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Summary 10 

High nitrogen (N) supply is required for high yielding soybean, but low soil temperatures in 11 

either early production systems or cool environments delay nodulation and limit biological nitrogen 12 

fixation (BNF). Since cytokinins are key signalling hormones in mediating nodule formation and our 13 

initial controlled environment experiment indicated that seed cytokinin treatment increased early 14 

BNF and total nodule area, it was used in field trials. Cytokinin was applied (seed or foliar) to two 15 

commercial soybean genotypes (DM50I17 and DM40R16) in field trials with early (September and 16 

early November) and conventional (late November) sowing dates in Argentina. In the field, DMR50I7 17 

achieved consistent yields across sowing dates since increased BNF compensated for limited soil N 18 

uptake in early sowing dates, also leading to 25% higher nitrogen use efficiency (NUE). Surprisingly, 19 

soil N uptake was more cold sensitive than BNF with greater and prolonged N fixation in early 20 

sowing, perhaps through delayed nodulation, leading to improved N harvest index. Cytokinin seed 21 

treatment increased BNF (26%) in DM40R16 especially in early sowing dates. Although cytokinin 22 

improved cold tolerance of BNF, this was not explained by altered nodulation and did not increase 23 

yield. Here we show genetic differences in N supply in commercial soybean genotypes and the 24 

importance of BNF to maintain yield in early sown soybean. 25 
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1 | Introduction 30 

Soybean (Glycine max (L) Merr) is one of the most important vegetable protein sources globally, 31 

contributing to the agricultural economies of many countries (Hungria & Mendes, 2015). Soybean 32 

has the highest nitrogen (N) requirement of all major crops (Sinclair & De Wit, 1975) with 80 kg 33 

canopy N required per metric tonne of seed, and yield strongly correlated to N accumulation 34 

(Rotundo et al., 2014; Salvagiotti et al., 2008). As a legume, soybean uses two N sources, mineral soil 35 

N uptake and atmospheric or biological nitrogen fixation (BNF). Soybean can derive up to 70% of its 36 

N demand from BNF (Salvagiotti et al., 2008; Santachiara et al., 2017) and high soil N concentrations 37 

limit BNF (Santachiara et al., 2019).  38 

Temperature also affects the contribution of the two N sources to plant N status, with BNF 39 

generally considered more cold sensitive than soil N uptake (Legros & Smith, 1994; Matthews & 40 

Hayes, 1982; Thomas & Sprent, 1984). In soybean, root zone temperatures (RZT) less than 25oC 41 



delay the onset of BNF, with nodule initiation limited at 10oC RZT and activity at 15oC (Legros & 42 

Smith 1994; Mishra et al., 2009; Poustiniet al., 2005; Zhang et al., 1995). However, low soil 43 

temperatures may also limit mineral N uptake by restricting root growth and/or nitrate uptake as 44 

seen in controlled environments (Rufty et al., 1981; Tolley & Raper 1985) but not in field trials. 45 

Despite these limitations, which may limit early growth and subsequent yields, many regions 46 

recommend early sowing of soybean in cold soils (Di Mauro et al., 2019; Purcell et al., 2014; 47 

Rattalino Edreira et al., 2020) to take advantage of early rainfall, to avoid summer drought, reduce 48 

disease and insect damage and extend the growing season. Local soybean production has the 49 

potential to improve protein self-sufficiency (De Visser et al.,2014), even though many European 50 

countries have suboptimal environments for soybean (Kurasch et al., 2017).  51 

BNF depends on successful nodulation and rhizobial efficiency to fix atmospheric N2 to ammonia. 52 

Previous work to mitigate the effects of low RZT on BNF have focused on identifying cold tolerant 53 

rhizobia (Kühling et al., 2018; Yuan et al., 2020; Zhang et al., 2002; Zimmer et al., 2016). However, 54 

the success of rhizobial inoculants can depend on their persistence in the soil and competition with 55 

native rhizobia, with local strains better adapted to adverse conditions (Thilakarathna & Raizada, 56 

2017). Early nodule establishment in low RZT may therefore improve the effectiveness of cold 57 

optimised inoculants. The photosynthetic cost of BNF, 16 moles ATP per mole N (Kahn et al., 1998), 58 

requires that plants balance this with their N requirements, however N is more limiting to growth 59 

than carbon (C) uptake under low (~ 15oC) temperatures (Thomas & Sprent, 1984; Walsh & Layzell, 60 

1986). Thus promoting nodulation in cold environments is likely to be beneficial.  61 

In optimal temperatures, certain nodule traits are associated with increased BNF. Nodule size 62 

positively correlates with increased N fixation (de Araujo et al., 2017; Tajima et al., 2007; Voisin et 63 

al., 2003) and certain nodule sizes are considered optimal (King & Purcell, 2001; Purcell et al., 1997), 64 

with greater relative export of N products and import of C. Increased nodule weight following low 65 

