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Abstract: Conservation initiatives overwhelmingly focus on terrestrial biodiversity and little is 1 

known about the freshwater co-benefits of terrestrial conservation actions. We sampled >1,500 2 

terrestrial and freshwater species in the Amazon and simulated conservation for species from both 3 

realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater 4 

benefits achieved through freshwater-focused conservation. However, using integrated cross-realm 5 

planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial 6 

benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, 7 

freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation 8 

actions are urgently needed to improve the status of freshwater species globally. Our results suggest 9 

such gains can be achieved without compromising terrestrial conservation goals. 10 

 

One Sentence Summary: Integrated conservation planning increases freshwater species protection 11 

by up to 600% without compromising terrestrial conservation. 12 
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Main Text 13 

Freshwater ecosystems occupy less than 1% of the Earth’s surface, make up only 0.01% of all water, 14 

yet host c. 10% of all known species, including a third of all vertebrates (1). They also deliver vital 15 

ecosystem services, such as climate regulation and the provision of food, fuel and fiber (2). 16 

Nevertheless, freshwater ecosystems are far more imperilled than their terrestrial or marine 17 

counterparts; since 1970, for example, populations of freshwater vertebrates have declined by 83% 18 

compared to a c. 40% decline of terrestrial and marine vertebrates (3,4). A range of threats have long 19 

been linked to this collapse in freshwater biodiversity, including habitat loss and degradation, 20 

overexploitation, eutrophication, flow modification, and the introduction of non-native species (5). 21 

These are now amplified by emerging stressors, including climate change and contamination from 22 

microplastics and biochemicals (3).  23 

Despite the freshwater biodiversity crisis (6), freshwater species are rarely considered in broad-scale 24 

conservation strategies (7-9). Although distributions of terrestrial and freshwater vertebrates display a 25 

degree of spatial congruence (10), there are three key reasons why freshwater conservation based on 26 

terrestrial priorities cannot be taken for granted. First, studies that reveal terrestrial-freshwater 27 

congruence rely on coarse-grained data, and such congruence might not occur at local scales where 28 

conservation decisions are implemented. Second, assessments of the distribution of freshwater biota 29 

are often restricted to small scales or specific taxonomic groups (11). Third, and most importantly, 30 

terrestrial prioritizations do not account for aquatic connectivity, which strongly affects the 31 

distribution of freshwater species, facilitates nutrient flows and mediates the cumulative effects of 32 

stressors along watercourses (12-15). Given these limitations, there is an urgent need to understand the 33 

extent to which freshwater biodiversity can benefit from terrestrial conservation actions, and whether 34 

freshwater protection can be increased through integrated planning for both realms. This is 35 

particularly critical in tropical regions, which harbor >80% of the world´s freshwater fish and are 36 

undergoing the most rapid land-use changes on Earth (16). 37 

Here, we addressed these knowledge gaps using data from extensive terrestrial and freshwater 38 

biodiversity surveys in two biogeographically distinct regions of Brazilian Amazonia: Paragominas 39 

and Santarém (Fig. S1; 17). With >40% of their forests having been converted to agricultural land-40 

uses, these regions typify the agricultural-forest frontier in the Amazon (18). In terrestrial sites (𝑛 = 41 

377; Fig. S2), we sampled plants (𝑛 = 812 species), birds (𝑛 = 327 species), and dung beetles (𝑛 = 141 42 

species). In freshwater sites (𝑛 = 99 streams; Fig. S3), we sampled fish (𝑛 = 143 species); Odonata 43 

(i.e. dragonflies and damselflies; 𝑛 = 134 species); and Ephemeroptera (mayflies), Plecoptera 44 

(stoneflies) and Trichoptera (caddisflies; hereafter, “EPT”), which are frequently used as a measure of 45 
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freshwater ecosystem health (19). We could identify EPT individuals only to genus level (𝑛 = 59 46 

genera; 17). All taxa are referred to as “species” hereafter.  47 

Using these data, we first investigated the extent to which one species group (e.g. fish) is protected 48 

under conservation strategies directed at another species group (e.g. plants), which we refer to as 49 

