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Abstract

Bispectral analysis is an effective signal processing tool for analysing interactions between oscilla-
tions, and has been adapted to the continuous wavelet transform for time-evolving analysis of open
systems. However, one unaddressed question for the wavelet bispectrum is quantification of the
bispectral content of an area of scale-scale space. This makes the capacity for quantitative rather
than merely qualitative interpretation of wavelet bispectrum computations very limited. In this
paper, we overcome this limitation by providing suitable normalisations of the wavelet bispectrum
formula that enable it to be treated as a density to be integrated. These are roughly analogous
to the normalisation for second-order wavelet spectral densities. We prove that our definition of
the wavelet bispectrum matches the traditional bispectrum of sums of sinusoids, in the limit as
the frequency resolution tends to infinity. We illustrate the improved quantitative power of our
definition with numerical and experimental data.

Keywords: continuous wavelet transform, wavelet bispectrum, bispectral analysis, time-frequency
analysis, lognormal wavelets

1. Introduction

We begin by outlining the background to wavelet bispectral analysis and its applications, the
limitations of current definitions, and how we overcome these limitations in terms of suitably defined
notions of wavelet bispectral density.

Background to wavelet bispectral analysis

Power-spectral analysis of time-series data may be used to investigate oscillatory influences in
a signal, and likewise cross-spectral analysis to investigate common oscillatory influences between
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two simultaneous signals. Power spectra and cross-spectra are referred to as second-order spectra.
In a similar manner, bispectral (i.e. third-order spectral) analysis of time-series data may be used to
investigate influences – either in one signal or common among two or three simultaneous signals –
coming from a nonlinearly combined effect of two oscillators at different1 frequencies. In particular,
this can include influence from a pair of interacting oscillators (illustrated in Fig. 1), although it can
also include a nonlinear response to a superposition of two non-interacting oscillatory influences.
Just as at the heart of cross-spectral analysis is the coherence of phases associated to a frequency
f , so by exact analogy, at the heart of bispectral analysis is the coherence between the sum of
phases associated to two frequencies f1, f2 (each of which can be positive or negative) and the
phase associated to the sum of the frequencies f1 + f2.

Bispectra (and more general higher-order spectra) of stationary stochastic processes were in-
troduced in 1953 by John Tukey [70], and first applied in the study of nonlinear superposition of
ocean waves [69, 24], subsequent to which many diverse applications have been found [65]. Bispec-
tra have also been defined for deterministic signals [46, 2]. An in-depth exposition of bispectra and
more general higher-order spectra in both the stationary stochastic setting and the deterministic
setting can be found in [47] (where other uses of bispectra than investigating interaction of physical
processes are also discussed).

 

and/or and/or 

(a) (b) 

(c) (d) 

Figure 1: Illustration of what can be investigated by (a,b) second-order, and (c,d) third-order spectral
analysis. (a) An oscillatory process contributing to a signal, as detected by power-spectral analysis. (b) An
oscillatory process contributing simultaneously to two signals, as detected by cross-spectral analysis. (c) An
interacting pair of oscillatory processes contributing to a signal, as detected by autobispectral analysis of
the signal. (d) An interacting pair of oscillatory processes contributing simultaneously to two signals, as
detected by cross-bispectral analysis of the two signals; cross-bispectral analysis can also be applied to three
simultaneous signals.

1Bispectral results on the diagonal of frequency-frequency space indicate the potential influence of individual
nonlinear oscillations rather than nonlinear combinations of oscillations [46, Sec. IIIB]. Likewise, bispectral results
at rational ratios between the two coordinates of frequency-frequency space may be due to individual nonlinear
oscillations. See also Sec. 5.2.
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Traditional bispectra, as with traditional second-order spectra, are defined as functions of fre-
quency variables but no time variable. However, thermodynamically open systems – such as bio-
logical systems – have time-variable characteristics, such as temporal intermittency of interaction
between oscillatory components [72, 73], and temporal variation in the basic frequencies of the
oscillatory components themselves [29]. Extensions of traditional bispectra of stationary stochastic
processes to the setting of periodic [16, 61] and almost-periodic [10] stochastic processes are also
not capable of dealing with “free-form” temporal variations, as is necessary for investigating typical
open systems such as biological systems.

Now in the context of second-order spectral analysis, for a time-resolved investigation of common
oscillatory influences between two simultaneous signals, one can:

• define a time-evolving cross-spectrum derived from a time-frequency representation of the
signals (that is, a time-evolving representation of the frequency content of the signals);

• then use this time-evolving cross-spectrum to analyse coherence of phases within a sliding
time-window, where the temporal spread of the window is

– on the one hand, sufficiently short that changes in behaviour can be resolved and located
in time reasonably well,

– but on the other hand, sufficiently long that coherence of phases over the window can
be meaningfully considered.

This approach to time-evolving second-order cross-spectral analysis was extended to bispectral
analysis in the pioneering papers [72, 73]. The time-frequency representation used there for defin-
ing time-evolving bispectra was the continuous wavelet transform, and the time-evolving bispectra
defined in this way are called wavelet bispectra. The advantage of the wavelet transform over
other time-frequency representations is that it rescales its time-localisation in accordance with each
frequency under investigation, thereby enabling the simultaneous resolving of oscillatory contribu-
tions on a broad range of timescales. Wavelet bispectra, as with wavelet cross-spectra, are defined
for deterministic signals rather than stochastic processes, but such objects can still be applied to
stochastic processes – both stationary and non-stationary – by sample-pathwise application [9]; in
this case, a statistical descriptor [40] may then be obtainable by taking expectations (and factoring
out the signal or window duration as appropriate).

There do exist various time-frequency representations other than the continuous wavelet trans-
form [4], an important example being the windowed Fourier transform. Various time-evolving
bispectra other than the wavelet bispectrum of [72, 73] have also been introduced for both deter-
ministic and stochastic processes (in both discrete and continuous time) [46, 18, 64, 15, 51, 63, 1,
28, 56, 58, 54, 5, 53, 68].

Overview of application of wavelet bispectral analysis

Since its introduction, wavelet bispectral analysis has found effective application in diverse ar-
eas, including: the identification of relations between different oscillations in turbulent flows [17],
especially of plasmas [72, 73, 12, 34, 60], and in laminar flows at the boundary of transition to turbu-
lence [23]; investigation of water wave interactions beyond linear superposition [11, 75, 6]; analysis
of electrostatic fluctuations in the ionosphere [41, 13]; interactions between brain waves measured
in EEG signals during sleep [42], anaesthesia [7], and burst suppression while sedated [55] (where a
slightly modified version of the wavelet transform is used), as well as characterisation of pain from
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EEG signals [21]; prediction of epileptic seizures from real-time analysis of electrocorticography
signals [71]; characterisation of wheezes from their audio recording [66], and characterisation of
abnormal cardiac sounds [35]; investigation of cardiorespiratory interaction from respiration signals
and ECG and/or blood flow signals [27, 33]; analysis of oscillations in photovoltaic current of surface
state electrons on liquid helium [8]; coordination of renal autoregulation mechanisms via analysis
of kidney blood flow signals [57]; and analysis of vibrations to detect mechanical faults [74, 43, 44].
Surrogate testing for wavelet bispectral analysis results is discussed in [38, 57, 20, 33].

Current definition and its limitation

In the papers [72, 73] where wavelet bispectral analysis was introduced, given two signals x(t)
and y(t) (which could be the same or different), the wavelet bispectrum over a time-interval
I = [T, T + ∆T ] was defined by replacing Fourier transform terms in the traditional definition
of bispectral density of deterministic finite-energy signals with time-dependent continuous wavelet
transform terms, and integrating over the time-interval. That is,

BI
xxy(s1, s2) :=

∫ T+∆T

T
Wx(s1, t)Wx(s2, t)Wy((s

−1
1 + s−1

2 )−1
1 , t) dt (1)

where s1 and s2 are the input timescales, and Wx(s, t) and Wy(s, t) are the continuous wavelet
transforms of the signals x(·) and y(·) respectively (which depend on the choice of mother wavelet
for the wavelet transform). One can easily extend this definition to cover three signals x(t), y(t)
and z(t) by

BI
xyz(s1, s2) :=

∫ T+∆T

T
Wx(s1, t)Wy(s2, t)Wz((s

−1
1 + s−1

2 )−1
1 , t) dt. (2)

The wavelet bispectrum defined in this manner makes it possible for the concept of a third-order
coherence index, as had been defined for stationary stochastic processes [47, Sec. 2.3.9], to be trans-
lated to the setting of deterministic signals with no assumption of stationary statistics: specifically,
as a third-order analogue of wavelet coherence, wavelet bicoherence was defined in [72, 73] by

cIxxy(s1, s2) :=
|BI

xxy(s1, s2)|2∫ T+∆T
T |Wx(s1, t)Wx(s2, t)|2 dt

∫ T+∆T
T |Wy((s

−1
1 + s−1

2 )−1
1 , t)|2 dt

. (3)

Eq. (1) has continued to persist as the standard definition of the wavelet bispectrum [22].
However, one basic question that cannot be addressed by wavelet bispectral analysis based on this
definition of the bispectrum is how to evaluate quantitatively, rather than just describe qualitatively,
the bispectral content within a given region in scale-scale space. Even for just one isolated bispectral
peak in the scale-scale space, the Heisenberg-Gabor uncertainty principle [31, Sec. 2.2] implies that
this peak will not be a Dirac mass but rather a blur; and this peak will only be yet more blurry
if the frequencies of the oscillations involved are time-varying. Naturally, the inability to quantify
the bispectral content of a region in scale-scale space also implies the inability to describe how
bispectral content is distributed across different regions in scale-scale space.

The reason why this basic question has received almost no attention is likely because wavelet
bispectral analysis has tended to focus specifically on bicoherence analysis using Eq. (3), for which
Eq. (1) is merely a preliminary definition necessary in the construction of the wavelet bicoherence
cIxxy. However, only analysing the wavelet bicoherence cIxxy directly makes it difficult to tell whether
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high bicoherence-values correspond to interacting oscillatory influences or just the absence of os-
cillatory components and associated harmonics, and in the former case, also makes it difficult to
locate the approximate frequencies of the oscillatory influences. The actual bispectral values prior
to the factoring out of norms in Eq. (3) may contain important information.

Illustration of the limitation

To illustrate the problem, in Fig. 2 we plot over scale-scale space the integrand of Eq. (2) at a
fixed time τ , i.e. we plot the “instantaneous wavelet bispectrum”

bτxyz(s1, s2) := Wx(s1, τ)Wy(s2, τ)Wz((s
−1
1 + s−1

2 )−1
1 , τ), (4)

using the conventional s−
1
2 normalisation in the wavelet terms as used in [72, 73], for signals of the

form 
x(t) = cos(2πν1t)
y(t) = cos(2πν2t) + cos(2πν3t)
z(t) = cos(2π(ν1 + ν2)t) + cos(2π(ν1 + ν3)t− θ).

(5)

For our choice of signals and parameters, the dependence on the fixed time τ is negligible, so the
results are essentially the same as if integrating over a time-interval I as in Eq. (2).

We use a “lognormal” mother wavelet as described in Sec. 5. For the frequency resolutions
used here, this is very similar to the more conventional Morlet wavelet; but all our later numerical
illustrations will use lognormal mother wavelets, and so we also use it here. (The reason for our
choice of lognormal wavelets in this paper are that they are analytic – which is required for the
theory developed in this paper – and that the lognormal wavelet transform has good time-frequency
resolution properties [25], including rapidly decaying wavelet power in the high-frequency tails.)

In Fig. 2 (both (a) and (b)), we see clearly a bispectral contribution associated to the frequency
pair (ν1, ν2) and a bispectral contribution associated to the frequency pair (ν1, ν3), both appearing
as “blurry” peaks as described above; but it is not at all immediately clear how to compare the
weight of the two bispectral contributions, let alone how to quantify them absolutely. Certainly
one would not immediately expect from the figure that the two bispectral contributions should be
considered equal in magnitude. But from a Fourier analysis perspective, they are indeed equal: in
both cases the three contributing sinusoidal components all have amplitude equal to 1.

How we solve the problem

Traditional time-independent spectral analysis defines spectral densities that can be integrated
over regions of the space of input frequencies. Likewise, time-dependent second-order spectral
analysis, via the windowed Fourier transform or the continuous wavelet transform, defines spectral
densities that can be integrated over a region of time-frequency space or time-scale space.

Accordingly, to solve the problem described above, we seek to define a notion of wavelet bispectral
density2 by suitable normalisation of the formula (1)/(2), which can then be integrated over a region
of time-frequency-frequency space or time-scale-scale space to give the bispectral content of that
region. A definition of wavelet bispectral density is suitable insofar as it simultaneously fulfils the
following two requirements:

2The term “wavelet bispectral density” is used in [39], but there the “density” just refers to “density with respect
to time”, i.e. where the duration ∆T of the time-interval is factored out.
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Figure 2: Wavelet bispectrum according to the current standard definition. Plots show magnitude
|bτxyz(s1, s2)| of the instantaneous wavelet bispectrum (4) in units of sec

3
2 for the signals x, y, z in (5) with

ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and θ = π
3 , using conventional p = 1

2 definition of the wavelet
transform, with a lognormal mother wavelet (Sec. 5) with frequency resolution parameter (a) σ = 1 and
(b) σ = 4. With these lognormal mother wavelets, we consider scale s and frequency f to be related by
f = 1

s . The signals are simulated over a time-interval [0 s, 60 s] and the time-instant τ is taken at τ = 30 s.

• For strictly quasiperiodic signals,

– the wavelet bispectral content of each contribution to the bispectrum should match well
that given by Fourier bispectral analysis;

– and the “blurriness” of the peaks in the wavelet bispectral density should be in accor-
dance with the frequency resolution of the underlying wavelet transform.

• For more general signals, the bispectral content of a given region of frequency-frequency space
over a given time-interval I should be very little affected by the behaviour of the signals outside
of the time-interval I.

In seeking to obtain such a definition of wavelet bispectral density, we specifically consider
wavelets that are analytic with non-negative-valued Fourier transform; this is a reasonable assump-
tion for time-frequency analysis, and non-analytic wavelets can be made analytic by convolution
with the inverse Fourier transform of a suitable cut-off function. We assume a simple inverse
relationship f = κ

s between scale and frequency. This is very natural for time-frequency analysis
using wavelets with unimodal Fourier transform, and is also necessary for the application of wavelet
bispectral analysis to investigate nonlinear oscillatory interactions [73]. We obtain:

• a “global” definition of wavelet bispectral density with respect to logarithmic frequency
axes, which enables one to define the time-evolving distribution of bispectral content across
frequency-frequency space (and also to compare this across signals);

• a “local” definition of wavelet bispectral density with respect to logarithmic frequency axes,
which is (very slightly) better suited to the investigation of bispectral content around a pre-
specified location in frequency-frequency space than the “global” definition is.
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In the “global” definition, the normalisation factor in front of the product of wavelet terms in
(2) is itself dependent on the ratio of the two input frequencies or scales. (If p = 1 is used for the
s−p normalisation in the individual wavelet terms themselves, then it is only the ratio, and not the
two individual input frequencies, that is needed in the extra normalisation factor.) An important
question is whether this non-constancy of the normalisation factor in our “global” definition causes
the distribution of bispectral content over frequency-frequency space to be misrepresented. Ac-
cordingly, Theorem 8 justifies the soundness of our definition in a limit as the frequency resolution
of the mother wavelet tends to ∞, while the numerics in Sec. 5.1 indicate that our definition gives
suitable results even when the frequency resolution is not high at all.

The wavelet bispectral densities described above are with respect to logarithmic frequency, but
can easily be converted into densities with respect to linear frequency. Nonetheless, the derivation
of these densities is based on consideration of logarithmic frequency. A formula derived analogously
from consideration of linear frequency can also be obtained, but this is only able to give a “local”
definition of wavelet bispectral density, not a “global” one. This is presented in Appendix C.

Relation to existing work

The significance of the question of how to be able to compare wavelet bispectral content across
different regions of scale-scale space has been highlighted in [29], when comparing wavelet bispectral
analysis with traditional Fourier-based bispectral analysis. No clear mathematical answer to this
question is obtained, but working with a modified Morlet wavelet transform, the paper does suggest
a wavelet normalisation that essentially corresponds to taking p = 1 in the s−p normalisation for
wavelet transforms, and appears to hint implicitly at the fact that doing so normalises the modal
magnitude of a fixed-frequency bispectral contribution in proportion with its Fourier bispectral
content; we describe this fact in Sec. 3.3.

Normalisation of wavelet bispectra with reference to traditional bispectra has also been ad-
dressed in [39], from quite a different point of view from our question of how to compute the bis-
pectral content of a region of time-frequency-frequency space. Namely, for application to stochastic
processes of constant expectation, a normalised wavelet bispectrum formula (given explicitly for
discretely sampled finite-duration time-series recordings) is presented, that is, roughly speaking, de-
rived so that if applied to a stationary stochastic process of flat bispectral density, the infinite-time-
average expected wavelet bispectrum at each pair of frequencies matches the traditional bispectral
density.

Significance of our result

By defining wavelet bispectral density, we enable a quantitative evaluation of the time-localised
distribution of bispectral content over frequency-frequency space, in a manner that can still take
advantage of the multiscale resolution capacity of the continuous wavelet transform. This has the
potential to lead to more refined indicators of the various physical and biological phenomena in
open systems that wavelet bispectral analysis is used to investigate.

Structure of the paper

Sec. 2 covers preliminaries on the (continuous) wavelet transform, second-order Fourier and
wavelet spectra, and third-order Fourier spectra. After starting with notational conventions, we
introduce the wavelet transform, first according to the p = 1 convention which we consider most
simple and natural, and then with general p. We then discuss the basic scaling property of the
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wavelet transform, particularly as compared with the windowed Fourier transform. We then present
definitions and basic results concerning second-order Fourier spectra of finite-energy deterministic
signals, followed by analogous definitions and results for wavelet second-order spectra of deter-
ministic signals. Finally, we present definitions and basic results concerning Fourier bispectra of
finite-energy deterministic signals.

Sec. 3 covers our definitions and results pertaining to wavelet bispectral analysis. We start by
describing how bispectral density would be defined for the windowed Fourier transform, and the
technical difficulty in trying to do the same for the wavelet transform. In view of the impossibility
of obtaining a “perfect” definition of wavelet bispectra, we explain our criteria for a suitable defi-
nition, after which we introduce our main definition of wavelet bispectral density and the wavelet
bispectrum. Additional theoretical justification (Theorem 8) for the suitability of this definition is
provided. We then discuss frequency-localised adaptation of our definition of the wavelet bispec-
trum.

