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Abstract
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Submission Date: January 2020

This thesis considers the connection between an individual’s health and place - that is,
variation in where one lives and the process of moving itself. It comprises three self-
contained empirical chapters that are unified under this broad theme. It begins by con-
sidering the impact of moving house more generally, before moving on to look at more
specific topics: living on the UK coast and living at University.

The first empirical chapter asks the question: What is the effect of moving residence on
health? It considers the empirical challenges in identifying causal effects for such phe-
nomena. Themainmethodology for doing so, involves using spatial and inter-temporal
variation in local school quality and house prices, as Instrumental Variables for chang-
ing address. These data (available publicly) are mapped to households that were in-
terviewed as part of the British Household Panel Survey and Understanding Society
providing a rich dataset containing information at the individual, household and local
area level. This paper goes on to address the question of how a move affects short-
term health using a regression discontinuity-type design, considering the differences
in health between those who were interviewed just before and just after they changed
address. It finds, in general, that local school quality is a strong instrument for moving
residence, and doing so leads to worse self-assessed health.

The second empirical chapter considers a more specific question about the health of
those who live on the UK coast. UK data shows that health amongst the working-age
population (16-64 years) is worse on the coast than elsewhere. For example, there is
a much greater prevalence of limiting long-term health conditions on the coast as op-
posed to the average for England and Wales. Despite this, there is a lack of literature
that considers the potential reasons for these differences and how they can be identi-
fied; this paper addresses this gap. Using data on health and other characteristics from
all five waves of Understanding Society, this chapter quantifies the differences in health
and health-related outcomes on the coast compared to inland. Detailed geographic data
are used to construct a distance to the coast measure, which is used as the main distinc-
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tion between a coastal and non-coastal area. The analysis finds that most health-related
outcomes are worse on the coast, including long-standing health conditions, disability
benefit claimants and smoking and drinking prevalence being more likely.

The final empirical chapter considers the mobility of students attending university, and
their life satisfaction in early adulthood. The move to university is often the first ma-
jor independent change of residence that an individual faces. At the same time, a large
proportion of students live at home while they study. Data on a cohort of university
attendees from the Longitudinal Survey of Young People in England (LSYPE) and the
follow-up study, Next Steps, is used to assess the impact of moving away from home
on early-adult life satisfaction. A random sample of children, born in 1989/1990, were
surveyed annually between the ages of 13 and 19 years old, and then again when aged
25 (Next Steps wave). Life satisfaction is modelled for graduates aged 25 years, using an
ordered probit approach, controlling for individual characteristics at various points in
the student’s life, such as external locus of control and psychosocial health. I also par-
tial out parental and household factors such as household income, parental education,
parental occupation, and the number of siblings in the home. The analysis finds that
life satisfaction of males who move away is much higher than those who do not; there
is no effect for females. Instrumental variable ordered probit models address the en-
dogeneity of moving away to university, and mediation analysis assess some potential
mechanisms behind these differences.

Where an individual lives, and the process of moving, is a determinant of health. More
research is needed to disentangle this complex and heterogeneous relationship, with a
view to identify policies with which to facilitate internal migration, and improve health
outcomes.
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CHAPTER 1 1.1 GENERAL BACKGROUND

1.1 General Background

There is a growing emphasis on health research in which place, or location matters, yet

there remain many under-researched areas which have the potential to inform and im-

prove health policy. For this thesis, the topic of health and place includes both location

and relocation, or migration. How these phenomena affect the health of locals or those

who move is the subject of this thesis.

The UK health budget is allocated to Health Authorities based on local need. Implicitly,

variation in local characteristics affect the demand for health care in different areas. A

greater understanding of how place-related features affect the health of local popula-

tions is vital for the adequate provision of resources.

Specifically, it could be that particular characteristics need to be accounted for in the

resource allocation formula, or that some areas - such as the coast in the UK - have a

greater need for health resources that is only revealed from a place-based, quantitative,

approach. It may be possible to identify different patterns of need that arise through

empirical consideration of spatial features this way.

Looking in detail at differences within groups, such as those who move and those who

do not - whether through choice or not - may help identify vulnerable groups of society

who are in a position potentially detrimental to their health and wellbeing. A greater

understanding of these groups of people can help influence housing policy in away that

is both more efficient, and is closer to maximising social welfare.

More generally, health systems generate social value within local communities. It is im-

portant to further knowledge of how health is affected locally to maximise this value.

The Health Foundation report highlights a need for the NHS to support “inclusive

economies”, saying that there is a growing synergy between the “place-based” lens of

the NHS and broader policy that emphasizes localism. It is crucial to support this grow-

ing synergy with robust empirical evidence of all aspects of place-based health.

2



CHAPTER 1 1.1 GENERAL BACKGROUND

Regional disparities in health have been highlighted between the North and South of

England (see, for example, Bambra et al. (2018)). There could exist other such impor-

tant, divisive, spatial domains. The coast in the UK is one such domain, and the left-

behind economies that reside there may have a systematically different need for health

and healthcare. Identifying such need may be far-reaching in terms of policies that are

aimed at boosting these local areas, which may become even further left behind in the

wake of Brexit.

The UK has seen a greater embrace of the devolution of power over the last decade.

With more governing power in the hands of local authorities, it is critical to support

local policy with robust quantitative evidence. How place-based factors affect health,

and howmigrationmeans the ever-changing local populations place differing demands

on the healthcare system are two core health policy issues that will benefit from further

research in these areas.

There is also an important interplay between location and education. University at-

tendance is a major factor in the migration of young populations within the UK, for

example, and there is little known about the effects of doing so. School choice, due to

catchment areas, is also inherently related to where a household resides, and plays a

major role in determining when and where relocation may take place. As such, educa-

tion plays a role in two out of the three empirical chapters, where school quality and

moving to university play a role.

This thesis consists of three self-contained empirical chapters that are linked by the

micro-econometric techniques they use, and that location and health are the central

themes of interest. The first empirical chapter considers the effect of moving home on

health, the second investigates differences in health and health-related outcome on the

UK coast versus inland, and the final empirical chapter assesses how living away from

home during university can affect early-adult outcomes.

The remainder of this introductory chapter provides some context and background for

the empirical chapters and how they contribute to the relevant literatures relating to

3



CHAPTER 1 1.1 GENERAL BACKGROUND

health and place. It begins with some definitions of what is meant by “place” in this

thesis, with a brief overview of some related literature and descriptive statistics for the

UK. Health, and how it is measured, is then outlined. The motivation and aims of the

overall thesis are then explicitly stated, before providing an overview of the three em-

pirical chapters to follow.

1.1.1 Place: definitions and its effect on health

The common theme of each empirical chapter is considering, generally, the effects of

place on health. This section defines what is meant by place and, more generally, place

in the context of this thesis. Specifically, each empirical chapter focuses on a variable

of interest that either captures the effect of moving between places (migration), or the

effects of a spatial characteristic - namely areas on the coast.

Migration

Migration - any change in residence between two places - can be divided into two broad

themes: internationalmigration and internal (or domestic)migration. Both have been in

the remit of economists, in terms of both the determinants and consequences of migra-

tion, for some time. There has been a greater focus on international migration however,

and there remains a dearth in the literature on internal migration - particularly in the

UK. It is this that takes the focus of the thesis. The remainder of this section will give a

brief overview of the international migration and health literature, before moving on to

the internal migration and health evidence.

The economics literature has tended to focus on the employment andfiscal consequences

of international migration on both receiving and donor countries (Borjas, 2015). Labour

economists in particular have focused on the market implications of those whomigrate,

with the movement of people from countries of lower to higher labour productivity the

main economic driver (Sachs, 2016). There ismixed evidence onwage effects (Dustmann

et al., 2016). Some studies find, for native workers, positive wage effects (Ottaviano &

Peri, 2012); some find minor effects (Card, 2009); and others negative effects (Borjas,
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2003).

A subset of the international migration literature considers instead the health returns

of migration. Most health economics and public health studies find a “healthy migrant

effect” (Abraido-Lanza et al., 1999). A failure to control for self-selection by most early

studies has led to a hypothesis that migrants are positively selected on health (Palloni &

Arias, 2004; Farré, 2016). Some studies have adopted a pseudo-experimental estimation

framework in an attempt to address this. Gibson et al. (2013) (2013), for example, exploit

a migration lottery to estimate the impact of migration onmeasured blood pressure and

hypertension. They find that migration increases both measures, and these results per-

sist after adjusting for selective non-compliance within the natural experiment.

Internal migration is at the center of chapters 2 and 4. One of the earliest economic theo-

ries of internal migration was fromMincer’s work on the household migration decision

(Mincer, 1978). He recognised that positive net benefits at the family level drive relo-

cation. If individuals moved purely based on their own costs and benefits of doing so,

we would expect positive wellbeing returns to moving, and also positive health returns.

With moving posited as a household-level decision, however, this leaves the option of

gainers and losers within a family. Hence there can be positive health returns for some

and negative for others.

Themost compelling evidence of the impact of internal migration comes from literature

which exploits the Moving to Opportunity (MTO) randomised experiment. The MTO

programme enlisted households residing in public housing, based in poor areas from

five US cities: Baltimore, Boston, Chicago, Los Angeles and New York (Chetty et al.,

2016). The households were randomly assigned, via a lottery, to two treatment groups

that received housing vouchers for low-poverty areas and regular housing vouchers;

the control group received no assistance fromMTO. The literature finds positive labour

market and education effects for children whomoved from high poverty to low poverty

areas (Chetty et al., 2016; Sanbonmatsu et al., 2006) and large positive effects on physical

health, mental health and subjective wellbeing for both adults and children (Katz et al.,

2001; Clampet-Lundquist & Massey, 2008; Ludwig et al., 2013; Kling et al., 2007).
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Much of the literature that considersmigration and health does so using data from large

countries, such as the US or China, and focuses on rural-urban migration. Johnson

and Taylor (2018) for example, examine rural to urban migration in the United States

throughout the early 20th century and its effect on long-term health and longevity. Us-

ing the location of railway lines as an instrument they find that, despite an increase in

lifetime wealth, migrants are worse-off in later-life health. Chen (2011) explores rural

to urban migration in China using a small household survey. They find evidence of a

“healthymigrant phenomenon” on self-ratedphysical health. Using panel data from the

Indonesian Family Life Survey, Lu (2008) finds that movers select based on past health

status, but the magnitude of this depends on the type of move.

All of the empirical chapters in this thesis utilise data from the UK. There are several

studies which have considered the effect of domestic mobility on health and/or wellbe-

ing in the UK. Most studies use panel data, and are thus able to control for unobserved

(time-fixed) individual heterogeneity in health outcomes. Moh’d and Ajefu (2017) find

that individuals who move report higher health outcomes, but not mental health indi-

cators. This is attributed to positive health selection, as apposed to any causal effect of

moving on health. Other studies find negative health effects of moving (Tunstall et al.,

2014; Morris et al., 2017), with some finding both negative and ambiguous effects in the

short-run (Nowok et al., 2013; Whittaker, 2012).

In summary, the literature on migration and health is mixed, and there is a clear need

for further research in this area. This is especially the case for research that considers

internal migration, as the majority of papers tend to focus on international mobility

(Moh’d &Ajefu, 2017). Alongside this general gap in the literature on domestic mobility

and health, there is little evidence on howmoving at different ages can influence health

and wellbeing. Younger migrants tend to be healthier, and early-adulthood represents

the peak age for migration (Norman et al., 2005). In migration studies more generally

there is a lack of attention paid to the age-profiling of movers (Norman & Boyle, 2014),

and this represents another gap in the literature that would significantly gain frommore

work in the area.
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Local characteristics and the UK coast

Much of the literature that considers place in a health context focuses on a particular

local characteristic, and how these influence the health of these populations. Some

relevant examples include prevalence of green and blue space, commuting behaviour,

neighbourhood effects and local community assets. This section continues by provid-

ing a contextual overview of some of these related literatures, before identifying a gap

within them about the UK coast.

There are structural features, at the local level, that can influence health and quality of

life. Community assets are one such way in which local features can influence the lives

of local residents. Munford, Sidaway, et al. (2017) found, for example, that participa-

tion in community assets is associated with substantially higher health-related quality

of life, and that there is a potentially substantial social value generated by developing

these assets.

There is evidence to suggest that variation in local geographical factors can influence

health. There is a large body of evidence on the influence of greenspace and health.

De Vries et al. (2003) find, using Dutch data on the self-reported health of 10,000 peo-

ple, that living in a green environment was associated with positive health outcomes.

This effect is amplified for the elderly and those of a lower educational background. A

systematic review of green spaces and mortality finds an inverse relationship between

surrounding greenness and all-cause mortality (Rojas-Rueda et al., 2019). In a similar

fashion to greenspace in the literature, “bluespace” is defined: “health-enabling places

and spaces, where water is at the centre of a range of environments with identifiable

potential for the promotion of human wellbeing” (Foley & Kistemann, 2015). Bluespace

alsomatters: there is limited evidence to suggest that bluespace can affectmental health,

but it is recognised that there is a strong need for further research in this area (Gascon

et al., 2015). There is also the potential for bluespace to be framed as a health-enabling

resource (De Vries et al., 2003; Foley & Kistemann, 2015), and used as a platform for

physical exercise (Pasanen et al., 2019).

Another, related, strand of literature is that which considers health on the UK coast.
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There is limited evidence which suggests that there are health differences in popula-

tions that reside on the coast. There has also been media interest highlighting potential

problems with coastal health and the local economic climate of these areas more gen-

erally. The existing literature, which is outlined in more detail in chapter 3, does not

consider in any detail the extent to which these differences in health are attributable to

selection on unobservable characteristics that may affect living on the coast and an in-

dividual’s health.

There has been a recent recognition that populations on the coast are generally worse

off than those inland. Corfe (2017) analysed recent economic and social data at the local

authority level, and highlights several problematic features. Five of the ten local author-

ities in Great Britain with the lowest average employee pay are in coastal communities,

with average annual gross pay on the coast around £3,600 lower in coastal communi-

ties. These inequalities are also worsening: in 1997 economic output per capita was

23% lower in coastal communities, and by 2015 this gap had increased to 26%. Worse

outcomes on the coast are not limited to economic indicators: two of the 20 local author-

ities with the highest proportion of poor health are coastal communities1. Despite these

stark figures, there is relatively little empirical evidence that investigates health on the

coast.

Chapter 3 makes a contribution to the small existing literature that considers health on

the UK coast by bringing a robust econometric approach that specifically considers to

what extend selection on unobservables may play a role in explaining the health differ-

ences. It also does this using a large panel data set which is new to the coastal literature.

1.2 Motivation and Aims

It is clear from this general background to health and place as a research topic that this

is an important, policy relevant, research area with some underdeveloped areas of the

literature. Specifically: how local characteristics and internal migration can affect health

are two such literatures which can benefit from further research in these areas; this the-
1Specifically: Neath Port Talbot, Blackpool, Bridgend, Sunderland, Barrow-in-Furness, Carmarthen-

shire, East Lindsey, South Tyneside, County Durham and Hartlepool (Corfe, 2017).
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sis aims do do so. The remainder of this section outlines the specific research questions

and contributions that this thesis makes.

This thesis aims to extend the literature in three distinct, but related, areas. Firstly it

considers how internalmigration can affect health. This is a relevant question for policy-

makers as there is relatively little known about the consequences of internalmigration in

the UK. Secondly, it investigates specifically the differences in health and health-related

behaviour, and the potential mechanisms behind them. Again, given the pressures on

the NHS in the UK, identifying areas of unmet need is of crucial importance to decision

makers in order to improve the effectiveness and efficiency of health resource allocation.

Finally, it look s at how internal migration can affect young adults - namely university

students in theUK. It considers howmoving away to university can differentially impact

early-adult life satisfaction versus those who remain at home during study. Ultimately,

this thesis provides new evidence on the role of place in an individual’s health, at vari-

ous stages in life, and helps to identify potential populations of need.

1.3 Thesis structure and Overview

In addition to this introductory chapter, and a final conclusive chapter, this thesis con-

sists of three substantive empirical chapters. As this thesis is written in an alternative

format, these empirical chapters are presented in the style of stand-alone journal pub-

lications. Each has its own literature review, introduction and conclusion. The inter-

section of each chapter, and the overall theme of the thesis however, is a contribution

to the set of knowledge about how health and place are interrelated. The rest of this

section outlines each of these empirical chapters, including information about the data

and identification strategies used, and a brief overview of the results.

The first empirical chapter asks the question: What is the effect of moving residence on

health? I consider at length the empirical challenges in identifying causal effects for such

phenomena. The main methodology for doing so, involves using spatial and intertem-

poral variation in local school quality and house prices, as Instrumental Variables for

changing address. These data (available publicly) are mapped to households that were
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interviewed as part of the British Household Panel Survey and Understanding Society

providing a rich dataset containing information at the individual, household and lo-

cal area level. In order to address the endogeneity of moving home, an Instrumental

Variables identification strategy was used, with local school quality and the age of the

youngest child comprising the main instrument set. The rationale behind this instru-

ment is that the schooling decisions play a large role in a household’s decision to move,

and the potential health effects are either ignored or unknown to the household that

moves. The main findings of the chapter are that moving house has a negative effect on

an individual’s self-assessed health outcomes, once instrumenting for moving home.

However, the imprecision of these estimates once using an instrument mean that they

must be treated with caution. The analysis went on to consider short-run effects in an

RDD-type set up, which compared movers who were interviewed in the 12 months be-

fore, and 12 months after they moved home. Doing so revealed a negative anticipatory

effect of moving in the few months prior to doing so followed by an offsetting positive

effect in the three months post move.

The second empirical chapter considers a more specific question about the health of

those who live on the UK coast. UK data shows that health amongst the working-age

population (16-64 years) is worse on the coast than elsewhere. For example, there is

a much greater prevalence of limiting long-term health conditions on the coast as op-

posed to the average for England and Wales. Despite this, there is a lack of literature

that considers the potential reasons for these differences and how they can be iden-

tified; this paper addresses this gap. Using data on health and other characteristics

from all five waves of Understanding Society, I quantify the differences in health and

health-related outcomes on the coast compared to inland. Detailed geographic data are

used to construct a distance to the coast measure, which I use as the main distinction

between a coastal and non-coastal area. The analysis reveals that there are potential

health-promoting features of the coast in terms of physical exercise - with those living

on the coast participating in more frequent physical activity. However, this positive

finding is offset by a higher prevalence of smoking, disability claimants and those with

long-termhealth conditions. This suggests that theres a greater health need on the coast,

comparedwith otherwise similar areas, and the resource allocation formula should take
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these differences into account.

The final empirical chapter considers the mobility of students attending university, and

their health and labour outcomes. The move to university is often the first major inde-

pendent change of residence that an individual faces. At the same time, a large pro-

portion of students live at home while they study. I consider the differences in post-

graduation outcomes for thosewhomove away from, versus thosewho remain at, home.

The data allow for the partialling out of pre-, during-, and post-university individual

characteristics, as well as parental and household controls. Heterogeneous effects were

found, with males reporting much higher life satisfaction if they lived away from home,

whereas females who moved away showed no significant difference in early adult life

satisfaction. It also considers the interactions between health and attending a Russell

group university as a proxy for university quality, and Muslim students who are likely

to face different financial constraints surrounding student finance and Islamic beliefs.

The analysis shows that Male Muslim students are better off if the remain at home,

whilst Males who move away are better off if they attend a Russell group University.

The endogeneity of moving away is addressed by using the individual’s grandparents’

university attendance as an instrument in an IV ordered probit model, and mediation

analysis was performed to assess the potential role of income and an individual’s exter-

nal locus of control in explaining the difference in effect for males and females. Neither

income nor loci of control act as an indirect effect of moving on life satisfaction, and so

the mechanism behind moving must either be direct or due to some other unobserved

factor to the analysis.
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CHAPTER 2

Home is where your health is: the
impact of internal migration on
health and wellbeing

Abstract

There exists a large body of evidence around the issue of internal migration, with most considering the
labour market implications of relocation. Less attention has been paid, however, to the health implications
of migration; specifically, how it can affect health and wellbeing. This paper contributes to that literature
by considering the causal effect of internal migration and health, using rich data from the UK. Data is
used from all waves of the British Household Panel Survey (BHPS), from 1991-2008, and five waves of Un-
derstanding Society (USoc), from 2010-2015, with access to local area-level data in each. Individuals are
followed over this period, including if, when andwhere householdsmove. There are around 6,700 individ-
uals who are in both data, and our full sample size (N*T, for those in BHPS, USoc, or both), conditional on
full information, is 107,736. For identification, age of the youngest child in the household interacted with
local school quality, and house prices, are used as instrumental variables for internal migration. Measures
of health and wellbeing, including the General Health Questionnaire (GHQ), self-assessed health, and
whether or not the individual has a long-term health condition, are used as dependent variables. Once the
endogeneity of migration is accounted for, the analysis shows that there are negative health consequences
of moving. In particular, individuals who move are more likely to have a health condition, less likely to
report very good or excellent self-assessed health andworse GHQ-12 scores. These results are insignificant
when accounting for endogeneity with various instruments. This paper also finds that there are short-term
negative mental health consequences of moving, but these return to a baseline level around 3 months after
moving. These findings suggest that there may be unintended negative consequences of policies that, for
example, remove barriers to internal migration. Future work should seek to find alternative sources of
exogenous variation and to unpack the mechanisms behind this complex household decision.
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2.1 Introduction
This chapter considers the health effects of internal migration, using data from two

linked household panel surveys: the British Household Panel Survey (BHPS) and Un-

derstanding Society (USoc). Internal migration is defined, for the purposes of this anal-

ysis, as moving from one permanent address to another. This is opposed to move-

ments between labour markets (typically government office regions in the UK), as is

found in the labour economics literature, where the focus tends to be on wage returns.

A threat to identification comes from the fact that individuals self-select into moving

home. This study contributes to the literature by using local school quality and the age

of the youngest child in a household as Instrumental Variables. The analysis also at-

tempts to unpack the likely heterogeneous and timing effects (including anticipation

effects) associated with internal migration.

Much of the literature on migration focuses on wages and wealth returns, and many of

the papers that do consider health, do so from an international perspective. Gibson et

al. (2013), for example, exploit a migration lottery to estimate the impact of migration

on measured blood pressure and hypertension, and find that both are increased persis-

tently after migration. As such, there exists a small subset of the migration literature

that considers its effect on health. Most recently, Johnson and Taylor (2018) consider

rural to urban migration in the US, in the early 20th century, and its effect on long-term

health and longevity. They find, using the location of railway lines as an instrument for

migration, that although lifetime wealth was increased, migrants paid a price in terms

of later-life health. The authors suggest that the mechanism is through adopted risky

health behaviour such as smoking and excess alcohol use. In a paper considering the

health-based selection into migration in Indonesia, Lu (2008) finds that individuals do

select based on past health status, but the magnitude of this depends on the type of

move.

There is a body of literature that explores the effects of the Moving To Opportunity

(MTO) experiment to estimate the causal effects of moving out of high-poverty neigh-

bourhoods in the US. The MTO was a randomised housing mobility experiment that

utilised a lottery system to distribute housing vouchers amongst families living in so-
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cial housing (Sanbonmatsu et al., 2006). Chetty et al. (2016) convincingly shows that

there were large benefits of MTO for younger children - who were more likely to attend

college and earned on average $3,477more than the control group. Therewere heteroge-

neous treatment effects however, with little to no impact ofMTOon adult outcomes, and

some small and negative effects for older children (aged 13-18 years). There were also

positive effects of the MTO program on education outcomes (Sanbonmatsu et al., 2006).

Many studies also considered the health effects of the MTO programme, generally find-

ing thatmoving to lower poverty areas has large positive effects on individuals’ physical

health, mental health and subjective wellbeing (Katz et al., 2001; Clampet-Lundquist &

Massey, 2008; Ludwig et al., 2013). Kling et al. (2007) find similar results, but alo show

that positive health effects for female youth were offset by negative effects for the male

youth.

In the UK literature, the direction of the effect ofmigration is inconclusive. Tunstall et al.

(2014) consider the mental health of movers in the UK, using the BHPS. They focus on

movements from more to less deprived areas (and vice versa) and find that movers are

more likely to havemental health problems and have higher rates of poor health. Nowok

et al. (2013) consider the post-move happiness of movers in the BHPS, and consider the

duration effects after the migration event. They find that before a move takes place,

individuals suffer from lower happiness, but then they return to previous levels once a

move has taken place. Whittaker (2012) also uses the BHPS to compare pre- and post-

move wellbeing scores, addressing endogeneity with a dynamic random effects probit

model, with lagged health terms to account for selection. Their results suggest that the

effects of migration are both positive and negative, and do not differ by motive but do

differ by past health status.

2.1.1 Theoretical Underpinnings and contributions

Many of the typical reasons for moving (Farwick, 2009) are associated with positive life,

wealth, and socioeconomic status gains: increased income from new job, more space or

nicer environment, increased disposable income from downsizing, or better schooling.

This would suggest a positive effect of moving on health.
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Households move when the net gains from doing so are positive (Mincer, 1978), so a

natural hypothesis for the effect of moving on health is that there are positive health

returns. The net gains in consideration, however, are at the household level - with each

household member having potentially differing weights. This means that there may

be positive or negative net returns at the individual level, so the observed net effect on

health - as explored in this chapter - is less clear cut.

Moving house is a significant life event, which can be extremely stressful to those experi-

encing it (Thoits, 2010; Lazarus, 1995; DeLongis et al., 1988). In the short-run, including

just before amove takes place, it would be unsurprising to find negative effects for those

who move, that could mask any short-run gains from doing so. Easterlin (2005) In con-

trast to the Easterlin paradox - whereby improved material circumstances do not bring

about improved wellbeing as individuals adapt to their new level of living - life events

in family and health domains can have lasting effects on health andwellbeing (Easterlin,

2005; Nowok et al., 2013). In the longer term then, we would expect a return to baseline

levels of health and wellbeing, or reaching a higher level than before the move.

Many of these mechanisms are difficult to unpick, due to the endogeneity of moving

with respect to health and wellbeing. This chapter makes a contribution to this litera-

ture by firstly using an IV approach in an attempt to overcome the endogeneity ofmigra-

tion. Secondly this paper provides a link between school choice, migration and health

through the IV approach that it takes. Using geographical data on local school quality

and distance to local schools to estimate the probability of attending the closest schools,

provides a novel instrument to the literature that considers moving residence. Thirdly,

the short-run effects of migration on health are investigated, considering the health and

wellbeing of those just before and just after moving residence.

2.1.2 Roadmap

Section 2.2 begins the motivation for the instruments for migration, and provides a link

between school choice, house prices andmoving home; section 2.3 describes the datasets

used; section 2.4 outlines the empirical methodology; section 2.5 presents the results;

and section 2.6 concludes.
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2.2 School choice and migration
Due to the fact that health itself is a determinant of migration, and the likelihood of

the existence of unobservable factors that influence both, a focus is placed on the role

of school choice and house prices in the search for exogenous variation. The results are

presented for these two approaches separately, and the motivation for using each is out-

lined below.

2.2.1 School choice and quality

With respect to moving home, if a household contains a child of a relevant schooling

age, then the decision to migrate is negatively associated with the expected utility (or

expected quality) of their current local school choice set. If the local schools are low per-

forming, and there is a young child in the household, then the probability of living at a

different address in the next period is higher, ceteris paribus. It can therefore be viewed

as a source of exogenous variation in the migration decision. The age of the youngest

child, interacted with E[Uha], is used to capture this mechanism.

Following Weldon (2017), consider the utility function of household h, for school s:

Uhs = f(Dhs, Qs) + εhs, (2.1)

where Dhs and Qs are the distance to, and quality of, school s; εhs represents unob-

served household heterogeneity of preference to school s.

At the local level, the expected utility of schools in the local area a, for household h can

be expressed as:

E[Uha] =

Sa∑
s=1

phsUhs, (2.2)

where phs represents the probability of the children in household h attending school s,

and Sa is the school choice set (i.e. the number of schools available in the local area).

For the purposes of this chapter, the probability of attending a school is computedpurely
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as a function of distance:

phs =
exp(βDln(Dhs))∑
i∈Sh

exp(βDln(Dhi))
, (2.3)

The log-odds parameter βD, represents a households’ preference to be based closer to a

school and is unobserved. For this chapter, βD is set to −2.436, informed by a discrete-

choice model of household school-choice preferences undertaken byWeldon (2017). As

Uhs is not observed, a performance measure for school s is used as a proxy, and set Sa

to be the five closest schools to each household h. In practice, the measure ofE[Uha] can

be viewed as expected school quality of the local area.1

Choosing the parameter βD represents an attempt to better represent a household’s pref-

erences using empirical evidence, versus simply choosing some arbitrary value, or ig-

noring it altogether. Choosing to base this value on evidence in Weldon (2017) may not

be representative of the population at hand, as this was based off data from Lancashire

alone. If this parameter varies between region - this may mask regional variation in the

expected utility calculated. In practice, however, the choice of this parameter amongst

a wide set of reasonable values does not affect the distribution, nor level of, expected

utility, as shown in Figure 2.1 below.

2.2.2 House prices

Using expected school quality and age of the youngest child in the household as an in-

strument is a plausible source of exogenous variation in moving house. A caveat of this

approach is apparent when considering the nature of the Local Average Treatment Ef-

fect (LATE) that it picks up. The estimates are only relevant for the “compliers” to the

instrument. Loosely speaking these are households who, conditional on having a child

of a relevant age, would be more likely to move house if their local school choice set was

of a low standard. This limits the external validity of the analysis to those who are both

willing and able to move on the basis of school quality. This represents a non-trivial
1As a robustness check, the measure of expected school quality is replaced with a simple unweighted

average from the closest five schools in the area. The results (i.e. the instrument’s predictive power of
migration) do not differ greatly.
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Figure 2.1: Choice parameter sensitivity
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group of households, and the question of how relocating affects their health outcomes

remains an important one. However, this approach may under-represent many house-

holds who are not influenced by local school quality, including households which have

chosen not to have children, and those who are older.

In order to try and capture the health effects of moving for a more general group of

households, data on local house price shocks - relative to general UK prices - are incor-

porated from the previous period as an alternative instrument. A positive association

between house prices and the decision to sell/buy is relatively well-established in the

literature both theoretically (Stein, 1995) and empirically (Krainer et al., 2008).

A price shock in a previous period is also likely to affect renters in the current period.

Hence it seems likely that there is a higher probability ofmoving home following a price

shock, for both home-owners and renters. The use of local house prices, as opposed to

rent paid, adds to the validity of the exclusion restriction from the health outcome equa-
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tion. Implicitly assumed in using school choice and house prices as instruments is that

in the decision to move, households have incomplete information about how a move

will affect their health, and hence ignore this in their decision to move. These assump-

tions form the basis of the plausibility of the exclusion restrictions for each instrument

set, respectively.

In the case of the school quality and age of youngest child instrument - a strong case

for the excludability of the instrument from a structural health equation can be made

based upon the complier group for which this instrument is relevant for. Economic the-

ory states that household moves take place when the household net benefits are positive

(Mincer, 1978). Parents of young childrenwho face a decision about their child’s school-

ing are likely to do so from a more altruistic perspective - placing a higher weight on

their child’s gains from moving than their own. This discounting of their own gains

(including health gains) provides an argument for the instruments’ excludability. In

the case of house prices, the argument for the exclusion restriction is based upon price

shocks. Conditional on wealth, price spikes that induce a move are unlikely to affect

long-term health directly. This is unlikely to hold in the short-run, however - particu-

larly in the case for mental health. As a result, the price spike instrument used in this

chapter is to be viewed as secondary to the schooling instrument, and this in part mo-

tivates the need for the analysis of short-run associations between moving on health.

