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Abstract 21 

Biochar has the potential to increase crop yields on degraded, tropical soils. It can be readily 22 

produced in rural community settings using low-cost technology and is most economically 23 

feasible if produced from local biomass or waste residues. Biochar was produced from 24 

Leucaena biomass using low-cost pyrolysis and sequential pot experiments were then 25 

conducted in Malaysia on three degraded soils. We first evaluated the effect of Leucaena 26 

biochar on yields of Amaranthus, a leafy vegetable crop and measured changes to soil pH and 27 

nutrient availability over two growth cycles. We then tested whether any yield response to 28 

biochar was dependent upon the rate of biochar or fertilizer application. We found that biochar 29 

application at 30 t ha-1 with maximal fertilizer increased yields between 17-53 % on very 30 

strongly acidic soil. Biochar added at 15 t ha-1 with maximal fertilizer increased yield by 54 % 31 

on strongly acidic soil whilst there was no significant yield response on fertilized, slightly 32 

acidic soil. Unfertilized biochar treatments showed small yield responses across all soils over 33 

2 growth cycles (9-11 %), but yields were much lower than in fertilized treatments. Biochar 34 

also decreased short-term N availability when applied with fertilizers, which may improve 35 

nitrogen retention and substantially increased soil pH. This may reduce mobility of Fe, Mn and 36 

Al ions, which were negatively associated with yield. Our results suggest that Leucaena biochar 37 

can elicit a positive crop yield response but only when combined with fertilizer additions on 38 

very strongly to strongly acidic tropical soils. 39 

 40 
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1. Introduction: 45 

Global human population is expected to increase to over 9 billion by 2050 with food demand 46 

projected to rise by 70 – 100 % as a result [1]. In developing countries, at current levels of 47 

productivity, agricultural land area under cultivation will need to increase substantially to 48 

meet this demand, with severe implications for natural ecosystems, particularly in tropical 49 

regions [2-4]. Closing the current yield gap between potential and realized crop yields could 50 

dramatically reduce the requirement for further agricultural expansion, whilst also providing 51 

a pathway to poverty alleviation. Biochar has attracted significant interest as an agricultural 52 

soil amendment due to its potential for increasing crop productivity, with additional benefits 53 

in terms of improved soil fertility and mitigation of climate change [5]. Given the possible 54 

benefits from biochar, its potential for supporting a range of the Sustainable Development 55 

Goals (SDG) of the United Nations is widely recognised [6]. 56 

When applied to soils, biochar interacts with soil physical, chemical and biological 57 

properties, potentially conferring improvements to soil quality and crop productivity [7]. It 58 

also can provide long term carbon (C) sequestration due to the stable, recalcitrant nature of 59 

organic C relative to the original biomass [8]. Biochar addition to soils can improve soil 60 

physical properties and water retention by increasing aggregate stability, reducing bulk 61 

density and hydraulic conductivity [9, 10]. This may promote nutrient retention by reducing 62 

leaching of nutrients in soil solution [11]. Biochar may also ameliorate soil acidity, which in 63 

turn can alleviate ion toxicity and increase availability of many soil nutrients [12]. These 64 

effects on soil properties have been suggested as a mechanism for the average ~10 % increase 65 

in crop yields as a result of biochar addition [13, 14].  66 

However, crop productivity responses to biochar addition are highly variable, with some 67 

studies showing positive effects whilst others found neutral to negative effects [13, 15]. The 68 
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inconsistencies in crop yield responses may be attributable to variation in the properties of 69 

biochar applied (due to feedstocks used and specific pyrolysis conditions) and the time since 70 

application [16-18]. However, initial soil properties have shown to be stronger predictors of 71 

yield response with pH, cation exchange capacity (CEC) and organic carbon negatively 72 

correlated and clay content positively associated with crop yield response to biochar addition 73 

