetic field from a bent-back to a nearly dipolar con-

figuration. Magnetodisc reconnection at Saturn has been observed near noon (Guo, Yao, Sergis, et al., 2018;

Guo, Yao,Wei, et al., 2018) and is presumed to occur predominantly and continuously at dusk (e.g., Delamere

et al., 2015; Kivelson & Southwood, 2005; Kaminker et al., 2017, and references therein), inducing auroral

emissions like those investigated here and significantly contributing to magnetic flux circulation through

a constant “drizzle” of small-scale reconnection and plasmoid release. What determines the reconnection

rate and the distinct periodicity is still an open question.
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Abstract Saturn's main aurorae are thought to be generated by plasma flow shears associated with a

gradient in angular plasma velocity in the outer magnetosphere. Dungey cycle convection across the polar

cap, in combination with rotational flow, may maximize (minimize) this flow shear at dawn (dusk) under

strong solar wind driving. Using imagery from Cassini's Ultraviolet Imaging Spectrograph, we surprisingly

find no related asymmetry in auroral power but demonstrate that the previously observed “dawn arc” is a

signature of quasiperiodic auroral plasma injections commencing near dawn, which seem to be transient

signatures of magnetotail reconnection and not part of the static main aurorae. We conclude that direct

Dungey cycle driving in Saturn's magnetosphere is small compared to internal driving under usual

conditions. Saturn's large-scale auroral dynamics hence seem predominantly controlled by internal plasma

loading, with plasma release in the magnetotail being triggered both internally through planetary period

oscillation effects and externally through solar wind compressions.

Plain Language Summary Saturn's main aurorae are thought to be generated as a result

of sheared plasma flows near the boundary between the rapidly rotating magnetosphere of Saturn and

interplanetary space. It is often assumed that the steady flow of the solar wind away from the Sun has

an impact on this flow shear; due to the direction of Saturn's rotation the aurorae would then have to

be brighter at the planet's dawnside than on its duskside, which was observed in previous studies. Here

we analyze a large set of auroral images taken by Cassini's ultraviolet camera, but we cannot find any

sign of such an asymmetry. This indicates that the impact of the solar wind on Saturn's aurorae must

be smaller than previously thought and that they must instead mainly be controlled from within the

system. This assumption is supported by our observations of bright auroral patches at dawn, which are

likely a signature of plasma being released from Saturn's magnetosphere and appear at quite regular

periods corresponding to Saturn's rotation period.

1. Introduction

Planetary aurorae appear throughout the solar system and illustrate many different plasma processes. Their

origins are very different—while, for example, aurorae on Earth and Mars are almost entirely controlled by

the solar wind (e.g., Brain et al., 2006; Milan et al., 2003; Walach et al., 2017), Jupiter's brightest aurorae

are internally generated due to the breakdown of corotation in the middle magnetosphere (e.g., Cowley

& Bunce, 2001; Hill, 2001; Southwood & Kivelson, 2001). While also being a fast-rotating gas giant like

Jupiter, Saturn's corotation breakdown currents are thought to be too weak to produce auroral emissions

(Cowley&Bunce, 2003). Instead, the flow shear associatedwith a strong gradient in angular plasma velocity

between the outer closed magnetosphere and the open field region—caused by ion-neutral collisions in the

ionosphere twisting the open field lines (Isbell et al., 1984; Milan et al., 2005)—was proposed as a possible

driver generating the field-aligned currents (FACs) responsible for electron precipitation into Saturn's polar

atmosphere, forming the “subcorotational system” (e.g., Cowley, Bunce & O'Rourke 2004; Cowley, Bunce &

Prangé 2004; Cowley et al., 2005; Stallard et al., 2007; Vasyliūnas, 2016).
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Under strong solar wind driving (increased solar wind velocity and density), active Dungey cycle reconnec-

tion between the interplanetarymagnetic field and Saturn'smagnetic field at the daysidemagnetopausemay

prompt an antisunward flow in the slowly subcorotating polar open field region just like at Earth (Dungey,

1961). At dawn, this Dungey cycle convection across the polar cap—here oppositely directed to the subcoro-

tating magnetospheric plasma flow—would act to enhance the (rotational) plasma flow shear associated

with the generation of Saturn's main aurorae and hence also the auroral brightness. Conversely, strong solar

wind driving should lead to a reduction of this plasma flow shear and the auroral brightness at dusk (e.g.,

Cowley, Bunce & Prangé 2004; Jackman & Cowley, 2006). Adding to this local time (LT) asymmetry, the

Dungey and Vasyliunas cycle return flows are expected to pass from the magnetotail toward the dayside

via dawn due to the rapid rotation of the magnetosphere (e.g., Cowley, Bunce & Prangé 2004; Vasyliūnas,

1983). However, the importance of Dungey cycle convection at Saturn is disputed as magnetopause recon-

nection may be inhibited across parts of the magnetopause (e.g., Desroche et al., 2013; Masters et al., 2012,

2014) and viscous interactions mediated by Kelvin-Helmholtz instabilities may instead be the main cou-

pling mechanism between the solar wind and Saturn's magnetosphere (e.g., Delamere & Bagenal, 2010;

Delamere et al., 2013).

Previous studies using auroral imagery obtained by the Hubble Space Telescope in the ultraviolet (UV)

wavelength band (e.g., Kinrade et al., 2018; Lamy et al., 2009, 2018; Nichols et al., 2016) and by the Cassini

spacecraft at infrared (IR) and UV wavelengths (e.g., Bader et al., 2018; Badman et al., 2011; Carbary, 2012)

have statistically identified such a brightness asymmetry, seemingly confirming that Saturn's main aurorae

are indeed significantly solar wind driven. However, most of these studies used rather small sets of single

exposures lacking context and/or short observation series without good time resolution to obtain statisti-

cal averages, hence not taking into account the complicated dynamics of Saturn's aurora which had already

been observed by the Voyager spacecraft (Sandel & Broadfoot, 1981; Sandel et al., 1982).

In this study we use extensive sets of auroral imagery obtained by the Cassini spacecraft to investigate the

dynamics of Saturn's main aurorae and shed more light on its generation mechanisms. We present the data

set and describe our analysismethods in section 2. In section 3we analyze observations consistentwith quiet

auroral conditions to reveal the structure of subcorotationally driven main aurorae and their modulation by

planetary period oscillations (PPOs), while in section 4 we describe the added complexity brought into the

system by magnetotail dynamics, causing transient large-scale brightenings. We summarize our findings

and propose an updated model of Saturn's main aurorae in section 5.

2. Data andMethods

NASA's Cassini spacecraft orbited Saturn for over 13 years, providing a rich set of auroral observations in the

UV spectrum with its Ultraviolet Imaging Spectrograph (UVIS; Esposito et al., 2004). Here we investigate

Saturn's auroral dynamics and therefore select observation windows where many images were taken in

quick succession (exposure time <20min) for several hours. This corresponds to auroral observations from
high apoapsiswhereCassinimoved relatively slowly, preserving the same viewing geometry for long periods;

and where the large distance from Saturn allowed UVIS to cover the entire auroral oval with a single slit

scan, allowing for low exposure times. Nearly all available observations of this kind fall into 2014/2016/2017,

and all are from Saturn's northern hemisphere.

2.1. Cassini-UVIS Imagery

TheCassini-UVIS instrument includes two telescope-spectrographs observing in the 56- to 118-nm (extreme

ultraviolet) and 110- to 190-nm (far ultraviolet, or FUV) wavelength ranges; most of Saturn's auroral UV

emissions are observed in the FUV band. The UVIS FUV slit has a field of view of 1.5 × 64mrad, with

64 spatial pixels of size 1.5 × 1mrad each arranged along a single line. Pseudo-images of the aurora are

obtained by scanning this slit across the auroral region. Several successive scans may be necessary to cover

the entire region of interest depending on Cassini's distance from Saturn, increasing the exposure time of

auroral images. The total exposure time for a pseudo-image of the entire auroral oval can vary between 6

and 180min.

Each image is polar projected onto a planetocentric polar grid with resolution 0.5◦ × 0.25◦ (lon × lat) at

an altitude of 1,100 km above Saturn's 1-bar pressure surface (oblate spheroid with RSEQ = 60,268 km and

RSPO = 54,364 km as equatorial and polar radii), the approximate altitude of Saturn's auroral emissions

(Gérard et al., 2009). Cassini SPICE pointing information is used to perform the projection. The spectrum
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recorded by each pixel of the UVIS FUV sensor, observed in 1,024 spectral bins, is reduced to total unab-

sorbedH2 emission intensity (70–170 nm) bymultiplying the intensitymeasured in the 155- to 162-nm range

by the factor 8.1 (Gustin et al., 2016, 2017). Using this method, dayglow emission and hydrocarbon absorp-

tion affect the estimated total unabsorbed H2 intensity as little as possible. Even so, some dayglow is still

apparent in most UVIS images; it is removed as previously described in Bader et al. (2019) in order to obtain

accurate auroral brightnesses and emission powers.

Many of the images in this study have quite low spatial resolutions, with single pixels extending over up

to 5◦ in colatitude or 1 hr in LT. However, this issue is circumvented by integrating over the auroral bright-

ness to obtain the emitted radiant flux, or “auroral power,” as laid out in the supporting information of this

paper. A large instrument pixel covering a small bright auroral feature and its surroundings is dimmer than

the actual brightness maximum of the observed emission—however, the pixel brightness corresponds to the

average brightness of the area it subtends during the time of the exposure. Integrating over this area there-

fore gives a quite exact measure of the auroral power nevertheless. We reduce each image by integrating its

auroral brightness between 8◦ and 22◦ colatitude in 36 LT bins and thereby obtain a distribution of auro-

ral power per hour of LT. This latitudinal range fully includes the statistical position of the main aurorae

and associated uncertainties (Bader et al., 2019). Arranging these integrated powers of all images along the

horizontal axis—taking into account the start and stop times of each exposure—we obtain a keogram.

2.2. PPO Systems

Each of Saturn's hemispheres is associated with one PPO system, a complex array of FACs spanning

the entire magnetosphere of Saturn (e.g., Andrews et al., 2010; Hunt et al., 2014; Provan et al., 2011;

Southwood & Kivelson, 2007) likely associated with vortical flow structures in Saturn's polar ionospheres

(e.g., Hunt et al., 2014; Jia & Kivelson, 2012; Jia et al., 2012; Southwood & Cowley, 2014). Their rotation at

roughly the planetary period generates periodic signatures in all plasma properties and processes in Saturn's

environment, the two systems exhibiting close but distinct periods that vary with time (e.g., Provan et al.,

2013, 2016). Each PPO system is usually dominant in one hemisphere, but its associated system of FACs

partly closes in the opposite hemisphere such that each hemisphere experiences a double modulation of,

for example, auroral FACs by both the northern and southern PPO systems (e.g., Bader et al., 2018; Bradley

et al., 2018; Hunt et al., 2015; Provan et al., 2018).

A sketch of the northern PPO system is shown in Figure S1 in the supporting information, with Figure

S1a showing the magnetic field and electric currents in the equatorial plane and Figure S1b showing the

electric currents and atmospheric/ionospheric flows in the northern polar ionosphere. The southern PPO

system effects the same pattern of upward/downward FACs in the northern hemisphere as shown here for

the northern system. Depending on the relative orientation between the two systems, their associated FACs

can combine to intensify or negate one another. The orientation of the two PPO systems is described by

the PPO phase angles 𝛷N,S, the counterclockwise azimuthal angle between the PPO magnetic perturbation

dipoles in the equatorial plane and local noon. In this study we use the phase angles determined by Provan

et al. (2016, 2018). PPO-fixed reference frames are defined using the phase values 𝛹N,S, giving the clockwise

angle from the PPO dipole direction.

In the northern hemisphere, the PPO-associated upward FACs maximize at 𝛹N,S = 90◦, with the downward

FACs maximizing at 𝛹N,S = 270◦ (e.g., Hunt et al., 2014). The modulation effect is hence largest when the

two PPO systems are in phase, their perturbation dipoles parallel. In the keograms shown through this study

and in the supporting information, 𝛹N,S = 90◦ is marked with yellow lines.

The PPO-induced modulation of the equatorial current sheet thickness shows a different phasing; the cur-

rent sheet being thinnest at 𝛹N = 0◦ and 𝛹S = 180◦ (Bradley et al., 2018; Cowley & Provan, 2017; Jackman

et al., 2016). This modulation is therefore emphasized when the two PPO systems are in antiphase. In

Figures 4 and S4, the two systems were within 45◦ of antiphase—orange dotted lines hence indicate

the approximate location at which the PPO-related thinning of the current sheet is expected to be most

pronounced.

3. Saturn's Quiet Main Aurora: Subcorotational and PPO Systems

In quiet and steady auroral conditions, the main aurorae should form a quasi-static ring of emission around

both poles corresponding to the region of peak flow shear between the rapidly rotating magnetospheric
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Figure 1. Ultraviolet (UV) auroral power keogram, quiet auroral conditions (2017 DOY 79–80). (a–c) Three UVIS images within this sequence, each about
5–6 hr apart. The view is from above the planet down onto the north pole, with noon/the Sun toward the bottom. White numbers around each image mark local
time (LT), and gray concentric circles mark the northern colatitude in steps of 10◦. The gray shaded and hatched regions (colatitudes >22◦ and <8◦) were
ignored for the integration of UV powers. The start and exposure time of each observation are given on top. Shown is the background-subtracted auroral
brightness in kilo-Rayleigh; note the logarithmic scale. (d) UV power keogram of all images in this sequence; logarithmic power scale. The UV power between
8◦ and 22◦ colatitude was integrated in 36 LT bins for each image and is arranged by the image collection time such that UT increases to the right. Diagonal
lines mark planetary period oscillation (PPO) upward field-aligned current regions propagating around the planet at their respective PPO rotation rate. Dashed
horizontal lines limit the “dawn” (blue) and “dusk” (red) LT bins whose UV powers were added for the line plots shown in the bottom panel. Black arrows on
top of the panel mark the collection times of the example images shown in (a–c). (e) Line plots of the total, dawn and dusk UV powers.

plasma and the slowly rotating plasma in the polar open field region (e.g., Cowley, Bunce & O'Rourke 2004;

Cowley, Bunce & Prangé 2004; Cowley et al., 2005; Stallard et al., 2007; Vasyliūnas, 2016). Lacking con-

tinuous upstream solar wind monitoring, we cannot know for sure the solar wind conditions during most

of Cassini's observation sequences. We therefore identify “quiet conditions” as imaging sequences where

no large-scale transient brightenings (total power > 20GW for >5 hr) were observed, indicating low mag-

netic reconnection activity at both dayside and nightside as such events would manifest as bifurcations at

noon-dusk LTs (e.g., Badman et al., 2013; Meredith et al., 2014; Radioti et al., 2011; 2013) or as bright tran-

sient features at midnight-dawn LTs (e.g., Jackman et al., 2013; Lamy et al., 2013). Figure 1 shows an auroral

keogram of one such period without transient events, covering more than two full Saturn rotations (∼25 hr)
with near-continuous imagery.

We notice a periodic modulation of the emitted UV auroral power, which is well explained with rotating

patterns of upward and downward FACs associated with Saturn's PPO systems. In this case, the two PPO

systems are aligned nearly parallel and rotating in phase—their upward and downward FAC regions overlap

and enhance the associated modulations of the static main aurorae. The dawn UV power is largest roughly
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Figure 2. Ultraviolet (UV) auroral power histograms, quiet and average auroral conditions. (a) UV power histogram of
five sequences with quiet auroral conditions (2014 DOY 130/147/158–159/311 and 2017 DOY 79–80, see Figure S2 in
the supporting information), including 476 images with overall 67 hr of observations. Local time (LT) is on the vertical
and (latitudinally integrated) UV power on the horizontal axis, the occurrence (number of observations) is shown in
logarithmic color scale. Note the logarithmic UV power scaling on the horizontal axis. The mean (median) UV power
per LT bin are shown in black (brown), with the standard deviation (median absolute deviation) indicated with a
shaded area to the right of the graph. (b) Dawn (blue) and dusk (red) histograms, summed from all data enclosed by
the blue/red dashed lines in panel (a). Hatched bars to the left show the occurrence of bins with UV powers lower than
the bottom limit of the graph. Solid vertical lines mark the median UV power per LT bin at dawn/dusk. (c, d) UV
power histogram of 2014 DOY 144–162 (keograms in Figures 4, S3, and S4), including 896 images with an overall
exposure time of 122 hr. Same format as in panels (a) and (b).

when the expected PPO upward FACmaxima pass andweakest during opposite PPO orientations and varies

by nearly a factor of 10. Consequently, the main oval seemingly disappears near dawn as the combined PPO

downward FAC regions sweep over and negate the subcorotational system's upward currents (see Figure 1b).

While this modulation should theoretically be of comparable strength at all LTs (Hunt et al., 2016), it is here

barely discernible at dusk. This difference in modulation amplitude agrees with statistical findings (Bader

et al., 2018) and might be related to a seemingly larger spread of the PPO currents at dusk than at dawn

(Andrews et al., 2010).

Neither the keogram (Figure 1d) nor the summed dawn and dusk UV powers (Figure 1e) show an asymme-

try as expected during periods of significant solar wind driving—this is not surprising, as the time period

considered here shows rather quiet auroral conditions, probably indicating quiet solar wind conditions and

lowDungey cycle activity. Surprisingly though, the duskside is noticeably brighter than the dawnside during

most of the observation sequence. This can partly be explained with quasiperiodic flashes, possibly a sign of

small-scale magnetodisc reconnection observed preferentially at dusk (Bader et al., 2019). These have been

shown to occur near-constantly and manifest as spikes in the dusk power (Figure 1e), but they do not fully

account for the underlying steady asymmetry between dawn and dusk which we observe here. At Jupiter, a

similar asymmetry was observed and suggested to be related to a partial ring current in the nightside mag-

netosphere (Bonfond et al., 2015), but it is unclear whether a similar process could be important in Saturn's

magnetosphere.
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Figure 3. Comparison between Saturn's mean and median northern ultraviolet auroral brightness between 2014 DOY
145–162. The view is from above Saturn onto the planet's northern pole, with local noon to the bottom. Bold white
numbers indicate local time; the northern colatitude from the pole is marked by gray concentric circles in 10◦ steps. The
auroral brightness in kilo-Rayleigh is shown in color scale. (a) Mean and (b) median auroral brightness of all images.