In Sec. 4, we prove Theorem 8.
In Sec. 5, we provide numerical illustration of our wavelet bispectrum formula. First, we apply it

to signals with pure sinusoidal components, to illustrate the match with Fourier analysis. Then, we
apply it to a coupled phase-oscillator pair, to illustrate the usage of our new formula for investigating
interactions within time-dependent oscillatory dynamics.

In Sec. 6, we illustrate an application of our wavelet bispectrum formula to recorded time-series
of cell membrane potentials.

In Appendix A, we describe the relationship between the lognormal wavelet parameter σ and
corresponding time and frequency resolution properties.

In Appendix B, we discuss definitions of coherence, bicoherence and “bicorrelation” (introduced
in [33] under the name “real wavelet biphase”). In particular, we introduce a new definition of
“wavelet-phase bicoherence”. We also briefly describe how wavelet bispectral analysis can be used
to suggest unidirectionality of coupling [30].

In Appendix C, we present an alternative frequency-localised wavelet bispectrum formula to
that given in Sec. 3.3.

Availability of codes

Codes for the wavelet bispectral analysis methods developed and used in this paper will be
made available on the Lancaster Publications and Research system Pure.

2. Preliminaries

In this section, we discuss the wavelet transform and its basic properties, introduce second-order
spectra for both Fourier and wavelet transforms, and introduce third-order Fourier spectra. This
then lays the foundation for introducing third-order wavelet spectra in Sec. 3.

Some conventions and notations

Fourier transform. In this paper, the Fourier transform is formally defined according to the
convention

(Fx)(f) = x̂(f) =

∫ ∞
−∞

x(τ)e−2πifτ dτ.

It will also be very useful to define
x̊(f) := x̂

(
1
f

)
.
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One-point compactification of the real line. In accordance with the usual notation, we
write R̂ for the one-point compactification of R, namely R∪{∞} where ∞ is regarded as the same
as −∞. (The ˆ here is unrelated to Fourier transforms.)

Dimensional analysis. Generally speaking, variables denoted t or τ will correspond to physi-
cal quantities of the time dimension, variables denoted f , ν or ξ will correspond to physical quanti-
ties of the frequency dimension, variables denoted ζ will correspond to a logarithmic representation
of quantities of the frequency dimension, and variables denoted r will correspond to dimensionless
values. The variable λ (parametrising “projective frequency-frequency space”) and wavelet-related
parameters κ and σ are also dimensionless.

Spaces of functions. Given a space of complex-valued functions f : U → C whose notation
follows the style “F (U)” (e.g. Lebesgue spaces Lp(U), Sobolev spaces W k,p(U), etc.), for any X ⊂ C
we use the style of notation “F (U,X)” to mean the set of functions f : U → X that belong to F (U)
when the codomain is expanded from X to C. (For example, L2(R) is the set of square-integrable
functions f : R→ C while L2(R,R) is the set of square-integrable functions f : R→ R.)

Delta-ring of finite integration. Given a Borel set X ⊂ Rd and a measurable function
f : X → C, we define

Bf :=

{
A ∈ B(X) :

∫
A
|f(x)| dx <∞

}
.

One can easily show that Bf is a δ-ring (i.e. is closed under pairwise union, countable intersection
and relative complement) on which A 7→

∫
A f(x) dx is σ-additive.

Summary of main other notations: ψ denotes a (mother) wavelet function; Wψ,κ,x is the
corresponding wavelet transform (with p = 1) of the signal x(t), where κ is the constant of inverse

proportion between scale s and frequency f ; W
[p]
ψ,κ,x is the wavelet transform for general p in the s−p

normalisation; second-order Fourier spectral densities of finite-energy signals x and y are denoted
Pxy (with x = y being “energy spectral density” and x 6= y being “cross-energy spectral density”);
p̃ψ,κ,xy likewise denotes second-order wavelet spectral density (as a function of both frequency and
time) with respect to a linear frequency axis, and pψ,κ,xy with respect to a logarithmic frequency
axis; pψ,κ,xy is the second-order wavelet spectrum obtained by integrating the second-order wavelet
spectral density; Bxyz denotes the Fourier bispectral density for a triplet of finite-energy signals
(x, y, z); bψ,κ,xyz denotes globally defined wavelet bispectral density with respect to logarithmic
frequency axes, and b̃ψ,κ,xyz is the transformed version for linear frequency axes; bψ,κ,xyz is the
globally defined wavelet bispectrum obtained by integrating the wavelet bispectral density; “local”
wavelet bispectral density and the “local” wavelet bispectrum have an extra subscript λ for the
frequency ratio λ = f1

f1+f2
about which the localisation takes place.

2.1. Definition of the wavelet transform

In our definition of the wavelet transform, we will specifically work with absolutely integrable
Hermitian analytic wavelet functions with non-negative-valued Fourier transform; these assump-
tions are reasonable for time-frequency analysis. Any non-analytic wavelet (meaning that the
Fourier transform contains negative-frequency content) can be made analytic by convolution with
the inverse Fourier transform of a suitable cut-off function: provided the frequency resolution of
the original non-analytic wavelet is not too poor, this analyticisation can be achieved with very
little modification to the wavelet itself. Whereas the wavelet transform traditionally has scale s
as its first argument, throughout this paper the wavelet transform’s first argument is a frequency

9



variable f that is reciprocally proportional to scale s (with a constant of proportion denoted κ),
and all densities considered are with respect to f or log f rather than with respect to s.

A (mother) wavelet function will mean a Hermitian function ψ ∈ L1(R)\{0} with ψ̂ ≥ 0,

ψ̂
∣∣
(−∞,0]

= 0, and
∫∞

0
ψ̂(r)
r dr < ∞. (This implies in particular that

∫
R ψ(r) dr = 0.) Given a

wavelet function ψ and a value κ > 0, we define the associated (continuous) wavelet transform of
any x ∈ L∞(R,R) by

Wψ,κ,x(f, t) =
f

κ

∫
R
x(τ)ψ

(
(τ−t)f
κ

)
dτ (6)

for all f > 0 and t ∈ R. In practice, one often chooses the wavelet function ψ such that ψ̂ is
unimodal, and then takes κ to be where ψ̂ is maximised [25, 73].

We can also take the wavelet transform of an unbounded function x ∈ Lq(R,R) for any q ∈
[1,∞), in which case (6) is well-defined for almost all (f, t) ∈ (0,∞) × R. When x ∈ L1 ∪ L2, the
wavelet transform can be computed from the Fourier transform of its temporal sections,

(FWψ,κ,x(f, ·))(ξ) = x̂(ξ)ψ̂
(
κξ
f

)
(7)

for almost all ξ ∈ R, for each f > 0.
Although not typically necessary, one can choose to extend the definition of Wψ,κ,x(f, t) to

include negative f , by

Wψ,κ,x(f, t) =
|f |
κ

∫
R
x(τ)ψ

(
(τ−t)f
κ

)
dτ = Wψ,κ,x(−f, t)

for all f 6= 0 and t ∈ R. In this case, (7) holds for negative as well as positive f .
The wavelet transform provides a means of time-localised frequency analysis: in the case that

x(t) = A cos(2πνt+ φ) with ν > 0, we have

Wψ,κ,x(f, t) = 1
2 ψ̂
(
κν
f

)
Aei(2πνt+φ) (8)

for all f > 0 and t ∈ R. If we include negative f , this becomes

Wψ,κ,x(f, t) = 1
2 ψ̂
(
κν
|f |

)
Aesgn(f)i(2πνt+φ). (9)

From (8) we see that, unlike the Fourier transform, the representation of a sine wave given by the
wavelet transform is, at each time t, not a sharp peak but rather a blurry peak in accordance with
the shape of ψ̊. This is an inherent property of time-localised frequency analysis: very fine time-
localisation necessitates poor frequency resolution, and very high frequency resolution necessitates
poor time-localisation. This is due to the Heisenberg-Gabor uncertainty principle mentioned in the
Introduction.

We refer to the modulus and the argument of Wψ,κ,x(f, t) respectively as the wavelet amplitude
and the wavelet phase associated to the frequency f at time t.

Remark 1. It is always possible to rescale ψ such that κ becomes 1: namely, defining ψ1(r) =
1
κψ
(
r
k

)
, we have Wψ,κ,x = Wψ1,1,x. Thus, from a mathematical point of view, we could simply take

κ = 1 without any loss of generality. However, in practice, the conventional formulations of some
wavelets (such as Morlet wavelets) do not have their Fourier transform ψ̂ maximised at or near 1.
Because of this fact, we retain the presence of κ in our definitions.
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Definition with general p

An alternative, more commonly found, definition of the wavelet transform is

W
[ 1
2

]

ψ,κ,x(f, t) =

√
|f |
κ

∫
R
x(τ)ψ

(
(τ−t)f
κ

)
dτ =

√
κ
|f | ·Wψ,κ,x(f, t) (10)

for all f 6= 0 and t ∈ R; and more generally, for any p ≥ 0, one can define

W
[p]
ψ,κ,x(f, t) =

(
|f |
κ

)p ∫
R
x(τ)ψ

(
(τ−t)f
κ

)
dτ (11)

for all f 6= 0 and t ∈ R. So Wψ,κ,x corresponds to p = 1.
One justification for defining the wavelet transform according to (10) rather than (6) is that the

L2 norm of the map τ 7→
√

f
κ ψ
(
τf
κ

)
is constant over varying f , being simply equal to the L2 norm of

ψ itself. However, for the context of higher-order spectra the meaningfulness of such a justification
is doubtful. We will see that when working with logarithmic frequency axes in accordance with
the logarithmic frequency resolution of the wavelet transform (Sec. 2.2), the formulae (25), (26),
(45) and (49) for both second- and third-order densities are simplest when we take p = 1. (By
contrast, in the “linear-frequency derived” wavelet spectral density formulae, while the second-
order densities (23) and (24) are simplest with p = 1

2 as in (10), the third-order densities (C.8) are
instead simplest with p = 1

3 .) Two important further practical advantages of working with p = 1
are:

• Assuming that κ is the mode of ψ̂, the maximal amplitude for the wavelet transform of a
sinusoidal input will occur precisely at the frequency of the input, if and only if p = 1.

• Computation of the wavelet transform via (7) is simplest with p = 1: an additional pre-factor(
|f |
κ

)p−1
is needed for any other value of p.

Finite-time signals

The theoretical definition of the wavelet transform works with infinite-time signals. For a finite-
time signal x : (a, b)→ R, a typical procedure is as follows: First define an extension xext : R→ R of
x; typical examples include the zero-padding extension (xext(t) = 0 for t /∈ (a, b)) and the periodic
padding extension (xext is (b − a)-periodic), as well as more sophisticated forms of “predictive”
padding [25]. Then define the wavelet transform of x to be the restriction of Wψ,κ,xext to some
subset C ⊂ (0,∞)× (a, b) of (f, t)-space, where C is chosen such that the behaviour of xext outside
the time-interval (a, b) has little influence on the values of Wψ,κ,xext(f, t) for (f, t) ∈ C. This set C
is called the cone of influence. See [25] for further details (as well as discussion of other practical
aspects of wavelet analysis of digital signals).

Throughout the rest of this paper, we present theory for infinite-time signals; application to
finite-time signals can be achieved by the above procedure.

2.2. Comparison with the windowed Fourier transform

Given an even function w ∈ L1(R,R) with
∫
Rw(t) dt > 0 (called a window function), we define

the associated windowed Fourier transform of a function x ∈ L∞(R,R) by

Fw,x(f, t) =

∫
R
x(τ)w(τ − t)e2πif(t−τ) dτ

11



for all f, t ∈ R. In other words,

Fw,x(·, t) = F(τ 7→ x(τ + t)w(τ)).

Note that ŵ is an even real-valued function. Typically, one uses a window function w such that
ŵ is maximised at 0 and such that at any other local maximum of |ŵ| the value of |ŵ| is very
small compared to ŵ(0). Thus the windowed Fourier transform provides a means of time-localised
frequency analysis, over frequency ranges that do not come too close to 0: for x(t) = A cos(2πνt+φ)
with ν > 0, we have

Fw,x(f, t) = 1
2 ŵ(f − ν)Aei(2πνt+φ) + 1

2 ŵ(f + ν)Ae−i(2πνt+φ)︸ ︷︷ ︸
→0 uniformly over f>0 as ν→∞

(12)

for all f, t ∈ R. We see from (12) that the smallest frequencies for which the windowed Fourier
transform is able to give meaningful results depends on how quickly the tails of ŵ decay.

At the heart of the difference between the windowed Fourier transform and the wavelet transform
is the following: In the windowed Fourier transform, the “envelope” w(τ−t) of the function against
which the input signal is integrated is independent of the frequency f under investigation. By

contrast, in the wavelet transform the function τ 7→ f
κ ψ
(

(τ−t)f
κ

)
against which the input signal is

integrated is a linearly rescaled version of ψ where the temporal rescaling is inversely proportional
to the frequency f under investigation. Note that, from the point of view of dimensional analysis,
the inputs of a window function w are of the time dimension, while the inputs of a wavelet function
ψ are dimensionless.

This rescaling of the wavelet in accordance with the frequency under investigation is the key
property that makes the wavelet transform able to investigate different oscillatory components
across multiple simultaneous timescales. A basic consequence of this rescaling is that if we define
xc(t) = x(ct) for any constant c > 0, then

Wψ,κ,xc(f, t) = Wψ,κ,x

(f
c , ct

)
(13)

for all f 6= 0 and t ∈ R. (For more general p, the right-hand side has an extra pre-factor cp−1.)
Eq. (13) can be interpreted as saying that the wavelet transform has logarithmic frequency

resolution: For signals of the form

x(t) = A1 cos(2πν1t) + A2 cos(2πν2t),

the resolvability of the two sinusoidal components by the wavelet transform depends only on the
ratio between the two frequencies ν1 and ν2. Indeed, if one plots |Wψ,κ,x| over time-frequency space
with a logarithmic frequency axis, multiplying the frequencies ν1 and ν2 by the same number c
would simply shift the entire diagram up the frequency axis by an amount proportional to log c.
This is in contrast with the linear frequency resolution of the windowed Fourier transform, where
the resolvability of the two sinusoidal components would depend essentially on the difference in
frequency |ν2 − ν1| rather than the ratio ν2

ν1
.

It is precisely the wavelet transform’s “logarithmic” rather than “linear” treatment of frequen-
cies that leads to the main non-triviality in defining the wavelet bispectrum, because the definition
of bispectra involves a linear sum of the two input frequencies. (See the start of Sec. 3 for details.)
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2.3. Second-order Fourier spectra of deterministic signals

Throughout this paper, the abbreviation “ESD” stands for “energy spectral density”, and
“cross-ESD” is to be interpreted “cross-energy spectral density”.

The second-order Fourier spectral densities of finite-energy signals are defined as the integrands
in the “frequency-domain integral formulae” for the L2-norm and L2-inner product. Namely, for
any x, y ∈ L2(R,R), we have∫

R
x(t)y(t) dt =

∫
R
Pxy(f) df = 2 Re

(∫ ∞
0
Pxy(f) df

)
(14)

and in particular ∫ ∞
−∞

x(t)2 dt =

∫ ∞
−∞
Pxx(f) df = 2

∫ ∞
0
Pxx(f) df (15)

where Pxx : f 7→ |x̂(f)|2 is the Fourier ESD of x, and Pxy : f 7→ x̂(f)ŷ(f) is the Fourier cross-ESD
of x with y. We are careful to refer to these functions as “spectral densities”, with a “spectrum”
itself referring to the measure (for the energy spectrum) or complex-valued measure (for the cross-
energy spectrum) obtained by integrating the associated spectral density. Note the equalities

Pxy(−f) = Pxy(f) = Pyx(f) (16)

for all f ∈ R, from which we have the following two consequences (which will also hold for second-
order wavelet spectra):

• for second-order spectral analysis it is sufficient to consider only positive frequencies;

• for a pair of functions x and y there are essentially three distinct second-order spectra, namely
the energy spectra of x and y and the cross-energy spectrum of x with y.

The above spectra are defined for real-valued signals. We also recall that for general complex-
valued functions x, y ∈ L2(R), ∫

R
x(t)y(t) dt =

∫
R
x̂(f)ŷ(f) df (17)∫

R
x(t)y(t) dt =

∫
R
x̂(f)ŷ(−f) df, (18)

and due to (17), for all x ∈ L1(R) ∪ L2(R),∫ ∞
−∞
|x(t)|2 dt =

∫ ∞
−∞
|x̂(f)|2 df. (19)

2.4. Second-order wavelet spectra

Now let us consider a wavelet analogue of the second-order Fourier spectra. For any wavelet
function ψ, define

Cψ =

∫ ∞
0

ψ̂(r)2

r
dr =

∫ ∞
0

ψ̊(r)2

r
dr =

∫ ∞
−∞

ψ̂(er)2 dr =

∫ ∞
−∞

ψ̊(er)2 dr. (20)
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The value Cψ is often known as the admissibility constant. It can be regarded as a “power-
normalisation constant” for the wavelet transform: given a signal x(t) = A cos(2πνt + φ) with
ν 6= 0, Eq. (8) implies

1
4A

2 =
1

κCψ

∫ ∞
0
|W [ 1

2
]

ψ,κ,x(f, t)|2 df =
1

Cψ

∫ ∞
−∞
|Wψ,κ,x(eζ , t)|2 dζ (21)

for any t ∈ R. More generally, if we have signals

x(t) = A1 cos(2πνt+ φ)

y(t) = A2 cos(2πνt+ φ− θ)

with ν > 0, Eq. (8) implies

1
4A1A2e

iθ =
1

κCψ

∫ ∞
0

W
[ 1
2

]

ψ,κ,x(f, t)W
[ 1
2

]

ψ,κ,y(f, t) df (22a)

1
4A1A2e

iθ =
1

Cψ

∫ ∞
−∞

Wψ,κ,x(eζ , t)Wψ,κ,y(eζ , t) dζ (22b)

for any t ∈ R. (We mention now that although (22a) and (22b) describe the same object Cψ,
the objects described by their “third-order analogues” – namely Dψ(λ) in Eq. (44), and D̃ψ(λ) in
(A)–(C) in Appendix C – are not the same as each other.)