[15]. This is significant as 30 % of the world’s soils are classified as acidic, which includes 74 

over 50 % of potential arable land [19]. These soil characteristics are also typically associated 75 

with highly weathered and degraded soils across the humid tropics, with a recent meta – 76 

analysis showing that biochar addition resulted in a ~25 % increase in crop yields in the 77 

tropics whilst there was no significant effect of addition on temperate soils [20].  78 

Despite the potential for biochar application on tropical soils, for its adoption by rural 79 

smallholder farmers in developing countries to be economically feasible, small-scale 80 

decentralised pyrolysis technology must be utilised with feedstocks obtained locally and a 81 

focus on higher-value (non-cereal) crop yield improvement [21, 22]. We therefore tested 82 

whether a low-cost, locally produced biochar, using Leucaena leucocephala biomass, could 83 

elicit a crop yield response in Amaranthus across three degraded agricultural soils from 84 

Malaysia with low fertility and a range of soil pH. Leucaena is a ruderal, fast-growing, 85 

tropical leguminous tree, which is drought tolerant, capable of growing across a wide range 86 

of soils, pH and is currently utilised for forage and fuelwood production in tropical regions 87 

[23, 24]. This adaptability to a wide range of edaphic conditions and ability to grow on 88 

degraded lands makes it useful as a tool for land restoration and as a feedstock for biochar 89 

production [25]. Using a series of sequential pot experiments, we tested the following 90 

hypotheses: 91 

H1: Addition of Leucaena biochar to tropical, degraded soils will increase crop yield 92 

irrespective of fertilizer addition, with greater yield responses at higher biochar addition rates. 93 
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H2: Crop yield response will be driven by the effects of Leucaena biochar on soil nutrient 94 

availability. 95 

 96 

2. Methods: 97 

2.1 - Soil Collection and Biochar Production 98 

Agricultural soils were collected from the Crops for the Future field research centre 99 

(CFFRC), Malaysia (2.933162 N, 101.878028 W) located east of the town of Semenyih, 100 

Malaysia (Figure S1). The research centre agricultural land covers 12.8 ha and forms part of 101 

the Balau Estate, which is mainly planted with oil palm. The surrounding estate was first 102 

planted with rubber followed by two further rotations of oil palm. The sampling area was 103 

subject to one rotation of oil palm prior to being used as an oil palm nursery up until 2014. 104 

This was then cleared and used to grow maize, Bambara groundnuts and Napier grass. This 105 

area is low lying with high rates of surface runoff and soil erosion, resulting in low soil 106 

fertility (Personal Communication - Gin Teng Ooi). The climate is tropical and aseasonal 107 

with an average annual temperature of 27.2 °C. Eleven year mean annual rainfall ranged from 108 

1454-2808mm with a mean of 1987mm (unpublished data). Three soils were sampled from 109 

this area representing a range of low fertility, degraded tropical soils. Two soils were taken 110 

from the Rengam series (Nitisol) which is a coarse, sandy clay derived from acid igneous 111 

parent material whilst one soil was a fine sandy clay loam derived from quaternary alluvium 112 

parent material. ~200 kg (Exp 1) and ~ 400 kg (Exp 2) of each soil were collected from the 113 

top 0 – 10 cm by hand. Five subsamples of each soil type were collected for initial physico-114 

chemical analysis and field bulk density (using a 7.5 cm diameter ring to 5cm depth). 115 