“incidental conservation”. To do so, we built regional species distribution maps with an array of 50 

biophysical predictors (Table S1; 17). We then used the distribution maps and the Zonation 51 

conservation planning framework (20) to simulate terrestrial and freshwater conservation at the 52 

catchment scale, a natural landscape unit that integrates hydrological processes. Zonation selects 53 

catchments that maximize the weighted average proportion of species distributions under conservation 54 

while accounting for species complementarity, and we use this as our conservation benefit function 55 

(17). For the freshwater analyses, we used the directed-connectivity algorithm, which produces 56 

aquatically connected conservation networks appropriate for freshwater species (21). To focus on 57 

biodiversity (i.e. without socio-economic considerations), we first ran the optimization analyses 58 

constrained by the proportion of the landscape that could be conserved. We then tested the robustness 59 

of these findings to budget-constrained analyses by incorporating two region-specific estimates of 60 

agricultural opportunity costs (Fig. S4; 17). Finally, we undertook sensitivity analyses by varying 61 

available conservation resources. We report results for the area-constrained analysis in which 20% of 62 

landscape could be conserved, which aligns with the Aichi target to conserve at least 17% of 63 

terrestrial and inland water areas (4). For an overview of all analyses, see Fig. S1. 64 

Terrestrially focused conservation planning provided limited incidental conservation benefits for 65 

freshwater species (Fig. 1). Among taxa and regions, on average just 22% (range: 14-29%) of the 66 

freshwater benefits achieved through freshwater conservation were secured through terrestrial 67 

conservation. In contrast, freshwater species prioritisations achieved on average 84% (range: 70-96%) 68 

of the terrestrial benefits achieved through terrestrial prioritisations. Within both freshwater and 69 

terrestrial realms, prioritizing for any one taxonomic group provided >92% of the maximum 70 

achievable benefits to other groups in the same realm. These results were similar whether the 71 

optimisations were constrained by area or financial budgets (Fig. 1A-C). 72 

Differences in the incidental conservation outcomes can be explained by (i) the correlations in 73 

catchment priority rankings among species groups (Figs. S5 & S6) and (ii) the spatial distribution of 74 

conservation priorities (Fig. 2, S7 & S8). Terrestrial and freshwater groups act as good surrogates for, 75 

respectively, other terrestrial and freshwater groups because of the strong correlation in catchment 76 

priority rankings: a catchment with high marginal conservation value for one terrestrial group is likely 77 

to be of high marginal conservation value for other terrestrial groups, and the same holds for 78 

freshwater taxa. Catchment priority ranking correlations were somewhat weaker between terrestrial 79 
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and freshwater groups, leading to smaller but nonetheless high incidental terrestrial benefits when 80 

focused on freshwater species. However, the failure to incorporate aquatic connectivity into terrestrial 81 

planning produced conservation network designs that were inadequate for freshwater species (Figs. 2, 82 

S7 & S8), resulting in poor freshwater outcomes from terrestrial planning. 83 

Next, we considered the extent to which freshwater benefits could be increased through conservation 84 

planning mechanisms targeted at both terrestrial and freshwater species. To do so, we developed two 85 

integrated planning techniques (17). Our first approach utilised both terrestrial and freshwater 86 

biodiversity data to determine a prioritisation optimized for species from both realms (hereafter, “joint 87 

planning”). Given the general paucity of freshwater biodiversity data, our second approach 88 

incorporated aquatic connectivity into the terrestrial optimizations to account for freshwater species 89 

habitat requirements (hereafter, “terrestrial-plus-connectivity”). Using these approaches, we 90 

undertook two trade-off analyses. We first determined the increase in freshwater benefits that could be 91 

achieved for a given reduction in terrestrial benefits from their optimum. We focus on this trade-off 92 

analysis in the main text. We also considered the increase in freshwater benefits for a given resource 93 

increase (e.g. increase in landscape covered or financial budgets) while maintaining terrestrial benefits 94 

at their optimum. As above, we focused on area-constrained optimizations in which 20% of a 95 

landscape could be conserved.  96 

Using the joint planning approach, freshwater benefits could be increased by on average 62% and 97 