RZT temperatures (15oC), may compensate for lower nodule activity (Zhang & Smith, 1994), 66 

suggesting increased nodulation is beneficial for cold tolerance. The effects of early nodule 67 

establishment on BNF have been studied previously (Cerezini et al. 2016; Chibeba et al. 2015) but 68 

not in early sown soybean experiencing low RZT. 69 

Different soybean genotypes vary in their ability to fix N in low temperature (Lynch & Smith, 70 

1993; Zhang & Smith, 1994). As new soybean varieties show reduced BNF under optimal conditions 71 

(van Kessel & Hartley, 2000; Nicolás et al.,2002), similar effects could occur under cold temperatures 72 

but with greater impacts on yield. Maintaining N uptake during seed filling is important for high yield 73 

(Kumudini et al.,2002; Zimmer et al., 2016) especially in early sown soybean. Although genotypes 74 



differed in BNF when grown in cool conditions, there was no effect on nodulation (Zimmer et al., 75 

2016) and nodule traits were not associated with genotypic differences in cold tolerance.  76 

An alternative approach to enhance nodulation and reduce the effects of cold is to manipulate 77 

endogenous hormone concentrations in planta, such as cytokinins (Ali et al., 2008; Fatima et al., 78 

2008; Heckmann et al., 2011; Lorteau et al.,2001). Cytokinin application may enhance nodulation by 79 

maintaining plant rhizobial communication in low RZT. Host plants initiate nodulation by secreting 80 

flavonoids that activate rhizobial genes, including nod genes which code nod factors (NF) (Redmond 81 

et al., 1986; Caetano-Anollés & Gresshoff, 1993; Denarie & Debelle, 1996; Spaink, 2000). Root 82 

perception of NF leads to root hair deformation and rhizobial invasion of root cortical cells, via the 83 

infection thread, to elicit nodule formation. Suboptimal soil temperatures (less than 25oC) limit these 84 

stages of nodule establishment (Lindemann & Ham, 1979; Lynch & Smith, 1993; Matthews & Hayes, 85 

1982), especially infection and early nodule development, due to limited nod gene expression and 86 

NF synthesis (Shiro et al., 2016; Zhang & Smith 1994). Cytokinin induces early nodulin genes in plants 87 

acting in a similar way to NF signalling, inducing cortical cell division genes (Bauer et al., 1996; Dehio 88 

& Bruijn 1992; Heckmann et al., 2011; Mathesius et al., 2000). Therefore, early cytokinin application 89 

during nodule formation may compensate for delayed bacterial signalling and stimulate higher rates 90 

of nodule development and BNF.   91 

Exogenous cytokinin applications induced positive effects in a number of legumes depending on 92 

the application method, timing and concentration (Cho et al., 2002; Koprna et al., 2016; Liu et al, 93 

2004); with high concentrations limiting nodule number (Lorteau et al., 2001; Mens et al. 2018). 94 

Cytokinin applications during early reproductive development (stages R1-R3) increased pod set 95 

(Ibrahim et al., 2007; Nonokawa et al., 2007; Passos et al., 2008; Yashima et al., 2005). Cytokinin 96 

seed priming or application to recently emerged seedlings also increased yield of other legumes but 97 

effects are unknown in soybean (Dhruve & Vakharia 2013; Fatimaet al., 2008; Naeem et al., 2004; 98 

Schroeder, 1984). Seed treatment with non-thermal plasmas increase soybean nodule nitrogenase 99 

activity, in part by increasing endogenous cytokinin concentrations (Pérez-Pizá et al., 2020). While 100 

cytokinin application can enhance BNF in chickpea (Cicer arietinum; Fatima et al., 2008), to our 101 

knowledge no studies have considered cytokinin application to improve BNF of early sown soybean. 102 

Since nitrogen supply is the most limiting factor to soybean yield (Rotundo et al., 2014) and cold 103 

temperature (<25oC) limit its uptake (Rufty et al., 1981; Tolley & Raper, 1985; Zhang et al., 1995), we 104 

tested whether N uptake varied between different genotypes and with cytokinin application. A 105 

controlled environment experiment assessed the effectiveness of cytokinin in enhancing BNF, then a 106 

field experiment with early and conventional sowing dates aimed to: (i) examine low temperature 107 



responses of different commercial soybean genotypes and (ii) test whether cytokinin application 108 

could enhance BNF in cold temperature. Since nodule formation and BNF are sensitive to cold 109 

temperature, we hypothesised that early sowing would limit BNF and any genotypic differences in 110 

cold tolerance will  reflect differences in N uptake. Moreover, we hypothesised that cytokinin 111 

treatment would enhance nodulation, helping to maintain BNF during exposure to low soil 112 

temperature.  113 

2 | Materials and methods 114 

Site conditions, treatments and experimental design  115 

A controlled environment experiment was conducted with soybean (Glycine max cv. Viola) to 116 

determine if cytokinin treatment could increase BNF by altering nodulation. Seeds were sown into 1 117 