Biochar was produced from Leucaena leucocephala woody biomass in a custom made, low 116 

cost retort kiln (Model CR-570, Kenaboi Nature Resources, Puchelong Selangor, Malaysia) 117 
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(Figure S2 - S3) with a final pyrolysis temperature of 600-700°C held for 4 hours. This was 118 

then homogenized to pass through a 2mm sieve prior to application. 119 

2.2 - Experimental Design and Setup 120 

Two sequential experiments were conducted in a shade house located at CFFRC, Malaysia 121 

between 03 – 05/2018 (Exp 1) and 02 – 04/2019 (Exp 2). The first experiment explored the 122 

crop and soil nutrient response to a single dose of biochar using a standard recommended 123 

fertilisation rate. The second experiment expanded on this work to include two levels of 124 

biochar applications in combination with standard and reduced fertilisation rates to assess the 125 

potential for biochar to improve nutrient management. The three soils collected from CFFRC 126 

were firstly homogenised using a trowel/spade and hand mixed with any large stones or 127 

coarse woody debris removed. 9 kg of soil was added to 10 L plastic pots and treatments 128 

(biochar and fertilizer applications) were applied in a fully factorial design with all 129 

combination of treatments being applied to all three soil types. For Exp 1, two rates of 130 

biochar (0 and 30 t ha-1) and fertilizer (0 and 0.4 t ha-1 NPK (15:10:10), 25 t ha-1 poultry 131 

manure) addition were applied to each soil (n = 60) (Table 1). For Exp 2, three rates of 132 

biochar (0, 15 and 30 t ha-1) and fertilizer (0.4, 0.2 and 0.1 t ha-1 NPK (15:10:10) and 25, 133 

12.5, 6.25 t ha-1 poultry manure) addition were applied to each soil (n = 135) (Table 1). 134 

Fertilizer application rates were based on local growers guidelines [26]. 135 

Both biochar and fertilizer were fully incorporated by hand mixing. Water was then added to 136 

achieve 75 % of maximum water holding capacity and pots were arranged in the shade house 137 

as 5 blocks of 12 (Exp 1: 3 soil types x 4 treatments) and 27 (Exp 2: 3 soil types x 9 138 

treatments) for randomized complete block designs. 1 g of Amaranthus Tricolor seeds were 139 

dispersed across the soil surface, lightly covered in soil, watered and left to germinate. This 140 

plant was selected because it is grown as a leafy vegetable across the region. These were 141 
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thinned to 5 plants which were then left to grow to maturity over 35 days. Plants experienced 142 

ambient photoperiod, but soil moisture was maintained throughout the experiment using an 143 

automated drip feed system and weekly water additions back to initial pot weight. Air 144 

temperature within the shade house was measured throughout the experiments using Hobo 145 

pendant loggers (Onset Computer Corporation, MA, USA) (Table S1). During Exp 1 and 146 

Exp 2 the mean air temperature was 30.87 ± 0.05 °C and 30.50 ± 0.01 °C respectively. After 147 

35 days, mature Amaranthus plants were harvested by cutting aboveground biomass (AGB) 148 

level with the soil surface and drying in an oven at 40 °C until constant weight. For Exp 1, 1g 149 

of Amaranthus Tricolor seed were re-sown as described above and a repeat application of 150 

inorganic fertilizer was applied as a top dressing (0.4 t ha-1 NPK). These will subsequently be 151 

referred to as Exp 1a (growth cycle 1) and Exp 1b (growth cycle 2). 152 

2.3 – Soil Analysis 153 

Maximum soil water holding capacity was measured for the three soils in triplicate, 154 

calculated as the amount of water remaining in the soil after being saturated and left to drain 155 

for 24 h in a fully humid airspace [27]. Soil bulk density was determined by drying at 105°C 156 

after sieving to 2mm to remove roots and stones [28]. Subsamples of soil and biochar were 157 

characterised for pH, total C, N, inorganic P and K. Soil pH was determined on 5 fresh soil 158 

samples and biochar using a calibrated pH meter (Hanna Instruments, UK) in a soil - water 159 

suspension (1:2.5 ratio of soil to deionised water) after stirring and standing for 30 min. The 160 

remaining soil was air dried. Inorganic P was extracted from air dried soils and biochar using 161 

0.5M Sodium Bicarbonate, (Olsen P). K was extracted using 0.1M magnesium acetate. P and 162 

K were then determined using a calibrated and blank corrected SoilTest 10 spectrophotometer 163 

