Microstructural and electrochemical properties of impregnated La0.4Sr0.6Ti0.8Mn0.2O3±d into a partially removed Ni SOFC anode substrate

Woo, S.H. and Baek, S.-W. and Park, D.S. and Song, K.E. and Schlegl, H. and Park, J.-Y. and Kim, J.H. (2021) Microstructural and electrochemical properties of impregnated La0.4Sr0.6Ti0.8Mn0.2O3±d into a partially removed Ni SOFC anode substrate. Journal of Alloys and Compounds, 854. ISSN 0925-8388

Text (Revised manuscript(2020-9-16)-final)
Revised_manuscript_2020_9_16_final.pdf - Accepted Version
Restricted to Repository staff only until 22 September 2021.
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)


The microstructural and electrochemical properties of anodes obtained by impregnation of the La0.4Sr0.6Ti0.8Mn0.2O3±d (LSTM) oxide system into two types of anode substrates such as Ni/ 8YSZ substrate (Ni (E)/ 8YSZ) and partially Ni removed Ni/ 8YSZ substrate (Ni(R)/8YSZ) were investigated in order to apply them as anode material for solid oxide fuel cells. All of the samples with LSTM impregnated on Ni (R)/ 8YSZ show higher electrical conductivity values than those of unimpregnated Ni (E)/ 8YSZ under dry H2 condition. The highest electrical conductivity values of 2041.2, 1877.4, and 1764.3 S/cm at 700, 800 and 900 °C can be achieved by samples with 3 wt% impregnated LSTM on Ni (R)/ 8YSZ. From the XPS analysis, the existence of a Ti metal peak on the surface of LSTM was only measured for the LSTM (3 wt%)-Ni (R)/ 8YSZ sample, metallic titanium on the surface can improve the electrical catalytic reaction. LSTM (3 wt%)-Ni (R)/ 8YSZ showed higher electrical conductivity values then those of LSTM (3 wt%)-Ni (E)/ 8YSZ in all the temperature ranges measured in the case of dry CH4 supply. Finally, the electrical conductivity of LSTM (3 wt%)-Ni (R)/ 8YSZ was stably maintained even when exposed to dry CH4 condition at 900 °C for a long time (100 h). © 2020 Elsevier B.V.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Alloys and Compounds
Additional Information:
This is the author’s version of a work that was accepted for publication in Journal of Alloys and Compounds. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Alloys and Compounds, 854, 2021 DOI: 10.1016/j.jallcom.2020.157250
Uncontrolled Keywords:
ID Code:
Deposited By:
Deposited On:
26 Oct 2020 10:10
Last Modified:
16 Jun 2021 08:35