These assumptions remain fundamentally untestable, and the reliability of the results

presented depend upon how likely it is deemed that they hold, conditional on the set

of controls and estimation methods.

2.3 Data
2.3.1 Understanding Society and the BHPS

This chapter makes use of data from two longitudinal surveys in the UK: the British

Household Panel Survey (BHPS), and Understanding Society (USoc). The BHPS ran

from 1991 to 2008, covering around 10,000 households. USoc began in 2009 and is ongo-

ing, in its 7thwave, covering around 40,000 households. Themembers of each household

are revisited annually, with data collection for each wave taking place over a two-year
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period. Individuals in the household aged over 16 years have a face-to-face interview in

addition to a short questionnaire. In the final wave of the BHPS, individuals were asked

if the wished to participate in USoc, meaning some individuals are traceable through

both datasets.

For the purposes of this analysis all available waves are used, restricting the sample

to those of working age (16-65 years) and those residing in England and Wales. Local

area level data linkage is not available for Scotland and Northern Ireland. A linkage

between both datasets and 2011 census geographical data is also used; specifically, the

household’s lower-layer super output area (LSOA). The full sample of the working age

population (N*T) consists of 342,488 observations. This is further restricted to house-

holds who are observed to have at least one child in at least one wave, and which are

observed in at least twowaves. School quality data is available from2001 onwards. Once

conditioning on having a complete set of outcome and control variables, this leaves N*T

= 107,736, with N=31,216 and T ranging from 2 to 13 observed periods (from 2001 to

2014).

Outcome Variables

Several measures of health are used as the main outcome variables. To capture self-

assessed health, individuals were asked “How would you rate your health in general?”

to which they responded poor, fair, good, very good or excellent in USoc and very poor,

poor, good, very good or excellent in BHPS. To work around this inconsistency, and to

simplify estimation, this variable is set to equal to one if the response was “excellent”,

“very good” or “good”, and equal to zero if equal to “fair”, “poor” or “very poor”. The

variable is used, therefore, as a measure of self-assessed “good” health. Although a

simple and subjective measure of health, it has been shown to have strong predictive

power of future mortality (Idler & Benyamini, 1997).

The BHPS and USoc both contain data on the individuals’ GHQ-12 score, which ranges

from 0 to 36, and aggregates answers from 12 questions aimed at assessing their psy-

chological well-being. Such questions include: “Have you recently lost much sleep over

worry?”; “Have you recently felt capable ofmaking decisions about things?”; “Have you
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recently been feeling unhappy or depressed?”. The respondents answer each of these

questions on a likert scale: “not at all” (0), “no more than usual” (1), “rather more than

usual” (2), “much more than usual” (3).

The final health measure captures whether or not the individual has a self-reported

health problem at the time of interview. In both the BHPS and Understanding Soci-

ety, respondents were shown a list of health conditions and asked if they currently had

any, and to indicate which ones if so. Amongst the conditions were: “Coronary Heart

disease”; “High Blood Pressure”; “Diabetes”; “Epilepsy” etc. This is included as a vari-

able equal to one if a respondent identified any of the conditions they were shown and

zero otherwise. Therewas a slight difference in the categories that the respondentswere

shown between the BHPS and USoc. However as variation across these categories is not

exploited in the analysis, an individuals’ response as measured by the binary variable

is highly likely to be the same regardless of the cards shown.

Migration and area-level variables

Much of the previous literature that considers internal migration as a variable of inter-

est, has generally relied on a large move - typically from one labour market to another.

For instance in a UK setting, Rabe and Taylor (2012) use the BHPS to consider moves

from one local authority region to another as migration. In this chapter, however, as the

focus is on moves of any type - whether related to the labour market or not - internal

migration is defined as a household’s change of address from time t − 1 to t. Moving

home - regardless of the distance moved - is a significant life-event and as such small

moves should not be ignored. For this reason, any move picked up in the data is used,

which is a departure from most studies that look at internal migration. As mentioned

earlier, this necessitates an individual to be observed in at least two consecutive waves;

those who aren’t are dropped from the analysis.

In order to allow the inclusion of area-level covariates, including the Index of Multiple

Deprivation (IMD) and its sub-indexes, and local schooling quality (see below), special

license data on each household’s Lower-layer Super Output Area (LSOA) is incorpo-
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Table 2.1: Descriptive Statistics - differences by move status

Move = 0 Move = 1 Difference P-Value
[N = 91,899] [N = 9,495]

Outcomes:

Self-Assessed Health 0.80 0.77 -0.03 0.00

GHQ Score 11.31 11.47 0.16 0.01

Long-term condition 0.03 0.03 -0.01 0.01

Covariates:

Household net Income 2950.57 2654.73 -295.83 0.00

Male 0.41 0.39 -0.02 0.00

Age 36.91 32.69 -4.21 0.00

Employed 0.72 0.63 -0.09 0.00

Married 0.67 0.52 -0.14 0.00

GHQ Score 11.24 11.32 0.07 0.07

Highest Qualification:

No Qualifications 0.10 0.09 -0.01 0.04

Other qualification 0.04 0.04 -0.00 0.04

GCSE or equiv. 0.27 0.28 0.02 0.00

A-level or equiv 0.18 0.18 0.00 0.40

Other Higher Qual. 0.22 0.21 -0.01 0.05

Degree 0.20 0.20 -0.00 0.74

Housing Tenure:

Owned/mortgage 0.47 0.34 -0.12 0.00

Shared Ownership 0.27 0.13 -0.13 0.00

Rent Private 0.08 0.26 0.19 0.00

Rent Public 0.19 0.26 0.07 0.00

Instruments:

Age of youngest child (years) 6.72 4.40 -2.32 0.00

E[School Quality]t−1 (units = %A-C) 63.38 60.50 -3.88 0.00

House price spiket−1 (LSOA) 0.027 0.065 0.038 0.00
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rated to each dataset.2

Instrumental Variables

The main specification uses the age of the youngest child in the household (in cate-

gories), and local school quality (continuous), as an instrumental variable for migration.

The motivation behind the instrument is that parents of young children of a schooling

age, coupled with the quality of local schools, that make them more or less likely to

move. As such, these two variables are included in the instrument set, as well as the in-

teraction between themAge, in years, of the youngest child in the household is available

in each wave of both the BHPS and USoc, and takes a value for each schooling category:

0-4 years; 5-10 years; and 11-15 years. In this way, the ages enter as dummy variables,

with 0-4 years omitted as the base category. This variable is lagged, as it is expected that

the age of the youngest child in the household at time t− 1, will affect whether there is

a change of address between time t− 1 and t.

Data for school quality was obtained from the Department for Education3, who provide

a range of performance measures obtained from exam boards and the school census, for

all schools in the UK. For the purposes of this chapter, the percentage attainment of 5

A*-C grades at GCSE-level is taken as a proxy measure of school quality. To incorporate

distance to these schools at the LSOA level, each school is mapped (based on postcode)

to the population-weighted centroid of each LSOA, and the Euclidean distance between

each is subsequently calculated4. The approach outlined in section 2.2 is applied, tak-

ing the performance of the 5 closest schools to each LSOA, and used as the measure of

school quality available to the household. The lagged age of youngest child variable

is then interacted with this distance-weighted school quality measure, to construct the

instrumental variable for moving home. Different lags and continuous age are also in-

cluded as robustness checks.

House price spikes are also used as an alternative source of exogenous variation that
2An LSOA comprises of between 1,000-3,000 individuals and there are approximately 32,000 LSOAs in

England.
3https://www.compare-school-performance.service.gov.uk/
4This distance is calculated using the easting and northing coordinates, which is available for both

LSOAs and school postcodes.
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influences moving home. Price paid data was accessed from the UK Land Registry5 at

the postcode level, from 1995 onwards. This was subsequently aggregated to both the

LSOA andMSOA level, allowing the use of variation in local house prices. A local house

price spike is defined as: equal to one if the percentage change in (LSOA-level) price be-

tween t − 2 and t − 1 is greater than two standard deviations away from the expected

one-period price change, and zero otherwise.

Independent Variables

In terms of the included covariates of health and migration, the following are included:

age and age2, in years, of the respondents; their gender, which takes a value of one if

the individual is male and zero otherwise; and whether they are married or in a civil

partnership, equal to one if so and zero otherwise.

Education is also included. Respondents were asked about their highest educational

qualification to date choosing one from “No qualifications; Degree; Other higher qual-

ification; A-Level or equivalent; GCSE or equivalent; Other”, from which dummy vari-

ables for each categorywere created. Information on incomewas collected fromall adult

respondents andwas used to construct a net income variable, which was trimmed of it’s

1st and 99th percentiles, and subsequently log-transformed6. Employment status is in-

cluded as a dummy variable, equal to one if the individual is in paid employment and

zero otherwise. Housing tenure comprised of a categorical variable for each of four

types of residency: Ownership/Mortgage; Shared Ownership; Private Rental; and Pub-

lic Rental.

5http://landregistry.data.gov.uk/
6The variable is trimmed, as ln(0) is undefined. In earlier specifications the cube-root of income was

used instead (as 01/3 = 0), to check for differences between the two. There were no differences, suggesting
that zero income is not a problem here.
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2.4 Methods
2.4.1 Instrumental Variables methods

Consider the following linear regression of health on migration:

Yit = αi +X ′itβ +M ′itτ + εit, (2.4)

where Y is a measure of health,X a vector of determinants of health, andM a dummy

variable equal to one if the individual has migrated at time t and zero otherwise. We are

interested in τ , the marginal effect of migration on health, controlling for other health

determinants. Using this approach ensures an unbiased estimate of τ , under the Gauss-

Markov assumptions including, crucially, that migration is exogenous with respect to

health (cov(M, ε) = 0). Including individual fixed effects, αi, in the specification allows

for time-fixed unobservables to be correlated with εit.

This assumption is likely to be violated. It is plausible to suggest there exists some time-

varying, common cause of health and migration that we cannot observe in the data, nor

find a suitable proxy variable in its place. This model also suffers from reverse causal-

ity: migration affects health, but health also affects the decision to migrate. Both of

these cases seem reasonable, as is often the case when the mechanism of interest takes

the form of a “choice” variable. In other words, individuals self-select into the migra-

tion decision, so estimation via OLS yields a biased estimate of τ . In the absence of a

natural experiment, an Instrumental Variable (IV) approach is used.

The following represent the first and second stage equations of the IV approach:

Yit = αi +X ′itβ
Y + M̂itτ + εit1 (2.5)

Mit = δi +X ′itβ
M + Z ′itγ + εit2, (2.6)

where Y ,X andM are defined as above. The new term, Z, which appears in the migra-

tion equation but is excluded from the health production function, represents the vector

of instruments for migration. Note that αi represent the individual-fixed effects, and
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thus estimation relies on the two-stage least-squares “within” estimator, which sweeps

away the observable and unobserved, time-fixed, individual heterogeneity.

Identification relies on the assumption that the instrument(s) Zit do not directly influ-

ence the outcome Yit, other than throughMit (i.e. they are excludable from the health

equation). Monotonicity of the instrument is also assumed (for a LATE interpretation),

as is the relevance of the IVs with respect to migration. The latter of which is directly

testable from the first stage, in the form of an F-test of joint significance of the instru-

ments. Standard errors are clustered at the household level.

2.4.2 Alternative function form - recursive bivariate probit

Assuming that both health andmoving, measured as binary variables, follow a bivariate

normal distribution yields the recursive bivariate probit model. This approach explic-

itly allows for the two error terms to be correlated (ρ = corr(ε1, ε2) 6= 0), which is use-

ful given the concerns with omitted variables bias in this model. Identification, in this

particular system, still relies on the exclusion restriction placed on the health equation,

however. This model is estimated identically to a standard bivariate probit model. We

do not need to pay special attention to its recursive nature upon estimation, as in obtain-

ing the density of Y , we already condition onM (Wooldridge, 2010;W.H.Greene, 2012).

Owing to the fact that both the observed outcomes and treatment variables are close to

either zero or one in the data, this may be a preferable approach (Chiburis et al., 2012).

However doing so does not exploit the panel nature of the data, and places a much

stronger parametric assumption on the two error terms than linear 2SLS. The cost of

estimating both stages linearly is that we can only recover the LATE, and not the ATE.

Owing to the fact that these two estimates are likely to be close in nature anyway (local

information is all that is provided in the data (Angrist & Pischke, 2008)), the trade-off

of small gains in terms of the point estimates at the cost of imposing strong parametric

assumptions and not exploiting the panel nature of the data, does not seem to be net

positive. As a result, this model is left as a robustness check of the functional form in

Appendix A, table A.1.
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Average Partial (Treatment) Effects

We are interested in the average partial treatment effect ofM on Y :

∂E[Y |X, ε]
∂M

, (2.7)

averaged over the population distribution of the unobserved heterogeneity, ε. In the

discrete case, this is equivalent to calculating the following difference:

G(Y = 1|X,M = 1)−G(Y = 1|X,M = 0), (2.8)

whereG(.) is the relevant cumulative distribution function, and averaging this over the

population. This is the average treatment effect (ATE). In most cases, calculation of such

effects and their standard errors are straightforward, using Stata’s - margins, dydx()

- command in a probit or logit approach. In the bivariate probit case however, this

command does not produce the ATE7. A bootstrap procedure is used to calculate the

standard errors for the ATE calculated as follows:

Φ(Xiβ̂Y + τ̂)− Φ(Xiβ̂Y ), (2.9)

averaged over the sample, where Φ is the cumulative standard normal distribution. 500

replications are used for the bootstrap procedure, and the Stata code for the above is

presented in Appendix A.

2.4.3 Short-run effects

The above methods overlook the contemporaneous nature of the relationship between

moving residence and health outcomes. Due to the panel nature of both data, and the

way in which households were interviewed throughout the year, the date of moving

can be exploited to address issues around the timing of a move. It is reasonable to sug-

gest that many of the health effects arising as a result of a move occur in the short-run:

around the time of the move itself. The GHQ-12 score of mental health is also a con-

temporaneous measure; it prefaces its questions with “over the past few weeks...”. To
7-margins- in this case, focuses on joint probabilities - not required for calculation of the ATE, which

uses marginal probabilities
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address this the sample is restricted to those who are observed moving at least once

during the sample period, and outcomes of those interviewed just before a move are

compared to those just after.

This section uses a regression discontinuity-type set up. A typical regression disconti-

nuity (RDD) approach involves analysing the effect of a treatment using observations

close to the cut-off, assuming that such individuals are otherwise identical, and the run-

ning variable is effectively random. This section’s approach compares individuals who

were interviewed just before and just after they moved home. The interpretation of this

model relies upon the assumptions made about how interview dates get determined,

and whether or not a household has any input into this. If a household has no input,

the dates are essentially random with respect to moving, and this model estimates the

short-run causal effect of moving on health. On the other hand, as is more likely the

case, some correspondence will take place prior to the interview, meaning the house-

hold will have some input as to the interview date. In this case, this approach does

not offer a sharp identification of the effects of moving, as there are unobserved factors

that could affect when an interview took place, relative to when the household moved.

Therefore chapter takes this conservative, more probable, stance and will refer to this

analysis as an RDD-style approach, to make this distinction clear.

Considering only moves that take place within the time frame of the data (1991-2015),

variables which indicate both the date of the next, and the last, move at time t are cre-

ated. Using the date of last move, the number of months (from the interview date) since

the last move took place is created; the same is done for the amount of months before

the next move. The sample is restricted further, using the date of interview and date

of last move, to those who move within 12 months of the interview date. This allows

for comparisons just before and just after a move has taken place, and to investigate

anticipatory and temporary effects of moving. The following is estimated:

Yit = αi +X ′itβ +mitδ +Mitτ + εit, (2.10)

wheremit is the time, in months, before or since the individual moved house andMit =
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1[mit > 0]. This equation is estimated using the -rdrobust- command in Stata (Calonico

et al., 2017). This package allows for the implementation of bias-correction in the form

of robust, nonparametric confidence intervals. This corrects for the fact that typical op-

timal bandwidth selectors tend to choose a large bandwidth, which can lead to biased

confidence intervals (Calonico et al., 2014). In practice, the adapted confidence inter-

val estimator is run using a higher-order polynomial than is used for point-estimation,

which in this case is order one (i.e. local linear regression). The point-estimate band-

width is restricted to four months either side of the cutoff8, and present these point-

estimates with the bias-corrected t-statistics and p-values.

This approach departs from the explicit Instrumental Variables estimation used pre-

viously. Identification relies on the assumption that whether an individual was inter-

viewed just before or just after they moved was essentially random with respect to the

outcome variables. This seems unlikely to hold in this context, so this assumption is not

invoked, nor is there a casual interpretation of these results.

Thismechanism is investigated further by fitting a piecewise linear spline function, with

knots at various numbers ofmonths aftermoving,mit. Each knot is spaced by 3months,

and ranges from −12 to 12 months since moving location. This allows us to consider, at

least descriptively, whether there are more extreme short-run effects, just before (antic-

ipation period effects) and just after (“honeymoon” period effects).

2.4.4 Attrition

As is often the case when working with panel data, we may be concerned about attri-

tion of individuals and households from subsequent waves. If the propensity to drop

out of the survey in the next wave is unrelated to the variables of interest, individuals

are said to be “missing at random” and this will not affect the estimates. However, in

the health literature, health-related attrition has been a large concern when using lon-

gitudinal data on health. For this chapter, these concerns are worsened by the fact that

the focus is on internal migration, which is another common cause of individuals drop-

ping out. Simply put, considering the health effects of movers implicitly brings about a
8The aim here is to capture short run effects. This was as tight a bandwidth as possible without induc-

ing an invertibility/cell-size problem.
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sample selection: those who have worse health, and those who move, are more likely to

drop out of the sample. The IV approach used earlier does not address this concern.

A simple diagnostic test for attrition, proposed by Verbeek and Nijman (1992), is per-

formed on the data. Much of the literature that concerns attrition in panel data treats it

as an absorbing state (i.e. those who drop out, stay out), whilst general attrition (with

re-entrants) can be complicated to deal with (Wooldridge, 2010). Therefore the data are

set up as though attrition is “absorbing”9, and are first checked if there are any observ-

able differences from the main sample. The variable addition test outlined originally in

Verbeek and Nijman (1992), and used in a health setting with the BHPS in Jones et al.

(2006), is subsequently performed.

For this test, define sit = 1 if the data, (xit, yit) are observed for that period and 0 oth-

erwise. The absorbed panel described above is used, so that the vector of indicators,

(si1, ..., siT )′ is Tx1, where t = 1 indicates the first wave in which the individual is ob-

served (not necessarily the first wave), and t = T indicates the last observed wave, with

Ti = ΣT
t=1sit.

The intuition behind tests of this type is that, under the null of no attrition bias, we

would not expect the outcomes to be correlated with the pattern of survey response,

so a simple t-test of this response pattern, included in the outcome regression, will be

informative of non-random attrition in the sample. To capture the pattern of response

Verbeek andNijman (1992) suggest including Ti as an additional regressor, an approach

followed by Jones et al. (2006). The number of observed waves is, of course, constant

within individuals and therefore cannot be used in a fixed-effects setup. Wooldridge

(2010) extends this approach to fixed effects estimation by suggesting that sit+1 be in-

cluded, allowing for within variation10. Alternatively rt+1, a count of the number of

waves after t that individual i is observed in the sample, can be used. Both of these

approaches are used, including rt+1 and sit+1, separately, in models with fixed effects.

Fully robust standard errors, clustered at the individual level, are used in both cases.
9In other words, once an individual drops out of the household, they are not allowed to re-enter in

later waves.
10sit−1 can be used equivalently, as suggested by Verbeek and Nijman (1992). However, doing so neces-

sitates the loss of the first wave of the sample for all individuals, hence the use of a lead indicator.
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2.5 Results
2.5.1 First-Stage results

Table 2.2 presents the results from the first-stage regressions, for both instrument sets

and all outcomes. The upper panel shows the school choice instrument set, comprising

of the interaction between the measure of expected utility from local schools, the age of

the youngest child in the household, and their constitutive terms. WithM binary, these

represent linear probability models and (β ∗ 100) are percentage-point movements in

the probability of moving between the last period and the current period.

Though the coefficients from thesemodels are not directly of interest per se, it is reassur-

ing that the age of the youngest child in the household affects the probability of moving

house in the direction we would expect. Households with a child aged 5-10 years and

11-15 years are 7.2 and 9.1 percentage points less likely (p<0.01 in both cases) to move

house. In other words, those with a child of a relevant primary or secondary schooling

age are less likely to move. These results hold as controls, individual fixed-effects and

interviewwave fixed-effects, are incorporated. The measure of expected utility from lo-

cal schooling quality is statistically significant, but too granular to provide ameaningful

coefficient. As expected, there is a negative sign on the coefficient, indicating that living

in an area with low school quality is positively correlated with moving to another area.

This is true for those with children of a relevant schooling age, as shown by the inter-

action term’s statistical significance. As fixed-effects are added, however, this statistical

significance drops away.

The main interest in the first-stage specification is whether or not the instrument set

has relevance for, i.e. is a statistical predictor of, moving residence. A typical indicator

of this power is the F-statistic from the first stage. For this analysis, due to the cluster-

ing of the standard errors at the individual level, Kleibergen-Paap-Wald F-statistics are

reported. This instrument set shows a strong statistical power for predicting whether

or not a household moves location. The usual rule-of-thumb criteria of F > 10 is only

relevant for specifications that are just-identified; nevertheless these F-stats are in a com-
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Table 2.2: First stage estimates of both instrument sets on the probability of moving

Panel A: School Choice Instrument

Age of youngest Childt−1:

Child Aged 0-4 0.006 -0.035∗∗∗ -0.073∗∗∗ -0.074∗∗∗
(0.004) (0.004) (0.007) (0.007)

Child aged 5-10 -0.072∗∗∗ -0.075∗∗∗ -0.092∗∗∗ -0.093∗∗∗
(0.006) (0.006) (0.009) (0.009)

Child aged 11-15 -0.091∗∗∗ -0.081∗∗∗ -0.076∗∗∗ -0.078∗∗∗
(0.008) (0.008) (0.012) (0.012)

Child aged 16+ 0.064∗∗∗ 0.036∗∗∗ 0.022 0.022
(0.014) (0.014) (0.019) (0.019)

E[Utility]t−1 -0.283∗∗∗ -0.022 0.030 0.017
(0.070) (0.065) (0.109) (0.121)

E[Utility]t−1*Age Youngestt−1 0.162∗∗∗ 0.119∗∗∗ 0.087 0.095
(0.042) (0.040) (0.061) (0.061)

N 107736 107736 100406 100406
Kleibergen-Paap F stat 181.660 135.299 81.244 82.189

Panel B: House Price Instrument

Local House Price Spiket−1 0.117∗∗∗ 0.086∗∗∗ -0.010 -0.010
(0.007) (0.007) (0.008) (0.008)

N 104152 104152 97768 97768
Kleibergen-Paap F stat 467.945 263.767 3.951 3.815

Controls X X X
Fixed Effects X X
Wave Dummies X X

Notes: Coefficients from the first-stage regressions of the instruments on the probability of moving
home. Panel A shows the results from using the school choice instrument, where locally distance-
weighted average school quality, interacted with the age of the youngest household, in the pre-
vious period, is the instrument set. Panel B shows the same results, but using instead the house
price spike instrument, where living in an area which experienced a change in its averaged house
price, of more than two standard deviations from the contemporaneous UK mean, is flagged as
a “spike”. The Kleibergen-Paap F statistics are shown at the bottom of each panel, indicating the
relative strength of the instrument sets in their predictive power of moving home.

fortably large range, even in specifications that rely only on the within variation.

The bottompanel indicates the same information for the second instrument set: whether

therewas a house price spike in the previous period. We can see, as expected, a previous-

period spike in local house prices means a household is more likely to move in the next

period (8.6-11.7 percentage-points, p<0.01). Likewise, we can see remarkable power

in this instrument as shown by the large F-statistics. However, the majority of this is
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Table 2.3: OLS and IV second stage estimates of moving house on health outcomes: results
using school quality and child age as an instrument

OLS 2SLS IV: School Choice

Outcomes:

>Good SAH 0.003 -0.004 -0.010∗∗∗ -0.263∗∗∗ -0.366∗∗∗ -0.088 -0.082
(0.004) (0.004) (0.004) (0.054) (0.067) (0.062) (0.061)

GHQ-36 Score 0.145∗∗ 0.076 -0.004 -0.844 2.645∗∗∗ 1.352 1.300
(0.062) (0.061) (0.056) (0.725) (0.915) (0.872) (0.868)

Health Problem -0.001 -0.001 -0.002 0.469∗∗∗ 0.373∗∗∗ 0.248∗∗∗ 0.193∗∗∗
(0.005) (0.004) (0.004) (0.073) (0.071) (0.078) (0.074)

Controls X X X X X
Fixed Effects X X X
Wave Dummies X X X X

N 107736 107736 107736 107736 107736 100406 100406
First-Stage F 181.660 135.299 81.244 82.189

Notes: Second-stage coefficients of moving home, as instrumented by school choice, on various health
outcomes. Each row represents a different outcome model, as indicated by the leftmost column. The
school choice instrument consists of locally distance-weighted average school quality, interacted with
the age of the youngest household, in the previous period. The Kleibergen-Paap F statistics from the
relevant first-stage regressions are shown at the bottom of the table, indicating the relative strength
of the instrument set in its predictive power of moving home.

driven by time-fixed factors, as this power dissipates with the inclusion of individual

fixed-effects.

These results indicate that the proposed mechanism through which these instruments

operate in the model, holds. Households with a child of a relevant school age, in ar-

eas with low school quality, are more likely to move. Likewise, those who live in areas

which experience a local housing price spike aremore likely tomove. The tests of the in-

struments’ statistical power suggests that the school quality IVs are in better stead than

the house price instrument, when including individual fixed effects. These second-stage

results for the latter, must therefore be treated with caution.

2.5.2 Second-stage results

Table 2.3 shows the main results from the schooling instrument set. The first three

columns show the single-equation OLS results; the last four show the second-stage IV

estimates. The outcome variable for each is indicated in the leftmost column.
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For self-assessed health, there is no statistically significant effect observed until both

individual fixed-effects and wave dummies are included in the model. Here, individ-

uals who have moved are 1 percentage-point (p<0.01) less likely to report good, very

good or excellent health. In the models which include instruments for moving, the co-

efficients become implausibly large in magnitude without the inclusion of fixed-effects.

Taken literally, these imply thatmoving results in a 36 percentage pointmovement in the

probability of reporting “good” health. It makes sense, given the impact of including

them on the OLS results, to focus on the fixed effects models. Here, the point estimates

fall in a large, but plausible range; movers are around 8 percentage points less likely to

report at least good health. As is common when using a two-stage approach however,

the standard errors are also much larger. The null of a zero effect cannot be rejected, nor

can a significant difference from the OLS results at any reasonable confidence level.

The signs of the coefficients for the other twooutcomes provide a consistent story: movers

aremore likely to have a health condition and report a higher (worse) GHQ score. There

is no significant effect present in the fixed effects models however, and the statistically

significant effect found in the IV specifications for health problems is perhaps implau-

sibly large.

Table 2.4 shows the results from the house price instrument. Note the different sample

and hence OLS estimates from the school quality instrument results. This is due to the

fact that the price spike is constructed from t − 2 and t − 1 movements in local prices.

This is offset (in terms ofN ) by the fact that data from 1995 onwards is used as opposed

to 2000 onwards for the school quality IV.

In general, these estimates show the same qualitative interpretation as for the previous

instrument set: moving is associated with worse physical and psychosocial health. The

preferred specifications (the far right column) show similar point estimates for self as-

sessed health, much larger for GHQ score, andmuch smaller for having health problem.

The standard errors, on the other hand, are much larger. This is most likely a result of

the weak instrument problem, which these fixed-effects models suffer from. This is il-

lustrated by comparing the IV fixed effects standard errors to those from the standard

34



CHAPTER 2 2.5 RESULTS

Table 2.4: OLS and IV Second Stage estimates of moving house on health outcomes

OLS 2SLS IV: House Price Spike

Outcomes:

>Good SAH -0.003 -0.007 -0.007∗ -0.084 0.034 0.008 -0.075
(0.005) (0.004) (0.004) (0.064) (0.101) (0.470) (0.463)

GHQ-36 Score 0.178∗∗ 0.185∗∗∗ -0.012 -0.444 -0.972 6.754 5.975
(0.071) (0.068) (0.062) (0.883) (1.424) (7.383) (7.072)

Health Problem 0.012∗∗ 0.002 -0.001 0.635∗∗∗ 0.056 -0.221 0.055
(0.006) (0.005) (0.004) (0.084) (0.107) (0.482) (0.451)

Controls X X X X X
Fixed Effects X X X
Wave Dummies X X X X

N 104152 104152 104152 104152 104152 97768 97768
First-Stage F 467.945 186.581 3.951 3.815

Notes: Second-stage coefficients of moving home, as instrumented by house price spikes, on various
health outcomes. Each row represents a different outcome model, as indicated by the leftmost col-
umn. The house price instrument is a dummy variable, where living in an area which experienced a
change in its averaged house price, of more than two standard deviations from the contemporaneous
UKmean, is flagged as a “spike”. The Kleibergen-Paap F statistics from the relevant first-stage regres-
sions are shown at the bottom of the table, indicating the relative strength of the instrument set in its
predictive power of moving home.

2SLS estimates; they are roughly seven times as large.

Including the two instrument sets together in the same first stage is avoided in the main

results, as the interpretation of the LATE - specifically, who other compliers to treatment

are, becomes trickier to interpret, and less generalisable. This represents a trade of be-

tween the internal validity of the estimated LATE itself versus how externally valid this

is to the population of interest. Nevertheless, given the relative poor performance of

the price instruments in the fixed effects first stage, the two instrument sets are joined

together and second stage results shown in table 2.5 below. The results do not differ

substantively using this approach, despite the marked improvement in the first stage

performance. For the purposes of the interpretation of the complier groups for each in-

strument set, the separate instrument sets are carried through for the rest of the chapter.

Number of observed moves

Of the 26,000 individuals in the estimation sample, 32%were observed to move at some

point across all waves. Of these, 58% moved only once during the observation period,

22%moved twice, and the remaining 10%moved 3 or more times across all waves of the
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Table 2.5: OLS and IV Second Stage estimates of moving house on health outcomes

OLS 2SLS IV: School Qual & House Price Spike

Outcomes:

>Good SAH 0.002 -0.003 -0.011∗∗ -0.216∗∗∗ -0.819∗∗∗ -0.075 -0.052
(0.005) (0.005) (0.005) (0.053) (0.105) (0.061) (0.061)

GHQ-36 Score 0.205∗∗∗ 0.221∗∗∗ 0.102 -0.708 8.354∗∗∗ 1.129 0.980
(0.076) (0.075) (0.073) (0.725) (1.431) (0.849) (0.847)

Health Problem 0.006 0.006 0.001 0.515∗∗∗ 0.554∗∗∗ 0.188∗∗∗ 0.076
(0.006) (0.005) (0.005) (0.069) (0.104) (0.069) (0.066)

Controls X X X X X
Fixed Effects X X X
Wave Dummies X X X X

N 91879 91879 91879 91879 91879 85193 85193
First-Stage F 167.544 67.628 90.583 90.439

Notes: Second-stage coefficients of moving home, as instrumented by house price spikes and school
quality instruments, on various health outcomes. Each row represents a different outcome model, as
indicated by the leftmost column. The house price instrument is a dummy variable, where living in
an area which experienced a change in its averaged house price, of more than two standard deviations
from the contemporaneous UK mean, is flagged as a “spike”. The Kleibergen-Paap F statistics from
the relevant first-stage regressions are shown at the bottomof the table, indicating the relative strength
of the instrument set in its predictive power of moving home.

