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Abstract

To meet the ever-increasing requirements of high data rate, extremely low

latency, and ubiquitous connectivity for the fifth generation (5G) and be-

yond 5G (B5G) wireless communications, there is imperious demands for

advanced communication system design. Particularly, efficient resource

allocation is regarded as the fundamental challenge whereas an effective

way to improve system performance. The term ”resource” refers to scare

quantities such as limited bandwidth, power and time in wireless commu-

nications. Moreover, the development of wireless communication systems

is accompanied by the innovation of applied technologies. Motivated by

the above observations, efficient resource allocation strategies for several

promising 5G and B5G technologies in terms of non-orthogonal multiple

access (NOMA), mobile edge computing (MEC) and Long Range (LoRa)

are addressed and investigated in this thesis.

Firstly, the strong user’s data rate maximization problem for simultane-

ous wireless information and power transfer (SWIPT)-enabled coopera-

tive NOMA system, considering the presence of channnel uncertainties,

is proposed and investigated. Two major channel uncertainty design cri-

teria in terms of the outage-based constraint design and the worst-case

based optimization are adopted. In addition to the high-complexity opti-

mal two-dimensional exhaustive search method, the low-complexity sub-

optimal solution is further proposed. The advantages of SWIPT-enabled

cooperation in robust NOMA are confirmed with simulations.

Secondly, considering the application of NOMA and user cooperation

(UC) in a wireless powered MEC under the non-linear energy harvest-

ing model, a computation efficiency maximization problem subject to the

quality of service (QoS) and power budget constraint, is studied and ana-

lyzed. The formulated problem is nonconvex, which is challenging to solve.

The semidefinite relaxation (SDR) approach is first applied, then the se-

quential convex approximation (SCA)-based solution is further proposed

to maximize the system computation efficiency.



Finally, taking into consideration the aspect of energy efficiency (EE),

this thesis investigates the energy efficient resource allocation in LoRa

networks to maximize the system EE (SEE) and the minimal EE (MEE)

of LoRa users, respectively. The energy efficient resource allocation is for-

mulated as NP-hard problems. A low-complexity user scheduling scheme

based on matching theory is proposed to allocate users to channels, then

the heuristic SF assignment solution is designed for LoRa users scheduled

on the same channel. The optimal power allocation strategy is further

proposed to maximize the corresponding EE.
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Chapter 1

Introduction

1.1 Background and Motivation

The concept of wireless communication can date back to the 19th century when radio

transmission was first introduced by Marconi, and wireless communication systems

have made great progress since then. Wireless communication system refers to the

system that enables information transmission from devices to devices through the air

by utilizing electromagnetic waves such as radio frequency (RF), infrared radiation

(IR) and satellite signal in the air. As a consequence, wireless communication system

can be divided into the variety of mobile communication systems, infrared wireless

communications, broadcast radio and satellite communication systems. Due to the

increasing popularity of computers, mobile phones and tablets, mobile communica-

tion system becomes the key to establish the connections between mobile devices

and transmitters like access points (AP) and base stations (BS). Therefore, mobile

communication system is the main focus of this thesis.

During the past few decades, mobile communication system has evolved from the

first generation (1G) to the fourth generation (4G), and the fifth generation (5G)

and B5G communication network is on its way. Compared to 4G, with the goal of

achieving at least 1,000-fold capacity increase, reducing energy consumption on the

order of several magnitudes, and improving spectral efficiency (SE) by 10 times for

5G and beyond 5G (B5G) networks [2], it remains a huge challenge to realize effi-

cient communication systems design. Towards these directions, a variety of methods

such as efficient resource allocation strategies, better data compression algorithms

and improved channel coding schemes can be exploited. Due to the complication and

impossibility to address all the methods, in this thesis, we concentrate on the investi-

gation of resource allocation optimization. Typically, resources represent bandwidth,

1
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eMBB

mMTC URLLC

Data rate

Downlink 20 Gb/s

Reliability/

latency

1 ms latency

Number of 

devices

1 million/km
2

Figure 1.1: 5G and B5G services [1].

power, frequency, and time in wireless communication systems. In a wireless com-

munication system, the amount of information that can be received at the receiver

is constrained by the available resources as well as the resource allocation strategies

implemented at the transmitter. Different resource allocation strategies result in di-

verse system performance. Efficient resource allocation strategy aims to allocate the

limited resources to receivers in an effective way, which can help make the most of

the scarce resources to achieve the best system performance. Henceforth, it is of vital

significance to design efficient resource allocation schemes.

Furthermore, resource allocation needs to cope with the novel emerging commu-

nication technologies to better satisfy the corresponding requirements of 5G and B5G

services. As can be seen from Fig. 1.1, 5G and B5G communication is categorized in-

to three services, i.e., enhanced mobile broadband (eMBB) to provide high data rates

(downlink 20 Gbit/s, uplink 10 Gbit/s), ultra-reliable low-latency communications

(URLLC) to enable ultra-reliable and delay-critical tasks (1 ms end-to-end latency),

and massive machine-type communications (mMTC) to accommodate massive num-

ber of devices for scenarios like Internet of Things (IoT) (connection density of 1

million devices per km2) [3]. However, it is impossible to provide all the services at

the same time with one technique, which motivates us to investigate non-orthogonal

multiple access (NOMA) [4,5], mobile edge computing (MEC) [6,7], and Long Range

(LoRa) [8,9]. In this thesis, we aim to optimize the corresponding resource allocation,

and propose the optimal or suboptimal solutions to improve system performance for

NOMA, MEC, and LoRa networks.

2
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1.2 Related Works

The related works regarding resource allocation management for the technologies

aforementioned are discussed in this section.

1.2.1 Non-orthogonal Multiple Access

Note that the appearance of the new communication system is accompanied by mul-

tiple access (MA) technique innovation. It is well known that frequency division MA

(FDMA) for 1G, time division MA (TDMA) for the second generation (2G), code di-

vision MA (CDMA) for the third generation (3G), and orthogonal frequency division

MA (OFDMA) for 4G can all be categorized into orthogonal MA (OMA) schemes.

Recently, power-domain NOMA 1 has been demonstrated to possess the potential

to significantly improve SE and accommodate massive connections [10–12]. Though

NOMA has not been accepted for 5G, it is under consideration for B5G. NOMA has

been shown to be more beneficial than conventional OMA schemes in many aspect-

s [13, 14]. Thus far, extensive works have been conducted to address the resource

allocation management for both downlink and uplink NOMA transmission scenarios.

In regard to downlink NOMA transmission, Cui et al. [15] investigated the power

allocation scheme to address the concerns of power consumption and user fairness in

the NOMA system. An optimal power allocation algorithm was proposed in [16] to

maximize the energy efficiency (EE) of a NOMA system. Considering the uplink NO-

MA transmission, a joint user clustering and power allocation strategy was proposed

in [17] to maximize the sum throughput of the uplink NOMA system. A two-step

resource allocation optimization strategy, which includes separate channel assignment

and power allocation, has been proposed in [18] to maximize the sum rate for uplink

NOMA transmission. In a downlink NOMA transmission, by utilizing the superpo-

sition coding (SC) technique, the BS sends the superimposed information containing

all users’ messages, then the users with strong channel conditions can obtain the pri-

or information of the weak users2, after applying successive interference cancellation

(SIC) to remove the co-channel interference. The obtained prior information can be

fully exploited with a cooperative relay transmission scheme, to improve the weak

user’s reception reliability [4]. The cooperative scheme can be designed based on am-

plify and forward (AF) relay protocol and decode and forward (DF) relay protocol.

Regarding DF relaying, Liu et al. [19] applied simultaneous wireless information and

1Power-domain NOMA is simplified to NOMA in the rest of this thesis.
2Here, the weak user means the user that is far from the BS.

3
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power transfer (SWIPT) to the cooperative NOMA system and proved the advan-

tages of cooperative SWIPT NOMA from the perspective of outage probability and

system throughput. In [20], considering a cooperative multiple-input single-output

(MISO) SWIPT NOMA scheme, the power splitting (PS) ratio and the beamforming

vectors were optimized to maximize the data rate of the strong user3 while satis-

fying the quality of service (QoS) requirements of the weak user. For AF relaying,

the authors in [21] investigated the outage probability for multiple-antenna relaying

NOMA networks and demonstrated the advantages of NOMA over OMA. Take both

AF and DF protocols into account, the system performance for NOMA-based user

cooperation with SWIPT was characterized by pairwise error probability in [22] to

show the superiority of NOMA.

1.2.1.1 Wireless Power Transfer Assisted NOMA Transmission

Note that energy efficient communications have drawn tremendous attention due to

the fact that the ever-increasing energy consumption of the information and commu-

nication technologies (ICT) contributes more and more to the greenhouse gas emis-

sions [23]. Therefore, EE becomes a key concern for 5G and B5G wireless commu-

nications [24]. To provide energy efficient communications, overcome the insufficient

power supply and prolong the sustainable operation for mobile users, wireless power

transfer (WPT) has emerged as an effective solution via energizing mobile devices

remotely [25]. Specifically, WPT is used to charge the battery of energy harvesting

devices by adopting the dedicated radio frequency (RF) energy transmitters. Wireless

powered communication networks (WPCNs) [26] and SWIPT [27] are the main WPT

applications to achieve sustainable communications. Extensive researches have been

carried out to integrate WPCNs with NOMA. For instance, by considering two types

of decoding orders, an efficient greedy algorithm was proposed in [28] to maximize the

minimal rate for a wireless powered NOMA system. The authors in [29] investigated

resource allocation optimization to maximize the rate region of the wireless powered

NOMA communication. The optimal time switching and PS strategies were stud-

ied to maximize the achievable rate regions of the wireless powered NOMA systems

in [30].

Moreover, SWIPT has drawn remarkable attention to realize more energy efficien-

t communications [31]. Specifically, the application of SWIPT to NOMA has been

studied by assuming that NOMA users can harvest energy and acquire information

from the received RF signals at the same time [32]. For example, the SE performance

3Here, the strong user means the user that is near the BS.
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comparison between NOMA and OMA for a two-user SWIPT system has been ad-

dressed in [33]. The cooperative SWIPT NOMA protocol was investigated in [5], in

which near NOMA users act as energy harvesting relays to help far NOMA users

without draining their batteries.

1.2.1.2 NOMA with Imperfect CSI

Channel state information (CSI) errors are universal present in wireless communica-

tion systems, and perfect CSI is quite difficult to obtain due to channel estimation

errors, feedback delay and quantization errors [34,35]. Therefore, it is more practical

to consider imperfect CSI scenarios. To address CSI errors, various channel uncer-

tainty models can be found in the existing literature. A common one is the worst-case

SINR constrained problem [36], in which the CSI errors are assumed to lie in a bound-

ed uncertainty set. The other is the outage-based constrained formulation [37] where

the outage probability of the signal to interference plus noise ratio (SINR) must be

less than a given value. Regarding worst-case robust model, by considering a more

practical scenario that the BS only knows imperfect CSI, a robust beamforming design

problem for MISO NOMA systems was investigated in [38] to maximize the achievable

sum rate subject to the transmit power constraint. In [39], the beamformers were de-

signed for a robust power minimization problem by incorporating the norm-bounded

channel uncertainties to satisfy the required QoS at each user. In addition, to tackle

the EE maximization problem, the robust beamforming design was proposed in [40]

for a massive multiple-input multiple-output (MIMO) NOMA downlink system with

imperfect CSI considered. For the outage-based model, the optimal power allocation

strategy was studied in [41] to maximize system utility for the outage constrained

MIMO-NOMA system.

1.2.2 Mobile Edge Computing

The boosting computation-intensive applications prevalent in the IoT networks as

well as the growing number of mission-critical tasks in future-generation networks

pose significant challenges in real-time communication system design [42]. To address

the requirements of the increasing demand for massive computing and overcome the

resource limitations (i.e., small size, low power, and limited computing capability) of

mobile devices, MEC has been proposed as a promising solution to enhance mobile

users computation capability and realize low-latency communications [43].

Different from conventional cloud computing, where cloud server is deployed far

from mobile devices leading to high transmission cost and long latency, the cloud-like
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server is integrated with the AP at the edge of MEC networks [44]. The leverage of

MEC enables the resource-limited mobile users to offload tasks for remote execution

at the more powerful MEC server in their proximity, which brings the benefit of im-

proved computation capability and reduced latency. Besides, WPT is regarded as the

potential solution to provide sustainable power supply for battery-limited devices in

MEC networks, and NOMA can improve the connections between mobile devices and

MEC servers. Recent studies show that MEC performance can be further enhanced

by incorporating WPT and NOMA. Therefore, wireless powered MEC and MEC with

NOMA will be introduced in the next two sections.

1.2.2.1 Wireless Powered MEC

To avoid consuming energy of the limited batteries for mobile devices, the application

of WPT into MEC networks has drawn considerable attention. A new paradigm called

wireless powered MEC is introduced to fuse MEC and WPT techniques, in which

mobile devices can realize bits computing with the energy harvested from the RF

signals and thus tackle the limitation of finite battery lifetime [45]. For example, the

joint computation offloading and computing resource allocation has been investigated

in [46] to minimize the system energy consumption for wireless powered multi-user

MEC system. The authors in [47] maximized the sum computation rate for wireless

powered MEC under binary offloading by jointly optimizing the computing mode

selection and transmission time allocation. A wireless powered cooperative MEC

system has been presented in [48] to maximize the computation rate, where nearby

devices are exploited as MEC servers.

1.2.2.2 MEC with NOMA

The integration of NOMA and MEC is envisioned to significantly improve compu-

tation performance. NOMA-MEC design criterion is based on two modes, namely

hybrid NOMA-MEC and pure NOMA-MEC 4, where multiple users can offload data

simultaneously for NOMA-MEC within the same block slot duration, while for hy-

brid NOMA-MEC, a user can first offload part of the tasks by occupying the time

allocated to another user and then offload the rest of tasks by using the extra time

slot [49]. For hybrid NOMA-MEC design, Ding et al. [49] derived the closed-form

solutions of the power and time allocation for NOMA-MEC and showed that the

performance of MEC offloading with hybrid NOMA is superior to that of OMA and

4Pure NOMA-MEC is simplified as NOMA-MEC in the following sections.
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NOMA scheme. In [50], a NOMA-MEC offloading taking into account the hybrid

NOMA was considered and the latency was minimized by utilizing the reinforcement

learning approach.

In regard to MEC offloading with NOMA, the authors in [51] minimized the overall

delay of mobile users for the NOMA-assisted MEC system. By decomposing the

formulated problem into sub-problems as computation offloading and time allocation,

Wu et al. [51] minimized the overall delay for NOMA-assisted MEC system. It also

showed that NOMA-assisted MEC outperforms conventional OMA-assisted MEC.

Considering the multi-antenna NOMA-assisted MEC under both partial and binary

offloading, where the BS was equipped with multiple antennas while the users were

equipped with single antenna, Wang et al. [52] minimized the weighted system energy

consumption.

1.2.3 Long Range (LoRa) Communication

Driven by the massive connectivity, low data rate, and low power consumption re-

quirements in IoT networks, low-power wide-area (LPWA) networks have emerged as

a potential solution to enable long-distance power efficient wireless communication-

s [53,54]. Compared with traditional technologies prevalent in IoT networks, such as

Bluetooth, Wi-Fi, and Long-Term Evolution (LTE), LPWA techniques achieve bet-

ter tradeoffs of coverage range, data rates, and power consumption. Among all the

emerging LPWA technologies, LoRa [55,56], which operates in the unlicensed bands,

has attracted extensive attention.

LoRa network is composed of LoRa users, LoRa gateways, and the network server.

It adopts typical star topology, in which the data and/or requests of LoRa end devices

are collected by the LoRa gateway and then it forwards them to the LoRa server [9].

The core of LoRa lies in the adopted chirp spread spectrum (CSS) technique and

multiple orthogonal spreading factors (SFs). The system throughput is enhanced as

multiple LoRa end devices can transmit at the same time and frequency slot in one

channel, but with different SFs. Different SFs result in diverse signal to noise ratio

(SNR) sensitives, which leads to different transmission rates and coverage ranges.

So far, extensive research has been carried out to investigate the impact of perfect

and imperfect SF orthogonality. For instance, the authors in [57] have adopted the

stochastic geometry tool to analyze the co-channel interference caused by LoRa users

using the same SF over the same channel. Besides, the influence of imperfect SF

orthogonality on the system throughput has been analyzed in [58] to provide insights

on the SF assignment design of uplink LoRa networks. The packet loss caused by
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inter-SF collisions has been numerically analyzed and then validated with experiments

based on commercial devices in [59]. The joint SF assignment and transmit power

allocation algorithm has been investigated in [60] to improve throughput fairness by

considering both co-SF and inter-SF interferences.

Typically, adaptive data rate (ADR) mechanism can be enabled in the LoRaWAN

to adjust the SF assignment and transmit power, based on the messages obtained

from previous uplink measurements [61]. The ADR mechanism has been presented

in [62] from the perspective of the average coverage time. In addition, the near-far

problem and fair data rate deployment ratios have been addressed in [63] to achieve

the data rate fairness among LoRa nodes based on LoRaWAN. By taking the uplink

throughput and data transmission times of a single end device as the performance

metrics, the authors in [64] have analyzed the capacity and scalability performance

for uplink LoRaWAN.

However, the centralized ADR scheme is inefficient as it requests a number of

uplink and downlink information exchanges to update the transmit power and SF

step by step. Moreover, ADR is unable to deal with user collisions, which boosts the

need to design efficient user scheduling and power allocation schemes. Besides, by

adopting an interference-based simulation model, the authors in [65] have analyzed

the LoRa scalability, i.e., the number of end devices that can be served per gateway.

The performance of a LoRa network has been investigated in [66] to guarantee the

fairness among LoRa users, with particular focus on the effects of interference caused

by LoRa users using the same SF.

1.3 Thesis Outline and Contributions

Motivated by the discussions aforementioned, note that NOMA is demonstrated to

significantly improve data rate and also regarded as the advanced MA technique for

mMTC, MEC is considered to be a key enabler to achieve URLLC, and LoRa is

the leading technology of LPWA techniques to realize mMTC. Therefore, this thesis

aims to optimize the corresponding resource allocation schemes for NOMA, MEC,

and LoRa to better meet the requirements of 5G and B5G services.

The main contributions of each chapter are summarized as follows.

Chapter 1 provides the background on the development of wireless communication

systems and stands out the necessity of resource allocation optimization in future

wireless communication systems. Besides, a detailed literature review of the related

research works is presented.
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Chapter 2 presents the background theory related to the system design of this

thesis. We first give a brief introduction to resource allocation management and

convex optimization theory. Then, we provide the description of three potential 5G

and B5G technologies, i.e., NOMA, MEC, and LoRa, and point out the feature of

each technology. It is worth mentioning that the purpose of this chapter is to present

a comprehensive background overview, which helps readers better understand the rest

of this thesis.

In Chapter 3, the robust beamforming design for a SWIPT-enabled cooperative

NOMA system is studied. Concerning the SWIPT-enabled cooperative NOMA sys-

tem, the strong user acts a relay to improve the connection between the BS and

the weak user. To avoid consuming the strong user’s energy, the power utilized to

transmit the information of the weak user is assumed to be obtained from SWIPT.

By considering a more practical scenario, it is assumed that only imperfect CSI is

known at the BS. Two major design criteria, namely outage-based constraint design

and the worst-case based optimization, are adopted. With the considered two differ-

ent channel uncertainty models, the strong user’s data rate maximization problems

are formulated by designing the robust beamforming vector and power splitting (PS)

ratio.

In Chapter 4, considering the practical non-linear energy harvesting model, the

application of user cooperation (UC) and NOMA in a wireless powered MEC system

is investigated. The mobile users first harvest energy from a multi-antenna AP, then

both users simultaneously offload tasks to the MEC server with the harvested energy,

by performing NOMA protocol. UC scheme is further conducted, where the near user

acts as a relay to help the far user offload tasks to the AP. To achieve energy efficient

design, the computation efficiency measurement metric, defined as the ratio of the

system computation bits to the consumed energy, is introduced and adopted. The

objective is to maximize the computation efficiency by jointly optimizing beamforming

vectors, time and power allocations.

In Chapter 5, the energy efficient resource allocation is investigated to maximize

the system EE (SEE) and the minimal EE (MEE) of LoRa users in LoRa networks,

respectively. To deal with the formulated nonconvex problems, the corresponding

EE is maximized by separately exploiting user scheduling, SF assignment, and trans-

mit power allocations. A suboptimal algorithm including the low-complexity user

scheduling scheme based on matching theory and the heuristic SF assignment solu-

tion for LoRa users scheduled on the same channel is first proposed. To deal with the

power allocation, an optimal algorithm is proposed for the SEE problem. Concerning
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MEE, an iterative power allocation algorithm is proposed to maximize the achieved

minimal EE achieved of LoRa users.

Finally, this thesis is summarized in Chapter 6, and several potential future re-

search topics are further presented.
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Chapter 2

Background Theory and
Fundamental Concepts

2.1 Resource Allocation and Convex Optimization

Theory

In the development of wireless communication systems, resource allocation manage-

ment always remains the primary challenge, and its role becomes more and more im-

portant. Resource allocation management refers to the process of allocating resources

to each user, based on the users’ CSI and QoS requirements. The main resource in

wireless communication systems is bandwidth, power, and time. The necessity of

efficient resource allocation management is twofold: the dynamic nature of wireless

networks caused by fading channels and mobile devices’ mobility, and the scarceness

of the limited wireless resources in practice. Moreover, the overall system perfor-

mance enhancement does not only rely on a single wireless resource increase, but lies

in the joint resource allocation method. By optimally allocating the available wireless

resources, in addition to the significant system performance improvement, the sys-

tem can also be more flexibly adapted to the channel feature and QoS requirements,

hence further realizing a flexible communication service structure. Consequently, the

optimal solutions to resource allocation continue to be a major concern.