Given functions x, y : R → R with wavelet transforms Wψ,κ,x and Wψ,κ,y, we define the linear-
frequency wavelet ESD p̃ψ,κ,xx : (R \ {0})× R→ [0,∞) of x by

p̃ψ,κ,xx(f, t) := (κCψ)−1|W [ 1
2

]

ψ,κ,x(f, t)|2 (23)

and the linear-frequency wavelet cross-ESD p̃ψ,κ,xy : (R \ {0})× R→ C of x with y by

p̃ψ,κ,xy(f, t) := (κCψ)−1W
[ 1
2

]

ψ,κ,x(f, t)W
[ 1
2

]

ψ,κ,y(f, t), (24)

and we define the logarithmic-frequency wavelet ESD pψ,κ,xx : (0,∞)× R→ [0,∞) of x by

pψ,κ,xx(f, t) := C−1
ψ |Wψ,κ,x(f, t)|2 (25)

and the logarithmic-frequency wavelet cross-ESD pψ,κ,xy : (0,∞)× R→ C of x with y by

pψ,κ,xy(f, t) := C−1
ψ Wψ,κ,x(f, t)Wψ,κ,y(f, t). (26)

At each time t, these spectral densities as a function of f satisfy the same relations (16) satisfied
by the Fourier second-order spectral densities. Regarding the cross-energy spectral densities, note
that

p̃ψ,κ,xy(f, t)

|p̃ψ,κ,xy(f, t)|
=

pψ,κ,xy(f, t)

|pψ,κ,xy(f, t)|
= ei(φx(f,t)−φy(f,t)) (27)

where φx(f, t) = arg(Wψ,κ,x(f, t)) and φy(f, t) = arg(Wψ,κ,y(f, t)); we refer to φx(f, t)− φy(f, t) as
the phase difference associated to f at time t.

Whereas the Fourier spectral densities in Sec. 2.3 are densities over the frequency axis, these
wavelet spectral densities are densities over time-frequency space, with a logarithmic frequency axis
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in the case of pψ,κ,xy and a linear frequency axis in case of p̃ψ,κ,xy. The wavelet energy spectrum of
x is the measure pψ,κ,xx on (0,∞)× R given by

pψ,κ,xx(A) =

∫
R2

1A(eζ , t)pψ,κ,xx(eζ , t) d(ζ, t) (28)

=

∫
A
p̃ψ,κ,xx(f, t) d(f, t). (29)

This measure can also be extended to include the negative frequency axis (i.e. to be a measure on
the whole of R2) using (29). Similarly, for any A ⊂ (0,∞)× R with A ∈ Bp̃ψ,κ,xy we define

pψ,κ,xy(A) =

∫
R2

1A(eζ , t)pψ,κ,xy(e
ζ , t) d(ζ, t) (30)

=

∫
A
p̃ψ,κ,xy(f, t) d(f, t). (31)

Again we can extend pψ,κ,xy to all sets A ∈ B(R2) with A \ ({0} × R) ∈ Bp̃ψ,κ,xy using (31). We
refer to pψ,κ,xy as the wavelet cross-energy spectrum of x with y. If x, y ∈ L∞(R,R) then for any
compact K ⊂ (0,∞) × R the restriction of pψ,κ,xy to B(K) defines a complex-valued measure on
K.

In analogy to the energy-preservation and cross-energy-preservation properties of the Fourier
transform (14)-(15), we have the following well-known fact [31, Sec. 3.2]. (We include a proof,
particularly for the sake of the discussion at the start of Sec. 3.)

Proposition 2 (Wavelet energy preservation). For any x, y ∈ L2(R,R) we have∫
R
x(t)y(t) dt = pψ,κ,xy(R2) = 2 Re(pψ,κ,xy((0,∞)× R)), (32)

and in particular, ∫ ∞
−∞

x(t)2 dt = pψ,κ,xx(R2) = 2 pψ,κ,xx((0,∞)× R). (33)

Proof. We first prove (33):

Cψpψ,κ,xx(R2) =

∫
R2

|Wψ,κ,x(f, t)|2

|f |
d(f, t)

=

∫
R2

|x̂(ξ)|2 ψ̊
(
f
ξκ

)2

|f |
d(f, ξ) by (7) and (19)

=

∫
R
|x̂(ξ)|2

∫
R

ψ̊(r)2

|r|
dr dξ by substitution f = ξκr

= Cψ

∫
R
|x̂(ξ)|2 dξ

= Cψ

∫
R
|x(t)|2 dt by (15)/(19).

One then obtains (32) by repeating the calculation with (17) in place of (19), with the validity

of the steps justified by the fact that (f, t) 7→ Wψ,κ,x(f,t)√
|f |

and (f, t) 7→ Wψ,κ,y(f,t)√
|f |

are square-integrable

as proved above.
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Of the differences between the Fourier cross-energy spectrum and the wavelet cross-energy
spectrum, one that we emphasise is that due to Eqs. (27) and (30)/(31), the wavelet cross-energy
spectrum pψ,κ,xy is able to take into account the level of coherence of phases over time, by which we
mean how constant the phase difference φx(f, t)− φy(f, t) associated to each frequency f remains
over time. This is particularly useful when analysing signals recorded from open systems, where os-
cillatory components have time-dependent characteristics and there will be various time-dependent
background effects picked up in the signals being measured. Detailed discussion of coherence of
wavelet phases and its quantification is given in Appendix B.1.

2.5. Fourier bispectra of deterministic signals

Throughout this paper, the abbreviation “BD” stands for “bispectral density”, and “autoBD”
and “cross-BD” are to be interpreted “autobispectral density” and “cross-bispectral density”.

For any functions x, y, z : R→ R with Fourier transforms x̂, ŷ, ẑ : R→ C (defined at least up to
almost-everywhere equality), define

Bxyz(f1, f2) = x̂(f1)ŷ(f2)ẑ(f1 + f2) = x̂(f1)ŷ(f2)ẑ(−(f1 + f2)). (34)

Note the symmetries Byxz(f1, f2) = Bxyz(f2, f1) and Bxzy(f1, f2) = Bxyz(f1,−(f1 + f2)) for all
f1, f2 ∈ R. The definition of Bxyz(f1, f2) makes reference to three frequencies, namely the two
input frequencies f1 and f2 and their sum f1 + f2. As shown in Fig. 3, we define the following 6
regions of R2 according to the signs of these three frequencies:

Γ1 = {f1, f2 > 0} −Γ1 = {f1, f2 < 0}
Γ2 = {0 < f1 < −f2} −Γ2 = {0 > f1 > −f2}
Γ3 = {0 < f2 < −f1} −Γ3 = {0 > f2 > −f1}.

It will also be useful to define the subset Γ1− := {0 < f2 < f1} of Γ1. We refer to the two-
dimensional space of inputs (f1, f2) of the function Bxyz as “frequency-frequency space”. We also
define projective frequency-frequency space as the set of all straight lines through the origin (0, 0).
For our purposes, projective frequency-frequency space is naturally parametrised by a value λ ∈ R̂
corresponding to f1

f1+f2
. With this parametrisation, we have that

• Γ1 ∪ −Γ1 is covered by λ ∈ (0, 1);

• Γ2 ∪ −Γ2 is covered by λ ∈ (−∞, 0);

• Γ3 ∪ −Γ3 is covered by λ ∈ (1,∞).

Now by iterated application of the convolution theorem, one obtains that for all “sufficiently
controlled” functions x, y, z : R → R (e.g. if these belong to the Sobolev space W 2,1(R)), the
following “third-order versions” of (14) and (15) hold:∫

R
x(t)y(t)z(t) dt =

∫
R2

Bxyz(f1, f2) d(f1, f2) (35)

= 2 Re

(∫
(0,∞)2

Bxyz(f1, f2) + Byzx(f1, f2) + Bzxy(f1, f2) d(f1, f2)

)
, (36)
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and in particular,∫
R
x(t)3 dt =

∫
R2

Bxxx(f1, f2) d(f1, f2) = 12 Re

(∫
Γ1−

Bxxx(f1, f2) d(f1, f2)

)
.

The functions Buvw with u, v, w ∈ {x, y, z} represent third-order spectra or bispectra. However,
the functions themselves are densities: we refer to each function Buvw with u, v, w ∈ {x, y, z} as
a Fourier BD, and we refer to Bxxx as the Fourier autoBD of x; a function Buvw for which it is
not the case that u = v = w is referred to as a Fourier cross-BD. Although these functions Buvw
are often referred to simply as bispectra, we regard “bispectra” as referring to the complex-valued
measures on frequency-frequency space whose densities are given by the functions Buvw.

Note that it is possible to restrict all bispectral analysis to positive frequencies only:3
(f1, f2) ∈ −Γ1 ⇒ Bxyz(f1, f2) = Bxyz(|f1|, |f2|)
(f1, f2) ∈ Γ2 ⇒ Bxyz(f1, f2) = Bxzy(f1, |f2| − f1)

(f1, f2) ∈ −Γ2 ⇒ Bxyz(f1, f2) = Bxzy(|f1|, f2 − |f1|)
(f1, f2) ∈ Γ3 ⇒ Bxyz(f1, f2) = Bzyx(|f1| − f2, f2)

(f1, f2) ∈ −Γ3 ⇒ Bxyz(f1, f2) = Bzyx(f1 − |f2|, |f2|).

(37)

With the symmetries of the bispectrum, the complete list of possible cross-bispectra given a
pair of signals or a triplet of signals is as follows:

• For a pair of signals x and y, there are essentially 4 different bispectra (Bxxx, Bxxy, Bxyy,
Byyy), or 6 if we restrict to positive frequencies (Bxxx, Bxxy, Bxyx, Bxyy, Byyx, Byyy).

• For a triplet of signals x, y and z, there are essentially 10 different bispectra (Bxxx, Bxxy,
Bxxz, Bxyy, Bxyz, Bxzz, Byyy, Byyz, Byzz, Bzzz), or 18 if we restrict to positive frequencies
(Bxxx, Bxxy, Bxxz, Bxyx, Bxyy, Bxyz, Bxzx, Bxzy, Bxzz, Byyx, Byyy, Byyz, Byzx, Byzy, Byzz, Bzzx,
Bzzy, Bzzz).

 

f1 

f2 

1 

2 
 

3 
 

1 
 

2 
 

3 
 

Figure 3: The six regions in frequency-frequency space defined by the signs of the three frequencies under
consideration by the bispectrum.

3This fact does not hold for higher-than-third-order spectral analysis of continuous-time signals.
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Finally, note that Eq. (35) can be extended to complex-valued signals as∫
R
x(t)y(t)z(t) dt =

∫
R2

x̂(f1)ŷ(f2)ẑ(−(f1 + f2)) d(f1, f2), (38)

which is the third-order analogue of (18).

3. Wavelet bispectra

As in Sec. 2.5, the abbreviation “BD” stands for “bispectral density”, and “autoBD” and “cross-
BD” are to be interpreted “autobispectral density” and “cross-bispectral density” respectively.

In this section, we will see how a “perfect” definition of the wavelet bispectrum is not achievable,
but how we can nonetheless provide a “suitable” definition that fulfils the needs of time-evolving
bispectral analysis.

The difficulty in defining wavelet bispectral density

We seek to obtain a “third-order analogue” of the second-order wavelet spectrum pψ,κ,xy. As
described in Sec. 2.2, the difficulty in achieving this lies in the contrast between linear sum of
frequencies inherent to bispectral analysis and the logarithmic treatment of frequencies inherent to
wavelet analysis. We will now explain this in detail.

We first consider how to define the windowed-Fourier-transform bispectrum [46]. Let w be a
window function as defined in Sec. 2.2, which for simplicity we will assume to belong to the Schwartz
space S(R,R), and assume additionally that

Kw :=

∫
R
w(t)3 dt > 0.

(Window functions w used in practice typically fulfil the stronger condition that either w ≥ 0
everywhere or ŵ ≥ 0 everywhere.) We use the same notation for the windowed Fourier transform
as in Sec. 2.2. We present two ways to derive the definition of windowed-Fourier-transform bispectral
density (also called a bispectrogram):

• In the first instance, we consider finite-energy signals (which, for simplicity’s sake, we will
assume to be Schwartz functions).

• In the second instance, we consider infinite-time sinusoidal signals.

Consider signals x, y, z ∈ S(R,R). In analogy to (7), we have

(FFw,x(f, ·))(ξ) = x̂(ξ)ŵ(f − ξ) (39)

for all ξ, f ∈ R. Consequently, following analogous steps to the proof of Proposition 2 (and noting
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that ẑ and Fw,z(·, t) are Hermitian), we have∫
R3

Fw,x(f1, t)Fw,y(f2, t)Fw,z(f1 + f2, t) d(f1, f2, t)

=

∫
R4

x̂(ξ1)ŵ(f1 − ξ1)ŷ(ξ2)ŵ(f2 − ξ2)ẑ(f1 + f2)ŵ(f1 + f2 − (ξ1 + ξ2)) d(f1, f2, ξ1, ξ2)

by (39) and (38)

=

∫
R2

Bxyz(ξ1, ξ2)

∫
R2

ŵ(ν1)ŵ(ν2)ŵ(ν1 + ν2) d(ν1, ν2) d(ξ1, ξ2)

by substitution fi = ξi + νi

= Kw

∫
R2

Bxyz(ξ1, ξ2) d(ξ1, ξ2) by (35)/(38)

= Kw

∫
R
x(t)y(t)z(t) dt by (35)/(38).

Therefore we define the windowed-Fourier-transform bispectral density as

WFT-BDw,x,y,z(f1, f2, t) = K−1
w Fw,x(f1, t)Fw,y(f2, t)Fw,z(f1 + f2, t) (40)

for f1, f2, t ∈ R. Now instead consider sinusoidal input signals

x(t) = A1 cos(2πν1t+ φ1)

y(t) = A2 cos(2πν2t+ φ2)

z(t) = A3 cos(2π(ν1 + ν2)t+ φ1 + φ2 − θ),

with ν1, ν2 > 0. Using (12) one can show that at each t ∈ R,∫
R2

Fw,x(f1, t)Fw,y(f2, t)Fw,z(f1 + f2, t) d(f1, f2) = 1
4KwA1A2A3 cos(θ) + c(t) (41)

where c(t) is a finite sum of zero-mean circular motions in C. And by expressing x, y, z in terms of
complex exponentials, one can easily check that the average value of the function t 7→ x(t)y(t)z(t) is
indeed 1

4A1A2A3 cos(θ). Thus, consideration of sinusoidal input signals also justifies the definition
(40) for windowed-Fourier-transform bispectral density.

The windowed-Fourier-transform bispectrum for input functions x, y, z ∈ L∞(R,R) is then
defined by integrating the density, i.e. it is the map

A 7→ K−1
w

∫
A
Fw,x(f1, t)Fw,y(f2, t)Fw,z(f1 + f2, t) d(f1, f2, t)

on all sets A ∈ B(R3) over which the integrand is absolutely integrable.
Having defined the windowed-Fourier-transform bispectral density, through two approaches

that produce the same result, let us now consider how the analogous calculations would look for
attempting to define wavelet bispectral density. More specifically, at this point we will only consider
the calculation for finite-energy signals; the case of sinusoidal signals is treated in Sec. 3.1.
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For simplicity, take κ = 1 and assume that ψ ∈ S(R). For signals x, y, z ∈ S(R,R), we have∫
R3

Wψ,1,x(f1, t)Wψ,1,y(f2, t)Wψ,1,z(f1 + f2, t)

f1f2
d(f1, f2, t)

=

∫
R4

x̂(ξ1)ψ̊(f1ξ1 )ŷ(ξ2)ψ̊(f2ξ2 )ẑ(f1 + f2)ψ̊(f1+f2
ξ1+ξ2

)

f1f2
d(f1, f2, ξ1, ξ2)

=

∫
R2

Bxyz(ξ1, ξ2)

∫
R2

ψ̊(f1ξ1 )ψ̊(f2ξ2 )ψ̊(f1+f2
ξ1+ξ2

)

f1f2
d(f1, f2) d(ξ1, ξ2).

If the term f1+f2
ξ1+ξ2

were instead f1
ξ1

+ f2
ξ2

, then as in the proof of Proposition 2 the change of variables

ri = fi
ξi

(i = 1, 2) would cause the above expression to simplify to

C
(3)
ψ

∫
R
x(t)y(t)z(t) dt

where

C
(3)
ψ =

∫ ∞
−∞

∫ ∞
−∞

ψ̊(er1)ψ̊(er2)ψ̊(er1 + er2) dr1dr2 =

∫ ∞
0

∫ ∞
0

ψ̊(r1)ψ̊(r2)ψ̊(r1 + r2)

r1r2
dr1dr2.

Thus it is the discrepancy between f1+f2
ξ1+ξ2

and f1
ξ1

+ f2
ξ2

that prevents the calculation from going
through.

How to define a “reasonable” notion of wavelet bispectra

Although we cannot obtain a “perfect” third-order analogue of the second-order wavelet spectra,
nonetheless we can still obtain somewhat “reasonable” notions of a wavelet bispectrum.

A valid candidate for a definition of the “wavelet bispectrum” is one expressible through in-
tegration of a formula for “wavelet bispectral density”, whose value at (f1, f2, t) depends on the
input signals only via values of their wavelet transforms at time t. This implies in particular that
the wavelet bispectrum can serve as a time-localised measure of the bispectral content of signals
with time-dependent oscillatory characteristics.

Of course, the “reasonableness” of such a candidate definition of the wavelet bispectrum is a
rather vague question, but a natural way of assessing it is by the following (also somewhat vague)
question:

For signals x, y and z that include prominent sinusoidal contributions A1 cos(2πν1t + φ1),
A2 cos(2πν2t+ φ2) and A3 cos(2π(ν1 + ν2)t+ φ1 + φ2 − θ) respectively,

• is the bispectral contribution within positive frequency-frequency space made by this triplet of
sinusoidal components over a time-interval of duration ∆T approximately equal to 1

8A1A2A3∆Teiθ

[or some other pre-determined constant multiple of A1A2A3∆Teiθ], and

• is this bispectral contribution concentrated, in due proportion with the frequency resolution of
the underlying wavelet ψ, around (ν1, ν2)?

A valid candidate for the definition of the wavelet bispectrum is considered to be a “reasonable”
definition in so far as it provides an affirmative answer to the above question.