BHPS and USoc. Ignoring the number of observed moves may induce omitted variable

bias, as it affects the probability of a subsequentmove, andmaybe correlatedwith health

outcomes, given the hypothesised relationship in this chapter. As a robustness check, I

include the cumulative total of observedmoves for each individual, at eachwave. Using

a cumulative total allows for its use in fixed effects models. The results are shown in

Appendix A, table A.2. Controlling for the number of moves does not substantively

change the results, except for the probability of having a health problem which is now

insignificant at the 10% level.

2.5.3 Heterogeneous treatment effects: Age

In order to try and pick up any heterogeneous effects in the results presented this far,

the results are stratified by various age bands. Table 2.6 displays the fixed effects IV esti-

mates of moving on health outcomes, by these different strata. Table 2.7 shows the same

stratification, but using prices as an IV. The first stage F-stats from table 2.6 show some

variation in the predictive power of the school quality instrument. This does not change

too much across age bands, but suggests that younger individuals are more likely to be

influenced to move house by local schooling quality. The results for self-assessed health
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Table 2.6: Fixed effects IV estimates stratified by various (overlapping) age bands, using school
quality instrument

18-30 years 20-35 years 25-40 years 30-45 years 35-50 years

Outcomes:

>Good SAH 0.043 0.035 0.071 0.018 0.036
(0.078) (0.099) (0.118) (0.118) (0.128)

GHQ-36 Score 0.087 -0.755 -1.349 -1.455 0.726
(1.125) (1.293) (1.474) (1.561) (1.944)

Health Problem 0.302∗∗∗ 0.304∗∗∗ 0.250∗ 0.129 0.147
(0.091) (0.115) (0.129) (0.131) (0.152)

Controls X X X X X
Fixed Effects X X X X X
Wave Dummies X X X X X

N 20045 25838 31632 36869 38381
First-Stage F 26.666 18.749 17.834 22.731 21.017

Notes: Age-stratified second-stage fixed effects IV estimates of moving home, as instrumented by
school choice, on various health outcomes. Each row represents a different outcome model, as in-
dicated by the leftmost column. The school choice instrument consists of locally distance-weighted
average school quality, interacted with the age of the youngest household, in the previous period. The
Kleibergen-Paap F statistics from the relevant first-stage regressions are shown at the bottom of the
table, indicating the relative strength of the instrument set in its predictive power of moving home.

Table 2.7: Fixed effects IV estimates stratified by various (overlapping) age bands, using price
instrument

18-30 years 20-35 years 25-40 years 30-45 years 35-50 years

Outcomes:

>Good SAH 0.846 0.015 -0.018 -1.223 0.189
(0.637) (0.292) (0.260) (1.702) (0.601)

GHQ-36 Score 7.523 -1.375 -1.454 5.342 -0.177
(7.313) (4.165) (4.038) (15.527) (6.584)

Health Problem -0.694 -0.091 0.826∗∗ 0.679 -0.390
(0.568) (0.277) (0.352) (1.257) (0.728)

Controls X X X X X
Fixed Effects X X X X X
Wave Dummies X X X X X

N 11481 20782 26395 22027 12646
First-Stage F 5.839 12.288 30.118 2.828 12.086

Notes: Age-stratified second-stage fixed effects IV estimates of moving home, as instrumented by
house price spikes, on various health outcomes. Each row represents a different outcome model,
as indicated by the leftmost column. The house price instrument is a dummy variable, where living
in an area which experienced a change in its averaged house price, of more than two standard devi-
ations from the contemporaneous UK mean, is flagged as a “spike”. The Kleibergen-Paap F statistics
from the relevant first-stage regressions are shown at the bottom of the table, indicating the relative
strength of the instrument set in its predictive power of moving home.
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remain fairly consistent, as does the imprecision of these estimates, however. The results

for having a health problem become implausibly largewhen broken down by age bands,

whilst the GHQ score shows worse mental health for those who move in the youngest

and oldest categories, and a positive effect (negative sign) for the age-bands in between.

The results in Table 2.7 show some improvement in the first stage for those aged 25 to

40 years, but again these results remain statistically insignificant and do not offer any

additional interpretation to the main results presented earlier.

2.5.4 Heterogeneous treatment effects: Housing tenure changes

It is clear that there are many different reasons and mechanisms behind why a move

takes place. Given the instrument that we use, the analysis is limited to a local average

treatment effect (LATE), which is only relevant for the subgroup of compliers who are

in a position to move house, based on their child’s schooling. Even within this local ef-

fect, however, there are many different types of move. This is perhaps best captured by

changes to housing tenure: moving from one owned house to another is likely to have

a different effect to moving from a private rental to ownership. The LATE estimated

comprises of a weighted average of the effects of all combinations of housing tenure

changes. Table 2.8 shows the housing tenure transition probabilities for the sample: the

probability of moving to housing tenure at time t (columns), given residence in housing

tenure at time t-1 (rows), conditional on a move having taken place.

Table 2.8: Housing tenure transition probabilities for full sample

Time t: Owned/ Mort. Shared Own. Private Rent Public Rent

Time t-1:

Owned/ Mortgage 95.89 0.75 2.69 0.67

Shared Ownership 3.54 93.77 2.25 0.43

Private Rent 10.50 4.13 75.00 10.37

Public Rent 2.60 0.63 7.49 89.28

Notes: Transition probabilities are calculated as the frequency of individuals who reside
in a given tenure type in wave t − 1 and a given housing tenure type in wave t, for all
waves.

These heterogeneities are illustrated by interacting relevant changes to housing tenure
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Table 2.9: Housing tenure transition OLS coefficients of moving house, for full sample

Time t: Owned/ Mort. Shared Own. Private Rent Public Rent

Time t-1:

Owned/ Mortgage 0.050∗∗∗ 0.065∗∗∗ 0.006 -0.035

Shared Ownership 0.029 0.038∗∗∗ 0.027∗ -0.040

Private Rent -0.024∗ 0.018 -0.008 -0.033∗

Public Rent -0.012 -0.003 -0.028∗ -0.090∗∗∗

Notes: Migration coefficients from OLS models of self assessed health, regressed on
each housing tenure change (conditional on migration); Base category for all models is
all other housing tenure change; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001; N=24,338

withmigration. If using the instrumental variable approach, thiswould involve estimat-

ing separate first-stages for each interaction term, each instrumented by their interaction

with age of the youngest child and school quality instruments. As illustrated by Table

2.8, there are 16 possible combinations of housing tenuremovements. Using these inter-

actions for all 16 combinations ofmovewould push the data too far, so for this secondary

analysis, OLS is used to simplify the exposition (and thus no causal claims are made at

this point).

Table 2.9 shows the analogue to Table 2.8, but reports OLS coefficients from the migra-

tion coefficient for each type of housing tenure change. All of these models are condi-

tional on a move having taken place, and as such, the base category is all other types of

move. Some clear heterogeneities in the effect ofmigration on health, by housing tenure,

appear. The effect of moving from private rent to home ownership (row 3, column 1)

is negative in terms of self-assessed health, whereas simply moving house from one

that is owned, to another (row 1, column 1) shows a positive effect of migration. These

represent two different types of move, with the former often being an individual’s first

house purchase, involving securing a mortgage and may place a different type of pres-

sure on a household than one of a more experienced move, such as that captured by the

latter. Of particular note from this table are the negative signs on each of the moves to,

or from, public rental tenure. Considering the difference in probabilities of remaining

in the same type of rental property between private and public rent (see Table 2.8), this

brings to light a potential problem with public renters in the U.K.: it is likely that once

an individual rents publicly, theywill continue to do so in the next period (around 90%),

39



CHAPTER 2 2.5 RESULTS

and doing so is associated with much lower self-assessed health.

2.5.5 Short run effects (RDD) results

In this section the regression discontinuity results are presented, comparing the health

outcomes of those who were interviewed around the time they moved residence. The

running variable, m, is defined as the number of months after the last move that the

interview took place. The cutoff is where m = 0. For these individuals, who were in-

terviewed in the same month as they moved, it is impossible to determine whether the

interview took place before or after move itself, so they are dropped from the analysis.

Figure 2.2 illustrates a simplified version of this set up, and shows the outcomes over

m. We can see small differences for the GHQ-12 and self-assessed health measures. An-

other consideration for this approach is whether the covariates vary over the cutoff. This

is often seen as a placebo test, providing credit to the identification assumption if they

vary smoothly. Figure 2.3 shows this for several variables. For each of these a disconti-

nuity can be observed, and thus are controlled for in the main specification.

Table 2.10 shows the regression discontinuity results. As expected, the null of no effect

for the physical healthmeasures (self-assessed health andwhether or not the individual

has a health problem) cannot be rejected. It can be seen, however, that there is a statisti-

cally significant positive effect of moving residence on psychosocial health, as measured

by the GHQ-12 score.

Anticipatory and temporary effects of moving

This final piece of descriptive analysis investigates whether the (lack of) short-run ef-

fects are the result of two offsetting mechanisms. The hypothesis is that, especially in

the case of psychosocial health (and therefore the GHQ-12 score), most of the stress

associated with a move occurs before the event itself. Likewise, this heightened stress

maywell dissipate quickly in themonths following amove, as individuals adjust to new

surroundings. To capture this, a piecewise-linear spline function of the months prior to

a move is fit against each health outcome. The focus is on those who are interviewed

within 24 months of moving, and nine knots in three-month intervals from 12 months
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Figure 2.2: Health outcomes before and after moving residence

Notes: Graphical comparison of individuals’ outcomeswho are interviewed up to 12months before amove,
with those who are interviewed up to 12 months after a move. Months since last move = 0 represents the
month in which a move took place: if the interview fell in this month, the individuals were dropped as it
is impossible to determine from the data whether they were interviewed before or after a move.
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Figure 2.3: Various covariates of health before and after moving residence

Notes: Graphical comparison of individuals’ covariateswho are interviewedup to 12months before amove,
with those who are interviewed up to 12 months after a move. Months since last move = 0 represents the
month in which a move took place: if the interview fell in this month, the individuals were dropped as it
is impossible to determine from the data whether they were interviewed before or after a move.
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Table 2.10: Short-run effects: RDD results around the cutoff of moving residence

Better than good SAH GHQ-12 Score Health Problem

RD Estimate 0.006 -0.514 0.131a
[-0.112, 0.190] [-3.705, 0.626] [-0.054, 0.314]

Controls - - -
Bandwidth (both sides of cutoff) 4 4 4
Effective N (left,right) (1,171, 5,595) (1,146, 4,781) (1,170, 2,655)

RD Estimate 0.029 -0.711∗ 0.113a
[-0.057, 0.252] [-4.471, -0.233] [-0.135, 0.235]

Controls X X X
Bandwidth (both sides of cutoff) 4 4 4
Effective N (left,right) (1,066, 4,906) (1,105, 4,495) (1,096, 2,403)

Robust 90% confidence intervals in brackets; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
a Significant at the 5% level when regular standard error calculations are used.

prior, to 12 months post a move, are included. This approach is illustrated in Figure 2.4.

It is clear from this plot, that six months prior to moving, the average GHQ-12 score is

elevated. This rapidly moves in the opposite direction once a move has taken place, and

then returns to a baseline level after nine to twelve months.

These results are in line with the notion that any short run effects picked up in the pre-

vious analysis are an average over these two periods: an anticipatory effect of worse

psychosocial health, offset by a “honeymoon” period of better psychosocial health.
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Figure 2.4: Illustration of the spline function

Notes: A linear piece-wise spline function, fitted to the sample of those who are interviewed within two
years before or after moving. Knots are fitted in three-month intervals, ranging from 12 months prior to a
move and 12 months post.

2.5.6 Attrition

Table 2.11 shows the tests of health-related attrition that were described earlier. The top

row shows the coefficients from the fixed effects models that do not include the test vari-

ables. The remaining two “mover” rows show these same coefficients when the models

are added. Adding the test variables does not address the attrition in any way, but they

are useful for comparative purposes. There is little difference between these estimates.

The row for rt+1, shows the test using a count of the number of waves remaining after t.

The row for st+1, shows the test using an indicator of whether the individual is observed

in the followingwave. In general, it seems that patterns of attrition out of the dataset are

not associated with health outcomes, with the null of no association between attrition

and health outcomes failing to be rejected in all but one case. This case suggests that the

number of future sample periods remaining at time t is associated with having a health

problem at time t. This estimated association, however, is extremely small in magnitude

(0.2 percentage points). It can be concluded therefore, that health-related attrition does
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Table 2.11: Coefficients and t-stats from tests of health-related attrition

SAH GHQ-12 Health Prob.

Mover -0.010∗∗ -0.004 -0.002
(0.004) (0.056) (0.004)

Mover with -0.009∗ -0.005 -0.002
rt+1 (0.004) (0.056) (0.004)

rt+1 -0.011 0.087 0.002∗∗
(-1.64) (0.87) (3.10)

N 107736 107736 107736

Mover with -0.012∗∗ -0.017 -0.003
st+1 (0.004) (0.064) (0.004)

st+1 0.008 -0.100 -0.001
(1.54) (-1.46) (-0.23)

N 90389 90389 90389

Parentheses: t stats for test coefficients, SEs for Mover coefficients; Mover represents the
coefficient on moving residence from these fixed effects models, with and without the
added attrition test variables; rt+1 represents number of observed waves remaining; st+1 is
an indicator of whether observed in next period; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

not seem to be a major concern for this analysis, after using this approach that is the

norm in the health literature.

2.6 Discussion
There is a shortage of literature that considers the role of moving from one place of res-

idence to another, on health outcomes. This chapter has sought to address this gap in

the literature using an instrument that has not been utilised as a predictor of moving

house in the economics literature before.

The results from the IV analysis concludes that moving house is associated with worse

physical and psychosocial health. Any causal conclusions must be treated with caution,

however. The fact that the IV estimates are larger than the OLS estimates may, in part,

be due to the fact these estimates represent a Local Average Treatment Effect (LATE);

they represent the effect only for the compliers with the instrument. In the case of the

school choice, for example, the point estimates represent the effect of moving house,

for those who are both willing and able to move location for their child’s schooling quality. The
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other possibility cannot be ignored: that the large coefficients could be due to a failure

of the exclusion restriction. This seems less likely for the fixed effects models that use

the local variation in school quality in the instrument set; but this assumption remains

fundamentally untestable.

There is a trade off between consistency and variance amongst the choice of estimators.

We cannot ignore the endogeneity that renders OLS inconsistent. However, turning to

a seemingly plausible and carefully thought-out instrument results in a large variance

(the standard errors almost always contain the OLS estimates in this case), meaning that

the results do not necessarily providemore confidence in the conclusionsmade. This re-

mains a common and important issue in papers that rely on an IV identification strategy,

but it is one that often gets overlooked in the discussion of the results11. Nevertheless,

the coefficients of the full specifications with fixed effects lie in a plausible range for the

self-assessed measures and represent the take-away estimates from this analysis: Indi-

viduals who move are 8 percentage points less likely to report very good or excellent

health and report 1.3 points higher on the GHQ score.

The secondary analysis of this chapter reveals a short-run effect of moving house that

occurs before and after the move takes place. Individuals who are interviewed within

six months prior to moving house show elevated GHQ-12 scores, reflecting worse psy-

chosocial health. In addition to these anticipatory effects, a period of better psychoso-

cial health is observed in the three months post-move, which returns to the baseline

level in the long-run. This suggests that whilst moving can be a period of intense stress

for a household, individuals quickly adjust once the move has taken place. These re-

sults, along with the regression discontinuity approach do not identify causal effects of

moving, however. Nevertheless, the lack of clean identification of causal effects should

not deter research on an important question that remains unanswered in the literature

(Ruhm, 2018).

Also apparent from the analysis is the likelihood of heterogeneous treatment effects.

This is driven by the fact that there aremany different reasons formoving residence, and
11See Young (2017)
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many different types of move. Any effect estimated, evenwith a perfect instrument, will

comprise of a weighted-average of other, more local, average treatment effects depend-

ing on the type of move and themotivations for doing so. The sixteen combinations (see

Table 2.8) of moves between housing tenure provides a framework for literature look-

ing at internal migration. For example, a recent paper by Munford, Fichera, et al. (2017)

considers the effect of home ownership on health, using exogenous variation from the

Right to Buy policy in the 1980s. As this policy affected those who resided in council

houses and encouraged home ownership, this paper estimates the causal effect of mov-

ing from private rent to home ownership (analogous to row 4, column 1 of Table 2.8).

This paper is an important contribution to the literature that explicitly considers a spe-

cificmechanism of home ownership, and this framework should help guide futurework

that considers different mechanisms of internal migration.

There are other potential features of migration that warrant further research. The ef-

fect of a move for tied movers versus non-tied movers, for example, is likely to have

a very different effect on health outcomes. The effects of moving house at older ages

presents another avenue for research, as do changes to housing tenure. Future work in-

volves teasing out these mechanisms further in a sensible way, carefully using different

instruments to construct other LATEs of migration on health. These estimates will help

unpick complex, yet commonplace behaviour.
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CHAPTER 3

Are Health Outcomes Worse on the
English Coast? Selection on
Observables vs Unobservables

Abstract

UK data shows that health amongst the working-age population (16-64 years) is worse on the
coast than elsewhere. For example, there is a much greater prevalence of limiting long-term
health conditions on the coast as opposed to the average for England and Wales. Despite this,
there is a lack of literature that considers the potential reasons for these differences and how they
can be identified; this paper addresses this gap. Using data on health and other characteristics
from all five waves of Understanding Society, a UK household panel dataset, we quantify the
differences in health and health-related outcomes on the coast compared to inland. Detailed
geographic data are used to construct a distance to the coast measure, which we use as the main
distinction between a coastal and non-coastal area. We find that most health-related outcomes
are worse on the coast, including long-standing health conditions, disability benefit claimants
and smoking prevalence being more likely. A notable exception is frequent physical exercise,
which is more prevalent on the coast (2.8 %pts more likely, p<0.001). It seems living on the
coast may well be related to worse health, but further research into the potential mechanisms
and identification issue is needed.
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3.1 Introduction
This chapter considers the difference in health and health-related outcomes between

individuals who live on the coast versus those who live inland. A recent study by the

Office for National Statistics (ONS, 2014), which uses 2011 census data to provide an

overview of coastal towns in the United Kingdom (UK), shows that health is worse on

the coast than inland. Indicators other than health, notably education and employment,

also paint the UK coast in an adverse light. For example, a recent report conducted by

the Future Leaders Trust (2015) concluded that schools on the coast are among theworst

performing in the UK, attributing this to geographical isolation and industrial decline.

This chapter addresses twomain research questions: Are health outcomes worse on the

English coast, and how likely is it that these differences are driven by selection on unob-

servable factors? It does so using Understanding Society with lower-layer super output

area (LSOA) linkage. Distance to the coast is measured from the population- weighted

centroid of each household’s LSOA, to the nearest coast. This is then used to create

a binary “coastal” variable, which is included in regression analysis of the outcomes,

amongst other covariates. The effects of interest are then estimated using a range of

different methods, and show the results do not differ significantly based on functional

form.

There are likely unobservable, systematic, differences between individuals living on the

coast versus those who do not due to self-selection. An absence of plausibly exogenous

variation in living on the coast rules out identification through an instrumental variable

or natural experiment. This chapter therefore uses methods first proposed by Altonji et

al. (2005) and recently developed by Krauth (2016) and Oster (2019) to assess how large

the selection on unobservables would have to be, relative to selection on observables, for

these results to be statistically insignificant. Subsequent analysis also looksmore closely

at the role of house prices, access to health care providers, movers and non-movers to

disentangle the mechanisms at play.

Our main results show that individuals residing on the coast are 1.9 percentage points

more likely to claim disability benefits (p<0.01), 3.2 percentage points more likely to
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have a long-standing health condition (p<0.01), 8 percentage points more likely to have

smoked (p< 0.01) and 3.1 percentage points more likely to have drank frequently in the

past week. Contrastingly, individuals are more likely to have participated in frequent

moderately intense exercise (p<0.01). There were no differences in self-assessed phys-

ical and psychosocial health - a result contradictory to previous literature. These are

important new findings, and raise new questions for policy, surrounding unmet need

on the coast.

The chapter continues as follows: Section 3.2 provides some background to the features

of the coast that motivate the study; Section 3.3 outlines the data and relevant variables

used, including details on how the coast variable is constructed; Section 3.4 outlines the

methods used; Sections 3.5 and 3.6 report the findings and Section 3.7 concludes with a

discussion of the results and limitations.

3.2 Background
There is observational evidence to show that the English coast is associated with worse

outcomes for a host of health-influencing factors. Towns on the English coast are asso-

ciated with higher deprivation, increased drug use, poorer education, and worse em-

ployment outcomes. Figure 3.1 plots area-level Index of Multiple Deprivation (IMD)

rankings on a map of England. Once we ignore the main cities (i.e London, Manchester,

Birmingham, Leeds and Sheffield), the most deprived areas are clearly concentrated

along the coast. A 2018 ONS report showed that 6 of the 10 local authority districts

in England andWales with the highest rates of heroin and/or morphine misuse-related

deathswere on the coast1. According to a report by the SocialMarket Foundation (2020),

the two local authorities with the smallest proportion of those aged 16+ holding a level

4 or above qualification, and 5 of the 10 local authorities in Great Britain with the lowest

average pay, were coastal communities.

Yet, there is little empirical evidence on whether health-related outcomes themselves

are indeed worse. This motivates the primary question this paper seeks to address:
1https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/

halfofheroinmorphinemisusedeathhotspotsinenglandandwalesareseasidelocations/2018-04-04
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Figure 3.1: Deprivation in England: by LSOA-level IMD Decile

are health- related outcomes worse on the English coast, after conditioning on health-

influencing factors?

3.2.1 Why are coastal regions more deprived?

The prevalent issues in coastal areas in the UK which contribute to worse deprivation

can be summarised as: a decrease in popularity for living and holidaying in these loca-

tions, poor infrastructure, the socioeconomic status of residents, and the reinforcing of

these problems by the “brain drain” from these regions.

As an island, the UK has historically been heavily reliant on its maritime trade. This be-

came of even greater importance during the Industrial Revolution; increased demand
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for ship building and repair was brought about by increases in coastal, foreign and

slave trades (British Museum, 2008). This, along with the already strong agricultural

and fishing industries, led to a huge surge in jobs and wealth on the coast, drawing in

populations from the inland cities. The coast has also prospered from being a holiday

destination for many, throughout the 1900’s, boosting the economy of the areas not built

upon the aforementioned industries. However, these industries are no longer what they

once were, having faced a steady decline over the past 30-40 years, leaving the popula-

tions who still live on the coast worse off as a result. Plant closures have resulted in

heavy job losses and cheap flights mean the prospect of going to the English coast for

a holiday has been replaced by a Spanish coast. These factors can offer some potential

explanation for the deprivation that affects certain parts of the English coast today.

Coastal towns are generally characterised by seasonal business, with high numbers

of small or medium sized businesses with poor digital skills, which impedes growth

through a strong digital infrastructure. Seaside towns also exhibit a high proportion of

the elderly population, as popular retirement locations, and low opportunities for en-

try level jobs, especially for yount people (Parliament, 2019). This results in outward

migration of younger individuals and skilled labour (“brain drain”) resulting in an age-

ing population. This has consequences on natural reproduction of the population, and

therefore a decrease in the human capital necessary for further development, further

reinforcing the socio-economic issues (Farwick, 2009).

3.2.2 Theoretical Underpinnings

The factors outlined in section 3.2.1 outline the distinct mix of problems in coastal towns

which contribute to worse social deprivation. Socio-economic status is a known con-

tributor to health status, particularly at old ages (Salas, 2002; Siciliani & Verzulli, 2009).

This study is concerned with whether living on the coast is associated with health and

wellbeing, holding these factors constant. Therefore, I hypothesise two, conflicting, po-

tential mechanisms for why living on the coast should affect health and wellbeing, all

else equal:

1. Living on the coast has a direct, positive, effect on health and well-being: the coast as
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“bluespace”.

Bluespace is defined in a similar fashion to greenspace in the literature: “health-enabling

places and spaces, where water is at the centre of a range of environments with identi-

fiable potential for the promotion of human wellbeing” (Foley & Kistemann, 2015). The

coast is a subset of bluespace, and this approach suggests a possible hypothesis that

living by the coast is good for health. In particular, a positive effect through increased

physical activity is a salient feature in the coast-health mechanism.

2. Living on the coast has a negative impact on health through insufficient provision

of healthcare services. In coastal regions, this unique set of issues is not properly re-

flected in resource allocation formulas, therefore need is not properly accounted for,

and the supply of healthcare services does not properly meet the demand for health-

care in coastal regions, therefore health worsens.

A recent House of Lords select committee report on the future of seaside towns (REF)

provides anecdotal evidence that though the national funding formula reflects an area of

deprivation score, it does not adequately account for the complex set of circumstances

faced by healthcare professionals in these areas. Examples include inability to notify

the population of public health interventions such as screening programmes through

conventional methods of communication by practices (letters), as many patients live in

unstable accommodation with high turnover. The high proportion of multimorbid pa-

tients in these areas, and the higher utilisation of services they require and extra work

this entails for GPs is also not reflected in the funding formula for GPS, resulting in low

numbers compared with the demand.

3.2.3 Literature Overview

There is a small body of literature which considers the physical or mental health effects

of living near to the coast. Mostly, the international literature approaches the problem

from a “bluespace” perspective. A recent systematic review considering, amongst other

phenomena, the mental health benefits of bluespace (Gascon et al., 2015) identified only
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three studies (White et al., 2013; De Vries et al., 2003; Triguero-Mas et al., 2015) which

fit this criteria, concluding that there is limited evidence of casual effects. Völker and

Kistemann (2011) consider awide range of studies, in a systematic review of thosewhich

consider the health effects of inland surface waters. Although this specifically excludes

the coast, the authors identify a need for more quantitative evidence in such areas.

There are several studies which consider coastal health effects, rather than bluespace

in general, in a UK setting. Using 2011 census data from the UK, Wheeler et al. (2012)

considerwhether living by the coast improves health andwell-being. They employmul-

tivariate linear regressions, withmeasures for self-assessed health andwell-being as the

outcomes of interest. They find that good health is more prevalent the closer an indi-

vidual lives to the coast. In a more detailed approach, White et al. (2013) consider the

same research question, but employ panel data methods. They find in a fixed-effects

specification, that physical and mental health is better the closer one lives to the coast,

but life satisfaction is no different. However, they can only identify effects for those

who move to or from the coast, and these may be imprecise, due to small individual

or household-level variation. In a paper which considers many different types of envi-

ronment (including the coast) and health, Wheeler et al. (2015) find some statistically

significant and positive associations between living in a coastal environment and good

self assessed health. However this study, as do all of those considering health on the

UK coast, fails to address the endogeneity of living on the coast with respect to health.

The most recent study to consider health and the UK coast explores the relationship be-

tween childhood obesity and proximity to the coast (Wood et al., 2016). Regressing obe-

sity prevalence (BMI≥ 95th percentile) on coastal proximity and area-level confounders,

the authors find that living nearer to the coast is associated with lower obesity, though

this relationship depends on the type of area (rural or urban areas). Specifically, the

coastal gradient in obesity was not found for large urban areas.

The common theme within all of the literature reviewed here is that, ex ante, bluespace

is thought to be beneficial for health, and these hypotheses are carried forward into the

literature which considers the effects of living in a coastal environment. Another feature

of this literature is that the health measures used tend to be self-assessed, and assessed
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in absolute terms; using objective measures of health and assessing distributional ef-

fects could add to the existing evidence. Finally, an important omission of the current

literature is that the endogeneity of the coast with respect to health is not explicitly con-

sidered, nor are the implications discussed. This paper aims to offer some insight into

the role of non-random selection into living on the coast.

3.2.4 Identification Issues

There are several identification issues faced when considering the health-related con-

sequences of living on the English coast. These can best be summarised as the likely

systematic difference between individuals living on the coast versus those who do not.

This means that a simple comparison of averages will yield results that are likely biased.

If these differences are along observable dimensions, such as age, income and education,

then simply controlling for the variation in these characteristics using Ordinary Least

Squares (OLS) regressionwill provided consistent and unbiased estimates of the coastal

differences. If, however, these differences are unobservable (as is likely the case when

using observational data) then we cannot give any estimate a causal interpretation, in

the absence of a quasi-experiment or other plausibly exogenous source of variation in

living on the coast (i.e. an Instrumental Variable (IV)).

In the absence of such an instrument, there are few approaches one can take in the search

for a causal interpretation. In light of this, methods first proposed byAltonji et al. (2005),

who assess the role of selection on observed and unobserved variables in establishing

the effectiveness of Catholic schools, are utilised. These methods were subsequently

formalised by Krauth (2016) and Oster (2019) as a way to bound a linear causal effect

by relaxing the relative correlation restrictions placed on the model. This allows an as-

sessment of how large the correlation between the coast and the unobservables (i.e the

selective migration) would have to be, relative between its correlation with the observ-

ables, for the estimate of the coastal effect to tend to zero.

Aside from the observable determinants of health, there are several potential sources

of unobserved heterogeneity in individual responses, that relate to living on the coast.
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One of the main features of a coastal environment in the UK is geographical isolation.

This can have potentially far-reaching consequences for health on the coast, through

limited access to the same level of health care as one would otherwise have in, say, a

city. In supplementary analysis to assess this, proxies for the level of health care access

at the local area level included in order to soak up the variation geographical isolation

that affects health. Additionally, local house prices are added to the analysis to pick up

heterogeneity in the coast and it’s effect on health and health related outcomes.

Another potential source of systematic differences in health on the coast is selective mi-

gration. This can arguably take the form of two different types of selection: “unhealthy”

inwardmigration and “healthy” outwardmigration. The former is driven by retirement,

and captures the older (and sicker) populationsmoving towards the coast in their retire-

ment, whilst the latter relates to younger populationsmoving inland to cities to improve

labour market outcomes. In supplementary analysis the main models are stratified by

these age groups as a basic test to see if the data supports this hypothesis. Analysis is

carried out separately on only on those who move, and then on only those who do not

move, between the coast to get a hold of these potential mechanisms.

The approaches taken in this chapter contribute to the literature on coastal health by

using new data, new methods that test the sensitivity of point estimates to selection on

unobservables, and by testing several mechanisms that may confound the main effect.

3.3 Data
This chapter uses data from Understanding Society (USoc), a longitudinal survey of

approximately 40,000 households in the United Kingdom. The members of each house-

hold are revisited annually, with data collection for each wave taking place over a two-

year period. Individuals in the household aged over 16 years have a face-to-face inter-

view in addition to a short questionnaire. The survey began in 2009, and is currently

in its 5th wave, which corresponds to 2013/14. For the purposes of this analysis all 5

waves2 are used, restricting the sample to those residing in England3, as the area-level
2With the exception of models which consider smoking, drinking and physical activity; these variables

are only available in certain waves.
3Those living on the Isle of White are also dropped, as doing so perfectly predicts treatment (living

within a close proximity to the coast).
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data for Wales and Scotland was insufficient for the proposed coastal variable. For this

variable, a linkage betweenUSoc and 2011 census geographical data is used; specifically

the household’s lower-layer super output area (LSOA). Knowing whether an individ-

ual lives at the address which is deemed to be on the coast or not is important for the

analysis and the sampling design of USoc ensures that the individuals interviewed are

permanent residents of the address (Lynn et al., 2009), so individuals are not mistakenly

flagged as being on the coast. There is no information onwhether or not a holiday home

is owned, so thosewhomay experience the benefits of the coast through thismechanism

cannot be disentangled from those who do not.