Note that the convex optimization method is one of the most effective approaches

to deal with resource allocation optimization problems in wireless communication

systems. Therefore, a brief introduction to convex optimization theory is provided to

help better understand the related mathematical steps for the investigated research

topics.

Typically, a standard mathematical optimization problem [67, 68] can be charac-
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terized as follows

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p, (2.1)

where x ∈ Rn is the optimization variable, f0: Rn → R denotes the objective function

or the cost function, fi : Rn → R and hi : Rn → R represent the inequality and

equality functions, respectively. Equation (2.1) aims to find an x under the constraints

fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p, that minimizes f0(x). The optimal

value is denoted as µ∗ = inf{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p},
which means that the optimal solution x∗ provides the smallest objective value while

satisfying the constraints.

Generally, standard optimization problems are difficult to solve, but convex opti-

mization problems can be reliably tackled, which motivates us to transform general

optimization problems into convex expressions. Before reformulating (2.6) as a convex

problem, we first present the definition of convex functions. A function f : Rn → R
is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), (2.2)

where the inequality holds for all x, y ∈ dom f , and 0 ≤ θ ≤ 1. If a function −f is

convex, then f is concave. Moreover, f is strictly convex if strict inequality holds in

(2.2) with x ̸= y and 0 < θ < 1. It is noted that for an affine function f(x) = ax+ b

on R, and a, b ∈ R, it is both convex and concave.

Furthermore, a standard form convex optimization problem can be characterized

as the same expression given in Eq. (2.1), on the condition that f0, . . . , fm are convex

functions, and equality constraints are affine functions. Compared with the general

form, the convexity is guaranteed with the following conditions satisfied: 1) the objec-

tive function f0(x) must be convex; 2) the inequality functions fi, i = 1, . . . ,m, must

be convex; 3) the equality functions hi = aTi x+ bi, i = 1, . . . , p, must be affine [67].

The domain is defined as

D =
m∩
i=0

domfi ∩
p∩

i=1

domhi, (2.3)

where x ∈ D is the implicit constraint for the optimization problem.

It has been proved that any local optimal solution of a convex problem is also

globally optimal. Consequently, a globally optimal solution x∗ ∈ D to the convex
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problem can be found by applying the convex optimization approaches such as interior

point method, ellipsoid method and subgradient method [67]. Therefore, if a practical

problem can be transformed into convex forms, then it can be efficiently solved.

Furthermore, successive convex approximation (SCA) is considered to an effective

method to approximate nonconvex optimization problems. The key idea of SCA is

to sequentially optimize the nonconvex function by establishing a convex trust region

around the original nonconvex spatial points. Though the approximation results may

heavily depend on the initial points, it has been verified that SCA often works well

in practical applications [67]. Take (2.1) as an example, denote solution of the k-th

iteration as x(k), form convex approximation f̂i of fi, affine estimate ĝi of gi, then the

optimal point during the (k+1)-th iteration can be obtained by solving the following

approximated convex problem:

min f̂0(x)

s.t. f̂i(x) ≤ 0, i = 1, . . . ,m,

ĥi(x) = 0, i = 1, . . . , p,

x ∈ Γ(k), (2.4)

where Γ(k) is the convex trust region that can be denoted as the box around the

current point, i.e., Γ(k) = {x || xi − x
(k)
i |≤ △i}, △i represents random positive

values.

Besides, semedefinite relaxation (SDR) is a powerful technique to approximate

nonconvex quadratically constrained quadratic program (QCQP). The general complex-

value QCQP can be characterized as [69]

min
x∈Cn

xHCx

s.t. xHAix ≥ bi, i = 1, . . . ,m, (2.5)

where C,Ai ∈ Hn, with Hn being the n× n Hermitian matrices.

Based on the observation xHCx = Tr(xHCx) = Tr(CxHx), by introducing

X = xHx and dropping the rank-one constraint, (2.5) can be reformulated as

min
X∈Cn

Tr(CX)

s.t. Tr(AiX) ≥ bi, i = 1, . . . ,m. (2.6)

Problem (2.6) is known as a SDR of (2.5), which can be solved by convex solver.

To establish the equivalence, the rank-one optimality needs to be further proved.
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Figure 2.1: NOMA transmission structure.

2.2 Non-orthogonal Multiple Access

2.2.1 Basic Principles of NOMA

NOMA is regarded as the potential MA technique for 5G and B5G networks. A

power multiplexing NOMA scheme is illustrated in Fig. 2.1(a), where multiple users

can share the same time/frequency/code domain by performing power multiplexing.

The key enabling techniques in NOMA are SC [70,71] and SIC technology [72,73].

Specifically, for a downlink NOMA transmission, take a two-user scenario as an

example (solid line in Fig. 2.1(b)), the BS transmits the superposition coded signals to

all users. At the user side, the user with poor channel conditions (User 2) is allocated

with more power to decode its signal by treating the other user’s signal as noise. By

invoking SIC technology, the user with better channel conditions (User 1) can first

decode the message of User 2 and remove the interference from the signals, after
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which User 1 decodes its own information. Regarding uplink NOMA transmission

(solid line in Fig. 2.1(c)), User 1 and User 2 transmit their own signals to the BS. At

the BS side, the signal of User 1 is first decoded by taking User 2’s signal as noise.

Then SIC is implemented at the BS to remove the signal of User 1, and the data of

User 2 is further decoded.

Though it has been demonstrated that NOMA achieves evident gain improvement

over existing MA schemes, some practical issues related to SIC application arise in

NOMA communication systems. Particularly, due to the utilization of SIC technology,

the user with better channel conditions needs to decode the information intended for

weak users in the downlink transmission, while for the uplink scenario, the BS has to

decode the information of all users with a given decoding order. As a consequence,

the decoding complexity (for the user with better channel conditions in downlink

transmission, and at the BS for uplink transmission) increases rapidly when there are

a large number of users. To reduce the decoding complexity, user pairing is proposed

to separate users into groups, where each group contains only a limited number of

users that can be multiplexed on the same channel. It has been proved that a better

tradeoff between decoding complexity and system performance can be achieved when

two users allocated on the same channel [74, 75]. The reason is that, there is a high

probability that two users have distinct channel differences to achieve the largest

performance gain, while the receiver possesses low complexity. Therefore, similar to

most previous works [20, 75], for the researches related to NOMA in this thesis, we

assume that the users have already been grouped into pairs. Therefore, the case of

two users is investigated in Chapter 3 and Chapter 4.

2.2.2 Cooperative NOMA

Consider a downlink NOMA transmission, the BS communicates with two users where

User 1 is a strong user and User 2 is a weak user, which is shown in Fig. 2.1(b). Due

to the application of SIC, the prior information of User 2 can be obtained at User

1, which can be further exploited with a cooperative transmission scheme, i.e., User

1 is regarded as a DF relay to help transmit signal of User 2. Two time slots are

included in a cooperative NOMA transmission. During the first direct transmission

slot (solid line in Fig. 2.1(b)), the BS sends the SC signals to two users. In the second

cooperative transmission slot (dash line in Fig. 2.1(b)), User 1 helps transmit the

decoded signal to User 2. The advantages of cooperative NOMA are twofold: i) the

reception reliability of weak users in cooperative NOMA can be greatly enhanced,
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Table 2.1: Comparison Between MCC and MEC.

Paradigm MCC MEC
Deployment Centralized Distributed
Distance from users to servers High Low
Latency High Low
Power at server Ample Limited
Storage capacity at server Ample Limited

thus improving user fairness. ii) multi-path fading can be better controlled since

cooperative NOMA provides higher diversity gain.

Unlike downlink NOMA transmission, SIC is performed at the BS to decode the

users’ signals following a given decoding order for uplink NOMA transmission. Fur-

thermore, UC can still be exploited at the strong user to improve the fairness of the

weak user (dash line in Fig. 2.1(c)). To exploit the benefit of UC while maintaining

the advantages of NOMA, three slots are included for UC-enabled uplink NOMA

transmission. The offloaded information of both users is divided into two segments,

where the two segments are transmitted to the BS directly in the first and the third

slot for User 1. For User 2, the first segment is transmitted collaboratively to the BS

in the first and second slots, and the second segment is transmitted directly to the

BS in the third slot. Specifically, in the first slot, two users simultaneously transmit

signals to the BS, while User 1 can receive the signal of User 2 at the same time.

During the next slot, User 1 acts as a DF relay to help forward the signal of User

2 to the BS. The transmitted data of User 2 is constrained by the effect of UC. In

the third slot, User 1 and User 2 send their own information to the BS. Note that

Chapter 4 of this thesis is based on uplink NOMA transmission with UC, as it can

overcome the ”doubly near-far” effect in the wireless powered MEC system.

2.3 Mobile Edge Computing

2.3.1 Comparison Between MCC and MEC

The last decade has witnessed the data explosion in the IoT networks as well as the 5G

and B5G wireless communications, which brings along computation-intensive applica-

tions and mission-critical tasks. Though new mobile devices are equipped with more

powerful CPU, mobile devices are still most likely unable to meet these requirements

due to the limited processing capability and restricted battery energy. To address
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Figure 2.2: Time allocation of computation offloading.

the concerns mentioned aforementioned, the centralized mobile cloud computing (M-

CC) paradigm has been proposed to offer remote powerful computing by leveraging

the vast resources at the distant cloud [76]. Though MCC greatly enhances system

performance by exploiting the cloud’s adequate computational energy and storage

capacity, MCC introduces high latency due to the far distance of clouds.

To overcome the drawback of high latency for MCC while maintaining the higher

computing capability, it is desired to deploy servers in close proximity to mobile users,

which introduces the new paradigm MEC. The concept of MEC was firstly proposed

and defined by the European Telecommunications Standards Institute (ETSI) in 2014

[77], and MEC is intended to provide cloud computing capabilities within the radio

access network (RAN). The detailed comparison between MCC and MEC is illustrated

in Table 2.1.

2.3.2 MEC Computation Offloading

Typically, the MEC system features a three-layer architecture, which consists of mo-

bile devices, MEC servers, and the cloud, and the cloud-like MEC server is integrated

with the BS or AP at the edge of networks. MEC design involves resource allocation

of both computing and communication processes, as computation tasks can be com-

puted locally at the devices and remotely at the MEC servers, while the connections

between mobile devices and MEC servers are established by wireless communication

techniques to realize task offloading and result downloading. As a consequence, three

phases are embodied in the computation offloading, which is shown in Fig. 2.2. Mo-

bile devices first offload computation tasks to MEC servers, and then MEC servers

compute the offloaded tasks. After that, mobile devices download the result from the

MEC servers.
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Figure 2.3: Model of computation offloading decisions.

The boosting computation-intensive latency-critical mobile applications benefit

from MEC, by executing the offloaded computing tasks remotely at the MEC serv-

er. According to the feature of computation tasks, computation offloading decisions

are divided into three categories, namely local execution, partial offloading and full

offloading, which is shown in Fig. 2.3. Specifically, the bubbles represent the total

required computed tasks for each user, where solid bubbles denote the part of tasks

that can be executed by local computing, and hollow bubbles mean the tasks executed

by MEC serves. Regarding local execution, the whole computation bits are executed

locally at mobile users only. For partial offloading, it is assumed that the computation

tasks can be artificially divided, where part of the computation bits is computed local-

ly while the rest is executed at the MEC server. Full offloading denotes that the whole

computation bits are processed remotely at the MEC server, which is suitable for the

case that the computational capability of local computing is negligible compared to

MEC servers. The major challenges for MEC design include computation offloading

decisions, computing resources allocation, and communication resource management.

In this thesis, the efficient resource allocation of the MEC system is considered in

Chapter 4.
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2.4 Long Range Communication

2.4.1 Basic Principles of LoRa

To complement the weakness of conventional cellular and short-range communications

in IoT scenarios, LPWA networks are envisioned as effective ways to support the

massive number of end devices as well as the long coverage and low power consumption

feature in IoT networks. LWPA stands for a series of technologies such as LoRa [78],

Sigfox [79], LTE-M [9], and narrow-band (NB)-IoT [80], which can be capable of

providing long-distance power-efficient communications at the expense of low data

rates. With the advantages of long-range capability, low power consumption, and

massive network capacity, LoRa becomes the utmost promising LPWA technology

for IoT networks. LoRa was first proposed by Semtech and further developed by the

LoRa Alliance [55]. In addition, LoRa is on the way towards standardization and

commercialization. LoRa operates with license-free ISM bands (Europe: 868 MHz

and 433 MHz, US: 915 MHz) to enable flexible transmission distance range and data

rates with different spreading factors (SFs). SF ranges from 7 to 12, and higher

SFs provides long-distance communication at the cost of reduced data rate, whereas

lower SFs provide high data rate but limited transmission range. Furthermore, to

support the LoRa physical layer operation, the higher layers were defined by LoRa

Alliance and called LoRaWAN. LoRa supports long-distance communication links

while LoRaWAN defines the system architecture for the networks.

2.4.2 LoRaWAN Architecture

The LoRaWAN architecture is illustrated in Fig. 2.4. Specifically, the MAC protocol

in LoRaWAN adopts pure ALOHA access (communication starts when end devices

have data ready to transmit) with duty cycle limitations, which reduces energy con-

sumption based on listening and sensing mode. Depending on different application

scenarios and service requirements, three classes of end devices, namely Class A, Class

B, and Class C, are defined in LoRaWAN. The most energy efficient Class A is intend-

ed for battery-powered sensors, which supports maximum battery lifetime but allows

the biggest latency. All end devices are required to support the functionality of Class

A. Class B is used by battery-powered latency-controlled sensors and actuators, which

realizes synchronization by receiving a beacon from the LoRa gateway. Class C end

devices are actuators with sufficient external power supply, which have the minimum

latency and can stay in a continuous receive window during the transmission.
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Figure 2.4: System architecture of LoRaWAN.

2.5 Energy Efficient Communications

Recently, energy efficient communications have drawn tremendous attention in both

industry and academia, due to the fact that the ever-increasing energy consumption of

the information and communication technologies (ICT) contributes more and more to

the greenhouse gas emissions [23]. To reveal the system efficiency from the perspective

of the computed bits per Joule, according to the feature of systems, two energy

efficient definitions in terms of EE [81,82] and computation efficiency [83] are adopted

for LoRa networks in Chapter 5 and MEC systems in Chapter 4, respectively.
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2.5. Energy Efficient Communications

2.5.1 Energy Efficient Resource Allocation

In wireless communication systems, EE is considered to be an essential measurement

metric in system design from the perspective of both operators and mobile users [81].

The purpose of EE is to provide a tradeoff between the transmitted data rate and

energy consumption. The main aim of energy efficient communications is to maximize

the amount of transmitted data per Joule of consumed energy by allocating resources

optimally.

EE is commonly defined as the ratio of transmitted bits to energy consumption,

which is given as

η =
RT

(P + Pc)T
=

R

(P + Pc)
bits/Joule, (2.7)

where R represents the achievable data rate, T is a given time duration, P is the

total transmit power, and Pc denotes the constant circuit power consumption, which

is independent of the transmit power. Specifically, R = Blog2(1 + P |h|2
σ2 ), where B

denotes the bandwidth, |h|2 is the channel gain and σ2 is the additive white Gaussian

noise (AWGN) variance. Moreover, Pc stands for the circuit power consumed by the

mixer, the low-noise amplifier, frequency synthesizer, transmit filter, and digital-to-

analog converter [84]. In this thesis, the energy efficient transmission for uplink LoRa

networks is investigated in Chapter 5.

2.5.2 Computationally Efficient Resource Allocation

Regarding MEC, most previous resource allocation works on MEC systems focus on

either maximizing the sum computation rates [47, 85], or minimizing the consumed

energy [86, 87], which cannot achieve good tradeoff between the energy consumption

and the computation bits (which is defined as the total number of computed bits

at both the users and MEC server). To realize energy efficient design, it is desir-

able to show the MEC efficiency from the perspective of maximizing the achievable

computation bits per Joule.

Different from conventional communication systems, MEC involves not only wire-

less communication but also computing processes. Moreover, the MEC system is re-

quired to handle computation-intensive yet latency-critical tasks, which poses strict

delay budget demand. Therefore, it may become the second consideration to maxi-

mize the communication throughput, compared to the requirement of satisfying the

latency constraint for offloading through wireless communications. For such a latency-

constrained scenario, to capture the efficiency of the energy considering both the local

computing and remote task execution phase, the computation efficiency measurement
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metric [88], defined as the ratio of the computation bits to the energy consumption
1, is given as

η̃ =
ℓloc +RT

Eloc + PT
bits/Joule, (2.8)

where R is the achievable offloading data rate, T is the offloading time duration, P de-

notes the transmit power, ℓloc and Eloc represent the computation bits and consumed

energy for local computing, respectively. The efficient resource allocation approach

to maximize the computation efficiency is further discussed in Chapter 4.

2.6 Summary

In this chapter, we first give a brief description of background knowledge on resource

allocation and introduce the convex optimization theory. Then we present the basic

principles and technical foundation of several promising technologies for 5G and B5G

communications. Finally, energy efficient communications are described to illustrate

the research motivations.

1The time consumption for remote execution at the MEC server and computed results download-
ing is assumed to be negligible.
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Chapter 3

Robust Transmit Beamforming for
SWIPT-Enabled Cooperative
NOMA with Channel
Uncertainties

3.1 Introduction

In this chapter, we study the robust beamforming design for a SWIPT-enabled sys-

tem, with cooperative NOMA protocol applied. A novel cooperative NOMA scheme

is proposed, where the strong user with better channel conditions adopts power split-

ting (PS) scheme and acts as an energy-harvesting relay to transmit information to

the weak user. The presence of channel uncertainties is considered and incorporated

in our formulations to improve the design robustness and communication reliability.

Specifically, only imperfect CSI is assumed to be available at the BS, due to the reason

that the BS is far away from both users and suffers serious feedback delay. To com-

prehensively address the channel uncertainties, two major design criteria are adopted,

which are the outage-based constraint design and the worst-case based optimization.

Then, our aim is to maximize the strong user’s data rate, by optimally designing

the robust transmit beamforming and PS ratio, while guaranteeing the correct de-

coding of the weak user. With two different channel uncertainty models respectively

incorporated, the proposed formulations yield to challenging nonconvex optimization

The works presented in this Chapter have been published at the IEEE Transactions on Commu-
nications, June 2019, and IEEE International Conference on Communications (ICC 2019), Shanghai,
China, May 2019.
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problems. For the outage-based constrained optimization, we first conservatively ap-

proximate the probabilistic constraints with the Bernstein-type inequalities, which

are then globally solved by two-dimensional exhaustive search. To further reduce

the complexity, an efficient low-complexity algorithm is then proposed with the aid

of successive convex approximation (SCA). For the worst-case based scenario, we

firstly apply semedefinite relaxation (SDR) method to relax the quadratic terms and

prove the rank-one optimality. Then the nonconvex max-min optimization problem

is readily transformed into convex approximations based on S -procedure and SCA.

Simulation results show that for both channel uncertainty models, the proposed al-

gorithms can converge within a few iterations, and the proposed SWIPT-enabled

robust cooperative NOMA system achieves better system performance than existing

protocols.

The remainder of this chapter is organized as follows. In Section 3.2, we give a

brief introduction to the system model of the proposed SWIPT-enabled robust co-

operative NOMA system. The probabilistic SINR constrained optimization problem

is formulated and analyzed in Section 3.3. Further, In Section 3.4, the data rate

maximization problem for the strong user is formulated and solved by adopting the

worst-case based channel uncertainty model. Finally, numerical results are given in

Section 3.5, followed by conclusions in Section 3.6.

3.2 System Model and Problem Formulation

3.2.1 System Model

Consider a downlink TDMAMISO transmission system, as shown in Fig. 3.1, wherein

the BS is equipped with Nt antennas and all users are equipped with the single

antenna. There are two users in each beam and the BS performs MISO transmission

with N users through M beams, where N = 2M 1. Assume that the total time

duration T is equally divided into M slots where the time duration of each slot is

tm = T
M
. Then during the time slot tm, only the m-th user-pair is allowed to transmit,

while the other user-pairs remain silent. Therefore, the inner-cell interference between

pairs of users does not exist. As a result, when formulating the rate-maximization

problems and designing robust beamforming, we can just focus on one beam.

Let us take the first beam as an example. It is assumed that NOMA protocol

is adopted for the two users. Without loss of generality, we assume that user 1 is a

1It is assumed that users have already been grouped into pairs, and we can refer to [89] for how
to do user pairing.
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Figure 3.1: System model for the SWIPT-enabled cooperative NOMA.

strong user with better channel conditions and user 2 is a weak user. According to

NOMA protocol, user 1 removes the interference of user 2 by applying SIC and then

detect its own information, while the user 2 treats the user 1’s message as noise. Since

user 1 can obtain prior information of the messages for user 2 and thus can act as a

relay to improve the connection between the BS and user 2. In order to help user 2

without draining user 1’s battery, we assume that the power utilized to transmit the

information of user 2 can be obtained from SWIPT.

Since the imperfect CSI case at the BS is considered, we first introduce the CSI

error model. The actual channels between the BS and two users can be characterized

as

hi = h̃i + ei, i = 1, 2, (3.1)

where hi denotes the actual channel gain, h̃i is the estimated channel gain at the BS,

and ei represents the channel errors of two users. The detailed expression of ei for

the two channel uncertainty models will be introduced in the next two sections.

Two phases are involved in the SWIPT-enabled robust cooperative NOMA trans-

mission. At the first robust direct transmission phase, user 1 coordinates the process
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3.2. System Model and Problem Formulation

of information decoding (ID) and energy harvesting from the received signal by adopt-

ing PS scheme. Specifically, as can be seen in Fig. 1, the received signal at user 1

is split into the information decoder and the energy harvester. As for user 2, it re-

ceives the direct transmission signal from the BS at this phase. Then in the second

cooperative transmission phase, user 1 forwards the decoded user 2’s message to user

2 with the harvested energy. The detailed process is summarized as follows.