The case study presented in Figure 1 is not the only quiet sequence observed. Considering only sequences

with quasi-continuous coverage of at least one Saturn rotation, we find additional quiet sequences at 2014

DOY 130/147/158–159/311 (Figure S2)—including overall 476 images with 67 hr of total exposure time,

corresponding to just over six Saturn rotations. A UV power-LT histogram for these images is shown in

Figure 2a, with the mean and median power per LT added as line plots; the dawn and dusk slices of this

histogram are compared in Figure 2b. We observe similar UV powers through all LTs, disagreeing with

previously discussed UV and IR auroral intensity distributions (e.g., Badman et al., 2011; Bader et al., 2018;

Carbary, 2012; Kinrade et al., 2018; Lamy et al., 2009, 2018; Nichols et al., 2016) with a brightness peak

at dawn probably due to our choice of quiet periods. Centered on roughly 0.5GW per 40min LT bin, the

powers are more variable and feature a more prominent tail toward lower powers at dawn/noon than at

dusk/midnight. The occurrence ofUVpowers below the lower histogram limit (see Figure 2b) ismuch larger

at dawn, indicating longer intervals with a complete absence of auroral emissions.

There appears to be a dip in the average power at noon, somewhat reminiscent of the noon discontinuity in

the Jovian main emission (e.g., Radioti et al., 2008; Ray et al., 2014). The currents associated with Jupiter's

main emission are thought to be internally driven by the breakdown of corotation in themagnetodisc, which

is less significant at the solar wind-compressed dayside (e.g., Chané et al., 2017).

4. Typical Auroral Conditions and Periodic Magnetotail Dynamics

Figures 2c and 2d show a power histogram of all UVIS images between 2014 DOY 144–162. It includes 896

images, corresponding to∼122 hr of exposure within the∼411-hr observationwindow—a data set quite rep-

resentative of Saturn's typical auroral dynamics, likely capturing a variety of different solar wind conditions.

As each observation block covers roughly one full Saturn rotation (or PPO phase cycle) or more, we assume

no significant bias in PPO phases. A keogram of the entire set is shown in Figure S3, including solar wind

properties propagated from OMNI which indicate initially typical solar wind conditions, likely with aver-

age Dungey cycle activity, followed by rather quiet conditions. Note that two of the observation blocks (2014

DOY 147/158–159) were considered to show quiet auroral conditions and included in the corresponding

analysis above as well as here.

Figure 2c differs from the histogram of the quiet aurora (Figure 2a) significantly only at dawn to postnoon

LTs. We see a much wider spread in UV power at dawn than in quiet conditions, but do not observe a sig-

nificant statistical dawn brightening (see Figure 2d). On the contrary, again the median UV power is larger

at dusk than at dawn. The mean and median UV power distributions (Figure 2c) are in close agreement

between noon and midnight but clearly differ near dawn—the mean maximizing here, while the median

minimizes. Themean auroral power agrees very well with intensity averages of previous observations which
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Figure 4. Ultraviolet auroral power keogram, typical auroral conditions (2014 DOY 156–162). Same format as Figure 1, but showing four observation sequences
(a–d) with a broken time axis. In panel (e), orange dotted lines indicate where the planetary period oscillation-induced current sheet thinning is expected to be
most pronounced, likely instigating reconnection.

all showed a distinct peak between 6 and 9 LT (e.g., Bader et al., 2018; Badman et al., 2011; Carbary, 2012;

Kinrade et al., 2018; Lamy et al., 2009, 2018; Nichols et al., 2016)—but, as seen here, the mean UV inten-

sity/power is obviously not a good representation of the typical state of the aurora. The median directly

shows that in more cases than not, the dawn aurora is dimmer than the dusk aurora and not brighter; it is

the few transient high-power events subcorotating through dawn which skew the mean power to unrepre-

sentative high values at these LTs. Figure 3 compares the mean and median brightness of the actual images

in this data set.

A detailed view of the 2014 DOY 156–162 keograms is shown in Figure 4 (Figure S4 shows 2014 DOY

144–149). Figures 4a–4d show an example UVIS image from each observation block—note that the observa-

tion geometry worsens toward the end, with the last images lacking coverage beyond ∼20◦ colatitude from
the pole between 18–24 LT. The integrated UV powers at these LTs are hencemore uncertain as empty pixels

have been filled with longitudinally averaged values of each latitudinal bin before integration.

The quiet auroral oval is overlaid with repeated powerful auroral plasma injection events (Mitchell et al.,

2015) at Saturn's dawnside, which almost never rotate past noon as the perturbed source population's free

energy is gradually deposited in Saturn's atmosphere, generating aurorae. The related rotating injected hot

plasma populations seen in energetic neutral atom images do not stall at noon but continue rotating near

rigidly with diminishing intensity back into the nightside sector where they appear to be reenergized with
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every pass (Carbary & Mitchell, 2017; Mitchell et al., 2009). All injections commence near dawn, indicat-

ing nightside reconnection and the consequent magnetic dipolarization (Yao et al., 2017) as a likely cause

(Radioti et al., 2016)- considering the significant bendback of themagnetic field at dawn, this LT regionmaps

well into Saturn's nightside. An auroral signature of this process may be the result of particle acceleration

and precipitation during the dipolarization (Mitchell et al., 2015).

The injection events vary strongly in power, but show a regularity indicating a trigger mechanism internal

to Saturn's magnetosphere. One known instigator of magnetotail reconnection is the PPO-induced modula-

tion of the current sheet thickness (Bradley et al., 2018; Cowley & Provan, 2017; Jackman et al., 2016), which

is most pronounced when the two PPO systems rotate in antiphase. This is the case in Figure 4e; the approx-

imate location at which the current sheet is expected to be thinnest and reconnection is more likely to occur

is indicated with orange dotted lines. Most of the injections observed are triggered within some 3-hr LT of

these highlighted locations, suggesting the PPO current sheet thinning effect to indeed be a main influence

on the occurrence of the observed large-scale disturbances.

5. Discussion and Conclusions

It is clear that Saturn'smain aurorae aremore dynamic than previous statistical studiesmay suggest.We con-

clude that the presently called “main aurorae” are associatedwith three differentmagnetospheric processes:

the subcorotational FAC system, the two PPO FAC systems, and the occurrence of large-scale magnetotail

reconnection events.

The subcorotational system is a largely or completely LT-invariant system of FACs which are likely gener-

ated by flow shears between plasma populations subcorotating at different speeds in the middle and outer

magnetosphere (Cowley et al., 2004). This agrees with field line mapping of the main aurorae which places

the main upward FAC sheet at an equatorial distance beyond 10 RS, outward from the middle ring current

(e.g., Belenkaya et al., 2014; Bradley et al., 2018; Talboys et al., 2011). The flow of the solar wind and the asso-

ciated Dungey cycle activity (e.g., Cowley, Bunce & Prangé 2004; Jackman & Cowley, 2006) seem to have

little to no impact on this system, since no significant LT asymmetries in auroral FACs (Hunt et al., 2016)

and auroral brightness are observed, contrary to previous findings (e.g., Bader et al., 2018; Badman et al.,

2011; Carbary, 2012; Kinrade et al., 2018; Lamy et al., 2009, 2018; Nichols et al., 2016), where observed asym-

metries were likely an artifact of small data sets and averaging procedures unsuitable for determining the

full variability of Saturn's auroral dynamics. This is supported by earlier studies estimating the Dungey cycle

contribution to magnetic flux transport to be roughly an order of magnitude lower than the contribution

arising from rotational flows in quiet solar wind conditions such that no asymmetry in auroral brightness is

expected (e.g., Badman & Cowley, 2007; Badman et al., 2005). During solar wind compressions, significant

asymmetries should theoretically arise (e.g., Badman & Cowley, 2007; Jackman et al., 2007) but will in real-

ity be subsumed into the major auroral dynamics, that is, poleward extending auroral storms which occur

simultaneously. The subcorotational system alone would cause a rather steady ring of upward FACs and

associated auroral emissions around Saturn's poles corresponding to the region of highest flow shear, pos-

sibly with secondary emissions associated with corotation breakdown currents like Jupiter's main aurorae

(Lamy et al., 2018; Stallard et al., 2007, 2008).

This subcorotational system is enhanced and reduced by the asymmetric PPO-related FACs flowing at the

same latitudes (e.g., Bradley et al., 2018;Hunt et al., 2014, 2015). The slightly differing periods of the two PPO

systems result in a double-sinusoidal modulation of the main oval's auroral brightness through LT, as the

PPO and subcorotational FACs add up on one side of the planet but nearly negate each other on the opposite

side (Bader et al., 2018)—we found this modulation to be significantly stronger at dawn than at dusk.

These two current systems combine to generate what should be considered the “main emission”. Unintu-

itively though, the main (quasi-static and continuous) emission is often not dominant in Saturn's aurora, as

it is quite dim (up to ∼10 kR). It is overpowered significantly by large and bright patches which are likely
a consequence of magnetic dipolarization events (e.g., Jackman et al., 2013; Jia & Kivelson, 2012; Lamy

et al., 2013; Radioti et al., 2016) and which usually emerge between midnight and dawn LTs. They sub-

corotate and usually disperse before reaching dusk. Their occurrence seems to be partly governed by the

PPO-induced thinning of the current sheet (Bradley et al., 2018; Cowley & Provan, 2017; Jackman et al.,

2016); this was already observed in modeling studies (Jia & Kivelson, 2012; Zieger et al., 2010) and is likely

related to similarly periodic plasma heating and ring current intensifications observed in energetic neutral
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atom measurements (Mitchell et al., 2009; Nichols et al., 2014). We observe such auroral plasma injection

events about once per Saturn rotation, in rough agreement with direct plasmoid observations (Jackman et

al., 2011, 2016) and Saturn's estimated magnetospheric refresh rate (Rymer et al., 2013).

Previous studies have further observed a clear dependence of magnetotail reconnection on solar wind con-

ditions, as, for example, solar wind compression regions are known to trigger magnetotail reconnection and

auroral storms (e.g., Badman et al., 2016; Clarke et al., 2005, 2009; Cowley et al., 2005; Crary et al., 2005;

Kidder et al., 2012; Palmaerts et al., 2018), roughly about once per week (Meredith et al., 2014). Quiet

solar wind conditions can lead to an expansion of the magnetotail and an accumulation of open flux as

magnetotail reconnection is impeded (Badman et al., 2005, 2014; Jackman et al., 2010), and fewer or no auro-

ral injections are observed (Gérard et al., 2006). Moreover, higher magnetopause reconnection rates cause

higher flux loading, thereby indirectly promoting magnetotail reconnection events (Badman et al., 2005;

Badman et al., 2014; Jackman, 2004).

These results are an important step toward a better understanding of the global dynamics of Saturn's mag-

netosphere and the internal and external factors at play, providing a crucial framework for future studies.

Analyzing in situ data from past Saturn missions as well as modeling the system theoretically in the light of

these new findings will help investigate Saturn's global plasma circulationmore thoroughly, helping unravel

the physics of rotating magnetospheres in general.

References

Andrews,D. J., Coates, A. J., Cowley, S.W.H.,Dougherty,M.K., Lamy, L., Provan,G.,&Zarka, P. (2010).Magnetospheric period oscillations

at Saturn: Comparison of equatorial and high-latitude magnetic field periods with north and south Saturn kilometric radiation periods.

Journal of Geophysical Research, 115, A12252. https://doi.org/10.1029/2010JA015666

Andrews, D. J., Cowley, S. W. H., Dougherty, M. K., & Provan, G. (2010). Magnetic field oscillations near the planetary period in Saturn's

equatorial magnetosphere: Variation of amplitude and phase with radial distance and local time. Journal of Geophysical Research, 115,

A04212. https://doi.org/10.1029/2009JA014729

Bader, A., Badman, S. V., Kinrade, J., Cowley, S. W. H., Provan, G., & Pryor, W. R. (2018). Statistical planetary period oscillation signatures

in Saturn's UV auroral intensity. Journal of Geophysical Research: Space Physics, 123, 8459–8472. https://doi.org/10.1029/2018JA025855

Bader, A., Badman, S. V., Kinrade, J., Cowley, S. W. H., Provan, G., & Pryor, W. (2019). Modulations of Saturn's UV auroral oval location

by planetary period oscillations. Journal of Geophysical Research: Space Physics, 124, 952–970. https://doi.org/10.1029/2018JA026117

Bader, A., Badman, S. V., Yao, Z. H., Kinrade, J., & Pryor, W. R. (2019). Observations of continuous quasiperiodic auroral pulsations on

Saturn in high time-resolution UV auroral imagery. Journal of Geophysical Research: Space Physics, 124, 2451–2465. https://doi.org/10.

1029/2018JA026320

Badman, S. V., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., Gérard, J. C., Grodent, D., & Milan, S. E. (2005). Open flux estimates in Sat-

urn's magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. Journal of Geophysical

Research, 110, A11216. https://doi.org/10.1029/2005JA011240

Badman, S. V., & Cowley, S. W. H. (2007). Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their

identification on closed equatorial field lines. Annales Geophysicae, 25, 941–951. https://doi.org/10.5194/angeo-25-941-2007

Badman, S. V., Jackman, C.M., Nichols, J. D., Clarke, J. T., &Gérard, J. C. (2014). Open flux in Saturn'smagnetosphere. Icarus, 231, 137–145.

https://doi.org/10.1016/j.icarus.2013.12.004

Badman, S. V., Masters, A., Hasegawa, H., Fujimoto, M., Radioti, A., Grodent, D., & Coates, A. (2013). Bursty magnetic reconnection at

Saturn's magnetopause. Geophysical Research Letters, 40, 1027–1031. https://doi.org/10.1002/grl.50199

Badman, S. V., Provan, G., Bunce, E. J., Mitchell, D. G.,Melin, H., Cowley, S.W.H., &Dougherty,M. K. (2016). Saturn's auroralmorphology

and field-aligned currents during a solar wind compression. Icarus, 263, 83–93. https://doi.org/10.1016/j.icarus.2014.11.014

Badman, S. V., Tao, C., Grocott, A., Kasahara, S., Melin, H., Brown, R. H., & Stallard, T. (2011). Cassini VIMS observations of latitudinal

and hemispheric variations in Saturn's infrared auroral intensity. Icarus, 216(2), 367–375. https://doi.org/10.1016/j.icarus.2011.09.031

Belenkaya, E. S., Cowley, S.W.H.,Meredith, C. J., Nichols, J. D., Kalegaev, V.V., Alexeev, I. I., &Blokhina,M. S. (2014).Magnetosphericmag-

netic fieldmodelling for the 2011 and 2012HST Saturn aurora campaigns—Implications for auroral source regions.AnnalesGeophysicae,

32(6), 689–704. https://doi.org/10.5194/angeo-32-689-2014

Bonfond, B., Gustin, J., Gérard, J. C., Grodent, D., Radioti, A., Palmaerts, B., & Tao, C. (2015). The far-ultraviolet main auroral

emission at Jupiter—Part 1: Dawn-dusk brightness asymmetries. Annales Geophysicae, 33(10), 1203–1209. https://doi.org/10.5194/

angeo-33-1203-2015

Bradley, T. J., Cowley, S.W.H., Bunce, E. J., Smith, A.W., Jackman, C.M., & Provan, G. (2018). Planetary periodmodulation of reconnection

bursts in Saturn's magnetotail. Journal of Geophysical Research: Space Physics, 123, 9476–9507. https://doi.org/10.1029/2018JA025932

Bradley, T. J., Cowley, S. W. H., Provan, G., Hunt, G. J., Bunce, E. J., Wharton, S. J., & Dougherty, M. K. (2018). Field-aligned currents

in Saturn's nightside magnetosphere: Subcorotation and planetary period oscillation components during northern spring. Journal of

Geophysical Research: Space Physics, 123, 3602–3636. https://doi.org/10.1029/2017JA024885

Brain, D. A., Halekas, J. S., Peticolas, L. M., Lin, R. P., Luhmann, J. G., Mitchell, D. L., & Réme, H. (2006). On the origin of aurorae onMars.

Geophysical Research Letters, 33, L01201. https://doi.org/10.1029/2005GL024782

Carbary, J. F. (2012). Themorphology of Saturn's ultraviolet aurora. Journal of Geophysical Research, 117, A06210. https://doi.org/10.1029/

2012JA017670

Carbary, J. F., & Mitchell, D. G. (2017). Midnight flash model of energetic neutral atom periodicities at Saturn: Midnight flash model.

Journal of Geophysical Research: Space Physics, 122, 7110–7117. https://doi.org/10.1002/2017JA024296

Chané, E., Saur, J., Keppens, R., & Poedts, S. (2017). How is the Jovian main auroral emission affected by the solar wind? Journal of

Geophysical Research: Space Physics, 122, 1960–1978. https://doi.org/10.1002/2016JA023318

Acknowledgments
All Cassini data are publicly available

from the NASA Planetary Data System

(https://pds.jpl.nasa.gov). PPO phase

data (2004–2017) can be found on the

University of Leicester Research

Archive (http://hdl.handle.net/2381/

42436). Cassini operations are

supported by NASA (managed by the

Jet Propulsion Laboratory) and

European Space Agency (ESA). A. B.

was funded by a Lancaster University

FST studentship. S. V. B., L. C. R., and

J. K. were supported by STFC Grant

ST/R000816/1. S. V. B. was also

supported by an STFC Ernest

Rutherford FellowshipST/M005534/1.

Z. Y. acknowledges financial support

from the Belgian Federal Science

Policy Office (BELSPO) via the

PRODEX Programme of ESA. T. J. B.

was supported by STFC Quota

StudentshipST/N504117/1. G. J. H.

was supported by STFC consolidated

Grant ST/000692/2.

BADER ET AL. 10,291



Geophysical Research Letters 10.1029/2019GL084620

Clarke, J. T., Connerney, J., Crary, F., Dougherty, M., Kurth, W., Cowley, S. W. H., & Kim, J. (2005). Morphological differences between

Saturn's ultraviolet aurorae and those of Earth and Jupiter. Nature, 433, 3.