(Palintest, Gateshead, UK). Subsamples for total C and N were dried at 105°C for 24 hours, 164 

sieved to pass a 2mm sieve and ground to a fine powder using a pestle and mortar. These 165 

were analysed using dry combustion at 980°C using a LECO Truspec Micro (LECO 166 
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Corporation, Michigan, USA).  Following biomass harvesting at the end of the experiment, 167 

fresh soil samples were collected from each pot and pH measured using the method described 168 

above.  169 

2.4 - Soil nutrient availability 170 

At the end of Exp 1a, Exp 1b and Exp 2, soil nutrient availability was assessed using 171 

commercial ion exchange membranes (PRSTM Probes, Western AG, Saskatoon, Canada) after 172 

biomass harvesting [29]. Pairs of plastic probes (1 anion and 1 cation exchange) housing the 173 

membranes were installed within every pot to 0-10cm depth for 24 hours to measure the 174 

availability of N, P, K, Mg and micronutrient ions (S, Fe, Mn, Al) in soil solution. Once 175 

removed, probes were washed thoroughly with deionised water and shipped to the 176 

manufacturer for analysis. Probes were eluted using 0.5M HCl for 1 hour. NO3
- and NH4

+ 177 

were measured colorimetrically using automated flow injection analysis (FIA). All other 178 

elements were analysed using inductively coupled plasma-optical emission spectroscopy 179 

(ICP-OES). Results are reported as supply rates per area of membrane available for ion 180 

exchange over the burial period (µg/10cm2/day). In the absence of competing sinks such as 181 

plant roots, these membranes mimic plant root uptake dynamics and provide an estimate of 182 

potential soil nutrient supply.  183 

2.5 – Statistical Analysis 184 

All statistical analyses were performed using R (Version 3.5.2). Differences between initial 185 

soil properties were tested using one-way ANOVA and Tukey’s honest significance 186 

difference test. To test hypothesis 1 that addition of Leucaena biochar would stimulate crop 187 

yield, we used ANOVA with AGB as a response variable, soil type, biochar application and 188 

fertilizer application rate as explanatory variables and their interactions. Experimental block 189 

was included as a covariate to account for potential differences in microclimatic conditions 190 
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and growth rates within the shade house. Normality was checked by inspecting Q-Q plots and 191 

plotting residuals vs fitted values. For Exp 1a and Exp 1b, AGB was log transformed whilst 192 

for Exp 2 it was square root transformed to achieve normality of residuals. Where significant 193 

treatment effects were detected, post-hoc multiple pairwise comparisons were performed 194 

using estimated marginal means (emmeans) [30] implemented in the R package emmeans 195 

[31]. P-values were adjusted for multiple comparisons using the Tukey method. 196 

To test hypothesis 2 that crop yield response would be driven by the effects of Leucaena 197 

biochar on soil pH and nutrient availability we first determined the effect of biochar on soil 198 

pH and nutrients using ANOVA with soil pH and each soil nutrient as response variables. 199 

Soil type, biochar application and fertilizer application rate were included as explanatory 200 

variables with interactions. We then used multiple linear regression with AGB as the 201 

response variable, soil pH and nutrient availability (inorganic N, P, K, Mg, S, Fe, Mn, Al) as 202 

explanatory variables. Fe and Mn were summed as their availability was highly correlated (r 203 

>0.9). Biochar application rate was also specified as a factor within the models to account for 204 

the unmeasured, potential physical effects of biochar application to soils and interaction 205 

terms between nutrients and biochar were also included. Variables were selected using a 206 

forward-backward stepwise procedure using AIC score as a selection criterion [32]. To 207 

determine the relative importance of predictors, averaging over order of regressors was 208 

performed using the Relaimpo R package [33]. To visualise interactions within models, 209 

partial regression plots were produced using the visreg R package [34]. 210 

3. Results: 211 

3.1 – Initial soil and biochar properties  212 

The three soils used in the mesocosm experiments varied predominantly in terms of their pH 213 