3.3.1 Variable Definitions

USoc contains data on individual characteristics, and variables which measure both the

determinants of and levels of health and health-related outcomes. These health-related

measures take the form of our main outcome variables, while the former were used as

controls to capture observed individual heterogeneity.

Defining the Coast

Crucial to the analysis of this paper is a variable which captures whether or not an indi-

vidual lives on (or near to) the coast. Following (Wheeler et al., 2012) and (White et al.,

2013), data on the household’s LSOA has been incorporated to measure this. LSOAs are

small areas of roughly the same population size. Each LSOA covers between 1,000 and

3,000 people. The population-weighted centroid coordinates were obtained from the

(Office for National Statistics, 2012) and merged in to each LSOA. Separately, a shapefile

was obtained from (OpenStreetMapData, 2016) which contains over 400,000 longitude

and latitude coordinates which trace the UK coast. Finally, the distance to the nearest

coast was calculated for each LSOA, in kilometres4. This distance to the coast variable is

used to split the sample into those who live on the coast and those who do not, and the

main variable of interest. While these distances are accurate (they are only limited by

the geographical size of the LSOA, which are small areas), deciding the bounds of this

coastal variable is more subjective. In the bluespace literature, the norm is to use 0-5 km
4Using the Stata command -geonear- (Picard, 2010) to do this. Rather than calculate all pairwise com-

binations and take the minimum distance for each LSOA (population weighted centroid), this command
determines the nearest neighbour using a “divide and conquer” algorithmwhich greatly reduces the num-
ber of calculations, without a loss of accuracy.
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Figure 3.2: Number of “movers” vs. distance to the coast

Notes: The data for this figure are from the sample of those who have moved at least once, either to or from
the coast. I.e: they have lived on both sides of the coastal cutoff, which is allowed to vary on the x-axis.

as the coastal category (Wheeler et al., 2012; White et al., 2013). For the purposes of this

chapter, however, there is a clear trade off between accurately capturing those who live

on the coast, and the sample size - especially when considering only movers between

the coast and inland.

This sample of movers is created by keeping only those who have lived on one side of

the coastal cut-off in at least one wave, and on the other side of the cut-off in at least one

other wave. Figure 3.2 shows how this sample varies across different definitions of the

coast. A distance of 2.5km seems to provide a balance between accurately capturing the

coast, and providing a large enough sample of movers and is thus used as the definition

of the coast throughout this chapter, for both the full sample and the sample of movers.

Other distances are used in robustness checks, to check the sensitivity of the results to

this definition. I also employ a “donut” in the distance to the coast, where data between

2.5km and 15km from the coast is dropped. This imposes a clear distinction between the
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coast and inland (which is otherwise somewhat arbitrary), and ensures that the control

group remain fixed when testing different definitions of the coast.

Outcome Variables

To capture self-assessed health, individuals were asked “How would you rate your

health in general?” to which they responded Poor, Fair, Good, Very Good or Excellent.

In these analyses, thiswas treated as continuous categories or dichotomised to equal one

if the responsewas “Excellent” or “Very Good” and zero otherwise. In another question

about their physical health, respondents were asked whether they had any of a number

of long-term limiting illnesses. The responses from these questions were used to create

a binary variable equal to one if the respondent had any long-term limiting health con-

dition and zero otherwise. USoc contains data on the individuals’ GHQ-12 score, which

ranges from0 to 36, and aggregates answers froma range of questions aimed at assessing

their psychological well-being. This variable was reversed so that a higher score indi-

cates “better” mental health than a lower one, for ease of interpretation. An outcome

variable capturing disability claimants, where individuals identify as claiming one or

more types of welfare, is constructed. Individuals were asked if they were currently

receiving any health-related benefits: incapacity benefit, employment and support al-

lowance, severe disablement allowance, carer’s allowance, disability living allowance,

return to work credit, attendance allowance, industrial injury disablement benefit, war

disablement benefit, sickness and accident insurance, and any other disability related

benefit or payment. The variable is equal to one if the individual is claiming any of these

benefits, and zero otherwise.

Waves 2 and 5 of USoc contain information on health behaviours, including smoking

andphysical activity. Individualswere asked if they had ever smoked,which is included

as a dummy variable equal to one if they have and zero otherwise, in our analysis. For

physical activity, the respondents were asked to choose which sports and activities they

have undertaken. They are subsequently asked how often (from a list of pre-defined

“moderate-intensity sports”) they have done this in the last 12 months. Individuals re-

sponded: no sports were done in the past 12 months; once in the past 12 months; twice

in the past 12 months; less often than once a month but at least three or four times a
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year; less often than once a week but at least once a month; at least once a week but less

than three times; three or more times a week. This was coded as a binary variable equal

to one if the individual had participated at least once a week and zero otherwise.

Waves 3 and 4 of USoc contain information on drinking behaviour. Participants were

asked: “Thinking back over the last week, on how many days (if any) did you have a

drink? (A ‘drink’ is one pint/bottle/can of beer or cider, 2 alcopops, one small glass of

wine, a single measure of spirits)”. For our purposes this was coded to equal one if they

responded 3 days or more and zero otherwise.

Control Variables

In addition, USoc provides information on the respondents age, gender, ethnicity, and

employment status (including job classification). Individuals were asked to select the

most appropriate marital status from “Single, never married or in a civil partnership;

married; civil partner (legal); separated; legally married; divorced; widowed; sepa-

rated from civil partner; a former civil partner; surviving civil partner”. This was di-

chotomised to equal one if the respondent was either married or in a civil partnership

and zero otherwise. Information on income was collected from all of the adult respon-

dents in the household and used to construct a household net income variable, which

was subsequently log-transformed. Respondents were also asked about their highest

educational qualification to date, choosing one from “No qualifications; Degree; Other

higher qualification; A-Level or equivalent; GCSE or equivalent; Other”, from which

dummy variables for each category were created. The LSOA data also allows us to con-

trol for area level characteristics. These comprise of their Index of Multiple Deprivation

scores, and time (inminutes) to the nearest hospital andGPpractice, if onewere to travel

by car (Department for Transport, 2015).

3.3.2 Descriptive Statistics

Table 3.1 reports the descriptive statistics for the full sample from waves 1-5 of USoc.

Column one shows the descriptives for those living on the coast, column two for those

living outside of the coastal cut-off and the third and fourth columns report the differ-
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ence between the two and the corresponding p-value for the t-test of the null that the

differences are zero. The upper panel shows the differences between the control vari-

ables on the coast versus inland. With the exception of A-level prevalence and Gender,

those who live on the coast differ statistically significantly from those who do not across

all variables. The magnitude of these differences is not, in general, economically signif-

icant. Of note, is that those on the coast tend to be several years older, less likely to hold

a degree, earn (net) around £315 a month less (per household) and live just less than 1

minute further away from a hospital, by car. That households earn £3,780âĂň (£315*12)

is in line with the figures from Corfe (2017). The households on the coast have a lower

IMD score (i.e are more deprived) on average, a result better illustrated in Figure 3.1.

The lower panel of Table 1 shows the descriptive statistics for various outcome mea-

sures. Again, there are statistical differences between each (with the exception of GHQ

score and frequent physical activity), with somemore meaningful than others. Respon-

dents living on the coast are 6 percentage-points more likely to have a long term health

condition than thosewho do not, 3 percentage pointsmore likely to claim disability ben-

efits, and 9 percentage points more likely to smoke, than those who live further from

the coast. In addition to this, Figures 3.3-3.5 show distributional comparisons of the

outcomes, on the coast vs. inland, and Figure 3.6 shows the same for various covariates.

From these, it seems that the differences between the coast and inland are in terms of

mean levels, with little difference in the spread of each variable. One exception to this

is the distribution of age on the coast vs inland, with a higher concentration of older

population on the coast, and relatively fewer aged between 30 and 45 years, unlike the

peak in these ages inland.

3.4 Methods
3.4.1 Simple Linear Model

The analysis begins with a simple linear model for a given health outcome (long-term

health condition; self-assessed health; GHQ-12 score), yi, as follows:

yi = α+ βCoasti +X ′iγ + εi, (3.1)

61



CHAPTER 3 3.4 METHODS

Table 3.1: Descriptive Statistics

Coast = 1 Coast = 0 Difference P-Value

Observations 16,578 143,859

Covariates:

Age 48.59 45.93 2.66 0.00
Married 0.50 0.52 -0.03 0.00
White 0.96 0.75 0.21 0.00

(Full-time) Employment Status
& Job Classification

Not Employed (not retired) 0.21 0.24 -0.03 0.00
Retired 0.27 0.22 0.05 0.00
Large employers & higher management 0.02 0.03 -0.01 0.00
Higher professional 0.03 0.05 -0.01 0.00
Lower management & professional 0.15 0.16 -0.01 0.00
Intermediate 0.07 0.08 -0.01 0.01
Small employers & own account 0.06 0.05 0.01 0.00
Lower supervisory & technical 0.05 0.04 0.01 0.00
Semi-routine 0.10 0.09 0.01 0.00
Routine 0.05 0.05 -0.00 0.40

Highest Qualification:
Degree 0.19 0.24 -0.05 0.00
Other Higher Qual. 0.11 0.11 0.01 0.01
A-level or equivalent 0.21 0.20 0.01 0.09
GCSE or equivalent 0.24 0.21 0.03 0.00
Other Qualification 0.11 0.10 0.01 0.00
No Qualifications 0.14 0.14 -0.01 0.03

Net HHMonthly Income £2685.65 £3001.31 -£315.66 0.00
Male 0.47 0.46 0.00 0.40
Time to GP (mins, by car) 7.79 7.87 -0.08 0.00
Time to Hospital (mins, by car) 18.15 17.30 0.85 0.00
IMD Score 24.87 22.43 2.43 0.00

Outcomes:

Self-Assessed Health (SAH) 2.65 2.58 0.06 0.00
GHQ Score 24.86 24.91 -0.05 0.30
Long-term Health condition 0.39 0.33 0.06 0.00
SAH = V. Good or Excellent 0.49 0.51 -0.02 0.00

Ever Smoked 0.62 0.52 0.09 0.00
Drank frequently last wk. 0.34 0.31 0.02 0.00
Frequent physical activity 0.35 0.34 0.01 0.27
Disability Benefits claimants 0.12 0.09 0.03 0.00
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Figure 3.3: Distribution of various health outcomes - coast vs. inland
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Figure 3.4: Distribution of various health outcomes continued - coast vs. inland
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Figure 3.5: Distribution of risky health behaviours and disability claimants - coast vs.
inland

0 .2 .4 .6

Coast

Inland

Coast vs Inland
Risky behaviours and Disability Benefits Claimants

Ever Smoked Drank >3 days last week
Freqent physical activity Disability Benefits

64



CHAPTER 3 3.4 METHODS

Figure 3.6: Distribution of various covariates - coast vs. inland
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where Coasti is equal to one if the individual resides on the coast (within 2.5km) and

zero if they live further than 15km away. In this respect, most specifications use a

“donut” definition of the coast, where the mid range is not included. This allows for

a clear distinction between those on the coast versus those inland, and for robustness

checks, allowsmoving this coastal cutoffwithout altering the control group5. εi denoted

unobserved determinants of yi and Xi is a vector of individual, household and LSOA-

level characteristics which are believed to be correlated with both yi and Coasti.

As noted in the previous section, Usoc provides a wealth of individual, household and

local area (LSOA) level characteristics. The inclusion of these as controls allow the re-

duction of, but not elimination of, the bias of other confounding factors. Specifically, a

causal interpretation of β relies on a “selection on observables” assumption: conditional

on the observable characteristics contained in X ′i, individuals who live on the coast do

not differ systematically in terms of unobservable factors. As was mentioned in ear-

lier sections, it is unlikely that this assumption will hold, when considering the English

coast.

The data in Understanding Society are longitudinal in nature: individuals are followed

through subsequent waves. For the main analysis, equation 3.1 is estimated via pooled

OLS where participants are allowed to contribute variation to the analysis more than

once. To account for serial correlation in the variance-covariance structure, all standard

errors are clustered at the individual and household level. A natural extension of this

analysis is, using only within-individual variation, including fixed effects. However, as

the coast does not vary over time, this would only make use of variation generated by

individuals moving between the coast across two or more waves. There are two reasons

this analysis does not feature as part of themain results of this chapter. Firstly, consider-

ing the effect of moving to or from the coast on health is a different research question to

the one at hand. Secondly, there are not many coastal movers relative to the rest of the

sample. Due to combination of these two factors, I reserve this analysis as an extension

to the main question in section 3.6.1.

5Robustness to this defintion is shown in section 3.6.4, and to including this data as an additional
category in Appendix B, tables B.4 and B.5
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Finally, to address any concern from treating each wave as a repeated cross-section I

include supplementary estimation of 3.1 where I use only one response per individual

(using the latest response), and where I exploit the variance structure of the full panel

in a Random Effects (GLS) framework (Wooldridge, 2010). These can be found in Ap-

pendix B, tables B.6 and B.7. The results from these analyses are not explicitly discussed

further as they qualitatively the same, the standard errors less conservative than those

of themain analysis, and the RandomEffects setup is more restrictive in its assumptions

for consistency (Wooldridge, 2010).

3.4.2 Propensity Score Methods

Let the propensity score of living by the coast be defined as:

p(x) = Pr(Coasti = 1|Xi). (3.2)

Several methods make use of propensity scores in order to estimate average treatment

effects under two assumptions: the aforementioned selection on observables assump-

tion, and the “overlap” assumption which rules out the propensity score of living on

the coast ever equaling zero or one (i.e that: 0 < Pr(Coasti = 1|Xi) < 1).

Estimating Propensity Scores

Perhaps the most commonly used method in the economics literature is specifying a

parametric form and estimating the propensity scores via a logit or probit model:

Coasti = 1(f(X ′i)γ + vi > 0), (3.3)

where the choice of Xi is governed primarily by economic intuition, theory and previ-

ous research, and f(.) is usually chosen such that the specification is linear in predic-

tors. However, there is little guidance in the literature on how is best to specify this

parametric form. Imbens (2015) and Imbens and Rubin (2015) have attempted to pro-

vide some guidance to practical applications using propensity scores suggesting that

misspecification of the propensity score can be problematic, especially when estimating

treatment effects. Specifically, they say that using a linear specification (in predictors) is

generally not advisable; the choice of polynomial terms poses another decision for the
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researcher, however. A similar algorithm proposed by the aforementioned authors is

used, in order to select the predictors, Xi that allows the researcher to ensure variables

of theoretical importance can be included, as well as data-driven choices (see Imbens

(2015) and Imbens and Rubin (2015) for a complete description of the method).

The aim of the algorithm is to choose Xc, Xl and Xq, from the set of all potential pre-

dictors X . Xl are the linear predictors, and Xq are second-order terms (i.e including

squared and interaction terms), as chosen by the algorithm. Xc are the linear terms cho-

sen by the researcher, and in this case include only income and age6, whilst Xl and Xq

are empty sets upon the first iteration. A stepwise approach is then taken, adding in a

predictor, xl from the set [X −Xc −Xl] and estimating a logit model:

Coasti = F (X ′cγ +X ′lβ + xlφ+ vi) (3.4)

and calculating the likelihood ratio (LR) statistic against the restricted model that only

includes Xc and Xl (which in the first iteration is empty). This process is repeated for

each covariate individually, and if the largest of these LR statistics is less than one7, then

the algorithm moves on to the quadratic selection phase. If the LR statistic is greater

than or equal to one, then the corresponding predictor, xl is added to Xl, and this step

is repeated again for the ever-smaller set [X −Xc −Xl], until either all of the covariates

have been included, or the LR statistic is less than one.

The next phase of the algorithm is performed after Xc and Xl have been selected, and

chooses a subset of the second-order terms to be included in Xq. Only second-order

terms for covariates which have been included linearly are considered. The process is

identical to the linear phase, including one second-order term at a time, calculating the

LR statistic after each iteration. The largest LR statistic is considered at the end of each

instance of the phase, including the second-order term in Xq and repeating the step

while the largest LR statistic after each iteration is greater than or equal to 2.71 8.

6There is little to no theory on what characteristics should predict living on the coast; an advantage of
this algorithm is thatXc can be chosen to be empty, and allowing the data to choose all of the predictors.

7The choice of this cut-offmust bemade by the researcher; the value of one is taken from Imbens (2015)
8Again, Imbens (2015) is followed in choosing the value for this cut-off.
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After the algorithm has chosen the first and second-order terms to include, the propen-

sity scores are then estimated via maximum likelihood estimation of the corresponding

logit model.

Propensity Score Matching

Using the previously estimated propensity scores, those living close to the coast are

matched to those living further away, if they have similar propensity scores. Specifi-

cally, a nearest-neighbour approach is used, with a caliper of 0.19.

The Average Treatment Effects (ATE) for each outcome are calculated as the sum of the

differences in outcomes between the matched individuals on the coast and not on the

coast.

Inverse Probability Weighted Regression Adjustment (IPWRA)

The second method that makes use of the estimated propensity scores, p(x), is IPWRA.

This approach has the attractive property of being “doubly robust” (Wooldridge, 2010),

which has the implication that only one of the outcome model or the treatment model

has to be correctly specified, not both. In this approach, the full OLS specification is

taken as the conditional outcome model, and a weighted version of the following is

estimated, using the reciprocal of the estimated propensity scores as weights:

(1/p(x))yi = (1/p(x))(α+ βCoasti +X ′iγ + εi) (3.5)

A nuanced difference (other than the weights) between this approach and OLS, is that

regression adjustment calculates the ATE as the sum of the matched differences, as op-

posed to the difference in average outcomes.

3.4.3 Coarsened Exact Matching (CEM)

For the sake of robustness to the estimation method, comparisons are made with a

method that does not rely on propensity score estimation, and is much closer to exact

matching. CEM (as outlined in (Iacus et al., 2012)) is an exact matching algorithm ap-
9This is implemented in the Stata package -teffects psmatch-, and the standard errors are generated

under the assumption that the matched data are independently and identically distributed.
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plied to a set of datamatched on “coarsened” variables chosen by the researcher. If these

variables are continuous, they are divided into discrete “coarsened” intervals, while if

they are categorical, they are regrouped into fewer “coarsened” categories. Individuals

are matched with those who have identical values of the coarsened variables and the

treatment effect is calculated as per exact matching.

3.4.4 Relative Correlation Restrictions

In order to assess the potential influence of selection on unobservables, themethods first

used by Altonji et al. (2005) and recently developed by Krauth (2016) and Oster (2019)

are applied to the data. Referring to Equation (3.1), note that we are only interested in

a potential causal interpretation of β; we are not interested in the causal effects of the

variables in X , only that the individual variation is controlled for. In other words, they

are treated as exogenous:

corr(X, ε) = 0. (3.6)

However, as mentioned earlier, living in close proximity to the coast is endogenous:

corr(Coast, ε) 6= 0. (3.7)

Thus, in the absence of an instrument for the coast, one must either assume it is ex-

ogenous and estimate its effects using the methods above, or accept that the effect of

interest is not identified. Themethods in Krauth (2016) andOster (2019) offer a “middle-

ground” between these two options, by defining a relative correlation parameter, λ, that

satisfies:

corr(Coast, ε) = λcorr(Coast,X ′γ), (3.8)

therefore providing a description between the correlation of the coast and unobserv-

ables, and the correlation between the coast and the observables, weighted by their sta-

tistical relationship with the outcome variable10.

It is useful to note that λ = 0 implies the assumption that the coast is exogenous with

respect to the outcome variable, and thus sufficient for point estimation and consistent
10The choice of using these weights follows from Krauth (2016), owing to several useful properties. A

different index would simply mean a different value of λ, and is only a matter of convenience.
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estimation by OLS. We can consider a weaker relative correlation restriction:

λl ≤ λ ≤ λh, (3.9)

for some specified λl and λh. This allows the estimation of bounds around β from (3.1)

and the construction of confidence intervals. Additionally, the λ can be used as a sensi-

tivity parameter that enables us to find its smallest value that pushes either the bounds

or confidence intervals to include zero. In other words this involves estimating the size

of the correlation between living on the coast and the unobservables, relative to the cor-

relation between the coast and observables, that implies no effect (that zero lies within

the bounds).

3.5 Results
3.5.1 Ordinary Least Squares

The main results of the effect of living on the coast are now presented, firstly from OLS

models and followed by the variousmatchingmethods. Living on the coast is described

in section 3.3.1 above, and allmodels are run twice: once using all available data, and the

other using a “donut” where data between 2.5km and 15km is dropped (as opposed to

an additional category). Doing so represents a more conservative approach, allows the

definition of the coast to be altered without affecting the control group (for robustness

checks), and doesn’t affect the results by much (see tables B.4 and B.5). For these rea-

sons, only the results from these models are presented. In what follows the results are

displayed as two distinct sets: one for direct health outcomes, and one for risky health

behaviours and disability benefit claims.

Health Outcomes

Table 3.2 shows the coefficient on the coast variable, for each health outcome variable,

for each OLS specification employed. The full specifications for each of these models

can be found in the Appendix, in Tables B.1 and B.2. For the most part, residing within

the coastal threshold is correlated with worse health-related outcomes. The unadjusted

difference in means (leftmost column of Table 3.2) shows that living on the coast is as-

sociated with reporting worse self-assessed health: 0.063 scale points higher (p<0.01)
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Table 3.2: Coefficients on the coastal variable: Health Outcomes

Self-Assessed Health (SAH) 0.063∗∗∗ -0.007 -0.007
(0.016) (0.016) (0.016)

N 109666 109666 109666

GHQ Score -0.051 0.112 0.113
(0.077) (0.080) (0.080)

N 109666 109666 109666

L/Term Health Problem 0.062∗∗∗ 0.016∗∗ 0.016∗∗
(0.007) (0.007) (0.007)

N 109666 109666 109666

SAH: V. Good or Excellent -0.018∗∗∗ 0.005 0.005
(0.006) (0.007) (0.007)

N 109666 109666 109666

Controls X X
Wave Dummies X

Notes: Point estimates of the coefficients from theCoast variable fromOLSmodels are reported.
Standard Errors are in parentheses. The coast is defined using a donut, with householdswhich
reside within 2.5km of the coastline (as measured from the population-weighted centroid of
the LSOA) =1, whilst those greater than 15km=0. Statistical significance is denoted by: * p<0.1;
** p<0.05; *** p<0.01.

(higher is worse) and 1.8 percentage-points less likely to report very good or excellent

health (p<0.01). Likewise, individuals are 6.2 percentage-points more likely to have a

long-term health condition if they live on the coast (p<0.01). The GHQ score also shows

a negative effect, but is not significantly different from zero. As controls and wave dum-

mies are added, however there is a sign switch for all outcomes except for long term

health conditions, which are persistently worse on the coast albeit to a lesser extent (1.6

percentage points, p<0.01). All outcomes which change sign are no longer significant

at the 10 percent level.

Risky health behaviours and disability benefit claimants

Table 3.3 shows the coast coefficients from models with dependent variables that cap-

ture risky health behaviours, and disability claimants.

In terms of health behaviours the results are similar, with those living on the coast more
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Table 3.3: Coefficients on the coastal variable: Health Behaviours and Benefits

Ever Smoked 0.093∗∗∗ 0.026∗∗∗ 0.026∗∗∗
(0.008) (0.009) (0.009)

N 38821 38821 38821

Drank≥3 days last week 0.022∗∗∗ -0.001 -0.001
(0.008) (0.009) (0.009)

N 38821 38821 38821

Freqent physical activity 0.007 0.028∗∗∗ 0.028∗∗∗
(0.007) (0.008) (0.008)

N 38821 38821 38821

Disability Benefits 0.031∗∗∗ 0.012∗∗ 0.012∗∗
(0.005) (0.005) (0.005)

N 109666 109666 109666

Controls X X
Wave Dummies X

Notes: Point estimates of the coefficients from theCoast variable fromOLSmodels are reported.
Standard Errors are in parentheses. The coast is defined using a donut, with householdswhich
reside within 2.5km of the coastline (as measured from the population-weighted centroid of
the LSOA) =1, whilst those greater than 15km=0. Statistical significance is denoted by: * p<0.1;
** p<0.05; *** p<0.01.

likely to have ever smoked by 2.6 percentage points (p<0.01) and are associatedwith be-

ing more likely to claim disability benefits by 1.2 percentage points (p<0.05). However,

those in a coastal proximity are also 2.8 percentage points more likely to participate in

moderate-intensity sports and activities (p<0.01). These results, with the exception of

physical activity, are in-line with the health outcomes results and generally suggest that

health and health-related outcomes are worse on the English coast than inland.

It is worth noting that, so far, the sample is allowed to vary for each specification. This

is due to the sample size for some outcomes being much lower - mostly due to the ques-

tions not being asked in certain waves. Tables B.3, in the appendix, reports all of these

coefficients frommodels which are conditional on non-missingness across all covariates

and outcomes. The resulting estimation sample size is 32,520 and the results are very

similar, with the exception of some loss of statistical power for the dichotomised self-

assessed health variable and the alcohol consumption variable.
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Overall, for the health and unhealthy behaviour outcomes here, there are several take-

aways. The main result is that those who live on the coast are more likely to have a

long-term health condition than those who do not. This suggests that there is greater

need for care in these coastal areas that has not been shown previously in the literature.

Policy-wise, this has implications for the estimation of the resource allocation formula,

and suggests that coastal areas maywarrant higher endowments than otherwise similar

areas inland. Another result from this analysis is that the self-reported measures do not

reflect this higher prevalence of ill-health. This is suggestive that relative, self-assessed

measures cannot always be relied upon to uncover health differences. Alternatively, it

may reflect that these are more contemporaneous measures of health (i.e. relative to

the last 12 months), whereas chronic health condition prevalence is, by definition, long-

term. Finally, the result that individuals on the coast take part inmore frequent physical

activity is a finding that is in line with the previous literature on the coast, and sug-

gests that the coast itself may serve a health-promoting asset. This is likely offset by the

prevalence of smoking behaviour however. A targeted smoking cessation policy would

likely improve coastal public health, and may be more successful than in other areas if

the physical activity result signals a higher propensity of health investment, amongst

coastal populations.

3.5.2 Robustness of results to choice of functional form

The main results are restricted to a parametric estimation that relies on normality of

the error term. Table 3.4 shows the robustness of the OLS results to different estima-

tion techniques, including both semi- and non-parametric methods. All specifications

of the outcome model, where appropriate, use the same covariates as the OLS models.

Essentially, this table shows that once appropriate covariates are included, the results

produced by linear regression are robust to different estimation methods. In short: re-

sults which are insignificant to begin with, stay so, while statistically significant results

stay of a similar magnitude and significance level.
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Table 3.4: Coast coefficients, by outcome model and estimation method

Outcome:
Variable

SAH GHQ Health Good
Health

Smoking Drinking Physical
Activity

Disability
Benefits

OLS -0.007 0.113 0.016∗∗ 0.005 0.026∗∗∗ -0.001 0.028∗∗∗ 0.012∗∗
(0.016) (0.080) (0.007) (0.007) (0.009) (0.009) (0.008) (0.005)

PSMatch -0.005 -0.011 0.028∗∗∗ 0.002 0.056∗∗∗ 0.012 0.042∗∗∗ 0.014∗∗∗
(0.013) (0.066) (0.006) (0.006) (0.009) (0.009) (0.008) (0.004)

CEM -0.028∗ -0.001 0.026∗∗∗ 0.017∗∗∗ 0.076∗∗∗ 0.006 0.034∗∗∗ 0.016∗∗∗
(0.015) (0.077) (0.006) (0.006) (0.008) (0.007) (0.007) (0.004)

IPWRA -0.008 0.012 0.029∗∗∗ 0.006 0.049∗∗∗ 0.001 0.033∗∗∗ 0.012∗∗∗
(0.010) (0.052) (0.005) (0.004) (0.009) (0.008) (0.007) (0.004)

Notes: For outcome models, the same covariates are included as in the standard OLS models. For the
propensity score specifications, the same linear terms are used as the OLS models, with the following
non-linear and interaction terms: ln(income)2; ln(income):- ∗Education, ∗Wave, ∗Age, ∗IMD Rank; Age2;
Age:- ∗Education, ∗Wave; IMD Rank:- ∗Education, ∗Wave. These covariates were chosen as per the algo-
rithm outlined in the methods section. Standard Errors are in parentheses. The coast is defined using a
donut, with households which reside within 2.5km of the coastline (as measured from the population-
weighted centroid of the LSOA) =1, whilst those greater than 15km =0. Statistical significance is denoted
by: * p<0.1; ** p<0.05; *** p<0.01.

3.5.3 Relative Correlation Restrictions

Table 3.5 reports the OLS point estimates again, with 95% confidence intervals in brack-

ets. The table also shows the RCR bounds and 95% confidence intervals for different

ranges of the relative correlation parameter, λ. Results for outcome measures that are

not statistically significantly different from zero are not reported, as no additional infor-

mation is gained.

Column 1 shows the results for long-standing health conditions. The results suggest

that the positive association between living on the coast and having a long-term health

condition are robust to mild correlation between living on the coast and unobserved

factors, relative to the correlation between living on the coast and observable charac-

teristics. If the correlation between the coast variable and unobservables is up to 10%

of the correlation between the coast and control variables, the the bounds are [0.026,

0.032], compared to the OLS point-estimate of 0.032; these bounds are significant at the

0.1% level. Once the relative correlation is allowed to be larger, however, the bounds

around the point-estimate contain zero. Specifically, if the correlation between coastal

proximity and unobservables is 57% as large as the correlation with observables then
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the bounds contain zero.

There is a similar pattern of results for the association between living on the coast and

claiming disability benefits. The OLS point-estimate is robust to moderate correlation

with the unobservables relative to observables; the bounds include zero when λ takes

a value of 0.679. The results for health behaviours, however, are much more robust to

relaxing the relative correlation restriction. The association between living on the coast

and having ever smoked is robust to the correlation between living in a coastal prox-

imity and unobservables being up to 109% as large as the correlation with observables.

This is 113%(in absolute value) for our measure of alcohol consumption and 45% for

physical exercise.

The last two outcomes have a negative minimum lambda value. The interpretation of

this is the same in absolute terms, but means that the correlation between the coast

and unobservables must have a different sign to the correlation between the coast and

observables. Finally, the implications of this additional analysis means the OLS point-

estimates for physical health, disability benefit claimants and smoking behaviour can

be considered upper-bounds, while the coefficients for drinking and physical activity

are lower-bounds around a causal effect of living on the coast.
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Table 3.5: Comparison of OLS estimates with and without relative correlation restrictions

LT Health Disability Benefits Ever Smoked Drink ≥3 days Frequent Sport
OLS Point Est. 0.032∗∗∗ 0.019∗∗∗ 0.080∗∗∗ 0.031∗∗∗ 0.032∗∗∗
(95% Conf. Int.) (0.018, 0.045) (0.008, 0.026) (0.069, 0.105) (0.012, 0.046) (0.013, 0.045)

Bounds, 0 ≤ λ ≤ 0.1 [0.026, 0.032]∗∗∗ [0.015, 0.019]∗∗∗ [0.079, 0.080]∗∗∗ [0.031, 0.033]∗∗∗ [0.032, 0.036]∗∗∗
(95% Conf. Int.) (0.014, 0.043) (0.007, 0.025 ) (0.063, 0.102) (0.013, 0.047) (0.015, 0.050)

Bounds, 0 ≤ λ ≤ 0.5 [0.004, 0.032] [0.005, 0.019] [0.048, 0.080]∗∗∗ [0.031, 0.042]∗∗∗ [0.032, 0.063]∗∗∗
(95% Conf. Int.) (−0.009, 0.042) (−0.004, 0.025) (0.030, 0.102) (0.014, 0.059) (0.016, 0.078)

Bounds, 0 ≤ λ ≤ 1 [−0.024, 0.032] [−0.008, 0.019] [0.007, 0.080] [0.031, 0.056]∗∗∗ [0.032, 0.098]∗∗
(95% Conf. Int.) (−0.042, 0.042) (−0.019, 0.025) (−0.018, 0.102) (0.015, 0.077) (0.016, 0.119)

Minimum λwhere 0 ∈ bounds 0.569 0.679 1.089 −1.126 −0.447

Notes: Intervals in square brackets are the bounds themselves, while (individual) cluster-robust 95% confidence intervals appear in rounded brackets;
* p<0.05; ** p<0.01; *** p<0.001; standard errors calculated as in Imbens and Manski (2004); calculation of bounds follows Krauth (2016) and Oster (2016).
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These results suggest that the conditional differences in health behaviours on the coast

are not entirely driven by selection on unobservables. The selection on unobservables

is found to have to be proportionally larger than the selection on observables, to push

these effects to zero. It is unlikely that the correlation between the coast and these un-

observables is larger than it’s correlation with the control variables, given the rich set of

individual, household and area level controls included in this analysis. Ultimately, this

analysis supports the claim that the main results found in 3.5.1 do not reflect serious

omitted variables bias.