Clarke, J. T., Nichols, J., Gérard, J. C., Grodent, D., Hansen, K. C., Kurth,W., & Cecconi, B. (2009). Response of Jupiter's and Saturn's auroral

activity to the solar wind. Journal of Geophysical Research, 114, A05210. https://doi.org/10.1029/2008JA013694

Cowley, S. W. H., Badman, S. V., Bunce, E. J., Clarke, J. T., Gérard, J. C., Grodent, D. C., & Yeoman, T. K. (2005). Reconnection in a

rotation-dominated magnetosphere and its relation to Saturn's auroral dynamics. Journal of Geophysical Research, 110, A02201. https://

doi.org/10.1029/2004JA010796

Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planetary

and Space Science, 49(10-11), 1067–1088. https://doi.org/10.1016/S0032-0633(00)00167-7

Cowley, S. W. H., & Bunce, E. J. (2003). Corotation-driven magnetosphere-ionosphere coupling currents in Saturn's magnetosphere and

their relation to the auroras. Annales Geophysicae, 21(8), 1691–1707. https://doi.org/10.5194/angeo-21-1691-2003

Cowley, S. W. H., Bunce, E. J., & O'Rourke, J. M. (2004). A simple quantitative model of plasma flows and currents in Saturn's polar

ionosphere. Journal of Geophysical Research, 109, A05212. https://doi.org/10.1029/2003JA010375

Cowley, S. W. H., Bunce, E. J., & Prangé, R. (2004). Saturn's polar ionospheric flows and their relation to the main auroral oval. Annales

Geophysicae, 22(4), 1379–1394. https://doi.org/10.5194/angeo-22-1379-2004

Cowley, S. W. H., & Provan, G. (2017). Planetary period modulations of Saturn's magnetotail current sheet during northern spring:

Observations and modeling. Journal of Geophysical Research: Space Physics, 122, 6049–6077. https://doi.org/10.1002/2017JA023993

Crary, F. J., Clarke, J. T., Dougherty,M. K., Hanlon, P. G., Hansen, K. C., Steinberg, J. T., & Young, D. T. (2005). Solar wind dynamic pressure

and electric field as the main factors controlling Saturn's aurorae. Nature, 433, 720. https://doi.org/10.1038/nature03333

Delamere, P. A., & Bagenal, F. (2010). Solar wind interaction with Jupiter's magnetosphere. Journal of Geophysical Research, 115, A10201.

https://doi.org/10.1029/2010JA015347

Delamere, P. A., Wilson, R. J., Eriksson, S., & Bagenal, F. (2013). Magnetic signatures of Kelvin-Helmholtz vortices on Saturn's magne-

topause: Global survey. Journal of Geophysical Research: Space Physics, 118, 393–404. https://doi.org/10.1029/2012JA018197

Desroche, M., Bagenal, F., Delamere, P. A., & Erkaev, N. (2013). Conditions at the magnetopause of Saturn and implications for the solar

wind interaction. Journal of Geophysical Research: Space Physics, 118, 3087–3095. https://doi.org/10.1002/jgra.50294

Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48. https://doi.org/10.1103/

PhysRevLett.6.47

Esposito, L.W., Barth, C. A., Colwell, J. E., Lawrence, G.M.,McClintock,W. E., Stewart, A. I. F., &Yung, Y. L. (2004). TheCassini Ultraviolet

Imaging Spectrograph investigation. Space Science Reviews, 115(1-4), 299–361. https://doi.org/10.1007/s11214-004-1455-8

Gérard, J. C., Bonfond, B., Gustin, J., Grodent, D., Clarke, J. T., Bisikalo, D., & Shematovich, V. (2009). Altitude of Saturn's aurora and

its implications for the characteristic energy of precipitated electrons. Geophysical Research Letters, 36, L02202. https://doi.org/10.1029/

2008GL036554

Gérard, J. C., Grodent, D., Cowley, S.W.H.,Mitchell, D.G., Kurth,W. S., Clarke, J. T., &Coates, A. J. (2006). Saturn's auroralmorphology and

activity during quiet magnetospheric conditions. Journal of Geophysical Research, 111, A12210. https://doi.org/10.1029/2006JA011965

Gustin, J., Grodent, D., Radioti, A., Pryor, W., Lamy, L., & Ajello, J. (2017). Statistical study of Saturn's auroral electron properties with

Cassini/UVIS FUV spectral images. Icarus, 284, 264–283. https://doi.org/10.1016/j.icarus.2016.11.017

Gustin, J., Grodent, D., Ray, L., Bonfond, B., Bunce, E., Nichols, J., & Ozak, N. (2016). Characteristics of north Jovian aurora from STIS

FUV spectral images. Icarus, 268, 215–241. https://doi.org/10.1016/j.icarus.2015.12.048

Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106(A5), 8101–8107. https://doi.org/10.1029/2000JA000302

Hunt, G. J., Cowley, S.W.H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., &Coates, A. J. (2014). Field-aligned currents in Saturn's

southern nightside magnetosphere: Subcorotation and planetary period oscillation components. Journal of Geophysical Research: Space

Physics, 119, 9847–9899. https://doi.org/10.1002/2014JA020506

Hunt, G. J., Cowley, S. W. H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., & Coates, A. J. (2015). Field-aligned currents in

Saturn's northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations.

Journal of Geophysical Research: Space Physics, 120, 7552–7584. https://doi.org/10.1002/2015JA021454

Hunt, G. J., Cowley, S. W. H., Provan, G., Bunce, E. J., Alexeev, I. I., Belenkaya, E. S., & Coates, A. J. (2016). Field-aligned currents in

Saturn's magnetosphere: Local time dependence of southern summer currents in the dawn sector between midnight and noon. Journal

of Geophysical Research: Space Physics, 121, 7785–7804. https://doi.org/10.1002/2016JA022712

Isbell, J., Dessler, A. J., & Waite, J. H. (1984). Magnetospheric energization by interaction between planetary spin and the solar wind.

Journal of Geophysical Research, 89(A12), 10716. https://doi.org/10.1029/JA089iA12p10716

Jackman, C.M. (2004). Interplanetarymagnetic field at∼9AUduring the declining phase of the solar cycle and its implications for Saturn's

magnetospheric dynamics. Journal of Geophysical Research, 109, A11203. https://doi.org/10.1029/2004JA010614

Jackman, C. M., Achilleos, N., Cowley, S. W., Bunce, E. J., Radioti, A., Grodent, D., & Pryor, W. (2013). Auroral counterpart of magnetic

field dipolarizations in Saturn's tail. Planetary and Space Science, 82-83, 34–42. https://doi.org/10.1016/j.pss.2013.03.010

Jackman, C. M., Arridge, C. S., Slavin, J. A., Milan, S. E., Lamy, L., Dougherty, M. K., & Coates, A. J. (2010). In situ observations of

the effect of a solar wind compression on Saturn's magnetotail. Journal of Geophysical Research, 115, A10240. https://doi.org/10.1029/

2010JA015312

Jackman, C.M., & Cowley, S.W. H. (2006). Amodel of the plasma flow and current in Saturn's polar ionosphere under conditions of strong

Dungey cycle driving. Annales Geophysicae, 24(3), 1029–1055. https://doi.org/10.5194/angeo-24-1029-2006

Jackman, C. M., Provan, G., & Cowley, S. W. H. (2016). Reconnection events in Saturn's magnetotail: Dependence of plasmoid occur-

rence on planetary period oscillation phase. Journal of Geophysical Research: Space Physics, 121, 2922–2934. https://doi.org/10.1002/

2015JA021985

Jackman, C. M., Russell, C. T., Southwood, D. J., Arridge, C. S., Achilleos, N., & Dougherty, M. K. (2007). Strong rapid dipolarizations in

Saturn's magnetotail: In situ evidence of reconnection. Geophysical Research Letters, 34, L11203. https://doi.org/10.1029/2007GL029764

Jackman, C. M., Slavin, J. A., & Cowley, S. W. H. (2011). Cassini observations of plasmoid structure and dynamics: Implications for the

role of magnetic reconnection in magnetospheric circulation at Saturn. Journal of Geophysical Research, 116, A10212. https://doi.org/

10.1029/2011JA016682

Jia, X., & Kivelson, M. G. (2012). Driving Saturn's magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail

response to dual sources. Journal of Geophysical Research, 117, A11219. https://doi.org/10.1029/2012JA018183

Jia, X., Kivelson, M. G., & Gombosi, T. I. (2012). Driving Saturn's magnetospheric periodicities from the upper atmosphere/ionosphere.

Journal of Geophysical Research, 117, A04215. https://doi.org/10.1029/2011JA017367

Kidder, A., Paty, C. S., Winglee, R. M., & Harnett, E. M. (2012). External triggering of plasmoid development at Saturn. Journal of

Geophysical Research, 117, A07206. https://doi.org/10.1029/2012JA017625

BADER ET AL. 10,292



Geophysical Research Letters 10.1029/2019GL084620

Kinrade, J., Badman, S. V., Provan, G., Cowley, S. W. H., Lamy, L., & Bader, A. (2018). Saturn's northern auroras and their modulation

by rotating current systems during late northern spring in early 2014. Journal of Geophysical Research: Space Physics, 123, 6289–6306.

https://doi.org/10.1029/2018JA025426

Lamy, L., Cecconi, B., Prangé, R., Zarka, P., Nichols, J. D., & Clarke, J. T. (2009). An auroral oval at the footprint of Saturn's kilometric

radio sources, colocated with the UV aurorae. Journal of Geophysical Research, 114, A10212. https://doi.org/10.1029/2009JA014401

Lamy, L., Prangé, R., Pryor,W., Gustin, J., Badman, S. V., Melin, H., & Brandt, P. C. (2013). Multispectral simultaneous diagnosis of Saturn's

aurorae throughout a planetary rotation. Journal of Geophysical Research: Space Physics, 118, 4817–4843. https://doi.org/10.1002/jgra.

50404

Lamy, L., Prangé, R., Tao, C., Kim, T., Badman, S. V., Zarka, P., & Radioti, A. (2018). Saturn's northern aurorae at solstice from HST obser-

vations coordinated with Cassini's grand finale. Geophysical Research Letters, 45, 9353–9362. https://doi.org/10.1029/2018GL078211

Masters, A., Eastwood, J. P., Swisdak, M., Thomsen, M. F., Russell, C. T., Sergis, N., & Krimigis, S. M. (2012). The importance of plasma

𝛽 conditions for magnetic reconnection at Saturn's magnetopause. Geophysical Research Letters, 39, L08103. https://doi.org/10.1029/

2012GL051372

Masters, A., Fujimoto, M., Hasegawa, H., Russell, C. T., Coates, A. J., & Dougherty, M. K. (2014). Can magnetopause reconnection

drive Saturn's magnetosphere?: Saturn reconnection driving. Geophysical Research Letters, 41, 1862–1868. https://doi.org/10.1002/

2014GL059288

Meredith, C. J., Alexeev, I. I., Badman, S. V., Belenkaya, E. S., Cowley, S. W. H., Dougherty, M. K., & Nichols, J. D. (2014). Saturn's dayside

ultraviolet auroras: Evidence for morphological dependence on the direction of the upstream interplanetary magnetic field. Journal of

Geophysical Research: Space Physics, 119, 1994–2008. https://doi.org/10.1002/2013JA019598

Meredith, C. J., Cowley, S. W. H., & Nichols, J. D. (2014). Survey of Saturn auroral storms observed by the Hubble Space Telescope: Impli-

cations for storm time scales: Saturn's auroral storms. Journal of Geophysical Research: Space Physics, 119, 9624–9642. https://doi.org/

10.1002/2014JA020601

Milan, S. E., Bunce, E. J., Cowley, S. W. H., & Jackman, C. M. (2005). Implications of rapid planetary rotation for the Dungey magnetotail

of Saturn. Journal of Geophysical Research, 110, A03209. https://doi.org/10.1029/2004JA010716

Milan, S. E., Lester, M., Cowley, S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., & Villain, J. P. (2003). Variations in the polar cap

area during two substorm cycles. Annales Geophysicae, 21(5), 1121–1140. https://doi.org/10.5194/angeo-21-1121-2003

Mitchell, D. G., Brandt, P. C., Carbary, J. F., Kurth, W. S., Krimigis, S. M., Paranicas, C., & Pryor, W. R. (2015). Injection, interchange, and

reconnection: Energetic particle observations in Saturn's magnetosphere,Magnetotails in the Solar System pp. 327–343). Hoboken, NJ:

John Wiley & Sons, Inc. https://doi.org/10.1002/9781118842324.ch19

Mitchell, D. G., Krimigis, S. M., Paranicas, C., Brandt, P. C., Carbary, J. F., Roelof, E. C., & Pryor, W. R. (2009). Recurrent energization of

plasma in the midnight-to-dawn quadrant of Saturn's magnetosphere, and its relationship to auroral UV and radio emissions. Planetary

and Space Science, 57(14-15), 1732–1742. https://doi.org/10.1016/j.pss.2009.04.002

Nichols, J. D., Badman, V. S., Baines, K. H., Brown, R. H., Bunce, E. J., Clarke, J. T., & Stallard, T. S. (2014). Dynamic auroral storms on

Saturn as observed by the Hubble Space Telescope. Geophysical Research Letters, 41, 3323–3330. https://doi.org/10.1002/2014GL060186

Nichols, J. D., Badman, S. V., Bunce, E. J., Clarke, J. T., Cowley, S. W. H., Hunt, G. J., & Provan, G. (2016). Saturn's northern auroras as

observed using the Hubble Space Telescope. Icarus, 263, 17–31. https://doi.org/10.1016/j.icarus.2015.09.008

Palmaerts, B., Radioti, A., Grodent, D., Yao, Z. H., Bradley, T. J., Roussos, E., & Pryor, W. R. (2018). Auroral storm and polar arcs at

Saturn—Final Cassini/UVIS auroral observations. Geophysical Research Letters, 45, 6832–6842. https://doi.org/10.1029/2018GL078094

Provan, G., Andrews, D. J., Cecconi, B., Cowley, S. W. H., Dougherty, M. K., Lamy, L., & Zarka, P. M. (2011). Magnetospheric period

magnetic field oscillations at Saturn: Equatorial phase “jitter” produced by superposition of southern and northern period oscillations.

Journal of Geophysical Research, 116, A04225. https://doi.org/10.1029/2010JA016213

Provan, G., Cowley, S. W. H., Bradley, T. J., Bunce, E. J., Hunt, G. J., & Dougherty, M. K. (2018). Planetary period oscillations in Saturn's

magnetosphere: Cassini magnetic field observations over the northern summer solstice interval. Journal of Geophysical Research: Space

Physics, 123, 3859–3899. https://doi.org/10.1029/2018JA025237

Provan, G., Cowley, S. W. H., Lamy, L., Bunce, E. J., Hunt, G. J., Zarka, P., & Dougherty, M. K. (2016). Planetary period oscillations in

Saturn's magnetosphere: Coalescence and reversal of northern and southern periods in late northern spring. Journal of Geophysical

Research: Space Physics, 121, 9829–9862. https://doi.org/10.1002/2016JA023056

Provan, G., Cowley, S. W. H., Sandhu, J., Andrews, D. J., & Dougherty, M. K. (2013). Planetary periodmagnetic field oscillations in Saturn's

magnetosphere: Postequinox abrupt nonmonotonic transitions to northern system dominance. Journal of Geophysical Research: Space

Physics, 118, 3243–3264. https://doi.org/10.1002/jgra.50186

Radioti, A., Gérard, J. C., Grodent, D., Bonfond, B., Krupp, N., & Woch, J. (2008). Discontinuity in Jupiter's main auroral oval. Journal of

Geophysical Research, 113, A01215. https://doi.org/10.1029/2007JA012610

Radioti, A., Grodent, D., Gérard, J. C., Bonfond, B., Gustin, J., Pryor, W., & Arridge, C. S. (2013). Auroral signatures of multiple

magnetopause reconnection at Saturn. Geophysical Research Letters, 40, 4498–4502. https://doi.org/10.1002/grl.50889

Radioti, A., Grodent, D., Gérard, J. C., Milan, S. E., Bonfond, B., Gustin, J., & Pryor, W. (2011). Bifurcations of the main auroral ring at

Saturn: Ionospheric signatures of consecutive reconnection events at the magnetopause. Journal of Geophysical Research, 116, A11209.

https://doi.org/10.1029/2011JA016661

Radioti, A., Grodent, D., Jia, X., Gérard, J. C., Bonfond, B., Pryor, W., & Jackman, C. (2016). A multi-scale magnetotail reconnection event

at Saturn and associated flows: Cassini/UVIS observations. Icarus, 263, 75–82. https://doi.org/10.1016/j.icarus.2014.12.016

Ray, L. C., Achilleos, N. A., Vogt, M. F., & Yates, J. N. (2014). Local time variations in Jupiter's magnetosphere-ionosphere coupling system.

Journal of Geophysical Research: Space Physics, 119, 4740–4751. https://doi.org/10.1002/2014JA019941

Rymer, A. M., Mitchell, D. G., Hill, T. W., Kronberg, E. A., Krupp, N., & Jackman, C. M. (2013). Saturn's magnetospheric refresh rate.

Geophysical Research Letters, 40, 2479–2483. https://doi.org/10.1002/grl.50530

Sandel, B. R., & Broadfoot, A. L. (1981). Morphology of Saturn's aurora. Nature, 292(5825), 679–682. https://doi.org/10.1038/292679a0

Sandel, B. R., Shemansky, D. E., Broadfoot, A. L., Holberg, J. B., Smith, G. R., Mcconnell, J. C., & Linick, S. (1982). Extreme ultraviolet

observations from the Voyager 2 encounter with Saturn. Science, 215(4532), 548–553. https://doi.org/10.1126/science.215.4532.548

Southwood, D. J., & Cowley, S. W. H. (2014). The origin of Saturn's magnetic periodicities: Northern and southern current systems. Journal

of Geophysical Research: Space Physics, 119, 1563–1571. https://doi.org/10.1002/2013JA019632

Southwood, D. J., & Kivelson, M. G. (2001). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere.