3.2.2 Robust Direct Transmission Phase

During this phase, the signals for two users are superposition coded at the BS, i.e.,

x = w1x1+w2x2, where x1 and x2 are the messages for user 1 and user 2 respectively.

The power of the transmitted symbol is normalized, i.e., E∥x1∥2 = E∥x2∥2 = 1, and

w1 and w2 are the corresponding precoding vector. Then, for the weak user, i.e., user

2, the observation is given by

y
(1)
2 = hH

2 (w1x1 +w2x2) + n2, (3.2)

where hH
2 denotes the Hermitian transpose of h2 ∈ CNt×1, n2 ∼ CN (0, 1) is the

AWGN. In this chapter, we assume that all channels have the same noise value as

σ2=1. Then the SINR obtained by user 2 from the direct transmission can be ex-

pressed as

SINR
(1)
2 =

|hH
2 w2|

2

1 + |hH
2 w1|

2 . (3.3)

Due to the assumption that there is not enough power to forward the signal of x2

to user 2, user 1 needs to replenish the energy from the BS based on the ’harvest-

then-transmit’ protocol proposed in [90]. The PS scheme is employed at user 1 to

perform SWIPT. Then, the information received at user 1 is given by

y1 =
√
1− βhH

1 (w1x1 +w2x2) + n1, (3.4)

where β ∈ [0, 1] is the PS ratio, h1 ∈ CNt×1 is the channel coefficient between the BS

and user 1, and n1 ∼ CN (0, 1) is the AWGN. With SIC carried out at user 1, i.e.,

user 1 firstly decodes the message for user 2 and then removes the information of user

2 to decode its own information, the received SINR for user 1 to detect the message

of user 2, is given by

SINR1,2 =
(1− β)|hH

1 w2|
2

1 + (1− β)|hH
1 w1|

2 . (3.5)
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3.2. System Model and Problem Formulation

After removing the message of user 2 from y1, the corresponding SNR of user 1 can

be expressed as

SNR1 = (1− β)|hH
1 w1|

2
, (3.6)

which will be our optimization objective in the next section.

Besides, to ensure the correct decoding capability in a given order, we have the

following inequality requirements [91]:

|hH
1 w2|

2 ≥ |hH
1 w1|

2
, (3.7a)

|hH
2 w2|

2 ≥ |hH
2 w1|

2
. (3.7b)

Furthermore, with PS protocol applied at user 1 to harvest energy from the BS,

the harvested energy can be given as [92]

E = ϑβ(|hH
1 w1|2 + |hH

1 w2|2)T, (3.8)

where ϑ and T denote the energy harvesting efficiency and the transmission time

fraction, respectively. Without loss of generality, we set T = 1
2
which means that

equal time duration is assigned for direct and cooperative transmission stages. Hence,

the available average power of user 1 can be expressed as

Pr =
ϑβ(|hH

1 w1|2 + |hH
1 w2|2)T

1− T
= ϑβ(|hH

1 w1|2 + |hH
1 w2|2). (3.9)

It is worthwhile to point out that only when user 1 can successfully decode the

signals of user 2, it can then use the harvested energy to forward the signals to user 2.

This means that it is more important for user 1 to decode the signals than performing

energy harvesting.

3.2.3 Cooperative Transmission Phase

In the cooperative transmission phase, if the received SINR for user 1 to detect the

message of user 2 is larger than or equal to the target SINR of user 2, we can assume

that user 1 can correctly decode the received symbols of user 2 [93]. Then user 1

forwards signal x2 to user 2 using the harvested energy. The observation of user 2 at

this phase can be characterized as

y
(2)
2 =

√
Prgx2 + n3, (3.10)
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3.3. Outage-based Constrained Optimization

where Pr is the available power of user 1, g is the perfectly known channel coeffi-

cient between user 1 and user 2, and n3 ∼ CN (0, 1) is the normalized AWGN. The

achievable SNR of user 2 at this phase can be written as

SNR
(2)
2 = ϑβ|g|2(|hH

1 w1|2 + |hH
1 w2|2). (3.11)

Combining the observation from both phases and using maximal ratio combination

(MRC), the equivalent SINR of user 2 can be finally obtained as

SINR2 = SINR
(1)
2 + SNR

(2)
2 =

|hH
2 w2|

2

1 + |hH
2 w1|

2 + ϑβ|g|2(|hH
1 w1|2 + |hH

1 w2|2). (3.12)

In the next two sections, we aim to maximize the data rate of user 1, which is

equivalent to maximize the SNR of user 1, subject to the outage-based and worst-case

based constraints respectively.

3.3 Outage-based Constrained Optimization

In this section, the outage-based probabilistic constraints caused by imperfect CSI

will be investigated, where the unsuccessful decoding of weak user falls into the scope

of outage. The goal is to design beamforming vectorsw1 andw2 to maximize the data

rate of user 1, which is equivalent to maximize the SNR of user 1 while guaranteeing

the outage requirements. Specifically, the outage for strong user happens when it is

not able to decode the weaker user’s information, while for the weak user, the outage

means that it can not successfully decode its own information.

The study of outage-based constrained robust optimization is a meaningful design

criterion as CSI errors are universal present in practical systems, and they may cause

severe outage if not handled properly [94]. However, as the probability functions

can not yield straightforward closed-form expressions, how to deal with probabilistic

constraints is of vital importance. To tackle the problem, we will resort to Bernstein-

type inequality approach to deal with the probability constraints.
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3.3. Outage-based Constrained Optimization

We consider the following robust beamforming design problem 2:

max
β,w1,w2

(1− β)|hH
1 w1|2 (3.13a)

s.t. Pr (SINR1,2 ≥ γ) ≥ 1− ρ1, (3.13b)

Pr (SINR2 ≥ γ) ≥ 1− ρ2, (3.13c)

||w1||22 + ||w2||22 ≤ Pmax, (3.13d)

|hH
1 w2|

2 ≥ |hH
1 w1|

2
, (3.13e)

|hH
2 w2|

2 ≥ |hH
2 w1|

2
, (3.13f)

0 ≤ β ≤ 1, (3.13g)

where γ is the target SINR of user 2, ρi ∈ [0, 1), i = 1, 2, is the maximum tolerable

outage probability for two users, and Pmax is the maximum available power at the

BS. Constraints (3.13e) and (3.13f) represent the given order decoding capability

requirements [91].

To solve the problem (3.13), we first relax it by applying SDR approach and

drop the rank-one constraint. Specifically, we replace the beamforming vector wi by

semidefinite positive matrices Wi, i.e,

Wi = wiw
H
i , i = 1, 2. (3.14)

Then, since imperfect CSI is considered at the BS, the channel errors can be

modeled as

ei = C
1
2
i e, i = 1, 2, (3.15)

where Ci ≽ 0 denotes some known error covariance and e ∼ CN (0, INt).

By replacing hi with h̃i + C
1
2
i e and denoting that Γ = (h̃1 + C

1
2
1 e)

H(W2 −
γW1)(h̃1 +C

1
2
1 e), the probabilistic SINR constraint (3.13b) can be recast as

Pr

(
Γ ≥ γ

1− β

)
≥ 1− ρ1. (3.16)

On the other hand, for the outage-based SINR constraint (3.13c), we transform

it by introducing an auxiliary variable θ. Firstly, (3.13c) can be decomposed into the

following two sub-problems:

Pr
{
ϑβ|g|2(|hH

1 w1|2 + |hH
1 w2|2) ≥ γ − θ

}
≥ 1− ρ2, (3.17a)

2We do not pose any threshold requirement for user 1, since the primal purpose of cooperative
NOMA is to guarantee fairness of the weak user, thus the QoS requirement of the weak user is more
important. In this case, it is assumed that once user 1 can detect the signal of user 2, it can decode
its own signal to help user 2.
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|hH
2 w2|2

|hH
2 w1|2 + 1

≥ θ, (3.17b)

where the optimality of the decomposition can be assured when (3.17b) holds with

equality. It is worth noting that (3.17a) has the same form as (3.13b). Furthermore,

with the application of SDR, (3.17b) can be further described as

θTr(H2W1) ≤ Tr(H2W2)− θ, (3.18)

where Hi , hih
H
i , i = 1, 2.

Further, by introducing several auxiliary variables, i.e., Qi, ri and si, i = 1, 2, the

following correspondence to (3.13b) and (3.17a) can be shown

Q1 = C
1
2
1 (W2 − γW1)C

1
2
1 , (3.19a)

r1 = C
1
2
1 (W2 − γW1)h̃1, (3.19b)

s1 = h̃H
1 (W2 − γW1)h̃1 −

γ

1− β
, (3.19c)

Q2 = C
1
2
1 (W1 +W2)C

1
2
1 , (3.19d)

r2 = C
1
2
1 (W1 +W2)h̃1, (3.19e)

s2 = h̃H
1 (W1 +W2)h̃1 −

γ − θ

ϑβ|g|2
. (3.19f)

Finally, the original probabilistic outage constraint (3.13b) and the reformulated

(3.17a) can be written as the following same structure

Pr
{
eHQie+ 2Re{eHri}+ si ≥ 0

}
≥ 1− ρi, i = 1, 2. (3.20)

3.3.1 Bernstein-type Inequality Method

To deal with a probabilistic constraint that has a form as (3.20), we adopt the

Bernstein-type inequality to construct a convex approximation. Firstly, the following

lemma is introduced which serves as a basis [95]:

Lemma 1. Let e ∈ CN (0, In), Q ∈ Hn and r ∈ Cn. Then, for any ε > 0, we have

that

Pr{eHQie+ 2Re{eHri} ≥ Γ(ε)} ≥ 1− e−ε, (3.21)

where the function Γ is defined by that:

Γ(ε) = Tr(Qi)−
√
2ε
√
||Qi||2F + 2||ri||2 − ελ+(Qi), (3.22)

with λ+(Qi) = max{λmax(−Qi), 0}, and λmax denotes the corresponding maximum

eigenvalue of −Qi.
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3.3. Outage-based Constrained Optimization

The above inequality is the well-known Bernstein-type inequality, which can also

be expressed by the inverse mapping Γ−1 as follows due to the monotonically decreas-

ing characteristic of Γ(ε):

Pr
{
eHQie+ 2Re{eHri

}
+ si ≥ 0} ≥ 1− e−Γ−1(−si). (3.23)

Compare Eq.(3.23) with the reformulated inequality (3.20), it is easy to find that

the inequality (3.20) can be satisfied if we replace e−Γ−1(−si) with ρi on the condition

that e−Γ−1(−si) ≤ ρi holds. By adopting the Bernstain-type inequality and using the

monotonically decreasing characteristic of Γ, we can obtain that

Tr(Qi)+ln(ρi)λ
+(Qi) + si −

√
−2ln(ρi)

√
||Qi||2F + 2||ri||2 ≥ 0. (3.24)

Furthermore, by introducing two slack variables Λ1 ∈ R and Λ2 ∈ R, (3.24) can
be reformulated as the following convex conic inequalities:

Tr(Qi)−
√
−2ln(ρi)Λ1 + ln(ρi)Λ2 + si ≥ 0, (3.25a)√
||Q||2F + 2||ri||2 ≤ Λ1, (3.25b)

Λ2INt +Qi ≽ 0, (3.25c)

Λ2 ≥ 0. (3.25d)

Therefore, one can note that the probabilistic inequality (3.20) is transformed into

efficiently computable convex restrictions as (3.25a)-(3.25d).

Finally, by applying the SDR approach and Bernstein-type method, (3.13) is
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reformulated as

max
β,W1,W2

(1− β)Tr(H1W1) (3.26a)

s.t. Tr(Q1)−
√
−2ln(ρ1)t1 + ln(ρ1)t2 + s1 ≥ 0, (3.26b)√

||Q1||2F + 2||r1||2 ≤ Λ1, (3.26c)

Λ2In +Q1 ≽ 0, (3.26d)

Tr(Q2)−
√

−2ln(ρ2)Λ3 + ln(ρ2)Λ4 + s2 ≥ 0, (3.26e)√
||Q2||2F + 2||r2||2 ≤ Λ3, (3.26f)

Λ4In +Q2 ≽ 0, (3.26g)

Λ2 ≥ 0,Λ4 ≥ 0, (3.26h)

θTr(H2W1) ≤ Tr(H2W2)− θ, (3.26i)

Tr(H1W2) ≥ Tr(H1W1), (3.26j)

Tr(H2W2) ≥ Tr(H2W1), (3.26k)

Tr(W1) + Tr(W2) ≤ Pmax, (3.26l)

0 ≤ β ≤ 1, (3.26m)

where Qi, ri and si, i = 1, 2, are defined as (3.19a)-(3.19f).

Remark 1. The optimal solution to problem (3.26) can be found through two-dimensional

exhaustive search of variables β and θ.

However, the complexity of two-dimensional exhaustive search is too high, which

motivates us to find a low-complexity suboptimal solution based on SCA and arith-

metic geometric mean (AGM) [96].

3.3.2 SCA-based Transformation

In this subsection, before we solve the formulated problem (3.26), we first transform

it into a convex program. By applying epigraph reformulation and introducing two

auxiliary variables µ an ν, the objective function (3.26a) can be recast as:

max u (3.27a)

s.t. ν2 ≥ µ, (3.27b)[
1− β ν
ν Tr(H1W1)

]
≽ 0. (3.27c)
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3.3. Outage-based Constrained Optimization

Hence, (3.26a) is converted into a linear objective function (3.27a), a convex linear

matrix inequality (LMI) (3.27c) and a nonconvex quadratic inequality (3.27b) which

can be then approximated by the SCA method. To approximate (3.27b), a convex

lower bound for ν2 needs to be obtained by applying first-order Taylor approximation

as below:

ν2 ≥ 2ν(n)ν − (ν(n))2, (3.28)

where ν(n) denotes the value of variable ν at the n-th iteration. By replacing ν2 with

the inequality (3.28), (3.27b) can be approximated by a stringent constraint given as

2ν(n)ν − (ν(n))2 ≥ µ. (3.29)

In addition, by applying AGMmethod, the constraint (3.26i) can be approximated

using the following convex function:

(a
(n)
1 θ)

2
+ (Tr(H2W1)/a

(n)
1 )

2
≤ 2Tr(H2W2)− 2θ, (3.30)

where the setting of a
(n)
1 can be given by

a
(n)
1 =

√
(Tr(HH

2 W1)(n−1)/θ(n−1). (3.31)

Now the remaining problem lies in (3.26e), as the formation of s2 is nonconvex.

By introducing a slack variable ξ, s2 can be reformulated as

s2 = h̃H
1 (W1 +W2)h̃1 −

γ

ϑβ|g|2
+ ξ, (3.32a)

(a
(n)
2 β)

2
+ (ξ/a

(n)
2 )

2
≤ 2θ

ϑ|g|2
, (3.32b)

where a
(n)
2 =

√
ξ(n−1)/β(n−1). Here, (3.32b) is obtained with the AGM-inequality

method and the transformation process is omitted for simplicity.

As a result, after applying the proposed approximation methods, the original

problem (3.26) can be transformed to a convex program. During the n-th iteration,

the following convex optimization problem needs to be solved:

max
µ,ν,β,W1,W2

µ (3.33a)

s.t. 2ν(n)ν − (ν(n))2 ≥ µ, (3.33b)[
1− β ν
ν Tr(H1W1)

]
≽ 0, (3.33c)

(3.26b), (3.26c), (3.26d), (3.26e), (3.26f), (3.33d)

(3.26g), (3.26h), (3.26j), (3.26k), (3.26l), (3.33e)

(3.27c), (3.29), (3.30), (3.32a), (3.32b). (3.33f)
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3.3. Outage-based Constrained Optimization

Table 3.1: SCA-based Method to Solve Eq. (3.33)

Input µ0 = 0.001, ν0 = 0.01 n = 0, η = 1 and the tolerance ϵ = 10−3.
While ∆ ≥ ϵ

Set µn = µn−1;
Update ∆ = µn − µn−1 ;
Update n = n+ 1;

End While
Output W n

1 and W n
2 .

Finally, to solve the problem (3.33), we provide the SCA-based iterative algorithm,

outlined in Table 3.1.

To prove the effectiveness of the proposed SCA-based iterative algorithm, we

provide the following proposition.

Proposition 1. The proposed SCA-based algorithm can converge to a Karush-Kuhn-

Tucker (KKT) point of problem (3.26) whenever problem (3.33) is feasible.

Proof : The convergence of SCA method will be proved in Proposition 3 in the

next section.

Table 3.2: Ratio of Rank-one Solutions

Pmax 10 dB 20 dB 30 dB
Ratio 297

297
859
876

954
971

It is noted that both problem (3.26) and (3.33) are formulated by dropping the

rank-one constraint. We verify the rank-one characteristic of problem (3.33) via

simulations by setting γ = 1 Mbps, and ρ = 0.1. The solution is declared as rank-one

if the following condition holds:

λmax(Wi)

Tr(Wi)
= 1, i = 1, 2. (3.34)

We iteratively solve the optimization problems for 1,000 times based on empirical

knowledge, since we believe that 1,000 times are large enough to average the channel

realizations and acquire fair number of feasible solutions. Consequently, the value of

the ratio does not change significantly. As can be seen from Table 3.2, in the ratio

column, the denominator represents the number of feasible points while the numerator

denotes the amount of rank-one solutions. The probability of rank-one solutions is
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3.4. Worst-case Based Optimization

higher than 98%, which means the rank-one solutions are usually obtained. Hence,

we can conclude that the solutions of problem (3.33) guarantee that the rank-one

constraints can be satisfied with a high probability, which provides a tight upper

bound on the optimal values of the original problem formulation.

3.4 Worst-case Based Optimization

Apart from the outage-based channel uncertainty model, in this section the channel

uncertainties are modeled based on the worst-case scenario. Firstly, let us discuss the

channel mismatches. For worst-case based optimization, the channel mismatches are

assumed to lie in the bounded sets {ẽh1 : ||ẽh1||2 ≤ ϵ2h1
} and {ẽh2 : ||ẽh2 ||2 ≤ ϵ2h2

},
where ϵ2h1

and ϵ2h2
are known constants that model the channel errors.

Then, our objective is to maximize the SNR of strong user while guaranteeing the

correct signal decoding of the weak user for the channel mismatches, i.e., ẽh1 , ẽh2 ,

bounded in the known sets. Hence, the following robust beamforming design problem

can be formulated:

max
β,w1,w2

min
ẽh∈ϵh

(1− β)|hH
1 w1|

2
(3.35a)

s.t.
(1− β)|hH

1 w2|
2

(1− β)|hH
1 w1|

2
+ 1

≥ γ, (3.35b)

|hH
2 w2|

2

1 + |hH
2 w1|

2 + ϑβ|g|2(|hH
1 w1|

2
+ |hH

1 w2|
2
) ≥ γ, (3.35c)

|hH
1 w2|

2 ≥ |hH
1 w1|

2
, (3.35d)

|hH
2 w2|

2 ≥ |hH
2 w1|

2
, (3.35e)

||w1||22 + ||w2||22 ≤ Pmax, (3.35f)

0 ≤ β ≤ 1, (3.35g)

where γ is the target SINR of user 2 and Pmax is the maximum available power at

the BS. It can be easily verified that problem (3.35) is nonconvex. This is not only

due to the quadratic terms of the objective and constraints, but also for the hidden

inner minimization constraint over ẽh.

Similarly, the first step is also to replace the beamforming vector wi with semidef-

inite positive matrices Wi, i.e,

Wi = wiw
H
i , i = 1, 2. (3.36)
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3.4. Worst-case Based Optimization

Then, we decompose (3.35a) and (3.35b) by introducing several auxiliary variables to

explore its hidden convexity. By denoting that W = W1 +W2, the original problem

(3.35) can be reformulated as

max
β,W1,W2

min
ẽh∈ϵh

µ (3.37a)

s.t. (h̃1 + ẽh1)
HW1(h̃1 + ẽh1) ≥

µ

1− β
, (3.37b)

(h̃1 + ẽh1)
HW2(h̃1 + ẽh1) ≥

γ(µ+ 1)

1− β
, (3.37c)

(h̃1 + ẽh1)
HW (h̃1 + ẽh1) ≥

γ − t

ϑβ|g|2
, (3.37d)

(h̃2 + ẽh2)
HW2(h̃2 + ẽh2)

1 + (h̃2 + ẽh2)
HW1(h̃2 + ẽh2)

≥ θ, (3.37e)

(h̃1 + ẽh1)
H(W2 −W1)(h̃1 + ẽh1) ≥ 0, (3.37f)

(h̃2 + ẽh2)
H(W2 −W1)(h̃2 + ẽh2) ≥ 0, (3.37g)

Tr(W1) + Tr(W2) ≤ Pmax, (3.37h)

W1,W2 ≽ 0 and (3.35g), (3.37i)

where µ and θ are two auxiliary variables that can be respectively interpreted as the

SNR of user 1 and SINR
(1)
2 . Note that problem (3.37) is a relaxed version by dropping

the nonconvex rank-one constraints, i.e., rank(Wi) = 1, i = 1, 2. The advantage of

this relaxation lies in that the transformed inequalities are linear to W1 and W2.

Although the rank-one constraints are dropped, we provide the following proposition

to show that the relaxed problem (3.37) can still achieve an optimal solution which

satisfies the rank-one constraints.

Proposition 2. There is always an optimal solution (W1
∗,W2

∗) to problem (3.37)

with rank(W ∗
i ) = 1, i = 1, 2, whenever it is feasible.

Proof : The proof is provided in Appendix A.