We go on to give a definition of the wavelet bispectrum whose “reasonableness” is formalised
in Theorem 8, in a limit as frequency resolution tends to ∞. Our numerics in Sec. 5.1 will indicate
that the frequency resolution needed for “reasonable” results is not high at all.
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3.1. Definition of the wavelet bispectrum (global version)

Given a wavelet function ψ as defined in Sec. 2.1, for each λ ∈ [0, 1], define

Dψ(λ) :=

∫ ∞
0

∫ ∞
0

ψ̊(r1)ψ̊(r2)ψ̊(λr1 + (1− λ)r2)

r1r2
dr1dr2 (42)

=

∫ ∞
−∞

∫ ∞
−∞

ψ̊(er1)ψ̊(er2)ψ̊(λer1 + (1− λ)er2) dr1dr2. (43)

Note that Dψ(λ) is strictly positive (by fixing r1 = r2 ∈ ψ̊−1((0,∞)) in the integrand) and bounded

above by
(∫∞

0
ψ̂(r)
r dr

)2
max ψ̂(·). It serves as a kind of third-order analogue of Cψ by fulfilling the

following third-order analogue of (22b): Given a wavelet function ψ, a value κ > 0 and signals

x(t) = A1 cos(2πλνt+ φ1)

y(t) = A2 cos(2π(1− λ)νt+ φ2)

z(t) = A3 cos(2πνt+ φ1 + φ2 − θ)

with ν > 0, we have

1
8A1A2A3e

iθ =
1

Dψ(λ)

∫
R2

Wψ,κ,x(eζ1 , t)Wψ,κ,y(e
ζ2 , t)Wψ,κ,z(eζ1 + eζ2 , t) d(ζ1, ζ2) (44)

for any t ∈ R. This fact is essentially immediate from (8).

Remark 3. If we chose any p-value other than 1 for the wavelet transform in (44), then we would
need to change Dψ(λ) to an expression taking the form ν3(p−1)Eψ(λ) where Eψ(λ) is independent
of ν. (This can be derived explicitly but also follows immediately from dimensional analysis.)

At the start of Sec. 3 we showed the difficulty in defining the wavelet bispectrum, using finite-
energy input signals. If instead we consider sinusoidal signals as above, then this impossibility of a
perfect third-order analogue of the second-order wavelet spectra is now represented by the fact that
the factor Dψ is not constant but depends on the ratio of the frequencies as represented by λ. This
is in contrast with the windowed-Fourier-transform bispectrum, where the factor Kw is constant.
Nonetheless, using Dψ(·) as defined above, we will define wavelet bispectral density by “pointwise”
application of the normalisation D−1

ψ :

Definition 4. Given a wavelet function ψ, a value κ > 0 and functions x, y, z ∈ L∞(R,R), define
the logarithmic-frequency wavelet BD bψ,κ,xyz : (0,∞)2 × R→ C by

bψ,κ,xyz(f1, f2, t) = Dψ

(
f1

f1+f2

)−1
Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t). (45)

The normalisation factor Dψ

(
f1

f1+f2

)
can be expressed as

Dψ

(
f1

f1+f2

)
=

∫ ∞
0

∫ ∞
0

ψ̂
(f1
ξ1

)
ψ̂
(f2
ξ2

)
ψ̂
(f1+f2
ξ1+ξ2

)
ξ1ξ2

dξ1dξ2. (46)

We refer to bψ,κ,xxx as the logarithmic-frequency wavelet autoBD of x. As in Sec. 2.5, a BD bψ,κ,uvw
for which it is not the case that u = v = w is referred to as a cross-BD.
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One can convert these densities to linear-frequency densities: namely, we define b̃ψ,κ,xyz : (0,∞)2×
R→ C by

b̃ψ,κ,xyz(f1, f2, t) =
bψ,κ,xyz(f1, f2, t)

f1f2
.

For any A ∈ Bb̃ψ,κ,xyz ⊂ B((0,∞)2 × R), we define

bψ,κ,xyz(A) =

∫
R3

1A(eζ1 , eζ2 , t)bψ,κ,xyz(e
ζ1 , eζ2 , t) d(ζ1, ζ2, t) =

∫
A
b̃ψ,κ,xyz(f1, f2, t) d(f1, f2, t).

(47)
We refer to bψ,κ,xyz as the wavelet bispectrum. (The terminology regarding wavelet autobispectra
and wavelet cross-bispectra is analogous to the above terminologies for autoBD and cross-BD.) For
any compact K ⊂ (0,∞)2×R the restriction of bψ,κ,xyz to B(K) defines a complex-valued measure
on K.

Remark 5. Since we constructed our definition of wavelet bispectra on the basis of logarithmic-
frequency consideration as reflected in (44), we have not incorporated negative frequencies in our
definition. This is not problematic or restrictive, since in general, all bispectral analysis can be
restricted to positive frequencies (see Sec. 2.5).

Remark 6. The integral in (46), as well as the integral in (42) and the integral in (43), can be
computed by integrating only below the diagonal and then doubling the result. Note also that

Dψ(λ) = Dψ(1− λ), or equivalently that the expression Dψ

(
f1

f1+f2

)
is symmetric in f1 and f2. It

follows in particular that the wavelet autobispectral density bψ,κ,xxx or b̃ψ,κ,xxx is symmetric in its
frequency inputs.

Remark 7. The dependence of Dψ(λ) on λ is continuous, and hence in particular {Dψ(λ)}λ∈[0,1]

is bounded away from 0. This follows from the dominated convergence theorem since the integrand
in (42) is dominated by the integrable function

(r1, r2) 7→
(

max
r>0

ψ̂(r)

)
· ψ̊(r1)

r1
· ψ̊(r2)

r2
.

Fig. 4 illustrates the dependence of Dψσ(λ) on λ for the “lognormal” wavelet function ψσ defined by

ψ̂σ(r) = e−2(πσ log r)2 on r > 0, where the parameter σ is taken over the range [0.5, 3]. (Lognormal
wavelets are discussed further at the start of Sec. 5.)

Now using the same wavelet phase notation as was used in Eq. (27), we have that

bψ,κ,xyz(f, t)

|bψ,κ,xy(f, t)|
= ei(φx(f1,t)+φy(f2,t)−φz(f1+f2,t)). (48)

We refer to the argument φx(f1, t)+φy(f2, t)−φz(f1+f2, t) of bψ,κ,xyz(f, t) as the biphase associated
to the frequency pair (f1, f2) at time t. Of the differences between Fourier bispectra and wavelet
bispectra, one that we emphasise is that due to Eqs. (48) and (47), the wavelet bispectrum bψ,κ,xyz
is able to take into account how constant the biphase associated to each frequency pair remains
over time. Just as described in Sec. 2.4 for second-order wavelet cross-spectra, this is particularly
useful when analysing signals recorded from open systems. Constancy of biphase is referred to as
bicoherence. Detailed discussion of bicoherence and its quantification is given in Appendix B.2.

Usage of our new definition of the wavelet bispectrum is illustrated in Sec. 5.2 and Sec. 6.
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Figure 4: Depedence of Dψσ (λ) on λ for the lognormal wavelet function ψσ, across varying σ. The plot
specifically shows σ2Dψσ (λ) as a function of σ and λ. For each σ, we see that Dψσ (λ) ranges from about
0.11σ−2 to about 0.13σ−2.

3.2. Theoretical justification for the wavelet bispectral density formula (45)

In this section, we consider the wavelet bispectrum of a triplet of signals (any two of which or
all three of which could be the same), each consisting of a finite sum of sinusoids. We work with
a one-parameter family of wavelets whose parameter σ represents the “frequency resolution” (or
inversely represents “frequency uncertainty”), and consider the limit as σ → ∞. So, in principle,
the setup we consider here is

x(t) =

N1∑
i=1

Ai1 cos(2πνi1t+ φi1)

y(t) =

N2∑
i=1

Ai2 cos(2πνi2t+ φi2)

z(t) =

N3∑
i=1

Ai3 cos(2πνi3t+ φi3)

ψ̂(r) =

{
g(rσ) r > 0

0 r ≤ 0

for some g : (0,∞)→ [0,∞), and (taking κ = 1 without loss of generality) we consider the limiting
behaviour of bψ,1,xyz as σ →∞.

However, one slight issue is that for a given function g, even if the inverse Fourier transform of
the function

gext =

{
g(r) r > 0

0 r ≤ 0

exists and fulfils all the conditions of being a wavelet function (as defined in Sec. 2.1), this might
not guarantee that the inverse Fourier transform of ψ̂ is an L1 function for all σ, and therefore

23



might not guarantee that the wavelet transforms Wψ,1,x, Wψ,1,y and Wψ,1,z as given by (6) are
well-defined for all large σ. Therefore, in the result below we consider the “wavelet transform”
defined by (8) rather than (6).

Theorem 8. Fix a continuous function g : (0,∞)→ [0,∞) (other than the constant zero function)

such that the “finite uncertainty” condition
∫∞

0
|log r|g(r)

r dr < ∞ holds and log(r)2g(r) → 0 as r
tends to 0 and to ∞.4 For each σ ≥ 1, define gσ : (0,∞)→ [0,∞) by gσ(r) = g(rσ).

Now for each j ∈ {1, 2, 3}, fix a positive integer Nj, values A1j , . . . , ANjj 6= 0, values φ1j , . . . , φNjj ∈
R, and distinct values ν1j , . . . , νNjj > 0.5 For each σ ≥ 1 and j ∈ {1, 2, 3}, define

Wσ,j(f, t) = 1
2

Nj∑
i=1

gσ

(
νij
f

)
Aije

i(2πνijt+φij)

for all f > 0 and t ∈ R. For each σ ≥ 1, define Dσ : (0, 1)→ (0,∞) by

Dσ

(
f1

f1+f2

)
=

∫ ∞
0

∫ ∞
0

gσ
(f1
ξ1

)
gσ
(f2
ξ2

)
gσ
(f1+f2
ξ1+ξ2

)
ξ1ξ2

dξ1dξ2

with f1, f2 > 0, and define

bσ(f1, f2, t) = Dσ

(
f1

f1+f2

)−1
Wσ,1(f1, t)Wσ,2(f2, t)Wσ,3(f1 + f2, t)

for all f1, f2 > 0 and t ∈ R. Let

P = {(n1, n2, n3) ∈ {1, . . . , N1}×{1, . . . , N2}×{1, . . . , N3} : νn11 + νn22 = νn33}.

(I) For any S ⊂ (0,∞)2 such that (νn11, νn22) 6∈ S̄ for all (n1, n2, n3) ∈ P , we have bσ(f1, f2, t)→ 0
uniformly across (f1, f2, t) ∈ S × R as σ →∞. (II) For each σ,∫ ∞

−∞

∫ ∞
−∞

sup
t∈R
|bσ(eζ1 , eζ2 , t)| dζ1dζ2 < ∞ ;

and for any S ∈ B((0,∞)2) such that (νn11, νn22) 6∈ ∂S for all (n1, n2, n3) ∈ P , we have∫
R2

1S(eζ1 , eζ2)bσ(eζ1 , eζ2 , t) d(ζ1, ζ2) →
∑

(n1,n2,n3)∈P
with (νn11,νn22)∈S

1
8An11An22An33e

i(φn11+φn22−φn33)

uniformly across t ∈ R as σ →∞.

The proof is given in Sec. 4.

Remark 9. In Theorem 8, the limit as frequency uncertainty tends to zero is only taken within a
one-parameter family (gσ)σ≥1. The natural next question is whether some condition on a general
sequence of wavelet functions (ψn)n∈N can be found that guarantees the same conclusions as in
Theorem 8. We conjecture that under some suitable quantitative definitions of frequency uncer-
tainty and time-frequency uncertainty for wavelet functions, the conclusions of Theorem 8 will hold
for any sequence (ψn)n∈N of wavelet functions for which the frequency uncertainty tends to zero
while the time-frequency uncertainty remains bounded.

4If g is unimodal then the finite uncertainty condition automatically implies that log(r)2g(r) → 0 as r tends to 0
and to ∞.

5We emphasise that the sets {νi1}N1
i=1, {νi2}N2

i=1 and {νi3}N3
i=1 need not be disjoint.
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3.3. Frequency-localised bispectra

Suppose we have a region of frequency-frequency space S ⊂ (0,∞)× (0,∞) contained within a
strip of the form

{(f1, f2) : f1
f1+f2

∈ [λ− ε, λ+ ε]}

for some fixed λ ∈ (0, 1). One may wish to consider the local logarithmic-frequency wavelet BD
bψ,κ,xyz;λ : S × R→ C defined by

bψ,κ,xyz;λ(f1, f2, t) = Dψ(λ)−1Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t). (49)

The point here is that, in contrast to the “global” definition (45), we do not vary the normalisation
factor Dψ(λ)−1 in accordance with the input frequency pair (f1, f2). We then define

bψ,κ,xyz;λ(A) =

∫
R3

1A(eζ1 , eζ2 , t)bψ,κ,xyz;λ(eζ1 , eζ2 , t) d(ζ1, ζ2, t) (50)

for any A ∈ Bb̃ψ,κ,xyz contained in S×R. Note that the localised bispectrum bψ,κ,xyz;λ is meaningless

if the frequency resolution of the wavelet is so low that S does not capture virtually all the wavelet
bispectral content arising from bispectral contributions of interest within S.

Recall that our notion of the wavelet bispectrum was constructed from logarithmic-frequency
consideration as in (44). Frequency-localised bispectra constructed from analogous linear-frequency
consideration will be presented in Appendix C.

If one is not concerned with “absolute” values for bispectral results but only comparisons be-
tween bispectral results, then the normalising factor Dψ(λ)−1 can be removed from (49). Nonethe-
less, due to Remark 3, the wavelet transform terms must still be with p = 1. The unnormalised
function (f1, f2, t) 7→ Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t) has an additional possible advan-

tage for locating the frequencies of oscillatory contributions: If ψ̂ is unimodal with its mode at κ,
then for input signals

x(t) = A1 cos(2πν1t+ φ1)

y(t) = A2 cos(2πν2t+ φ2)

z(t) = A3 cos(2π(ν1 + ν2)t+ φ1 + φ2 − θ)

with A1, A2, A3, ν1, ν2 > 0, at any time t the mode of

(f1, f2) 7→ |Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t)|

will occur precisely at (ν1, ν2). (This of course does not hold for any p 6= 1.) Moreover, if we define
the normalised version

b′ψ,κ,xyz(f1, f2, t) = 8ψ̂(κ)−3Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t), (51)

then at any time t the value b′ψ,κ,xyz(ν1, ν2, t) – whose magnitude is the peak value of |b′ψ,κ,xyz| – is

precisely equal to A1A2A3e
iθ.
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4. Proof of Theorem 8

Define h(r) = g(1
r ) and hσ(r) = gσ(1

r ). So

Dσ(λ) =

∫ ∞
−∞

∫ ∞
−∞

hσ(er1)hσ(er2)hσ(λer1 + (1− λ)er2) dr1dr2

for all λ ∈ (0, 1), and we can extend this also to λ ∈ {0, 1}. For convenience we also write

Nσ(f1, f2) := Dσ

(
f1

f1+f2

)
. As in Remark 7, {Dσ(λ)}λ∈[0,1] is bounded away from 0. Also define

D′(λ) =

∫ ∞
−∞

∫ ∞
−∞

h(er1)h(er2)h(eλr1+(1−λ)r2) dr1dr2

for all λ ∈ [0, 1]. Taking r1 = r2 ∈ log(h−1(0,∞)) in the integrand yields that D′(λ) 6= 0. Since
h is bounded and

∫∞
−∞ h(er) dr <∞, the dominated convergence theorem gives that λ 7→ D′(λ) is

continuous. Again for convenience write N ′(f1, f2) := D′
(

f1
f1+f2

)
.

Lemma 10. We have
σ2Dσ(λ) → D′(λ)

uniformly across λ ∈ [0, 1] as σ →∞.

Proof. For all λ, we have

σ2Dσ(λ) =

∫ ∞
−∞

∫ ∞
−∞

hσ(e
r1
σ )hσ(e

r2
σ )hσ(λe

r1
σ + (1− λ)e

r2
σ ) dr1dr2 (52)

=

∫ ∞
−∞

∫ ∞
−∞

h(er1)h(er2)h([λe
r1
σ + (1− λ)e

r2
σ ]σ) dr1dr2. (53)

It is easy to show that for any r1, r2 ∈ R,

σ log[λe
r1
σ + (1− λ)e

r2
σ ] → λr1 + (1− λ)r2

uniformly across λ ∈ [0, 1] as σ →∞, and therefore

h([λe
r1
σ + (1− λ)e

r2
σ ]σ) → h(eλr1+(1−λ)r2)

uniformly across λ ∈ [0, 1] as σ →∞. Since r 7→ h(er) is integrable and h is bounded, the dominated
convergence theorem applied to (53) gives that σ2Dσ(λ) → D′(λ) uniformly across λ ∈ [0, 1] as
σ →∞.

Let A be the maximum of the amplitudes Aij , and let γ = maxr>0 g(r).
(I) Fix S ⊂ (0,∞)2 with (νn11, νn22) 6∈ S̄ for all (n1, n2, n3) ∈ P . Let

d := min{max(| log(νn11)− log(f1)|,| log(νn22)− log(f2)|, | log(νn33)− log(f1 + f2)|) :

(f1, f2) ∈ S, 1 ≤ n1 ≤ N1, 1 ≤ n2 ≤ N2, 1 ≤ n3 ≤ N3)}.

Then for all (f1, f2, t) ∈ S × R,

|bσ(f1, f2, t)| ≤
1
8N1N2N3A

3γ2 max(gσ(ed), gσ(e−d))

Nσ(f1, f2)
.
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So using Lemma 10, one can find c > 0 independent of σ such that for sufficiently large σ, for all
(f1, f2, t) ∈ S × R,

|bσ(f1, f2, t)| ≤ cσ2 max(gσ(ed), gσ(e−d)).