Journal of Geophysical Research, 106(A4), 6123–6130. https://doi.org/10.1029/2000JA000236

Southwood, D. J., & Kivelson, M. G. (2007). Saturnian magnetospheric dynamics: Elucidation of a camshaft model. Journal of Geophysical

Research, 112, A12222. https://doi.org/10.1029/2007JA012254

BADER ET AL. 10,293



Geophysical Research Letters 10.1029/2019GL084620

Stallard, T., Miller, S., Melin, H., Lystrup, M., Cowley, S.W. H., Bunce, E. J., & Dougherty, M. (2008). Jovian-like aurorae on Saturn.Nature,

453(7198), 1083–1085. https://doi.org/10.1038/nature07077

Stallard, T., Smith, C., Miller, S., Melin, H., Lystrup, M., Aylward, A., & Dougherty, M. (2007). Saturn's auroral/polar H+
3
infrared emission:

II. A comparison with plasma flow models. Icarus, 191(2), 678–690. https://doi.org/10.1016/j.icarus.2007.05.016

Talboys,D. L., Bunce, E. J., Cowley, S.W.H.,Arridge, C. S., Coates, A. J., &Dougherty,M.K. (2011). Statistical characteristics of field-aligned

currents in Saturn's nightside magnetosphere. Journal of Geophysical Research, 116, A04213. https://doi.org/10.1029/2010JA016102
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Energetic Particle Signatures Above Saturn's Aurorae

A. Bader1 , S. V. Badman1 , L. C. Ray1 , C. P. Paranicas2 , C. T. S. Lorch1 , G. Clark2 ,
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Laboratory, Laurel, MD, USA, 3Swedish Institute of Space Physics, Uppsala, Sweden, 4Blackett Laboratory, Imperial
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Abstract Near the end of its mission, NASA's Cassini spacecraft performed several low-altitude passes

across Saturn's auroral region. We present ultraviolet auroral imagery and various coincident particle and

field measurements of two such passes, providing important information about the structure and dynamics

of Saturn's auroral acceleration region. In upward field-aligned current regions, upward proton beams are

observed to reach energies of several tens of keV; the associated precipitating electron populations are

found to have mean energies of about 10 keV. With no significant wave activity being apparent, these

findings indicate strong parallel potentials responsible for auroral acceleration, about 100 times stronger

than at Earth. This is further supported by observations of proton conics in downward field-aligned current

regions above the acceleration region, which feature a lower energy cutoff above ∼50 keV—indicating

energetic proton populations trapped by strong parallel potentials while being transversely energized until

they can overcome the trapping potential, likely through wave-particle interactions. A spacecraft pass

through a downward current region at an altitude near the acceleration region reveals plasma wave

features, which may be driving the transverse proton acceleration generating the conics. Overall, the

signatures observed resemble those related to the terrestrial and Jovian aurorae, the particle energies and

potentials at Saturn appearing to be significantly higher than at Earth and comparable to those at Jupiter.

PlainLanguage Summary NASA's Cassini spacecraft orbited closer to Saturn than ever before

during the last stage of its mission, the “Grand Finale”. This allowed the onboard instruments to measure

charged particles and plasma waves directly above the auroral region while simultaneously providing

high-resolution imagery of the ultraviolet aurorae. Based on observations of highly energetic ions

streaming away from the planet in regions of low plasma wave activity, we infer the existence of strong

electric fields which act to accelerate electrons down into the atmosphere, driving the bright auroral

emissions. Our estimates of the average energy of the precipitating electrons support this finding. Charged

ions sometimes seem to be energized by plasma waves above the aurorae before they can escape, but the

exact process in which this happens is not fully understood. Most signatures presented here resemble those

observed in relation to Earth's aurorae, suggesting that the mechanisms acting at both planets are quite

similar although Saturn's acceleration mechanism is significantly stronger.

1. Introduction

In the final year of its mission, NASA's Cassini spacecraft performed a set of orbits bringing it closer to

Saturn than ever before. This presented a unique opportunity to combine remote sensing of Saturn's auro-

rae in unprecedented spatial resolution with in situ measurements of particles and fields advancing our

understanding of the auroral acceleration process which has so far been investigated mostly at Earth and

Jupiter.

Earth's brightest aurorae are generated by monoenergetic precipitating electron populations (e.g., Evans,

1968;McIlwain, 1960), which are accelerated into the ionosphere by quasistatic electric fields along themag-

netic field lines connecting the magnetosphere and ionosphere (e.g., Carlson et al., 1998; Ergun et al., 1998;

Knight, 1973; McFadden et al., 1999). On adjacent field lines where no auroral emissions are observed, elec-

tronswere found to be accelerated in the opposite direction—away from the planet and out of the ionosphere

(e.g., Marklund et al., 2001).
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These downward and upward beaming electrons are accompanied by ion beams and conics, respectively,

the latter being generated when ions are energized perpendicular to the magnetic field. As these are driven

away from the planet by the mirror force their pitch angle decreases and the accelerated population forms

conics in velocity space as it travels out along the field lines of the nonuniform planetary magnetic field

(e.g., André, 1997, and references therein). The energy for this acceleration process is provided either by

the free energy of the anisotropic beam-like electron distribution— with plasma waves acting as an inter-

mediary to facilitate the energy transfer— or by direct interaction with plasma waves moving toward the

ionosphere from where they were generated (see, e.g., Hamrin et al., 2002; Shen et al., 2018). At low alti-

tudes (∼1,000 km), lower hybrid waves seem to be of importance (e.g., Chang, 1993; Kintner et al., 1992;

Vago et al., 1992, and references therein), while at higher altitudes (several thousand km), broadband elec-

tromagnetic waves heat the local ion population through cyclotron resonance (e.g., André et al., 1990, Ball

& André, 1991, Kintner et al., 1979; Klumpar, 1979, Garbe et al., 1992, Okuda & Ashour-Abdalla, 1981). In

multicomponent plasma including heavier ion species, the proton population may also couple with waves

at frequencies below the proton gyrofrequency (Le Quau et al., 1993; Rauch et al., 1993). The accelerated

ion beam and conic fluxes were shown to vary with solar illumination (Peterson et al., 2006).

While Earth's aurorae are largely solar wind driven (e.g., Milan et al., 2003; Walach et al., 2017), auro-

rae observed at the gas giants are powered internally due to their rapid rotation and significant internal

plasma sources—Jupiter's aurorae are formed almost entirely due to the breakdown of plasma corotation

in the magnetodisc (e.g., Cowley & Bunce, 2001; Hill, 1979, 2001; Southwood & Kivelson, 2001), and the

static signatures within Saturn's much more dynamic aurorae seem to be related to similar processes occur-

ring in the outer magnetosphere (e.g., Bader et al., 2019; Cowley et al., 2004a, 2004b; Milan et al., 2005).

Prior to the arrival of NASA's Juno spacecraft at Jupiter, the wave-particle interaction processes responsi-

ble for auroral acceleration at the giant planets were nevertheless assumed to be similar to what is observed

in the terrestrial magnetosphere. However, the first passes through Jupiter's auroral region did not reveal

a powerful acceleration region and strong field-aligned currents (FACs) as expected (Cowley et al., 2017;

Ray et al., 2010; 2012) but weaker FACs of a filamentary nature (Kotsiaros et al., 2019) and signatures of

aurorae powered by stochastic/broadband acceleration processes substantially different from those at Earth

(Allegrini et al., 2017; Mauk et al., 2017b, 2017a). Juno also observed ion conics on auroral field lines (Clark

et al., 2017b), whichmay be the result of field-aligned electron beams and the associated broadbandwhistler

waves (Tetrick et al., 2017) similar to the those observed at Earth although at much higher energies. Con-

trary to the initial lack of such observations, later spacecraft passes indicated the presence of strong parallel

electric fields, coherent particle acceleration, and inverted-V structures (Clark et al., 2017a, 2018; Ebert et

al., 2017; Mauk et al., 2018; Paranicas et al., 2018). Juno magnetometer measurements as well as recent the-

oretical work further suggest that Alfvén waves may play an important role for auroral particle acceleration

(Gershman et al., 2019; Saur et al., 2018).

This study applies insights gained from previous studies on terrestrial and Jovian auroral acceleration to

recentmeasurements from theCassini spacecraft at Saturn. FACs in Saturn's auroral regions have previously

been investigated in detail based on magnetometer data (e.g., Bunce et al., 2008; Cowley et al., 2008; Hunt

et al., 2014, 2015, 2016, 2018; Talboys et al., 2009, 2009, 2011), but Cassini's orbit greatly limited our ability

to characterize the acceleration region in more detail before the last low spacecraft passes across the auroral

region. However, some observations suggest the presence of energetic upward electron (Saur et al., 2006)

and ion beams (Badman et al., 2012; Mitchell et al., 2009) at auroral latitudes. Mitchell et al. (2009) also

observed ion conics similar to those found in relation to the terrestrial and, later on, Jovian aurorae and

concluded that the driving mechanisms may be closely related, although Cassini's position was far above

the acceleration region (>5RS), and no auroral imagery was available for these observations. More evidence
for wave-particle interactions similar to terrestrial processes has been found by Menietti et al. (2011), who

investigated the relation between ion cyclotron harmonics and electron beams observed at the same time.

Their modeling suggests that this process can produce significant ion heating as previously investigated for

Earth's auroral region (Singh et al., 1981). However, the height and structure of Saturn's auroral acceleration

region remains a matter of ongoing research—so far based on the analyses of Saturn Kilometric Radiation

(e.g., Lamy et al., 2011, 2018; Menietti et al., 2011) and modeling efforts (e.g., Ray et al., 2013).

We describe our data processing methods in section 2 before presenting two auroral passes with their coin-

cident auroral imagery and measurements of fields and particles in section 3. We conclude and summarize

this study in section 4.
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Figure 1. Polar projection of two Cassini UVIS images of Saturn's aurorae from (a) 2017-009 (southern hemisphere)
and (b) 2017-102 (northern hemisphere), seen from above the north pole with noon toward the bottom. The auroral
intensity is shown in logarithmic color scale. Cassini's magnetically mapped footprint (Burton et al., 2010, internal field
model with Bunce et al., 2008, ring current contribution) is overlaid in white and highlighted in red to mark the
corresponding image exposure. The spacecraft's radial distance, latitude, and local time position at the start of the
exposure is indicated on the bottom left of each panel; the start, duration, and hemisphere of each exposure on top.

2. Data andMethod
2.1. Auroral Imagery

Our study analyzes two auroral passes with imagery of Saturn's ultraviolet (UV) aurorae from Cassini's

Ultraviolet Imaging Spectrograph (UVIS; Esposito et al., 2004). In order to obtain an auroral image, the slit

of the far-UV (FUV, 110–190 nm) detector is moved across the auroral region. The slit consists of 64 pixels,

resulting in an instantaneous field of view of 64×1.5mrad. Using Cassini SPICE pointing information from
the NASA Planetary Data System, each pixel is projected onto a planetocentric polar grid with resolution

0.1◦ × 0.05◦ (lon× lat) at an altitude of 1,100 km above Saturn's 1-bar level (defined by RSEQ = 60, 268 km
and RSPO = 54, 364 km as Saturn's equatorial and polar radii)—the altitude where aurorae are thought to

be generated (Gérard et al., 2009). The estimated total unabsorbedH2 auroral emission intensity (70–170 nm)

is obtained from the UVIS FUV intensity by multiplying the intensity observed in the 155- to 162-nm band

by a factor 8.1 as this minimizes dayglow and hydrocarbon absorption effects (Gustin et al., 2016, 2017). The

two projected images used in this study are shown in Figure 1.

2.2. Magnetic Field and FACs

Magnetic field data were obtained using the Cassini magnetometer (Dougherty et al., 2004) and is presented

in Kronocentric radial-theta-phi (r − 𝜃 − 𝜙) coordinates, with the latest internal field model (Dougherty
et al., 2018) subtracted. Hereby 𝜃 and 𝜙 denote the southward and eastward components, respectively. We

determine the FAC density in order to provide context for the particle and fields measurements presented

in the following sections and to compare it with the associated auroral intensities. Due to the close align-

ment between Saturn's magnetic dipole and rotational axes, applying Ampère's law lets us determine the

equatorward directed height-integrated Pedersen current in the ionosphere IP directly from the azimuthal

field component B𝜙 measured in the magnetosphere. The azimuthal field just above the ionosphere B𝜙i is

determined from the field measured at the spacecraft location using

B𝜙i = B𝜙
𝜌
𝜌i
, (1)

where 𝜌 and 𝜌i are the perpendicular distance of Cassini and its magnetic footprint from Saturn's spin axis,

respectively. The horizontal equatorward height-integrated Pedersen current is then given by

IP = ±
𝜌iB𝜙i

𝜇0
= ±

𝜌B𝜙

𝜇0
, (2)

with 𝜇0 as the permeability of free space and the negative sign applying in the northern hemisphere. The
so derived IP is in this study approximated with a cubic spline with as many knots as are required to keep
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the residual sum of squares below N · (0.05 MA∕rad)2 with N as the number of data points. Due to current

continuity, IP is then equal to the net FAC flowing into the ionosphere between Saturn's pole and Cassini's

ionospheric footprint—changes in IP along Cassini's moving ionospheric footprint hence relate directly to

the FAC density at the ionospheric latitudes crossed. The FAC density just above the ionosphere 𝑗|| is hence
given by

𝑗|| =
ΔIP

R2
i
(𝜃i) sin(𝜃i)Δ𝜃i

, (3)

with Ri(𝜃i) as the distance between the center of Saturn and the upper edge of the ionosphere at colatitude
𝜃i, assumed to be located 1,100 km above Saturn's 1-bar level. Δ𝜃i denotes the absolute colatitudinal width
of the region across which the observed change in ionospheric Pedersen current ΔIP occurred (e.g., Bunce
et al., 2008; Badman et al., 2012; Hunt et al., 2014; Talboys et al., 2009, 2011).

2.3. Particle and FieldMeasurements

All particle data presented hereweremeasured by detectors of Cassini'sMagnetosphere Imaging Instrument

(Krimigis et al., 2004). The Low Energy Magnetospheric Measurements System (LEMMS) is a two-ended

telescope measuring high-energy ions and electrons; in this study we present electron count rates from

Channels C2–C5 (41–300 keV). The lowest energy Channels C0 and C1 are not shown due to sunlight con-

tamination. All these channels are situated in the same side of the telescope (low energy telescope) and

hence have the same pointing direction. LEMMS was built to rotate back and forth to increase the cover-

age of magnetic pitch angles, but this mechanism stopped working in 2005 such that the viewing direction

only changes with the spacecraft attitude. During auroral observations with UVIS such as presented here,

the LEMMS low energy telescope points perpendicular to the local magnetic field.

The Ion andNeutral Camera (INCA) observes ions and energetic neutral atoms in a field of view of 120◦×90◦
in eight energy bands between 5 and 360 keV. In this study, we use INCA to obtain partial proton pitch

angle distributions around the field-aligned direction. We note that the data presented here were obtained

while INCA operated in neutral mode; this may lead to decreased proton fluxes in the 5- to 24-keV bands

and striations along the long axis of the instrument due to ions being slightly focused by the deflection plate

system. However, measurements are not expected to be significantly affected otherwise, as a low resistance

path developed in the deflection plate system in 2015 and charged particles can hence pass near unhindered

regardless of the detector's observation mode.

TheCharge-Energy-Mass Spectrometer (CHEMS) is an ionmass spectrometer used to determine the energy,

charge, and mass of ions between 3 and 220 keV/e. It is composed of three telescopes arranged in a fan

shape; due to the pointing of the spacecraft during auroral observations with UVIS, all three of them are

directed perpendicular to the local magnetic field in all observations shown here. We present proton energy

spectrograms combined from the three sensors.

Lastly, the Cassini Radio and PlasmaWave Science instrument (RPWS,Gurnett et al., 2004) provided electric

and magnetic field spectrograms through a wide range of frequencies. In this study we present low rate full

resolution data from the low andmedium frequency receivers for oscillations perpendicular to themagnetic

field (parallel to the spacecraft x axis). Key parameter electric field spectrograms covering the full frequency

range are shown in Supporting Information S1.

3. Results and Discussion
3.1. Dim Auroral Patches at Southern Dusk: 2017-009

On 2017-009, Cassini crossed the southern auroral oval near local dusk at an altitude of about 3RS. Figure 2

shows the path of Cassini's magnetic footprint across the auroral zone and the coincident measurements

recorded by its magnetometer.

The crossing occurred in a poleward direction, such that Cassini left the closed magnetosphere and entered

the polar cap region during the time period shown. Figure 2b shows the intensity of the UV aurorae at

Cassini's ionospheric footprint, averaged in a 1◦×0.5◦ (lon× lat) box to account for possible mapping uncer-
tainty of themodel used (Dougherty et al., 2018 internal fieldmodelwith Bunce et al., 2008, ring current con-

tribution) and timing uncertainty between the auroral observation and the actual spacecraft pass (<30min).
The dusk aurorae did not form a clear ring of main emission at this time, so instead of a single strong inten-
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Figure 2.Magnetometer data and derived auroral currents of the 2017-009 crossing. (a) Local time-colatitude (LT-𝜃i) projected UVIS image in logarithmic color
scale, with Cassini's magnetically mapped footprint shown in white and highlighted in red during the exposure of the image. White dots on the trajectory are at
full hours UTC. (b) Auroral intensity at Cassini's footprint through time, averaged within a small box as shown in (a). The graph is gray for times outside the
exposure of the image. (c) Magnetic field data in Kronocentric radial-theta-phi coordinates after subtraction of an internal field model (Dougherty et al., 2018).
(d) Height-integrated ionospheric Pedersen current, derived from B𝜙 using equation (2) and smoothed; colatitude of the magnetically mapped spacecraft
footprint. (e) Field-aligned current density just above the ionosphere, calculated using equation (3). Red and blue shaded sections correspond to upward and
downward currents, respectively. The horizontal axis is labeled with time stamp, colatitude of the spacecraft footprint, spacecraft L shell, and spacecraft altitude
over Saturn's 1 bar surface.

sity peak, we observe two brightenings over the course of the crossing. The UVIS image obtained soon after

the one shown in Figure 1a (see Supporting Information S1) indicates that these structures are relatively

long-lived and not related to the short-lived auroral flashes frequently observed near dusk (Bader et al.,

2019). While the first and brighter peak reaches nearly 3 kR as Cassini's footprint moves directly through

a dim auroral patch, the second intensity peak falls short of 2 kR and is associated with Cassini cutting the

edge of a second, slightly brighter auroral patch.We note that the intensity of the observed patches may vary

between their observation with UVIS and the crossing of the spacecraft footprint.