L pots in a randomised block design with 12 biological replicates (one plant per pot) per treatment. 118 

After autoclaving, fine grade (1-3 mm) vermiculite (Sinclair professional, Ellesmere Port, UK) was 119 

used as the substrate. Before sowing, seeds were surface sterilised with 1% sodium hypochlorite and 120 

then repeatedly washed. Seeds were inoculated with 108 cells ml-1 of Bradyrhizobium japonicum 121 

USDA110 that was previously cultured on YEM agar (Somasegaran & Hoben, 1994) at 29°C. Two 122 

seeds were sown per pot, later thinned to one plant per pot just after emergence (VE). Pots were 123 

irrigated with modified N-limited Hoagland’s nutrient solution that lacked NO3
-, to prevent the 124 

inhibition of nodulation. Average greenhouse temperature was 29.8oC day/21.3oC night. Light was 125 

supplemented by high-pressure sodium lamps (600 W Greenpower, Osram, St Helens, UK) when 126 

photosynthetic Photon Flux Density (PPFD) was less than 400 µmol m-2 s-1 for a 12 h photoperiod 127 

(7.00 hrs to 19.00 hrs).  128 

The synthetic cytokinin kinetin (Sigma Aldrich) was applied via three application methods: seed 129 

priming, root (applied to substrate), and foliar spray. Seeds that were not primed in kinetin (root, 130 

foliar, and control) were primed in water and plants not sprayed with kinetin (root, seed primed, and 131 

control) were sprayed with water. For the seed priming treatment, 25 g of seed were submerged in 132 

25 mL of 10-7 (high) and 10-9 mol L-1 (low) kinetin solution for 4 h. Seeds were air dried in the 133 

greenhouse before inoculation and sowing later that day. Foliar and root application took place at 134 

early growth stages, VC and V1, respectively. Foliar spray was applied with a handheld pump 135 

pressure sprayer and root application by pouring 20 mL of kinetin solution onto substrate. Again, 136 

concentrations of 10-7 (high) and 10-9 mol L-1 (low) kinetin solution were used for both foliar and root 137 

applications.   138 



A field trial was conducted to determine genotypic differences in response to early sowing and 139 

assess the effectiveness of cytokinin treatments to improve BNF in low RZT under field conditions. 140 

Trials were sown during the 2018/2019 growing season, with three sowing dates of 25th September, 141 

8th November (early November) and 25th November (late November), at Campo Experimental 142 

Villarino, located in Zavalla, Santa Fe, Argentina (33o1’ S, 60o53 W; elevation 24.6 m). Soil and air 143 

temperature and potential evapotranspiration (Hargreaves & Samani, 1985) varied across sowing 144 

dates but precipitation did not (Figure 1; Supplementary Table 1). The USDA soil series (USDA) was a 145 

silty clay loam Vertic Argiudoll, Roldan series, and soybean was the previous crop. Soil (0 to 20 cm 146 

depth) had 2.86% organic matter, 13.9 mg kg-1  P, 5.8 pH, and N-NO3- were 12.5 mg kg-1 in 147 

September, 22.9 mg kg-1 in early November , and 7.1 mg kg-1 in late November. This rainfed 148 

experiment was sown in a field having a double crop of wheat (Triticum aestivum) and soybean 149 

during the previous season. 150 

Cytokinin treatments (kinetin; Sigma Aldrich) consisted of either seed priming (10-9 mol L-1 ), 151 

foliar spray (10-7 mol L-1) or water control. All seeds were submerged either in water (Foliar and 152 

control) or cytokinin solution (seed) for four hours, air dried and stored at 4oC until sowing the 153 

following day. Cytokinin treatment did not significantly affect emergence, measured 22 days after 154 

sowing. Foliar cytokinin treatment was applied at VC and V1 (rate of 50 L ha-1), with control and seed 155 

treated plants sprayed with water. We used two commercial soybean genotypes developed by 156 

Grupo Don Mario DM40R16 and DM50I17, maturity groups IV and V, respectively. For the late 157 

November sowing date, days from emergence to R7 (physiological maturity) for genotypes DM50I17 158 

and DM40R16 differed by 12 days. Figure 1 shows the phenology of genotypes from each sowing 159 

date. After drying, seeds were coated with inoculant and osmoprotector at recommended rates with 160 