345% in Paragominas and Santarém, respectively, for a negligible 1% reduction in terrestrial benefits 98 

relative to their optimum (Fig. 3). A 5% reduction in terrestrial benefits, on the other hand, resulted in 99 

an average increase in freshwater benefits of 184% in Paragominas and 365% in Santarém. The 100 

terrestrial-plus-connectivity approach generally produced lower freshwater conservation gains. 101 

Nonetheless, a 1% and 5% reduction in terrestrial benefits increased freshwater benefits by 75-100% 102 

and 130-175% in both Paragominas and Santarém. Alternatively, the freshwater gains we document 103 

for a 1% and 5% reduction in terrestrial benefits could be achieved without any terrestrial losses for, 104 

respectively, a <1% and <5% increase in conservation resources (Fig. S9). Trade-offs were 105 

qualitatively similar with the incorporation of opportunity costs (Fig. 3) and more and less 106 

pronounced for, respectively, lower and higher conservation resource levels (Fig. S10). 107 

While the freshwater gains we found for negligible reductions in terrestrial protection were substantial 108 

in both Paragominas and Santarém, there were large regional differences when using the joint 109 

planning approach that incorporates both terrestrial and freshwater biodiversity data (Fig. 3). These 110 

differences arise from variation in the spatial overlap of conservation priorities between regions. In 111 

Santarém, many of the highest priority catchments for terrestrial and freshwater groups were in the 112 

south-west (where the Tapajós National Forest is located; Fig. 2). In Paragominas, the same spatial 113 



7 

 

overlap in priorities was not apparent (Fig. 2). Thus, in Paragominas, substantial deviation from the 114 

optimal catchment prioritization for terrestrial species was required to achieve the largest increases in 115 

freshwater benefits. In Santarém, by contrast, large freshwater gains were possible simply by selecting 116 

catchments in the region of high conservation value for both realms that produced the requisite 117 

aquatic connectivity. Therefore, the realized magnitude of the freshwater gains possible from 118 

integrated planning will depend on the underlying spatial covariance in species distributions, which 119 

determines the spatial overlap in conservation priorities.  120 

These results provide compelling evidence that the protection of freshwater species can be vastly 121 

improved without undermining terrestrial conservation goals. However, there are factors for which we 122 

did not account that could lead to significantly different terrestrial-freshwater trade-offs than we 123 

found. First, we did not incorporate the many additional socio-ecological benefits of freshwater 124 

conservation, meaning our results are likely to be conservative. For example, in addition to the direct 125 

provisioning, supporting, regulating and cultural services freshwater ecosystems provide (2), by 126 

enhancing landscape connectivity, freshwater conservation can also promote movement of terrestrial 127 

species, recolonization of defaunated areas, and seed dispersal and pollination services (22). Second 128 

and conversely, where freshwater conservation imposes external opportunity costs beyond a loss of 129 

agricultural profits, by, for example, precluding the development of hydropower or imposing water-130 

use restrictions in the surrounding landscape, the overall scope for conservation investment may be 131 

reduced, leading to fewer net benefits from integrated planning. The manifestation of these additional 132 

socio-ecological trade-offs that emerge when protecting freshwater ecosystems is likely to be highly 133 

dependent on local circumstances, but their consideration will be essential for designing effective and 134 

sustainable conservation projects. Finally, our optimization analyses were static. As freshwater 135 

biodiversity data were collected in different years in Paragominas (2011) and Santarém (2010), and as 136 

the regions experienced significantly different climatic conditions during this time (17), some of the 137 

observed regional differences in trade-offs could result from temporal variation. Understanding and 138 

incorporating environmentally mediated changes in species distributions will be important for 139 

estimating the long-term benefits of integrated terrestrial-freshwater planning. 140 

Identifying promising new approaches for biodiversity conservation is only the first step towards 141 

improving conservation outcomes. Given that evidence is lacking for the translation of systematic 142 

conservation planning exercises into tangible benefits (23), how best to turn our findings into 143 

meaningful action? First, while previous global conservation agendas – such as the UN’s Sustainable 144 