The ionospheric Pedersen current IP (Figure 2d), derived from smoothed magnetic field measurements as

described in section 2, is initially close to zero but shows two strong increases during the crossing. The

associated peaks in (upward) FAC density (Figure 2e, red) line up remarkably well with the two auroral

intensity peaks observed. On both sides of the auroral oval, there seem to be downward current regions—a

quite weak one at the equatorward edge and a stronger one at the poleward edge. Additionally, a downward

current region may be located between the two auroral patches.

During the time of the crossing, the INCA instrument observed the proton environment; Figure 3a shows

its observations along the field from roughly 11:20–12:45UTC. The sensor was directed downward such

as to measure field-aligned particles flowing up from the ionosphere. In the 13- to 90-keV energy range,

we observe a broadband antiplanetward field-aligned proton beam maximizing in intensity just as Cassini

begins to cross the first auroral patch (first upward FAC peak in Figure 3b). As the upward current den-

BADER ET AL. 5 of 17



Journal of Geophysical Research: Space Physics 10.1029/2019JA027403

Figure 3. Overview of Cassini particle and wave measurements from 2017-009. (a) Cassini INCA proton observations, each panel showing the differential
proton flux at a certain time and within a certain energy range. Magnetic pitch angle contours are overlain in yellow; note that Cassini was in the southern
hemisphere and 180◦ pitch angle (∼ center of each subpanel) corresponds to the upward direction. (b) Inferred field-aligned currents at Cassini's ionospheric
footprint. (c) Cassini CHEMS proton flux spectrogram ⟂ to B and (d) Cassini LEMMS electron flux measurements ⟂ to B. (e) Cassini RPWS electric and (f)
magnetic field spectrogram; the local proton gyrofrequency 𝑓c is indicated with a red line.
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sity begins to decrease, the INCA detector is suddenly flooded with protons at all energies. The following

scans are characterized by a near complete saturation of the detector, apart from the 35- to 55-keV energy

range where some faint signatures of an upward proton beam are still visible. A top-to-bottom gradient in

intensity visible between ∼11:45 and 12:00UTC is a signature of uneven sensor saturation and not a feature
of the observed proton distribution. During the crossing of the second patch (second upward FAC peak in

Figure 3b), we again observe a faint proton beam in the 24- to 55-keV energy range. Both before and after

the episode of detector saturation, the distributions observed in the 90- to 227-keV range appear to show a

depression of proton flux in the field-aligned direction. This is likely to be a signature of the loss cone butmay

also be a proton conic which cannot be completely resolved by the detector due to the large fluxes observed

here. This is followed by a short proton flux enhancement at 13–35 keV before the ambient polar cap plasma

is reached. To better understand these features, we compare this INCA data to CHEMS and LEMMS mea-

surements of energetic proton and electron fluxes perpendicular to the magnetic field, respectively, as well

as RPWS instrument electric and magnetic field spectrograms, shown in panels 3c–3f.

Between ∼11:30 and 11:45 UTC, enhanced wave activity near and below the proton gyrofrequency, 𝑓c,
coincides with upward proton beams as Cassini moves into the first auroral patch (panels 3e and 3f). The

observed plasma waves could be electrostatic ion cyclotron (EIC) waves, perhaps coinciding with ion acous-

tic waves at lower frequencies; EIC waves can be generated by unstable electron or ion beam distributions

such as typically observed in the auroral acceleration region (e.g., André, 1986; Kindel & Kennel, 1971;

Kaufmann & Kintner, 1982). At Earth, they are generally observed in the main upward current region

together with upgoing ion beams (e.g., André et al., 1987; Cattell et al., 1991; Kintner et al., 1979) just as in

these measurements at Saturn. Assuming that all of the power spectral density at the proton gyrofrequency

is due to left-handed waves, that is, waves in resonance with the proton gyration, we can use the relation

dW

dt
= SE

q2

2m
, (4)

to estimate the theoretical transverse heating rate dW∕dt of the local proton population (e.g., André et

al., 1998; Chang et al., 1986). Hereby SE denotes the electric field spectral density at the proton gyrofre-

quency and q and m the charge and mass of a proton, respectively. We estimate dW∕dt ≈ 23 eV/s, making

it seem unlikely that the observed proton beams which reach energies of tens of keV are driven by these

waves—particles of these energies are not expected to remain in the relatively small acceleration region for a

sufficient length of time in upward FAC regions. It is hencemore probable that the plasmawaves are instead

themselves driven by the unstable electron/proton beam distributions.

As the crossing of the first auroral patch is completed and Cassini's footprint moves into a downward return

current region (see also Figure 2e), accelerated protons become visible in both the INCA and CHEMS detec-

tors. INCA (observing ||B, Figure 3a) is saturated onmost channels, while CHEMS (observing⟂ B, Figure 3c)

measures first a highly energetic (∼100 keV) and later on a colder (∼10 keV) transversely accelerated proton
population, suggesting a powerful energization process taking place on the field lines crossed. At Earth, one

such process is the “pressure cooker” mechanism where plasma waves in a wide frequency range can trans-

versely heat ions (e.g., André, 1997; Chang, 1993;Gorney et al., 1985).However, the energized ion population

is trapped by the electric field structures which accelerate electrons upward to carry the downward current;

the heated ions can hence only move upward along the field line once the mirror force is large enough to

overcome the static potential drop. Ion conics and beams driven this way therefore feature a characteristic

low energy cutoff if observed above the acceleration region. During the sequence examined here, we only

note some veryweak extremely low frequency (ELF)wave activity at∼12:00UTC (∼200–900Hz)whichmay
be related to the heated protons. We do not observe a low energy cutoff in the proton measurements, which

may either be explained with the cutoff being below the lowest proton energies of a few keV observable with

INCA and CHEMS or by Cassini traversing through the acceleration region instead of passing above it. It is

worth mentioning that signatures in this frequency range may also be an effect of static structures such as

FAC sheets or of dispersive Alfvén waves being Doppler-shifted due to the spacecraft motion (e.g., Gurnett

et al., 1984; Stasiewicz et al., 2000).

After a second upward current region, again coincident with now weak upward proton beams and some

weak EIC wave activity at the proton gyrofrequency at ∼12:05 UTC, both auroral features have been
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Figure 4.Magnetometer data and derived auroral currents of the 2017-102 crossing, same format as Figure 2. The black section in (b) corresponds to the UVIS
scan across the aurorae which covers the subspacecraft region, of the three scans overall included in this exposure.

crossed. Just poleward of the auroral oval, Cassini then encountered broadband electromagnetic ELF waves

(∼12:15–12:30 UTC) at ∼100–500Hz. These occur together with proton flux intensifications in the lower
two of INCA's energy bins (13–35 keV), indicating again the “pressure cooker” energization process taking

place as ELF waves transversely energize the protons (e.g., Temerin, 1986). We note that the perpendicular

electron fluxes in the 56- to 300-keV energy range drop shortly (see Figure 3d) just as the ELF waves are

most intense, indicating that these may be driven by the free energy in the anisotropic electron distribution.

It may appear puzzling that panels 3a, 3c and 3d do not show periods of increased/decreased electron and

ion fluxes in phase with one another. However, it is not expected that they should—the data are from three

different instruments observing different parts of the velocity distribution and/or different particle species,

their fields of view not overlapping at all. Differences between electrons and protons ⟂ B (panels 3c and 3d)

may, for example, arise due to parallel electric fields trapping protons while further accelerating electrons,

leading to increased proton anddecreased electron fluxes⟂ B. Proton observations ||B and⟂ B (Figure 3a/3c)

show signatures at different energiesmoving at different angles to themagnetic field, so it is likely that popu-

lations of different origins are being observed which further complicates matters and limits the applicability

of a simple comparison between the respective panels.

3.2. Crossing the Bright Auroral Arc at Northern Dawn: 2017-102

Figures 4 and 5 show observations from a crossing of the northern aurorae between local dawn and noon

on 2017-102, in the same format as Figures 2 and 3. The aurorae are again relatively patchy near dusk, but

where Cassini crosses the main oval, there is a bright arc of emission (Figure 4a). The thin band of the main

auroral oval is located at slightly different latitudes throughout local time, as the oval is not centered on Sat-

urn's northern pole but slightly displaced toward midnight and dawn (e.g., Bader et al., 2019; Nichols et al.,

2016). In this example, the crossing is in the equatorward direction. The auroral intensity along Cassini's

footprint (Figure 4b) forms a clear peak reaching a brightness of more than 20 kR, coinciding rather well

with a similarly clear peak in the upward FAC (Figure 4e) as derived from magnetic field data (Figure 4c).

BADER ET AL. 8 of 17



Journal of Geophysical Research: Space Physics 10.1029/2019JA027403

Figure 5. Overview of Cassini particle and wave measurements from 2017-102, same format as Figure 3.
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The peak FAC reachesmore than 200 nA/m2, more than twice the average current density typically observed

during Cassini's F-ring orbits (Hunt et al., 2018).

The particle data collected by the INCA detector (see Figure 5a) show only few similarities to the auroral

pass presented in the previous section—the plasma seems rather ambient, except for the occurrence of faint

proton beams at 13–55 keV equatorward of the auroral oval which may be accompanied by high-energy

proton conics near the end of the observation window. Poleward of the aurorae, between ∼10:05 and 10:25
UTC, the 55- to 227-keV energy range is dominated by a proton beam which seems to develop into a conic

feature as Cassini moves into the main upward current region. This conic is entirely located outside the

loss cone (∼5) and disappears as the auroral brightness peak is encountered. No conclusive features are
visible in the LEMMS energetic proton and electron flux measurements, again obtained perpendicular to

the magnetic field (see panels 5c and 5d).

We now focus on the proton beam/conic just poleward of the main auroral arc, which exhibits a clear low

energy cutoff above 50 keV throughout its observation—indicating that it may have been created through

the “pressure cooker” process in a strong static electric field. The high energy of this featuremay suggest that

the electric field structure may be U-shaped and not coupled to the ionosphere (Hwang et al., 2009a, 2009b).

We note that the ion conic at 10:21 UTC exhibits some vertical striping; this is an effect of the INCA detector

running in neutralmode asmentioned in section 2.3. Due to the similarity in energy, it may seem reasonable

to assume that the same proton population or acceleration structure is observed both as a beam and as a

conic. Over the course of the observation of this feature, Cassini moved from an altitude of ∼3 to ∼2.8RS,
which could explain the gradual development from a beam feature into a conic feature due to the increase

in magnetic field strength. To verify this, we use the most recent magnetic field model of Saturn (Dougherty

et al., 2018) and trace the magnetic field line in both directions to determine the conic's mirror altitude and

its expected change in pitch angle over the radial distance covered by Cassini during the observation. This is

done assuming conservation of the first adiabatic invariant and purely transverse acceleration at the source

location such that

Bs∕c

B
=
sin2(𝛼s∕c)

sin2(𝛼)
, (5)

holds, as done recently, for example, at Jupiter (Clark et al., 2017b).Bs∕c and 𝛼s∕c are hereby the totalmagnetic
field strength and the conic angle measured at the spacecraft, respectively, and B and 𝛼 the same properties
at another location along the field line.

We find the mirror altitude of the transversely accelerated protons—the altitude at/above which the trans-

verse energization takes place—by solving for 𝛼 = 90◦, starting with a cone angle of 𝛼s∕c ≈ 30◦ at Cassini's

location at 10:21 UTC. With this basic approach, the transverse acceleration of this proton conic is deter-

mined to take place at an altitude of ∼2.4RS , far above the ionosphere. Tracing the field line outward, the
conic observed at 10:21 UTC is expected to be collapsed to ∼20 cone angle at ∼3RS, Cassini's altitude dur-
ing the first observation of this signature at 10:03 UTC. This opening angle is barely resolvable with INCA;

the evolution of this feature may hence occur both due to Cassini moving closer toward the acceleration

region and due to a latitudinal structure being crossed, similar to observations at Earth (e.g., Andersson

et al., 2002). However, we note that the conic observed at 10:21 UTC may alternatively be a result of trans-

verse acceleration of upward proton beams in an upward current region (“elevated conic”) unrelated to the

proton beams observed shortly before (collapsed “pressure cooker” conic).

The lower energy cutoff of this proton beam can provide us with an estimate of the parallel potential drop

trapping the protons in the acceleration region. For trapping to occur, the magnetic mirror force acting to

drive the protons into regions of lower field strength has to at least be balanced by the downward force due

to the electric field E||,

𝜇 dB
dz

= qE||, (6)

where 𝜇 is the magnetic moment, dB
dz
the gradient of the magnetic field strength along the field line, and q

the charge of a proton. The electric field strength is then given by
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E||(V∕m) =
𝜀⟂(eV)
B

· dB
dz

, (7)

with 𝜀⟂ as the perpendicular energy—the magnetic moment 𝜇 is directly related to 𝜀⟂. In order to trap

protons up to 50 keV, a parallel electric field of ∼0.74mV/m is required at the inferred mirror location of the

observed conic; roughly an order of magnitude higher than similar fields at Earth (Gorney et al., 1985).

The appearance of faint upward proton beams at ∼24–55 keV and signatures of accelerated protons above

∼90 keV after the auroral crossing is likely the result of Cassini moving closer toward the ionosphere while

still being close to the auroral region. However, these features are relatively weak and significantly equator-

ward of the main upward current region; they may hence be related a second upward current sheet which

is observed in magnetic field measurements (Hunt et al., 2014, 2018).

3.3. Mean Auroral Electron Energy

In the previous section we have presented auroral observations closely coincident with Cassini's crossing

of the related FACs which were derived using magnetic field measurements; combining these parameters

allows us to infer the mean energy of the precipitating electrons. Knight (1973) theory describes the relation

between the field-aligned voltage and the FAC carried by precipitating electrons, and building on that a

relationship between the energy flux incident on the upper ionosphere and energy of electrons precipitating

through a steady-state parallel potential drop was first formulated by Lundin and Sandahl (1978). This has

been applied to Jupiter's and Saturn's FAC systems in several previous studies which provide more detailed

discussions of this topic (e.g., Cowley & Bunce, 2001; Cowley et al., 2003; Gustin, 2004, 2016, 2017; Ray

et al., 2010, 2013; Tao et al., 2014). The initially rather cumbersome relations can be approximated with a

linear relation if the mirror ratio Rx (ratio of the magnetic field strengths in the ionosphere and at the top

of the acceleration region) is much larger than the ratio between the energy of the potential drop, e𝜙, and
the average thermal energy of the electron distribution at the top of the acceleration region, kBTe, that is,

1 ≪ e𝜙
kBTe

≪ Rx (Lyons, 1980). Assuming the top of the auroral acceleration region to be located at altitude

of ∼2.4RS as estimated in the previous section, we obtain a mirror ratio of only Rx ≈ 30–40—limiting the

full applicability of this approximation but indicating that it should serve to provide a rough estimate (e.g.,

Ray et al., 2009). As such, the relation between the precipitating energy flux E𝑓 , the FAC density 𝑗||, and the
mean electron energy ⟨W⟩ in the planet's ionosphere is given by

⟨W⟩ = e𝜙 = e
E𝑓

𝑗||
. (8)

The precipitating energy flux is obtained from the auroral brightness using a conversion factor of 1mW/m2

per 10 kR (e.g., Gérard & Singh, 1982; Grodent et al., 2001; Waite et al., 1983) and shown in Figure 6a/6d for

the two auroral passes investigated in this study. Before deriving themean electron energy,we cross-correlate

the precipitating energy flux with the FAC current density which was derived frommagnetic field measure-

ments (see section 2). This is done to account for a possible motion of the auroral emissions between the

time at which they were observed by UVIS and the time at which the spacecraft footprint passed over; as

well as for uncertainties in the magnetic mapping of the spacecraft footprint and in the spacecraft pointing

and subsequently the projection of UVIS images. We find E𝑓 and 𝑗|| to correlate best if one of the two data
sets is shifted by 165 s (2017-009) and 540 s (2017-102), respectively.

The original and shifted FAC densities are displayed in Figure 6b/6e. We compare E𝑓 and 𝑗|| whenever 𝑗||
increases above 20% of its maximum value observed during the crossing of the aurorae; the 20% limit is

indicatedwith a horizontal red line, and the time spans considered are shaded in red. Figure 6c/6f shows ⟨W⟩
within the intervals investigated. In all three passes, the mean electron energy seems to increase toward the

edges of the auroral arcs crossed. Thismay be a physical feature butmay also be an effect of the limited spatial

resolution of UVIS and the filtering employed when determining the auroral brightness at the ionospheric

footprint of the spacecraft, artificially broadening the auroral arc and consequently the width of the peaks

observed in E𝑓 .

We determine amean electron energy for the center of each of the three auroral passes whenE𝑓 and 𝑗|| reach
their peak values; we obtain values of∼4 and∼2.5 keV for the two auroral patches on 2017-009 and∼12 keV
for the crossing of the bright arc on 2017-102. These values fit well into the 1- to 11- and 7- to 17-keV ranges

statistically determined by Gustin et al. (2017) using the Ly𝛼/H2 method and the hydrocarbon/color ratio

BADER ET AL. 11 of 17



Journal of Geophysical Research: Space Physics 10.1029/2019JA027403

Figure 6. Estimation of the mean energy of precipitating auroral electrons. (a, d) Energy flux E𝑓 derived from the auroral intensity at the magnetically mapped
spacecraft footprint. (b, e) FAC density 𝑗|| inferred from magnetometer measurements (gray-dashed) and shifted for maximum correlation with the energy flux
(black). All data points above the red horizontal line (20% of the maximum value) are considered for deriving the mean energy, the corresponding time spans
shaded red. (c, f) Mean electron energy in the red shaded sections. Note the logarithmic scale.

method, respectively. Their LT distribution of statistical mean electron energies shows values of 10–20 keV

near the northern prenoon aurorae and 1–10 keV near the southern predusk aurorae in good agreement

with the two case studies presented here.

4. Conclusions and Summary

The two auroral passes presented above involve a number of different processes all occurring in the vicinity

of auroral field lines. Figure 7 attempts to put our observations into context, using an idealized sketch of

neighboring upward and downward current regions.

On 2017-102, Cassini observed a high-energy proton conic with a lower energy cutoff, likely associated with

a high-altitude crossing of a downward current region poleward of the main oval. No proton features could

be observed as the main upward current region was traversed, but a weak proton beam equatorward of the

auroral oval increased in intensity with decreasing spacecraft altitude.