3.6 Further robustness checks and potential mechanisms
The following section assesses several different mechanisms around living on the coast

and how this may affect health and health-related outcomes. Movements to and from

the coast are considered first, before moving on to investigate the role of house prices,

access to care providers and regional heterogeneity in the effects of living on the coast.

The section concludes with analysis that alters the definition of the coast to test the

sensitivity of the coefficients.

3.6.1 Moving to and from the coast

This section focuses on the role of movers across the coastal threshold. One explanation

for the main results - and a contributor to the selection on unobservables, is selective

migration. Those who are capable and have the means to move are likely to be in better

health. Understanding Society follows individuals over time and so permits the use of

fixed-effects models to sweep away unobserved individual heterogeneity in health out-

comes; doing so would help shed light on this issue. Doing so, however, changes the

nature of the research question analysed: only individuals who have been observed on

both sides of the coastal cutoff contribute variation to the model. For this reason, and

due to the fact that this is a separate yet relevant question, these results are presented

distinctly from the earlier analysis11. This section documents these effects, starting with

fixed effects estimation of the original OLS specifications beforemoving on to thosewho

move to the coast and thosewhomove away. Finally it considers thosewho do notmove,
11Using a fixed effects specification is also the primary identification strategy of the previous literature

that considers health on the coast.
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resulting in comparisons of those who reside on the coast to those who live off the coast

in all the waves in which they are observed.

Table 3.6 displays the results of the fixed effects analysis in column 1. There are some

sign changes: disability benefits claimants, having a long-term health problem and re-

porting very good or excellent health. However, all estimates from these models are not

statistically different from zero with the exception of drinking on three or more days

in the last week which is 12 percentage-points more likely for movers who live on the

coast (p<0.1). The standard errors from this model are all much larger than the OLS es-

timates: a consequence of relying on a small amount of variation in living on the coast

over time.

Columns 2 and 3 of Table 3.6 shows the effects of those who move to the coast. This

variable takes a value of one if, compared to the previous period, the individual moved

across the 2.5km threshold towards the coast. Whilst taking a value of zero if the in-

dividual remains off the coast in both periods. In the samples with the coastal donut

in place, there are large statistically significant effects of moving to the coast on self-

assessed health (-0.199 scale points, p<0.1) and GHQ score (1.43 points, p<0.1), whilst

the other estimates are either insignificant or drop out of the models altogether. This is

due to the sample restrictions: firstly, using fixed effects forces out anyone who is ob-

served in one wave only; secondly, it only features those on the coast who moved there

from the previous period; lastly, the coastal donut means that on top of a move hav-

ing taken place it has to have been greater than 12.5km, and in the right direction, to

be considered in the treatment group. Table 3.7 shows why this analysis that relies on

having moved across the threshold is potentially problematic - only a tiny proportion

of the sample in a given wave move to or from the coast as it is defined here. For this

reason, the donut is removed in column 3 to allow more variation in the coast variable.

This results in more precise estimation and the estimates no longer drop out. The mag-

nitudes of the self-assessed coefficients halves in size, but the interpretation is the same:

moving to the coast vs remaining off it results in higher self-assessed and psychoso-

cial health. Even with this inclusion of those residing between 2.5 and 15km from the

coastline, however, there is not enough variation in those who move for these results to
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Table 3.6: Investigating the role of movers: fixed effects estimates, moving to and from
the coast, and those who do not move

Fixed
Effects

Moving to
Coast

Moving away
from Coast

No
Movers

Self-Assessed Health (SAH) -0.039 -0.199∗ -0.108 -0.127 -0.007 -0.003
(0.059) (0.112) (0.068) (0.124) (0.066) (0.018)

N 85849 50114 91312 6078 9177 86045

GHQ Score 0.069 1.433∗ 0.555 3.563∗∗∗ 0.090 0.027
(0.459) (0.803) (0.443) (0.946) (0.481) (0.092)

N 75808 44850 80794 5661 8468 76000

L/Term Health Problem -0.015 0.004 0.015 0.010 0.024 0.018∗∗
(0.033) (0.059) (0.035) (0.075) (0.039) (0.008)

N 85826 50100 91297 6074 9172 86022

SAH: V. Good or Excellent -0.038 0.034 0.008 0.090 0.037 0.003
(0.035) (0.078) (0.041) (0.066) (0.032) (0.008)

N 85849 50114 91312 6078 9177 86045

Ever Smoked -0.003 - -0.008 - 0.002 0.026∗∗∗
(0.037) - (0.038) - (0.058) (0.009)

N 44327 16117 47182 1963 4699 44427

Drank≥3 days last week 0.120∗ - 0.068 - -0.125 -0.006
(0.071) - (0.077) - (0.099) (0.009)

N 35766 16116 38080 1963 3856 35857

Freqent physical activity 0.011 - -0.087 - -0.043 0.029∗∗∗
(0.055) - (0.087) - (0.075) (0.008)

N 44138 16063 46992 1961 4685 44238

Disability Benefits -0.023 0.056 0.027 0.047 0.025 0.014∗∗
(0.021) (0.035) (0.017) (0.050) (0.019) (0.005)

N 85548 49922 91006 6055 9140 85744

Fixed Effects? X X X X X -

Donut? X X - X - X

Notes: Col 1: Point estimates of the coefficients from the Coast variable from Fixed Effects models are
reported, using the same specification as the OLS models (time-fixed variables drop out by definition
namely gender). Cols 2-4: show the point estimates for moving to the coast (vs remaining off-coast)
and moving from the coast (vs staying on). These are shown from samples both with and without
the donut. Col 5: Estimates of living on the coast, using OLS on only the sample of households who
do not move across the coastal threshold. Standard Errors are in parentheses. The coast is defined
using a donut, with households which reside within 2.5km of the coastline (as measured from the
population-weighted centroid of the LSOA) =1, whilst those greater than 15km =0. Statistical signifi-
cance is denoted by: * p<0.1; ** p<0.05; *** p<0.01.
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Table 3.7: The problem with analysing movers: Coastal transition probabilities for full sample

Panel A: Transition probabilities using the coast donut

Time t: Non-Coast Coast

Time t-1:

Non-Coast 99.86 0.14

Coast 0.83 99.17

Panel B: Transition probabilities without using the coast donut

Time t: Non-Coast Coast

Time t-1:

Non-Coast 99.75 0.25

Coast 2.44 97.56

be reliable. Columns 4 and 5 show similarly insignificant results - only the increase in

probability of reporting very good or excellent health is statistically different from zero

at the 10% level.

The final column of Table 3.6 shows the results from a different approach to assessing

the importance of those who move as opposed to those who do not: running the same

OLS specification as earlier, on a sample of those who do not move across the coastal

threshold at all. The results are extremely similar to those in column 3 of Tables 3.2 and

3.3 - both in terms of the magnitude and the pattern of statistical significance across

all outcomes. This suggests that movers do not contribute much to these main results.

Again, this is unsurprising given the lack of variation (see Table 3.7) in living on the

coast over time. However these results highlight that, at least in the short-run, selective

migration is not a major concern for the original OLS estimates.

3.6.2 House Prices and access to healthcare

This section investigates two potential mechanisms that may drive health differences

on the coast: house prices and access to health care providers. It does so making use

of the LSOA-level linkage that the special license of Understanding Society provides

access to. The UK coastline is highly heterogeneous - and where a household is based,

conditional on being on the coast, is likely to play a role. Experiencing the benefits of
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a coastal view likely demands a premium on the housing market, for example. LSOA-

level average house prices are included in the analysis to evaluate the effect of living

on the coast, conditional on the environment the household is based in, as proxied by

prices.12 Access to healthcare providers, namely GPs and Hospitals, may be limited on

the coast due to its isolated nature. Data is available on the time by car, in minutes, to

the nearest GP and the nearest hospital at the LSOA level. This analysis exploits this

information to partial out the effect of provider isolation from the effect of the coast on

the set of health-related outcomes.

Table 3.8 shows the coefficients for the coast, log house prices, time to nearest GP and

time to nearest hospital in minutes. For all of the health outcomes the coast coefficients

do not change in a meaningful way, after these controls are added, decreasing slightly

for having a long-term health condition.

Living in an area with higher house prices is positively associated with better health

outcomes in each specification, and statistically significant at the 1% confidence level.

Access to health care leaves more of a mixed picture: GP access is associated with bet-

ter self-assessed health (for the binary outcome), but worse psychosocial and physical

health. Access to a hospital is associated with worse self-assessed health in the categor-

ical outcome, better SAH in the binary model, and being more likely to have a health

problem. The coefficients are persistently smaller for access to a hospital versus access

to a GP. For example, living 10 minutes away from a hospital13 is associated with being

1% more likely to have a health condition, as opposed to being 3% more likely if liv-

ing 10 minutes away from a GP. This is likely explained by the distance to a GP being a

better proxy for geographical isolation, as they are much more densely distributed than

hospitals.

Table 3.9 shows the same coefficients for the other outcomes. Including house prices

and access to health care variables has little effect on the coast coefficients for these out-

comes. Areas with higher house prices are associated with being less likely to claim
12Data was collected from the Land Registry. Every year was used, resulting in a postcode-level house

price dataset, based on sales, from 1995-2018. This was subsequently aggregated up to the LSOA level, and
merged in to Understanding Society based on the LSOA and interview year.

13The average response time target for an ambulance is 7 minutes for an urgent call-out in the UK.

82



CHAPTER 3 3.6 FURTHER ROBUSTNESS CHECKS AND POTENTIAL MECHANISMS

Table 3.8: Estimates of the effect of house prices and access to health care providers

Panel A: Dependent variable: Self-Assessed Health (SAH)

Coast -0.007 -0.013 -0.008 -0.006 -0.013
(0.016) (0.016) (0.016) (0.016) (0.016)

ln(House Price) -0.135∗∗∗ -0.134∗∗∗
(0.010) (0.010)

Time to GP (mins) -0.008∗∗ -0.004
(0.003) (0.004)

Time to Hosp (mins) -0.002∗∗ -0.001
(0.001) (0.001)

N 127479 127479 127479 127479 127479

Panel A: Dependent variable: GHQ Score

Coast 0.115 0.123 0.114 0.112 0.119
(0.081) (0.081) (0.081) (0.081) (0.081)

ln(House Price) 0.228∗∗∗ 0.230∗∗∗
(0.055) (0.055)

Time to GP (mins) -0.006 -0.016
(0.017) (0.017)

Time to Hosp (mins) 0.004 0.004
(0.004) (0.004)

N 109498 109498 109498 109498 109498

Panel A: Dependent variable: L/Term Health Problem

Coast 0.016∗∗ 0.014∗∗ 0.017∗∗ 0.016∗∗ 0.014∗∗
(0.007) (0.007) (0.007) (0.007) (0.007)

ln(House Price) -0.043∗∗∗ -0.044∗∗∗
(0.004) (0.004)

Time to GP (mins) 0.003∗∗ 0.003∗∗
(0.001) (0.001)

Time to Hosp (mins) 0.001∗ 0.000
(0.000) (0.000)

N 127442 127442 127442 127442 127442

Panel A: Dependent variable: SAH: V. Good or Excellent

Coast 0.005 0.008 0.006 0.005 0.007
(0.007) (0.007) (0.007) (0.007) (0.007)

ln(House Price) 0.047∗∗∗ 0.046∗∗∗
(0.004) (0.004)

Time to GP (mins) 0.003∗∗ 0.002
(0.001) (0.002)

Time to Hosp (mins) 0.001∗ 0.000
(0.000) (0.000)

N 127479 127479 127479 127479 127479

Notes: Point estimates of the coefficients from the Coast, house price and access variables from OLS
models are reported. Standard Errors are in parentheses. The coast is defined using a donut, with
households which reside within 2.5km of the coastline (as measured from the population-weighted
centroid of the LSOA) =1, whilst those greater than 15km =0. Statistical significance is denoted by: *
p<0.1; ** p<0.05; *** p<0.01.
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Table 3.9: The effect of house prices and access to health care providers continued

Panel A: Dependent variable: Ever Smoked

Coast 0.026∗∗∗ 0.028∗∗∗ 0.026∗∗∗ 0.026∗∗∗ 0.027∗∗∗
(0.009) (0.009) (0.009) (0.009) (0.009)

ln(House Price) 0.031∗∗∗ 0.031∗∗∗
(0.006) (0.006)

Time to GP (mins) 0.000 -0.002
(0.002) (0.002)

Time to Hosp (mins) 0.001∗∗ 0.001∗∗
(0.000) (0.000)

N 48043 48043 48043 48043 48043

Panel A: Dependent variable: Drank≥3 days last week

Coast -0.001 0.001 0.000 -0.002 0.001
(0.009) (0.009) (0.009) (0.009) (0.009)

ln(House Price) 0.032∗∗∗ 0.031∗∗∗
(0.005) (0.005)

Time to GP (mins) 0.009∗∗∗ 0.007∗∗∗
(0.002) (0.002)

Time to Hosp (mins) 0.002∗∗∗ 0.001∗∗∗
(0.000) (0.000)

N 38790 38790 38790 38790 38790

Panel A: Dependent variable: Freqent physical activity

Coast 0.028∗∗∗ 0.030∗∗∗ 0.028∗∗∗ 0.028∗∗∗ 0.029∗∗∗
(0.008) (0.008) (0.008) (0.008) (0.008)

ln(House Price) 0.031∗∗∗ 0.032∗∗∗
(0.005) (0.005)

Time to GP (mins) 0.000 -0.001
(0.002) (0.002)

Time to Hosp (mins) 0.001∗ 0.001∗
(0.000) (0.000)

N 47843 47843 47843 47843 47843

Panel A: Dependent variable: Disability Benefits

Coast 0.012∗∗ 0.010∗∗ 0.012∗∗ 0.012∗∗ 0.010∗∗
(0.005) (0.005) (0.005) (0.005) (0.005)

ln(House Price) -0.030∗∗∗ -0.030∗∗∗
(0.003) (0.003)

Time to GP (mins) -0.001 -0.001
(0.001) (0.001)

Time to Hosp (mins) 0.000 0.000
(0.000) (0.000)

N 126080 126080 126080 126080 126080

Notes: Point estimates of the coefficients from the Coast, house price and access variables from OLS
models are reported. Standard Errors are in parentheses. The coast is defined using a donut, with
households which reside within 2.5km of the coastline (as measured from the population-weighted
centroid of the LSOA) =1, whilst those greater than 15km =0. Statistical significance is denoted by: *
p<0.1; ** p<0.05; *** p<0.01.
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disability benefits, and more likely to drink, smoke and participate in frequent physical

activity (p<0.01).

In summary, including house prices andhealth care access in the health outcomemodels

do not alter the coefficients much. This suggests that, although somewhat predictive

of these health related outcomes, living on the coast is associated with systematically

worse health-related outcomes through some other mechanism not observed here.

3.6.3 Results by working age and retirement age

Age is likely an important feature of how living on the coast can influence health out-

comes. In particular, the UK coastline is anecdotally a popular place for individuals to

move to upon retirement. If this is the case then, due to the association between age

and worse health outcomes, this “unhealthy migration” effect may explain some of the

findings from the main analysis. Likewise, there could be a “healthy” outward migra-

tion away from the coast of younger individuals, whomaymove inland to the city in the

hope of improving labour market outcomes. As a test for these phenomena, the main

analysis is replicated and the coast dummy interacted with an indicatoir for those who

are of a working age (16-64 years) versus those who are of retirement age (65+ years).

Robustness of these results to using a retirement flag, as opposed to age, is included in

Appendix B, where the results are the same, if slightly smaller in magnitude (see table

B.8).

Table B.8 presents the coast coefficients for these stratifiedmodelswith panel A showing

those for the health outcome models. Individuals on the coast, regardless of being of

retirement orworking age, aremore likely to have a long term health condition. For self-

assessed health, however, those who live on the coast in retirement age are much more

likely to report very good or excellent health (4.5pp, p<0.01), and more likely to report

a better category14 of health (-0.097 scale points, p<0.01). This result is suggestive of a

different impact of living on the coast for retirees. This could be due to a slackening of a

retirees time constraint, allowingmore leisure time to be spent enjoying coastal features.

Likewise, it may be that the self-assessed health question used in the survey is a proxy
14A higher value represents worse self-assessed health
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Table 3.10: OLS results with working/retirement age-coast interactions

Panel A: Health Outcomes

SAH GHQ Score Health
Problem

V. Good
Health

Coast -0.082∗∗ -0.005 0.021 0.040∗∗∗
(0.037) (0.162) (0.015) (0.015)

Working Age 0.178∗∗∗ -1.335∗∗∗ 0.082∗∗∗ -0.052∗∗∗
(0.022) (0.100) (0.009) (0.009)

Interaction 0.097∗∗ 0.140 -0.005 -0.045∗∗∗
(0.040) (0.182) (0.016) (0.016)

N 127682 109664 127645 127682

Panel B: Risky health behaviours and disability benefits

Smoking Drinking Physical
Activity

Disability
Benefits

Coast 0.022 0.032∗ 0.033∗∗ 0.020
(0.018) (0.018) (0.015) (0.013)

Working Age 0.013 0.113∗∗∗ -0.020∗ 0.077∗∗∗
(0.012) (0.012) (0.010) (0.007)

Interaction 0.005 -0.043∗∗ -0.006 -0.010
(0.020) (0.020) (0.018) (0.013)

N 48098 38821 47898 126279

Notes: Point estimates of the coefficients from the Coast variable from OLS models, and its interac-
tion with the retirement indicator, are reported. Working age is defined as all individuals aged 16-64,
whilst retirement age is defined as 65 years and older. Cluster-robust standard errors are in parenthe-
ses. The coast is defined using a donut, with households which reside within 2.5km of the coastline
(asmeasured from the population-weighted centroid of the LSOA) =1, whilst those greater than 15km
=0. Statistical significance is denoted by: * p<0.1; ** p<0.05; *** p<0.01.

for general wellbeing, and living on the coast in retirement is positively associated with

wellbeing regardless of the negative association with physical health.

Panel B of Table B.8 shows the same stratified results for the health behaviour and dis-

ability benefit claimants. Living on the coast is linkedwith higher smoking and physical

activity regardless of being of retirement age, but those on the coast aged over 65 are

more likely to drink frequently (4.3pp, p<0.05). Those who live on the coast in retire-

ment age are no more or less likely to claim disability benefits, with the effect found in

the original analysis being driven by those of a working age.

The results from this analysis hint at a slightly different mechanism for retirees who live

on the coast, particularly around self-assessed health measures. Further work is needed

in this area which would help to shed light on who gains and who is worse-off from

86



CHAPTER 3 3.6 FURTHER ROBUSTNESS CHECKS AND POTENTIAL MECHANISMS

living on the coast. This is particularly important for decision makers who are involved

with minimising unmet need in terms of the provision of health services.

3.6.4 Robustness to the definition of the coast

This section reports the sensitivity of the original OLS results to the definition of the

coastal variable. As the donut was used to remove all data between the distances of

2.5km and 15km of the coastline, changing the definition (i.e moving the 2.5km cutoff)

does not affect the definition of the control group. Plots of the coefficients from the fully

specified models, where coast= 1[D < Z] and zero ifD >15km are found in figures 3.7

and 3.8 below. The coastal cutoff, Z, is allowed to vary from 0.5km to 15km.

A similar pattern occurs for most of these coefficient plots: defining the coastal variable

as equal to one if the household resides less than or equal to 1km from the coastline

does not provide enough statistical power to determine the effect of living there. Above

this threshold, the coefficients jump to being statistically different from zero (the plot

shows 95% confidence intervals) for models which showed statistical significance from

the main analysis. Ultimately, the main results reported from previous sections are ro-

bust to the definition of the main variable of interest.
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Figure 3.7: Robustness of results to definition of the coast - Health Outcomes
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Figure 3.8: Robustness of results to definition of the coast - Health Behaviours and Dis-
ability Benefits
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3.7 Discussion
This chapter has considered the differences in health and health-related outcomes be-

tween individuals living on the English coast and those living inland. The results show

that many of the unconditional mean differences persist, once controlling for observ-

able correlates of health at the individual and area level. Those differences that are

explained away by the inclusion of covariates, are exclusive to health measures that are

self-assessed. For the others, such as the number of disability claimants, those with a

long-standing health condition and smokers and drinkers, this is an important result, as

these outcomes can be consideredmuchmore objective measures of health. That health

is worse on the coast is in-line with the census figures from the ONS (ONS, 2014), and

suggests that the differences in health may well be driven by determinants other than

socio-economic status, education and demographic factors.

However, the one notable exception here is that of frequent sport activity, which is much

more prevalent on the coast than otherwise. This is an important result to highlight as

much of the previous literature, which focuses on the positive effect of living on the

coast on health and wellbeing, uses physical exercise as a primary reason why the coast

(and more generally, bluespace) is good for health (Wheeler et al., 2012, 2015; White et

al., 2013). These results support this aspect of the literature, and goes further to show

that this result seems robust to selection on unobservables.

This chapter’s analysis finds, in general, no significant effects of living on the coast on

self-assessed physical andmental health. This is contradictory to the results in the litera-

ture considering health on the coast, which finds positive, statistically significant effects.

It seems plausible that the previous results found in these studies can be considered up-

per bounds, owing to the fact that this work has controlled for some coastal features that

have not been previously. Namely, house prices and access to health care, as proxied by

the average time to nearest hospital and GP by car, are included. The careful treatment

of these potential mechanisms are another contribution to the literature of this work.

Another possible explanation for the null effect found in this chapter is that these are

self-assessed measures. Health measures of this type may well be self-assessed, rela-

tive to those around them. The fact that there are persistent effects in terms of having a
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health condition, smoking and drinking support this claim.

Arguably the main contribution of this chapter - over and above using new data and

outcomes to an under-researched question - is the analysis of the relative size of this

selection on unobservables to selection on observables. This analysis showed that for

physical health, and disability claimants, only a mild to moderate selection on unob-

servables relative to observables was needed to push these results to zero. It seems

fairly likely that differences in physical health on the coast are driven by selective mi-

gration, or some other unobserved mechanism. The secondary analysis which stratifies

by working age casts doubt on the selective migration argument, as does the analysis

which considers movers and non-movers. It is important to note that this fixed effects

analysis represents the main methods used in the previous literature. They do not offer

comparisons as this chapter has done, including robustness to functional form, sensi-

tivity to definitions of the coast, nor a careful inspection of the role of selection on un-

observables. This is the chapter’s fundamental contribution to the literature.

In terms of disability-related welfare claimants, a report published by the Communities

and Local Government Comittee (2007) documents this finding (they report a differ-

ence in means) and suggests that it is inward migration of benefit claimants could be

the main contributing factor. Thus, while we can reason the direction of healthy and

unhealthy migration, further work considering these migration patterns in more detail

would greatly contribute to this evidence.

Finally, the results suggest that the conditional differences in health behaviours on the

coast are not solely driven by selection on unobservables. The selection on unobserv-

ables is found to have to be proportionally larger than the selection on observables, to

push these effects to zero. While it is likely that these outcomes are influenced in part by

selection bias, it is unlikely that the correlation between the coast and these unobserv-

ables is larger than it’s correlationwith the control variables. While the outcomemodels

presented here can be considered reduced-form, there is scope for further research that

considers health on the coast via structural modelling. In these structural models of

health, it seems plausible that the coast can affect health through differences in health
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behaviours. Smoking, drinking and physical activity could, at the least, be included as

covariates with the health outcomes, and perhaps used in a joint estimation of health

behaviours and health outcomes.

3.7.1 Limitations

The main limitation of this study revolves around the trade off between having enough

variation in the variables of interest and making use of panel data to sweep away un-

observed heterogeneity. Whilst this chapter has attempted to unpick this problem in

section 3.6.1, the analysis relies on cell sizes that are too small: those who moved away

from and those who moved to the coast. This demonstrates the unreliability with using

a fixed effects estimation strategy: there is simply too little variation in each wave to

estimate reliable coefficients. A further problem is that, even with sufficient statistical

power, the question (of looking solely at movers) is complicated by the fact there are two

treatments relative to one baseline. Future work which has access to sufficiently data to

investigate this could make further use of the IPWRA methods used in this chapter, al-

lowing for multiple treatment effects.

Living on the coast is endogenous with respect to health, and there exists no natural ex-

periment which would provide sharp identification of a causal effect. Other than using

a richer source of data, and estimating the relative correlation restriction bounds as this

chapter has done, future work could identify an instrumental variable for living on the

coast that does not affect health other than through the coast variable itself. There is no

guarantee that such a variable exists however, so a focus on estimating lower bounds is

perhaps the most reliable strategy in terms of informing policy.

3.7.2 Conclusion

The results found in this paper, with the exception of physical activity, differ from those

found in the other literature that considers coastal health. This paper has considered a

wider range of outcome measures and provides a careful treatment and investigation

into selection on unobservables. It is the first to consider non-random selection to the

coast and has demonstrated the flexibility and applicability of the methods in Altonji
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et al. (2005), Krauth (2016) and Oster (2019) to a health setting, where there are often

identification issues.

The results suggest that policies based on the existing literature may well overestimate

the health benefits of living by the coast. It seems that an Instrumental Variables spec-

ification is the way forward in this literature, although finding a plausibly exogenous

source of variation in living on the coast with respect to health, could be problematic.

This is a complex issue that deserves much more quantitative-based research. Further-

more, this topic would benefit from a study that considers internal migration patterns

with respect to health; there are likely policy relevant conclusions to be had from this

kind of analysis.

There is considerable scope for further research in this area, and the lack of causal ev-

idence certainly does not mean there is a lack of an effect. Descriptively, it seems that

any differences in health on the coast are mitigated by other factors which affect both

the probability of living on the coast and health. This does not seem to be the case when

considering long-term health conditions and smoking, however, and it is important in

terms of policy to investigate these differences further. Finding an exogenous source of

variation in coastal living would greatly contribute to the literature, and provide poten-

tially far-reaching policy implications.
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CHAPTER 4

Does moving away from home to
university affect life satisfaction?
Evidence from Next Steps

Abstract

Geographical mobility, and its effect on socioeconomic status, health and wellbeing, has become
an increasingly important topic for policy and research. Moving to University is often the first
opportunity for suchmovement in the life of a young person. A recent report by the Sutton Trust
showed that roughly half of students moved more than 55 miles from their home address; those
that do so are from socially, ethnically and geographically distinct groups. There have been calls
in the media for schools to encourage pupils to move away for university. Despite this, there is
little to no empirical evidence of the impact of moving away from home to university on post
graduation outcomes. This paper addresses that gap, using data on a cohort of university at-
tendees from the Longitudinal Survey of Young People in England (LSYPE) and the follow-up
study, Next Steps, to assess the impact of moving away from home on early-adult life satisfac-
tion. A random sample of children, born in 1989/1990, were surveyed annually between the
ages of 13 and 19 years old, and then again when aged 25 (Next Steps wave). Life satisfaction is
modelled for graduates aged 25 years, using an ordered probit approach, controlling for indi-
vidual characteristics at various points in the student’s life, such as external locus of control and
psychosocial health. I also partial out parental and household factors such as household income,
parental education, parental occupation, and the number of siblings in the home. Preliminary
results show that moving away from home to university increases life satisfaction. However,
a striking gender difference persists through specifications: moving away greatly increases life
satisfaction for males (between 5 and 7 percentage points more likely to report “very satisfied”
p<0.01; between 1 and 4 percentage points less likely to report “fairly” or “very dissatisfied”
p<0.01), but has no effect for females. The paper considers several potential mechanisms for
this result, including the mediating effect of wage premiums from moving away. These results
suggest that some caution should be taken by policymakers aiming to influence pupils’ decision
to move away from home, as there appears to be substantial heterogeneous effects, particularly
by gender.
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4.1 Introduction
Moving home is a significant life-event which has become an increasingly important

topic for health economics and health researchmore generally. Moving home is directly

related to age, with younger people representing themost mobile section of society. The

decision tomove from home to university is a significant aspect of many young people’s

lives and, for most, represents the first time they have moved away from their parents.

At the same time a non-trivial amount of students1 do not move away, instead choos-

ing to remain living at home. Student mental health has become a bigger policy issue

over the last decade, with the number of university students with a serious mental ill-

ness having risen significantly (Storrie et al., 2010). These concerns can be generalised

to potential differences in wellbeing attributable to the student experience and related

outcomes. The decision to move splits university students into two broad groups who

are likely to face a completely different experience from university life (Holton, 2015).

These contrasting experiences could lead to significant differences in early-adult out-

comes, such as labour outcomes and wellbeing. It is the latter that takes the focus of

this study.

This paper is the first to consider differences in outcomes attributable to moving away

from home to university. The main focus in this thesis has been on, broadly, health

outcomes. The WHO defines health as a “state of complete physical, mental and so-

cial well-being and not merely the absence of disease or infirmity” (Organization et al.,

2017). Much of the focus, both in this thesis and in the health economics literature more

generally, has been on physical health. This chapter turns to a different facet of health, as

defined by theWHO, and focuses on ameasure ofmental/social wellbeing asmeasured

by life satisfaction. A distinction is made in this chapter between wellbeing and mental

health: with the latter taken as a subcomponent of a broader measure of wellbeing. An

individuals’ life satisfaction is taken to be a proxy for wellbeing, once mental health is

partialled out. The primary research question is: are there differences in early-adult life

satisfaction for those whomove away to university versus those who live at homewhilst

studying? This chapter uses data from Next Steps, formerly known as the Longitudinal

Survey of Young People in England, which follows a sample of 15,000 children from the
1Roughly 33% according to the data used in this paper; 55.8% remain local (< 50 miles) according to

Donnelly and Gamsu (2018).
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1989/90 birth cohort in the UK. The individuals are first interviewed at the age of 13,

every year until aged 19, and finally again at age 25. Controlling for pre- and post- move

characteristics of the students, their parents and the area they live in, early-adult life sat-

isfaction (at age 25) of students who attended university is considered, comparing those

who left home to those who stayed. Life satisfaction at age 25 is modelled using linear,

probit and ordered probit functional forms.

This paper also considers heterogeneous effects of specific groups, namely those of Is-

lamic faith, thosewho attendRussell groupuniversities and thosewho are first-generation

university attendees. Subsequent analysis looks into the potential transmission mecha-

nism through which moving away can influence early-adult life satisfaction. This medi-

ation analysis decomposes the total effect ofmoving away into direct and indirect effects.

The latter being through wages at age 25 and through the individual’s external locus of

control.