RizoLiq LLI ® (Rhizobacter, Argentina) and seed insecticide and fungicide, Cruiser Advanced ® 161 

(Syngenta, Argentina) at recommended rates. A complete block design was used with genotypes and 162 

cytokinin treatments randomised within blocks, resulting in three plot replicates for each 163 

cytokinin/genotype combination per sowing date. Plots were over-seeded and hand thinned to a 164 

target plant population of 20 plants per m2. Manual sowing was necessary due to enlarged seed 165 

following seed priming, where seeds were evenly distributed into furrows approximately 3 cm deep. 166 

Each plot was 6 m long with 4 rows 0.52 m apart (plot size was 12.5 m2), with all measurements 167 

comprising the two central rows. Weeds and pests were chemically controlled with commercially 168 

available products as needed.  169 



Biomass and nitrogen concentration  170 

In the controlled environment experiment, plants were harvested at flowering stage (R1, ~30 171 

DAS), shoots were removed from the roots at the cotyledons and leaf area was measured using a 172 

leaf area meter (Model Li-3100C Li-Cor, NE, USA). Shoots were then dried at 60oC for 72 h to obtain 173 

shoot dry weight. After drying, entire stems were milled for relative ureide analysis (Peoples et al., 174 

1989; Santachiara et al., 2018).  175 

In the field trial, above ground biomass was sampled at the R1, R3, R5, and R7 phenological 176 

stages (Fehr & Caviness, 1977; Figure 1) from a 0.5 m2 area, leaving the first and last plant of the 177 

rows to prevent border effects. From each harvest, leaf area was measured with a leaf area meter 178 

(Model Li-3100C Li-Cor), and plants were separated into leaves and stems and dried at 60oC in an air 179 

forced oven. After drying, all plant parts were weighed to determine dry matter. Seed yield was 180 

determined at physiological maturity from the remainder of the plot (2.1 m2) using an experimental 181 

static harvester. After weighing, all plant biomass samples were milled to 1 mm. Nitrogen 182 

concentration in leaves and stems was determined using Kjeldahl procedure (McKenzie & Wallace 183 

1954). Nitrogen use efficiency was calculated by dividing total above ground biomass by total N 184 

uptake (Xu et al., 2012). Nitrogen harvest index was calculated by dividing total seed N content by 185 

total canopy N uptake at R7.  186 

Biological nitrogen fixation  187 

Stem samples were used to determine BNF by calculating relative abundance of ureides in both 188 

controlled environment and field trials (Hungria & Araujo, 1994). Ureide products from fixation 189 

(allantoin and allantoic acid), nitrates and amino acids (asparagine and glutamine) are determined 190 

and the ratio of each was calculated. Ground stem samples (0.4 g) were used to extract ureide, 191 

nitrate and amino acid in 0.1 mol L-1 phosphate buffer and ethanol heated to 80oC. After cooling, 192 

extracts were filtered and centrifuged at 10,000 g then stored at -20oC until analysis. The Young-193 

Conway’s method (Young & Conway 1942), Cataldo method (Cataldo et al., 1975) and ninhydrin 194 

method (Yemm & Cocking, 1955) were used to colorimetrically measure ureide, nitrate and amino 195 

acid N, respectively. Relative ureide was calculated as: 196 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑢𝑟𝑒𝑖𝑑𝑒 − 𝑁% = (
4𝑈

(4𝑈+𝑁+𝐴𝐴)
) × 100  197 

where U, AA and N are molar concentrations of ureide, amino acids and nitrate, respectively 198 

(Herridge & Peoples 1990). The amount of N fixed biologically (kg ha-1), for each harvest, was 199 

calculated by multiplying relative ureide N (%) by aboveground total N (kg ha-1; Herridge & Peoples, 200 

1990). By adding the amount of biologically fixed N at each harvest date plus the amount 201 



accumulated between each harvest date, total N coming from BNF at physiological maturity (kg ha-1) 202 

was determined. The ratio between biologically fixed N (kg ha-1) and total N uptake at maturity 203 

provides the final percentage of N derived from fixation (Ndfa%) for the growth period. The 204 

difference between aboveground total N (kg ha-1) and biologically fixed N (kg ha-1) indicates soil 205 

mineral N absorption. 206 

Nodulation  207 

In controlled environment experiments, root samples were frozen at -20oC until analysed, since 208 

these labour intensive measurements took 30 minutes per sample. Roots were scanned (Epson 209 

expression 11000XL Pro with transparent unit), then nodules were then removed from roots and 210 

again scanned (Figure 2). Roots and nodules were then dried at 60oC for 72 h to get nodule and root 211 

dry weight. ImageJ (1.51K; Schneider et al., 2012) was used to analyse root and nodule scans. Nodule 212 

position was estimated by digitally measuring the distance from the root crown to each nodule, 213 

using the plant label as a size reference. Nodule scans were used to both count and estimate the 214 

area of each nodule per plant using the “Analyse particle” function in ImageJ. Nodules were 215 

categories into size classes with the number of nodules between 3.5 mm and 4.4 mm diameter 216 

referred to herein as “4 mm nodules”. 217 

In the field trial, roots were sampled when each plot reached at R1, R3 and R5. Three plant 218 

samples were taken and frozen at -20oC until analysis. Root samples were thawed and washed 219 

before nodules were detached and photographed on a white surface with a size reference label. 220 