Cassini's poleward pass on 2017-009 began with observations of intense antiplanetward proton beams in

the main upward current region, accompanied by low-frequency electric field perturbations. Subsequently,

a downward current region was crossed at an altitude of ∼2.2RS, which roughly corresponds to the inferred
source altitude of the proton conics observed on the 2017-102 pass. Large increases in parallel and perpen-

dicular proton fluxes at all energies seem to confirm that a “pressure cooker”-like source region was crossed,

although only some wave activity below the proton cyclotron frequency and in the ELF frequency range

could be observed. A subsequent upward current region was identified from magnetic field data as Cassini

crossed a second auroral patch, coinciding with weak proton beams and followed by a second downward

current region at the poleward edge of the aurorae where strong ELF wave activity was found to modify the

local electron and proton distributions.
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Figure 7. Conceptual sketch of neighboring upward and downward current regions, with possible trajectories of Cassini during the two auroral passes
presented in this study. Based on Carlson et al. (1998) and Marklund et al. (2001).

We find that the auroral acceleration region at Saturn appears to be located at an altitude below ∼2.4RS and
the two events we analyzed in this study may correspond to one spacecraft pass above and one pass through

it. The processes observed in the vicinity of the acceleration region seem to be similar to those occurring the

terrestrial and Jovian auroral acceleration region, as is evidenced by the close agreement of particle beam

structures and wave types observed.

Accelerated upward proton beams in upward current regions reach energies of up to ∼90 keV, with the

associated precipitating electrons exhibiting mean energies of order 10 keV. These energies are consistent

with findings by Mitchell et al. (2009) and similar to those found at Jupiter (e.g., Clark et al., 2017a, 2017b)

but about a hundred times more energetic than at Earth (e.g., Carlson et al., 1998; Gorney et al., 1985). The

acceleration seems to be of a broadband nature, but it is not clear whether it is driven by Alfvén waves like

at Jupiter (Gershman et al., 2019; Saur et al., 2018) or by static electric potentials similar to Earth's (e.g.,

Carlson et al., 1998; Ergun et al., 1998; Evans, 1968; Knight, 1973). As we do not find any evidence of wave

activity of sufficient magnitude to produce the accelerated proton populations observed, we suggest that

strong parallel electric potentialsmay be responsible for the acceleration of particles along auroral field lines.

How these potentials are generated and maintained and how they vary spatially and temporally are crucial

questions in auroral physics and the topic of ongoing research both at Earth and the outer planets.

Proton conics observed above the acceleration region imply perpendicular proton acceleration to take place

in downward current regions. The lower energy cutoff of the signature at some ∼50 keV supports our rea-

soning for the existence of strong parallel fields, which in downward current regions act to trap ions until

these reach sufficiently high energies allowing them to escape. The perpendicular energization may occur

through various wave-particle interaction processes, but a detailed investigation cannot be performed as the

responsible acceleration process and the resulting accelerated particles can usually not be observed by a

single spacecraft at the same time. The exact workings of perpendicular heating are, however, the topic of

intensive research in the terrestrial auroral regions.
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Abstract Cassini's mission exploring the Saturn system ended with the Grand Finale, a series of orbits

bringing the spacecraft closer to the planet than ever before and providing unique opportunities for

observations of the ultraviolet aurorae. This study presents a selection of high-resolution imagery showing

the aurorae's small-scale structure in unprecedented detail. We find the main arc to vary between a smooth

and a rippled structure, likely indicating quiet and disturbed magnetospheric conditions, respectively. It is

usually accompanied by a diffuse and dim outer emission on its equatorward side which appears to be

driven by wave scattering of hot electrons from the inner ring current into the loss cone. The duskside is

characterized by highly dynamic structures which may be signatures of radial plasma injections. This

image set will be the only high-resolution data for the foreseeable future and hence forms an important

basis for future auroral research on Saturn.

Plain Language Summary At the end of its mission, the Cassini spacecraft performed a set

of orbits bringing it closer to Saturn than ever before. By passing over the planet's polar regions at such

low altitude, its ultraviolet camera could observe Saturn's aurorae in unprecedented resolution. The

observations show for the first time the detailed structure of the main auroral arc which varies between

a smooth and a rippled shape, likely depending on how quiet or disturbed the plasma near Saturn is. We

further find a host of small arcs and blobs near dusk whose origins are not readily explained with the

current understanding of how Saturn's aurorae are driven. Diffuse features surrounding the brightest

auroral emissions are attributed to hot electrons from the equatorial plane which are scattered such that

they can reach Saturn's atmosphere. These observations are of unique quality and invaluable for future

auroral studies.

1. Introduction

Saturn's ultraviolet (UV) aurorae consist of various morphological components located around the planet's

poles. Some of these are rather static and long-lived, while others are more transient, indicating explosive

energy release somewhere along the associated magnetic field lines.

The overall auroral morphology is typically dominated by the so-called “main auroral oval” or “main emis-

sion.” Located at typically 15–20◦ colatitude from either pole (e.g., Carbary, 2012; Bader, Badman, Kinrade,

et al., 2019), equatorward of Saturn's polar hexagon in the north (Pryor et al., 2019), the relatively circular

bright band of main UV emission around the pole is colocated with the infrared main aurorae (e.g., Melin,

et al., 2011; Badman, Achilleos, et al., 2011; Badman, Tao, et al., 2011) and expected to map to equatorial

distances beyond the middle ring current (e.g., Belenkaya et al., 2014). The exact mechanism causing the

acceleration of electrons into Saturn's polar ionospheres and thus generating the aurorae is unclear, but

it is presumed that azimuthal flow shears between plasma populations subcorotating at different angular

velocities in the outer magnetosphere may provide the required electric fields driving the observed auroral

field-aligned currents (FACs) (e.g., Cowley, Bunce, & O’Rourke, 2004; Stallard et al., 2007; Talboys et al.,

2009; Hunt et al., 2014; Bradley et al., 2018).

The auroral brightness varies with local time (LT), which may partly be due to the interaction of Sat-

urn's magnetosphere with the solar wind flow. Both a static flow shear between the solar wind and
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magnetospheric plasma populations (e.g., Cowley, Bunce & Prangé, 2004) and viscous interaction through

Kelvin-Helmholtz waves (e.g., Delamere & Bagenal, 2010; Delamere et al., 2013) could cause asymmetries

arising between the dawn and dusk aurorae. Further dynamic asymmetries are known to be imposed by

the rotating patterns of FACs caused by the two planetary period oscillation (PPO) current systems (e.g.,

Hunt et al., 2014; Bader et al., 2018) and frequent auroral plasma injections due tomagnetotail reconnection

(e.g., Mitchell et al., 2009; Radioti et al., 2016; Bader, Badman, Cowley, et al., 2019).

The main emission usually does not assume a fully closed circular shape but consists of multiple structures

subcorotating with the planet (e.g., Grodent et al., 2005). It is not centered on Saturn's magnetic/spin pole,

but slightly displaced toward the midnight-dawn direction due to the compression of the dayside magneto-

sphere by the solar wind and the dawn-dusk differences in auroral morphology; the location of the oval is

modulated about this average position by the rotating PPO current systems (e.g., Nichols et al., 2008, 2016;

Bader, Badman, Kinrade, et al., 2019). Due to the significant quadrupole moment of Saturn's internal mag-

netic field, effectively an offset of the internal dipole field toward the northern hemisphere, the southern

oval is typically larger than the northern one (e.g., Carbary, 2012; Bader, Badman, Kinrade, et al., 2019).

The structure of the main emission is highly variable. The dawnside generally features a thin well-defined

arc, while the aurorae cover awider swath in latitude postnoon. In either of those regions the arc can include

interesting substructures such as “auroral beads,” which are multiple detached and consecutive auroral

spots located along themain emissionwhichmay be related to shear flow-ballooning instabilities (Radioti et

al., 2019). Similar small isolated features are sometimes observed in the dayside aurora; Grodent et al. (2011)

termed this the “bunch of grapes” configuration and proposed FACs driven by nonuniform plasma flow in

the equatorial plane and vortices triggered by magnetopause Kelvin-Helmholtz waves as possible drivers.

Equatorward of the main aurorae a semipermanent band of emission can often be observed, the so-called

“outer emission.” While first observed in Hubble Space Telescope (HST) imagery near Saturn's limb

(Grodent et al., 2005, 2010), the outer emission is typically too faint to exceed the HST's detection thresh-

old on the dayside. Nevertheless, outer emission signatures were tentatively identified in some images of

the most recent HST observation campaign (Lamy et al., 2018). Cassini's Ultraviolet Imaging Spectrograph

(UVIS) however provided many more observations (visible in, e.g., Radioti et al., 2017), which will here be

exploited to further investigate this signature. It is believed to be caused by hot electrons between 7 and 10RS
(Schippers et al., 2008) which may reach the ionosphere through pitch angle scattering by plasma waves

(Grodent et al., 2010; Grodent, 2015; Tripathi et al., 2018).

In this study a selection of auroral imagery from Cassini's Grand Finale mission is presented. The orbit

geometry of the spacecraft during this mission phase allowed the UVIS instrument to obtain imagery of

unprecedented resolution, revealing previously unseen details of Saturn's aurorae and the high complexity

of this dynamic system. Section 2 summarizes the processing methods used to obtain clean auroral imagery

from the raw observation data, while sections 3 and 4 show and discuss different aspects of the observed

morphology and signatures. We conclude this study in section 5 by summarizing our findings.

2. Data andMethods

The far-ultraviolet channel of Cassini's UVIS instrument performed observations at wavelengths between

110 and 190 nm in up to 1,024 spectral bins (Esposito et al., 2004). Its 64 spatial pixels are arranged in a single

line to provide an instantaneous field of view of 64×1.5mrad. To obtain a two-dimensional image of Saturn's
auroral region, this slit was moved across the region of interest by slewing the spacecraft at a slow rate

while accumulating the exposure. Depending on Cassini's distance from Saturn and the viewing geometry,

repeated slews across different sections of the polar regionmay be necessary to construct a full auroral image.

The image resulting from this process is more appropriately termed a “pseudo-image,” as different pixels in

the final product have been imaged at different points in time. With exposure times sometimes reaching up

to more than 2 hr, this is especially important to keep in mind when the dynamics of the auroral emissions

are investigated.

Each pixel is projected onto a planetocentric polar grid with resolution 0.1◦ × 0.05◦ (longitude× latitude)
using Cassini SPICE pointing information from the NASA Planetary Data System. The projection alti-
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tude is chosen to be 1,100 km above Saturn's 1-bar pressure level (defined by RSEQ = 60, 268 km and

RSPO = 54, 364 km as Saturn's equatorial and polar radii), corresponding to the approximate altitude at

which Saturn's aurorae are thought to be generated (Gérard et al., 2009). Finally, we obtain the estimated

total unabsorbed H2 auroral emission intensity in the 70–170 nm spectral range from the observed intensity

in the UVIS FUV range by multiplying the intensity measured in the 155- to 162-nm band by a factor 8.1, as

this minimizes hydrocarbon absorption effects (Gustin et al., 2016, 2017). Some dayglow usually remains in

sunlit regions, but it can be removed as described in Bader, Badman, Yao, et al. (2019) if needed. Dayglow

removal was only performed for the images shown in Figure 4 below.

Most images presented in this study were obtained from radial distances between 2 and 5RS, such that

one UVIS pixel at the planet measures approximately 120–300 km across. This is at least comparable to

three UVIS images from 2008 where a resolution of ∼200 km/pixel could be achieved (Grodent et al., 2011)
and represents about a tenfold increase in resolution compared to most other UVIS images which were

obtained from distances between 20 and 50RS. The HST for comparison offers a theoretical resolution

of ∼150 km/pixel, but only values of >500 km/pixel can realistically be achieved due to the presence of

leaking sunlight, a relatively wide point spread function, and the long exposure times required due to the

high detection threshold (Grodent et al., 2011). Furthermore, the usually oblique viewing geometry from

Earth orbit largely limits observations to Saturn's dayside and can lead to significant pixel stretching and

limb-brightening close to the terminator region (Grodent et al., 2005).

3. Dawn-Dusk Asymmetries of theMain Aurorae

The first set of images, presented in Figure 1, shows six near-complete views of the northern and southern

polar auroral regions. As has already been observed in the earliest HST campaigns imaging Saturn's aurorae

before the arrival of Cassini (Gérard et al., 2004, 2005), there typically is a distinct morphological difference

between the dawn and dusk emissions. The region poleward of the relatively circumpolar band of variable

main emission is typically dark and featureless, unlike in infrared observations where a complete infilling

of the polar cap can be observed (Stallard et al., 2008). Exceptions are small patches slightly poleward of the

main oval on, for example, 2017-080/232 (Figure 1a/1d); these may be related to similar “polar dawn spots”

in Jupiter's auroral emissions which appear to be signatures of internally driven magnetotail reconnection

(Radioti et al., 2008, 2010). The region equatorward of the brightest aurorae often features a typically dimmer

band of diffuse emission, the outer aurorae, whichwill be considered inmore detail in the following section.

The dawnside is usually characterized by a narrow arc which, while essentially always present, shows sig-

nificant variations in latitude and intensity. The latitudinal variation is thought to be controlled by the

amount of open flux contained in the polar cap, by periodic displacements due to PPO FACs and by solar

activity (e.g., Badman et al., 2005, 2014; Cowley et al., 2005; Bader, Badman, Kinrade, et al., 2019); the vari-

ation in intensity is less understood but seems to be influenced by solar wind conditions and PPO current

systems overlaid with different transient signatures resulting from dynamic events in the magnetosphere

(e.g., Bader, Badman, Cowley, et al., 2019). This auroral arc is thought to correspond to the layer of upward

FAC seen in in situ field data in the same LT sector, which is located about 1◦ equatorward of the open-closed

field line boundary and may be related to a subcorotation flow shear modulated by conductivity gradients

(Hunt et al., 2014; Bradley et al., 2018).

Figure 2 shows high-resolution views of the predawn aurorae in both hemispheres, with Figure 2c pre-

senting the highest-resolved image of Saturn's UV aurorae obtained to date where one pixel on the planet

measures ∼100 km across. Next to the main auroral arc an outer emission is discernible in all images, sug-

gesting that it is continuously present but often too weak to be observed withHST or UVIS depending on the

dayglow intensity and observation geometry. Both the main arc and the outer emission show an interesting

substructure, which appears to be quite variable. While, for example, Figures 2a/2c/2f are characterized by

a rather smooth and largely featureless main arc, Figures 2b/2d/2e show patchy or wavy substructure which

may indicate disturbed magnetospheric conditions. Even the usually rather smooth outer emission shows

patchy features in Figure 2a/2e. Another interesting feature is an apparent bifurcation of the main arc in

Figure 2c, similar to observations of the terrestrial aurorae.

Figures 2g–2j show selected latitudinal intensity profiles of these auroral images. The main auroral arc

is clearly distinguishable in most cases, being brighter than surrounding emissions by about an order

of magnitude in the northern hemisphere (Figures 2g/2i) but only of comparable intensity in the south
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Figure 1. Selection of (nearly) full views of the (a–d) northern and (e–f) southern auroral oval obtained during Cassini's Grand Finale mission phase. The view
is from above the north pole, down onto the northern or “through” the planet into the southern polar region; local noon (12 LT) is at the bottom and dawn
(6 LT) at the left. Gray concentric rings mark colatitude from the pole in steps of 5◦, radial lines mark local time in steps of 1 hr. The images are sorted by the
time of their observation; start time, exposure time, observed hemisphere, and radial distance of Cassini from Saturn's surface are given at the top of each panel.
The differences in background brightness (dayglow) between the northern and southern hemispheres are a seasonal effect; 2017 was a year of northern summer
and southern winter.

(Figures 2h/2j). The width of the main arc (clearly discernible in the northern hemisphere, at ∼18–19◦ in
the southern) is typically found to be just below 1◦ in colatitude, or ∼1,000 km in the emission layer, both in

the northern and southern hemispheres.

Signatures on the duskside are of a fundamentally different nature. Instead of a defined arc, scat-

tered patches, bifurcations, and other small-scale structures indicate disturbed magnetospheric conditions

thought to be controlled by the interplay between dayside reconnection activity and Vasyliūnas cycle out-

flow down the magnetotail. Figure 3 shows a number of high-resolution slews across the dusk aurorae

(except for Figure 3c all from the southern hemisphere) with selected colatitudinal intensity profiles shown

in Figures 3i–3l. The emissions are structured at least down to the smallest resolvable scale of UVIS (here

∼150 km for images from the southern hemisphere); one example is a very fine arc protruding somewhat

poleward in Figure 3f (near ∼ 18LT and ∼ 14◦ colatitude), whose full width at half maximum is ∼ 0.2◦, or
∼200 km (see inset in Figure 3j).

Only a few similarities can be discerned among this set of images, highlighting the great temporal variability

of the system, and a clear separation of the main emission and the outer emission is not usually evident.

While, for example, Figures 3f–3h allow the identification of a thin main arc and a dimmer, discrete outer

emission on its equatorward side, emissions in the remaining images cannot easily be classified into any of

BADER ET AL. 4 of 11



Geophysical Research Letters 10.1029/2019GL085800

Figure 2. Selection of high-resolution imagery of Saturn's predawn main auroral arc in the (a–c, e) northern and (d, f) southern hemispheres. The view is the
same as in Figure 1, but now only showing part of the polar region between roughly ∼1–5 LT and 10–25◦ colatitude. (g–j) Latitudinal intensity profiles of panels
b–f. Shown is the intensity versus colatitude averaged within within the accordingly colored regions in panels b–f. Vertical dashed lines indicate the
approximate equatorward boundary of the outer emission.

the existing groups of recurrent signatures identified and investigated in previous works (e.g., Badman et

al., 2015; Grodent, 2015).

Several images show single or multiple parallel arcs with various inclination across the “auroral oval.”

