
Zones of Pain: Visualising the Relationship
between Software Architecture and Defects

Jean Petrić, Tracy Hall, and David Bowes

Lancaster University, Lancaster, UK
{j.petric}{d.h.bowes}{tracy.hall}@lancaster.ac.uk

Abstract. Substantial development time is devoted to software mainte-
nance and testing. As development resources are usually finite, there is a
risk that some components receive insufficient effort for thorough testing.
Architectural complexity (e.g. tight coupling) can make effective testing
particularly challenging. Software components with high architectural
complexity are more likely be defect–prone. The aim of this study is to
investigate the relationship between established architectural attributes
and defect–proneness. We used the architectural attributes: abstract-
ness, instability and distance to measure the architectural complexity
of software components. We investigated the ability of these attributes
to discriminate between defective and non-defective components on four
open source systems. We visualised defect–proneness by plotting archi-
tectural complexity and defectiveness using Martin’s ‘Zones of Pain’.
Our results show that architecture has an inconsistent impact on defect–
proneness. Some architecturally complex components seem immune to
defects in some projects. In other projects architecturally complex com-
ponents significantly suffer from defects. Where architectural complex-
ity does increase defect–proneness the impact is strong. We recommend
practitioners monitor the architectural complexity of their software com-
ponents over time by visualising potential defect–proneness using Mar-
tin’s Zones of Pain.

Keywords: software defects · software architecture · software evolution

1 Introduction

We aim to investigate the effect of architecture on defect–proneness. We build
on previous work which looked at the relationship between some aspects of ar-
chitecture and defects. Elish et al. compared the ability of three metric suites,
which capture various static features of code, to predict pre– and post–defects
[8]. Elish et al. demonstrated that Martin’s suite of metrics [14] significantly
outperformed the other two metric suites analysed. Jaafar et al. examined the
impact of design patterns on defect–proneness and reported that components
with anti–patterns are more defect–prone than others [12]. Jaafar et al. further
demonstrated that components with anti–patterns are also those most involved
in structural changes. However, it remains unclear if a complex architecture in-
creases the likelihood of defect–proneness. To the best of our knowledge, no study
has investigated the impact of architectural complexity on defect–proneness.

2 J. Petrić et al.

We used three metrics from Martin’s [14] suite of metrics to measure the
architectural complexity of software components. These are abstractness, insta-
bility and distance from the main sequence (short, distance). Abstractness (A)
is defined as the ratio of interfaces and abstract classes in a component to the
total number of classes in the component. Instability (I) is defined as the ratio
between outward dependencies of a component and the total number of depen-
dencies entering the component. Finally, distance (D) is defined as the absolute
value of A and I which represent the distance from the main sequence in the
‘tension plot ’ (i.e. Figure 1). We also used Martin’s notions of the “zone of pain”
and “zone of uselessness”, collectively called the “zone of exclusion”, to cate-
gorise components by their architectural complexity. We investigated whether
defect–proneness is more likely to occur in the zone of exclusion. We further
investigated the likelihood of defect–proneness for components in the zone of
exclusion compared to other components.

We set out to answer to research questions: RQ1. What is the effect of
architectural attributes on the defect-proneness of software components for the
investigated open source systems? ; RQ2. What is the proportion of defective
components in the zone of exclusion for the investigated open source systems?
Our contributions are three–fold. Firstly, we show that architectural complex-
ity is a promising indicator of defect–proneness. Architectural complexity may
give complementary information with the addition of other metrics to defect
prediction models. Secondly, we show that the relationship between architec-
tural complexity and defect–proneness is not simple. Future studies are needed
to understand which factors affect the relationship between architecture and
defect–proneness. Thirdly, we provide all tools and data to the community for
future analysis and replication.

The rest of this paper is structured as follows. The next section discusses the
background to this work which is followed by a detailed methodology section.
Section 4 then presents and discusses the results. Section 5 outlines related work,
followed by the conclusions in Section 6.