In recent years there has been an emerging literature concerning the mobility of stu-

dents, their determinants, and the difference in experience between local and non-local

students. Holton (2015), for example, consider differences in how local and no-local

students accrue capital during their time at university, and how this can smooth the

transition into adult life. Based on qualitative analysis of 31 students from the Univer-

sity of Portsmouth. They identify a “transformative potential” of University, but also

that there is a great deal of heterogeneity in how student’s experience this. Gamsu et al.

(2018) use administrative data on all 412,000 students attending university in 2014-2015

combined with spatial census data. They look at how diversity in the area in which the

children grew up affects where they attend university. This is one of the first studies to

use quantitativemethods to look at student trajectories in university attendance, and the

authors conclude that students’ ethnicity and University choice are key to determining

whether they move to more or less diverse areas.

The closest related study to this one is a paper by Sage et al. (2013). In it, they investigate

graduate migration of a cohort of students who left the University of Southampton be-

tween 2001 and 2007, 5 years post graduation. They find that there is a “parental safety
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net” offered by moving back in with parents during the 5 year post-graduation period.

They make reference to the fact that stable trajectories of living at home include both

those who remain at home during term time, and those who moved away and back

again upon graduating. The authors do not consider the role of moving away from

home to university any further, however.

This paper contributes to the literature in several ways. Firstly, it poses a novel research

question. Most of the current literature focuses on determinants of moving and where

students move to, and does so using qualitative methods. There remains a dearth of

quantitative evidence surrounding the move to university and its consequences for the

students who do (or do not). This paper represents the first to consider the longer term

effects of having moved away from home, and thus opens up a new avenue for research

surrounding student mobility. Secondly, this paper uses cohort data, randomly sam-

pled from the UK. This is in contrast to the literature which has either focused on a

particular university, or large but limited administrative data on university attendees.

Thirdly, once establishing that differences in early-adult outcomes seem to exist, it goes

on to consider and test for potential mechanisms throughwhich these differences occur.

4.1.1 Theoretical Underpinnings

There are several mechanisms through which moving away from home to university

can affect early adult wellbeing, all else equal. The direction of the net effect, however,

of all of these things is not clear: there is no empirical evidence on this question. Many

of the potential mechanisms are through social elements. Factors such as forming new

social support networks, gaining an exposure to different social groups and structures,

and living independently with peers for the first time can have potentially long-lasting

positive effects over and above other features associated with going to university. Peer

support networks are crucial during adolescent years (Roach, 2018); therefore a move

away from home could have a positive or negative effect on wellbeing, depending on

the strength of these connections.

There are some clear negative mechanisms: family ties are important for mental health
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(Woodman&McArthur, 2018) - youthwho aremore connected to parents are less likely

to report depression (Foster et al., 2017), so moving away from home may disrupt this

and have a long term detrimental impact on wellbeing. Another clear mechanism is

through debt: moving away from home places an additional financial burden on stu-

dents - particularly those from a disadvantaged background. There are low-barrier

credit markets aimed at student to combat this, but the taking on of debt can have long

term consequences for mental health (Fitch et al., 2011).

There are also likely to be gender differences in these effects, particularly in the case of

social ties. Males and females process and experience the costs and benefits of peer rela-

tionships during adolescence differently, with social support shown to bemore strongly

correlated with lower depression and higher self-esteem for males than for females

(Moran & Eckenrode, 1991). It is plausible that the strong social networks that are

formed by moving to university have a more beneficial effect for males than they do

for females - perhaps because they may not have been formed otherwise. Men have

also been shown to display higher rates of depression than women amongst those with

low emotional support networks - suggesting that, conditional on peer groups being

formed, they are more beneficial for wellbeing, for men (Sonnenberg et al., 2013).

4.1.2 Roadmap

The chapter proceeds as follows. Section 4.2 provides an overview of the broad liter-

ature that it contributes to. Owing to the fact that there is extremely limited evidence

on student mobility and its effect on early-adult outcomes, links are made to a broader

literature, and the value added over and above the novel research question. Section 4.3

describes the data used, going into detail about the construction of each variable, the

nature of attrition across waves, and the survey weights used in light of this. Section

4.4 outlines the baseline analysis. This is referred to as the “Total Effect” of moving

away, in order to use the language of mediation analysis which is later conducted. The

results of this analysis follow in section 4.5, followed by subgroup analysis examining

heterogeneous effects in section 4.6. Section 4.8 outlines the methods used in the medi-

ation analysis, in order to try and disentangle the indirect and direct effects of moving
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away. The mediation results follow in section 4.9. The analysis concludes in section

4.7, in which the endogeneity problem is addressed by using the individuals’ grandpar-

ents’ university attendance as an instrumental variable for moving away. Section 4.10

discusses the results, limitations of the study, and makes some concluding remarks.

4.2 Literature
This section provides an overview of relevant literature. As there is no research that

attempts to answer the same question as this paper, this section begins by briefly dis-

cussing the broader literature which considers the interplay between internal migration

and health, concluding that there is a need to consider different age profiles in migra-

tion studies. This invokes student mobility in particular as the focus of this study. The

limited literature that considers the determinants of, and differences in experience of,

those who choose to move away and stay at home whilst at university is then reviewed.

4.2.1 Internal Migration and Health Selection

There has been a recent increase in studies considering the effects of moving home -

internal migration - and it’s association with health. Much of this literature, based on

data from large countries such as the US and China, focus on rural to urban migration.

Johnson and Taylor (2018) for example, examine rural to urban migration in the United

States throughout the early 20th century and its effect on long-termhealth and longevity.

They find that despite an increase in lifetime wealth, migrants are worse-off in later-life

health. Chen (2011) explore rural to urban migration in China using a small household

survey. They find evidence of a “healthy migrant phenomenon” on self-rated physical

health.

There are several UK-based studies looking at internalmigration and healthwhich do so

using the British Household Panel Survey. There is inconclusive evidence about the di-

rection of the effect of internalmigration on health in theUK. Some studies find negative

health effects when focusing onmoves to less deprived areas (Tunstall et al., 2014), while

others find short-run temporary negative effects and effects in both directions (Nowok
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et al., 2013; Whittaker, 2012).

In contrast to the healthymigrant selection argument, some research identifies a “salmon

bias” or selective return migration (Abraido-Lanza et al., 1999). This hypothesis posits

that unhealthy migrants have a greater tendency to return home than healthier mi-

grants. Lu andQin (2014) tests these two hypotheseswith Chinese data, finding support

for both.

With respect to these two hypotheses about health selectivity and migration, they can

be in part be explained by the age-profile of migrants. Younger migrants tend to be

healthier and early-adulthood also represents the peak age for migration, with people

relocating for education and employment opportunities (Norman et al., 2005). Despite

this, there is a lack of attention paid to this age profiling in migration studies (Norman

& Boyle, 2014), which in part motivates this study in focusing on student mobility.

4.2.2 Student Mobility

There is a paucity of literature related to student mobility, though there is a recent surge

of interest in the topic. The most recent relevant work stems from a report on student

mobility published by the Sutton Trust (Donnelly & Gamsu, 2018). The authors explore

how staying at home and studying locally is strongly differentiated by socioeconomic

status and ethnic background using data from the Higher Education Statistics Agency

on all UK-based students (international students were omitted) attending university in

2009/10 and 2014/15. They find that the decision to stay at home or move away is a

strong determinant of inequality in higher education choice and experience, and that

more disadvantaged students are more likely to study from home. They recommend,

amongst other suggestions, that Halal Student Loans are instated, to enableMuslim stu-

dents to borrow money in accordance with their religious beliefs. The authors identify

that students of Islamic faith do not face the same opportunities for mobility as their

student peers.

Much of the literature surrounding student mobility is qualitative in nature. Early work
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on this topic was conducted by Christie (2007). The author investigates student mobil-

ity decisions and specifically the experiences of those who chose to live at home whilst

attending university, along with the reasoning for doing so. For all of the students in-

terviewed (N = 12), staying at home was an economically pragmatic decision. However,

there were also more complex emotional ties with home that played a part in their de-

cision. Many of these students faced a significant commute, which was identified as a

disadvantage versus those who live at the university itself. Another study interviewed

31 students attending the University of Portsmouth in 2012 (Holton, 2015). They con-

clude that the university experience is transformative generally, but there are more sub-

tle effects for those living in non-university accommodation. Ultimately, though, these

students tend to form similarly influential peer groups, albeit through different mecha-

nisms.

There is also some quantitative work considering the decision to move to university.

Gamsu et al. (2018) use administrative data on all 412,000 students attending university

in 2014-2015 combined with spatial census data. They look at how diversity in the area

in which the children grew up affects where they attend university. This is one of the

first studies to use quantitative methods to look at student trajectories in university at-

tendance, and the authors conclude that students’ ethnicity and university choice are

key to determining whether they move to more or less diverse areas. Holton (2018) col-

lect data from students attending a “post-1992” university in the South-East of England,

fromwhich they obtain 1,147 valid responses. Again, the author finds that for those stu-

dents choosing to remain at home, the decision was a pragmatic one. Additionally to

this, many of these students cited that living close to home was the main reason they

chose their university. They conclude that there is a clear distinction in the way stu-

dents choose to experience university, between traditional (including those who live at

university) and non-traditional students (including those who live with their parents).

Adding to the distinction between groups of students who live at home and away at

university, a study on the determinants of student loan take-up (using the same data

as this paper) finds that living at home whilst studying is a significant debt avoidance

mechanism (de Gayardon et al., 2019). They conclude that this is problematic as it lim-

its choice of university, and ultimately which labour market they end up in. They also
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draw attention to the role of religion and loan take-up, with Muslim students hugely

less likely to take out student loans. As mentioned in the previous section, the closest in

nature to this paper is work by Sage et al. (2013) who consider themigration decisions of

graduates from the University of Southampton between 2001 and 2007. Living at home

during term time is a determinant of living at home post graduation, but the authors

do not consider how this can affect early-adult outcomes.

This paper contributes to these two literatures. It adds to the evidence of the wellbeing-

related effects of moving home, focusing on young adults who attended university, for

whom there is little evidence for. It also adds to the recent surge of literature considering

student mobility. The main contribution is the novel question of how the difference in

general student experience, brought about by living at university versus at home, can

affect early-adult life satisfaction.

4.3 Data
The following section gives a general overview of the dataset used, including some in-

formation about attrition in the data, followed by amore detailed exposition of the vari-

ables constructed and used in the analysis itself.

4.3.1 LSYPE

The analysis is undertaken using all seven waves of Next Steps, formerly known as the

Longitudinal Survey of Young People in England (LSYPE)2. The survey follows a cohort

of 15,500 children based in English secondary schools, born in 1989/90. Starting in 2004

at the age of 14 years, the respondents are interviewed each year for six years, until the

age of 20 in 2010. The follow-up wave took place when the individuals were 25 years,

in 2015. The timeline of LSYPE means that data is available pre-university (waves 1-5),

during university (the first two years, conditional on attendance, in waves 6 and 7), and

post-university (wave 8). Following a nationally representative cohort this way allows

the analysis of university-related themes, conditional on pre-university conditions, on
2For brevity, and to avoid confusion, throughout the remainder of this chapter these data are referred

to as LSYPE.
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early-adult outcomes.

The first five waves (or sweeps) of LSYPE comprised of face-to-face interviews at the

individual-level, including separate interviews with the both the children and their

guardian(s) living in the household at the time. This allows the models to control for

variation in parental background as well as household characteristics.

LSYPE suffers from an attrition problem over the course of its eight sweeps. The ini-

tial sample size of around 15,500 is reduced to just 8,000 by the eighth wave. Due to

the fact that the analysis specifically considers early-adult outcomes - those available in

wave 8 - the sample is immediately restricted to those who responded in 2015. Further-

more, the analysis explicitly considers variation in wellbeing for those who attended

university, again restricting the sample further to 3,155 (1,322 males and 1,833 females).

Conditional on non-missing responses to the included covariates in eachmodel, an esti-

mation sample of around 2,283 (985 males and 1298 females) remains. LSYPE also uses

a stratified sampling approach, using schools as the primary sampling unit. The study

further stratified by deprivation, resulting in an oversampling of more deprived schools

and students from minority ethnic groups. On top of this, there is an oversampling of

those who enter into higher education, as noted by Hosein (2019); Anders et al. (2012).

As a result, longitudinal sample weights from the final wave are used, which address

both the potential non-response bias and LSYPE’s sample design. Not doing so can

result in highly-misleading point-estimates (Anders et al., 2012).3

4.3.2 Outcome Variables

LSYPE provides information on early-adult outcomes, at age 25, in it’s eighth and final

wave. As part of the self-completion questionnaire, individuals were asked “How dis-

satisfied or satisfied are you about the way your life has turned out so far?” and chose

from the following responses: Very Satisfied; Fairly Satisfied; Neither Satisfied nor Dis-

satisfied; Fairly Dissatisfied; Very Dissatisfied. The categorical nature of this variable

means that it takes the value of one to five for each of the above responses, respectively.

This is recoded so that the variable takes a value of zero for responses of “Very Dissat-
3This technical report by Anders et al. (2012) contains a detailed exposition of the sampling design and

the sample weights for LSYPE.
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isfied” and four for responses of “Very Satisfied”.

Some specifications rely on a dichotomisation of this variable so it becomes binary in

nature. To do this, responses of “Very Satisfied” are set to equal one, and all other re-

sponses to equal zero. To this end, the binary version of this variable captures how likely

an individual is to report being very satisfied, versus any other category of life satisfac-

tion.

Table 4.1: Life Satisfaction at age 25 - Movers vs. Remainers

Move=0 Move=1 Difference P-Value
Very dissatisfied 0.02 0.01 -0.01 0.01
Fairly dissatisfied 0.06 0.07 0.01 0.13
Neither satisfied nor dissatisfied 0.17 0.13 -0.03 0.01
Fairly satisfied 0.55 0.54 -0.00 0.92
Very satisfied 0.21 0.24 0.03 0.03

4.3.3 University Movers

In waves six and seven, LSYPE contains information on whether or not the individual

went to university in that wave. Those who are in higher education during these waves

are asked “Do you live at home with your parents or guardians during term time?”. It

is this variable, coded as one if the individual responds “yes” and zero otherwise, that

constitutes the main variable of interest in this chapter. Of the 3,243 individuals who

attended university, 62% (N = 2,038) moved away from home and 38% (N = 1,205) re-

mained at home during study.

4.3.4 Control Variables

In what follows in this subsection, all covariates are included in all models, unless oth-

erwise specified in the table of results. LSYPE contains a wealth of individual, parental

and area-level characteristics, from different time-points in the respondents life (i.e.

from different waves). The nature of the outcomes at age 25means that they are only ob-

served in this final wave. As such, the analyses are cross-sectional in nature, but utilise
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data from all waves.

LSYPE contains information on gender. All of the analysis in this chapter is broken

down by the individual’s gender, in addition to both genders pooled, for two main rea-

sons. Firstly, there are possible systematic differences in the way that men and women

process informationwhen considering their self-assessedhealth andwellbeing (Benyamini

et al., 2000). Splitting the analysis this way (as opposed to simply controlling for gen-

der) may shed light on these differences. Secondly the nature of moving away from

home, and the university experience in general, is likely to be heterogeneous for men

and women. These potential heterogeneous experiences, if present, are important to

bear in mind when implementing policies that influence the nature of university atten-

dance. Gender differences in life-satisfaction as a result of moving away from home to

university pose an important feature of this analysis.

Another individual-level characteristic which potentially confounds the relationship be-

tween moving away from home to university and life-satisfaction is religious faith. In

particular, individuals of Islamic faith are particularly less likely to move away from

home due to financial constraints and barriers to access credit markets (see Section 4.6).

Respondents in LSYPE are asked “What is your religion?”, which is subsequently har-

monised into the 7 2001 census categories. From this, a dummy variable is created equal

to one if the individual identifies asMuslim, and zero otherwise. The latest possible ver-

sion of this variable is used, from wave 8. Missing values are replaced with the latest

non-missing wave available4. This is included as a control variable in all analyses, and

also for stratification in subgroup analysis.

LSYPE contains information on the respondent’s ethnicity as part of the “Identity” sec-

tion of the questionnaire. They are asked “What is your ethnic group?”, to which there

are 18 categories to choose from. This is subsequently condensed using the ONS 6 cat-

egory census classification: “White”; “Mixed”; “Indian”; “Pakistani and Bangladeshi”;

“Black or Black British”; “Other Ethnic Group”. Section C.1.1 provides detail of how

this is done. This is included as a categorical variable in the analysis, and again using
4This is done only for unexplained missingness. Some cases are explained by a refusal to answer or

other reasons which may reflect a change in religiosity itself. This occurs in very few cases.
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the latest non-missing wave for each individual.

A major correlate of life satisfaction which is also likely a determinant of moving away

from home to university is the individual’s mental health. As a measure of the indi-

vidual’s psychosocial health, LYSPE asks respondents to complete the General Health

Questionnaire (GHQ). The GHQ aggregates answers from 12 questions aimed at as-

sessing the respondents’ psychological well-being. Such questions include: “Have you

recently lost much sleep over worry?”; “Have you recently felt capable of making de-

cisions about things?”; “Have you recently been feeling unhappy or depressed?” (see

Appendix section C.1.2 for the full list of questions). The respondents answer each of

these questions on a likert scale: “not at all” (0), “no more than usual” (1), “rather more

than usual” (2), “much more than usual” (3). Aggregating these answers from all 12

questions results in the GHQ-score, which ranges from 0 to 36. A higher score on this

scale indicates a greater likelihood ofmental ill health. Including the GHQ score in each

analysis is appropriate, as omitting it would likely confound the effect of moving away.

However, changes to an individual’s mental health could be considered an outcome

of moving away from home to university, and hence post-university GHQ would be a

“bad control” (Angrist & Pischke, 2008). For this reason, pre-university GHQ, which as

such constitutes a baseline level of psychosocial health during the individual’s forma-

tive years are included.

An important feature of the mediation analysis which follows the main section is locus

of control. Following (Lefcourt, 1991), LSYPE contains information on an individual’s

(internal or external) loci of control through asking respondents to what extent they

agree or disagree with the following statements:A) “If someone is not a success in life, it

is usually their own fault”; B) “I can prettymuch decidewhatwill happen inmy life”; C)

“Howwell you get on in this world is mostly a matter of luck”and D) “If you work hard

at something you’ll usually succeed”. They answer by choosing one of: “(1) Strongly

agree”;“(2) Agree”;“(3) Disagree” and“(4) Strongly disagree”. The response to question

C is reversed to reflect the direction of the question, and the results are summed to give

a score between 4 and 16. A higher score on this scale indicates a more external locus

of control. See section 4.8 for more detail about the mechanism behind this variable,
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moving away from home and life satisfaction. This variable is available in many waves:

locus of control fromwaves 2 and 7 are included in all analysis, andusewave 8’s iteration

as a mediating variable.

University and course choice

LSYPE contains data on, conditional on attendance at university, satisfaction with stu-

dent’s choices. Individuals were asked “Was [university] your first choice of institu-

tion?”, and also “Was [subject] your first choice of subject?”, to which they responded

“yes”, “no” or “don’t know”. These two factors: whether or not a student attends their

desired university or studies their preferred subject, may have a significant impact on

the university experience, performance, and ultimately the outcome of their degree. In

turn, this is likely to affect life satisfaction as a result, so these two binary variables are

included in all analyses.

Ideally, in all analyses, university fixed effects would be included to sweep up within-

university unobserved heterogeneity. However this information is not availablewithout

special license access to LSYPE. Some of the potential heterogeneity across university

type is captured by controlling for whether the individual’s university was a member of

the Russell group or not. LSYPE asks respondents in wave 6 and 7whether their univer-

sity is a member of the Russell group, to which they respond “yes” or “no”. As well as

controlling for this in the main analysis, results are stratified by Russell group status in

the secondary analysis. Another factor is university “quality”, broadly speaking. Stu-

dent satisfaction and experience is a major factor of both University life and the Univer-

sity quality rankings. Universities compete both in terms of student outcomes, but also

in large part on the student experience they offer. Thus, attendance of a higher qual-

ity university should, on average, be positively correlated with early adult outcomes.

Again, the university attended is not observed, so this chapter makes use of the Russell

group indicator to pick up the effects of attending a university of a higher quality. Al-

though this is a crude measure and not necessarily related to an insitutions’ quality or

ranking, on average we can expect differences in quality, experience and life satisfaction

to show up through Russell group status.
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Parental and Household characteristics

Alongside the individual questionnaires LSYPE collected information from their par-

ent(s) including questions at the household level. In each analysis, the following con-

trols for parental health, work conditions andmarital status, are included, alongside the

total number of siblings in the household.

Each parent in the household was asked “Do you have any longstanding illness, disabil-

ity, or infirmity? By longstanding I mean anything that has troubled you over a period

of at least 12 months or that is likely to affect you over a period of at least 12 months?”

to which they responded Yes or No. This is included as a binary variable equal to one

if the parent responds yes.

Each parent is asked about their employment status. This is recoded as a variable that in-

dicates whether they are employed full or part-time, or whether they are currently non-

employed.This employment dummy is included to capture correlation between parental

employment status and moving away from home to university.

LSYPE also derives marital status of the parents in the household, listing the responses:

“Single, that is, never married”; “Married and living with husband or wife”; “Living

with a partner”; “Married and separated from husband or wife"; "Divorced”; “Wid-

owed”; “Other”. A variable equal to one is created if the response indicates that the

parent is married and living with husband or wife, and zero otherwise. It is expected

that stability in the home co-varies with the probability of moving away from home to

university. Therefore included are martial status of the parents as a proxy variable for

this.

In wave 2, information about the number of siblings of the young person was collected.

This is subsequently updated in wave 4 to account for the boosted sample, giving the to-

tal number of siblings (including natural, step, adoptive or foster) of the young person.

Again this is expected to influence the probability of moving away, hence motivating its

inclusion in the analysis.
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Information on household income is derived inwave 4 of LSYPE for both parents (where

applicable). This gives total monthly household income, banded into 12 bins ranging

from: “Up to £2,599”, “£2,600 up to £5,199”, then bands incrementing by £5,199 up to

“£52,000 or more”. Finance for students plays a large role in whether or not they move

away from home, and household income plays several roles: either through directly fa-

cilitating amove at higher incomes, or receiving a highermeans-tested grant at lower in-

comes. Household income is a likely predictor of moving away therefore, and omitting

it from the analyses would invoke bias in the estimates. The abovementioned categories

of household income at wave 4 (pre-university) are included as separate dummies for

each band.

Area-level controls

There are likely regional disparities in the propensity to move away from home to uni-

versity as households based in different areas face different costs of moving. The fact

that some areas have a higher concentration of universities means that the distance of

a potential move is lower and perhaps less likely. To capture these differences, region

fixed-effects appear in all of the analysis, to sweep away within-region variation in the

probability of moving away from home to university.

LSYPE includes the IncomeDeprivationAffectingChildren Index (IDACI) score for each

young person in the survey, collected at wave 2. The IDACI is an indicator measuring

the percentage of children living in low income households based upon their postcode.

This is included in each analysis to control for variation in local deprivation, which may

affect both the probability of moving away, and life satisfaction at later life.

Income

A key variable for the mediation analysis in section 4.8 is the respondents income at age

25. Incomewas collected in sweep 8 of Next Steps using five separate banded questions.

The first question gives respondents a choice between four bands, and the four remain-

ing questions subdivide each band into four finer bands. In total the scale consists of 16

bands. Incomewasmissing for 9.4% of the 7,707 respondents in wave 8. LSYPE imputes
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continuous and missing income using interval regression, using the log-upper and log-

lower bands as the dependent variables (intervals). They use a host of predictors, which

are listed in the appendix C.1.3.

Table 4.2: Descriptive Statistics - split by migration status

Move=0 Move=1 Difference P-Value
Male 0.40 0.43 0.03 0.16
Muslim 0.31 0.05 -0.26 0.00
IDACI score 0.26 0.14 -0.12 0.00
GHQ-12 Score (wave 2) 1.63 1.89 0.26 0.01
Parent has L/t health cond. (wave4) 0.16 0.13 -0.03 0.02
No. of Siblings (wave 4) 2.26 1.69 -0.56 0.00
Parents Married & living together (wave 4) 0.78 0.79 0.00 0.80
Attended preferred University 0.76 0.80 0.05 0.00
Read preferred course at Uni. 0.88 0.92 0.05 0.00
Locus of Control (wave 2) 7.45 7.56 0.11 0.11
Locus of Control (wave 7) 8.51 8.62 0.12 0.07
Locus of Control (wave 8) 9.03 9.06 0.03 0.62
Parent employed (wave 4) 0.66 0.82 0.17 0.00
Government Region

North Eest 0.06 0.03 -0.03 0.00
North West 0.15 0.12 -0.03 0.01
Yorkshire and the Humber 0.11 0.09 -0.02 0.07
East Midlands 0.06 0.08 0.03 0.01
West Midlands 0.13 0.09 -0.04 0.00
East of England 0.07 0.11 0.03 0.00
London 0.30 0.26 -0.04 0.02
South East 0.07 0.15 0.08 0.00
South West 0.04 0.07 0.02 0.01

Ethnicity
White 0.45 0.74 0.29 0.00
Mixed 0.03 0.05 0.02 0.00
Indian 0.16 0.08 -0.08 0.00
Pakistani 0.12 0.02 -0.10 0.00
Bangladeshi 0.12 0.01 -0.11 0.00
Black Caribbean 0.04 0.03 -0.01 0.07
Black African 0.05 0.05 0.00 0.53
Other 0.05 0.03 -0.02 0.00
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4.4 The (total) effect of moving away to university on life

satisfaction
4.4.1 Basic model

Basic setup:

Yi = α+X ′iβ +Movediτ + εi,

where Yi is a dummy variable, equal to one if the individual reports their life satisfaction

as ‘very satisfied’, and zero otherwise, Xi is a vector of control variables from different

stages in the individual’s life, including parental education, occupation and health, as

well as individual-level measures. Movedi is an binary variable, indicating whether the

individual moved away from home to university, or whether they stayed at homewhilst

studying; τ is the main parameter of interest. This model is estimated with and without

controls, using both Linear Probability and Probit models.

4.4.2 Ordered Probit model

So far the basic approach has been to dichotomise individual-level life satisfaction to

‘Very Satisfied’ vs. not. This approach does not make use of variation between other re-

sponse categories, which form an ordinal set. Therefore the next approach is to capture

this variation across categories, via an ordered Probit model. The following is adapted

from Wooldridge (2010) and W. H. Greene (2012), to which the reader is referred for a

comprehensive overview of ordered response models.

Assume life satisfaction is measured by a latent variable, Y ∗, determined by

Y ∗ = X ′β +Movedτ + ε, ε|X∼Normal(0, 1)

where X and Moved are defined as before, for the population of interest. Given this

latent specification, we can define the observed life satisfaction categories (Y ) as:

Very Dissatisfied:

Y = 0, if Y ∗ ≤ λ1

Fairly Dissatisfied:

Y = 1, if λ1 < Y ∗ ≤ λ2
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Neither Satisfied nor Dissatisfied:

Y = 2, if λ2 < Y ∗ ≤ λ3

Fairly Satisfied:

Y = 3, if λ3 < Y ∗ ≤ λ4

Very Satisfied:

Y = 4, if Y ∗ > λ4

The response parameters, λ, are to be estimated along with β. Given the assumption

that ε follows a standard normal distribution, the response probabilities are calculated

as follows:

P (Y = 0|X,Moved) = P (Y ∗ ≤ λ1|X,Moved) = P (X ′β +Movedτ + ε ≤ λ1|X,Moved)

= Φ(λ1 −X ′β −Movedτ)

P (Y = j|X,Moved) = P (λj−1 < Y ∗ ≤ λj |X,Moved)

= P (λj−1 < X ′β +Movedτ + ε ≤ λj |X,Moved)

= Φ(λj −X ′β −Movedτ)− Φ(λj−1 −X ′β −Movedτ),

for 1 < j < 4.

P (Y = 4|X,Moved) = P (Y ∗ ≤ λ4|X,Moved) = P (X ′β +Movedτ + ε ≤ λ4|X,Moved)

= 1− Φ(λ4 −X ′β −Movedτ)

Finally, as we are interested in the marginal effect of moving away from home to univer-

sity on life satisfaction at 25 years old, we have:
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δp0(X,Moved)
δMoved = −τφ(λ1 −X ′β −Movedτ)

δpj(X,Moved)
δMoved = τ [φ(λj−1 −X ′β −Movedτ)− φ(λj −X ′β −Movedτ)], for 1 < j < 4

δp4(X,Moved)
δMoved = τφ(λ4 −X ′β −Movedτ)

Noting that the nonlinearity of this model means the partial effects are themselves func-

tions of the covariates, we must either calculate these partial effects at the averages of

the covariates, or calculate the average partial effects over each observation.

4.5 Results - Total Effect of moving away
Table 4.3 shows the basic estimation results from Linear Probability and Probit models

where Yi takes the value of one if the individual responds that they are Satisfied with

their life, and zero otherwise. For males, moving away from home to university has

a large and statistically significant (p<0.1) effect on reported life satisfaction at age 25.

The reverse is true for females: those who move away from home to university report

worse life satisfaction than those who remain at home, albeit statistically insignificant

at the 10% level. These results remain persistent as controls are added, and the choice

of linear or non-linear estimation method makes little difference.

Table 4.4 shows the ordered probit estimates for life satisfaction. Again, male movers

enjoy a higher life satisfaction at age 25, whereas women do not. These estimates pro-

vide a littlemore detail. Malemovers are less likely to report being fairly dissatisfied and

neither satisfied nor dissatisfied by one and two percentage points, respectively (p<0.1);

and more likely to report being satisfied by four percentage points (p<0.1). Females on

the other hand are less likely to report being satisfied, and more likely to report being

in all categories below (although again, not statistically significant at the 10 % level).

The take-away result from Tables 4.3 and 4.4 is that moving away from home to Univer-

sity is positively associated with life satisfaction at age 25, but only for Males.
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Table 4.3: Average Marginal Effects of moving away to university on Life Satisfaction at age 25 years

Males Females

LPM 0.06∗∗ 0.05∗ 0.05∗ 0.02 -0.02 -0.02

(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

Probit 0.06∗∗ 0.05∗ 0.05∗ 0.02 -0.02 -0.02

(0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

N 1322 985 985 1833 1298 1298

Controls (excl Wages) - X X - X X

Wages (at age 25) - - X - - X

Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4.4: Estimated marginal effect of moving away to University on Life Satisfaction probabilities

Males Females
Life Satisfaction:
Very Dissatisfied -0.01∗∗∗ -0.00∗ -0.00 -0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Fairly Dissatisfied -0.02∗∗∗ -0.02∗∗ -0.01∗ -0.00 0.01 0.01
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Neither Satisfied -0.04∗∗∗ -0.03∗∗ -0.02∗ -0.00 0.01 0.01
nor Dissatisfied (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Fairly Satisfied 0.01∗∗ 0.00 0.00 -0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Satisfied 0.06∗∗∗ 0.04∗∗ 0.04∗ 0.01 -0.02 -0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

N 1322 985 985 1833 1298 1298
Controls (excl Wages) - X X - X X
Wages (at age 25) - - X - - X

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4.6 Results - Subgroup analysis
In the context of moving away from home to university, there are several subgroups of

students for whom it is reasonable to expect heterogeneous effects of moving. Three

cases are examined here: those of Islamic faith, those attending Russell Group univer-

sities, and first-generation university attendees.

For many students, the decision to move away hinges on access to credit markets. The

UK Government offers undergraduate students a Tuition Fee and Maintenance Loan as

part of its Student Finance funding system. These loans incur a rate of interest which,

since 2012, are set at commercial rates. In the case of Muslim students, many may feel

unable to take on such interest-bearing loans for religious reasons; namely a lack of
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Sharia-compliance. This issue has been recognised by the Government, but there is no

time frame for plans to introduce an alternative (Department for Business& Skills, 2016).