Both 2017-219 and 2017-252 exhibit four parallel arcs oriented in the near-azimuthal direction, separated

by about 1–2◦ colatitude each (see Figures 3c/3i and 3h/3l, respectively) and slightly more equatorward at

their leading edge. While it is unclear whether one of the parallel arcs on 2017-219 corresponds to the main

emission, the arcs' appearance equatorward of the main emission on 2017-252 and their extent reaching the
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Figure 3. Selection of high-resolution imagery of Saturn's dusk auroral region in the (c) northern and (a, b, d–h) southern hemisphere. The view is the same as
in Figure 1, but now only showing part of the polar region between 16 and 24 LT and between 7◦ and 27◦ colatitude. (i–l) Intensity versus colatitude averaged
within (i, k, l) 40min LT (10◦ longitude) or (j) 1min LT (0.25◦ longitude) around the colored lines in panels c and f–h. (i, l) Parallel arcs are highlighted with
dotted vertical lines. (j) An inset shows the thin intensity peak in more detail.

equatorward edge of the diffuse emission suggests a source region in the middle magnetosphere. It is thus

unlikely that they are driven by solar wind interaction at themagnetopause and related to the corresponding

bifurcations observed in previous studies (e.g., Radioti et al., 2011, 2013; Badman et al., 2013).

In Figures 3a/3b/3d–3f, sheared arcs of comparable size are visible, extending to later LTs with increasing

colatitude. Auroral emissions are expected to rotate faster at larger colatitudes, as they are located on mag-

netic field lines which map into the magnetodisc closer to the planet where plasma rotates with a larger

angular velocity (e.g., McAndrews et al., 2009; Thomsen et al., 2010; Wilson et al., 2017). An example of this

differential rotation is visible when considering the fine arc in Figure 3f (near∼ 18LT and∼ 14◦ colatitude).

While the arc is still rather diagonal in this image, the exposure taken directly after this image (shown in
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Figure 4. Observations of Saturn's outer auroral emission with the main aurorae contracted far poleward. (a–c) Images
from 2017-023 with the dayglow subtracted, showing a dim and wide incomplete ring of outer emission. View is again
the same as in Figure 1. (d) Average brightness per colatitude of images in panels a–c combined for all LTs. A
secondary peak between 15◦ and 20◦ marks the outer emission, near fully detached from the main emission.

Figure 1f) shows it to be oriented in the near-azimuthal direction. Extending this evolution backward, it

seems quite possible that this arc may have had a radial orientation initially and undergone some shearing

before the first of the two images was obtained.

We propose that these sheared and azimuthal arcs, sometimes parallel to one another, may be auroral sig-

natures of radial interchange injections. These would, similar to large-scale plasma injections triggered by

magnetotail reconnection (e.g., Mitchell et al., 2009; Bader, Badman, Cowley, et al., 2019), set up localized

FAC systems linking to the ionosphere and cause enhanced particle precipitation, although on a much

smaller scale. Additionally to their orientation and evolution, the small width of the sheared arcs appears to

be comparable to the azimuthal width of injections in the equatorial plane of roughly 2–4◦ longitude (e.g.,

Chen & Hill, 2008; Thomsen et al., 2015; Paranicas et al., 2016). However, the available auroral imagery

seems to indicate a preference for these auroral features to appear near dusk while in situ observations of

fresh interchange injections were shown to slightly favor the nightside (e.g., Chen & Hill, 2008; Azari et al.,

2019). This is somewhat surprising as the LT preference of interchange injections and their auroral signa-

ture should be the same, but may well be a result of bias in Cassini's auroral and in situ data relating to, e.g.,

season or solar wind activity or the overall sparsity of observations.
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4. The Outer Emission

Nearly all images presented up to this point have in common the presence of an outer emission. It usually

seems to be more prominent on the nightside, although this may be due to its low brightness which is

comparable to the intensity of dayglow on the Sun-facing side of the planet. The outer emission is typically

more pronounced and spatially separated from the main emission in the southern hemisphere, whereas it

forms nomore than a dim, diffuse band just equatorward of the main emission in the northern hemisphere.

In general, the outer emission appears circular and centered on the spin pole in both hemispheres as visible

in Figures 1 and 3. Considering the latitudinal intensity profiles shown in Figures 2g–2j, 3k, and 3l it usu-

ally has a clearly defined outer edge at ∼19–21◦ in the northern hemisphere and ∼22–24◦ in the southern
hemisphere (indicated with dashed vertical lines), the clear difference in northern and southern colatitudes

being due to the quadrupole asymmetry of Saturn's internal magnetic field. These outer boundaries map to

a radial distance of ∼6–7RS in the magnetic equator plane, corresponding to the inner edge of the region of
hot ion/electron plasma as determined in equatorial data (Schippers et al., 2008; Kellett et al., 2010, 2011;

Carbary et al., 2018; Carbary, 2019). The “diffuse” emission observed here and in previous studies is con-

sistent with wave-driven precipitation from this hot plasma population (Grodent et al., 2010; Tripathi et al.,

2018), similar to the diffuse outer emission in Jupiter's aurorae (Radioti et al., 2009).

The poleward boundary of the outer emission typically appears to be colocated with the main aurorae. To

verify whether this is true, we consider Figure 4; a quite extreme example of poleward contracted main

aurorae in the northern hemisphere. The mean brightness per colatitude (all images combined to reduce

noise) is shown in Figure 4d. The outer emission, albeit very dim, seems to still occupy all latitudes between

the main emission and its typical equatorward boundary at ∼ 20◦ colatitude. There is however a dip in

intensity between themain and the outer emission, similar to some observations in the southern hemisphere

where the outer emission is most intense near its equatorward edge and becomes dimmer closer to themain

emission (see, e.g., Figures 1f and 2d/2h). This suggests that the driving mechanism of the outer emission

operates throughout the ring current but is most efficient near its planetward boundary.

It seems that the outer emission is typically weaker in the northern hemisphere than in the southern hemi-

sphere; considering the intensity profiles shown in Figures 2g–2j and 3i–3l, the northern outer emission

reaches up to 4 kR only in exceptional cases (Figure 2i), whereas larger intensities are observed frequently

in the south (Figures 1f, 2d/2h, and 3h/3l). This implies that the wave diffusion responsible is “weak”; that

is, the loss cone is not filled. Weak diffusion corresponds to pitch angle scattering per bounce which is less

than the angular width of the loss cone, so that only the outer part of the loss cone gets filled. With the

loss cone being smaller in the north than in the south as a result of the higher magnetic field strength in

the north, arising from the significant quadrupole asymmetry, more particles precipitate in the south. An

equivalent effect is found in the South Atlantic Anomaly on Earth (e.g., Vampola & Gorney, 1983). If the

pitch angle scattering becomes “strong,” meaning scattering by at least the loss cone angle in each bounce,

then the loss cone will be “full” in both hemispheres, resulting in an isotropized distribution with identical

precipitating flux in both hemispheres.

5. Conclusions

In this study we presented a selection of auroral images from Cassini's Grand Finale orbits, providing auro-

ral observations of unprecedented spatial resolution in both hemispheres, and put them into context with

previous results obtained in auroral studies. The data presented here reveal the amazing small-scale struc-

ture and dynamics of Saturn's UV aurorae which were usually not resolvable during earlier mission phases,

and remains hidden with the limited capabilities of the HST.

Close views of the main auroral oval at predawn LTs reveal that the main arc's structure is highly variable;

it can be smooth or rippled and at times bifurcated. It is yet to be investigated in detail what controls this

changeable behavior, but it seems reasonable to suggest that disturbed magnetospheric conditions are asso-

ciated with more rippled configurations as an effect of disturbed plasma flows and density gradients in the

equatorial magnetodisc.

The dusk emission was shown to be highly complex, every image exhibiting very different signatures.

Recurring behavior could not readily be observed for the most part, although several observations of mul-
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tiple parallel arcs with different inclination across the auroral oval were found. Their orientation and size

seem to indicate they are signatures of radial interchange injections, evolving into a sheared and eventually

azimuthal configuration due to the differential rotation of the magnetosphere.

Virtually all imagery obtained during the Grand Finale shows an outer emission to be present, a diffuse

ring of dim aurorae just equatorward of the main emission. Based on its location and circular shape, we

presume that it is driven by hot electrons from the inner ring currentwhich are scattered into the loss cone by

wave activity. The interhemispheric difference in intensity and latitudinal position, owing to the significant

quadrupole moment of Saturn's internal magnetic field, indicates the wave diffusion to be weak such that

only a part of the loss cone is filled.

After being in orbit around Saturn for more than 13 years, these are the last auroral images from the Cassini

spacecraft. They reveal previously unseen detail of Saturn's UV aurorae and perhaps promptmore questions

about their origins than they can help answer—highlighting ever more the need for capable missions to

planets in the outer solar systemand, especially in the absence of suchmissions to the Saturn systemanytime

soon, the need for comparative planetology.
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Chapter10
Discussion and Conclusions

In this thesis a detailed investigation of the dynamics of Saturn’s UV auroral emissions

has been presented. This last chapter serves to summarize and discuss the insights

gained and to identify unanswered questions of interest for future research concerning

gas giant aurorae.

10.1 The Different Drivers of Saturn’s Main Aurorae

Following the terminology of the Jovianmain aurorae, the brightest and seemingly steady

aurorae on Saturn are typically referred to by the same name since the first spatially

resolved observations from theHSTwere obtained – inherently implying close similarities

in the origin of the Jovian and Kronian aurorae. However, thorough inspection of the

aurorae typically encircling both planets’ poles reveals striking differences between the

two systems.

The Jovian main aurorae firmly rotate with the planet while largely maintaining their

brightness and are thought to be driven by corotation breakdown currents in the middle

to outer magnetosphere. At first sight, Saturn’s aurorae appear to be a similar quasistatic

band of emissions with an increased average intensity near dawn as a likely sign of

more significant solar wind driving compared to Jupiter. This concept was probed in

Publication IV (chapter 7) in which long-term observations of Saturn’s northern aurorae

were investigated in order to separate and identify different drivers of the main aurorae

using the temporal intensity variations observed.

A major finding of this study is that the main emission is not dominated by a steady

system of FACs driven by corotation breakdown or flow shears between the rotating

magnetosphere and the antisunward solar wind flow. While a faint signature which may

be related to such processes could be observed during quiet magnetospheric conditions,

the bulk of the observable aurorae seems to be attributable to bright signatures of

magnetotail reconnection which regularly appear near midnight and subcorotate with

the planet – hence causing a statistical intensification of the aurorae near dawn.
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The transient magnetospheric disturbances causing such auroral signatures may be

driven either by continued internal plasma loading requiring the shedding of plasma

through Vasyliūnas cycle reconnection, or by passing solar wind compressions leading

to the closure of open flux through Dungey cycle reconnection. The balance between

drivers internal and external to Saturn’s magnetosphere is currently not well understood

and a topic of ongoing research.

In absence of magnetotail reconnection events, a flow shear-driven main emission

is usually identifiable at dawn while the dusk side typically doesn’t feature one such.

High-resolution imagery presented in Publication VI (chapter 9) showed that the main

arc can be smooth, rippled or bifurcated, possibly indicating laminar or perturbed plasma

flow in the source region depending on quiet or disturbed magnetospheric conditions.

The most static component of Saturn’s aurorae is probably the outer emission which

was also observed in more detail in Publication VI. It turns out to be nearly always

present, albeit often very dim, and to extend to ∼ 20◦ (∼ 23◦) colatitude in the northern

(southern) hemisphere regardless of the compression state of the magnetosphere. It

seems therefore realistic to relate this emission to the inner ring current, where hot

electrons may be scattered into the loss cone such that they reach the upper atmosphere

to drive aurorae. Future research could investigate the relationship between the intensity

of the outer aurorae and the state of the ring current using for example in situ particle

and magnetometer observations or remote sensing of ENAs.

10.2 Planetary Period Oscillations as a Near Omnipresent Modulation

PPOs are observed in all observations collected within Saturn’s magnetosphere, and

the aurorae are no exception. Publication I (chapter 4) and Publication II (chapter 5)

statistically investigated the effect of these magnetospheric modulations on the auroral

intensity and location and observed clear dependencies in agreement with the generally

accepted model of PPO fields and currents described in sections 2.2 and 3.7.

The auroral intensity is observed to maximize (minimize) where the PPO upward

(downward) FACs are predicted to be located; the modulation is significantly stronger

for the local PPO system but also observed interhemispherically (i.e., the intensity
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modulation of the northern aurorae due to the northern PPO system is stronger than

the one due to the southern PPO system and vice versa). Both the latitudinal location

and the fitted center of the auroral oval are periodically displaced by the PPO FACs

as is predicted, further solidifying the accuracy of the currently accepted PPOs model.

It is also shown that the displacements are larger when the two PPO systems rotate

in antiphase than they are in phase with one another, indicating again that both PPO

systems affect not only their local hemisphere but also the opposite one.

However, it is also worth pointing out the limitations of Publication I in particular.

From the results of Publication IV, we now know that the auroral brightness is for the

main part determined by transient signatures of magnetotail reconnection events and

not by a Jupiter-like quasistatic main emission modulated by PPO FACs as previously

thought. The phasing of these reconnection events hereby appears to be partly controlled

by the PPO-dependent thinning and thickening of the equatorial current sheet, as was

investigated in previous works and also observed in Publication IV. This means that the

PPO dependence determined in Publication I, in which all auroral imagery obtained

by the UVIS instrument were binned by PPO phase, is likely to be dominated by the

occurrence of magnetotail reconnection events and not by direct modulation of the

auroral brightness by the PPO FACs.

Nevertheless, a case study of continuous auroral observations spanning more than two

Saturn rotations published in Publication IV does indeed show the expected dimming

and brightening of a quasistatic auroral oval in perfect sync with the modelled PPO

systems. In this case, no transient intensifications related to magnetotail reconnection

were observed, and the two PPO systems were aligned in phase with one another to

reveal this strikingly clear intensity modulation showing a thin half ring of aurorae near

the PPO upward FACs and an absence of emissions near the PPO downward FACs.

10.3 Transient Small-Scale Structures

The previous paragraphs concerned the general morphology of Saturn’s aurora and

how it is determined by the large-scale dynamics within Saturn’s magnetosphere. There

are also many small transient auroral signatures which indicate dynamics on a smaller
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scale, such as dayside cusp spots and post-noon bifurcations. Publication III (chapter 6)

identified a new type of such transient events: short-lived auroral flashes (∼ 10min

lifetime) which exhibit a ∼ 1 h quasiperiodicity and were found to occur throughout

the UVIS dataset. Single events have been identified in HST data as well, but a full

investigation of these data is yet to be performed.

These transient flashes are predominantly observed on the duskside, but can occur

at all LTs. Their characteristic periodicity and LT preference is very similar to previous

observations of such periodicities in energetic electron, magnetic field and auroral hiss

measurements. A case study shown in Publication III presents an HST observation of

one such auroral flash together with in situ particle and field measurements obtained by

Cassini along the same magnetic field line to clearly reveal their close relationship.

It is concluded that these periodic intensifications of the aurora and related in

situ parameters occur on closed field lines, suggesting a driver internal to Saturn’s

magnetosphere. The most likely cause is small-scale magnetodisc reconnection which

was recently discovered based on Cassini data. Combined with the greatly increased

number of possible magnetodisc reconnection sites near dusk suggested in previous

studies, the∼ 1 h quasiperiodic features observed heremay be a sign of a near-continuous

“drizzle” of small reconnection events which may contribute significantly to plasma

circulation in Saturn’s magnetosphere. Further investigations of HST auroral imagery

with respect to transient flashes would be very useful to explore their temporal evolution

and relation to in situ signatures in more detail.

The true complexity of Saturn’s dusk aurorae was only fully revealed by UVIS observa-

tions obtained during Cassini’s Grand Finale which were summarized in Publication VI.

Every orbit provided one or two high resolution slews of the southern dusk aurorae,

and no two of them look even remotely the same (the interested reader may have

noticed that unprojected versions of these beautiful images were used as chapter heading

backgrounds in this thesis). We observe thin parallel arcs, blobs and patches drawn out

by the differential rotation of Saturn, whichmay be related to radial injection events in the

middle magnetosphere. However, our understanding of these features is poor at best and

unlikely to improve significantly since the very limited set of Cassini’s high-resolution
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auroral imagery will not be expanded with additional observations in the foreseeable

future.

10.4 On Auroral Acceleration at Saturn

With the arrival of the Juno spacecraft at Jupiter in 2016, a first understanding of the

auroral acceleration process at the gas giants could be formed based on observations

during low spacecraft passes above the Jovian aurorae. Surprisingly, the energetic

electrons causing Jupiter’s bright aurorae do not appear to be accelerated into the

atmosphere by parallel electric fields like at Earth, but may instead be driven by wave-

particle interactions. Similar data could not be obtained at Saturn until Cassini’s Grand

Finale, when the spacecraft orbit was changed to a low enough altitude to come close to

where the auroral acceleration region is expected to be located.

Publication V (chapter 8) summarizes Cassini’s observations from two low-altitude

passes above Saturn’s auroral region. Upward and downward FAC regions were

identified based on magnetometer measurements to provide context for the particle

and wave features which were observed. Upward FAC regions were characterized by

broadband upward ion beams with energies up to tens of keV and precipitating electrons

with ∼ 10 keV, while downward current regions featured energetic ion conics indicating

the presence of strong parallel electric fields. Different wave signatures were observed

in both upward and downward FAC regions in conjunction with the described particle

features, highlighting the importance of wave-particle interaction to the acceleration

processes at play.

These observations are similar to those of Juno in that both suggest that monoenergetic

electron beams driven by parallel electric fields do not seem to be the main acceleration

mechanism for auroral electrons. Furthermore, the auroral particle energies observed in

both systems are in a similar range, and at that ∼ 100 times larger than at Earth. We may

hence assume that the many Juno observations from above the Jovian aurorae may be

well suited to complement the scant measurements obtained by Cassini to further our

understanding of auroral acceleration above Saturn’s aurorae. Despite the sparsity of

data, much of it is left unexplored and remains for future investigations.
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AppendixA
Radiance Conversions

A.1 The Rayleigh and Radiant Flux

The brightness unit used in auroral physics is the Rayleigh, named after the fourth

Lord Rayleigh, R.J. Strutt, 1875-1947, who made first measurements of night airglow

[Rayleigh, 1930]. It describes the column emission rate I, assuming an isotropic source

with no self absorption and a column of unspecified length [Hunten et al., 1956], and is

defined as

1 R � 1010 Photons
s m2 column

(A.1)

in SI units [Baker and Romick, 1976]. We can convert the column emission rate I into the

radiance L by using [Baker and Romick, 1976]

L
[

Photons
s m2 sr

]
�

1010

4π · I [R], (A.2)

and for the in auroral physics usually preferred Kilorayleigh, kR, obviously

L
[

Photons
s m2 sr

]
�

1013

4π · I [kR]. (A.3)

The radiant flux Φ is obtained by integrating over the full 4π sr solid angle, and the

apparent emitting surface area A seen from the detector in m2,

Φ

[
Photons

s

]
� L

[
Photons
s m2 sr

]
· 4π sr · A

[
m2] . (A.4)

Note that the radiant flux is only meaningful in combination with spectral information,

i.e. the mean energy of the emitted photons. Therefore, multiplying by the mean H2

photon energy of 1.6 · 10−18 J
Photon [Kurth et al., 2016] gives the radiant flux, often also

named “auroral power”, in SI units,

Φ [W] � 1.6 · 10−18 J
Photon · Φ

[
Photons

s

]
. (A.5)
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A.2 Emitting Surface Area

Unprojected HST Images

The emission area for an HST pixel is equal to the perpendicular area this pixel covers at

the distance of Saturn. This area is

A [m2] � r2 · sin(α1) · sin(α2) (A.6)

with r as the distance between HST and Saturn and α1/2 as the angular FOV of a pixel.