Further, we note that in problem (3.37), only constraints (3.37b)-(3.37g) are non-

convex. To deal with the inner minimization problem for the bounded error, (3.37b)

can be first expressed as follows by introducing the inner bounded sets of channel

mismatches:

ẽH
h1
W1ẽh1 + 2Re(h̃H

1 W1h̃1) + h̃H
1 W1ẽ1 − τ1 ≥ 0, (3.38a)

−ẽH
h1
ẽh1 + ϵ2h1

≥ 0. (3.38b)

τ1 ≥
µ

1− β
. (3.38c)
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3.4. Worst-case Based Optimization

Then, in order to make the problem more tractable to solve, we introduce the

S -procedure with Lemma 2 [67].

Lemma 2. Let F1, F2 be symmetric matrices, g1 and g2 be vectors, h1 and h2 be real

numbers, then the following implication

xTF1x+ 2xTg1x+ h1 ≤ 0, (3.39a)

=⇒ xTF2x+ 2xTg2x+ h2 ≤ 0, (3.39b)

holds if and only if there exists a nonnegative number λ ≥ 0 such that[
F1 g1

gT
1 h1

]
≽ λ

[
F2 g2

gT
2 h2

]
, (3.40)

provided that there exists a point x̂ with x̂TF1x̂+ 2x̂Tg1x+ h1 ≤ 0.

According to Lemma 2, we note that both inequalities, i.e., (3.38a) and (3.38b),

can be satisfied with a proper ẽh1 if and only if there exists a ν1 ≥ 0 such that[
ν1INt +W1 W1h̃1

h̃H
1 W1 h̃H

1 W1h̃1 − ν1ϵh
2
1 − τ1

]
≽ 0. (3.41)

Notice that the inequality (3.41) is a convex LMI and can be easily implemented with

standard convex solvers such as CVX [97]. Therefore, one can note that constraint

(3.37b) has been transformed into convex forms.

After applying similar steps and introducing two slack variables τ2 and τ3, (3.37c),

(3.37d), (3.37f) and (3.37g) can be transformed into the following formulations:[
ν2INt +W2 W2h̃1

h̃1
H
W2 h̃H

1 W2h̃1 − ν2ϵh
2
1 − τ2

]
≽ 0, (3.42a)

[
ν3INt +W Wh̃1

h̃H
1 W h̃H

1 Wh̃1 − ν3ϵh
2
1 − τ3

]
≽ 0, (3.42b)[

ν4INt +W2 −W1 (W2 −W1)h̃1

h̃H
1 (W2 −W1) h̃H

1 (W2 −W1)h̃1 − ν4ϵh
2
1

]
≽ 0, (3.42c)[

ν5INt +W2 −W1 (W2 −W1)h̃2

h̃H
2 (W2 −W1) h̃H

2 (W2 −W1)h̃2 − ν5ϵh
2
1

]
≽ 0, (3.42d)

τ2 ≥
γ(µ+ 1)

1− β
, (3.42e)

τ3 ≥
γ − t

ϑβ|g|2
, (3.42f)
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3.4. Worst-case Based Optimization

where ν2, ν3, ν4 and ν5 are nonnegative variables and the above inequalities are all

convex LMIs.

To deal with (3.37e), we introduce some auxiliary variables and (3.37e) can be

then written as

|hH
2 w2|

2 ≥ τ4, (3.43a)

τ4 − θ

θ
≥ τ5, (3.43b)

|hH
2 w1|

2 ≤ τ5. (3.43c)

For (3.43a) and (3.43c), S -procedure can be used to convert it into LMI formulation

as follows [
ν6INt +W2 W2h̃2

h̃H
2 W2 h̃H

2 Wh̃2 − ν4ϵh
2
2 − τ4

]
≽ 0, (3.44a)[

ν7INt −W1 −W1h̃2

−h̃H
2 W1 −h̃H

2 W1h̃2 − ν5ϵh
2
2 + τ5

]
≽ 0. (3.44b)

Remark 2. Through the above transformation, the optimal solution can be found

through two-dimensional exhaustive search of variables β and θ.

To reduce the complexity introduced by the exhaustive search method, (3.38c),

(3.42e) and (3.42f) can be reformulated as follows:[
τ1 ι1
ι1 1− β

]
≽ 0, (3.45a)

ι21 ≥ µ, (3.45b)[
τ2 ι2
ι2 1− β

]
≽ 0, (3.45c)

ι22 ≥ γ(µ+ 1), (3.45d)[
τ3 ι3
ι3 ϑβ|g|2

]
≽ 0, (3.45e)

ι23 ≥ γ − θ, (3.45f)

which consist of three LMIs (3.45a), (3.45c), and (3.45e), and three nonconvex quadrat-

ic inequalities (3.45b), (3.45d) and (3.45f) that need to be further transformed.

Then, the SCA method can be applied to iteratively approximate (3.45b), (3.45d)

and (3.45f) by performing the first-order Taylor approximation as below

2ι
(n)
1 ι1 − (ι

(n)
1 )2 ≥ µ, (3.46a)

2ι
(n)
2 ι2 − (ι

(n)
2 )2 ≥ γ(µ+ 1), (3.46b)
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3.4. Worst-case Based Optimization

Table 3.3: SCA-based Method to Solve Eq. (3.49)

Given randomly generated feasible solution Λ(0)

n=0;
Repeat

Update ∆(n) by solving problem (3.49);
Set n = n+ 1;

Until convergence or required number of iterations.

2ι
(n)
3 ι3 − (ι

(n)
3 )2 ≥ γ − θ, (3.46c)

where ι
(n)
i , i = 1, 2, 3, denotes the variable value of ιi at the n-th iteration. As a result,

the original nonconvex constraints can be approximated by SCA-based expressions

and LMIs. The equivalence is guaranteed since (3.46a), (3.46b) and (3.46c) must hold

with equality at optimum.

With respect to (3.43b), we apply the AGM inequality-based method to get its

convex approximation that can be represented as:

(a
(n)
3 τ5)

2 + (θ/(a
(n)
3 )2 ≤ 2τ4 − 2θ, (3.47)

where a
(n)
3 represents the value of a at the n-th iteration and can be calculated as

a
(n)
3 =

√
θ(n−1)

τn−1
5

. (3.48)

As a result, after applying the proposed approximation methods, the original

problem (3.35) can be transformed into convex program. At the n-th iteration, the

following optimization problem needs to be solved:

max
µ,θ,β,w1,w2

µ (3.49a)

s.t. ν1, ν2, ν3, ν4, ν5, ν6, ν7 ≥ 0, (3.49b)

(3.41), (3.42a), (3.42b), (3.42c), (3.49c)

(3.42d) , (3.44a), (3.44b), (3.45a), (3.45c), (3.49d)

(3.45e), (3.46a), (3.46b), (3.46c), (3.49e)

(3.47), (3.37h) and (3.37i). (3.49f)

Accordingly, to solve the problem (3.49), the SCA-based iterative algorithm is pro-

vided in Table 3.3.

To prove that the above proposed algorithm converges, we provide the following

propositions.
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3.5. Numerical Results

Proposition 3. A non-decreasing sequence of the objective values can be obtained

from the proposed beamforming design, i.e., µn+1 ≥ µn. Thus, The algorithm provided

in Table 3.3 can continuously converge to a stationary point.

Proof : The proof is provided in Appendix B.

Though proposition 3 demonstrates that the proposed algorithm converges to a

stationary point, the global optimality of the problem still cannot be guaranteed

due to the nonconvex characteristic of problem (3.37). However, we can verify that

the calculated solutions converge to a KKT point under some specific conditions, as

summarized in the following proposition.

Proposition 4. The calculated solutions by using SCA-based algorithm continuously

converge to a KKT point of problem (3.37) when the iteration number tends to infinity.

Proof : The proof is provided in Appendix C.

3.5 Numerical Results

In this section, numerical results are provided to evaluate the performance of the

proposed algorithms for a cellular SWIPT-enabled robust cooperative NOMA system

through Monte Carlo simulations. Firstly the outage-based constrained optimization

problem will be examined, followed by the worst-case based optimization problem.

For both cases, we iteratively solve the robust optimization problems for 2,000 times.

In the following simulations, it is assumed that the BS has two antennas, i.e. Nt = 2,

while user 1 and user 2 each has one. The estimated channel coefficient can be mod-

eled as h̃k = gkd
−α

2
k , k = {1, 2}, where dk is the distance from the BS to the k-th

user, α is the path loss exponent. Here, we assume α = 2.5 and gk follows Rayleigh

fading distribution with zero mean and unit variance. We set the energy harvesting

efficiency ϑ=0.7, unless otherwise stated. Without loss of generality, the bandwidth

is set to be 1 MHz. All the background noise power is assumed to be 1 Watt, and

the transmit power is defined in dB relative to the noise power. In addition, for the

purpose of system performance comparison, robust noncooperative NOMA, cooper-

ative/noncooperative NOMA with perfect CSI, non-robust cooperative NOMA, and

robust TDMA schemes are introduced as follows, which will be then compared with

the proposed robust cooperative NOMA model:

• For robust noncooperative NOMA scheme, the BS serves two users simultane-

ously by performing NOMA and there is no cooperative transmission between
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Figure 3.2: The convergence procedure of two algorithms.

user 1 and user 2. In addition, the BS only has imperfect CSI of two users and

robust beamforming design is applied.

• Regarding cooperative/noncooperative NOMA with perfect CSI scheme, the

algorithm proposed in [20] is adopted as the benchmark, where beamforming

vectors and PS ratio are acquired for cooperative/noncooperative NOMA with

perfect CSI.

• For the non-robust cooperative NOMA scheme, the beamforming vectors and

PS ratio for the cooperative NOMA system with perfect CSI is first obtained

by using the beamforming design algorithm proposed in [20]. Since we want

to check the performance of the non-robust design in a system with channel

uncertainties, hence after obtaining Wi and β, if the constraints of problem P4

are not satisfied, the achievable rate of user 1 is 0. Otherwise, the rate of user

1 is computed by introducing the channel mismatches.

• For robust TDMA scheme, the system operates with TDMA mode and the time

resource is equally allocated to two users. Furthermore, channel uncertainties

exist in the connections between the BS and two users and robust design scheme

is applied.

Before we examine the performance of the proposed SWIPT-enabled robust co-

operative NOMA system, we first provide insight on the convergence property of the

proposed algorithms. It can be observed from Fig. 3.2 that both algorithms converge

to the maximum values within about 5 iterations, which proves the effectiveness of

the proposed algorithms.
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Figure 3.3: Achievable rate of user 1 versus error variance with γ=1, for the outage-based
constrained optimization.

3.5.1 Outage-based Constrained Optimization Simulation

In Fig. 3.3, the impact of the error variance is shown for the outage-based constrained

optimization problem. Specifically, we set error covariances C1 and C2 be the same

value as ϵ2h, the desired data rate of user 2 as 1 Mbps, the available maximum power

at the BS be 20 dB, and the outage is set to be 0.1 which means that the system has a

chance of 90% or higher probability to satisfy the SINR requirements. The figure illus-

trates that the proposed SCA-based algorithm achieves similar system performance

as exhaustive search method, but has significantly reduced computational complexity.

Furthermore, we can observe that although the maximum achievable data rate of user

1 decreases for all of the schemes when the error variance becomes larger, the bene-

fit of using the proposed SWIPT-enabled robust cooperative NOMA scheme becomes

more significant since the gap between the proposed model and the other two schemes

becomes larger. Moreover, it can be seen that the two NOMA schemes illustrated

in this figure yield better performance than TDMA which shows the advantage of

applying NOMA in the outage-based constrained optimization problem.

To investigate the performance of the proposed system model, Fig. 3.4 illustrates

the maximum achievable data rate of user 1 versus the available transmission power
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Figure 3.4: Achievable rate of user 1 versus transmit power with γ=1, for the outage-based
constrained optimization.

at the BS for the following schemes: the proposed robust cooperative NOMA, co-

operative NOMA with perfect CSI, robust noncooperative NOMA, noncooperative

NOMA with perfect CSI, classical robust TDMA and TDMA with perfect CSI. This

figure is plotted for the outage-based constrained optimization problem. To provide

fair comparison results, we set ϑ=1 here. First, it demonstrates that when perfect

CSI is available at the BS, cooperative NOMA outperforms noncooperative NOMA

in the low power region and achieves the same data rate in the high power regime.

Moreover, Fig. 3.4 indicates that the proposed robust cooperative NOMA system

always achieves better performance than the robust noncooperative NOMA and TD-

MA, which means that it is beneficial to adopt the cooperative transmission design

for the situations with only imperfect CSI available.

Furthermore, in order to study the relationship between the achievable rate of

user 1 and the target rate of user 2, we plot Fig. 3.5 to investigate the rate tradeoff

between the two users for robust cooperative NOMA, robust noncooperative NOMA

and robust TDMA schemes. This figure is plotted for the outage-based constrained

optimization problem. Firstly, we can find that the robust cooperative NOMA yields

the largest achievable data rate for user 1 among all three schemes. For example,

when the target data rate of user 2 is 1.5 Mbps, the maximum achievable rate of user
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Figure 3.5: Rates tradeoff for the outage-based constrained optimization with ϵ2h=0.01 and
Pmax=20 dB .

1 for robust cooperative NOMA is 3.4 Mbps, while for the robust noncooperative

NOMA and TDMA schemes, the maximum achievable rate of user 1 are 1.6 Mbps

and 0.4 Mbps respectively. Furthermore, from Fig. 3.5, we can also notice that when

the target data rate of user 2 increases, the achievable data rate of user 1 decreases

for all three schemes as more power is allocated to user 2 in order to satisfy its rate

requirements.

3.5.2 Worst-case Based Optimization Simulation

In Fig. 3.6, the impact of the channel mismatch for the worst-case based optimiza-

tion problem is presented. Here the desired QoS rate of user 2 is set to be 1 Mbps,

and the maximum available power is 35 dB. Further, we set ϵ2h1
and ϵ2h2

to be the

same value, denoted as ϵ2h. Similar to Fig. 3.3, Fig. 3.6 also shows that for the

worst-case based optimization problem, the performance of the proposed SCA-based

robust cooperative design is close to that of the exhaustive search method. Further-

more, when perfect CSI is available, i.e., ϵ2h = 0, user 1 achieves almost the same

rate for the proposed robust cooperative NOMA, non-robust cooperative NOMA and
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Figure 3.6: Achievable rate of user 1 versus error variance with γ=1 for the worst-case
optimization.

robust noncooperative NOMA. However, when there exists channel mismatch, the

proposed robust cooperative scheme is more beneficial than the non-robust design.

In addition, Fig. 3.6 shows that the robust cooperative NOMA always outperforms

the robust noncooperative NOMA scheme. The reason is that, for the robust coop-

erative scheme, the cooperative phase with perfect CSI can be utilized to improve

the weak user’s reception reliability under the condition of limited available power at

the BS. Furthermore, though the gap between the robust noncooperative NOMA and

robust TDMA scheme decreases with the error variance, it can still be observed that

NOMA scheme always performs better than TDMA scheme which demonstrates the

superiority of NOMA. Specifically, the advantage of NOMA is more significant when

the error variance ϵ2h is relatively small.

To study the performance of the proposed robust cooperative NOMA scheme, Fig.

3.7 is plotted to compare different schemes: robust cooperative NOMA, robust nonco-

operative NOMA, non-robust cooperative NOMA and traditional robust TDMA, for

the worst-case optimization. The channel mismatch is set as ϵ2h1
=ϵ2h2

=0.05. Firstly,

we can notice that the proposed SWIPT-enabled robust cooperative NOMA produces

the best performance among all schemes. Especially, the robust design improves the

data rate of user 1 greatly, compared to its non-robust counterparts. Furthermore,
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Figure 3.7: Achievable rate of user 1 versus power with γ=1 for the worst-case optimization.

both the proposed scheme and the robust noncooperative NOMA outperforms the tra-

ditional robust TDMA scheme which indicates the advantage of NOMA in improving

system spectral efficiency when channel uncertainty exists.

Fig. 3.8 shows the influence of user 2’s target data rate on the achievable data

rate performance of user 1 for the robust cooperative NOMA, robust noncooperative

NOMA and robust TDMA schemes. This figure is illustrated based on the worst-

case optimization. Firstly, Fig. 3.8 demonstrates that the proposed SWIPT-enabled

robust cooperative NOMA achieves higher maximum achievable rate for user 1, com-

pared to the robust noncooperative NOMA and TDMA schemes. In addition, Fig.

3.8 shows that the achievable data rate of user 1 decreases with the increase of target

data rate of user 2 for all schemes. This is because when user 2 has a higher target

data rate, more power is allocated to satisfy its requirement and as a result, the power

available to user 1 becomes less.

3.6 Summary

In this chapter, we have investigated the robust beamforming and PS design to max-

imize the strong user’s data rate for a SWIPT-enabled robust cooperative NOMA
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Figure 3.8: Rates tradeoff for the worst-case optimization with ϵ2h=0.05 and Pmax=35 dB .

system. Two kinds of channel uncertainties are considered, which respectively lead

to an outage-based SINR constrained optimization and a worst-case based optimiza-

tion problem. For both cases, the original problem was first transformed into a more

tractable form by using SDR technique. Specifically, as to the outage-based SIN-

R constrained optimization problem, the Bernstein-type inequality was applied to

convert the probabilistic constraints into manageable and computable approxima-

tions that can be globally solved by two-dimensional exhaustive search. An iterative

method was further developed to reduce the high complexity. On the other hand,

to solve the worst-case based optimization problem, the rank-one optimality of the

SDR approach was first proved. Then, by applying the S -procedure, the nonconvex

problem was reformulated as convex ones which can be finally solved using the pro-

posed SCA-based algorithm. Simulation results demonstrated the superiority of the

proposed SWIPT-enabled cooperation in robust NOMA design over other schemes.
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Chapter 4

Computation Efficiency
Maximization for Wireless
Powered NOMA-Assisted Mobile
Edge Computing with User
Cooperation

4.1 Introduction

We investigate the application of user cooperation (UC) and NOMA for wireless pow-

ered MEC system, in which two single-antenna mobile users first harvest energy from

a multi-antenna AP integrated with the MEC server. Considering the non-linear fea-

ture of energy harvesting circuits, a more practical non-linear energy harvesting model

is adopted. Then, during the computation offloading phase, both users simultaneous-

ly offload tasks to the MEC server with the harvested energy, by performing NOMA

protocol. To further improve the system performance, UC scheme is carried out,

where the near user acts as a DF relay to help the far user offload computation tasks

to the AP. To obtain energy efficient communications, our objective in this chapter

is to maximize the computation efficiency (i.e., the total computation bits divided by

the energy consumption) by jointly designing the transmit beamforming, time and

power allocations, which yields to a challenging nonconvex optimization problem. To

The works presented in this Chapter have been submitted to the IEEE Transactions on Com-
munications.
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Figure 4.1: NOMA-assisted wireless powered MEC with user cooperation.

deal with it, the original problem is first transformed into a more tractable formula-

tion by applying the SDR technique and then solved by utilizing the SCA approach.

Numerical results demonstrate that UC makes a great impact when two users are rel-

atively close, while NOMA makes effect when two users are relatively far. Combining

both NOMA and UC, the proposed scheme, named NOMA-UC MEC, yields better

system performance than the benchmark schemes.

The remainder of this chapter is organized as follows. In Section 4.2, we present the

system model of the wireless powered NOMA-assisted MEC with user cooperation

and formulate the computation efficiency optimization problem. Then, A solution

approach based on SDR and SCA is developed in Section 4.3 to maximize computation

efficiency. Finally, simulation results are given in Section 4.4, followed by conclusions

in Section 4.5.

4.2 System Model and Problem Formulation

4.2.1 System Model

Consider a wireless powered MEC system, as shown in Fig. 4.1, which is composed

of an Nt-antenna AP integrated with an MEC server and two single-antenna users.

Without loss of generality, U1 is assumed to be far from the AP and U2 is close to the

AP. Let d1, d2, and d12 denote the distance between U1 and the AP, U2 and the AP,

and that from U1 to U2, respectively. Particularly, d1 ≥ d12 is assumed to guarantee

that U2 has an advantage in decoding U1’s message than the AP.
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Figure 4.2: Time allocation structure for the wireless powered NOMA-assisted MEC with
user cooperation.

The system is assumed to be divided into block slots, and the duration of each

block is T seconds. T is chosen to be no more than the user latency requirement

and the channel coherence time, hence the channels remain unchanged during one

block. It is assumed that perfect CSI is available at the AP 1. For a given block,

two processes, namely the WPT phase and the computation offloading phase, will

be performed. The AP first charges the users via employing the RF signal. Then,

based on the harvested energy, part of the tasks can be executed by local computing,

while the remaining computation tasks can be offloaded to the MEC server for remote

execution.

4.2.2 WPT Phase

During the WPT phase, the AP broadcasts wireless energy via downlink transmission

and the received signals at both users can be expressed as

yi = gH
i wx+ ni, i = {1, 2}, (4.1)

where gi ∈ CNt×1 is the channel gain from AP to Ui, i = {1, 2},w ∈ CNt×1 denotes the

RF energy beamforming vector, x is the RF energy signal with normalized transmit

power, i.e., E[∥x∥2] = 1, and ni is the AWGN following ni ∼ CN (0, σ2).

The received RF power at the receiver can be denoted as

Pi(w) = |gH
i w|2, i = {1, 2}. (4.2)

1It is noted that the system performance may degrade when only imperfect CSI is known at the
AP. Therefore, the perfect CSI scenario serves as the upper bound. For imperfect CSI case, robust
optimization methods proposed in Chapter 3 may be applied, which is left for our future work.
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For the considered non-linear energy harvesting model, according to [98, 99], the

harvested energy at the users during the WPT phase occupying the time period t0

can be expressed as

Ei = t0

[
Ψi

Xi

− Yi

]
, i = {1, 2}, (4.3)

with

Ψi =
Mi

1 + exp(−ai(Pi(w)− bi))
, (4.4a)

Xi =
exp(aibi)

1 + aibi
, (4.4b)

Yi =
Mi

exp(aibi)
, (4.4c)

where Mi, ai and bi are constants capturing the non-linear properties of the ener-

gy harvesting system. Specifically, Mi denotes the maximum output power of the

energy harvesting circuits, while ai and bi reflect the hardware phenomena, i.e., the

capacitance, the resistance and the circuit sensitivity.