As such, it seems likely that Muslim students who do move away are likely to be sys-

tematically different from those who remain at home.

Universities compete both in terms of student outcomes, but also in large part on the

student experience they offer. Thus, attendance of a higher quality university should,

on average, be positively correlated with early adult outcomes. Taking Russell group

status as a proxy for quality, those who attend Russell group universities are likely to

face a different university experience than those who do not. This section therefore

investigates whether there is a differential impact of moving away to a Russell group

University, over and above moving away to a non-Russell group University. Likewise, a

different experience at University is likely to be faced by those who are first-generation

university attendees. Those who have a familial history of university attendance are

likely to be, ceteris paribus, better prepared for undergraduate life. Whether there is a

differential impact of moving away for first-time attendees, above those who are not, is

analysed.

The possibility of heterogeneous effects are investigated by interacting each of the above

mentioned subgroups with the variable indicating whether a student moved away from

home. LSYPE contains information on faith so Muslim students are easily identifiable,

as are Russell group attendees.A (crude) first-generation attendee variable is created

by exploiting the parental questionnaires in the first wave. Both parents in the house-

hold were asked if they attended university, and they were also asked if their parents

attended. Information on siblings’ attendance at university is not available. A variable

equal to one is created if at least one parent or grandparent attended university and zero

otherwise, to proxy first-generation attendance. The original Linear Probability Mod-

els are used to estimate these interactions, both for simplicity in their estimation and to

avoid difficulties with interaction terms in non-linear models.5

Table 4.5 shows the original LPM coefficients (left-most column), followed by the coeffi-
5SeeAi andNorton (2003);W.Greene (2010) for amore detailed exposition of the issueswith interaction

terms in non-linear models.
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Table 4.5: Estimated marginal effect of moving away to University on Life Satisfaction probabilities

Males

University Mover 0.06∗∗ 0.09∗∗∗ 0.01 0.06
(0.03) (0.03) (0.03) (0.05)

Muslim 0.19∗∗∗
(0.07)

Mover x Muslim -0.15∗
(0.08)

Russell Group -0.13
(0.09)

Mover x Russell Group 0.23∗∗
(0.09)

1st-Gen Uni attendee -0.04
(0.05)

Mover x 1st-Gen Uni attendee -0.01
(0.06)

N 1134 1130 1082 1095

Females

University Mover -0.02 -0.01 -0.03 0.03
(0.02) (0.03) (0.03) (0.05)

Muslim 0.05
(0.07)

Mover x Muslim -0.13
(0.08)

Russell Group 0.12∗
(0.07)

Mover x Russell Group -0.04
(0.08)

1st-Gen Uni attendee 0.05
(0.05)

Mover x 1st-Gen Uni attendee -0.07
(0.05)

N 1537 1533 1459 1467

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

cients from the interacted models. For Muslim males who move away from home, they

are 15 percentage points worse-off than non-Muslim movers (p< 0.1): those who do

move are 6 percentage points less likely to report being very satisfied with their life at

age 25. Female Muslims who move are also worse-off, but these results are not statisti-

cally significant at the 10 % level. Males who move away from home to a Russell group

University are significantly better off: they are 23 percentage points more likely to re-

port being very satisfied with their health (p< 0.05), an effect size equal to roughly 55%
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of a standard deviation. Female movers to Russell group universities are differentially

worse-off, but not statistically significantly so. There are no statistically significant differ-

ences found for first-generation attendees. A result that could be due to measurement

error in familial history of attendance, as it seems likely that an individuals’ siblings’

university experience would influence their own.

4.7 Endogenous movers - Instrumental Variables approach
The decision to move away from home to university is not random; those who do so,

may self-select into moving away and there are unobservable factors that are likely to

influence the decision to move and life satisfaction. In an attempt to address these en-

dogeneity concerns, an instrumental variable for moving away is used that, conditional

on X , is arguably excludable from the Life Satisfaction equation.

LSYPE has information on whether or not the individual’s grandmother or grandfather

attended university. A binary variable equal to one if at least one grandparent attended

university is used as an instrument formoving away. The validity of this approach relies

on the instrument’s excludability - that an individual’s grandparents’ university atten-

dance doesn’t affect their life satisfaction other than through their own university atten-

dance. One major factor this assumption overlooks is the influence of a grandparents’

university attendance on social mobility. There are theories in the social mobility litera-

ture which suggest that a future generation is independent of its past generations, con-

ditional on the present generation (Zeng & Xie, 2014; Mare, 2011). Fortunately, LSYPE

provides sufficient information to control for parental confounds. This means that the

exclusion restriction holds, if the generational theory holds true. There is some con-

tention to this theory in the literature, however, with some studies finding there can be

direct effects, conditional on parental socioeconomics status (Cherlin & Furstenberg Jr,

1992; McLanahan & Percheski, 2008). In terms of the instrument’s relevance to a child’s

university attendance, linear first-stage regressions show that the F-stats pass the Stock

and Yogo (2002) test for weak instruments: having a grandparent who attended uni-

versity is a positive, statistically significant predictor of whether a student moves away

from home to university.
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For the two-stage estimation, the analysis follows Cullinan andGillespie (2016) and uses

a Probit first-stage, and an Ordered Probit second stage. This is operationalised in Stata

16 with the -cmp- suite of commands (Roodman, 2011)6. Table 4.6 shows the first stage

probit results and Table 4.7 shows the second-stage Probit and Ordered Probit IV esti-

mates for Life Satsfaction at age 25, by gender.

For the binary response model, the coefficients are close in magnitude to those of the

LPM and Probit models, but the increase in standard errors owing to the uncertainty

in the first stage mean these are not statistically different from zero. Unpacking these

in the ordered probit IV model: for both males and females, the signs of the effect of

moving away on each category of Life Satisfaction at age 25 are the same as the original

specification (see Table 4.4). Formales, the coefficients are of a similar magnitude to that

of the ordered probit model, but are too imprecise to be deemed statistically different

from zero. The coefficient on satisfied, for example, increases by around three percent-

age points (1.75 times as large), whilst the standard errors become around seven times

as large. For females, on the other hand, the standard errors again increase (as expected

when using instrumental variables), but the coefficients balloon to up to ten times as

large.

Assuming excludability and monotonicity of the instrument, this analysis suggests a

large, positive, causal effect of moving away from home to university on life satisfac-

tion for males who are “compliers” with the instrument. In other words, for those who

are influenced to move away from home by their grandparents’ university attendance,

who wouldn’t have done so otherwise, there are positive wellbeing-returns to doing so.

However, there is no guarantee that an individual’s grandparents’ university attendance

affects their life satisfaction only through influencing them to move away from home to

university. This, if true, would lead to the estimator being inconsistent, and the coeffi-

cients biased.

Another issue with this analysis is the first-stage. Grandparents’ university attendance
6The -cmp- command essentially fits SURmodels, and is extremely flexible in terms of functional form

of each estimating equation. The accompanying article to the command by Roodman (2011), explores the
many different combinations of estimation methods, including ordered probit IV.
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Table 4.6: First-Stage Probit estimates of moving away to university

Males Females All

G.Parent attended 0.077∗∗ 0.115∗∗∗ 0.092∗∗∗
University (0.033) (0.031) (0.023)
Muslim -0.180∗∗∗ -0.211∗∗∗ -0.229∗∗∗

(0.064) (0.062) (0.054)
Mixed 0.169∗∗ 0.272∗∗∗ 0.199∗∗∗

(0.071) (0.067) (0.033)
Indian -0.026 -0.033 -0.027

(0.048) (0.048) (0.036)
Pakistani 0.092 -0.028 0.031

(0.084) (0.080) (0.056)
Bangladeshi -0.086 -0.007 -0.037

(0.096) (0.091) (0.070)
Black Caribbean -0.050 0.156∗∗ 0.082

(0.094) (0.074) (0.052)
Black African 0.161∗∗ 0.236∗∗∗ 0.176∗∗∗

(0.078) (0.077) (0.039)
Other 0.143 0.040 0.077∗

(0.089) (0.065) (0.047)
IDACI score -0.491∗∗∗ -0.440∗∗∗ -0.466∗∗∗

(0.086) (0.079) (0.058)
GHQ-12 Score -0.009 0.006 0.002

(0.006) (0.004) (0.003)
Parent has L/t health cond 0.030 0.019 0.023

(0.036) (0.034) (0.025)
Parent Working FT -0.076∗∗ -0.035 -0.053∗∗

(0.037) (0.033) (0.023)
Parent Working PT -0.074∗ -0.031 -0.049∗∗

(0.040) (0.035) (0.025)
No. of Siblings 0.012 0.016 0.013∗

(0.010) (0.010) (0.007)
Parents Married & living together -0.073∗∗ -0.077∗∗ -0.073∗∗∗

(0.035) (0.030) (0.021)
Attended preferred University -0.036 -0.009 -0.020

(0.032) (0.029) (0.021)
Read preferred course at Uni 0.073∗ 0.073∗ 0.076∗∗

(0.043) (0.038) (0.031)
Locus of Control (wave 2) 0.009 0.001 0.005

(0.007) (0.006) (0.005)
Locus of Control (wave 7) 0.001 0.017∗∗∗ 0.010∗∗

(0.008) (0.006) (0.005)
Locus of Control (wave 8) 0.002 -0.005 -0.002

(0.007) (0.007) (0.005)
ln(income) 0.508∗∗∗ 0.491∗∗∗ 0.500∗∗∗

(0.096) (0.091) (0.066)
Male -0.068∗∗∗

(0.017)

N 1127 1541 2674
F - Statistic 11.371 13.949 23.100
Region Fixed Effects X X X

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4.7: IV Ordered Probit estimates of moving away to university on life satisfaction

Males Females All

Binary Life Satisfaction:
V. Satisfied 0.062 -0.018 0.013

-0.279 -0.286 -0.247

Ordered Life Satisfaction:
Very Dissatisfied -0.009 0.023 0.011

(0.019) (0.019) (0.012)

Fairly Dissatisfied -0.029 0.076* 0.038
(0.055) (0.040) (0.035)

Neither Satisfied -0.043 0.082** 0.050
nor Dissatisfied (0.080) (0.032) (0.042)

Fairly Satisfied 0.004 0.030*** 0.008
(0.007) (0.011) (0.007)

Satisfied 0.077 -0.211** -0.107
(0.147) (0.097) (0.095)

N 1133 1542 2675
First-Stage F-stat 11.371 13.949 23.100

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

only has borderline predictive power for moving away from home to university. The

uncertainty brought about in this stage might mean there is too much imprecision in

the second-stage to reach meaningful conclusions about the coefficients.

4.8 Mediation Analysis: the indirect effects of moving away
The analysis in the previous section presents two main results: that there is a negative

association between moving away from home to university and life satisfaction in early

adulthood; and that this effect is only apparent for males. This section aims to shed

some light on the potential transmission mechanisms at play behind these results. With

a view to provide insight on the gender difference, focus is placed on the indirect (me-

diating) role of an individual’s external locus of control, and their wages.

Locus of control refers to individual beliefs about whether life events are mostly inter-

nally or externally determined (Rotter, 1966). People with an external locus of control

believe that what happens in life is largely determined by events beyond their control,

whereas individuals with internal locus of control generally perceive a sense of per-

sonal control; their own decisions and behaviours are the main determinants of their

outcomes. There exists a link between an individual’s locus of control and their life sat-
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isfaction. For example, those who believe they have little or no control over their life are

more distressed, and are likely to have a lower life satisfaction as a result (Mirowsky,

2017). This has led to an individual’s locus of control being examined as a mediator on

the causal path to life satisfaction (see, for e.g. Fiori et al. (2006)) There is some evidence

to suggest that the home environment plays a role in a young person’s locus of control

(Bansal et al., 2006). In the context of moving away from home to university, this is often

the first time an individual may have lived away from home for an extended period. It is

hypothesized that this may have an effect on an individual’s perception of self-control,

which may not otherwise be experienced at this early stage in an adult life.

Another factor influencing early-adulthood life satisfaction is wages, which has been

considered as amediator in an education context in previous literature (delMar Salinas-

Jiménez et al., 2013). Being restricted to living at home whilst studying at University

greatly reduces the choice set thatwould otherwise be available. Prospective students in

the UK list five choices when they apply, meaning the probability of attending a higher-

quality institution is lower with a choice set restricted to within a commuting distance

of home, ceteris paribus, and thus are likely to earn less on average than those who move

away. Given the well-documented gender gap in pay, this could provide some explana-

tion as to why moving affects male life satisfaction only.

4.8.1 Methods

In order to disentangle the direct effect of moving away on early-adult life satisfaction,

from the indirect effects of loci of control and wages, the approach of Han et al. (2011) is

followed. Adapting the basic model from the earlier analysis gives the Life Satisfaction

equation as:

Yi = α+X ′iβ +Movediτ + Locusi(Movedi)γ +Wagesi(Movedi)η + µi,

whereLocusi is the individual’s external locus of control, which is a function of whether

they moved away from home to university. Likewise,Wagesi is the level of wages faced

by the individual at 25 years of age, also a function of whether the individual moved.
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Taking the total differential of life satisfaction with respect to moving away to university

gives:

dYi
dMovedi

= τ + (
δYi

δLocusi

δLocusi
δMovedi

) + (
δYi

δWagesi

δWagesi
δMovedi

),

where the direct effect of moving away from home on life satisfaction (holding fixed

locus of control and wages, as well asXi) is given by τ . The total effect of moving away

is further decomposed into two indirect effects which appear as the partial derivative

terms in the two sets of parentheses.

For estimation purposes, the basic linear probability specification for life satisfaction

are used. There is little informational (nor statistical significance) difference between

the ordered probit and LPM/probit specifications, and doing so makes computation of

the direct and indirect effects more straightforward. The first partial derivative terms

in parentheses, δYi
δLocusi

and δYi
δWagesi

, are taken from this model. The second two partial

derivative terms are estimated via the following:

Locusi = γ0
L +Movediγ1

L +X ′iγ2
L + µi

L

Wagesi = η0
W +Movediη1

W +X ′iη2
W + µi

W

and the coefficients γ1L and η1
W are taken as estimates of δLocusi

δMovedi
and δWagesi

δMovedi
. This

gives a value for each of the indirect effects.This entire procedure is then bootstrapped to

obtain estimated standard errors for the direct, indirect and total effects of moving away

from home to university on early-adult life satisfaction. Using the above parameters, the

equation for decomposing the total effect becomes:

dYi
dMovedi

= τ + (γ × γL1 ) + (η × ηW1 ),
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4.9 Results - Direct and Indirect effects of moving away
Table 4.8 shows the estimated direct, indirect and total effects of moving away to univer-

sity on life satisfaction at age 25. Unsurprisingly given earlier results, only significant

effects are found for males. The mediation analysis shows that the positive total effect

of moving away from home to university on life satisfaction is not explained by either

mechanism relating to locus of control or wages. Of the 6.5 percentage points (p<0.05)

that an individual whomoves is more likely to report being very satisfiedwith their life,

6.4 percentage points (p<0.05) are attributed to a direct effect of moving.

Table 4.8: Estimated marginal effect of moving away to University on Life Satisfaction probabilities

Full Sample Males Females

Indirect Effect: Locus of control 0.002 -0.001 0.003
(γ × γL1 ) (0.003) (0.005) (0.005)

Indirect Effect: Wages 0.001 0.001 0.002
(η × ηW1 ) (0.003) (0.004) (0.003)

Total Indirect Effect 0.003 0.000 0.005
(γ × γL1 + η × ηW1 ) (0.004) (0.006) (0.006)

Total Effect 0.016 0.065∗∗ -0.015
(dYi/dMovedi) (0.020) (0.028) (0.024)

Total Indirect/Total Effect 0.212 0.044 -0.142
(1.252) (0.199) (2.720)

Direct Effect 0.013 0.064∗∗ -0.020
(τ) (0.019) (0.028) (0.023)

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

For females, ignoring the imprecision of the estimates, the results appear to show a case

of “inconsistent mediation” (MacKinnon et al., 2012), whereby the indirect effects have

a different sign to the direct effects. The total effect estimate is smaller (closer to zero)

than the direct effect, which suggests the presence of a suppressing variable. The overall

effect of moving away from home is negative for females, but the particular mediating

paths through Locus of Control and Wages are positive ones. This suggests that there

are other, larger, factors associated with moving away that offset these positive effects.

The caveat of this analysis is that its plausibility relies on the identification of the initial,

total, effects (i.e the results from the initial analysis). Clearly, owing to the potential en-

dogeneity of moving away from home vs remaining whilst studying, causal claims can

not be based on the results shown here. A further issue with the mediation analysis, is
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that even if moving were exogenous, the two indirect mechanisms analysed are poten-

tially endogenous too. This, in some sense, “doubles” the endogeneity problem and so

in order to address causality one would need three instruments: one for each of moving

away from home, wages, and locus of control. This is deemed to be beyond the scope

of this chapter, and therefore leave this line of analysis to further research.

4.10 Discussion, Limitations and Conclusions
This chapter has considered the impact of moving away from home to university on life

satisfaction in early-adulthood. OLS, Probit and Ordered Probit methods were applied

to a cohort of university attendees from LSYPE, some of whom stayed at home dur-

ing study, whilst others moved away. In addition to this baseline analysis it explored

whether there exist heterogeneous effects of moving away, and potential transmission

mechanisms using mediation analysis. In particular the latter considers how external

locus of control andwagesmay act as channels throughwhichmoving away from home

affects life satisfaction.

The main result is that moving away has a differential effect for men and women. Con-

ditional on both pre- and post-move characteristics at the individual, parental and local

level, males report much higher life satisfaction at age 25 if they moved away; females

show no difference. The move to university is often the first time a young person moves

away from home, and thus represents a significant life event that occurs at age 18. There

is perhaps an argument for a gender difference in developmental and maturity levels at

this age, and thus it seems plausible that having a vastly different university experience

(through moving away) may impact men and women differently. Subsequent analysis

of heterogeneous effects within gender, and of potential mediators of the direct effect of

moving away, shed some light on this baseline difference in early-adulthood life satis-

faction.

Secondary analysis considered heterogeneous effects for Muslim respondents, those

who attend Russell group universities, and thosewho are a “first-generation” university

attendee. The analysis for females shows no statistically significant interaction effects.

For males however, those who identify as being of Islamic faith are much worse off if
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they move away from home, than movers who do not. Due to the issues around access

to credit markets for those of Islamic faith, this result may arise because of the financial

strain placed upon those whomove away from home. Perhaps taking on a job alongside

study or the financial stress more generally are drivers of this effect. Further research is

needed in this area, particularly for policy surrounding access to sharia-compliant stu-

dent finance.

The effect of moving away from home to university is amplified if that university is a

member of the Russell group. This is perhaps unsurprising, as these “elite” universi-

ties recruit nationally frommore affluent families and are more isolated from their local

communities (Donnelly & Gamsu, 2018). These universities are likely more geared to-

wards facilitating this type of student, thus maximizing the benefit of them moving

away from home to attend.

As previously mentioned, there is a feasible argument for a gender difference in emo-

tionalmaturity at age 18. A study of undergraduates fromDelhiUniversity, for example,

found females to be much more capable of emotional adjustment to life at university in

their first year (Mahanta & Kannan, 2015). It could be the case that, for males, moving

away fromhome triggers a significant emotional development throughout their time liv-

ing away. Whereas females are further along in their emotional development and thus

don’t face the same benefits from moving away. The psychology literature has made

links between an individual’s external locus of control, maturity, and psychosocial de-

velopment (Brackney & Westman, 1992). LSYPE contains information on the individ-

ual’s locus of control, and so this provides an opportunity to test a loose version of this

hypothesis. The mediation analysis conducted in this paper suggests that moving away

from home to university does not impact life satisfaction indirectly through influencing

an individuals’ external locus of control. The effects must therefore either be driven by

the direct mechanism of moving away, or by some other confounder which is not ac-

counted for in the analysis.

Another possible channel though which we might explain the gender difference and

university experience is through wages. However, the mediation analysis present here
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suggests that differences in wages, which come about as a result of moving away, do not

impact life satisfaction. Future research should seek to investigate this finding further:

whether the effect of moving away is purely direct, as this chapter shows suggests. The

question of which potential mechanisms are at play remains unanswered.

Individuals self-select into the decision to move away from home, and there are com-

mon causes of moving away and early-adult life satisfaction. The analysis here goes

some way to controlling for pre-move characteristics at the individual, parental, house-

hold and area level. Whilst this alleviates some of the bias from joint confounders, we

cannot make causal claims from the data due to the self-selection issue. To address this

problem, the individual’s grandparents’ university attendance is used as an instrumen-

tal variable for moving away to university. This analysis is suggestive of a large, causal

effect of moving away on life satisfaction for males, and the reverse for females. The

reliability of these estimates are still limited, however, as the IV only has weak predic-

tive power of moving away in the first-stage. This lack of predictive power magnifies

the standard errors to the extent that meaningful inference is difficult. Future work on

this paper will focus on addressing the endogeneity of moving away, through looking at

whether the individual is attending their first-choice university and first-choice course

as an IV.

4.10.1 Limitations

There are several main limitations of this study, many of which revolve around the na-

ture of LSYPE. There are two main threats that arise from using LSYPE: non-random

attrition of students from LSYPE over the 8 waves, and the inability to use panel data

methods when looking at the outcomes presented here.

There is a large amount of attrition from LSYPE: around 15,000 students are present in

wave 1, and around 8,000 remain in wave 8. To account for this, the survey weights

included in LSYPE are used, from wave 8. However, these were designed to be used

for attrition in general within LSYPE, and not for the specific case of university atten-

dees who drop out of the survey. Conditional on attendance at university in wave 6,
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there were 3,412 students who attended; this drops by around a third to 2,349 of these

students who remain at age 25. The attrition of these students seems to be randomly

distributed between those who remain at home and those who move away. Of those at

university in wave 6, 63.3% moved away from home. Of the university attendees who

remain in wave 8, 64% moved away. This suggests that the attrition of students who

move away is not a problem over and above the issue of attrition from LSYPE in gen-

eral, and therefore justifies the use of the general survey weights. Further work will

look into this issue more carefully, considering the characteristics of those who attend

university and subsequently drop out of the survey.

LSYPE offers the advantage of following the same cohort of children over time. The

nature of the data naturally lends itself to the use of panel data methods, which can

help attenuate bias that occurs through unobserved time-fixed heterogeneity at the in-

dividual level. However there are inconsistencies in the surveys across waves, meaning

that not all variables are available in all waves. In the most extreme case, a variable is

available only in one wave. This is the case with the main outcome of interest in this pa-

per: life satisfaction. For this reason the analysis is constrained to cross-sectional meth-

ods, and thus the assumption that the unobserved effects are uncorrelated with moving

away from home to university. This assumption is both untestable and unlikely to hold,

considering that at the very least, individuals self-select into moving away. Another

important consideration is that this cohort, born in 1989 and 1990, attended university

during the financial crisis of 2008, graduating and competing on the job market during

its aftermath. This will have affected these students and their success on the labourmar-

ket - likely to the detriment of their life satisfaction in early-adulthood. Consequentially,

this threatens the external validity of this chapter’s findings, and one must be careful in

extrapolating to other university cohort years who attended much earlier or later.

Another limitation of the study is the endogeneity of the decision to move away from

home to university. This issue is exacerbated in the mediation analysis in which the two

mediators used, wages and locus of control, are themselves endogenous with respect

to life satisfaction later in life. Whilst there do exist methods involving instruments for

each endogenous variable in this setting, the literature is underdeveloped, and address-
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ing this issue is beyond the scope of this paper. Whilst an arguably excludable instru-

mental variable is used to address the baseline endogeneity issue, there is clearly room

for more work in this area to overcome the identification issue.

Student mobility is only considered as binary - this has been criticised by some, such

as (Finn, 2017), who identify social mobility as a broader issue, including flows, stops

and starts that emerge throughout higher education. This paper is constrained by the

data it uses, and so does not capture thismore nuanced viewof studentmobility. Ideally,

panel data on students would be available, containing data on their outcomes over time,

as well as where they are living contemporaneously. This would allow for this issue to

be looked at in more detail. Nevertheless, moving away to university is likely to be

binary in nature for the vast majority of students. Those who opt to change from living

at university to living back with their parents are a small group, and are unlikely to

affect the results shown here.

4.10.2 Conclusions

This paper has contributed to the internal migration and student mobility literature by

asking a novel question about how a young person’s wellbeing in early-adulthood can

be affected by living away form home at university. The results suggest that males are

better off, whilst females are not. It has also considered potential mechanisms empiri-

cally, using mediation analysis to disentangle the indirect from direct effects of moving.

Finally, this paper has addressed the endogeneity issue surrounding self-selection into

moving away by using instrumental variables. It opens up a new strand of research in

the student mobility literature, considering early-adult consequences of moving away,

and provides a baseline for further research in this area to compare to.

There have been conflicting calls surrounding howgovernments anduniversities should

influence student mobility. Damian Hinds, the UK education secretary, suggested that

universities should offer “commuter courses”, where students stay at home to cut costs

(Grammar school expansion and faith school reforms: Damian Hinds sets out his stall, 2018).

On the other hand there have been recent calls, influenced through a recent report by

Donnelly andGamsu (2018), for schools to encourage students tomove away fromhome.
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Themain results from this analysiswould support such claims. However, policies aimed

at influencing attendance at university and moving location to do so must be careful to

ensure they don’t leave vulnerable groups of students behind. As part of a suite of poli-

cies designed to increasemoving away from home, decisionsmakers should ensure that

Muslim students in particular are facilitated in their move if they do so. It would seem

that moving away from home for Islamic students is part of a different mechanism, and

policies which may influence access to credit markets and thus facilitate a move away

from home need to be based on further work which specifically looks into this problem.

The baseline results here suggest that facilitating such moves would be detrimental to

Muslim students’ early adult life satisfaction. Without further research into disentan-

gling this issue, policy-makers should tread with caution on what is a complex issue.

More generally decision-makers, including thosewithin universities, should ensure that

appropriate support is offered both to those who have moved, and in particular to those

who are living at home during study. There are vulnerable parts of society who are per-

haps constrained to living at home, which not only greatly limits university choice and

thus quality, but also leaves (especially for males) them worse-off in early-adulthood

than if they were to move away.
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5.1 Aims and objectives & how they were met
This thesis has considered three separate but related research questions centered around

how where an individual lives can influence their health and health related outcomes.

There are many under-researched areas within health and place, which have the poten-

tial to improve health policy. This thesis aimed to understand how local characteristics

and internal migration can affect health and wellbeing. Three specific objectives within

this thesis were (1) to understand how moving house can affect health and wellbeing;

(2) to explore the differences in health outcomes on the UK coast; and (3) to explore

the role of moving away from home to university on early adult life satisfaction. This

thesis used large longitudinal datasets to add to the evidence surrounding these topics.

Within each specific objective, various recently developed methods were employed to

try and address the self-selection and endogeneity issues in answering these questions.

Furthermore, a range of health andwellbeingmeasureswere used in the analyseswhich

capture the multifaceted nature of health 1.

5.2 Empirical chapter summary
Chapter Two considered how moving house can affect health and wellbeing. It did so

by making use of two household panel surveys in the UK: BHPS and USoc, and a spe-

cial license linkage with 2011 census geographical data. This allowed for the analysis

of 31,216 individuals over 2-13 observed periods. In order to address the endogeneity

of moving home, an Instrumental Variables identification strategy was used, with local

school quality and the age of the youngest child comprising the main instrument set.

The rationale behind this instrument is that the schooling decisions play a large role in

a household’s decision to move, and the potential health effects are either ignored or

unknown to the household that moves. The main findings of the chapter are that mov-

ing house has a negative effect on an individual’s self-assessed health outcomes, once

instrumenting for moving home. However, the imprecision of these estimates once us-

ing an instrument mean that they must be treated with caution. The analysis went on

to consider short-run effects in an RDD-type set up, which compared movers who were

interviewed in the 12 months before, and 12 months after they moved home. Doing so

revealed, descriptively, a negative anticipatory effect of moving in the fewmonths prior
1https://www.who.int/about/who-we-are/constitution
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to doing so, followed by an offsetting positive effect in the three months post move.

Chapter Three investigated the difference in health outcomes on the UK coast, making

use of Understanding Society and a special-license access to 2011 census geographical

data meant that households could be located with respect to the UK coastline. This dis-

tance to the coast measure was then used to define a treatment group which resided

within 2.5km of the coast, and a control group that lived further than 15km from the

coast (the data in-between were dropped to create a sharp distinction between coast

and inland). The results paint a stark picture of the coast: contrary to the previous liter-

ature, health outcomes areworse on the coast, conditional on individual, household and

local area characteristics. As are health behaviours, with smoking and drinking more

prevalent on the coast, and coastal residents being more likely to claim disability bene-

fits. These results were scrutinised by making use of coefficient and R2 changes when

including covariates to assess the coefficient stability and selection on unobservables.

Doing so showed that the unhealthy behaviour prevalence on the coast holds up well,

even with an extreme selection on unobservables issue. These results are a strong con-

tribution to a limited literature, which has so far only considered self-assessed health

benefits of those on the UK coast: a result that is not found from the data used in this

chapter.

Chapter Four focused on a younger age group and considered the role of moving away

to university on early adult life satisfaction. It did so by using LSYPE, a cohort study that

followed children from the age of 14 years every year until aged 19 years, and then once

again in early adulthood at age 25. The life satisfaction at age 25 was compared between

those who lived away from home at university and those who remained living with

their parents, in an ordered probit model. The data allow for the partialling out of pre-,

during-, and post-university individual characteristics, as well as parental and house-

hold controls. Heterogeneous effects were found, withmales reportingmuch higher life

satisfaction if they lived away from home, whereas females who moved away showed

no significant difference in early adult life satisfaction. The endogeneity ofmoving away

is addressed by using the individual’s grandparents’ university attendance as an instru-

ment in an IV ordered probit model. The first stage induced toomuch uncertainty in the
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second stage estimates for these results to be more reliable than the standard analysis.

Finally, a mediation analysis was performed to assess the potential role of income and

an individual’s external locus of control in explaining the difference in effect for males

and females. Neither income nor loci of control act as an indirect effect of moving on

life satisfaction, and so the mechanism behind moving must either be direct or due to

some other unobserved factor to the analysis.

5.3 Contribution to knowledge
Overall, this thesis has contributed to several different literatures in several different

ways. Novel research questions were explored within health and place. Only several

papers have previously considered health on the UK coast as is addressed in chapter 3.

Chapter 4 is the first study to consider the wellbeing effects of moving away from home

to university, and this opens a new branch of literature entirely. Chapter 2 extended the

literature by considering any move as internal migration, as opposed to the typically

larger moves found in the labour literature.

A new dataset was applied to the literature in chapter 3 (Understanding Society with

special-license access to 2011 census geographical data) It also used outcomes that have

not previously been used- namely health behaviours, disability benefit claimants, and

chronic health conditions. These outcomes shed new light on the problems faced by

residents on the coast.

Finally, newmethods were used in order to address the endogeneity issues that arise in

exploring the relationship between health and place. Chapter 2 applied an instrument

set that has not been used in the literature before. Using local distance-weighted school

quality in this way- through LSOA linkage- shows potentially new avenues for future

research to address this question.