For the STIS sensor with a FOV of 25× 25 arcsec2 and 1024 pixels across in each direction,

we find

α1/2 � 25/1024 arcsec (A.7)

such that

A [m2] � (r [m] · sin(25/1024 arcsec))2 (A.8)

or

A [m2] �
(
r [km] · 103 · sin(25/1024 arcsec)

)2
. (A.9)

Projected HST and UVIS Images

The radiant flux can also be determined from an image which has already been projected

onto a longitude-latitude grid. However, care has to be taken when the radiance L is

integrated over the emitting surface.

As shown in Figure A.1, instrument pixel footprints on the planetary surface are

skewed depending on the angle under which the emission “surface”, the ionospheric

layer in which auroras are generated, is being observed. The absolute surface area of

one longitude-latitude grid bin is therefore not equal to the corresponding apparent

emitting surface seen from the spacecraft based on which the column emission rate has

been determined. With small grid bin sizes, each grid bin can be approximated by a flat

plane such that its apparent emitting surface Aapp and absolute surface Aabs are related
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Figure A.1: Example FOV of an observational instrument pixel projected on the surface

of the planet, not to scale. The longitude-latitude grid drawn on the planet is also shown

in the instrument plane.

through

Aapp � sin ε · Aabs (A.10)

with ε as the elevation angle of the observing instrument above the horizon as seen from

the grid bin location.
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AppendixB
Supplementary Information

This section collects all supplementary information published together with the research

articles presented in chapters 4 to 9, edited for convenience and readability.
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List of all auroral flashes

List of all auroral flashes identified in the UVIS dataset used in this study. Given for
each observation are the timestamp, the approximate local time (LT) location, the
observed UV power of the flash above the auroral background and the hemisphere
the flash was observed on. If the LT location could not be clearly identified by the
algorithm described in this study, the value “nan” is given in the table.

UTC time LT location (h) UV power (GW) Hemisphere

2008-109T12:03 nan 6.34 North
2008-109T13:07 14.33 14.25 North
2008-129T09:29 2.33 10.86 North
2008-129T10:46 16.33 27.53 North
2008-129T11:50 15.00 6.62 North
2008-129T13:01 17.67 10.78 North
2008-195T10:18 17.00 7.31 North
2008-201T04:31 5.00 9.74 North
2008-201T05:05 9.67 11.53 North
2008-201T05:39 nan 9.67 North
2008-201T07:41 8.33 5.20 North
2008-201T12:31 3.00 3.90 North
2014-079T02:03 nan 5.39 North
2014-079T02:52 13.00 9.27 North
2014-079T03:51 13.00 17.73 North
2014-087T10:58 nan 5.54 North
2014-087T11:33 13.00 15.93 North
2014-087T12:30 16.33 30.98 North
2014-087T13:25 15.67 46.71 North
2014-087T14:16 14.33 35.12 North
2014-087T15:12 15.67 24.02 North
2014-087T16:11 15.00 49.17 North
2014-087T16:53 15.00 18.56 North
2014-087T17:59 19.00 9.23 North
2014-130T05:24 19.00 5.99 North
2014-130T08:12 17.00 10.02 North

Corresponding author: Alexander Bader, a.bader@lancaster.ac.uk
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2014-130T10:06 16.33 3.91 North
2014-130T10:48 15.67 4.74 North
2014-130T12:17 17.00 5.33 North
2014-130T13:59 16.33 6.17 North
2014-145T05:46 nan 5.12 North
2014-145T06:34 22.33 10.05 North
2014-145T07:37 nan 5.61 North
2014-145T08:22 19.67 8.37 North
2014-145T09:22 nan 8.69 North
2014-145T11:06 nan 7.84 North
2014-145T12:16 17.67 16.45 North
2014-145T13:06 16.33 13.06 North
2014-145T14:04 19.00 13.67 North
2014-145T14:48 18.33 20.96 North
2014-145T15:58 19.67 8.13 North
2014-145T16:48 19.67 10.66 North
2014-145T17:35 20.33 9.20 North
2014-145T18:22 19.67 6.44 North
2014-145T19:10 9.00 8.29 North
2014-145T20:13 22.33 6.31 North
2014-145T21:26 nan 5.21 North
2014-145T22:21 16.33 9.03 North
2014-147T09:01 nan 3.82 North
2014-147T09:56 nan 3.06 North
2014-147T10:58 nan 5.75 North
2014-147T11:59 nan 4.07 North
2014-147T14:38 nan 3.19 North
2014-147T15:25 nan 4.19 North
2014-147T16:21 nan 6.56 North
2014-147T17:36 13.67 10.54 North
2014-147T18:21 15.67 14.69 North
2014-147T19:12 15.67 3.68 North
2014-147T21:08 17.67 2.50 North
2014-149T04:57 nan 8.96 North
2014-149T05:36 8.33 44.40 North
2014-149T06:26 nan 7.42 North
2014-149T08:05 8.33 22.39 North
2014-149T10:14 nan 10.54 North
2014-149T11:15 nan 6.31 North
2014-149T12:22 14.33 11.51 North
2014-149T13:20 nan 6.11 North
2014-149T14:16 nan 7.58 North
2014-149T15:27 13.67 8.22 North
2014-149T16:23 15.00 6.87 North
2014-149T17:17 13.67 8.73 North
2014-149T18:05 15.00 9.90 North
2014-149T19:03 13.67 7.83 North
2014-149T19:58 14.33 12.53 North
2014-149T20:47 13.00 19.64 North
2014-149T21:40 13.67 10.72 North
2014-150T17:40 16.33 11.83 North
2014-150T18:16 nan 9.37 North
2014-150T18:46 nan 7.94 North
2014-150T19:43 nan 9.87 North
2014-150T20:35 18.33 13.41 North
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2014-150T21:19 nan 14.54 North
2014-151T17:53 nan 6.85 North
2014-151T18:50 10.33 11.09 North
2014-151T19:36 17.67 8.61 North
2014-151T21:15 17.00 12.08 North
2014-152T17:30 11.00 5.98 North
2014-152T19:46 17.00 7.47 North
2014-152T20:34 nan 7.36 North
2014-153T18:13 19.67 16.05 North
2014-153T18:57 19.67 16.32 North
2014-153T20:14 21.00 7.46 North
2014-153T21:05 19.00 13.76 North
2014-153T21:46 nan 3.38 North
2014-153T22:30 21.00 7.81 North
2014-153T23:22 15.00 13.62 North
2014-154T18:35 16.33 8.86 North
2014-154T19:42 14.33 9.23 North
2014-154T20:24 nan 8.73 North
2014-154T21:14 8.33 13.74 North
2014-154T23:16 nan 7.18 North
2014-156T08:23 nan 3.43 North
2014-156T09:14 17.67 4.77 North
2014-156T10:04 1.67 6.31 North
2014-156T10:57 nan 2.77 North
2014-156T11:59 nan 4.28 North
2014-156T15:07 17.00 4.22 North
2014-156T17:04 15.67 6.75 North
2014-156T17:55 nan 4.16 North
2014-156T20:35 14.33 5.12 North
2014-156T22:56 nan 5.32 North
2014-157T02:14 nan 5.26 North
2014-157T02:53 nan 4.52 North
2014-158T21:15 15.00 5.32 North
2014-158T22:18 nan 4.59 North
2014-158T23:13 17.67 4.84 North
2014-159T00:38 nan 3.31 North
2014-159T02:01 13.00 4.76 North
2014-160T14:47 17.00 4.89 North
2014-160T16:27 18.33 12.34 North
2014-160T18:09 18.33 11.80 North
2014-160T19:52 19.00 4.68 North
2014-161T03:21 nan 3.68 North
2014-161T18:57 17.67 6.00 North
2014-161T19:35 16.33 8.94 North
2014-161T21:22 21.00 7.43 North
2014-161T22:26 17.00 12.02 North
2014-161T23:24 nan 7.52 North
2014-162T01:24 7.00 13.97 North
2014-162T02:28 nan 15.88 North
2014-162T03:17 8.33 15.14 North
2014-162T05:04 9.67 4.51 North
2014-162T08:22 17.67 6.39 North
2014-162T09:16 21.67 5.48 North
2014-248T12:28 nan 11.69 North
2014-248T13:08 nan 13.81 North
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2014-248T14:10 13.67 34.43 North
2014-248T15:01 14.33 33.70 North
2014-248T16:00 nan 34.71 North
2014-248T16:49 4.33 19.54 North
2014-248T18:19 nan 5.68 North
2014-248T18:55 nan 12.19 North
2014-248T19:41 9.67 26.48 North
2014-248T20:25 10.33 53.17 North
2014-256T06:48 6.33 24.12 North
2014-256T07:53 5.00 16.91 North
2014-256T08:59 nan 11.80 North
2014-256T10:27 8.33 12.05 North
2014-256T11:55 9.00 15.90 North
2014-256T12:55 9.00 28.23 North
2014-256T13:44 nan 7.81 North
2014-289T17:15 17.00 10.66 North
2014-289T18:04 nan 3.86 North
2014-289T19:48 12.33 7.15 North
2014-289T21:01 19.00 9.44 North
2014-289T22:22 11.67 12.73 North
2014-289T23:28 13.67 16.59 North
2014-290T00:43 16.33 16.66 North
2014-290T01:42 15.00 20.13 North
2014-290T02:39 13.67 8.28 North
2014-290T04:17 nan 3.88 North
2014-290T05:04 nan 3.20 North
2014-311T03:12 13.67 4.94 North
2014-311T04:17 nan 8.42 North
2014-311T06:11 18.33 9.64 North
2014-311T07:15 19.00 6.06 North
2014-311T10:34 20.33 4.93 North
2014-311T11:35 7.67 6.60 North
2014-327T13:16 23.67 20.89 North
2014-327T14:06 9.00 9.83 North
2014-327T14:59 nan 9.09 North
2014-327T15:45 nan 10.42 North
2014-327T16:29 nan 5.14 North
2014-331T20:56 nan 6.00 North
2014-331T22:00 nan 9.74 North
2014-331T22:46 nan 7.39 North
2014-332T00:21 6.33 5.82 North
2014-332T01:12 5.00 19.43 North
2014-332T02:46 9.00 10.39 North
2014-332T03:35 11.67 15.01 North
2014-332T04:35 13.67 14.97 North
2014-332T05:32 9.00 8.12 North
2014-332T06:14 nan 7.95 North
2014-332T07:19 14.33 20.49 North
2014-332T08:18 nan 10.99 North
2014-335T05:36 11.67 5.41 North
2014-335T06:38 nan 2.99 North
2014-335T07:41 15.67 5.37 North
2016-177T04:51 14.33 6.77 North
2016-177T05:46 13.00 8.16 North
2016-250T23:59 9.00 5.98 North
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2016-251T00:39 8.33 7.69 North
2016-251T03:40 nan 6.15 North
2016-251T05:11 17.67 6.50 North
2016-273T18:18 13.67 5.00 North
2016-274T15:43 18.33 3.19 North
2016-275T13:29 17.00 3.64 North
2016-276T00:05 17.67 4.37 North
2016-303T03:57 nan 10.30 North
2016-303T08:56 10.33 4.25 North
2017-014T20:38 23.00 5.65 North
2017-079T07:40 18.33 13.16 North
2017-079T08:57 19.67 10.21 North
2017-079T14:29 19.67 5.70 North
2017-079T15:19 19.00 7.12 North
2017-079T17:28 3.67 3.70 North
2017-079T21:57 15.00 5.55 North
2017-079T23:50 17.00 3.77 North
2017-080T00:37 15.00 4.26 North
2017-080T02:27 19.67 3.37 North
2017-092T16:45 21.00 9.34 North
2017-092T18:01 22.33 5.22 North
2017-092T18:46 0.33 7.67 North
2017-092T20:45 19.00 6.17 North
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Figures S1 to S35

Keograms of all sequences used in this study. (a) Keogram similar to the one shown
in Figure 3a, with the PPO upward current maxima marked with white lines as in
Figure 3b. (b) Total UV power (black) and background UV power (red) as in Figure 3a.
(c) The difference between the total and background UV powers in panel (b), with a
boxcar average overlaid in red similar to Figure 3c.
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Text S1: Integration of auroral powers

The brightness unit generally used in auroral physics is the Rayleigh (R) and
physically describes the column emission rate I of an isotropic source with no self-
absorption over a column of unspecified length (Hunten, Roach, & Chamberlain, 1956).
The conversion from a column emission rate in kilo-Rayleigh (kR) to a radiance L is
given by (Baker & Romick, 1976)

L

[
Photons

sm2 sr

]
=

1013

4π
· I [kR]. (1)

The radiant flux Φ can then be determined by integrating over the full 4π solid angle
and the apparent emitting surface area Aapp as seen from the detector,

Φ

[
Photons

s

]
= L

[
Photons

sm2 sr

]
· 4π sr ·Aapp

[
m2

]
. (2)

This value is only meaningful in combination with spectral information, i.e. the mean
energy of the emitted photons. Multiplying by the mean H2 photon energy of 1.6 ·
10−18 J

Photon (Kurth et al., 2016) gives the radiant flux, often also named “auroral
power”, in SI units,

Φ [W] = 1.6 · 10−18 J

Photon
· Φ

[
Photons

s

]
. (3)

However, care has to be taken when the auroral power Φ is integrated from polar pro-
jections of the auroral intensity. As is quite obvious in some projected UVIS images,
instrument pixel footprints are skewed depending on the angle under which the emis-
sion “surface”, the ionospheric layer in which aurorae are generated, is being observed.
The physical surface area of one longitude-latitude grid bin is hence not equal to the
corresponding apparent emitting surface seen from the spacecraft based on which the
column emission rate has been determined, but changes with the observation angle.
With small grid bin sizes, each grid bin can be approximated by a flat plane such that
its apparent emitting surface area Aapp from Eq. 2 and the absolute surface area Aabs

are related through
Aapp = sin ε ·Aabs (4)

with ε as the elevation angle of Cassini above the horizon as seen from the grid bin
location.

–2–



manuscript submitted to Geophysical Research Letters

Figures S1-S4.
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Figure S1. Sketch showing the northern planetary period oscillation (PPO) system as seen

from above the northern hemisphere. (a) Saturn’s equatorial magnetosphere, with noon toward

the bottom and dusk toward the right. The magnetopause is indicated with a grey dash-dotted

line, following the model of Arridge et al. (2006) with pdyn = 0.05 nPa. The inner grey dashed

circle marks the approximate location where the main PPO-related field-aligned currents (FACs)

pass through the equatorial plane. At the instant shown, the northern PPO phase is ΦN(t) = 30◦,

a black arrow marking the orientation of the associated equatorial model perturbation dipole.

The magnetic perturbation field lines of the northern PPO system are shown as solid grey lines

(Provan et al., 2009). The principal meridians of the PPO phase function are shown by the black

arrow and its perpendicular, the phase values ΨN increasing clockwise as indicated. The direction

of FACs passing the equatorial plane due to the perturbation field is marked in red, with circled

crosses indicating a flow into and circled dots a flow out of the plane of the figure. (b) The cor-

responding view of Saturn’s northern ionosphere as seen from above the north pole, again with

noon towards the bottom. Bold numbers around the edge of the panel indicate the local time,

dashed circles mark the northern colatitude from the pole in 10◦ steps. The orientation of the

model perturbation dipole and the PPO principal meridians are marked in black as in panel (a).

Ionospheric upward (downward) FAC regions at auroral latitudes are indicated with red circled

dots (crosses). Blue lines and arrows sketch the driving neutral atmospheric and ionospheric flows

in the northern hemisphere (e.g., Hunt et al., 2014; Jia et al., 2012).
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Figure S2. UV power keograms of all observation sequences with quiet auro-

ral conditions. Same format as Fig. 1, but showing five observation sequences (including

2017 DOY 79-80 from Fig. 1) with a broken time axis.
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Figure S3. UVIS observation summary of Saturn’s ultraviolet (UV) aurora between

2014 DOY 145-162. (a) Keogram of UV emitted power integrated in 36 local time bins between

8 − 22◦ northern colatitude, same format as Fig. 1d. (b) Summed UV power of the whole LT

range (black), the dawn (blue) and dusk region (red) as marked with dashed lines in (a). (c) So-

lar wind dynamic pressure, propagated from OMNI using the Tao et al. (2005) and the mSWIM

(Zieger & Hansen, 2008) models. The Earth-Saturn opposition angle was < 30◦ during the period

shown. (d) Solar wind radial velocity from the same propagation.

–5–



manuscript submitted to Geophysical Research Letters

Figure S4. UV power keogram, average auroral conditions (2014 DOY 145-149).

Same format as Fig. 3, note the broken time axis.
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Figure S2. Data summary of the 2017-009 crossing, similar format to Figures 2 and 3 but in

a longer time window. (g) shows more energy bins of the LEMMS electron detectors. (h) shows

the pitch angle of LEMMS and the electron density inferred from RPWS Langmuir-probe mea-

surements. (i) shows the full electric field spectrogram, albeit at lower time resolution than the

data presented in Figure 3. The proton gyrofrequency fcp and the electron gyrofrequency fce are

marked in red.

–3–
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Figure S3. Data summary of the 2017-009 crossing, same format as Figure S2.
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