Since r2g(er)→ 0 as r → ±∞, the right-hand side tends to 0 as σ →∞.
(II) For each σ, for all (ζ1, ζ2, t) ∈ R3, we have

|bσ(eζ1 , eζ2 , t)| ≤
1
8N3Aγ

Nσ(eζ1 , eζ2)

N1∑
i1=1

N2∑
i2=1

gσ(νi11e
−ζ1)gσ(νi22e

−ζ2) (54)

≤
1
8N3Aγ

minλ∈[0,1]Dσ(λ)

N1∑
i1=1

N2∑
i2=1

gσ(νi11e
−ζ1)gσ(νi22e

−ζ2). (55)

The right-hand side of (55) is independent of t and, as a function of (ζ1, ζ2), is integrable over R2.
Now to prove the remainder of part (II), in view of part (I) it will be sufficient to show that

(A) there exists a compact set K ⊂ R2 such that∫
R2\K

sup
t∈R
|bσ(eζ1 , eζ2 , t)| d(ζ1, ζ2) → 0 as σ →∞ ;

(B) for each (n1, n2, n3) ∈ P and ε > 0 there exists δ > 0 such that for all η ∈ (0, δ) there
exists M > 1 such that if σ > M then for all t ∈ R,∣∣∣∣∣18An11An22An33e

i(φn11+φn22−φn33) −
∫ log(νn22)+η

log(νn22)−η

∫ log(νn11)+η

log(νn11)−η
bσ(eζ1 , eζ2 , t) dζ1dζ2

∣∣∣∣∣ < ε.

(A) Applying Lemma 10 to (54), one can find c > 0 independent of σ such that for sufficiently
large σ, for all (ζ1, ζ2, t) ∈ R3,

|bσ(eζ1 , eζ2 , t)| ≤ cσ2
N1∑
i1=1

N2∑
i2=1

gσ(νi11e
−ζ1)gσ(νi22e

−ζ2). (56)

Pick any value d > 0 and define

a1 = log(min{ν11, . . . , νN11})− d b1 = log(max{ν11, . . . , νN11}) + d
a2 = log(min{ν12, . . . , νN22})− d b2 = log(max{ν12, . . . , νN22}) + d,

and take K = [a1, b1]× [a2, b2]. Writing

G1 :=

∫ ∞
−∞

g(er) dr = σ

∫ ∞
−∞

gσ(er) dr and G2 :=

∫ ∞
0
|r|g(er) dr = σ2

∫ ∞
0
|r|gσ(er) dr,

we obtain from (56) (using Markov’s inequality) that∫
(−∞,a1)×R

supt∈R |bσ(eζ1 , eζ2 , t)| d(ζ1, ζ2)

≤ cN2σ
−1G1G2

N1∑
i=1

(
(log(νi1)− a1)−1

)
≤ cN1N2σ

−1G1G2d
−1 → 0 as σ →∞.
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One obtains a similar conclusion for the integrals over (b1,∞)×R, R× (−∞, a2) and R× (b2,∞).
(B) Fix (n1, n2, n3) ∈ P , and for convenience, write B := 1

8An11An22An33e
i(φn11+φn22−φn33).

Define

βσ(f1, f2) = gσ

(
νn11
f1

)
gσ

(
νn22
f2

)
gσ

(
νn33
f1+f2

)
b1σ(f1, f2, t) = bσ(f1, f2, t)−Nσ(f1, f2)−1Bβσ(f1, f2).

For each η > 0, write

Sη := [log(νn11)− η, log(νn11) + η]× [log(νn22)− η, log(νn22) + η].

Without loss of generality, fix 0 < ε� |B|. Let δ > 0 be sufficiently small that (νñ11, νñ22) 6∈ Sδ for
all (ñ1, ñ2, ñ3) ∈ P \ {(n1, n2, n3)} and{

N ′(νn11, νn22)

N ′(eζ1 , eζ2)
: (ζ1, ζ2) ∈ Sδ

}
⊂ (1− ε

7|B| , 1 + ε
7|B|). (57)

On the basis of Lemma 10, let M1 be such that for σ > M1,{
σ2Nσ(eζ1 , eζ2)

N ′(eζ1 , eζ2)
: (ζ1, ζ2) ∈ Sδ

}
⊂ (1− ε

7|B| , 1 + ε
7|B|)

and therefore by (57),{
Nσ(νn11, νn22)

Nσ(eζ1 , eζ2)
: (ζ1, ζ2) ∈ Sδ

}
⊂ (1− 4ε

7|B| , 1 + 4ε
7|B|). (58)

By the same reasoning as in the proof of part (I), we have that b1σ(eζ1 , eζ2 , t)→ 0 uniformly across
(ζ1, ζ2, t) ∈ Sδ × R as σ →∞; so let M2 be such that for σ > M2,∫

Sδ

sup
t∈R
|b1σ(eζ1 , eζ2 , t)| d(ζ1, ζ2) < ε

7 . (59)

Now fix η ∈ (0, δ). By the same reasoning as in the proof of part (A), we have that

Nσ(νn11, νn22)−1

∫
R2\Sη

βσ(eζ1 , eζ2) d(ζ1, ζ2) → 0

as σ →∞. So choose M > max(M1,M2) such that for σ > M ,

Nσ(νn11, νn22)−1

∫
R2\Sη

βσ(eζ1 , eζ2) d(ζ1, ζ2) < ε
7|B|

and therefore

Nσ(νn11, νn22)−1

∫
Sη

βσ(eζ1 , eζ2) d(ζ1, ζ2) ∈
(
1− ε

7|B| , 1
]
.

By (58), this implies that∫
Sη

Nσ(eζ1 , eζ2)−1βσ(eζ1 , eζ2) d(ζ1, ζ2) ∈
(
1− 6ε

7|B| , 1 + 4ε
7|B|
)
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and so ∣∣∣∣∣B −
∫
Sη

Nσ(eζ1 , eζ2)−1Bβσ(eζ1 , eζ2) d(ζ1, ζ2)

∣∣∣∣∣ < 6ε
7 .

Combining this with (59) gives that for all t ∈ R,∣∣∣∣∣B −
∫
Sη

bσ(eζ1 , eζ2) d(ζ1, ζ2)

∣∣∣∣∣ < ε

as required.

5. Numerical examples

The purposes of this section are:

(a) to illustrate that our definition of the wavelet bispectrum in Sec. 3.1 gives appropriate
results for fixed-frequency oscillatory components (in accordance with the “reasonableness”
criteria in the discussion immediately preceding Sec. 3.1);

(b) to illustrate the usage of our wavelet bispectrum formula for investigating interactions within
time-dependent oscillatory dynamics, with the example of a coupled phase-oscillator model.

The first purpose is primarily addressed by Sec. 5.1, and the second is addressed by Sec. 5.2.
For our numerics, we will use a family of wavelets ψσ, indexed by a parameter σ > 0, given by

ψ̂σ(r) = ψ̊σ(r) = e−2(πσ log r)2 = f̂σ(log r)

for r > 0, where fσ is the probability density function of a normal distribution of mean zero and
variance σ2; and we take κ = 1, which is where ψ̂ is maximised for each σ. These wavelets are known
as lognormal or log Gabor wavelets [32, 14, 45, 25]. How the parameter σ relates quantitatively to
the frequency resolution and time localisation of the lognormal wavelet is presented in Appendix
A. But the key point is that larger σ corresponds to higher frequency resolution and poorer time
localisation. If the frequencies of oscillatory components in the signals being analysed are not very
far from each other, then a high value of σ needs to be used, otherwise the representations of the
oscillatory components in the wavelet transform will overlap with and interfere with each other. If
the frequency of an oscillatory component of interest is quickly varying over time, then one must
not use too high a value for σ, otherwise temporal variations will be smeared and will interfere with
each other in the wavelet representation.

In any case, in application to real data, the value chosen for σ should generally not be less
than about 0.7, otherwise the wavelet transform is too highly time-localised to be able to “see
oscillations”. (This is analogous to the fact that the human ear cannot hear pressure vibrations of
frequency less than about 20 Hz due to the ear’s time-frequency analyser being too time-localised
to pick up such low-frequency oscillations.) For σ larger than about 0.7, the lognormal wavelet may
be approximated reasonably well by the Gabor function

ψσ(r) ≈ fσ(r)e2πir. (60)

This is illustrated in Fig. 5.
The admissibility constant (20) of the lognormal wavelet function is given by

Cψσ =

∫ ∞
−∞

e−(2πσr)2 dr =
1

2
√
πσ

.
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Figure 5: Lognormal wavelet function ψσ for (a,b) σ = 0.7, (c,d) σ = 1, (e,f) σ = 2. In (a,c,e) the modulus
|ψσ(r)| is shown in colour, against which fσ(r) is shown in black. In (b,d,f) the argument of ψσ(r) is shown
in colour, against which the wrapped angle 2πr is shown in black. We see that |ψσ(r)| is approximately
equal to fσ(r), and we see that where fσ(r) is not very small (compared to its maximum value 1√

2πσ
), the

argument of ψσ(r) is approximately equal to 2πr modulo 2π.

5.1. Sinusoidal oscillations

In this section, we define the “instantaneous wavelet bispectral content” of a set A ∈ B((0,∞)2)
at a time τ by

binst
ψ,κ,xyz(A, τ) :=

∫
R2

1A(eζ1 , eζ2)bψ,κ,xyz(e
ζ1 , eζ2 , τ) d(ζ1, ζ2)

provided the integrand is absolutely integrable. All the signals in this section are simulated over a
time interval [0 s, 60 s], and instantaneous wavelet bispectral results are considered at τ = 30 s.

We have seen that whereas the second-order normalisation Cψ derived in (21) or (22b) is a
constant, the analogous third-order calculation represented by (44) yields a quantity Dψ(λ) that is
dependent on the distance (in terms of logarithmic axes) from the diagonal of frequency-frequency
space. Since the quantity Dψ(λ) is derived precisely in terms of integration of bispectral results for
sinusoids, all “imperfect” results in the application of our wavelet bispectrum definition to sinusoids
will be specifically due to the variability of Dψ(λ) with respect to λ. Theorem 8 justifies that the
imperfection tends to 0 in the limit as frequency resolution tends to ∞. The goal of this section
is essentially to illustrate that for the lognormal wavelet, any choice of σ ≥ 0.5 will only lead to
small imperfection. (As stated at the start of Sec. 5, using σ much less than 0.7 is physically
meaningless.)

This fact is already shown to some degree by Fig. 4: it is seen that for σ ≥ 0.5, the variability
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of Dψσ(λ) with respect to λ is fairly small. In the limit as σ →∞, Lemma 10 gives that

σ2Dψσ(λ) →
∫ ∞
−∞

∫ ∞
−∞

f̂1(r1)f̂1(r2)f̂1(λr1 + (1− λ)r2) dr1dr2 =
1

π
√

8(1− λ+ λ2)
,

for which the range is between (
√

8π)−1 ≈ 0.1125 and (
√

6π)−1 ≈ 0.1299.
We start by considering exactly the same signals (5) as considered in the Introduction with the

same parameters, namely ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and θ = π
3 (as in the caption of

Fig. 2). The logarithmic-frequency wavelet bispectral density bψσ ,1,xyz(f1, f2, τ) is shown in Fig. 6,
using σ = 1 and σ = 4 just as in Fig. 2.
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Figure 6: Wavelet bispectral density according to our new Definition 4, for the signals considered in the In-
troduction. Plots show magnitude of the logarithmic-frequency wavelet bispectral density bψσ,1,xyz(f1, f2, τ)
for the signals x, y, z in (5) with ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and θ = π

3 , with (a) σ = 1 and
(b) σ = 4. In (a), the white circle marks the boundary of S1 and the black circle the boundary of S2. In (b),
the white circle marks the boundary of S3 and the black circle the boundary of S4.

We see a blurry peak around (ν1, ν2) and around (ν1, ν3) for both σ = 1 and σ = 4. For σ = 1,
we mark a region S1 containing the visible blur around (ν1, ν2) and a region S2 containing the
visible blur around (ν1, ν3), both indicated in Fig. 6. A numerical computation yields that

binst
ψ1,1,xyz(S1, τ) ≈ 0.1251 and binst

ψ1,1,xyz(S2, τ) ≈ 0.1249e0.3333πi.

Likewise, for σ = 4, we mark a region S3 containing the visible blur around (ν1, ν2) and a region S4

containing the visible blur around (ν1, ν3), again both indicated in Fig. 6. A numerical computation
yields that

binst
ψ4,1,xyz(S3, τ) ≈ 0.1250 and binst

ψ4,1,xyz(S4, τ) ≈ 0.1250e0.3333πi.

So we see that all four of these regions have instantaneous bispectral content equal in magnitude
to approximately 1

8 . In particular, for both frequency resolutions we are able to show that the two
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Figure 7: More wavelet bispectra for fixed-frequency oscillatory components. In (a), |bψσ,1,xxy(f1, f2, τ)|
is shown for x, y as in (61) with ν = 2.8 Hz, with σ = 0.5. In (d,g) is shown, respectively with σ = 1
and σ = 2, |bψσ,1,xyz(f1, f2, τ)| for x, y, z as in (5) with ν1 = ν2 = 2.8 Hz, ν3 = 12 Hz and θ = 0. In
(b,e,h) is shown, respectively with σ equal to 0.5, 1 and 2, |bψσ,1,xyz(f1, f2, τ)| for x, y, z as in (5) with
ν1 = 2.8 Hz, ν2 = 1.3 Hz, ν3 = 12 Hz and θ = 0. In (c,f,i) is shown, respectively with σ equal to 0.5, 1 and 2,
|bψσ,1,xyz(f1, f2, τ)| for x, y, z as in (5) with ν1 = 2.8 Hz, ν2 = 0.9 Hz, ν3 = 12 Hz and θ = 0. All nine plots
use the same frequency axes. The instantaneous wavelet bispectral content of the circled regions in (a–c)
are given in the text.

bispectral contributions are of essentially the same magnitude as each other, which could not be
seen from the current standard definition of wavelet bispectra as described in the Introduction.

Even if we consider lower frequency resolution, our wavelet bispectrum definition gives good
results. Fig. 7(a) shows bψσ ,1,xxy(f1, f2, τ) with σ = 0.5 for the pair of signals{

x(t) = cos(2πνt)
y(t) = cos(4πνt)

(61)
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with ν = 2.8 Hz. The instantaneous wavelet bispectral content of the white-circled region in
Fig. 7(a) is approximately 0.1255, again remarkably close to the ideal value of 1

8 . Likewise Fig. 7(b–
c) shows bψσ ,1,xxy(f1, f2, τ) with σ = 0.5 for signals x, y, z of the form (5), with θ = 0. The
instantaneous wavelet bispectral content of the white-circled region and the black-circled region in
Fig. 7(b) are approximately 0.1260 + 0.0002i and 0.1254− 0.0002i respectively. The instantaneous
wavelet bispectral content of the white-circled region and the black-circled region in Fig. 7(c) are
approximately 0.1253 + 0.0001i and 0.1250 − 0.0001i respectively. All of these values are very
close to 1

8 , as desired. We also see in the remaining plots of Fig. 7 how the size of the blurs in
frequency-frequency space decrease with increasing σ.

Let us now illustrate autobispectra for signals x(t) = cos(2πν1t)+cos(2πν2t)+cos(2π(ν1 +ν2)t);
specifically, we consider the cases

x(t) = 2 cos(2πνt) + cos(4πνt) (62a)

x(t) = cos(2πνt) + cos(3πνt) + cos(5πνt) (62b)

x(t) = cos(2πνt) + cos(4πνt) + cos(6πνt) (62c)

where ν = 2.4 Hz. Recall that wavelet autobispectra are symmetric in the diagonal. Fig. 8 shows
bψσ ,1,xxx(f1, f2, τ) with σ = 3 for each of the three signals x(t) in (62). For (62a), the instantaneous
wavelet bispectral content of the circled region in Fig. 8(a) is approximately 0.5001. For (62b), the
instantaneous wavelet bispectral content of the circled region in Fig. 8(b) is approximately 0.1250.
For (62c), the instantaneous wavelet bispectral content of each of the circled regions in Fig. 8(c) is
approximately 0.1250.

(a) 2 = 2.4

2 4 6 8

2

4

6

8

 f
2
 (

H
z)

(b) 2 = 3.6

2 4 6 8
 f 1 (Hz)

(c) 2 = 4.8

2 4 6 8

2

4

6

8

Figure 8: Wavelet autobispectra for signals with fixed-frequency oscillatory components. In (a), (b) and (c)
are shown |bψσ,1,xxx(f1, f2, τ)| for x(t) as in (62a), (62b) and (62c) respectively, with ν = 2.4 Hz, with σ = 3.
Shown in dashed white is the diagonal. The instantaneous wavelet bispectral content of the circled regions
are given in the text.

5.2. Coupled phase oscillators

In this section, given a time interval I ⊂ R we define the “time-marginalised bispectral density”

bIψ,κ,xyz(f1, f2) :=

∫
I
bψ,κ,xyz(f1, f2, t) dt. (63)
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Except where stated otherwise, the signals in this section are simulated over a time interval
[0 s, 500 s], and bispectral results are considered over the central time-subinterval

I0 := [2331
3 s, 2662

3 s]

of duration 331
3 s. (This corresponds to one time period of the frequency modulation that will be

introduced later.)
One form of interaction between oscillators that bispectral analysis is likely to be able to detect is

dynamical coupling in the form of added coupling terms in the differential equations of motion [73,
28]. Here, we consider Kuramoto-type symmetric coupling between two phase oscillators. The
simplest scenario would be to introduce the coupling between two linear phase oscillators, as in the
usual Kuramoto model; however, as we shall explain later, bispectral analysis is probably unable
to detect such coupling between two linear phase oscillators. Therefore, instead, we introduce the
Kuramoto coupling between two highly nonlinear phase oscillators.
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Figure 9: Wavelet and wavelet-bispectral representation of a linear superposition of two non-interacting
nonlinear oscillators. In (a) and (b) are shown respectively |Wψσ,1,x(f, t)| and |bI0ψσ,1,xxx(f1, f2)| (the latter
in units of seconds), for the fixed-frequency uncoupled oscillators as in (64), with σ = 3.