ImageJ (1.51K; Schneider et al., 2012) was used to count and measure nodule area (mm2). Once 221 

imaged, nodules were dried at 60oC and weighed.  222 

Data analysis 223 

A one-way analysis of variance (ANOVA) was run with the data from controlled environment 224 

experiment with cytokinin treatment as the main effect. For field trial data, ANOVA included sowing 225 

date, genotype and cytokinin treatment as main effects, with Protected Fisher’s least significant 226 

difference calculated for significant (p = <0.05) effects. Models were validated by checking the 227 

normality of the residuals and by plotting residuals against fitted values. All data analysis was 228 

performed in R software (RStudio Team, 2020).  229 

3 | Results  230 

Controlled environment experiment 231 

Cytokinin seed priming treatment (10-9 mol L-1) approximately doubled BNF (Table 1; p = 0.05) 232 

and increased total nodule area (63%; p < 0.05; Figure 2) compared with the control. Root cytokinin 233 



application (10-7 mol L-1) also increased total nodule area (64%; p < 0.05). Cytokinin treatments had 234 

no significant effect on total nodule weight, therefore in the subsequent field trial only nodule area 235 

was reported. Cytokinin seed treatments roughly halved (p < 0.05; Figure 2) the distance of nodules 236 

from the root crown (mm), meaning they were less spread across the root system. Cytokinin 237 

treatments did not alter shoot weight (p = 0.146), root weight (p = 0.129; Table 1) or leaf area per 238 

plant (p = 0.126). Therefore, cytokinin seed priming (10-9 mol L-1) was the most promising treatment, 239 

able to increase BNF and nodulation. 240 

Field trial yield and growth  241 

Sowing date did not significantly affect seed yield (p = 0.252) but genotype did (p = 0.011), with 242 

12% higher yield in DM50I17 than DM40R16. There was no significant genotype x sowing date 243 

interaction (p = 0.513), suggesting no difference in cold tolerance between genotypes 244 

(Supplementary Figure 1). Cytokinin seed priming did not significantly alter yield, but foliar 245 

treatment reduced yield (p < 0.05) by 18.6% from control (Table 2). However, a treatment x sowing 246 

date interaction (p = 0.03) occurred, with cytokinin foliar treatment only significantly (p = < 0.05) 247 

decreasing yield of early November sown crops. Thus, cytokinin treatments do not seem to benefit 248 

yield and may be detrimental in conventional sowing. Grain quality, indicated by seed N content, 249 

was not significantly affected by sowing date, genotype, or cytokinin. However, cytokinin seed 250 

treatment more than doubled grain N of DM40R16 in early November sowing compared to control 251 

(p < 0.05), leading to a marginal cytokinin x genotype x sowing date interaction (p = 0.057; Table 2).  252 

September sown crops had significantly (p < 0.05) lower specific leaf area, 30% and 45% less 253 

than the early November and late November crops, respectively. Specific leaf area of DM50I17 was 254 

14% higher than DM40R16 (p = 0.01). Both genotypes significantly decreased their specific leaf area 255 

from September to late November, DM40R16 by 69% and DM50I17 by 28% (Supplementary Figure 256 

1), without a significant genotype x sowing date interaction (p = 0.128) indicating no difference in 257 

cold tolerance. 258 

Nitrogen source, use efficiency and harvest index 259 

Late November sowing accumulated more canopy N (12% and 21%) than the September and 260 

early November sowing (Table 2), but there was no significant genotype or cytokinin effects. 261 

However, September sown plants derived significantly more (p = 0.001; Table 2) of their N from BNF 262 

(Ndfa%) than later sown plants: 20% and 11% greater than in early November and late November 263 

sowing. Genotype did not affect Ndfa%, but late November sown DM50I17 had lower (39%) BNF 264 

than September, while this effect was not seen in DM40R16 (Figure 3A), as indicated by a genotype x 265 

sowing date interaction (p < 0.001). Percent BNF was also increased in DM50I17 compared with 266 



DM40R16 in early November sowing date (p < 0.05; Figure 2A). Therefore, early sowing increases 267 

plant reliance on BNF compared to those sown at more conventional times, with BNF of DM50I17 268 