4.2.3 Computation Offloading Phase

The partial offloading case is considered, where the computation task of each user is

divided into two parts for remote execution at the AP and local computing, respec-

tively. The time allocation structure of the computation offloading phase is illustrated

in Fig. 4.2. To exploit the benefit of UC while maintaining the advantages of NOMA,

three slots are included for UC-enabled uplink NOMA transmission. The offloaded

information of both users is divided into two segments, where the two segments are

transmitted to the AP directly in the first and the third slot for User 2. For User 1,

the first segment is transmitted collaboratively to the AP in the first and second slots,

and the second segment is transmitted directly to the AP in the third slot. Specifi-

cally, during the subsequent period t1, due to the application of NOMA protocol, U1

and U2 offload some input-bits simultaneously with power p11 and p20. Then, both

the AP and U2 can decode the signal of U1, while the AP also needs to decode U2’s

information. For information decoding at the AP, the user with the better channel

gain is firstly decoded for uplink NOMA, i.e., the AP first detects U2’s message by

treating the message of U1 as noise, and then removes it with SIC to further decode

U1’s information. The remaining time is divided into two parts, given as t21 and t22.

UC is applied during the second period t21, i.e., U2 acts a DF relay to forward the

signal of U1 to the AP with power p21. In the third slot t22, U1 and U2 offload their

own input-bits to the AP with power p12 and p22.
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Combing the observation from both t1 and t22, the offloaded data size of U2 can

be characterized as

ℓoff2 ≤ t1Blog2(1 +
p20|h2|2

I1 + σ2
) + t22Blog2(1 +

p22|h2|2

I2 + σ2
), (4.5)

where hi, i = {1, 2}, denotes the uplink channel gain from the users to the MEC

server. Then, I1 = p11|h1|2 and I2 = p12|h1|2 represent the interference caused by U1

during t1 and t22.

For uplink NOMA transmission, to guarantee the correct SIC decoding in a given

order and allocate non-trivial data rate to U2, the following inequality should be

satisfied [17]:

p20|h2|2 ≥ p11|h1|2, (4.6a)

p22|h2|2 ≥ p12|h1|2. (4.6b)

After removing the interference signal of U2, the offloaded data size of U1 can be

given as follows

ℓoff1 = ℓ1,1 + ℓ1,2, (4.7)

where ℓ1,1 represents the offloaded data size of U1 via UC. Based on [100], ℓ1,1 is

expressed as ℓ1,1 ≤ min{ℓ1,direct, ℓ1,relay}, where ℓ1,direct and ℓ1,relay are the offloaded

data size of U1 at the AP and U2, which are given as ℓ1,direct = t1Blog2(1 +
p11|h1|2

σ2 ) +

t21Blog2(1 + p21|h2|2
σ2 ), ℓ1,relay = t1Blog2(1 + p11|h12|2

σ2 ), respectively. Moreover, ℓ1,2

denotes the offloaded data size during the period t22, which can be expressed as

ℓ1,2 ≤ t22Blog2(1 +
p12|h1|2

σ2 ).

Similar to [101], we assume that the time consumption of two processes, i.e.,

task execution at the MEC server and MEC server transmits computed results back

to users, are negligible. The reason is that, sufficient CPU-capability and energy

are assumed to be available at the MEC-integrated AP, and the output data sizes

are much smaller compared with that of the input data sizes. Furthermore, U1’s

information decoding time at U2 is also ignored, as it is much smaller compared with

the computation offloading time. Therefore, the system latency constraint including

the WPT and computation offloading can be given as

t0 + t1 + t21 + t22 ≤ T. (4.8)

During this phase, the consumed energy of U1 and U2 can be respectively denoted

as

Eoff
1 = p11t1 + p12t22, (4.9a)

Eoff
2 = p20t1 + p21t21 + p22t22. (4.9b)
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4.2.4 Local Computing

Furthermore, during the whole block duration T , ℓloci , i = {1, 2}, input-bits are exe-

cuted by local computing at the users. Similar to [6, 102], identical CPU frequency

fi =
Ciℓ

loc
i

T
is adopted for CPU cycle, where Ci, i = {1, 2}, denotes the number of re-

quired CPU cycles to compute one input-bit locally. fi is constrained by a maximum

CPU frequency fmax, which can be equivalently expressed as

Ciℓ
loc
i ≤ Tfmax. (4.10)

Accordingly, the consumed energy for local computing can be given as

Eloc
i =

κiC
3
i (ℓ

loc
i )3

T 2
, i = {1, 2}, (4.11)

where κi is a constant denoting the effective capacitance coefficient and the value is

dependent on the chirp architecture [7].

Due to the fact that the consumed energy at the users cannot exceed the harvested

energy obtained from WPT, we have that

Eloc
i + Eoff

i ≤ Ei, i = {1, 2}. (4.12)

The computation efficiency is defined as a ratio of the total calculated data bits

to the system energy consumption, which can be given as

η̃ =

∑2
i=1 ℓ

loc
i + ℓoffi

t0|w|2
. (4.13)

Finally, with the aim of obtaining an energy efficient design, we formulate the

computation efficiency maximization problem as follows

max
w,t,p,ℓ

η̃, (4.14a)

s.t. t0 + t1 + t21 + t22 ≤ T, (4.14b)

Eloc
i + Eoff

i ≤ Ei, i = 1, 2, (4.14c)

ℓloci + ℓoffi ≥ Li, i = 1, 2, (4.14d)

|w|2 ≤ Pmax, (4.14e)

p20|h2|2 ≥ p11|h1|2, p22|h2|2 ≥ p12|h1|2, (4.14f)

t ≥ 0,p ≥ 0, ℓ ≥ 0, (4.14g)

where t = [t0, t1, t21, t22], p = [p11, p12, p20, p21, p22], and ℓ = [ℓoff1 , ℓoff2 , ℓloc1 , ℓloc2 ] denote

the time allocation vector, the power allocation vector and the calculated data size

sets for computation offloading and local computing, respectively. Further, constraint

(4.14d) denotes the minimum required computing data bits for user i, where i =

{1, 2}. The maximum available power at the AP is limited by (4.14e).
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4.3 Solution Approach

It is noted that (4.14) is a nonconvex problem, which cannot be solved directly. The

challenge is twofold, i.e., 1) the objective is a fractional function involving transmit

beamfoming vector, 2) the expressions of U2’s offloading data size and the adopted

non-linear energy harvesting model are complicated. In this section, we first provide

the optimal time allocation conditions. Then, we relax the problem by leveraging

the SDR approach. For the relaxed problem, the objective function, the energy-

limited constraints and U ′
2s offloading bits ℓoff2 are further converted into convex

approximations with SCA.

4.3.1 SCA-based Approach

Firstly, to solve (4.14), the optimal time utilization is obtained with the following

Lemma 3.

Lemma 3. The maximum computation efficiency of (4.14) can be achieved with t0+

t1 + t21 + t22 = T .

Proof : The proof is provided in Appendix D.

To deal with the beamforming vector w, SDR technique is applied to transform

(4.14) into a more tractable form. Specifically, w is replaced by the semidefinite

positive matrix, i.e., W = wwH . The constraint (4.14e) can be then reformulated as

follows

Tr(W ) ≤ Pmax, (4.15a)

W ≽ 0, (4.15b)

rank(W ) ≤ 1. (4.15c)

Then, by introducing some slack variables ζ = [ζ1, ζ2], τ = [τ1, τ2], and several

substitution variables, i.e., E = [E11, E12, E20, E21, E22], where E11 , t1p11, E12 ,
t22p12, E20 , t1p20, E21 , t21p21, and E22 , t22p22, (4.14c) can be decoupled into the

following constraints

E11 + E12 +
κ1C

3
1(ℓ

loc
1 )3

T 2
≤ ζ1, (4.16a)

(
ζ1
t0

+ Y1)X1 ≤
M1

1 + exp(−a1(τ1 − b1))
, (4.16b)

τ1 ≤ Tr(G1W ), (4.16c)

E20 + E21 + E22 +
κ2C

3
2(ℓ

loc
2 )3

T 2
≤ ζ2, (4.16d)
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(
ζ2
t0

+ Y2)X2 ≤
M2

1 + exp(−a2(τ2 − b2))
, (4.16e)

τ2 ≤ Tr(G2W ), (4.16f)

where Gi , gig
H
i , i = {1, 2}. Note that after the reformulations, (4.16b) and (4.16e)

are still nonconvex constraints.

Further, (4.6a) and (4.6b) can be reformulated as

E20|h2|2 ≥ E11|h1|2, (4.17a)

E22|h2|2 ≥ E12|h1|2. (4.17b)

By further introducing two slack variables and applying the epigraph reformula-

tion, (4.16b) can be reformulated as

(υ1 + Y1)X1 ≤
M1

1 + exp(−a1(τ1 − b1))
, (4.18a)

[
υ1 ω1

ω1 t0

]
≽ 0, (4.18b)

ω2
1 ≥ ζ1, (4.18c)

where (4.18a) is a convex function, (4.18b) is a convex LMI, and the nonconvex

function is (4.18c).

Moreover, SCA can be adopted to obtain the convex approximation of (4.18c).

Due to the convex feature of ω2
1, the lower bound approximation can be derived by

performing the first-order Taylor approximation:

ω2
1 ≥ 2ω

(n)
1 ω1 − (ω

(n)
1 )2, (4.19)

where ω
(n)
1 denotes the value of ω1 during the n-th iteration.

Hence, (4.18c) is transformed into the following inequality:

2ω
(n)
1 ω1 − (ω

(n)
1 )2 ≥ ζ1, (4.20)

Similarly, (4.16e) can be approximated as

(υ2 + Y2)X2 ≤
M2

1 + exp(−a2(τ2 − b2))
, (4.21a)

[
υ2 ω2

ω2 t0

]
≽ 0, (4.21b)
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2ω
(n)
2 ω2 − (ω

(n)
2 )2 ≥ ζ2. (4.21c)

Then, by introducing auxiliary variables µ and Υ, the objective function can be

approximated as follows

max
w,t,p,ℓ

µ, (4.22a)

s.t.

2∑
i=1

ℓloci + ℓoffi ≥
√
µΥ, (4.22b)

t0Tr(W ) ≤
√
Υ, (4.22c)

where the equivalence is guaranteed when (4.22b) and (4.22c) hold with equality at

optimum.

It is noted that
√
µΥ is a joint concave function with respect to µ and Υ, which

can be approximated by its upper bound as below√
µΥ , g(µ,Υ) ≤ g

′
(µ,Υ, µ(n),Υ(n)), (4.23a)

g
′
(µ,Υ, µ(n),Υ(n)) =

√
µ(n)Υ(n) + 0.5

√
µ(n)

Υ(n)
(Υ−Υ(n)) + 0.5

√
Υ(n)

µ(n)
(µ− µ(n)),

(4.23b)

where µ(n) and Υ(n) denote the value of variables µ and Υ at the n-th iteration

respectively, and g
′
(µ,Υ, µ(n),Υ(n)) represents the first-order Taylor approximation

around (µ(n),Υ(n)).

Accordingly, (4.22b) can be reformulated as

2∑
i=1

ℓloci + ℓoffi ≥ g
′
(µ,Υ, µ(n),Υ(n)). (4.24)

For (4.22c), AGM method [103] can be applied to transform it into convex ap-

proximation as

(ν(n)t0)
2 + (Tr(W )/ν(n))2 ≤ 2

√
Υ, (4.25)

where ν(n) can be updated as below during the n-th iteration

ν(n) =

√
Tr(W )(n−1)/t

(n−1)
0 . (4.26)
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Moreover, by substituting E into (4.5), it can be reformulated as below
ℓoff1 = ℓ1,1 + ℓ1,2,

ℓ1,1 ≤ t1Blog2(1 +
E1|h1|2
t1σ2 ) + t21Blog2(1 +

E21|h2|2
t21σ2 ),

ℓ1,1 ≤ t1Blog2(1 +
E1|h12|2
t1σ2 ),

ℓ1,2 ≤ t22Blog2(1 +
E12|h1|2
t22σ2 ).

(4.27)

As a function f
′
(x) = log2(1 + x

σ2 ) is concave, its perspective function tf
′
(x
t
) =

log2(1 + x
tσ2 ) is also concave. This indicates that the constraints in (4.27) are all

convex.

Then, by introducing two slack variables ℓoff2,1 and ℓoff2,2 , the offloaded data size of

U2 can be recast as

ℓoff2 ≤ ℓoff2,1 + ℓoff2,2 , (4.28a)

ℓoff2,1 ≤ t1Blog2(1 +
E20|h2|2

E11|h1|+ σ2t1
), (4.28b)

ℓoff2,2 ≤ t22Blog2(1 +
E22|h2|2

E12|h1|+ σ2t22
), (4.28c)

where the optimality can be guaranteed when (4.28b) and (4.28c) hold with equality.

To deal with the nonconvex functions (4.28b) and (4.28c), we introduce the dif-

ference of convex (DC) programming [104] as follows:

Lemma 4. DC programming can be expressed as a difference of convex functions,

which is shown as

min
x∈χ

f0(x)− g0(x) (4.29a)

s.t. fi(x)− gi(x) ≤ 0, i = 1, . . . ,m, (4.29b)

where fi(x) and gi(x) represent continuous convex or quasi-convex functions, χ is a

convex set.

Though (4.29) is nonconvex, it has been demonstrated DC programming can be

efficiently solved [105,106].

Therefore, to further transform (4.28b), it can be firstly rewritten as ℓoff2,1 ≤
m1(E, t1)− z1(E, t1), where m1(E, t1) and z1(E, t1) are defined as

m1(E, t1) = t1Blog2(1 +
E11|h1|2 + E20|h2|2

σ2t1
), (4.30a)

z1(E, t1) = t1Blog2(1 +
E11|h1|2

σ2t1
). (4.30b)
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It is worth noting that both m1(E, t1) and z1(E, t1) are joint concave functions

with respect to E and t1. Therefore, we can see that m1(E, t1) − z1(E, t1) is a DC

programming function, which can be converted into convex expression with the aid

of SCA. As z1(E, t1) is a concave function, an upper bound can be given by using its

first-Taylor expansion as below:

z1(E, t1) ≤ z1(E
(n), t

(n)
1 ) +∇z1(E(n))(E11 − E

(n)
11 ) +∇z1(t(n)1 )(t1 − t

(n)
1 ), (4.31)

where E
(n)
11 and t

(n)
1 represent the values of E11 and t1 at the n-th iteration. ∇z1(E(n))

and ∇z1(t(n)1 ) denote the gradients of z1(E, t1) over E11 and t1, which are expressed

as 
∇z1(E(n)) =

Bt
(n)
1 |h1|2

(E
(n)
11 |h1|2+σ2t

(n)
1 )ln2

,

∇z1(t(n)1 ) = Blog2(1 +
E

(n)
11 |h1|2

σ2t
(n)
1

)− BE
(n)
11 |h1|2

(E
(n)
11 |h1|2+σ2t

(n)
1 )ln2

.
(4.32)

As a result, (4.28b) can be reformulated as

ℓoff2,1 ≤ m1(E, t1)− z1(E
(n), t

(n)
1 )−∇z1(E(n))(E11 − E

(n)
11 )−∇z1(t(n)1 )(t1 − t

(n)
1 ).

(4.33)

Furthermore, following a similar procedure, (4.28c) can be then recast as

ℓoff2,2 ≤ m2(E, t22)− z2(E
(n), t

(n)
22 )−∇z2(E(n))(E12 − E

(n)
12 )−∇z2(t(n)22 )(t22 − t

(n)
22 ),

(4.34)

where m2(E, t22), z2(E, t22), ∇z2(E(n)), and ∇z2(t(n)22 ) are defined as

m2(E, t22) = t22Blog2(1 +
E12|h1|2+E22|h2|2

σ2t22
),

z2(E, t22) = t22Blog2(1 +
E12|h1|2
σ2t22

),

∇z2(E(n)) =
Bt

(n)
22 |h1|2

(E
(n)
12 |h1|2+σ2t

(n)
22 )ln2

,

∇z2(t(n)22 ) = Blog2(1 +
E

(n)
12 |h1|2

σ2t
(n)
22

)− BE
(n)
12 |h1|2

(E
(n)
12 |h1|2+σ2t

(n)
22 )ln2

.

(4.35)

Finally, the original problem (4.14) can be transformed into a convex formulation

by dropping the rank-one constraint. During the n-th iteration, the following convex
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Table 4.1: Computation Efficiency Maximization Algorithm

Initialize E(0) and t(0), set n = 0, µ0 = 0, µ1 = 1, and the tolerance ϵ = 10−3.
While |µn+1 − µn| ≥ ϵ

Update E(n) and t(n) by solving (4.36);
Update µn = µn−1;
Update n = n+ 1;

End While
Output W (n), E(n) and t(n).

optimization problem needs to be solved:

max
W ,ω,υ,t,E,µ

µ, (4.36a)

s.t. (4.16a), (4.16c), (4.16d), (4.16f), (4.17a), (4.36b)

(4.17b), (4.18a), (4.18b), (4.20), (4.21a), (4.36c)

(4.21b), (4.21c), (4.24), (4.25), (4.27), (4.36d)

(4.28a), (4.33), (4.34), (4.36e)

Tr(W ) ≤ Pmax, (4.36f)

t0 + t1 + t21 + t22 = T, (4.36g)

t ≽ 0,E ≽ 0,W ≽ 0, ℓ ≽ 0, (4.36h)

where ω = [ω1, ω2],υ = [υ1, υ2].

Therefore, the proposed computation efficiency maximization algorithm is provid-

ed in Table 4.1 to outline the detailed process to solve problem (4.36).

Note that the nonconvex rank-one constraint, i.e., rank(W ) ≤ 1 is dropped for

(4.36). To demonstrate the equivalence between (4.36) and (4.14), we provide the

following theorem.

Proposition 5. There is always an optimal solution W ∗ to (4.36), whenever the

problem is feasible.

Proof : The proof is provided in Appendix E.

Moreover, to prove the proposed algorithm converges, we have the following the-

orem.

Proposition 6. Algorithm provided in Table 4.1 produces a non-decreasing sequence

of the objective values, i.e., µ(n+1) ≥ µ(n), which indicates the convergence of the

proposed algorithm.
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Proof : The proof is provided in Appendix F.

Proposition 7. The proposed algorithm continuously converges to a KKT point of

problem (4.14) whenever problem (4.36) is feasible.

Proof : The proof is provided in Appendix G.

4.3.2 Complexity Analysis

Note that the computational complexity of the proposed computation efficiency max-

imization algorithm consists of two loops: the outer iteration loop and the inner

loop to solve problem (4.36). Specifically, denote the maximum iteration number of

the algorithm provided in Table 4.1 as Lmax, while the complexity of the interior

point method to solve (4.36) is proportional to O(r3.5δ) [107], where r denotes the

number of total optimization variables, and δ is the number of bits needed to rep-

resent the entries in the optimization problem. In summary, the whole complexity

of the proposed algorithm is O(Lmaxr
3.5δ), where r is the total number of variables

(W , t,E, ζ, τ ,ω,υ, µ,Υ) to solve (4.36).

4.4 Simulation Results

Numerical results are provided to evaluate the performance of the proposed scheme.

The parameters are set as follows, unless otherwise stated. It is assumed that the

AP is situated at the edge of the network with a coordinate of (0, 5 m). The two

users are randomly distributed in a 8 m×10 m coverage region. Furthermore, we set

the bandwidth B = 1 MHz, the capacitance coefficient κi = 10−28, the maximum

CPU frequency fmax = 2 GHz, and the noise power σ2 = 10−9 W. The required CPU

cycles to locally compute one bit for two users are given as 1000 [108]. Without loss of

generality, the channel reciprocity is assumed to hold for the downlink and uplink, i.e.,

hi = gi, {i = 1, 2}, and the channel coefficient is modeled as hi = 10−1.5h̃id
−α

2
i , i =

{1, 2}, where α = 3 denotes the path loss exponent, and h̃ follows the Rayleigh fading

distribution. Without loss of generality, we set L1 = L2 = L, which indicates that

two users have the same computation rate requirement. For the non-linear energy

harvesting model, the parameters are set as M1 = M2 = 24 mW, a1 = a2 = 150 and

b1 = b2 = 0.024.

For simplicity, the proposed scheme is referred to as ”NOMA-UC MEC” in the

following figures. To provide a comprehensive study, we also simulate the baseline

schemes, which are described as follows:
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Figure 4.3: Maximum computation efficiency vs. L.

• UC-MEC represents the wireless powered UC-enabled MEC strategy, and TD-

MA is adopted as the MA scheme.

• For NOMA-MEC, it denotes the wireless powered MEC scheme, with NOMA

protocol applied.

• MEC denotes the conventional MEC scheme based on TDMA protocol without

the application of UC.

• With regards to the local computing scheme, the users execute the computation

task by local computing only, which corresponds to the condition of ℓoff1 = 0

and ℓoff2 = 0.

• For offloading only scheme, the computation tasks are fully executed by the

MEC integrated with the AP by setting ℓloc1 = 0 and ℓloc2 = 0.