(F2,12 = 32.58, p = <0.001), being classified as very strongly acidic (pH – 5.08 ± 0.13), 214 
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strongly acidic (5.45 ± 0.06) and slightly acidic (6.14 ± 0.08) (Table 2) [35]. Total C (F2,12 = 215 

40.72, p = <0.001), N (F2,12 = 14.45, p = <0.001) and K content (F2,12 = 35.06, p = <0.001) 216 

also varied between land uses. However, the magnitude of differences were small and all 217 

soils had extremely low soil C and N (<1.38 % and N < 0.11 %), indicating low soil quality 218 

[36]. Soil P concentrations (F2,12 = 0.75, p = 0.49) and field bulk density (F2,12 = 2.75, p = 219 

0.10) did not vary between soils (Table 2). Leucaena biochar was strongly alkaline with high 220 

C, N and K concentrations relative to all soils (Table 2). 221 

3.2 - The effect of Leucaena biochar application rate and fertilization on aboveground 222 

biomass  223 

During Exp 1a, biochar addition was a significant predictor of AGB (Figure 1A, Table 3) (p 224 

= 0.009). Post-hoc pairwise comparisons revealed that the response to biochar addition varied 225 

according to soil type. A significant crop yield response was observed when added to the very 226 

strongly acidic soil with AGB increased by ~17 % from 15.99 ± 0.90 to 19.24 ± 1.08 g, in 227 

combination with fertilizer addition (emmeans: p = 0.02) (Figure 1A). However, there was no 228 

effect of biochar addition on AGB when added to strongly acidic  (No Biochar: 18.65 ± 1.05, 229 

Biochar: 18.98 ± 1.07, p = 0.83) or slightly acidic soil (No Biochar: 16.64 ± 0.94, Biochar: 230 

16.53 ± 0.93, p = 0.94) with fertilizer addition (Figure 1A). Averaged across all soils, biochar 231 

addition increased AGB without fertilizer by ~11 % (No Biochar: 6.74 ± 0.22, Biochar: 7.56 232 

± 0.25 g dry weight biomass, emmeans: p = 0.02) but yields were less than half of those in 233 

fertilized treatments (Figure 1A). During Exp 1b the effect of biochar on AGB was dependent 234 

on fertilization (biochar x fertilizer: p = 0.01) (Table 3) as biochar increased AGB yield 235 

across all soils without fertilizer addition (~9 %) (No Biochar: 3.98 ± 0.10, Biochar: 4.37 ± 236 

0.12 g dry weight biomass, emmeans: p = 0.02) but did not influence yield when combined 237 

with fertilizer (Figure 1B). Exp 2 showed that biochar application, fertilizer addition and soil 238 

type were all significant predictors of Amaranthus AGB (Table 3). However, a three-way 239 



11 
 

interaction between biochar, fertilizer and soil type indicated that the effect of biochar on 240 

AGB was dependent upon fertilizer addition and this effect varied between soils (p = 0.03) 241 

(Table 3). Post-hoc pairwise comparisons showed that biochar increased AGB by ~53 % 242 

(relative to no biochar application) when applied to very strongly acidic soil at 30 t ha-1 in 243 

combination with the highest rate of fertilizer application (No Biochar: 7.81 ± 1.52, 30 t ha-1 244 

Biochar: 16.25 ± 2.22 g dry weight biomass, emmeans: p = 0.006) (Figure 1C). Biochar 245 

application also increased AGB by ~54 % (relative to no biochar application) when applied to 246 

the strongly acidic soil at 15 t ha-1
, in combination with the highest rate of fertilizer addition 247 

(No Biochar: 7.95 ± 1.54, 15 t ha-1 Biochar: 17.30 ± 2.29 g dry weight biomass, emmeans: p 248 