(but not DM40R16) significantly affected by sowing date.  269 

The effect of sowing date on BNF changed across the growth period (Table 3). At early 270 

reproductive stages (R1 and R3), BNF was higher in late November than September (74% and 40%, 271 

respectively; p < 0.05) sowing. However, at R7, BNF in September was 26% greater than late 272 

November (p < 0.05). Genotype affected BNF only at R1, with DM50I17 deriving 46% more N from 273 

fixation than DM40R16 (p < 0.05). The effectiveness of cytokinin treatments in altering BNF also 274 

varied at different stages. At R1, foliar application of cytokinin reduced BNF by 30% (p < 0.05) but at 275 

R3 cytokinin seed priming increased BNF by 13% (p < 0.05). Thus, delayed BNF due to early sowing 276 

leads to increased BNF at maturity, with genotypic differences only seen at early reproductive stages 277 

and effects of cytokinin treatment being stage dependent.  278 

Soil N uptake was 23% higher for the late November than the September sowing (p < 0.05; Table 279 

2). Soil N uptake was higher (12%; p = 0.027) in DM50I17 than DM40R16. Again, there was a 280 

genotype x sowing date interaction (p < 0.001), with increased soil N uptake (~32%) in the late 281 

November sowing of DM50I17 compared with other sowing dates of both genotypes (Figure 2B). 282 

Therefore, soil N uptake is limited by early sowing date and only DM50I17 increased soil N uptake in 283 

response to later sowing. 284 

Overall, cytokinin treatment did not increase BNF (Table 2). However, cytokinin seed treatment 285 

increased BNF of DM40R16 by 21% compared to control (p < 0.05) but not in DM50I17, giving a 286 

significant cytokinin x genotype interaction (p = 0.002; Figure 4A). The effect of cytokinin also 287 

depended on sowing date (p < 0.001), with foliar cytokinin treatment increasing BNF in early 288 

November but decreasing BNF in late November sowing (p < 0.05; Figure 4C). Thus cytokinin seed 289 

treatment tends to increase BNF, but this is genotype and sowing date dependent.  290 

Cytokinin seed priming decreased soil N uptake by 35% (p < 0.05) in DMR40R16 but did not 291 

affect DM50I17, resulting in a cytokinin x genotype interaction (Figure 4B; p = 0.009). Foliar cytokinin 292 

treatment decreased soil N uptake by 47% (p < 0.05) compared with the control in the early 293 

November but not other sowing dates, resulting in a significant cytokinin x sowing date interaction 294 

(Figure 4D; p < 0.05). Thus, cytokinin seed priming reduces soil N uptake but this is genotype and 295 

sowing date dependent.  296 

Nitrogen use efficiency (NUE) was higher in September and early November than late November 297 

(~24%; p < 0.05; Table 2). For the September sowing date, NUE was 25% greater in DM50I17 than 298 



DM40R16, with a marginal effect (genotype x sowing date interaction p = 0.067; Supplementary 299 

Figure 2). Nitrogen harvest index (NHI) was also higher in September and early November than late 300 

November (7% and 15%; p < 0.05). Therefore, assimilation of N into canopy and grain was more 301 

efficient in early sowing dates.  302 

Nodulation 303 

At R1, the late November sowing had 63 and 46% more nodules than September and early 304 

November sowing, respectively (p < 0.05; Table 4). At R5 the opposite was evident, with nodule 305 

number increased in the September than late November sowing (by 38%; p < 0.05). There was a 306 

marginal genotypic effect, with DM50I17 having more nodules than DM40R16 (32%; p = 0.057) at R1 307 

but not at R3 or R5. Cytokinin application did not affect nodule number at any of the stages. Like 308 

BNF, early sowing date only affected nodulation at R1 and R5 and not R3, decreasing nodule number 309 

at R1 but increasing it at R5.  310 

Average nodule size followed a similar pattern with increased (37%; p < 0.05; Table 4) nodule 311 

size at R1 in late November than September sowing. At R3 and R5, nodules were larger in September 312 

than late November sowing (19 and 33%, respectively; p < 0.05). Thus, early sowing delayed both 313 

nodule development and senescence.  314 

Similar trends occurred in other nodule traits (Supplementary Table 2). At R1 and R3, the number of 315 

4 mm nodules were greater in late November than September sowing, but at R5 the September 316 

sowing date had more than double the number of 4 mm nodules than those sown in late November. 317 