5.4 Policy Implications
There are many implications for policy and decision makers from the results presented

in this thesis. Primarily, location and relocation matter for individual-level health. Each

of the chapters has shown a different mechanism or feature through which this is the
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case, has identified populations at greater health risk. This in the UK, especially in the

face of greater strain on the NHS and a worsening health care crisis more generally, is

of particular importance to decision makers whose aim is to ensure the efficient allo-

cation of resources. A failure to account for the health mechanisms highlighted in this

research - especially for resource allocation and unmet need - will lead to ineffective or

potentially detrimental policies. Chapter 2 provides evidence on the fluctuating effects

of moving house on health andwellbeing, and policymakers should be aware of the dif-

fering demands this may place on local healthcare systems. Results of chapter 3 suggest

that the optimal allocation of resources may not be being achieved due to the disparity

in health and wellbeing outcomes between coastal and non-coastal regions. Chapter 4

addresses important policy concerns over whether adequate support is given to both

those who have moved, and those who are living at home during study, and the poten-

tial negative implications for vulnerable parts of society who are constrained to living

at home.

The results of this thesis provide evidence on particularly important issues, given the

economic issues as a result of the COVID-19 pandemic; namely: What are the implica-

tions on health and well-being of the influx of people moving house? What does the

increase in demand for UK holiday locations mean for coastal towns and the health and

well-being of residents of these areas? Is this change in behaviour sustainable, andwhat

are the future implications if not? What are the potential effects on well-being of the rise

in students working remotely from home?

5.5 Limitations and future research
In each of the empirical chapters in this thesis, the variable of interest - whether location

or relocation based - is endogenouswith respect to health outcomes. Individuals, for the

most part, choose where to live andwhen tomovewhichmakes the estimation of causal

effects extremely difficult. Given the data constraints, this thesis has attempted to use

methods that either address the endogeneity directly, through the use of instrumental

variables, or to estimate bounds around a potentially biased effect. Though each of the

chapters has addressed this endogeneity problem to some extent, there is clearly scope

for future work that adequately accounts for the unobservable mechanisms which pose
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a threat to identification.

An example of an extension to Chapter 4 could be to exploit changing patterns in stu-

dents not moving away from home to university due to COVID-19 - and the between-

university variation in these policies - to address the self-selection issue in this area of

research.
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A.1 Calculation of APEs and their standard errors in a

bivariate probit model

capture program drop bivpro_boot

program bivpro_boot, rclass

biprobit (‘1’ = ‘2’ ‘3’) (‘2’ = ‘3’ ‘4’), cluster(pid)

predict xb_hat, xb1

gen xb_hat0 = xb_hat - _b[‘2’]*‘2’

gen xb_hat1 = xb_hat - _b[‘2’]*‘2’ + _b[‘2’]

gen pe1 = normal(xb_hat1) - normal(xb_hat0)

summarize pe1

return scalar ape1_‘1’ = r(mean)

drop xb_hat xb_hat1 xb_hat0 pe1

end

bootstrap r(ape1_‘yvar’), cluster(pidj) reps(500) seed(280191): ///

bivpro_boot ‘Y’ ‘M’ ‘X’ ‘Z’

Table A.1: Bivariate Probit Estimates: Average Marginal Effects

Good SAH GHQ-12 Health Problem

OLS -0.011∗∗ 0.102 0.001
(0.005) (0.073) (0.005)

Bivariate Probit (no IV) -0.003∗∗ 0.003 0.001
(0.001) (0.002) (0.000)

ρ [0.049] [-0.066] [-0.043]

Bivariate Probit (w/ IV) -0.004∗ 0.001 0.001
(0.002) (0.002) (0.001)

ρ [0.096] [-0.030] [-0.132]

N 107736 107736 107736
Notes: Bivariate probit estimates of average marginal effects of moving home, including those
instrumented by school choice, on various health outcomes. Each row represents a different
estimationmethod, as indicated by the leftmost column. The school choice instrument consists
of locally distance-weighted average school quality, interacted with the age of the youngest
household, in the previous period. ρ indicates the degree of correlation between the two error
terms. Standard errors estimated through 500 bootstrapped replications. ∗ p < 0.05, ∗∗ p <
0.01, ∗∗∗ p < 0.001
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A.2 Robustness Checks
Table A.2: OLS and IV second stage estimates of moving house on health outcomes: including
number of cumulative moves

OLS 2SLS IV: School Choice

Outcomes:

>Good SAH 0.003 -0.003 -0.012∗∗∗ -0.263∗∗∗ -0.479∗∗∗ -0.060 -0.048
(0.004) (0.004) (0.004) (0.054) (0.079) (0.052) (0.051)

GHQ-36 Score 0.145∗∗ 0.083 0.083 -0.844 4.823∗∗∗ 1.135 1.107
(0.062) (0.063) (0.061) (0.725) (1.072) (0.728) (0.721)

Health Problem -0.001 0.002 -0.001 0.456∗∗∗ 0.427∗∗∗ 0.167∗∗∗ 0.092
(0.005) (0.004) (0.004) (0.073) (0.081) (0.065) (0.061)

Controls X X X X X
Fixed Effects X X X
Wave Dummies X X X X

N 107736 107736 107736 107736 107736 100406 100406
First-Stage F 181.669 116.378 126.302 128.798

Notes: Second-stage coefficients of moving home, as instrumented by school choice, on various health
outcomes. Each row represents a different outcome model, as indicated by the leftmost column. The
school choice instrument consists of locally distance-weighted average school quality, interacted with
the age of the youngest household, in the previous period. The Kleibergen-Paap F statistics from the
relevant first-stage regressions are shown at the bottom of the table, indicating the relative strength
of the instrument set in its predictive power of moving home.
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Table B.1: Full set of coefficients from health outcome models

SAH GHQ Health Cond. > Good Health

Coast -0.007 0.113 0.016∗∗ 0.005
(0.016) (0.080) (0.007) (0.007)

Age 0.018∗∗∗ -0.032∗∗∗ 0.009∗∗∗ -0.007∗∗∗
(0.000) (0.002) (0.000) (0.000)

Married -0.075∗∗∗ 0.392∗∗∗ -0.044∗∗∗ 0.023∗∗∗
(0.010) (0.053) (0.004) (0.004)

Retired -0.394∗∗∗ 3.318∗∗∗ -0.108∗∗∗ 0.112∗∗∗
(0.021) (0.111) (0.008) (0.008)

Large employers & higher -0.523∗∗∗ 1.795∗∗∗ -0.169∗∗∗ 0.176∗∗∗
management (0.028) (0.135) (0.012) (0.013)

Higher professional -0.493∗∗∗ 1.855∗∗∗ -0.150∗∗∗ 0.161∗∗∗
(0.023) (0.115) (0.010) (0.010)

Lower management & -0.412∗∗∗ 1.698∗∗∗ -0.145∗∗∗ 0.124∗∗∗
professional (0.016) (0.087) (0.006) (0.007)

Intermediate -0.379∗∗∗ 1.712∗∗∗ -0.149∗∗∗ 0.110∗∗∗
(0.018) (0.097) (0.007) (0.008)

Small employers & -0.438∗∗∗ 2.037∗∗∗ -0.181∗∗∗ 0.124∗∗∗
own account (0.021) (0.110) (0.009) (0.010)

Lower supervisory -0.336∗∗∗ 2.108∗∗∗ -0.156∗∗∗ 0.091∗∗∗
& technical (0.023) (0.114) (0.009) (0.011)

Semi-routine -0.331∗∗∗ 1.826∗∗∗ -0.149∗∗∗ 0.082∗∗∗
(0.017) (0.092) (0.007) (0.007)

Routine -0.367∗∗∗ 2.190∗∗∗ -0.176∗∗∗ 0.085∗∗∗
(0.020) (0.111) (0.008) (0.009)

Other higher qualification 0.125∗∗∗ -0.172∗∗ 0.019∗∗∗ -0.055∗∗∗
(0.017) (0.085) (0.007) (0.008)

A level etc 0.148∗∗∗ -0.083 0.012∗∗ -0.067∗∗∗
(0.015) (0.074) (0.006) (0.007)

GCSE etc 0.196∗∗∗ -0.028 0.009 -0.092∗∗∗
(0.015) (0.076) (0.006) (0.007)

Other qualifications 0.293∗∗∗ -0.313∗∗∗ 0.038∗∗∗ -0.122∗∗∗
(0.020) (0.102) (0.008) (0.008)

No qualifications 0.442∗∗∗ -0.334∗∗∗ 0.050∗∗∗ -0.157∗∗∗
(0.019) (0.098) (0.008) (0.008)

ln(Income) -0.057∗∗∗ 0.361∗∗∗ -0.007∗∗ 0.027∗∗∗
(0.007) (0.036) (0.003) (0.003)

Male 0.017∗ 0.895∗∗∗ 0.005 -0.005
(0.010) (0.050) (0.004) (0.004)

IMD Score 0.008∗∗∗ -0.022∗∗∗ 0.001∗∗∗ -0.003∗∗∗
(0.000) (0.002) (0.000) (0.000)

White (vs "non-white") -0.014 -0.451∗∗∗ 0.092∗∗∗ 0.026∗∗∗
(0.012) (0.070) (0.005) (0.005)

Wave 2 0.021∗∗∗ -0.193∗∗∗ -0.010∗∗∗ -0.007∗∗
(0.006) (0.038) (0.003) (0.003)

Wave 3 0.007 -0.192∗∗∗ -0.013∗∗∗ 0.004
(0.007) (0.042) (0.003) (0.003)

Wave 4 0.031∗∗∗ -0.082∗ -0.010∗∗∗ -0.013∗∗∗
(0.007) (0.044) (0.003) (0.004)

Wave 5 0.025∗∗∗ -0.321∗∗∗ -0.022∗∗∗ -0.010∗∗∗
(0.008) (0.046) (0.003) (0.004)

Constant 1.766∗∗∗ 24.862∗∗∗ -0.063∗∗∗ 0.806∗∗∗
(0.024) (0.126) (0.009) (0.010)

N 109666 109666 109666 109666
Notes: Point estimates of the coefficients fromOLSmodels are reported. StandardErrors are in parentheses.
The coast is defined using a donut, with householdswhich residewithin 5kmof the coastline (asmeasured
from the population-weighted centroid of the LSOA) =1, whilst those greater than 15km =0. The base
category for the education variable is having a Degree. Statistical significance is denoted by: * p<0.1; **
p<0.05; *** p<0.01.
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Table B.2: Full set of coefficients from risky health behaviour and benefits models

Smoked Alcohol Physical Activity Disability Benefits

Coast 0.026∗∗∗ -0.001 0.028∗∗∗ 0.012∗∗
(0.009) (0.009) (0.008) (0.005)

Age 0.002∗∗∗ 0.003∗∗∗ -0.006∗∗∗ 0.004∗∗∗
(0.000) (0.000) (0.000) (0.000)

Married -0.051∗∗∗ 0.015∗∗∗ -0.023∗∗∗ -0.032∗∗∗
(0.006) (0.005) (0.005) (0.003)

Retired -0.015 0.001 0.121∗∗∗ -0.204∗∗∗
(0.011) (0.010) (0.009) (0.007)

Large employers & higher 0.027 0.062∗∗∗ 0.076∗∗∗ -0.199∗∗∗
management (0.018) (0.017) (0.017) (0.005)

Higher professional 0.011 0.039∗∗∗ 0.071∗∗∗ -0.189∗∗∗
(0.014) (0.014) (0.013) (0.005)

Lower management & 0.038∗∗∗ 0.045∗∗∗ 0.064∗∗∗ -0.190∗∗∗
professional (0.009) (0.009) (0.008) (0.004)

Intermediate 0.018 0.015 0.051∗∗∗ -0.179∗∗∗
(0.011) (0.010) (0.010) (0.005)

Small employers & 0.040∗∗∗ 0.052∗∗∗ 0.033∗∗∗ -0.212∗∗∗
own account (0.013) (0.012) (0.012) (0.005)

Lower supervisory 0.062∗∗∗ -0.020 0.009 -0.201∗∗∗
& technical (0.014) (0.013) (0.013) (0.005)

Semi-routine 0.012 -0.024∗∗∗ -0.002 -0.188∗∗∗
(0.009) (0.008) (0.008) (0.004)

Routine 0.058∗∗∗ -0.020∗ -0.006 -0.205∗∗∗
(0.012) (0.011) (0.011) (0.005)

Other higher qualification 0.040∗∗∗ -0.031∗∗∗ -0.029∗∗∗ 0.018∗∗∗
(0.010) (0.009) (0.009) (0.004)

A level etc 0.019∗∗ -0.048∗∗∗ -0.052∗∗∗ 0.008∗∗
(0.009) (0.008) (0.008) (0.003)

GCSE etc 0.057∗∗∗ -0.072∗∗∗ -0.087∗∗∗ 0.012∗∗∗
(0.009) (0.008) (0.008) (0.004)

Other qualifications 0.058∗∗∗ -0.093∗∗∗ -0.107∗∗∗ 0.050∗∗∗
(0.011) (0.010) (0.009) (0.006)

No qualifications 0.048∗∗∗ -0.166∗∗∗ -0.162∗∗∗ 0.085∗∗∗
(0.010) (0.009) (0.009) (0.006)

ln(Income) -0.026∗∗∗ 0.023∗∗∗ 0.036∗∗∗ 0.015∗∗∗
(0.004) (0.004) (0.004) (0.002)

Male 0.118∗∗∗ 0.083∗∗∗ 0.072∗∗∗ 0.014∗∗∗
(0.006) (0.005) (0.005) (0.003)

IMD Score 0.001∗∗∗ -0.002∗∗∗ -0.002∗∗∗ 0.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

White (vs "non-white") 0.301∗∗∗ 0.201∗∗∗ 0.026∗∗∗ 0.044∗∗∗
(0.007) (0.006) (0.006) (0.003)

Wave 5 -0.031∗∗∗ -0.119∗∗∗ 0.011∗∗∗ -0.002
(0.003) (0.004) (0.004) (0.002)

Wave 2 0.002
(0.002)

Wave 3 0.005∗∗∗
(0.002)

Wave 4 0.001
(0.002)

Constant 0.137∗∗∗ 0.068∗∗∗ 0.597∗∗∗ -0.060∗∗∗
(0.014) (0.013) (0.012) (0.006)

N 38821 38821 38821 109666
Notes: Point estimates of the coefficients fromOLSmodels are reported. StandardErrors are in parentheses.
The coast is defined using a donut, with householdswhich residewithin 5km of the coastline (asmeasured
from the population-weighted centroid of the LSOA) =1, whilst those greater than 15km =0. The base
category for the education variable is having a Degree. Statistical significance is denoted by: * p<0.1; **
p<0.05; *** p<0.01.
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Table B.3: Coefficients on the coastal variable: All Outcomes, fixed sample

Self-Assessed Health (SAH) 0.093∗∗∗ 0.016 0.016
(0.022) (0.020) (0.020)

N 32520 32520 32520

GHQ Score -0.083 0.072 0.071
(0.108) (0.105) (0.105)

N 32520 32520 32520

L/Term Health Problem 0.058∗∗∗ 0.017∗ 0.017∗
(0.010) (0.009) (0.009)

N 32520 32520 32520

SAH: V. Good or Excellent -0.031∗∗∗ -0.005 -0.005
(0.010) (0.010) (0.010)

N 32520 32520 32520

Ever Smoked 0.062∗∗∗ 0.015 0.015
(0.010) (0.010) (0.010)

N 32520 32520 32520

Drank≥3 days last week 0.009 -0.011 -0.012
(0.010) (0.009) (0.009)

N 32520 32520 32520

Freqent physical activity -0.002 0.025∗∗∗ 0.025∗∗∗
(0.009) (0.009) (0.009)

N 32520 32520 32520

Disability Benefits 0.024∗∗∗ 0.006 0.006
(0.006) (0.005) (0.005)

N 32520 32520 32520

Controls X X
Wave Dummies X

Notes: Point estimates of the coefficients from theCoast variable fromOLSmodels are reported.
Standard Errors are in parentheses. The coast is defined using a donut, with householdswhich
reside within 5km of the coastline (as measured from the population-weighted centroid of the
LSOA) =1, whilst those greater than 15km =0. Statistical significance is denoted by: * p<0.1; **
p<0.05; *** p<0.01. The estimation sample is conditional on non-missingness for all outcomes
and covariates.
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Table B.4: Robustness of results to including the donut observations as an additional
category

SAH GHQ Health Cond. > Good Health

Coast -0.008 0.111 0.016∗∗ 0.006
(0.016) (0.080) (0.007) (0.007)

off-coast (2.5-15km) 0.007 -0.043 0.012∗∗ 0.006
(0.013) (0.066) (0.006) (0.006)

N 128704 128704 128704 128704

Coefficients from OLS models including those residing between 2.5km and 15km as an addi-
tional category in the coast variable. Cluster-robust standard errors in parentheses. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.5: Robustness of results to including the donut observations as an additional
category

Smoked Alcohol Physical Activity Disability Benefits

Coast 0.025∗∗∗ 0.000 0.029∗∗∗ 0.011∗∗
(0.009) (0.009) (0.008) (0.005)

off-coast (2.5-15km) 0.010 -0.014∗∗ 0.011∗ 0.017∗∗∗
(0.007) (0.007) (0.006) (0.004)

N 45384 45384 45384 147222

Coefficients from OLS models including those residing between 2.5km and 15km as an addi-
tional category in the coast variable. Cluster-robust standard errors in parentheses. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.6: Estimated coefficients from a sample of latest responses, and Random Effects
specifications

SAH GHQ Health Cond. > Good
Health

Panel A: Coefficients from latest observed response (one observation per individual)

Coast -0.009 0.171∗ 0.013∗ 0.006
(0.018) (0.100) (0.008) (0.008)

N 37540 31456 37528 37540

Panel B: Coefficients Random Effects models

Coast -0.002 0.132∗ 0.017∗∗∗ 0.002
(0.015) (0.078) (0.006) (0.006)

N 127686 109666 127649 127686

Coefficients from OLS and Random Effects models ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table B.7: Estimated coefficients from a sample of latest responses, and Random Effects
specifications

Smoked Alcohol Physical Activity Disability Benefits

Panel A: Coefficients from latest observed response (one observation per individual)

Coast 0.006 0.004 0.030∗∗ 0.013∗∗
(0.014) (0.014) (0.014) (0.005)

N 12990 10435 12944 37142

Panel B: Coefficients Random Effects models

Coast 0.023∗∗∗ -0.000 0.026∗∗∗ 0.008∗
(0.009) (0.008) (0.008) (0.004)

N 48098 38821 47898 126283

Coefficients from OLS and Random Effects models ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B.8: OLS results with working/retirement-coast interactions

Panel A: Health Outcomes

SAH GHQ Score Health
Problem

V. Good
Health

Coast 0.012 0.176∗ 0.014∗ -0.005
(0.018) (0.091) (0.008) (0.008)

Retired -0.385∗∗∗ 3.349∗∗∗ -0.109∗∗∗ 0.108∗∗∗
(0.021) (0.113) (0.008) (0.008)

Interaction -0.073∗ -0.245 0.007 0.037∗∗
(0.038) (0.180) (0.015) (0.015)

N 127680 109662 127643 127680

Panel B: Risky health behaviours and disability benefits

Smoking Drinking Physical
Activity

Disability
Benefits

Coast 0.025∗∗ -0.011 0.029∗∗∗ 0.012∗∗
(0.010) (0.010) (0.009) (0.005)

Retired -0.016 -0.003 0.122∗∗∗ -0.204∗∗∗
(0.011) (0.011) (0.009) (0.007)

Interaction 0.006 0.036∗ -0.002 -0.001
(0.019) (0.019) (0.017) (0.012)

N 48094 38818 47894 126277

Notes: Point estimates of the coefficients from the Coast variable from OLS models, and its interaction
with the retirement indicator, are reported. Cluster-robust standard Errors are in parentheses. The
coast is defined using a donut, with households which reside within 2.5km of the coastline (as mea-
sured from the population-weighted centroid of the LSOA) =1, whilst those greater than 15km =0.
Statistical significance is denoted by: * p<0.1; ** p<0.05; *** p<0.01.
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C.1 Variable Definitions
C.1.1 Ethnicity

The 18 categories, subsequently collapsed to the 6 2001 ons census classifications, are as follows:

Table C.1: Ethnicity variable definition

LSYPE 18 category response Census Classification

1. White - English/Welsh/Scottish/Northern Irish/British

1-4 : 1. White2. White - Irish

3. White - Gypsy or Irish Traveller

4. Any other White background

5. Mixed/multiple ethnic groups - White and Black Caribbean

5-8 : 2. Mixed6. Mixed/multiple ethnic groups - White and Black African

7. Mixed/multiple ethnic groups - White and Asian

8. Any other mixed/multiple ethnic background

9. Asian/Asian British - Indian 9 : 3. Indian

10. Asian/Asian British - Pakistani 10-11 : 4. Pakistani and Bangladeshi
11. Asian/Asian British - Bangladeshi

14. Black/African/Caribbean/Black British - African
14-16 : 5. Black or Black British

15. Black/African/Caribbean/Black British - Caribbean

16. Any other Black/African/Caribbean background

12. Asian/Asian British - Chinese

12-13,17-18 : 6. Other Ethnic Group13. Any other Asian background

17. Other Ethnic group - Arab

18. Any other ethnic group

C.1.2 General Health Questionnaire

The respondents are asked the following questions:

1. Have you recently been able to concentrate on what you’re doing?

2. Have you recently lost much sleep over worry?

3. Have you recently felt that you are playing a useful part in things?

4. Have you recently felt capable of making decisions about things?

5. Have you recently felt constantly under strain?
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6. Have you recently felt you couldn’t overcome your difficulties?

7. Have you recently been able to enjoy your normal day to day activities?

8. Have you recently been able to face up to your problems?

9. Have you recently been feeling unhappy or depressed?

10. Have you recently been losing confidence in yourself?

11. Have you recently been thinking of yourself as a worthless person?

12. Have you recently been feeling reasonably happy, all things considered?

To which they may respond:

0. Not at all

1. No more than usual

2. Rather more than usual

3. Much more than usual

C.1.3 Income in LSYPE

Incomewas imputed using interval regression (Stewart 1983). Thismethod allowed us to impute

a continuous value within a band, rather than assuming that all cases in a band had the same

midpoint income. This was achieved using Stata’s INTREG command (StataCorp 2007; Conroy

2005). INTREG fits a model of y = [dependent variable 1, dependent variable 2] on indepen-

dent variables where the dependent variable 1 was the log lower income band and dependent

variable 2 was log upper income band. The INTREG procedure also allowed us to impute all

missing values on the income questions.

Note that the left-hand-side bound for the lowest band is Âč0 per week and the right-hand- side

bound for the top band was fixed at Âč1,700 per week. The predictors are shown below.

5.4.3 Predictors of income in Sweep 8

Family circumstances and cohort members’ (CM) characteristics in sweep 1:

1. Highest qualification held by main parent (sweep 1)

2. Employment status of main parent (sweep 1)

3. Social status NS-SEC of the family (sweep 1)

4. Marital status of main parent (sweep 1)

5. Cohort member’s gender (sweep 1)

6. Cohort member’s ethnic group (sweep 1)

7. Whether cohort member ever identified as having special educational needs sweep

1)

8. Government office region (GOR sweep 1)
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Cohort

member’s circumstances in sweep 7:

1. Housing tenure (sweep 7)

2. Current activity including education and employment (sweep 7)

3. Whether cohort member ever tried cannabis (sweep 7)

4. Month of interview (sweep 7)

5. Interview mode (sweep 7)
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C.2 Full Tables of coefficients
Table C.2: AverageMarginal Effects for all covariates from Life Satisfaction LPMmodels

Males Females

Government Region

North West 0.14∗ 0.14∗ -0.07 -0.07

(0.08) (0.08) (0.06) (0.06)

Yorkshire and the Humber 0.14∗ 0.14∗ -0.06 -0.06

(0.08) (0.08) (0.06) (0.06)

East Midlands 0.04 0.05 0.03 0.03

(0.08) (0.08) (0.07) (0.07)

West Midlands 0.13 0.13 -0.11∗ -0.11∗

(0.08) (0.08) (0.06) (0.07)

East of England 0.09 0.10 -0.07 -0.07

(0.08) (0.08) (0.06) (0.07)

London 0.16∗∗ 0.16∗∗ -0.06 -0.06

(0.07) (0.07) (0.06) (0.06)

South East 0.03 0.03 -0.06 -0.06

(0.08) (0.08) (0.06) (0.06)

South West 0.05 0.05 -0.09 -0.08

(0.08) (0.08) (0.07) (0.07)

HH Income: £28,000-46,000 -0.00 -0.00 -0.01 -0.01

(0.04) (0.04) (0.04) (0.04)

HH Income: £46,000+ 0.11∗∗∗ 0.11∗∗∗ -0.00 -0.00

(0.04) (0.04) (0.04) (0.04)

Ethnicity

Mixed -0.02 -0.03 0.05 0.05

(0.07) (0.07) (0.06) (0.06)

Indian 0.01 -0.00 -0.07 -0.08

(0.05) (0.05) (0.05) (0.06)

Pakistani -0.02 -0.03 -0.06 -0.06

(0.06) (0.07) (0.06) (0.07)

Bangladeshi -0.06 -0.07 -0.16∗∗ -0.17∗∗

(0.09) (0.10) (0.07) (0.08)

Black Caribbean -0.20∗∗ -0.20∗∗ 0.01 0.01

(0.10) (0.10) (0.08) (0.08)

Black African -0.15∗∗ -0.16∗∗ -0.15∗ -0.15∗

(0.08) (0.08) (0.08) (0.08)

Other 0.12 0.11 -0.17∗∗∗ -0.18∗∗

(0.09) (0.10) (0.06) (0.07)

GHQ-12 Score (wave 2) 0.00 0.00 -0.01∗∗ -0.01∗∗

(0.01) (0.01) (0.00) (0.00)

Parent has L/t health cond. (wave4 ) -0.01 -0.01 -0.03 -0.03

(0.04) (0.04) (0.04) (0.04)

Parent employed (wave 4) 0.00 0.01 0.07∗ 0.07∗
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(0.04) (0.04) (0.03) (0.04)

No. of Siblings (wave 4) -0.00 -0.00 0.01 0.01

(0.01) (0.01) (0.01) (0.01)

Parents Married & living together (wave 4) 0.03 0.03 0.04 0.04

(0.04) (0.04) (0.03) (0.03)

Attended preferred University 0.03 0.03 -0.01 -0.01

(0.03) (0.03) (0.03) (0.03)

Read preferred course at Uni. -0.02 -0.02 0.01 0.01

(0.05) (0.05) (0.04) (0.04)

Locus of Control (wave 2) -0.00 -0.01 0.00 0.00

(0.01) (0.01) (0.01) (0.01)

Locus of Control (wave 7) -0.00 -0.00 -0.00 -0.00

(0.01) (0.01) (0.01) (0.01)

Locus of Control (wave 8) -0.04∗∗∗ -0.04∗∗∗ -0.06∗∗∗ -0.06∗∗∗

(0.01) (0.01) (0.01) (0.01)

log(Income) at age 25 -0.03 -0.01

(0.11) (0.10)

N 985 985 1298 1298

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.3: Average Marginal Effects for all covariates from Life Satisfaction Probit models

Males Females

Government Region

North West 0.16∗ 0.16∗ -0.06 -0.06

(0.09) (0.09) (0.06) (0.06)

Yorkshire and the Humber 0.16∗ 0.17∗ -0.05 -0.05

(0.09) (0.09) (0.06) (0.06)

East Midlands 0.05 0.06 0.02 0.03

(0.09) (0.10) (0.07) (0.07)

West Midlands 0.14 0.15 -0.11∗ -0.11∗

(0.09) (0.09) (0.06) (0.06)

East of England 0.11 0.12 -0.06 -0.06

(0.09) (0.09) (0.06) (0.06)

London 0.18∗∗ 0.18∗∗ -0.05 -0.05

(0.08) (0.08) (0.06) (0.06)

South East 0.05 0.05 -0.06 -0.05

(0.09) (0.09) (0.06) (0.06)

South West 0.07 0.08 -0.06 -0.06

(0.09) (0.09) (0.07) (0.07)

HH Income: £28,000-46,000 -0.00 0.00 -0.01 -0.01

(0.04) (0.04) (0.03) (0.04)

HH Income: £46,000+ 0.11∗∗∗ 0.11∗∗∗ 0.00 0.00

(0.04) (0.04) (0.04) (0.04)

Ethnicity

Mixed -0.04 -0.05 0.06 0.05

(0.07) (0.08) (0.05) (0.06)

Indian 0.01 -0.00 -0.07 -0.07

(0.04) (0.05) (0.05) (0.06)

Pakistani -0.02 -0.03 -0.05 -0.06

(0.06) (0.07) (0.06) (0.07)

Bangladeshi -0.08 -0.09 -0.18∗∗ -0.19∗∗

(0.10) (0.11) (0.08) (0.09)

Black Caribbean -0.26∗ -0.27∗ 0.00 0.00

(0.14) (0.14) (0.08) (0.09)

Black African -0.19∗∗ -0.20∗∗ -0.14∗ -0.15

(0.09) (0.10) (0.08) (0.09)

Other 0.11 0.10 -0.19∗∗ -0.20∗∗

(0.08) (0.09) (0.08) (0.08)

GHQ-12 Score (wave 2) 0.00 0.00 -0.01∗∗∗ -0.01∗∗∗

(0.01) (0.01) (0.00) (0.00)

Parent has L/t health cond. (wave4 ) -0.01 -0.01 -0.03 -0.03

(0.04) (0.04) (0.04) (0.04)

Parent employed (wave 4) 0.00 0.01 0.07∗ 0.07∗

(0.04) (0.04) (0.04) (0.04)

No. of Siblings (wave 4) -0.00 -0.00 0.01 0.01
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(0.01) (0.01) (0.01) (0.01)

Parents Married & living together (wave 4) 0.03 0.04 0.04 0.05

(0.04) (0.04) (0.03) (0.03)

Attended preferred University 0.03 0.03 -0.01 -0.01

(0.03) (0.03) (0.03) (0.03)

Read preferred course at Uni. -0.02 -0.02 0.01 0.01

(0.05) (0.05) (0.04) (0.04)

Locus of Control (wave 2) -0.01 -0.01 0.00 0.00

(0.01) (0.01) (0.01) (0.01)

Locus of Control (wave 7) -0.00 -0.00 0.00 0.00

(0.01) (0.01) (0.01) (0.01)

Locus of Control (wave 8) -0.04∗∗∗ -0.04∗∗∗ -0.06∗∗∗ -0.06∗∗∗

(0.01) (0.01) (0.01) (0.01)

log(Income) at age 25 -0.04 -0.01

(0.11) (0.10)

N 985 985 1298 1298

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Applicant: Jack Higgins 
Supervisor: Bruce Hollingsworth 
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Dear Jack 
 
Re: Essays on the Economics of Health and Place 
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for review by the Faculty of Health and Medicine Research Ethics Committee (FHMREC). The 
application was recommended for approval by FHMREC, and on behalf of the Chair of the 
Committee, I can confirm that approval has been granted for the amendment to this research 
project.  
 
As principal investigator your responsibilities include: 

- ensuring that (where applicable) all the necessary legal and regulatory requirements 
in order to conduct the research are met, and the necessary licenses and approvals 
have been obtained; 

- reporting any ethics-related issues that occur during the course of the research or 
arising from the research to the Research Ethics Officer at the email address below 
(e.g. unforeseen ethical issues, complaints about the conduct of the research, adverse 
reactions such as extreme distress); 

- submitting details of proposed substantive amendments to the protocol to the 
Research Ethics Officer for approval. 
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Tel:- 01542 593987 
Email:- fhmresearchsupport@lancaster.ac.uk 
 
Yours sincerely, 

 
 
Becky Case 
Research Ethics Officer, Secretary to FHMREC. 
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