= 0.003) (Figure 1C). There was no significant effect of biochar application on the slightly 249 

acidic soil, irrespective of the rate of biochar or fertilizer addition (Figure 1C). 250 

3.3 – Biochar effects on soil nutrients and pH as drivers of aboveground biomass 251 

Soil pH was significantly increased by both biochar application and fertilizer addition (Figure 252 

2, Table 4) although an interaction between biochar and fertilizer indicated that biochar 253 

increased soil pH more strongly in the absence of fertilizer than in combination (Exp 1a: p = 254 

0.02, Exp 1b: p = 0.001, Exp 2: p = 0.05). Addition of Leucaena biochar increased soil 255 

inorganic N availability without fertilizer addition and decreased N availability with fertilizer 256 

(Exp 1a: p = 0.07, Exp 1b: p = 0.009, Exp 2: p = 0.001) (Table S2, Figure 3A, D, Figure 4A). 257 

In contrast, soil K availability was significantly increased by biochar addition (Exp 1a: p = 258 

<0.001, Exp 1b: p = <0.001, Exp 2: p = <0.001) and accounted for ~15-73 % of explained 259 

variation (Table S3, Figures 3C, F, Figure 4C). Soil P availability was not explained by 260 

biochar addition and was explained overwhelmingly by the rate of fertilization throughout 261 

both experiments (Exp 1a: p = <0.001, Exp 1b: p = <0.001, Exp 2: p = <0.001) (Table S4, 262 

Figures 3B, E, Figure 4B). Soil Mg was increased by biochar in Exp 1a and Exp 1b although 263 

the effect was greatest without fertilizer (Biochar x Fertilizer: Exp 1a: p = 0.02, Exp 1b: p = 264 
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<0.001) (Table S5, Figure 3D, H). Soil S, Fe, Mn and Al were not influenced by biochar 265 

addition. 266 

Variance in AGB was positively related to Mg availability (Exp 1a: p = <0.001, Exp 1b: p = 267 

0.02, Exp 2: p = <0.001) and negatively associated with Fe + Mn availability (Exp 1a: p = 268 

0.03, Exp 1b: p = <0.001, Exp 2: p = 0.005)  across all experiments (Table 5). Mg availability 269 

explaining between 12.35-37.85 % of explained variation in AGB whilst Fe + Mn explained 270 

between 3.39-7.45 % (Table 5).  Biochar addition was also a significant predictor of AGB 271 

((Exp 1a, Exp 1b, Exp 2: p = <0.001) and explained between 2.35-10.71 % of explained 272 

variation in AGB (Table 5) whilst interactions between inorganic N, S (Exp 1b), Mg, Al (Exp 273 

2) and biochar also explained variation in AGB. In Exp 1b, greater inorganic N availability 274 

was associated with increased AGB without biochar and reduced AGB with biochar (p = 275 

0.005) (Figure S6) whilst the positive effect of S on AGB was stronger with biochar addition 276 

(p = 0.005) (Figure S7). In Exp 2, higher soil Al was associated with lower AGB without 277 

biochar but had little effect on AGB with biochar added at 30 t ha-1
 (p = 0.04) (Figure S8), 278 

whilst the positive effect of Mg on AGB was marginally stronger with higher rates of biochar 279 

addition (p =0.09) (Figure S9). Across Exp 1a and Exp 2, AGB was positively related to soil 280 

P whilst, K availability was negatively related to AGB (Table 5).  281 

Discussion 282 

Biochar has been proposed as a potential soil amendment to improve soil quality and increase 283 

crop yields, particularly on degraded or highly weathered tropical soils [20, 37, 38]. 284 