Development Goals and the Convention on Biological Diversity – have recognized the need to 145 

conserve both terrestrial and freshwater ecosystems (SDG 15, Aichi target 11), recognition of their 146 

interdependence remains largely absent from conservation planning. As the world prepares to 147 

consider new, post-2020 conservation targets (9,24), we show that a truly integrated approach to 148 
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conservation on land, which accounts for trade-offs and harnesses synergies among ecosystems and 149 

realms, can provide a cost-effective means to significantly improve outcomes. Understanding where 150 

such gains are highest and lowest should be a focus of future research efforts. Crucially, our findings 151 

from two biogeographically distinct regions with different biophysical drivers of species distributions 152 

(Fig. S11) suggest substantial freshwater gains ought to be attainable across the biodiverse 153 

agricultural frontier regions of the forested tropics. Second, conservation remains hampered by a 154 

severe lack of biodiversity data, especially in tropical regions (11,25). Resolving these data shortfalls 155 

will be necessary to unlock the benefits we document, and this will require more investment in large-156 

scale ecological surveys and taxonomy (16,26). Third, to be effective and feasible, integrated 157 

terrestrial-freshwater strategies need to be aligned with or incorporated into current environmental 158 

policies and laws. In particular, freshwater-orientated planning should not come at the expense of 159 

existing protected areas, which often hold the last populations of endangered species and are coming 160 

under increasing pressure globally (27) and in the Amazon (28). Overcoming these challenges will be 161 

difficult, but the task is small compared to the enormous gains that can be made for the world’s 162 

diverse and highly threatened freshwater biota. 163 
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license was required for bird sampling because the methods were observational and did not involve 295 

collecting or handling of specimens. Socio-economic data was collected following the UK Research 296 

Integrity Office Principles for Research involving human participants, human material, and personal 297 

data and was collected with informed consent. Further approval for opportunity cost data collection 298 

was obtained from the Brazilian Agricultural Research Corporation (Embrapa) under CAAE 299 

29054920.4.0000.5173 and Stanford University under IRB Protocol 19044. 300 
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Materials and Methods 302 

Figures S1-S13 303 

Table S1 304 
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Figure legends 306 

Fig. 1. Incidental conservation. The incidental conservation benefits achieved for one species group 307 

when focused on another. The x-axis ticks are labelled with the focal group first. For example, T-F 308 

shows the incidental conservation benefits achieved for a freshwater group when prioritizing for a 309 

terrestrial group. Points show results for each taxonomic pair. Boxplots show the interquartile range. 310 

The center line shows the median. Results are shown for the area-constrained analysis (A) with the 311 

constraint that 10%, 20% or 30% of landscape can be conserved, and the budget-constrained analyses 312 

with two opportunity cost estimates (B-C) and with budget levels such that approximately 10%, 20% 313 

and 30% of the landscape can be conserved (17). Letters next to the boxplots show results of pairwise 314 

comparisons of group means within resource levels (17). Variables not sharing a letter have 315 

statistically different means. 316 

Fig. 2. Catchment prioritizations for terrestrial and freshwater biodiversity. Catchment 317 

conservation priority rankings in Paragominas (A-F) and Santarém (G-L) for terrestrial (A-C, G-I) 318 

and freshwater (D-F, J-L) taxa. Rankings are based on catchment marginal conservation value, with 1 319 

indicating the catchment with the highest marginal conservation value and 0 that with the lowest 320 

marginal conservation value. Results are shown for the area-constrained analysis. 321 

Fig. 3. Terrestrial-freshwater trade-offs. The decrease in terrestrial benefits from their optimum 322 

required to achieve an increase in freshwater benefits through the joint-planning and the terrestrial-323 

plus-connectivity approaches in Paragominas (A, C, E) and Santarém (B, D, F). The thin lines show 324 

the results for each terrestrial-freshwater taxonomic pair. The thick lines show one s.e.m., where the 325 

mean was estimated using Holling type-II curves, for each integrated planning approach. Results are 326 

shown for the area-constrained analysis (A-B) with the constraint that 20% of landscape could be 327 

conserved, and the budget-constrained analyzes with two opportunity cost estimates (C-F) and with 328 

budget levels such that approximately 20% of the landscape could be conserved (17). 329 
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