We consider two phase oscillators θ1(t) and θ2(t) and define the signal

x(t) = cos(θ1(t)) + cos(θ2(t))

on which autobispectral analysis will be carried out. In the first instance, we suppose the phase
oscillators are uncoupled and have fixed basic frequency; specifically, we take them to follow the
differential equation {

θ̇1(t) = 2πν1(1 + 0.6 cos(θ1))

θ̇2(t) = 2πν2(1 + 0.6 cos(θ2))
(64)

with ν1 = 0.9 Hz and ν2 = 1.4 Hz. The oscillator θ1 is strictly periodic with frequency ν̃1 :=
0.8ν1 = 0.72 Hz, and the oscillator θ2 is strictly periodic with frequency ν̃2 := 0.8ν2 = 1.12 Hz.
For this case, Fig. 9(a) shows the wavelet transform of x and Fig. 9(b) shows bI0ψσ ,1,xxx(f1, f2),
both with σ = 3. The six most prominent bispectral contributions that we see in Fig. 9(b) are:
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the diagonal contribution around (ν̃1, ν̃1), and the off-diagonal contribution around (2ν̃1, ν̃1) and
its mirror-reflection around (ν̃1, 2ν̃1); and likewise, the diagonal contribution around (ν̃2, ν̃2), and
the off-diagonal contribution around (2ν̃2, ν̃2) and its mirror-reflection around (ν̃2, 2ν̃2). These
bispectral contributions are simply due to the nonlinearity of the two individual oscillators; they
do not signify any kind of interaction between the oscillators.

However, when we introduce coupling, new peaks appear that indicate an interaction between
the oscillators. Specifically, consider now the coupled system{

θ̇1(t) = 2πν1(1 + 0.6 cos(θ1)) +K sin(θ2 − θ1)

θ̇2(t) = 2πν2(1 + 0.6 cos(θ2)) +K sin(θ1 − θ2)
(65)

with ν1 and ν2 as before, and K = 0.2 rad/s. This coupling is not very strong, but it has a
significant effect. Once again, Fig. 10(a) shows the wavelet transform of x and Fig. 10(b) shows
bI0ψσ ,1,xxx(f1, f2), both with σ = 3. We see in Fig. 10(b) prominent bispectral contributions around
roughly the same points as in Fig. 9(b), plus some new peaks, the most prominent being a bispectral
contribution roughly around (ν̃2, ν̃1) as well as its mirror-reflection roughly around (ν̃1, ν̃2).
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Figure 10: Wavelet and wavelet-bispectral representation of a linear superposition of two interacting nonlinear
oscillators. In (a) and (b) are shown respectively |Wψσ,1,x(f, t)| and |bI0ψσ,1,xxx(f1, f2)| (the latter in units of
seconds), for the coupled fixed-frequency oscillators as in (65), with σ = 3.

So we have illustrated how the bispectrum can detect the introduction of an interaction between
the oscillators. But all of this so far could have been illustrated by traditional non-time-evolving
Fourier bispectral analysis. So we now introduce slow frequency modulation. For simplicity, the
modulation is sinusoidal in shape, but any shape of (not too fast) frequency modulation can be
treated by wavelet bispectral analysis. Consider the system{

θ̇1(t) = 2πν1(t)(1 + 0.6 cos(θ1)) +K sin(θ2 − θ1)

θ̇2(t) = 2πν2(1 + 0.6 cos(θ2)) +K sin(θ1 − θ2)
(66)

with ν2 and K as before, and

ν1(t) = 0.9 Hz × (1 + 0.1 sin(2πfmt))
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Figure 11: Wavelet and wavelet-bispectral representation of a linear superposition of two interacting nonlinear
oscillators, with one having slowly time-varying inherent frequency. In (a) and (b) are shown respectively
|Wψσ,1,x(f, t)| and |bI0ψσ,1,xxx(f1, f2)| (the latter in units of seconds), for the coupled oscillators as in (66),
with σ = 3. The bispectral content associated to the three marked frequency-frequency regions over the
time interval I0 are given in the text.

where fm = 0.03 Hz. So now θ1 has slowly varying inherent frequency, approximately of the
sinusoidal shape 0.8ν1(t). The time interval I0 corresponds to exactly one time period of ν1(t).
Fig. 11(a) shows the wavelet transform of x over I0 and Fig. 11(b) shows bI0ψσ ,1,xxx(f1, f2), both
with σ = 3. Some bispectral contribution such as that around (ν̃1, ν̃1) are now bimodal rather
than unimodal. This is because the sinusoidal temporal variation of ν1(t) spends more time near
its extreme values 0.81 Hz and 0.99 Hz than it does around each value in between.

With the above example, we now illustrate how our new definition of the wavelet bispectrum
is able to quantify and compare bispectral contributions over a given time-interval, across different
parts of frequency-frequency space; as described in the Introduction, this was not possible under
the previous state-of-the-art of wavelet bispectral analysis.

In Fig. 11(b) are marked regions Rpurple, Rgrey and Rblack respectively around the blurry peaks
containing (ν̃1, ν̃1), (2ν̃2, ν̃2) and (ν̃2, ν̃1). Once again, the first two regions contain contributions
due to the nonlinearity of the individual oscillators, while the third represents the interaction that
has been introduced between the oscillators. The bispectral content associated to each of the three
indicated bispectral contributions are:

bψσ ,1,xxx(Rpurple × I0) ≈ 0.976e0.08πi s
bψσ ,1,xxx(Rgrey × I0) ≈ 0.097e0.03πi s
bψσ ,1,xxx(Rblack × I0) ≈ 0.086e−0.45πi s.

Moreover, one can actually track over time the motion of the peaks and associated bispectral
content. Define the time intervals I1, I2, I3 ⊂ I0 to be the 5-second intervals centred on 7.25f−1

m ,
7.5f−1

m and 7.75f−1
m respectively; these are marked in Fig. 12. In Fig. 13 are shown bI1ψσ ,1,xxx(f1, f2),

bI2ψσ ,1,xxx(f1, f2) and bI3ψσ ,1,xxx(f1, f2); and on these plots are marked respectively the regions R
(1)
black,

R
(2)
black and R

(3)
black which help to trace over time the bispectral contribution to the green-marked
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region in Fig. 11(b). Again, our new definition of the wavelet bispectrum enables quantification of
the time-evolving bispectral contributions:

bψσ ,1,xxx(R
(1)
black × I1) ≈ 0.008e−0.52πi s

bψσ ,1,xxx(R
(2)
black × I2) ≈ 0.017e−0.47πi s

bψσ ,1,xxx(R
(3)
black × I3) ≈ 0.011e−0.45πi s

Here, we have sampled three time-subintervals. A more continuous-time tracking of bispectral
content can be achieved by following the frequency variation of oscillatory components of interest
directly from the wavelet transforms themselves via “ridge-extraction” methods, as described in
Remark 12 (in Appendix B). Bicoherence analysis (Appendix B.2) can then also be carried out.
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Figure 12: Graph of ν1(t) over I0, on which are marked the time intervals I1, I2 and I3.
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Figure 13: Tracing a bispectral contribution over time. In (a), (b) and (c) are shown respectively
|bI1ψσ,1,xxx(f1, f2)|, |bI2ψσ,1,xxx(f1, f2)| and |bI3ψσ,1,xxx(f1, f2)| (all in units of seconds), for the coupled oscil-
lators as in (66), with σ = 3. The bispectral content associated to the marked regions of frequency-frequency
over the respective time-intervals are given in the text.

37



Why the bispectrum does not detect the coupling for linear phase oscillators

Still working with x(t) = cos(θ1(t)) + cos(θ2(t)), we consider the Kuramoto model{
θ̇1(t) = 2πν1 +K sin(θ2 − θ1)

θ̇2(t) = 2πν2 +K sin(θ1 − θ2)
(67)

with ν1 = 0.9 Hz, ν2 = 1.4 Hz and K = 0.2 rad/s. The signal x(t) was simulated over the time
interval [0 s, 104 s]. Fig. 14 shows the magnitude of X(·) defined as the result of taking the Fourier
transform of x restricted to the interval [200 s, 104 s] and dividing by the time-duration 9800 s.
(The first 200 seconds were removed to avoid any possible transient dynamical behaviour of the
system (67).)

1 2 3 4
 f  (Hz)

10 -5

10 0

|X
(f

)|

Figure 14: The Fourier components of x(t). Here, |X(f)| as plotted on the vertical axis is the Fourier
amplitude associated to f , normalised by the duration of the signal. The frequency-values |0.406+0.496n| Hz
are marked for integers n ranging from −2 to 6.

We see in Fig. 14 that the Fourier components of x(t) have frequencies that all lie within a set
of the form {|ξ1 + nξ2| : n ∈ Z}. If ξ1 and ξ2 are rationally independent, then no two frequencies
in this set can have a sum that also lies in this set. Thus bispectral analysis would not be able to
detect the coupling. Instead, at least some kind of trispectral (i.e. fourth-order spectral) analysis
would be needed: perhaps the simplest and most direct approach, as proposed in [28], would be to
investigate the presence of frequency triplets with equal spacing between the two consecutive pairs
of frequencies, using a time-evolving version of the “modified” Fourier bispectrum (cf. also [62])

Txxx(f1, f2) =
x̂(f1)2 x̂(f2)x̂(2f1 − f2)

|x̂(f1)|

on Γ1− := {0 < f2 < f1} or equivalently on {0 < f1 < f2 < 2f1}.

6. Application to cell membrane potential data

Cell membrane potential oscillations and coupling of cellular oscillators are of considerable
importance in understanding cellular biology [19, 3, 48, 49]. In this section, we illustrate application
of our new definition of the wavelet bispectrum to a cell membrane potential time-series, recorded
with the free-running patch clamp technique; full details of the experimental setup are given in [50].
For a much more extensive analysis of cell membrane potential time-series, see [52].
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The membrane potential time-series xraw(t) that we consider is a digital signal recorded over
a time-interval I = [0 s, 600 s], shown in Fig. 15(b). We apply the MATLAB R© detrend function,
which subtracts a best-fit linear trend, to obtain a linearly detrended signal x(t) defined over the
same time-interval I. Fig. 15(a) shows the wavelet transform of x(t), using a lognormal wavelet ψσ
(as used throughout Sec. 5) with frequency resolution σ = 3.
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Figure 15: Cell membrane potential time-series and wavelet transform. In (a) is shown the wavelet amplitude
|Wψσ,1,x(f, t)| (in units of mV) of the detrended signal x(t), with σ = 3. In (b) is shown the membrane
potential xraw(t) itself.

Along similar lines to Sec. 5.2, before seeking to track time-evolving bispectral values, we
first give a plot of the bispectral content of x taken “over the whole time-interval”, in order
to ascertain where peaks in the bispectrum lie. Since the signal is of finite duration and finite
sampling frequency, there is only a subset of time-frequency space over which the wavelet trans-
form can be calculated (as seen in Fig. 15(a)). Therefore, for each pair of frequencies (f1, f2),
we define I(f1, f2) ⊂ I to be the interval of times t at which the product of wavelet terms
Wψ3,1,x(f1, t)Wψ3,1,x(f2, t)Wψ3,1,x(f1 + f2, t) can be computed. We write T (f1, f2) for the dura-
tion of the time-interval I(f1, f2). In Fig. 16(a), we plot the magnitude of the “time-averaged
bispectral density”

bave,xxx(f1, f2) :=
b
I(f1,f2)
ψ3,1,xxx

(f1, f2)

T (f1, f2)
=

1

T (f1, f2)

∫
I(f1,f2)

bψ3,1,xxx(f1, f2, t) dt, (68)

where the notation bIψ,κ,xyz denotes “time-marginalised bispectral density” as in Eq. (63).
To help give an indication of whereabouts in frequency-frequency space the bispectral values

shown in Fig. 16(a) are significantly high, we carry out a 95%-significance surrogate test using
WIAAFT surrogates [38]: 19 digital signals xn(t), n = 1, . . . , 19, of the same length as the digital
signal x(t), are sampled independently of each other from the WIAAFT surrogate distribution
generated by x(t), and the quantity bave,xnxnxn(f1, f2) is computed for these 19 signals exactly as it
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Figure 16: Time-averaged wavelet bispectral density of x(t). In (a) is shown the magnitude |bave,xxx(f1, f2)|
(in units of mV3) of the signal’s time-averaged bispectral density bave,xxx(f1, f2) defined in Eq. (68). In (b)
is shown the significance threshold bthresh(f1, f2) (in units of mV3) for 95% significance in a surrogate test
with 19 WIAAFT surrogates [38], as given by Eq. (69). In (c) is shown |bave,xxx(f1, f2)| − bthresh(f1, f2) (in
units of mV3), wherever |bave,xxx(f1, f2)| is larger than bthresh(f1, f2). The black circle in plots (a) and (c)
marks one particular region R where we see significantly high bispectral content.

was computed for x(t). At each pair of frequencies (f1, f2), the 95% significance threshold is given
by

bthresh(f1, f2) = max
n∈{1,...,19}

|bave,xnxnxn(f1, f2)|. (69)

Fig. 16(b) shows this critical threshold. Fig. 16(c) shows the region of (f1, f2)-values for which
|bave,xxx(f1, f2)| > bthresh(f1, f2), with the colour-coding representing the difference

|bave,xxx(f1, f2)| − bthresh(f1, f2).

We note that all three plots in Fig. 16 are symmetric in the diagonal, because these plots are for
autobispectra.

One of the significant bispectral peaks that we see in Fig. 16(c) occurs roughly around the
frequency pair f1 = 0.12 Hz and f2 = 0.08 Hz. Having identified this peak, let us now look more at
how the bispectral content in that region of frequency-frequency space evolves in time. Define the
following five consecutive time-intervals of 30 seconds each: I1 = [90 s, 120 s], I2 = [120 s, 150 s],
. . . , I5 = [210 s, 240 s]. The five plots in Fig. 17 show the time-marginalised bispectral densities
over these five time-intervals. We specify a region R around the abovementioned frequency pair;
this region is marked by a black circle in Fig. 16(a,c) and all the plots in Fig. 17. The time-evolution
of the bispectral content of R can be traced as follows:

bψσ ,1,xxx(R× I1) ≈ 9.6e0.20πi mV3s
bψσ ,1,xxx(R× I2) ≈ 5.8e0.25πi mV3s
bψσ ,1,xxx(R× I3) ≈ 1.4e0.20πi mV3s
bψσ ,1,xxx(R× I4) ≈ 0.6e−0.65πi mV3s
bψσ ,1,xxx(R× I5) ≈ 0.5e−0.37πi mV3s.

The sequence of above values reflects the general trend seen in Fig. 17 that the contributions to the
wavelet autobispectrum of x are decreasing in intensity over time. Indeed, by the third minute of
the experiment, the main bispectral contribution in R has essentially disappeared altogether. This
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Figure 17: Time-evolving bispectral content of x(t). The plots show the magnitude |bIiψσ,1,xxx(f1, f2)| (in

units of mV3s) of the time-marginalised bispectral density as defined in Eq. (63) over each of the time-
intervals I1, . . . , I5 (consecutive 30-second intervals starting at 90 s), with σ = 3. The black circle marks the
region R that was marked in Fig. 16.

general trend seen in Fig. 17 may be due to the weakening activity of cellular oscillatory processes
as the cell gradually dies during the patch clamp experiment [52].

In this section, we have illustrated how our new definition of the wavelet bispectrum bψ,κ,xyz
can be used to study the time-evolving bispectral content of experimental time-series data.

Appendix A. Resolution properties of lognormal wavelets

We describe how, for lognormal wavelets, the parameter σ relates quantitatively to the frequency
resolution and time localisation of the wavelet transform; for reference, we compare this with the
frequency resolution and time localisation properties of the Gaussian-windowed Fourier transform.
A numerical study of the performance of lognormal wavelets is also included in [25], which uses an
alternative approach to quantifying resolution properties from what we present below.

For reference we start by considering windowed Fourier transforms with Gaussian windows.
First let us define our approach to quantification of time localisation and frequency resolution for
windowed Fourier transforms. Given an even function w ∈ L1(R, [0,∞)) ∩ L2(R, [0,∞)) \ {0},
probably the most standard way to quantify the time localisation and frequency resolution of the
associated windowed Fourier transform is, inversely, by the Heisenberg uncertainty properties of w.
Writing ‖w‖2 :=

∫∞
−∞w(t)2 dt =

∫∞
−∞ ŵ(f)2 df , we define

• the Heisenberg time uncertainty of w by

εtime(w) =

(∫∞
−∞ t

2w(t)2 dt

‖w‖2

)1
2

;

• the Heisenberg frequency uncertainty of w by

εfreq(w) =

(∫∞
−∞ f

2ŵ(f)2 df

‖w‖2

)1
2

.

Now for any τ > 0 let fτ be the probability density function of the normal distribution of mean
zero and variance τ2. The squared Heisenberg uncertainties of the Gaussian function fτ are given
by

εtime(fτ )2 = 1
2τ

2 and εfreq(fτ )2 =
1

8π2τ2
.
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The product εtime(fτ )εfreq(fτ ), called the Heisenberg area or the Heisenberg time-frequency un-
certainty of fτ , is equal to 1

4π (independently of τ). This is the lowest possible value for the
Heisenberg time-frequency uncertainty of a window function, and is uniquely obtained by Gaussian
windows [31, Sec. 2.2].

We now describe how the concept of Heisenberg uncertainties can be translated to the setting of
wavelets and the wavelet transform. Given a wavelet function ψ with ‖ψ‖2 :=

∫∞
−∞ |ψ(r)|2 dr <∞

and with admissibility constant Cψ :=
∫∞
−∞ ψ̂(er)2 dr as in (20), together with a value κ > 0

(typically taken to be where ψ̂ is maximised), we define

• the Heisenberg time uncertainty of (ψ, κ) by

εtime(ψ, κ) = κ

(∫∞
−∞ r

2|ψ(r)|2 dr
‖ψ‖2

)1
2

;

• the Heisenberg linear frequency uncertainty of (ψ, κ) by

εlinfreq(ψ, κ) = κ−1

(∫∞
0 (r − κ)2ψ̂(r)2 dr

‖ψ‖2

)1
2

;

• the Heisenberg logarithmic frequency uncertainty of (ψ, κ) by

εfreq(ψ, κ) =

(∫∞
−∞(r − log κ)2ψ̂(er)2 dr

Cψ

)1
2

.

The logarithmic-frequency approach in the definition of εfreq(ψ, κ) is very natural for wavelets, due
to the inherently logarithmic nature of frequency resolution for the wavelet transform as described
in Sec. 2.2.

Let ψσ be the lognormal wavelet as defined in Sec. 5. We will take κ = 1, which is where ψ̂σ is
maximised. It is not hard to show that ψσ belongs to the Schwartz space S(R) for all σ. One can
compute (via Plancherel’s theorem) that

εtime(ψσ, 1)2 = 1
2σ

2 + 1
16π2 .