However, for biochar to be an economically feasible and scalable solution, it must confer 285 

crop productivity benefits, be produced from feedstocks available locally and using low-cost, 286 

decentralized pyrolysis technologies [21]. We produced biochar from Leucaena using a low-287 

cost retort kiln which, although offering limited control over pyrolysis conditions, is 288 
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particularly suited for use in low and middle income countries and in smallholder farming 289 

systems as a shared community resource [39]. We then performed a series of mesocosm 290 

experiments to assess the potential of locally produced Leucaena biochar to improve soil 291 

quality and crop yields across three degraded tropical soils in Malaysia.  292 

Our findings did not support hypothesis 1 as we found that biochar addition at 30 t ha-1 only 293 

had a substantial yield benefit (+17-53 % in AGB across two sequential experiments) when 294 

applied with fertilizer and on very strongly acidic soils (Figure 1). This agrees with many 295 

previous studies that have shown the potential for biochar to increase crop yields is greatest 296 

on the most acidic, tropical soils [15, 20, 40]. However, a previous study using biochar 297 

produced from low-cost pyrolysis on tropical soil found a greater yield response to biochar on 298 

acidic soils under nutrient limited conditions [41]. Our results contradict these findings as the 299 

level of yield stimulation was highly dependent upon the rate of fertilization, with the greatest 300 

yield response observed with a maximal dose of nutrients (Figure 1). When we applied 301 

biochar and fertilizer at multiple rates (Exp 2), there was no clear relationship between 302 

biochar addition rate and AGB (Figure 1). In very strongly acidic soils, biomass increased by 303 

53 % at a rate of 30 t ha-1 whilst crop yields were increased by 54 % on strongly acidic soils 304 

at 15 t ha-1 with no significant yield response on slightly acidic soils (Figure 1C). Previous 305 

studies have demonstrated conflicting relationships between biochar application rate and crop 306 

yields with positive, neutral or negative associations with yield being reported, with increased 307 

rates of biochar addition [14, 42-45]. The lack of relationship between biochar dose rate and 308 

crop productivity may be related to soil-biochar interactions which can regulate soil pH and 309 

nutrient availability [46]. 310 

We hypothesised that any crop yield response would be driven by the positive effects of 311 

biochar on soil nutrient availability (Hypothesis 2). However, in disagreement we found that 312 

only soil K availability was consistently increased by biochar application (Figure 3-4) and 313 
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this was negatively associated with AGB (Table 5). Increased soil K availability likely 314 

reflects direct supply from biochar addition as Leucaena biochar K concentrations were high 315 

(Table 2) relative to all soils and studies of nutrient release dynamics from other biochar’s 316 

have shown that K is rapidly leached from biochar ash into soil solution [47, 48]. As we 317 

found strong positive relationships between Mg availability and AGB across all experiments, 318 

the negative relationship between K and AGB may be due to nutrient antagonism as high K 319 

concentrations may interfere with root Mg uptake [49]. 320 

We did find that when biochar was applied with fertilizer, soil inorganic N was reduced and 321 

there appeared to be a negative relationship between soil inorganic N and the rate of biochar 322 

application (Figures 3A, Figure 4A, Table S2). As we used ion exchange membranes which 323 

depend on equilibrium dynamics [29], this may be explained by a slower N release from 324 

biochar amended soils. Our findings agree with previous studies that have observed higher 325 

nutrient retention and lower soil available N after biochar additions to soil [50-52] and are 326 

consistent with studies showing that biochar can act as a slow-release ion sink at low dose 327 

rates [53], whilst at higher application rates it may effectively immobilize N [53-57].  328 

In highly weathered tropical soils, Fe, Mn and Al commonly accumulate at levels which 329 

cause toxicity to plants [58, 59]. We found that soil Fe, Mn and Al were negatively related to 330 

AGB (Table 5). Although we did not find an effect of Leucaena biochar addition on soil Fe, 331 

Mn or Al concentrations, the effect of Al on AGB was negated at the highest biochar 332 

application rate (Figure S8). As Al solubility decreases with increasing pH and the Leucaena 333 

biochar used in this study was strongly alkaline (Table 1) (pH 10) (Figure 2, Table 4), its 334 

application may therefore be useful to alleviate toxicity in strongly acidic tropical soils.  335 