Equally, at R1, total nodule area in late November sowing was close to four times that of September 318 

while at R5 total nodule area in late November was more than 50% that of September. This gives 319 

further evidence that early sowing delays nodulation.  320 

4 | Discussion  321 

Genotypic responses to early planting 322 

Cold environments restrict plant N accumulation, with BNF thought to be more sensitive than 323 

soil N uptake. Although cold soil temperature limits total nitrogen accumulation (Table 2), 324 

surprisingly soil nitrogen uptake was more affected by low RZT than BNF, contrary to previous 325 

findings in controlled environments (Legros & Smith 1994; Matthews & Hayes 1982; Thomas & 326 

Sprent 1984). Here, BNF was 11% higher in September than the late November sowing, but soil N 327 

uptake was 23% lower. As early sowing reduces soybean root growth (Turman et al., 1995) thus 328 

limiting N uptake at low RZT (Alsajri et al., 2019; Ouertani et al., 2011; Rufty et al., 1981; Tolley & 329 

Raper 1985), this may explain why soil N uptake is more limited in the field compared to pot grown 330 



plants in controlled environments. Differences in soil depth exploration affects the amount of N 331 

available to field-grown crops (Voisin, 2003), whereas root exploration in pots is unlikely to be 332 

limiting. In cool growing conditions, increased BNF may compensate for limited soil N availability 333 

thus maintaining yield. BNF increases with evapotranspiration (Cleveland et al., 1999), therefore 334 

increases in potential evapotranspiration across sowing dates (Figure 1; Supplementary table 1) do 335 

not account for higher BNF in early planting.  Differences in the timing and severity of cold stress 336 

might also explain the disparity between controlled and field environments, even though to our 337 

knowledge, the effects of early sowing on soybean N source have not been shown previously.  338 

 Despite different cycle lengths (Figure 1), early maturing DM40R16 (MG IV) was no more 339 

sensitive to cold than DM50I17 (MGV), both with similar yield and specific leaf area in response to 340 

early and conventional sowing dates (Supplementary Figure 1). Previously, early maturing soybean 341 

genotypes appeared more sensitive to low temperatures, due to shorter vegetative growth (George 342 

et al., 1988; Heatherly, 2005; Salmeron et al., 2014) but this was not seen here. However, soil N 343 

uptake in DM50I17 was more cold sensitive than DM40R16, requiring increased BNF in early sowing 344 

to allow maintained yield (Figure 3). As total canopy N at maturity was equal in genotypes in each 345 

sowing date, the 25% increase in NUE in September sown DM50I17 likely maintained yield 346 

(Supplementary Figure 2), possibly because an increased proportion of N was derived from fixation. 347 

Therefore, increased BNF, enabling consistent N supply and enhanced NUE, overcame cold 348 

sensitivity. Maximising BNF may require decreased fertiliser N applications, as these inhibit 349 

nodulation (Santachiara et al., 2019), but this will depend on soil N levels at sowing as early canopy 350 

growth is critical for crop establishment. Available mineral N accumulates during the growing 351 

season, as soil temperature increases, due to organic matter mineralization (Haynes et al.,1993).  352 

Early sowing delayed BNF  (Table 3), as previously reported (Zimmer et al., 2016), but 353 

additionally we show delayed decline of BNF resulting in higher rates of fixation in late reproductive 354 

stages. Increased BNF enhanced nitrogen harvest index (Santachiara et al., 2018) and early soybean 355 

sowing increased seed quality (Rahman et al., 2005) as here and marginally increased grain N 356 

content in early sowing dates (Table 3). Biologically fixed N is more rapidly assimilated into pods and 357 

seed whereas N from soil is first assimilated into vegetative tissue then remobilised into 358 

reproductive parts (Ohyama, 1983). High N demand during grain filling promotes foliar senescence 359 

due to remobilisation of N from vegetative tissue, with high yielding varieties maintaining N supply 360 

during seed filling (Kumudini et al., 2002). Therefore early sowing increased BNF at late reproductive 361 

stages, which likely helped maintain yield when soil N supply was limited as a consequence of early 362 

sowing. 363 



Nodule lifespan in many legumes is environment and genotype dependent (Vessey, 1992), but 364 

the effect of early soybean sowing on nodule senescence has not been considered previously (Puppo 365 

et al., 2004). Here, early sowing delayed nodule senescence (Table 4), perhaps due to more 366 

favourable RZT in later growth. Limited canopy N accumulation in early growth may limit later pod 367 

filling due to reduced N available for remobilisation, leading to increased N demand in reproductive 368 

stages. Carbon competition between pods and nodules was previously thought to occur, thus 369 

reproductive N supply from BNF would limit yield. However, male-sterile soybean show similar 370 

declines in BNF in later growth, suggesting limited C competition between pods and nodules 371 

(Imsande & Ralston 1982; Riggle et al., 1984). Therefore delayed nodule senescence and prolonged 372 

BNF may benefit early soybean production.      373 

Although nodule size has been suggested to influence BNF more than other nodule traits (de 374 