In Fig. 4.3, we present the relationship between the maximum computation ef-

ficiency and the required computation data size. To demonstrate the effectiveness

of the partial offloading, the results of offloading only and local computing schemes

are provided for comparison. As can be observed from the figure, the computation

efficiency decreases with larger required data bits for all three schemes, which implies
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Figure 4.4: Maximum computation efficiency vs. T .

that the required energy to compute grows faster than the growth of data size. In

addition, it is obvious that the proposed NOMA-UC MEC scheme is superior to the

baseline schemes. Specifically, the local computing scheme yields the worst perfor-

mance, indicating that the application of MEC greatly contributes to performance

improvement.

Fig. 4.4 shows the influence of the block slot duration on the computation effi-

ciency. It is noted that the computation efficiency increases monotonically with the

block slot duration for all the schemes, and the proposed NOMA-UC MEC scheme

outperforms the benchmark schemes. For example, when the time duration is 1s, the

achievable computation efficiency for NOMA-UC MEC is about 6 × 104 bits/Joule,

while for offloading only and local computing are 3.8× 104 bits/Joule and 0.7× 104

bits/Joule, respectively.

To show the effect of NOMA and UC application in MEC design, four schemes,

namely the proposed NOMA-UC MEC, NOMA-MEC, UC-MEC, and MEC schemes

are presented in Fig. 4.5. The computation efficiency performs decreasing trends with

the increase of required data bits for all the schemes, while the proposed NOMA-

UC MEC scheme produces the best performance. In addition, compared with the

MEC scheme, both NOMA-UC and UC-MEC achieve higher computation efficiency,
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Figure 4.5: Maximum computation efficiency vs. L.

0.8 0.9 1 1.1 1.2

T (s)

0

1

2

3

4

5

6

7

8

C
om

pu
ta

tio
n 

E
ffi

ci
en

cy
 (

bi
ts

/J
ou

le
)

104

NOMA-UC MEC
NOMA-MEC
UC-MEC
MEC

Figure 4.6: Maximum computation efficiency vs. T .
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Figure 4.7: Maximum computation efficiency vs. ϕ.

proving the benefit of applying NOMA and UC into MEC design in dealing with the

doubly near-far effect. Moreover, compared with Fig. 4.3, the computation efficiency

of ’local computing’ is marginally lower than that of ’MEC’, which is determined

by the feature of the adopted wireless powered MEC system. Due to the serious

double near-far effect and limited computational capability of users, more resources

will be allocated to the user with bad channel conditions to satisfy the corresponding

computation requirements for MEC scheme, and thus the benefit of the user with

good channel conditions is sacrificed. The system performance becomes even worse

when the connection between mobile users and MEC servers is relatively poor. As a

result, the performance improvement of MEC is limited compared to ’local computing’

scheme.

Fig. 4.6 is plotted to compare the computation efficiency performance with the

block slot duration T . It shows that the trend for all the four curves are simi-

lar, and the proposed NOMA-UC MEC yields the best performance. This indicates

NOMA-UC MEC can improve the computation efficiency of the system. Moreover,

the performance of both NOMA-MEC and UC-MEC is superior to that of MEC,

proving the advantage of applying NOMA and UC into the MEC design.

To evaluate the impact of users’ locations, it is assumed that the AP and two
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Figure 4.8: Maximum computation efficiency vs. number of AP transmit antenna.

users are placed in a line, i.e., d1 = 8 m, d2 = ϕd1, and d12 = (1 − ϕ)d1, where

ϕ ∈ [0.5, 0.75]. As can be observed from Fig. 4.7, the plain MEC scheme still

yields the worst performance. Moreover, both NOMA-UC MEC and UC-MEC show

a similar trend, where the computation efficiency first increases and then decreases

when ϕ becomes larger. The reason is that, with UC applied to NOMA-UC MEC

and UC-MEC schemes, it can make a great impact when ϕ is relatively small. When

ϕ becomes larger, the far user’s channel gain degradation dominates the effect of UC,

and thus the computation efficiency decreases. Moreover, NOMA-MEC outperforms

UC-MEC in the small ϕ regime, while UC-MEC gains better performance with a

larger ϕ. This is because the channel gain of U2 decreases when ϕ increases, the

performance of NOMA-MEC decreases monotonically. However, the performance of

UC-MEC degrades with a smaller ϕ, since two users are relatively far from each other

and UC is inefficient. When two users get closer to each other with the increase of ϕ,

the channel degradation can be better compensated for UC-MEC scheme.

Fig. 4.8 shows the achieved computation efficiency versus the number of transmit

antennas Nt equipped at the AP. The AP and two users are placed in a line and the

distance is set as d1 = 8 m, d2 = 4.8 m, and d12 = 3.2 m. Due to the additional

degrees of freedom introduced by the increasing number of transmit antennas, the
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computation efficiency can be improved for all the schemes. Particularly, compared

with NOMA-UC MEC and offloading only scheme, the performance improvement of

local computing is limited. The reason is that, the channel gain can be improved

in both the downlink WPT transmission and uplink communications for NOMA-

UC MEC and offloading only scheme, whereas only downlink WPT transmission is

affected for local computing.

4.5 Summary

We investigated the application of NOMA and UC in a wireless powered MEC sys-

tem under the non-linear energy harvesting model, in which the joint optimization

of transmit beamforming, time and power allocations was proposed to maximize the

system computation efficiency. To solve the formulated nonconvex problem, SDR

technique was first applied to transform the original problem into a more tractable

expression. Then, the transformed problem was reformulated with variables substi-

tution, which can be finally solved by applying the SCA method. Numerical results

demonstrated the superiority of applying NOMA and UC in wireless powered MEC

design.
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Chapter 5

Energy Efficient Uplink
Transmissions in LoRa Networks

5.1 Introduction

LoRa has been recognized as one of the most promising LPWA techniques. Since

LoRa devices are usually powered by batteries, EE is an essential consideration. In

this chapter, we investigate the energy efficient resource allocation in LoRa networks

to maximize the system EE (SEE) and the minimal EE (MEE) of LoRa users, re-

spectively. Specifically, our objective is to maximize the corresponding EE by jointly

exploiting user scheduling, SF assignment, and transmit power allocations. To solve

them efficiently, we first propose a suboptimal algorithm, which includes the low-

complexity user scheduling scheme based on matching theory and the heuristic SF

assignment solution for LoRa users scheduled on the same channel. Then, to deal

with the power allocation, for the case considering SEE, an optimal algorithm is pro-

posed to maximize the SEE. With regards to MEE, an iterative power allocation

algorithm based on the generalized fractional programming and sequential convex

programming is proposed to maximize the minimal EE achieved by LoRa users ac-

cessing the same channel. Numerical results show that the proposed user scheduling

algorithm achieves near-optimal EE performance, and the proposed power allocation

algorithms outperform the benchmarks.

The works presented in this Chapter have been published at the IEEE Transactions on Com-
munications, May 2020, and IEEE Global Communications Conference (GLOBECOM 2018), Abu
Dhabi, UAE, Dec. 2018.
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Figure 5.1: System model of resource allocation in LoRa networks.

The remainder of this chapter is organized as follows. In Section 5.2, we present the

system model of the uplink LoRa networks and formulate two EE optimization prob-

lems. A low-complexity energy efficient user scheduling and heuristic SF assignment

scheme are developed in Section 5.3. In Section 5.4, the power allocation algorithms

for both problems are provided. Simulation results are presented in Section 5.5 and

finally the chapter is concluded in Section 5.6.

5.2 System Model

5.2.1 System Model

Considering the uplink transmission in LoRa networks, N active LoRa users commu-

nicate with one LoRa gateway throughM channels, which is shown in Fig. 5.1. LoRa

users located within the same channel share the same time and frequency slots by

adopting different SFs. Both the LoRa gateway and LoRa users are equipped with

the single antenna. Denote M = {1, ...M} and N = {1, ...N} to be the channels

set and users set, respectively. Bm Hz is the bandwidth of the m-th channel, SCm.

The number of LoRa users scheduled on SCm is labelled as Sm, i.e., Sm =
N∑
l=1

sm,l,

where sm,l ∈ {0, 1} is used to indicate whether an arbitrary user, Ul, is allocated to

SCm. If sm,l = 1, it indicates that Ul occupies SCm, and sm,l = 0 if otherwise. Let

S = {sm,l|m ∈ M , l ∈ N} denote the set of user clustering. It is noted that Sm should

be no more than 6 as the available SFs range from 7 to 12 [109], which limits the max-

imum number of active LoRa users that can be served simultaneously in one channel.

Let pm,l be the power allocated to Ul using SCm and P = {pm,l|m ∈ M , l ∈ N}
represent the set of power allocation coefficients. It is assumed that perfect CSI is

available at the LoRa gateway.
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Assuming that Sm users are allocated within SCm, the signal received at the LoRa

gateway through SCm can be expressed as

ym =
N∑
l=1

√
pm,lhm,lxl + nm, (5.1)

where hm,l = gm,lςmd
−a
l indicates the channel coefficient between Ul and the LoRa

gateway on SCm, gm,l represents the Rayleigh fading channel gain, dl denotes the

distance from Ul to the LoRa gateway, a is the channel path loss exponent, and ςm is

a constant depending on path loss of SCm. Denote nm ∈ CN (0, σ2
m) as the AWGN

with noise variance σ2
m.

The SINR of Ul, received at the gateway over SCm is characterized as

SINRm,l(S,P ) =
sm,lpm,l|hm,l|2

ISF + σ2
m

, (5.2)

where ISF =
Sm∑

k=1,k ̸=l

pm,k|hm,k|2ψ(l, k) represents the interference caused by LoRa users

adopting different SFs in the same channel, and ψ ∈ [0, 1] represents the cross corre-

lation factors between the coded LoRa waveforms with different SFs. Note that the

interference is introduced due to imperfect SF orthogonality.

Similar to [110], we assume that a transmission rate of Shannon’s upper bound

can be achieved by a perfect coding. Therefore, Shannon rate is adopted to model

the LoRa-specific rates for mathematical tractability. The achievable data rate and

the overall power consumption for the l-th LoRa user over SCm can be denoted as

follows {
Rm,l (S,P ) = Bmlog2 (1 + SINRm,l) ,
Pm,l (S,P ) = ζm,lpm,l + P l

c ,
(5.3)

where ζm,l ≥ 1 is a constant denoting the power inefficiency, P l
c represents the addi-

tional circuit power consumption of Ul owing to inevitable electronic operations [23].

Therefore, the achievable sum rate and the total power consumption of the system

can be expressed as 
R (S,P ) =

M∑
m=1

Sm∑
l=1

Rm,l (S,P ) ,

P (S,P ) =
M∑

m=1

Sm∑
l=1

Pm,l (S,P ) .

(5.4)

For energy efficient uplink transmissions in LoRa networks, the goal is to maximize

SEE, which is defined as information bits within a unit energy. Therefore, SEE is
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formulated as a ratio of the system sum rate to the total power consumption, which

can be characterized as

η =
R (S,P )

P (S,P )
. (5.5)

Moreover, MEE is defined as the ratio of individual LoRa user rate to the corre-

sponding consumed power, which can be given as

ηm,l =
Rm,l (S,P )

Pm,l (S,P )
. (5.6)

5.2.2 Problem Formulations

To acquire an energy efficient resource allocation design for the considered LoRa net-

works, we formulate the EE optimization problems based on two major performance

measurement criteria in terms of SEE and MEE, respectively.

5.2.2.1 System Energy Efficiency

The SEE maximization problem is formulated as follows

max
S,P ,τSF

η, (5.7a)

s.t. 0 ≤ pm,l ≤ pmax, (5.7b)

sm,l ∈ {0, 1} , ∀ m, l, (5.7c)

M∑
m=1

sm,l ≤ 1, ∀ l, (5.7d)

N∑
l=1

sm,l ≤ Λmax, ∀ m, (5.7e)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (5.7f)

In problem (5.7), (5.7a) represents the formulated problem to maximize SEE.

Constraint (5.7b) limits the transmit power of each LoRa user. In (5.7c), the value of

the user cluster indicator sm,l is either 0 or 1. Constraint (5.7d) indicates that each

LoRa user can access at most one channel. Due to the maximum number of available

SF and interference control, we assume that at most Λmax users can be assigned to

the same channel, which is guaranteed by (5.7e). It is worth noting that the desired

LoRa user adopting a given SF can be detected successfully only if the received SNR

is no less than the threshold τSF , which is guaranteed by constraint (5.7f). Table

5.1 [57] shows the relationship between the required SNR and SF.

70



5.2. System Model

Table 5.1: Relationship Between Distance Range and Spreading Factors.

Spreading factor (SF) 7 8 9 10 11 12
Distance Range (km) 2 4 6 8 10 12
Required SNR (dB) -7.5 -10 -12.5 -15 -17.5 -20

5.2.2.2 Max-min Energy Efficiency

The MEE optimization problem is given by

max
S,P ,τSF

min
m,l

ηm,l, (5.8a)

s.t. (5.6b)− (5.6f), (5.8b)

where (5.8a) denotes the objective to maximize MEE.

Theorem 1. The formulated problems of both (5.7) and (5.8) are NP-hard.

Proof : The proof is provided in Appendix H.

Since the formulated problems are nonconvex and NP-hard, it is challenging and

intractable to solve (5.7) and (5.8) within polynomial time.

Furthermore, the current adaptive data rate (ADR) mechanism adopted in Lo-

RaWAN fails to perform the channel selection effectively, a more efficient distributed

user scheduling scheme needs to be designed. Besides, the ADR scheme optimizes

the transmit power and SF based on some previous uplink messages, which achieves

low resource efficiency. Therefore, the optimal transmit power allocation scheme that

can be easily implemented at the LoRa gateway is required. Moreover, as can be

observed from the expression of the objective functions (5.7a) and (5.8a), the channel

and power allocations are coupled with each other for both MEE and SEE. As the

formulated problem is NP-hard, to avoid the considerable complexity of the global

optimum solution, we will exploit user scheduling, SF assignment, and power alloca-

tion schemes separately. Specifically, LoRa users first perform self-matching to match

with the corresponding channels. Due to the linear SF inequality constraint and the

inner relationship between distance range and SF, the SF can be determined by the

distance. Then, a low-complexity distance-based SF assignment algorithm is pro-

posed to operate at the LoRa gateway. Finally, the LoRa gateway assigns SFs and

allocates power for LoRa users sharing the same channel, on the basis of the proposed

low-complexity distance-based SF assignment scheme and optimal power allocation

algorithms. The details are described in next two sections.
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5.3. Energy-efficient User Scheduling

5.3 Energy-efficient User Scheduling

In this section, for the two formulated problems, energy efficient user scheduling

scheme is firstly proposed to maximize the corresponding EE. For LoRa users sched-

uled on the same channel, a heuristic distance-based SF assignment scheme is then

proposed.

5.3.1 User Scheduling

In this section, we provide a matching theory based user scheduling scheme with low

complexity. Firstly, by assuming that each user is allocated with the maximum power

and a given SF, (5.7) and (5.8) can be reformulated as

max
S

η, (5.9a)

or max
S

min
m,l

ηm,l, (5.9a
′
)

s.t. sm,l ∈ {0, 1} , (5.9b)

M∑
m=1

sm,l ≤ 1, ∀ l, (5.9c)

N∑
l=1

sm,l ≤ Λmax, ∀ m. (5.9d)

It is noted that (5.9) is a many-to-one matching problem for both SEE and MEE,

as at most one channel can be allocated to a LoRa user while a subset of LoRa users

can be assigned into the same channel. Moreover, due to the interference term in

(5.2), each user’s preference on the channel is not only influenced by the channel

conditions, but also the other LoRa users sharing the same channel. Similarly, each

channel not only cares which LoRa users to match with, but also the co-channel

interference introduced by the other subset of LoRa users with different SFs. Hence,

this is a many-to-one matching game with peer effects [111].

To better illustrate the matching model with peer effects, we firstly introduce a

preference ordering for LoRa users, in which for any given user Ul ∈ N , any two

channels SCm, SCm′ ∈ M , any two matchings φ and φ′ are defined as

(SCm, φ) ≻Ul
(SCm′ , φ′) ⇔ Rm,l(φ) > Rm,l(φ

′), (5.10)

which means that LoRa user Ul prefers channel SCm in φ rather than SCm′ in φ′ only

if Ul achieves higher rate over channel SCm than over SCm′ . It is worth mentioning

that the preference order is based on achievable rates. The reason is that, with
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given transmit power allocation, the power consumption in the denominator of the

objective is a fixed value, the EE objectives are equivalent to the corresponding rates

optimization problems.

By defining channel SCm’s preference value on the user set as RSEE
m =

∑N
l=1Rm,l

and RMEE
m = minRm,l,∀l ∈ SCm for SEE and MEE, respectively, the preference

ordering for channel SCm can be obtained similarly.

Due to the existence of peer effects, stable matching is not straightforward guar-

anteed. Therefore, the two-sided exchange stability has been introduced to depict

the impact of peer effects on the matching game [111]. Firstly, a swap matching and

swap blocking pair are defined as follows:

Definition 1. A swap matching behaviour φj
l = φ\{(Ul, SCm), (Uj, SCn)}∪{(Uj, SCm),

(Ul, SCn)} is defined as φ(Ul) = SCm and φ(Uj) = SCn.

Note that a swap-matching is realized by performing a swap operation, which

motivates us to introduce swap-blocking pair.

Definition 2. Given a matching φ with a pair (Ul, Uj), if there exists φ(Ul) = SCm

and φ(Uj) = SCn such that

1) ∀q ∈ {Ul, Uj, SCm, SCn}, φj
l (q) ≥q φ(q);

2) ∃q ∈ {Ul, Uj, SCm, SCn}, φj
l (q) ≻q φ(q),

which means the swap matching φj
l is approved, and we call (Ul, Uj) as a swap-blocking

pair in φ.

The definition demonstrates that the achievable data rates of any player, i.e., Ul

and SCm, will not decrease by employing a swap matching, and the data rates of at

least one player will increase. Then a stable matching status can be achieved through

a set of swap matching operations, known as a two-sided exchange stable matching

that is described in Definition 3.

Definition 3. A two-sided exchange stable (2ES) matching φ can be achieved if it is

not blocked by any swap-blocking pair.

Based on the above definition, the proposed user scheduling algorithm is described

in Table 5.2, which consists of initialization step and swap matching step. The ini-

tialization step is a deferred acceptance algorithm [112], which aims to generate the

initial matching. Specifically, the CSI-based preference list is constructed for each Lo-

Ra user, i.e., is the most preferred channel for LoRa user Ui. For the LoRa gateway, it

constructs the distance-based preference list, i.e., j∗ = argmax
j∈M

, the highest preference

73



5.3. Energy-efficient User Scheduling

Table 5.2: User Scheduling Algorithm for LoRa Networks Based on Matching Theory

Initialization step
While there exists unmatched users and channels
1) j∗ = argmax

j∈M
|hj,i|2.

2) LoRa user Ui matches with its most preferred channels that it has not been rejected before.
3) Remove Ui from N .
Swap matching step
Repeat
1) For user Ui ∈ N , it searches N\Uj.
2) if Ui and Uj is swap-blocking pair, then

Ui exchanges its matching with Uj and set φ = φj
i .

3) else
4) keep the current matching.
5) end if
Until no swap blocking can be formed for all users.
Return the stable matching φ

is the closest LoRa user, due to the fact that LoRa provides long-range communica-

tions. Each LoRa user proposes to the highest preference channel, and each channel

picks at most Λmax users based on its preference list. Then the remaining LoRa users

propose to their second preference, and the process stops until no unmatched users

exist. In the swap matching step, each LoRa user keeps searching for swap-blocking

pairs to perform swap matching operation if approved. The searching terminates until

no swap-blocking pairs can be formed, and the final stable matching is returned.

Theorem 2. The proposed user scheduling algorithm converges to a 2ES matching

φ∗ within a finite number of swap operations.

Proof : The proof is provided in Appendix I.

Theorem 3. The computational complexity of the proposed user scheduling algorithm

is O(MN + 1
2
IΛmaxN(M − 1)) at worst, where I denotes the number of iterations for

swap-matching step.

Proof : The proof is provided in Appendix J.

5.3.2 SF Assignment

As can be seen from the structure of the formulated problems, i.e., (5.7) and (5.8),

the SF is only related to the linear inequality constraint, i.e., the SNR threshold
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Table 5.3: Distance-based SF Assignment Algorithm for LoRa Networks

1. Initialization: Distance-based SFs are assigned to LoRa users scheduled within one
channel according to Table 5.1.

2. Initialize the set of SFk to record users who has been allocated with SF of k
3. while {SFk ≥ 2} do
4. For LoRa users j1,...jn sharing the same SF, sort the distance as dj1 < ... < djn .
5. Assign SF of k to LoRa user j1.
6. Increase SF by one in sequence for LoRa user j2,...jn.
7. end while
8. Until all users in one channel occupy different SFs.

requirement. With given power allocation and user scheduling scheme, we need to

check whether the SF constraint is satisfied. By applying the proposed user schedul-

ing scheme, LoRa users are allocated into the corresponding channels. For a given

channel, the distance of each scheduled LoRa user is easily obtained at the LoRa

gateway. Since LoRa network aims to realize long-range communications up to 40

km, the large-scale fading becomes the main effect for the channel gain. Therefore,

a heuristic distance-based SF assignment scheme is proposed, which is summarized

as Table 5.3. Specifically, in each channel, a predefined SF is assigned to each LoRa

user according to the relationship between the distance range and corresponding SF

based on Table 5.1. Then the LoRa gateway keeps searching for the SF assigned to

more than one LoRa user. For LoRa users sharing the same SF, a higher available

SF in the network is reassigned to the one with longer distance to the gateway. The

searching iteration stops until all LoRa users accessing the same channel occupy a

unique SF.

5.4 Energy-efficient Power Allocation Algorithms

In this section, we focus on the optimal power allocations to maximize SEE and MEE,

respectively, with the obtained user scheduling and SF assignment schemes given in

the last section. It is worth mentioning that though the proposed power allocation

algorithms are centralized approach, it is easy to be implemented at the LoRa gateway.