4. Conclusions 336 
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Our results show that biochar produced locally using Leucaena biomass and low-cost 337 

pyrolysis can elicit a positive crop yield response but only on very strongly to strongly acidic 338 

tropical soils, in combination with fertilizer application. Biochar decreased short-term soil N 339 

availability when applied with fertilizers, which may improve nitrogen use efficiency by 340 

reducing rates of nitrogen leaching. Leucaena biochar also substantially increased soil pH. 341 

This may benefit crop productivity as increased soil pH reduces the mobility of Fe, Mn and 342 

Al ions, which we found were negatively associated with yield. 343 
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Table Captions: 502 

Table 1 – Summary of the factors and number of replicates for each experiment. N = total 503 

number of pots within each experiment. 504 

Table 2 – Physical and chemical properties of three soils and chemical properties of biochar 505 

produced from Leucaena biomass in a low-cost, retort kiln. Soils data represent means (soil: 506 

n = 5) ± 1 standard error. Biochar pH, Total C and N represent means (n = 3) ± 1 standard 507 

error. Biochar extractable P and extractable K are n = 1.  508 

Table 3 – Three-way ANOVA results for the effects of biochar addition, fertilizer addition 509 

and soil type on above ground biomass of 5 Amaranthus Tricolor plants. The response 510 

variable (above ground biomass) was log-transformed for results of Exp 1a and Exp 1b and 511 

square root transformed for results of Exp 2 to achieve normality of residuals. Two and three-512 

way interaction terms were included, and experimental block was included as a covariate. R2 513 

= adjusted R2
. 514 

Table 4 – Three-way ANOVA results for the effects of biochar addition, fertilizer addition 515 

and soil type on soil pH. The response variable (soil pH) was log-transformed to achieve 516 

normality of residuals. Two-way interaction terms were included, and experimental block 517 

was included as a covariate. Relative importance was calculated by averaging over orders of 518 

regressors and is presented as percentages of explained variation and sums to 100%. R2 = 519 

adjusted R2. 520 

Table 5 – Multiple linear regression results for the effects of biochar addition and measured 521 

soil variables on above ground biomass. The response variable (above ground biomass) was 522 

log-transformed (Exp 1a and Exp 1b) and square root transformed (Exp 2) to achieve 523 

normality of residuals. Two-way interaction terms between soil pH and soil nutrients were 524 

included and experimental block was included as a covariate. Forward-backward stepwise 525 
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model selection was performed using AIC as a selection criterion. Relative importance was 526 

calculated by averaging over orders of regressors and is presented as percentages of 527 

explained variance which sum to 100%. R2 = adjusted R2. 528 

 529 

Figure Captions: 530 

Figure 1 - Dried above ground biomass of Amaranthus Tricolor after 35 days of growth 531 

during Exp 1a (A.), Exp 1b (B.) and Exp 2 (C.). Bars represent means (n = 5). Error bars 532 

represent ± 1 standard error. Points represent overlaid raw data. 533 

Figure 2 - Soil pH measured after harvesting of biomass during Exp 1a (A.), Exp 1b (B.) and 534 

Exp 2 (C.). 535 

Figure 3 - The availability of soil inorganic N, P, K and Mg measured using PRS ion 536 

exchange membranes over a 1 day burial period. Measurements were made after harvesting 537 

of biomass during Exp 1a (A-D) and Exp 1b (E-H). Bars represent means (n = 5). Error bars 538 

represent ± 1 standard error.  539 

Figure 4 - Availability of soil inorganic N, P, K and Mg measured using PRS ion exchange 540 

membranes over a 24 hour burial period. Measurements were made after harvesting of 541 

biomass during Exp 2. Bars represent means (n = 5). Error bars represent ± 1 standard error. 542 
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