This is very slightly more than the classical Heisenberg time uncertainty of a Gaussian window
with variance σ2, namely 1

2σ
2. The Heisenberg logarithmic frequency uncertainty of (ψσ, 1) is

(essentially by definition) the same as the classical Heisenberg frequency uncertainty of a Gaussian
window with variance σ2; that is,

εfreq(ψσ, 1)2 =
1

8π2σ2
.

Finally, one can compute that

εlinfreq(ψσ, 1)2 = e
1

2π2σ2 − 2e
3

16π2σ2 + 1.

For σ not too small, this is very close to 1
8π2σ2 .
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Appendix B. Coherence and bicoherence

In this appendix, we describe some notions of coherence (for second-order cross-spectral analy-
sis) and bicoherence (for autobispectral and cross-bispectral analysis) derived from the cross-energy
spectral and bispectral densities defined in Sec. 2.4 and Sec. 3 respectively. We also briefly address
unidirectional dynamical coupling, and address “quadratic phase coupling” as detected by “bicor-
relation” analysis.

Appendix B.1. Coherence

The wavelet cross-energy spectrum can be used to search for common oscillatory influences
between two signals and track temporal variations thereof. For instance, one can integrate a sliding
time-frequency window function with respect to the wavelet cross-energy spectrum and look for
where the absolute value is high; that is, one can plot a function taking the form

(f, t) 7→
∣∣∣∣∫

R2

Sf (ζ, τ − t)pψ,κ,xy(eζ , τ) d(ζ, τ)

∣∣∣∣
(or, as in [59], one can just smooth the wavelet cross-ESD with respect to time rather than time-
frequency) and look for high values. However, high values in a region of time-frequency space can
easily be due to high wavelet amplitudes happening to occur by fluke at similar frequencies in both
signals. If the frequencies are time-varying, one way to help overcome this issue is to use a quantity
that is invariant under rescaling of wavelet amplitudes and gives an indication of how constant the
wavelet phase difference remains around a given point in time-frequency space.

We now describe two possible such quantities; although varying terminologies exist and both
of these quantities have been referred to as “phase coherence”, here (as in [37]) we will refer to
the first of them as wavelet coherence, and the second as wavelet-phase coherence (since it works
directly with the wavelet phases).

Remark 11. We give definitions of wavelet coherence c
(1)
ψ,κ,xy(f, t) and wavelet-phase coherence

c
(2)
ψ,κ,xy(f, t) defined over (f, t) space. It may be useful to follow these specifically over a “time-

frequency curve” (ft)t∈[a,b]. In particular, by looking at the wavelet transform of x or of y one
may be able to trace the temporal variations in frequency ft of some oscillatory component, e.g.
by “ridge-extraction” methods as detailed in [25, 26]. Then, having traced ft over a time-interval
[a, b], one can investigate whether this component represents a process influencing both x and y, by

plotting t 7→ c
(i)
ψ,κ,xy(ft, t) over [a, b], where c

(i)
ψ,κ,xy (i = 1, 2) is the time-frequency-smoothed version

of coherence as in (B.1)/(B.3). (Alternatively one can smooth only in time and plot the coherence
over a neighbourhood of the curve {(ft, t) : t ∈ [a, b]} in (f, t) space.)

Wavelet coherence

Wavelet coherence (under the approach introduced in [67]) is defined in terms of the “angle” in
the Hilbert space L2(R2) between time-frequency-smoothed versions of the wavelet transforms of
the two signals. Since the smoothing should not blur together far apart scales, it should not really
matter whether one integrates with respect to linear frequency or logarithmic frequency; here, we
write the definition in terms of logarithmic frequency. But the smoothing function itself should
generally be rescaled in accordance with the frequency under investigation, both in its temporal
and frequency smoothing.
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Given a family (Sf )f>0 of bounded integrable functions Sf : R2 → [0,∞) satisfying Sf (ζ, τ) =
Sf (ζ,−τ) for all ζ, τ ∈ R, define the wavelet coherence between signals x and y by

c
(1)
ψ,κ,xy(f, t) =

∣∣∣∣∫R2 Sf (ζ, τ − t)W [p]
ψ,κ,x(eζ , τ)W

[p]
ψ,κ,y(e

ζ , τ) d(ζ, τ)

∣∣∣∣2∫
R2 Sf (ζ, τ − t)|W [p]

ψ,κ,x(eζ , τ)|2 d(ζ, τ)
∫
R2 Sf (ζ, τ − t)|W [p]

ψ,κ,y(e
ζ , τ)|2 d(ζ, τ)

(B.1)

for all f > 0 and t ∈ R where this is well-defined (which includes in particular that the two terms
in the denominator are non-zero). The family (Sf )f>0 serves as a smoothing kernel. The default
dependence of Sf on f should be

Sf (ζ, τ) = S(ζ − log f, fτ) (B.2)

for some S : R2 → [0,∞); a simple approach would be to take S to be a bivariate Gaussian
probability density function with mean (0, 0) and to use p = 1 in the wavelet transform. However,
if one already has information regarding how the quickly time-varying the frequencies of the different
oscillatory components in the signals are, then it may make sense to alter the dependence of Sf
on f accordingly. If one wishes simply to follow the coherence along an individual time-frequency
curve as described in Remak 11, then it may make sense not to have any dependence of Sf on f .

If well-defined, the wavelet coherence c
(1)
ψ,κ,xy(f, t) takes values between 0 and 1. Larger values

may indicate the presence of a common oscillatory influence upon the signals x and y around time
t, with the frequency at time t being approximately equal to either f or (in the case of a nonlinear
oscillatory influence) f

n for some integer n. One can then look at the wavelet energy spectra of x
and y to gauge the strength and the linearity or nonlinearity of this oscillatory influence.

Note that the “autocoherence” c
(1)
ψ,κ,xx(f, t), wherever it is well-defined, is equal to 1.

One can also choose not to smooth in time-frequency space but just to smooth in time (in which
case the value of p makes no difference), and track over time the presence of frequency-intervals
of high values. Additionally, one can fix a time-interval [T0, T1] over which to look at the overall
coherence at each frequency, by integrating against the rectangular window function 1

T1−T01[T0,T1]

instead of smoothing.

Wavelet-phase coherence

An alternative approach to coherence is to reverse the order of the “smoothing” and the “angle-

extracting” operations, so that wavelet amplitudes |W [p]
ψ,κ,x(f, τ)| play no role whatsoever: one

simply smooths the wavelet phase difference between the signals. The key difference between this
approach and the previous approach is that in the previous approach, the measure of coherence
between phases is weighted over time in proportion with the instantaneous wavelet amplitudes. (So
while the previous approach is invariant under time-independent rescaling of wavelet amplitudes,
it would not be invariant under time-dependent rescaling of wavelet amplitudes.)

The “phases-only” approach was introduced in [36], using temporal smoothing with rectangular
windows. More generally one can smooth in time-frequency space: Given a family (Sf )f>0 of
integrable functions Sf : R2 → [0,∞) satisfying Sf (ζ, τ) = Sf (ζ,−τ) for all ζ, τ ∈ R, define the
wavelet-phase coherence between x and y by

c
(2)
ψ,κ,xy(f, t) =

∣∣∣∫R2 Sf (ζ, τ − t)〈Wψ,κ,x(eζ , τ)Wψ,κ,y(eζ , τ) 〉 d(ζ, τ)
∣∣∣∫

R2 Sf (ζ, τ) d(ζ, τ)
(B.3)
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where 〈v〉 := v/|v|, for all f > 0 and t ∈ R where this is well-defined. Note that changing the value
of p makes no difference to the results. The default dependence of Sf on f should be as in (B.2),
in which case ∫

R2

Sf (ζ, τ) d(ζ, τ) =
1

f

∫
R2

S(ζ, τ) d(ζ, τ).

But again, if one wishes simply to follow the coherence along an individual time-frequency curve
as described in Remak 11, then it may make sense not to have any dependence of Sf on f .

As with wavelet coherence, the wavelet-phase coherence c
(2)
ψ,κ,xy(f, t) takes a value between 0

and 1, where larger values may indicate to the presence of a common oscillatory influence just as

described above for wavelet coherence. Wherever the “autocoherence” c
(2)
ψ,κ,xx(f, t) is well-defined,

it is equal to 1. Once again, one can choose to smooth only in time and track the presence of
frequency-intervals of high values, and one can also fix a time-interval [T0, T1] over which to look
at the overall coherence at each frequency.

Appendix B.2. Bicoherence

Given either a single signal or two or three simultaneous signals, the wavelet bispectra can be
used to search in a time-localised manner for influences coming from a pair of interacting oscillatory
processes. For instance, one can integrate a sliding time-frequency-frequency window function with
respect to the wavelet bispectrum and look for where the absolute value is high; that is, one can
plot a function taking the form

(f1, f2, t) 7→
∣∣∣∣∫

R2

Sf1,f2(ζ1, ζ2, τ − t)bψ,κ,xyz(eζ1 , eζ2 , τ) d(ζ1, ζ2, τ)

∣∣∣∣
(or one can just smooth the wavelet BD with respect to time rather than time-frequency-frequency),
and look for high values. However, high values can easily be due to high wavelet amplitudes
happening to occur by fluke at a triplet of frequencies satisfying the frequency-sum rule. If the
frequencies are time-varying, one way to help overcome this issue is to use a quantity that is
invariant under rescaling of wavelet amplitudes and gives an indication of how constant the biphase
remains around a given point in time-frequency-frequency space. Constancy of biphase is generally
referred to as bicoherence. We will describe two possible such quantities measuring bicoherence,
namely the third-order analogues of the measures of coherence described in Appendix B.1.

Remark 12. One can extend Remark 11 to the setting of bicoherence: We will give definitions

of wavelet coherence c
(1)
ψ,κ,xyz(f1, f2, t) and wavelet-phase coherence c

(2)
ψ,κ,xyz(f1, f2, t) defined over

(f1, f2, t) space, but it may be useful to follow these specifically over a “time-frequency-frequency
curve” ((f1,t, f2,t))t∈[a,b]. In particular, by looking at the wavelet transform of x, y or z, one may
be able to trace the temporal variations in frequency of some oscillatory component, e.g. by “ridge-
extraction” methods as detailed in [25, 26]. Accordingly, one can:

(i) extract time-frequency curves (f1,t)t∈[a,b] and (f2,t)t∈[a,b] from the wavelet transforms of x
and y respectively; or

(ii) extract time-frequency curves (f1,t)t∈[a,b] and (f3,t)t∈[a,b] from the wavelet transforms of x
and z respectively, with f3,t > f1,t, and then define f2,t = f3,t − f1,t; or

(iii) extract time-frequency curves (f2,t)t∈[a,b] and (f3,t)t∈[a,b] from the wavelet transforms of y
and z respectively, with f3,t > f2,t, and then define f1,t = f3,t − f2,t.

45



Then one can plot t 7→ c
(i)
ψ,κ,xyz(f1,t, f2,t, t) over [a, b], where c

(i)
ψ,κ,xyz (i = 1, 2) is the time-frequency-

frequency-smoothed version of bicoherence as in (B.4) or (B.8). The same also applies to the

“bicorrelations” ρ
(i)
ψ,κ,xyz (i = 1, 2) introduced further below.

Remark 13. A slightly simpler approach to looking for interacting oscillatory contributions via
time-evolving bispectral analysis, as described in [28], is as follows: Plot over frequency-frequency
space the modulus of the time-averaged wavelet BD over a time-interval [T0, T1] of interest, identify
points (ν1, ν2) around which there is high bispectral content, and then plot the time-evolution of the
biphase associated to (ν1, ν2) over the time-interval [T0, T1]. Subintervals during which this biphase
remains roughly constant may correspond to interaction between oscillatory processes. One can
also plot the “biamplitude” |bψ,κ,xyz(ν1, ν2, t)| over t ∈ [T0, T1] to look at the time-localised intensity
of the bispectral contribution during the time-subintervals on which the biphase remains roughly
constant. The limitation of this approach in its “raw form” is that it cannot follow variations of
frequency in oscillatory components. Therefore a possible modification as described in [29] is to
extract frequencies of oscillatory components as a function of time (e.g. as described in Remark 12)
so as to give a time-dependent point (ν1,t, ν2,t) in frequency-frequency space, and then – provided
these frequencies are sufficiently slowly varying – plot the biphase at (ν1,t, ν2,t, t) against time t and
once again look for time-subintervals during which this remains roughly constant.

In the below, we fix three signals x(t), y(t) and z(t), any two or which or all three of which
could be the same.

Wavelet bicoherence

The definition of wavelet bicoherence was introduced in [72, 73], where temporal evolution
of bicoherence was tracked by partitioning the signal duration into small time-intervals on each
of which the bicoherence at each point in frequency-frequency space was computed according to
Eq. (3). The definition can be adapted to the more general framework of time-frequency-frequency
smoothing in analogy to the time-frequency smoothing described in Appendix B.1, as follows:

Given a family (Sf1,f2)f1,f2>0 of bounded integrable functions Sf1,f2 : R3 → [0,∞) satisfying
Sf1,f2(ζ1, ζ2, τ) = Sf1,f2(ζ1, ζ2,−τ) for all ζ1, ζ2, τ ∈ R, define the wavelet bicoherence of x and y
with z by

c
(1)
ψ,κ,xyz(f1, f2, t) =∣∣∣∣∫R3 Sf1,f2(ζ1, ζ2, τ − t)W [p]

ψ,κ,x(eζ1 , τ)W
[p]
ψ,κ,y(e

ζ2 , τ)W
[p]
ψ,κ,z(e

ζ1 + eζ2 , τ) d(ζ1, ζ2, τ)

∣∣∣∣2∫
R3 Sf1,f2(ζ1, ζ2,τ−t)|W [p]

ψ,κ,x(eζ1 ,τ)W
[p]
ψ,κ,y(e

ζ2 ,τ)|2 d(ζ1, ζ2,τ)
∫
R3 Sf1,f2(ζ1, ζ2,τ−t)|W [p]

ψ,κ,z(e
ζ1 + eζ2 ,τ)|2 d(ζ1, ζ2,τ)

(B.4)
for all f1, f2 > 0 and t ∈ R, provided this is well-defined. A natural default dependence of Sf1,f2
on (f1, f2) would be

Sf1,f2(ζ1, ζ2, τ) = S(ζ1 − log f1, ζ2 − log f2,min(f1, f2)τ) (B.5)

for some S : R3 → [0,∞); a simple approach would be to take S to be a trivariate Gaussian
probability density function with mean (0, 0, 0) and to use p = 1 in the wavelet transform. However,
if one already has information regarding how the quickly time-varying the frequencies of the different
oscillatory components in the signals are, then it makes sense to alter the dependence of Sf1,f2

46



on (f1, f2) accordingly. If one wishes simply to follow the bicoherence along an individual time-
frequency-frequency curve as described in Remak 12, then it may make sense not to have any
dependence of Sf1,f2 on (f1, f2).

If well-defined, the wavelet bicoherence c
(1)
ψ,κ,xyz(f, t) takes values between 0 and 1. Larger values

may indicate the presence of a coupled-oscillator influence upon the signals x, y and z around time
t, with the frequencies at time t being approximately equal to f1 and f2, or f1 and f1 + f2, or f2

and f1 + f2, or possibly more generally any pair of frequencies whose integer span includes f1 and
f2. One can then look at the wavelet bispectrum bψ,κ,xyz to gauge the strength and nonlinearity of
this coupled-oscillator influence.

Note that unlike for second-order spectra, the wavelet autobicoherence c
(1)
ψ,κ,xxx(f1, f2, t) is just

as free to take any value in [0, 1] as wavelet cross-bicoherences are.
One can also choose not to smooth in time-frequency-frequency space but just to smooth in time

(in which case the value of p makes no difference), and track over time the presence of frequency-
frequency regions of high values. Following the same temporal rescaling as in (B.5), this would be
as follows: given a bounded integrable even function S′ : R → [0,∞), one defines the associated
wavelet bicoherence by

(f1, f2, t) 7→

∣∣∣∫R S′(min(f1, f2)τ − t)Wψ,κ,x(f1, τ)Wψ,κ,y(f2, τ)Wψ,κ,z(f1 + f2, τ) dτ
∣∣∣2∫

R S
′(min(f1, f2)τ − t)|Wψ,κ,x(f1, τ)Wψ,κ,y(f2, τ)|2 dτ

∫
R S
′(min(f1, f2)τ − t)|Wψ,κ,z(f1 + f2, τ)|2 dτ

(B.6)
wherever this is well-defined. Likewise, one can look at the overall wavelet bicoherence across a
time-interval [T0, T1], namely

(f1, f2) 7→

∣∣∣∫ T1T0 Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t) dt
∣∣∣2∫ T1

T0
|Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)|2 dt

∫ T1
T0
|Wψ,κ,z(f1 + f2, t)|2 dt

(B.7)

wherever this is well-defined.

Wavelet-phase bicoherence

We introduce here an alternative approach to bicoherence which works directly with the wavelet
phases, which we accordingly call “wavelet-phase bicoherence”. (It may also be regarded as the
phase-lag-invariant analogue of the “real wavelet biphase” introduced in [33].) The key difference
between this approach and the previous approach is that in the previous approach, the measure
of bicoherence is weighted over time in proportion with the instantaneous wavelet amplitudes. (So
while the previous approach is invariant under time-independent rescaling of wavelet amplitudes,
it would not be invariant under time-dependent rescaling of wavelet amplitudes.)

Given a family (Sf1,f2)f1,f2>0 of integrable functions Sf1,f2 : R3 → [0,∞) satisfying Sf1,f2(ζ1, ζ2, τ) =
Sf1,f2(ζ1, ζ2,−τ) for all ζ1, ζ2, τ ∈ R, define the wavelet-phase bicoherence of x and y with z by

c
(2)
ψ,κ,xyz(f1, f2, t) =∣∣∣∫R3 Sf1,f2(ζ1, ζ2, τ − t)〈Wψ,κ,x(eζ1 , τ)Wψ,κ,y(e

ζ2 , τ)Wψ,κ,z(eζ1 + eζ2 , τ) 〉 d(ζ1, ζ2, τ)
∣∣∣∫

R3 Sf1,f2(ζ1, ζ2, τ) d(ζ1, ζ2, τ)
(B.8)

where 〈v〉 := v/|v|, provided this is well-defined. Note that changing the value of p would make
no difference whatsoever to the results. Again, a natural default dependence of Sf1,f2 on (f1, f2)

47



would be as in (B.5), in which case∫
R3

Sf1,f2(ζ1, ζ2, τ) d(ζ1, ζ2, τ) =
1

min(f1, f2)

∫
R3

S(ζ1, ζ2, τ) d(ζ1, ζ2, τ).