Araujo et al., 2017; Tajima et al., 2007; Voisin et al., 2003), contrarily greater fixation was seen in 375 

DM50I17 with smaller nodules than DM40R16. We confirm a genotypic effect on the timing of BNF 376 

(Hamawaki & Kantartzi 2018) and additionally show this occurs for nodulation; however nodulation 377 

and the timing of BNF were not correlated (Table 3 and 4). Low RZT delays BNF and nodule 378 

formation (Zhang et al., 1995) in both genotypes (Tables 3 and 4) and therefore does not explain 379 

differences in N supply across sowing dates. To better understand N dynamics, nodulation should be 380 

monitored at different stages as significant genotypic differences were detected only at R1 and R5 381 

not R3 (Table 4). Commercial genotypes with differential N accumulation patterns (Rotundo et al., 382 

2014) may in part be due to improved nodulation missed previously. 383 

Effectiveness of cytokinin treatment 384 

In controlled environment trials, cytokinin seed priming increased nodulation thereby enhancing 385 

BNF, with increased total nodule area (Table 1). Low concentration of cytokinin (10-9 mol L-1) was 386 

more effective in promoting nodulation (Table 1); likely because high cytokinin concentrations 387 

stimulate ethylene production, which limits nodulation (Lorteau et al., 2001). Further development 388 

of cytokinin-based treatments to enhance nodulation should investigate cytokinin and ethylene 389 

levels in field-grown plants.  390 

Reduced nodule distribution on roots following cytokinin seed priming (Table 1 and Figure 2), 391 

suggested enhanced nodule initiation during early growth. At certain distances from the root tip, 392 

susceptibility to nodulation is greatest due to root hair formation (Bhuvaneswari et al., 1983; Calvert 393 

et al., 1984) thus less distributed nodules (closer to the root crown) resulted from earlier formation. 394 

Since low RZT typically delays nodulation, enhanced nodule formation caused by cytokinin treatment 395 



may be beneficial. Further investigations of how cytokinin application affects early nodule signalling 396 

are required, for example if cytokinin seed priming stimulates early nodulin gene expression. 397 

In our field trial, cytokinin seed priming increased BNF, although this depended on genotype (in 398 

DM40R16), sowing date (Figure 4) and stage (Table 3). However, cytokinin seed priming also reduced 399 

soil N uptake perhaps by reducing root growth as cytokinin application can limit root elongation and 400 

lateral root formation by increasing ethylene levels (Bertell & Eliasson 1992). Although root growth 401 

was not measured in field trials, cytokinin application did not decrease root growth in controlled 402 

environment (Table 1) and continuous cytokinin treatment was required to inhibit root growth 403 

(Bertell & Eliasson 1992). Cytokinin treatment was marginally more effective in early sowing dates, 404 

with a cytokinin x sowing date interaction (Figure 4C). Thus, cytokinin effects in enhancing BNF are 405 

more beneficial in low temperature when plants depend more on N supply from BNF. Although 406 

cytokinin treatments show promise in enhancing BNF, the complexity of their response, seen here 407 

and previously (Koprna et al., 2016), requires further trials. These may include a greater variety of 408 

genotypes, particularly of varying maturity groups (Salmeron et al., 2014), different treatment 409 

concentration (10-6 mol L-1) or cytokinins (6-benzylaminopurine or N6-(Δ2-isopentenyl)- adenine) 410 

used previously (Mens et al., 2018).  411 

Conclusions 412 

Novel results herein are four-fold. Firstly, we field-test cytokinin treatments for their 413 

effectiveness in altering nodulation and BNF. Although our controlled environment trial suggested 414 

cytokinin treatment can enhance BNF and early nodule establishment, our field trials do not fully 415 

support their agronomic benefit, as additional cytokinin treatments did not increase total N uptake 416 

or yield. Second, characterisation of soybean N uptake during cold stress shows maintenance of N 417 

supply is important for maintaining yield in low temperature, with soil N uptake more sensitive to 418 

cold than BNF, contrary to much of the relevant literature. We hypothesise this is due to limited root 419 

growth in early sowing. BNF was important in maintaining N supply in early sowing leading to 420 

consistent yields across sowing dates. This is of great consequence to soybean N management as it 421 

emphasises the importance of strategies to enhance BNF in cool environments. Third, we show that 422 

soil N supply was more sensitive in one genotype but was able to compensate with increased BNF to 423 

secure its N supply across soil temperatures, thus stabilising yields. This indicates the importance of 424 

appropriate selection for early sowing. Lastly, early sowing can delay nodulation and BNF, but this 425 

may be beneficial by prolonging BNF and improving N harvest index at the end of the season.  426 

 427 

 428 
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