The reason is that, the LoRa gateway can easily obtain the CSI of LoRa users assigned

within each channel, due to the fact that the number of LoRa users sharing the same

channel is limited after the user scheduling. Moreover, as the LoRa gateway is more

75



5.4. Energy-efficient Power Allocation Algorithms

powerful than LoRa users, the centralized power allocation algorithms implemented

at the LoRa gateway help LoRa users avoid energy consumption for power allocation.

5.4.1 Energy-Efficient Power Allocation for SEE

With given user scheduling and SF assignment schemes, we consider the power al-

location problem (5.7) with constraints (5.7b) and (5.7f). The difficulty lies in the

nonconvex objective function as all the constraints are linear inequalities. To trans-

form the objective into a more tractable form, we first approximate it with the lower

bound by using the following inequality [113]

ln(1 + γ) ≥ αlnγ +Υ (5.11)

where

α =
γ̃

1 + γ̃
, (5.12a)

Υ = ln(1 + γ̃)− γ̃

1 + γ̃
ln(γ̃). (5.12b)

The approximation is tight when the constants α and Υ are chosen with γ = γ̃. The

proof can be easily acquired by substituting γ = γ̃ into the right side of inequality

(5.11).

With inequality (5.11), we get a lower bound for the achievable data rate of Ul

accessing SCm as follows

Rm,l ≥ R̃m,l =
Bm

ln2
(αm,lln(SINRm,l) + Υm,l) (5.13)

=
Bm

ln2

(
αm,lln

(
pm,l|hm,l|2∑Sm

k=1,k ̸=l pm,k|hm,k|2 + σ2
m

)
+Υm,l

)
.

However, R̃m,l is still nonconvex. To convert it into a concave expression, we

introduce a variable transformation as xm,l = ln(pm,l). Then we have

ln(SINRm,l) = ln(|hm,l|2) + xm,l − ln(
Sm∑

k=1,k ̸=l

exm,k |hm,k|2 + σ2
m), (5.14)

which is concave over x = {xm,l|m ∈ M , l ∈ N} since the log-sum-exp function

is convex. Through the above transformation, the original objective can then be

approximated by its lower bound function, i.e., η ≥
M∑

m=1

Sm∑
l=1

Bm
ln2 (αm,lln(SINRm,l)+Υm,l)
M∑

m=1

Sm∑
l=1

(ζm,lpm,l+P l
c)

.
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Table 5.4: Optimal Power Allocation Algorithm for Solving SEE

1. Initialize feasible power allocation variables P 1.
2. Set n = 1. The value of (5.16a) is calculated with P 1, denoted as η0.

3. while ηn−ηn−1

ηn−1 > ϵ, where ϵ is a given constant.

4. Set n = n+ 1.
5. Update x̃nm,l and ϕ

n by solving (5.16).

6. Update power allocation variables P n by pnm,l = e
x̃nm,l
ϕn .

7. Update the objective value ηn.
8. end while
9. Output the optimal P ∗.

The lower bound approximation is a concave-convex fractional function as it consists

of a concave numerator f(pm,l) =
M∑

m=1

Sm∑
l=1

Bm

ln2
(αm,lln(SINRm,l) + Υm,l), and an affine

denominator g(pm,l) =
M∑

m=1

Sm∑
l=1

(ζm,lpm,l + P l
c). The concave-convex fractional problem

can be efficiently solved with the Charnes-Cooper transformation [114], which is given

as follows:

Lemma 5. A concave-convex fractional problem, max f(x)
g(x)

, where f is concave and g

is convex, can be reformulated as a concave problem

max ϕf(
y

ϕ
) (5.15a)

s.t. ϕg(
y

ϕ
) ≤ 1, (5.15b)

with the Charnes-Cooper transformation y = x
g(x)

, ϕ = 1
g(x)

and ϕ > 0.

As a result, the original problem is recast as the following equivalent convex

optimization problem

max
x̃m,l

ϕ

M∑
m=1

Sm∑
l=1

R̃m,l

(
x̃m,l

ϕ

)
(5.16a)

s.t. ϕ(
M∑

m=1

Sm∑
l=1

e
x̃m,l
ϕ + Pc) ≤ 1, (5.16b)

ϕe
x̃m,l
ϕ ≥ 0, (5.16c)

ϕ(e
x̃m,l
ϕ − pmax) ≤ 0, ∀ m, l, (5.16d)

ϕ(σ2
mτSF − e

x̃m,l
ϕ |hm,l|2) ≤ 0, ∀ m, l, (5.16e)

ϕ > 0, (5.16f)
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where

R̃m,l(
x̃m,l

ϕ
) =

Bm

ln2

(
αm,lln( ˜SINRm,l) + Υm,l

)
, (5.17a)

ln( ˜SINRm,l) = ln

 e
x̃m,l
ϕ |hm,l|2∑Sm

k=1,k ̸=l e
x̃m,k

ϕ |hm,k|2 + σ2
m

 . (5.17b)

The equivalence between (5.14) and (5.17b) is guaranteed with the aid of Charnes-

Cooper transformation introduced by Lemma 5. It is noted that (5.16) is a convex

problem, which can be efficiently solved with standard convex solvers [97]. The

corresponding procedure is outlined in Table 5.4.

To prove that the proposed power allocation algorithm converges, we provide the

following proposition.

Proposition 8. The value of η is improved continuously in each iteration, and finally

the proposed power allocation algorithm converges to a KKT point of the original

problem.

Proof : The proof is provided in Appendix K.

5.4.2 Energy-Efficient Power Allocation for MEE

For the case of MEE, given user scheduling and SF assignment, denote ηoptMEE and

P opt as the optimal solution to MEE and power allocation coefficients, the following

results hold

ηoptMEE = max
P

min
m,l

Rm,l (P )

Pm,l (P )
= min

m,l

Rm,l (P
opt)

Pm,l (P opt)
. (5.18)

Then we have Theorem 4 as below:

Theorem 4. The optimal solution ηoptMEE is obtained on condition that

max
P

min
m,l

[Rm,l (P )− ηoptMEEPm,l (P )]

= min
m,l

[Rm,l

(
P opt

)
− ηoptMEEPm,l

(
P opt

)
] = 0. (5.19)

Proof : The proof is provided in Appendix L.

Theorem 4 indicates that the optimal solutions of the original problem can be

obtained by equivalently solving (5.19). As the value of ηoptMEE is unknown in advance,

the properties of (5.19) need to be further revealed.

Denote that π(ηm,l) = max
P

min
m,l

[Rm,l (P ) − ηm,lPm,l (P )], we have the following

theorem:
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Table 5.5: The Bisection Method to Solve MEE

1. Given ηmin
m,l and ηmax

m,l , the tolerance ϵ = 10−3, and iteration index i = 0.
2. while (1) do

3. ηim,l =
ηmin
m,l +ηmax

m,l

2
.

4. update P i by solving problem (5.21);
5. if |∆| = |min

m,l
Rm,l (P

i)− ηim,lPm,l (P
i)| < ϵ

6. P opt = P i,
7. break.
8. else if ∆ < 0 ηmax

m,l = ηim,l.
9. else if ∆ > 0 ηmin

m,l = ηim,l.
10. end if
11. i = i+ 1.
12. end while

Theorem 5. i) π(ηm,l) strictly decreases with ηm,l.

ii) With ηm,l > 0, we obtain that

π(ηm,l) =


> 0 if ηm,l < ηoptMEE,
= 0 if ηm,l = ηoptMEE,
< 0 if ηm,l > ηoptMEE,

(5.20)

Proof : The proof is provided in Appendix M.

Therefore, based on the properties of π(ηm,l), we can apply the bisection method

to solve it. The initial lower and upper bounds can be set as ηmin
m,l = 0 and ηmax

m,l ,

where ηmax
m,l is a relatively large constant. Given ηmin

m,l and ηmax
m,l , the algorithm based

on the bisection method is summarized in Table 5.5.

For the i-th iteration with a given ηim,l at line 4 of Table 5.5, to update the power

allocation coefficients, we need to deal with the following optimization problem:

max
P

min
m,l

Rm,l (P )− ηim,lPm,l (P ), (5.21a)

s.t. 0 ≤ pm,l ≤ pmax, (5.21b)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (5.21c)

All the constraints in (5.21) are convex, the difficulty lies in the nonconvex objec-

tive. To deal with it, an auxiliary variable µ is introduced to denote that min
m,l

Rm,l (P )−

ηim,lPm,l (P ) ≥ µ. Due to the minimization operator, Rm,l (P )− ηim,lPm,l (P ) ≥ µ can
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be satisfied for all LoRa users. For a given ηim,l, the problem is reformulated as

max
P

µ (5.22a)

s.t. Rm,l (P )− ηim,lPm,l (P ) ≥ µ, (5.22b)

0 ≤ pm,l ≤ pmax, (5.22c)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (5.22d)

where the difficulty only lies in the nonconvex constraint (5.22b).

The left side of constraint (5.22b) can be further denoted as fi(P )− zi(P ), where

fi(P ) and zi(P ) are defined as

fi(P ) = Bmlog2

(
Sm∑
k=1

pm,k|hm,k|2 + σ2
m

)
− ηim,lPm,l (P ) , (5.23a)

zi(P ) = Bmlog2(
Sm∑

k=1,k ̸=l

pm,k|hm,k|2 + σ2
m). (5.23b)

Constraint (5.22b) is equivalent to that

fi(P )− zi(P ) ≥ µ. (5.24)

Moreover, we can find that fi(P ) and zi(P ) are both concave functions with

respect to P , thus inequality (5.24) is a DC programming function [105]. Due to the

concave feature of zi(P ), we can further approximate it by its upper bound with the

first-Taylor expansion as follows:

zi(P ) ≤ zi(P
n) +∇ziT (P n)(P − P n), (5.25)

where P n is the value of P at the n-th iteration, ∇ziT (P ) represents the gradient of

zi(P ) that can be denoted as

∇zi(P ) =
νm,k

Sm∑
k=1,k ̸=l

pm,k|hm,k|2 + σ2
m

. (5.26)

Specifically, νm,k is a Sm-dimensional vector that can be given as

νm,k =

{
0 if k = l,

Bm|hm,k|2
ln2

if k ̸= l.
(5.27)
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Table 5.6: DC-based Power Allocation Algorithm for MEE

1.Initialize P 0, set n = 0, q0 = 0, q1 = 1, and the tolerance ϵ = 10−3.
2. while |qn+1 − qn| ≥ ϵ
3. update P n by solving problem (5.28).
4. update qn = min

m,l
[fi(P

n)− zi(P
n)].

5. update n = n+ 1.
6. end while
7. Output the optimal power allocation coefficients P opt = P n.

As a result, the original problem has been converted into the convex form, and

during the n-th iteration, we need to tackle the following convex problem

max
P

µ (5.28a)

s.t. fi(P )−
(
zi(P

n) +∇ziT (P n)(P − P n)
)
≥ µ, (5.28b)

0 ≤ pm,l ≤ pmax, (5.28c)

pm,l|hm,l|2

σ2
m

≥ τSF , ∀ m, l. (5.28d)

Therefore, the detailed process of the DC programming approach to solve power

allocations for MEE is outlined in Table 5.6.

To prove that the proposed DC-based power allocation algorithm converges, we

have the following proposition.

Proposition 9. The proposed DC-based power allocation algorithm continuously con-

verges to a stationary point of (5.21) with given ηim,l.

Proof : The proof is provided in Appendix N.

5.4.3 Complexity Analysis

With regards to the energy efficient power allocation for SEE, denote L
(1)
max as the

maximum iteration number of the proposed power allocation algorithm given in Ta-

ble 5.4, whereas the computational time to solve (5.16) by interior point method is

proportional to O(r3.5δ) [107], where r denotes the number of variables, and δ is the

number of bits needed to represent the entries in the optimization problem. Therefore,

the whole complexity to solve SEE is O(L
(1)
max(N + 1)3.5δ(1)).

As for MEE, the computational complexity comes from the algorithm provided

in Table 5.5 and Table 5.6. Note that by appropriately setting the initial values
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Figure 5.2: Energy efficiency versus number of active LoRa users, N.

as ηmin
m,l ≤ ηoptMEE ≤ ηmax

m,l , with a given accuracy ϵ, the complexity of the bisection

method to solve (5.21) is log2(ϵ
−1(ηmax

m,l − ηmin
m,l )). For the DC-based power allocation

algorithm, denote the maximum iteration number as L
(2)
max, while the complexity of

the interior point method to solve (5.28) is proportional to O(N3.5δ(2)). In conclusion,

the computational complexity of MEE is O
(
log2(ϵ

−1(ηmax
m,l − ηmin

m,l ))L
(2)
max(N3.5δ(2))

)
.

5.5 Numerical Results

In this section, numerical results are provided to evaluate the performance of the

proposed algorithms. In the simulations, the simulation parameters are set following

LoRa specifications [55]. It is assumed that the LoRa gateway located in the cell

center and all the LoRa users are uniformly distributed in a circular range with the

radius of 12 km, which is consistent with LoRa characteristics to enable long-range

transmission. The number of channels is set to be M = 3 working at 868 MHz. The

bandwidth of each channel is set to be Bm = 125 kHz. We set the path loss factor

to be α = 3.5. Moreover, the duty cycle is set as 1% by following the LoRaWAN

specification. The noise is defined as σ2 = −174 + 10log10Bm dBm. Without loss of

generality, we assume that P 1
c = · · · = PN

c = Pc, which indicates the same circuit

power consumption is adopted for all LoRa users. Besides, the cross correlation factor

ψ is a random variable between 0 and 1, which keeps the same for different SFs within

a given channel realization, and ψ varies for different channel realizations.

Fig. 5.2 illustrates the effectiveness of the proposed user scheduling scheme versus

the number of LoRa users with pmax=20 dBm for both SEE and MEE. The results

of the exhaustive search approach and random matching method are provided for
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Figure 5.3: System energy efficiency comparison of the proposed power allocation
schemes versus number of active LoRa users, N.

comparison. In the ”random matching” scheme, the LoRa user randomly chooses a

channel among M , whereas adopting the proposed SF assignment and power allo-

cation schemes. We observe that the system EE increases monotonically with the

number of LoRa users for all the presented methods in the figure, while the max-min

EE shows the inverse trend. It is noted that the performance of the proposed low-

complexity user scheduling algorithm is very close to that of the exhaustive search

method for both cases. Furthermore, the proposed matching algorithm yields much

better performance than the random matching scheme. In addition, the gap between

the proposed matching algorithm and random matching increases with the larger

number of active LoRa users. The reason is that, when the number of active LoRa

users increases, the intra-channel interference caused by LoRa users with different SFs

can be well controlled by the proposed user scheduling scheme, whereas it cannot be

suppressed by random user scheduling. Besides, random user scheduling scheme will

schedule channels with poor conditions, which decreases the EE in terms of both SEE

and MEE. Furthermore, the proposed matching algorithm plays a more important

role in MEE design due to the fact that the max-min EE can be more easily affected

by the interference.
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Figure 5.4: Max-min energy efficiency comparison of the proposed power allocation
schemes versus number of active LoRa users, N.

In Fig. 5.3, the performance of the energy efficient power allocation schemes for

SEE are evaluated with the active LoRa users ranges from 6 to 16 for pmax=20 dBm.

For simplification, the proposed resource allocation algorithm for SEE is denoted as

”Matching+CC” where CC stands for Charnes-Cooper transformation. To provide

fair comparison, the proposed user scheduling and SF assignment algorithms are

adopted for all the three methods presented in the figure. As can be observed from

Fig. 5.3, for SEE, the system EE performs increasing trends with the number of

active LoRa users for all three schemes, and especially, the proposed ’matching+CC’

algorithm produces the best performance among all three schemes. For instance,

when the number of LoRa users is 12, the available system EE for matching+CC is

8.1 × 105 bits/Joule, while for matching+fixed power and matching+random power

are 4.9×105 bits/Joule and 3.1×105 bits/Joule, respectively. Moreover, the advantage

of the proposed scheme is more obvious when there are more LoRa users since the gap

becomes larger. The reason is that, the intra-channel interference for LoRa users with

different SFs cannot be effectively suppressed for random and fixed power allocation.

In Fig. 5.4, we provide the performance of the proposed power allocation scheme

named as ”Matching+DC” with the different number of LoRa users for MEE. It shows

that the trend for three curves is similar, and the proposed ”Matching+DC” scheme
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Figure 5.5: Energy efficiency of system comparison between SEE and MEE methods
versus pmax.

yields the best system performance among all three schemes. It is noted that the

max-min EE descends with the increasing number of available users, due to the fact

that increasing the number of active LoRa users results in more users scheduled in one

channel, which increases interference caused by LoRa users allocated in one channel.

As a result, the max-min EE declines. In addition, the benefit of the proposed power

allocation scheme becomes more obvious with the increasing number of active LoRa

users as the gap becomes larger, which is the same as that of Fig. 5.3.

The system EE performance comparison between SEE and MEE is illustrated in

Fig. 5.5, based on the same random channel realization. We plot the relationship

between system EE and the maximum transmit power for both SEE and MEE. We

can see that the SEE design achieves significantly higher system EE compared with

MEE design. The system EE gap between Pc = 0.01 W and Pc = 0.05 W decreases

with pmax for both SEE and MEE design. This is because the proportion of circuit

power consumption decreases with the increasing pmax, and the effect of circuit power

consumption is more obvious in the low power regime. Moreover, when Pc = 0.01 W,

the system EE firstly increases with pmax and reaches the peak at 22 dBm, and then

it decreases.
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Figure 5.6: Max-min energy efficiency comparison between SEE and MEE methods
versus pmax.

Fig. 5.6 is plotted to compare the max-min EE performance for SEE and MEE

with the given random channel, which indicates that the max-min EE for MEE slight-

ly improves with the increasing pmax. However, for SEE, the max-min EE firstly keeps

constant, and then decreases. The reason is that, when pmax becomes larger, more

resources will be allocated to users with bad channel conditions, which guarantees

fairness among users for MEE design. On the other hand, to improve system perfor-

mance, SEE will schedule more power to users in good channel conditions and sacrifice

the benefit of bad users, and the corresponding max-min EE decreases. Moreover, for

MEE, the gap between Pc = 0.01 W and Pc = 0.05 W becomes smaller with pmax, due

to the reason that pmax dominates Pc in the high power regime. Combining Fig. 5.5

and Fig. 5.6, it can be seen that SEE and MEE have completely different preferences

in EE design, and the network can adopt the corresponding strategies according to

the system requirement.

5.6 Summary

In this chapter, we have investigated the uplink LoRa networks to maximize the EE

of the whole network and the minimal EE of LoRa users, named as SEE and MEE,
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respectively. Particularly, we decompose the formulated problems into three sub-

problems, including user scheduling, SF assignment, and power allocation. Moreover,

we have proposed a low-complexity user scheduling scheme to solve the channel as-

signment problem by formulating it as a many-to-one two-sided matching problem

with peer effects. The SF is assigned to LoRa users scheduled on the same channel

based on the distance between LoRa user and gateway, which is obtained from the

stable matching. Moreover, for energy efficient power allocation to maximize SEE, we

approximate the fractional nonconvex function by its lower bound, which can be fur-

ther transformed into convex approximations with Charnes-Cooper transformation.

While to maximize MEE, an iterative method based on generalized fractional pro-

gramming and DC programming has been proposed. Numerical results have shown

that the proposed matching algorithms and power allocation schemes outperform the

existing schemes in terms of both SEE and MEE.
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Chapter 6

Conclusions and Future Work

In this chapter, the contributions of this thesis are first summarized. Furthermore,

several potential research extensions and promising future directions related to the

works in this thesis are presented.

6.1 Summary

This thesis mainly focuses on efficient resource allocation optimization design for sev-

eral potential future wireless communication technologies, i.e., NOMA, MEC, and

LoRa. We first investigated the strong user’s data rate optimization problem for

the SWIPT-enabled cooperative NOMA system considering imperfect CSI. Then we

studied the application of NOMA and UC in wireless powered MEC systems. More-

over, the energy efficient transmission for uplink LoRa networks was addressed to

maximize SEE and MEE.

The main contributions and insights of this thesis can be summarized as follows:

In Chapter 3, a novel robust cooperative NOMA scheme was proposed, where

the strong user acts as DF relay to transmit information to the weak user, and on-

ly imperfect CSI was assumed to be available at the BS. The robust beamforming

design for SWIPT-enabled cooperative NOMA with channel uncertainties was inves-

tigated to maximize the strong user’s data rate. To present a comprehensive study,

two major channel uncertainties design criteria in terms of outage-based design and

worst-case based optimization were adopted. For the outage-based constraint design,

the formulated probabilistic nonconvex problem was first transformed into a non-

probabilistic problem with Bernstein-type inequality, which can be globally solved

by a two-dimensional exhaustive search method. To reduce the high computational

complexity introduced by the exhaustive approach, the low-complexity suboptimal

solution based on SCA was further proposed. With regards to the worst-case based
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6.1. Summary

optimization problem, an iterative algorithm based on SDR and SCA was proposed.

It was demonstrated that the proposed algorithms converged within a few iterations

and achieved near-optimal performance. Moreover, numerical results showed that the

proposed robust design for the SWIPT-enabled cooperative system outperforms the

benchmark schemes.