But again, if one wishes simply to follow the bicoherence along an individual time-frequency-
frequency curve as described in Remak 12, then it may make sense not to have any dependence of
Sf1,f2 on (f1, f2).

Again, this takes a value between 0 and 1, where larger values may indicate to the presence
of a coupled-oscillator influence just as described above for wavelet bicoherence. One can look
at the wavelet bispectrum bψ,κ,xyz to gauge the strength and nonlinearity of this influence. Once

again, the wavelet-phase autobicoherence c
(2)
ψ,κ,xxx(f, t) is just as free to take any value in [0, 1] as

wavelet-phase cross-bicoherences are.
One can also choose just to smooth temporally, and look for regions of high values. Following

the same temporal rescaling as in (B.5), this would be as follows: given an integrable even function
S′ : R→ [0,∞), one defines the associated wavelet-phase bicoherence by

(f1, f2, t) 7→
min(f1, f2)

∣∣∣∫R S′(min(f1, f2)τ − t)〈Wψ,κ,x(f1, τ)Wψ,κ,y(f2, τ)Wψ,κ,z(f1 + f2, τ) 〉 dτ
∣∣∣∫

R S
′(τ) dτ

(B.9)
wherever this is well-defined. Likewise, one can look at the overall wavelet-phase bicoherence across
a time-interval [T0, T1], namely

(f1, f2) 7→

∣∣∣∫ T1T0 〈Wψ,κ,x(f1, t)Wψ,κ,y(f2, t)Wψ,κ,z(f1 + f2, t) 〉 dt
∣∣∣

T1 − T0
(B.10)

wherever this is well-defined.

A remark about unidirectional coupling

Sometimes unidirectionality of coupling of oscillators can be suggested by analysis of bicoher-
ences and bispectral densities. Slightly generalising the description in [30]: Suppose we have signals
x, y and z, where y and z could be the same as each other or different, recorded from a system
that contains an oscillatory process consisting of two phase-coupled oscillators. Suppose that

• analysis of properties of the bispectrum bψ,κ,xyz around (f1, f2, t) detects the presence of this
oscillatory process;

• analysis of properties of the bispectrum bψ,κ,xyx around (f1, f2, t) does not detect the presence
of this oscillatory process;

• analysis of properties of the cross-energy spectrum pψ,κ,xy around (f2, t) does not detect the
presence of this oscillatory process.

This may indicate that only one of the two oscillators is detected within the signal x, and that this
oscillator is unidirectionally driving the other oscillator.
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Quadratic phase coupling and bicorrelation

In some contexts where bicoherence is observed, i.e. where the biphase remains roughly constant
over a time-interval of interest, it may also be useful to ascertain whether or not the constant value
at which the biphase roughly lies is zero, since this may help indicate in the context the type of
interaction between the oscillations [57]. Bispectral content around a point in frequency-frequency
space where the biphase remains constant at 0 is often known as quadratic phase coupling (although
the terminology is not entirely uniform6).

One can define a version of wavelet bicoherence and wavelet-phase bicoherence that specifically
measures low-phase-shift bicoherence, by replacing the modulus with the real part in the definitions
of bicoherence. We will refer to such quantities as “bicorrelations”. Using the notation of (B.4),
we define the wavelet bicorrelation by

ρ
(1)
ψ,κ,xyz(f1, f2, t) =

Re
( ∫

R3 Sf1,f2(ζ1, ζ2, τ − t)W [p]
ψ,κ,x(eζ1 , τ)W

[p]
ψ,κ,y(e

ζ2 , τ)W
[p]
ψ,κ,z(e

ζ1 + eζ2 , τ) d(ζ1, ζ2, τ)
)

√∫
R3 Sf1,f2(ζ1, ζ2,τ−t)|W [p]

ψ,κ,x(eζ1 ,τ)W
[p]
ψ,κ,y(e

ζ2 ,τ)|2 d(ζ1, ζ2,τ)
∫
R3 Sf1,f2(ζ1, ζ2,τ−t)|W [p]

ψ,κ,z(e
ζ1 + eζ2 ,τ)|2 d(ζ1, ζ2,τ)

(B.11)
and using the notation of (B.8), we define the wavelet-phase bicorrelation by

ρ
(2)
ψ,κ,xyz(f1, f2, t) =

Re
(∫

R3 Sf1,f2(ζ1, ζ2, τ − t)〈Wψ,κ,x(eζ1 , τ)Wψ,κ,y(e
ζ2 , τ)Wψ,κ,z(eζ1 + eζ2 , τ) 〉 d(ζ1, ζ2, τ)

)
∫
R3 Sf1,f2(ζ1, ζ2, τ) d(ζ1, ζ2, τ).

(B.12)

Once again, we can also choose just to smooth in time, as well as to look at the overall bicor-
relation over a fixed time-interval [T0, T1]. These temporally smoothed or averaged versions of the
wavelet-phase bicorrelation were introduced in [33] under the name “real wavelet biphase”.

All of these bicorrelation values are between −1 and 1: values close to 1 are indicative of
quadratic phase coupling.

Appendix C. A linear-frequency-derived definition of local wavelet bispectra

Recall the six regions Γ1,−Γ1,Γ2,−Γ2,Γ3,−Γ3 defined in Sec. 2.5, as shown in Fig. 3.
The definition of the wavelet bispectrum in Sec. 3.1, and hence also of the local wavelet bis-

pectrum in Sec. 3.3, was derived by logarithmic-frequency consideration as in (44). We will now
derive an alternative possible definition of local wavelet bispectra, in terms of the analogous linear-
frequency consideration. In analogy to Remark 3, consideration of dimensional analysis suggests
that this will require using p = 1

3 in the definition of the wavelet transform.
Throughout this appendix, we fix a wavelet function ψ fulfilling∫ 1

0

ψ̂(r)

r
4
3

dr < ∞ and

∫ ∞
1

ψ̂(r)

r
2
3

dr < ∞. (C.1)

6For example, [33] uses the term quadratic phase coupling with delay for bispectral content where the biphase is
constant at a non-zero value, and quadratic phase uncoupling for power components at frequencies f1, f2 and f1 + f2
without the associated constancy of biphase.
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For each λ ∈ R \ {0, 1}, define

D̃ψ(λ) =



∫∞
0

∫∞
0

ψ̊
(
r1
λ

)
ψ̊
(
r2

1−λ

)
ψ̊(r1+r2)

[r1r2(r1+r2)]
2
3

dr1dr2 λ ∈ (0, 1)

∫∞
0

∫∞
0

ψ̊
(
r1
−λ

)
ψ̊(r2)ψ̊

(
r1+r2
1−λ

)
[r1r2(r1+r2)]

2
3

dr1dr2 λ ∈ (−∞, 0)

∫∞
0

∫∞
0

ψ̊(r1)ψ̊
(
r2
λ−1

)
ψ̊
(
r1+r2
λ

)
[r1r2(r1+r2)]

2
3

dr1dr2 λ ∈ (1,∞).

(C.2)

This can equivalently be expressed as

D̃ψ

(
f1

f1+f2

)
=



∫∞
0

∫∞
0

ψ̂
( |f1|
ξ1

)
ψ̂
( |f2|
ξ2

)
ψ̂
( |f1+f2|
ξ1+ξ2

)
[ξ1ξ2(ξ1+ξ2)]

2
3

dξ1dξ2 (f1, f2) ∈ Γ1 ∪ −Γ1

∫∞
0

∫∞
0

ψ̂
( |f1|
ξ1

)
ψ̂
( |f2|
ξ1+ξ2

)
ψ̂
( |f1+f2|

ξ2

)
[ξ1ξ2(ξ1+ξ2)]

2
3

dξ1dξ2 (f1, f2) ∈ Γ2 ∪ −Γ2

∫∞
0

∫∞
0

ψ̂
( |f1|
ξ1+ξ2

)
ψ̂
( |f2|
ξ2

)
ψ̂
( |f1+f2|

ξ1

)
[ξ1ξ2(ξ1+ξ2)]

2
3

dξ1dξ2 (f1, f2) ∈ Γ3 ∪ −Γ3.

(C.3)

It is easy to see from (C.3) that D̃ψ

(
f1

f1+f2

)
is symmetric in f1 and f2, and thus D̃ψ(λ) = D̃ψ(1−λ)

for all λ ∈ R \ {0, 1}. We see that D̃ψ(λ) > 0 for all λ ∈ R \ {0, 1} by considering

(r1, r2) = (λc, (1− λ)c) λ ∈ (0, 1)
(r1, r2) = (−λc, c) λ ∈ (−∞, 0)
(r1, r2) = (c, (λ− 1)c) λ ∈ (−∞, 0)

with c ∈ ψ̊−1((0,∞)) in the integrand in (C.2).

Proposition 14. The map λ 7→ D̃ψ(λ) is continuous on R \ {0, 1}, and D̃ψ(λ)→ 0 as λ→ 0 and
as λ→ 1. Moreover, if

sup
r>0

ψ̂(r)r
2
3 < ∞ (C.4)

then D̃ψ(λ)→ 0 as λ tends to ∞ in R̂.

Proof. Since D̃ψ(λ) = D̃ψ(1− λ), we can restrict to λ ∈ (−∞, 0)∪ (0, 1) without loss of generality.
For λ ∈ (0, 1), applying the transformation λ

r1
=: r1 and 1−λ

r2
=: r2 gives

λ−
1
3 (1− λ)

1
3 D̃ψ(λ) =

∫ ∞
0

∫ ∞
0

ψ̂(r1)ψ̂(r2)ψ̊
(
λ
r1

+ 1−λ
r2

)
(r1r2)

4
3

(
λ

(1−λ)r1
+ 1

r2

)2
3

dr1dr2, (C.5)

and for λ ∈ (−∞, 0), applying the transformation −λr1 =: r1 and 1
r2

=: r2 gives

(−λ)−
1
3 D̃ψ(λ) =

∫ ∞
0

∫ ∞
0

ψ̂(r1)ψ̂(r2)ψ̊
(

1
1−λ
(−λ
r1

+ 1
r2

))
(r1r2)

4
3

(−λ
r1

+ 1
r2

)2
3

dr1dr2. (C.6)
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The integrands in (C.5) and (C.6) are dominated by the λ-independent integrable function

(r1, r2) 7→
(

max
r>0

ψ̂(r)

)
· ψ̂(r1)

r
4
3
1

· ψ̂(r2)

r
2
3
2

.

Therefore λ 7→ D̃ψ(λ) is continuous on (−∞, 0) ∪ (0, 1) and D̃ψ(λ) → 0 as λ → 0. Now suppose
(C.4) is satisfied. We can re-express (C.6) as

(−λ)−
1
3 (1− λ)

2
3 D̃ψ(λ) =

∫ ∞
0

∫ ∞
0

ψ̂(r1)ψ̂(r2)ψ̊
(

1
1−λ
(−λ
r1

+ 1
r2

))
(r1r2)

4
3

(
1

1−λ
(−λ
r1

+ 1
r2

))2
3

dr1dr2. (C.7)

Here, the integrand is dominated by the λ-independent integrable function

(r1, r2) 7→
(

sup
r>0

ψ̂(r)r
2
3

)
· ψ̂(r1)

r
4
3
1

· ψ̂(r2)

r
4
3
2

,

and so D̃ψ(λ)→ 0 as λ tends via the negative axis to ∞.

Remark 15. For λ ∈ (0, 1), the formula (42) for Dψ(λ) can be expressed in a similar form to
(C.2), namely

Dψ(λ) =

∫ ∞
0

∫ ∞
0

ψ̊( r1λ )ψ̊( r2
1−λ)ψ̊(r1 + r2)

r1r2
dr1dr2,

in which case the integrand converges pointwise to 0 as λ → 0 or 1, just as it does for (C.2);
however, the conditions of the dominated convergence theorem are not fulfilled as they were for the
expression (42) (as described in Remark 7).

For a third-order analogue of (22a), since the integration is against linear frequency, we can
consider negative frequencies as well as positive frequencies. (Regarding (22a) itself, second-order
spectral densities on the negative-frequency axis are simply the complex conjugate of their reflection,
and so the same value Cψ applies to both positive and negative frequencies.) Following (37) to
be able to include negative frequencies, we can define the following third-order analogue of (22a),
whose veracity is straightforwardly verifiable using (9):

(A) Given signals

x(t) = A1 cos(2πν1t+ φ1)

y(t) = A2 cos(2πν2t+ φ2)

z(t) = A3 cos(2π(ν1 + ν2)t+ φ1 + φ2 − θ)

with ν1, ν2 > 0, writing (f1, f2) := (ν1, ν2) ∈ Γ1 we have

1
8A1A2A3e

iθ =
1

κ2D̃ψ

(
f1

f1+f2

) ∫
Γ1

W
[ 1
3

]

ψ,κ,x(f̃1, t)W
[ 1
3

]

ψ,κ,y(f̃2, t)W
[ 1
3

]

ψ,κ,z(f̃1 + f̃2, t) d(f̃1, f̃2)

and writing (f1, f2) := (−ν1,−ν2) ∈ −Γ1 we have

1
8A1A2A3e

−iθ =
1

κ2D̃ψ

(
f1

f1+f2

) ∫
−Γ1

W
[ 1
3

]

ψ,κ,x(f̃1, t)W
[ 1
3

]

ψ,κ,y(f̃2, t)W
[ 1
3

]

ψ,κ,z(f̃1 + f̃2, t) d(f̃1, f̃2)

for any t ∈ R.
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(B) Given signals

x(t) = A1 cos(2πν1t+ φ1)

y(t) = A3 cos(2π(ν1 + ν2)t+ φ1 + φ2 − θ)
z(t) = A2 cos(2πν2t+ φ2)

with ν1, ν2 > 0, writing (f1, f2) := (ν1,−(ν1 + ν2)) ∈ Γ2 we have

1
8A1A2A3e

iθ =
1

κ2D̃ψ

(
f1

f1+f2

) ∫
Γ2

W
[ 1
3

]

ψ,κ,x(f̃1, t)W
[ 1
3

]

ψ,κ,y(f̃2, t)W
[ 1
3

]

ψ,κ,z(f̃1 + f̃2, t) d(f̃1, f̃2)

and writing (f1, f2) := (−ν1, ν1 + ν2) ∈ −Γ2 we have

1
8A1A2A3e

−iθ =
1

κ2D̃ψ

(
f1

f1+f2

) ∫
−Γ2

W
[ 1
3

]

ψ,κ,x(f̃1, t)W
[ 1
3

]

ψ,κ,y(f̃2, t)W
[ 1
3

]

ψ,κ,z(f̃1 + f̃2, t) d(f̃1, f̃2)

for any t ∈ R.

(C) Given signals

x(t) = A3 cos(2π(ν1 + ν2)t+ φ1 + φ2 − θ)
y(t) = A2 cos(2πν2t+ φ2)

z(t) = A1 cos(2πν1t+ φ1)

with ν1, ν2 > 0, writing (f1, f2) := (−(ν1 + ν2), ν2) ∈ Γ3 we have

1
8A1A2A3e

iθ =
1

κ2D̃ψ

(
f1

f1+f2

) ∫
Γ3

W
[ 1
3

]

ψ,κ,x(f̃1, t)W
[ 1
3

]

ψ,κ,y(f̃2, t)W
[ 1
3

]

ψ,κ,z(f̃1 + f̃2, t) d(f̃1, f̃2)

and writing (f1, f2) := (ν1 + ν2,−ν2) ∈ −Γ3 we have

1
8A1A2A3e

−iθ =
1

κ2D̃ψ

(
f1

f1+f2

) ∫
−Γ3

W
[ 1
3

]

ψ,κ,x(f̃1, t)W
[ 1
3

]

ψ,κ,y(f̃2, t)W
[ 1
3

]

ψ,κ,z(f̃1 + f̃2, t) d(f̃1, f̃2)

for any t ∈ R.

From here, the definition of linear-frequency wavelet bispectral density that would be analogous to
(45) would be

(f1, f2, t) 7→
(
κ2D̃ψ

(
f1

f1+f2

))−1
W

[ 1
3

]

ψ,κ,x(f1, t)W
[ 1
3

]

ψ,κ,y(f2, t)W
[ 1
3

]

ψ,κ,z(f1 + f2, t)

defined (modulo null sets) on the whole of R3. However, since the normalisation D̃ψ

(
f1

f1+f2

)−1
blows

up towards ∞ at the boundaries of the six regions of frequency-frequency space (Proposition 14),
it is highly inadvisable to take this approach to defining a wavelet bispectrum. Nonetheless, one
can still define local bispectra analogous to those defined in Sec. 3.3.
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Suppose we have a region of frequency-frequency space S ⊂ R2 contained within a cone of the
form

{(f1, f2) : f1
f1+f2

∈ [λ− ε, λ+ ε]}

where the closed interval [λ − ε, λ + ε] is contained in R \ {0, 1}. One can define a notion of local
wavelet bispectral (linear-frequency) density b̃linψ,κ,xyz;λ : S × R→ C by

b̃linψ,κ,xyz;λ(f1, f2, t) = (κ2D̃ψ(λ))−1W
[ 1
3

]

ψ,κ,x(f1, t)W
[ 1
3

]

ψ,κ,y(f2, t)W
[ 1
3

]

ψ,κ,z(f1 + f2, t). (C.8)

We then define

blin
ψ,κ,xyz;λ(A) =

∫
A
b̃linψ,κ,xyz;λ(f1, f2, t) d(f1, f2, t) (C.9)

for any A ∈ Bb̃linψ,κ,xyz;λ . (This can also be computed in terms of logarithmic-frequency integration

by multiplying the integrand by the exponential of the sum of the two integrator log-frequencies.)
Note as in Sec. 3.3 that the localised bispectrum blin

ψ,κ,xyz;λ is meaningless if the frequency resolu-
tion of the wavelet is so low that S does not capture virtually all the wavelet bispectral content
arising from bispectral contributions of interest within S. If one is not concerned with “absolute”
values for bispectral results but only comparisons between bispectral results, then the normalising
factor (κ2D̃ψ(λ))−1 can be removed from (C.8). Nonetheless, analogously to Sec. 3.3, the wavelet
transform terms must still be with p = 1

3 .
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