In Chapter 4, the application of NOMA and UC in wireless powered MEC system

under the non-linear energy harvesting model was exploited. A computation efficien-

cy maximization problem was formulated, subject to the QoS requirement as well

as the harvested energy limitations at the users. SDR technique was first utilized

to transform the nonconvex problem into a more tractable form, and the rank-one

optimality was proved to establish the equivalence of the transformation. The refor-

mulated problem was converted into the convex expression with the aid of SCA, which

can be further solved with the proposed iterative algorithm. The convergence and

complexity analysis was provided. The performance of the proposed algorithm was

verified by computer simulations. Numerical results showed that the partial offload-

ing design outperforms offloading only and local computing schemes. Furthermore,

it was demonstrated that NOMA plays a great role when the distance of two users

is relatively far, while UC contributes to performance improvement when two users

are closer. Combing both NOMA and UC, it was shown that the proposed NOM-UC

MEC scheme yields the best system performance

In Chapter 5, the energy efficient resource allocation problem was formulated for

uplink LoRa networks to maximize SEE and MEE, respectively. To avoid the con-

siderable complexity of the global optimum solution due to the NP-hardness of the

original problems, we decomposed it into three sub-problems as user scheduling, S-

F assignment, and power allocations. A low-complexity suboptimal solution based

on matching theory was first proposed to enable the self-matching of LoRa users

with proper channels. For LoRa users scheduled on the same channel, a distance-

based heuristic algorithm was provided to realize efficient SF assignment. To allocate

power across channels, centralized optimal power allocation algorithms that can be

implemented at the LoRa gateway were proposed. Specifically, by deriving the lower

bound approximation of MEE, it was further transformed into convex expression by

applying Charnes-Cooper transformation. Moreover, by utilizing generalized fraction-

al programming and DC programming, an iterative power allocation algorithm was

proposed to maximize MEE. Simulation results revealed the unique design preference

feature of SEE and MEE. Also, it was shown that the proposed user scheduling and
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power allocation scheme significantly improved the EE performance compared with

the existing schemes.

6.2 Future Work

Based on the current outcome of this thesis, the extensions of present works and

some promising topic directions can be further conducted in future work, which is

summarized as below:

1. Spectral-energy efficiency tradeoff for NOMA system with imperfect CSI: The

present researches of NOMA focus on either both SE and EE maximization

with only perfect CSI or SE maximization with imperfect CSI (In Chapter 3

of this thesis). On one hand, to avoid the additional system overhead and

SE reduction introduced by obtaining perfect CSI, imperfect CSI scenario is

more practical from the implementation perspective. On the other hand, EE

is a significant concern for state-of-art communication design. Based on the

above observations, it motivates us to investigate the spectral-energy efficiency

tradeoff of the NOMA system with imperfect CSI.

2. MEC system with machine learning: The application of machine learning in

the wireless communication system is envisioned to greatly enhance system

performance [115,116]. The advantages of combing machine learning with MEC

are threefold: i) Intelligent AI-model achieves better performance in channel

control and offloading selection. ii) By deploying MEC servers in proximity to

mobile devices, real-time data process can be realized at edge learning. iii) Due

to the powerful processing capability, edge learning can support much more

complex AI models than on-device learning. Despite the above benefits, how to

integrate machine learning with the MEC system is still an open challenge.

3. UAV-assisted MEC network with NOMA: Different from traditional MEC net-

works where the location of MEC servers is fixed, UAV-assisted architecture pro-

vides adjustable deployment of servers. The line-of-sight (LoS) transmit links

further improve communication performance. Note that NOMA can improve

SE, it is natural to investigate the application of NOMA with UAV-assisted

MEC network to increase the computation capacity.
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6.2. Future Work

4. Energy efficient LoRa design considering both co-SF (collisions of devices with

the same SFs) and inter-SF (collisions of devices with different SFs) interfer-

ences: Note that only inter-SF interference was investigated for the energy

efficient uplink transmissions in LoRa networks in Chapter 5. However, due to

the large number of LoRa devices, it is shown that both inter-SF and co-SF

interferences are prevalent in LoRa networks. Combing both interferences, the

system model and problem formulation will be extremely complicated. There-

fore, how to make energy efficient design is a challenging but important future

research topic.
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Appendix A

Proof of Proposition 2

Proof. For any given β and θ, problem (3.37) can be degraded into the following

problem:

max
β,W1,W2

min
ẽh∈ϵh

µ (A.1a)

s.t. (h̃1 + ẽh1)
HW1(h̃1 + ẽh1) ≥

µ

1− β
, (A.1b)

(h̃1 + ẽh1)
HW2(h̃1 + ẽh1) ≥

γ(µ+ 1)

1− β
, (A.1c)

µ

1− β
+
γ(µ+ 1)

1− β
≤ γ − θ

β|g|2
, (A.1d)

(h̃2 + ẽh2)
H(W2 − θW1)(h̃2 + ẽh2) ≥ θ, (A.1e)

γ(µ+ 1) ≥ µ, (A.1f)

Tr(W1) + Tr(W2) ≤ Pmax, (A.1g)

W1,W2 ≽ 0. (A.1h)

Particularly, (A.1d) is acquired by substituting the constraints of (3.37b) and

(3.37c) into (3.37d) and the inequality can be satisfied based on the fact that the

summation of two individual lower bound values is always smaller or equal to the

global lower bound. Constraint (A.1f) is obtained by replacing constraint (3.37f) with

(3.7b) and (3.37c), and constraint (3.37g) is omitted as it can be satisfied if (A.1e)

holds since θ > 0. Assume that problem (A.1) is feasible and it is also dual feasible.

As can be seen from problem (A.1), there are four linear constraints (A.1b, A.1c, A.1e

and A.1g) related to the optimal solution (W1
∗,W2

∗) and according to [117, Theorem

3.2], we have that

rank2(W1
∗) + rank2(W2

∗) ≤ 4. (A.2)

If problem (A.1) is feasible, from (A.1b), we can find that W1
∗ ≽ 0 and W1

∗ ̸= 0;

from (A.1c), we have that W2
∗ ≽ 0 and W2

∗ ̸= 0. Further, with constraint (A.2)
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considered, we can conclude that only when rank(Wi) = 1, i = 1, 2, the inequality

(A.2) can be satisfied. Hence, we can conclude that problem (3.37) always has an

optimal solution W1
∗ and W2

∗. Then, the optimal beamforming vector w1
∗ and

w2
∗ can be respectively obtained from W1

∗ and W2
∗ by using eigen-decomposition.

Otherwise, a suboptimal solution can be attained by Gaussian randomization. The

proof is completed.
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Appendix B

Proof of Proposition 3

Proof. In order to prove that the acquired objective value is non-decreasing for each

iteration, we need to first demonstrate that the solution to problem (3.49) at the n-th

iteration is also a feasible point for the iteration (n+ 1).

Let us assume that the optimal solutions to problem (3.49) at the n-th iteration

are W ∗
1 , W

∗
2 , ι

∗
1, ι

∗
2, ι

∗
3, and a

∗. The constraints which use the SCA-based method to

get convex approximation are constraints (3.46a), (3.46b) and (3.46c). Here, we take

the constraint (3.46a) as an example.

2ι
(n)
1 ι∗1 − (ι

(n)
1 )2 ≥ µ. (B.1)

We then replace the variables at the iteration (n+1) with the optimal solutions

obtained in iteration n, e.g., ι
(n+1)
1 = ι∗1. It is obvious that the constraints (3.46a) and

(3.45a) can be satisfied. In addition, during the iteration of (n + 1) for (3.45b) with

the updated parameter, the following result can be obtained:

2ι∗1ι
∗
1 − (ι∗1)

2 = ι∗1
2 (B.2a)

≥ 2ι
(n)
1 ι∗1 − (ι

(n)
1 )2 (B.2b)

≥ µ, (B.2c)

where (B.2a) is derived by substituting the solutions of iteration n. The inequality

(B.2b) is gained by performing the first-order Taylor approximation for ι∗1
2 around ι∗1

which is a lower bound of the original function. Finally, we can get (B.2c) with the

application of (B.1). Similarly, the optimal solutions obtained at the n-th iteration

also satisfy the constraints (3.46b) and (3.46c) for the iteration n + 1. The detailed

analysis for the constraints (3.46b) and (3.46c) at iteration (n + 1) is omitted here,

but can be provided following similar steps.
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In conclusion, it can be proved that the optimal solution of the n-th iteration

obtained from Table 3.3 is a feasible point for problem (3.49) at the (n + 1)-th iter-

ation. As problem (3.49) is a concave problem, the objective value at the (n+ 1)-th

iteration is larger or equal to that achieved from the n-th iteration. Hence, the proof

is completed and the proposition is proved.
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Appendix C

Proof of Proposition 4

Proof. Let Λn = {W n
1 ,W

n
2 , ι

n
1 , ι

n
2 , ι

n
3 , a

n} be the solution derived from Table 3.3 dur-

ing the n-th iteration. According to Proposition 3, we have that Λn → Λ∗ as n→ ∞
where Λ∗ represents the optimal solution to (3.49). Besides, with the application

of the SCA method, the introduced lower bound of (3.46a) has the same value and

gradient value around the point Λn for any iterations (which still holds as n → ∞).

Therefore, we can conclude that the proposed algorithm provided in Table 3.3 can

continuously coverage to a KKT point of problem (3.37) when the iteration number

tends to infinity based on the above property.
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Appendix D

Proof of Lemma 3

Proof. Lemma 3 can be proved by contradiction approach. Suppose that {w∗, t∗,p∗, ℓ∗}
is the optimal solution to problem (4.14) corresponding to the maximum objective

η̃∗, and the time allocation satisfies t∗0 + t∗1 + t∗21 + t∗22 < T . Based on the expression

of (4.14a), with fixed t∗0, η̃ can be further improved as increasing {t1 + t21 + t22}
results in larger computation bits in the numerator, contradicting that the solution

is optimal. Therefore, the maximum computation efficiency can be achieved with

t0 + t1 + t21 + t22 = T .
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Appendix E

Proof of Proposition 5

Proof. Assume that problem (4.14) is feasible and it is also dual feasible. As can be

seen from problem (4.36), there are three linear constraints (4.16c, 4.16f and 4.36f)

related to the W ∗. According to [117, Theorem 3.2], we have that

rank2(W ∗) ≤ 3. (E.1)

If problem (4.36) is feasible, we can infer that W ∗ > 0, according to (4.16f) and

(4.36f). Moreover, with constraint (E.1) considered, we can conclude that only when

rank(W ∗) = 1, the inequality (E.1) can be satisfied. Hence, the relaxation is tight,

and one can conclude that problem (4.36) always has an optimal solution W ∗.

Furthermore, it is worth noting that problem (4.36) is a convex optimization

problem, hence the global optimal solution (W ∗, t∗,E∗) can be obtained with the

interior point method. If rank(W ∗) = 1, we can get that W ∗ = W ∗

t0
, and the optimal

beamforming vector w can be computed from W ∗ by using eigen-decomposition.

Otherwise, a suboptimal solution can be attained by Gaussian randomization [117].
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Appendix F

Proof of Proposition 6

Proof. To reveal the convergence of the proposed algorithm in Table 4.1, we need

to demonstrate that the sequence of the objective values obtained from Table 4.1 is

non-decreasing for each iteration, i.e., µ(n+1) ≥ µ(n).

Denote W ∗, t∗,E∗, µ∗,Υ∗ as the optimal solution to problem (4.36) during the n-

th iteration. Note that during the problem transformation, constraints (4.19), (4.21c),

(4.24), (4.31), and (4.34) are approximated with SCA. Take (4.24) as an example,

denoting that ℓ =
∑2

i=1 ℓ
loc
i + ℓoffi , we have that

ℓ ≥
√
µ(n)Υ(n) + 0.5

√
µ(n)

Υ(n)
(Υ∗ −Υ(n)) + 0.5

√
Υ(n)

µ(n)
(µ∗ − µ(n)). (F.1)

The variables in iteration n + 1 are updated accordingly, i.e., µ(n+1) = µ(∗),

Υ(n+1) = Υ(∗), while (4.22b) can still be satisfied. By substituting the updated

parameters into (4.24) during iteration n+ 1, we have

√
µ(∗)Υ(∗) + 0.5

√
µ(∗)

Υ(∗) (Υ
∗ −Υ(∗)) + 0.5

√
Υ(∗)

µ(∗) (µ
∗ − µ(∗))

=
√
µ(∗)Υ(∗) (F.2a)

≤
√
µ(n)Υ(n) + 0.5

√
µ(n)

Υ(n)
(Υ∗ −Υ(n)) + 0.5

√
Υ(n)

µ(n)
(µ∗ − µ(n)) (F.2b)

≤ l, (F.2c)

where (F.2a) is derived by replacing (µn+1,Υn+1) with the obtained optimal solution

(µ∗,Υ∗), (F.2b) is the upper-bounded approximation of (F.2a), and inequality (F.2c)

is deduced with the aid of (F.1). Similar steps can be applied to prove the convergence

of (4.19), (4.21c), (4.31) and (4.34), where the detailed process is omitted here.
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In summary, it is proved that the solution of the n-th iteration is a feasible point

of iteration n+1 for problem (4.36). Based on the above analysis, and due to the fact

that the objective of problem (4.36) is a concave function, µ(n+1) ≥ µ(n) is proved.

The proof is completed.
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Appendix G

Proof of Proposition 7

Proof. Moreover, denote χn as the optimal solutions to problem (4.36) during it-

eration n of Table 4.1, due to the convergence feature of the proposed algorithm

introduced by Proposition 6, χn → χ∗ holds when n → ∞, where χ∗ denotes the

optimal solution to problem (4.36). In addition, we note that (4.36) is obtained from

problem (4.14) by performing SCA, while the bound approximation introduced by

the SCA has the same function value and gradient value around the original spatial

point for any iterations. Therefore, we can conclude that the algorithm derived from

Table 4.1 can continuously coverage to a KKT point. The proof is completed.
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Appendix H

Proof of Theorem 1

Proof. Take SEE as an example, Theorem 1 can be proved by considering two cases,

i.e, Λmax = 1 and Λmax > 1.

• When Λmax = 1, the original SEE reduces to the joint channel and power

allocations for system EE maximization problem in an OFDMA system, the

NP-harness has already been proved in [104].

• For the case of Λmax > 1, we prove that SEE is NP-hard even without consider-

ing power allocations. We construct a case of SEE with given power allocation

coefficients and the NP-hardness can be proved by establishing the equivalence

between the constructed instance and 3-dimensional matching problem, which

is known to be NP-hard. The instance with N LoRa users, M channels, and

Λmax = 2 is considered. Let X and Y be two different sets with |X| = |Y| = N
2

and V be a subset ofM×X×Y. Assuming that any tripe Vi = (mi, xi, yi) ∈ V ,

which means LoRa users xi ∈ X, yi ∈ Y are selected on channel mi ∈M . With

given power allocation coefficients, denote the maximized sum rate with any

given Vi as RVi
. Hence, we just need to verify the 3-dimensional problem if

there exists V
′ ⊂ V , satisfing that 1) m1 ̸= m2, x1 ̸= x2, and y1 ̸= y2 for any

two triples (m1, x1, y1) ∈ V
′
and (m2, x2, y2) ∈ V

′
. 2)V

′
=min{M, N

2
}.

According to the definition, if the feasibility problem is proved to be NP-hard,

then the original problem is also NP-hard [118]. Therefore, denote the sum rate

for any triple as RV
′
i
, given the power allocations, the sum rate feasibility problem

can be expressed as
∑i=V

′

i=1 RV
′
i
≤ ϵ, where ϵ is a given constant. When ϵ becomes

positive infinity, an instance of the feasibility problem corresponds to a 3-dimensional

matching problem, then a special case of the original SEE is NP-harness, which proves
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the original SEE is NP-hard. The proof for MEE is similar and omitted here. The

proof is completed.
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Appendix I

Proof of Theorem 2

Proof. Theorem 2 is proved from two aspects. Firstly, the number of possible swap

matching operations is finite since only a limited number of LoRa users can occupy the

same channel. In addition, Due to the feature of swap matching given by Definition

2, if a swap-matching is approved, the achievable data rates of any player, i.e., Ul

and SCm, will not decrease by employing a swap matching, and the data rates of at

least one player will increase. Therefore, the corresponding objectives, i.e., (5.7a) and

(5.8a), will increase after each swap matching operation. The spectrum resources are

limited, which restricts the upper bound of energy efficiency. Hence, there is a swap

matching after which no further energy efficiency is improved and the algorithm of

Table 5.2 converges to a 2ES matching. The proof is completed.
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Appendix J

Proof of Theorem 3

Proof. The initialization step is a deferred acceptance algorithm, the complexity de-

pends on the process of user proposing, which is up to O(MN) in the worst case.

Besides, the computational complexity of the swap matching step lies in the num-

ber of iterations and swap operations. In each iteration, for any channel SCm, the

maximum assigned users is Λmax. For user Uj, there exists (M − 1) possible swap-

blocking pairs in φj
l . The potential combinations for φj

l with j fixed is Λmax(M − 1).

Since there are N LoRa users, we can conclude that the number of swap matchings

is ΛmaxN(M − 1) during each iteration. Considering the number of iterations, the

total complexity of swap matching is O(1
2
IΛmaxN(M−1)). Combining the above two

phases, the complexity of the algorithm in Table 5.2 is O(MN + 1
2
IΛmaxN(M − 1))

in the worst case.
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Appendix K

Proof of Proposition 8

Proof. With inequality (5.11) and equation (5.14), the original SEE has been trans-

formed into a concave-convex problem, which implies that KKT conditions are suf-

ficient and any local maximum is the global maximum [119]. Besides, a feasible

point set {x̃nm,l} and {ϕn} at iteration n can be obtained by solving problem (5.16),

the power allocated to each user is calculated as pm,l
n = e

x̃nm,l
ϕn . The system EE ηn

can be further obtained according to (5.7a). Moreover, problem (5.16) is concave in

(x̃, ϕ), with the interior point method, we can derive that ηn ≤ ηn+1 which means the

algorithm provided in Table 5.4 converges. The proof is completed.
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Appendix L

Proof of Theorem 4

Proof. The proof can be proved from two aspects. We first prove the necessity. From

equation (5.19), we can deduce that

ηoptMEE = min
m,l

Rm,l (P
opt)

Pm,l (P opt)
≥ min

m,l

Rm,l (P )

Pm,l (P )
, (L.1)

which is equivalent to the following

min
m,l

[Rm,l (P )− ηoptMEEPm,l (P )] ≤ 0, (L.2a)

min
m,l

[Rm,l

(
P opt

)
− ηoptMEEPm,l

(
P opt

)
] = 0. (L.2b)

Therefore, the maximum value for the left side of (L.2a) can be achieved if and

only if P = P opt, which completes the necessity proof.

The we prove the sufficiency of Theorem 4. Assuming P
′
as the optimal power

allocation to (5.19), then for any feasible power allocation coefficient P , we have the

following function

min
m,l

[Rm,l (P )− ηoptMEEPm,l (P )] ≤ min
m,l

[Rm,l

(
P

′
)
− ηoptMEEPm,l

(
P

′
)
] = 0. (L.3)

As a result, we can obtain that

ηoptMEE = min
m,l

Rm,l

(
P

′)
Pm,l (P

′)
, (L.4)

which means that P
′
is the optimal power allocation of the original problem. The

proof is completed.
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Appendix M

Proof of Theorem 5

Proof. Let us assume that P 1 and P 2 be the optimal power solution corresponding to

given max-min EE η1m,l and η
2
m,l, with the condition η1m,l > η2m,l, then we can deduce

the following

π(η1m,l) = max
P

min
m,l

[Rm,l (P )− η1m,lPm,l (P )] (M.1a)

= min
m,l

[Rm,l

(
P 1
)
− η1m,lPm,l

(
P 1
)
] (M.1b)

< min
m,l

[Rm,l

(
P 1
)
− η2m,lPm,l

(
P 1
)
] (M.1c)

≤ min
m,l

[Rm,l

(
P 2
)
− η2m,lPm,l

(
P 2
)
] = π(η2m,l), (M.1d)

where inequality (M.1c) is derived from the condition that η1m,l > η2m,l, (M.1d) is

obtained due to the fact P 2 is the optimal solution to η2m,l. Hence, π(ηm,l) is mono-

tonically decreasing with ηm,l. In addition, incorporating the conclusion gained from

Theorem 4, we can easily derive the property ii) of Theorem 5.
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Appendix N

Proof of Proposition 9

Proof. In order to prove the convergence of algorithm provided in Table 5.6, we need

to confirm that the optimal solution to problem (5.28) at n-th iteration is also a

feasible point of the iteration n + 1. From the characteristic of inequality (5.28b),

denote P ∗ as the optimal solution to problem (5.28) at iteration n, the following

result can be obtained:

u ≤ qn (N.1a)

= min
m,l

fi(P
∗)−

(
zi(P

n) +∇ziT (P n)(P ∗ − P n)
)

(N.1b)

= min
m,l

fi(P
n+1)−

(
zi(P

n) +∇ziT (P n)(P n+1 − P n)
)

(N.1c)

≤ min
m,l

[fi(P
n+1)− zi(P

n+1)] = qn+1, (N.1d)

where the equality (N.1c) holds as P n+1 is the optimal solution of n-th iteration.

Besides, inequality (N.1d) can be derived with inequality (5.25), since the first-Taylor

approximation is an upper bound of zi(P ).

In conclusion, we can obtain that the objective value at the iteration n+1 is larger

or equal to that achieved from the n-th iteration, which proves the convergence of

the proposed algorithm.

Moreover, denote constraint (5.28b) as ς(P ) = fi(P )−
(
zi(P

n) +∇ziT (P n)(P − P n)
)
.

Since the proposed algorithm converges, then P n = P n+1 when n → ∞. The first-

order optimality condition [67] can be written as

∇ςT (P n)(P − P n) = (∇fT
i (P

n)−∇zTi (P n))(P − P n) (N.2a)

= ∇ςT (P n+1)(P − P n+1) (N.2b)

≤ 0. (N.2c)
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Consequently, the first-order optimality condition of problem (5.21) is confirmed,

which means the result obtained from Table 5.6 satisfies KKT conditions and is a

stationary point of (5.21). The proof is completed.
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