2 Background

Many code design approaches to building reusable, maintainable and testable
software have been proposed over the years. For example, Gamma et al. [9] doc-
umented over 20 reusable solutions for object–oriented systems, whilst Jaafar
et al. conducted an empirical study to investigate the impact of design pat-
terns on software maintenance and defectiveness [12]. Other work has focused
on investigating problematic coding approaches that may hamper reusability,
maintainability and testability. For example, Khomh et al. showed that classes
containing anti–patterns are more frequently changed and more defect–prone
than others in almost all releases of the four systems they analysed [13]. Hall
et al. demonstrated that some code smells have a small but significantly nega-
tive effect on software defects [10]. Bavota et al. demonstrated that test smells
impede the maintainability of software tests [6].

Visualising the Relationship between Software Architecture and Defects 3

Many static code metrics have been used as a means to assess their impact
on defect–proneness. For example, the CK suite [7], the MOOD suite [1], and
Martin’s suite [14] are amongst frequently used ones. Elish et al. showed that
prediction models based on Martin’s suite of metrics performed best amongst
the three suites [8]. Almugrin et al. modified Martin’s suite based on the concept
of responsibility [3] and later showed that the modified suite yielded high corre-
lation with respect to maintainability and testability [4]. In this study we focus
on the architectural attributes of software. We use three architectural attributes
defined by Martin [14] to explore their relationship with defect–proneness of
software components.

3 Methodology

3.1 Architectural Metrics

Equations 1 depict abstractness (A), instability (I) and distance from the main
sequence (D), respectively. In A, Na is the number of abstract classes and in-
terfaces in the component, whilst Nc is the number of concrete classes in the
component. A is in the range of 0 and 1, where A = 0 indicates the component
contains no abstract classes or interfaces. On the other hand, A = 1 indicates
that the component contains nothing but abstract classes or interfaces. In I,
Fanin represents the number of inward, whilst Fanout the number of outward
dependencies. I value also spans from 0 to 1, where 0 indicates maximally stable
component and 1 maximally unstable component. Finally, D calculates the eu-
clidean distance from the main sequence. D also ranges between 0 and 1, where
0 indicates that the component is on the main sequence, whilst 1 indicates that
the component is as far away from the main sequence as possible. When D ≈ 1
the component is inside the zone of exclusion, either in the ZoP or ZoU. Figure
1 shows the relationship between the three metrics. We anticipate that compo-
nents on and close to the MS should be less affected by defects compared to
components in the ZoE. We use tension plots to visualise defective components
across different snapshots of software evolution.

A =
Na

Nc
I =

Fanout

Fanout + Fanin
D = |A + I − 1| (1)

3.2 Experiment

We used four open source projects shown in Table 1. All projects come from
the apache community. We selected these projects because they use similar de-
velopment standards which reduces issues that arise from analysing different
open source projects. In addition, these projects generally belong to the same
domain, i.e. Java libraries, are of reasonable size and widely used in the com-
munity. Table 1 summarises the chosen projects. The # defects and # analysed

4 J. Petrić et al.

0 0.25 0.50 0.75 1
instability

0

0.25

0.50

0.75

1

ab
st

ra
ct

ne
ss

MS
MSMS

MS
MSMS

MSMS
MS

MS
MS
MS

MS
MSMS

MS
MSMS

MS
MSMS

MS MS
MSMSMS

MS

ZoP
ZoP

ZoP
ZoP

ZoP
ZoP

ZoP

ZoP

ZoP

ZoP

ZoU

ZoU

ZoU

ZoU

ZoUZoU
ZoU

ZoU

ZoUZoU

zone
a MS

a ZoP

a ZoU

Fig. 1. The tension plot showing the relationship between A, I and D. Extreme values
of A and I are driving components towards the zones of exclusion (also called, ‘zones
of pain’).

commits columns are the total numbers of defective files and commits, respec-
tively, throughout the project’s history. The last two columns represent the av-
erage numbers of packages and classes for all analysed commits (these are the
numbers per commit across the software history).

We collected two sets of data. The first set of data is a collection of defects
for each project in Table 1. We used the SZZ algorithm to extract defective files
for each commit throughout the project’s history [15]. The second set of data
contains the architectural metrics (A, I and D) for each of the four projects. Due
to the lack of existing static metric tools that work on the latest Java versions,
we developed JavaMetrics1 to collect A, I and D metrics. For each project,
we collected the metrics against all git commits. Finally, we amalgamated the
information from the first and second set of data to get a list of metrics for all
defective and non-defective components throughout each project’s history. We
also cleaned the datasets which scripts are available online2.

To answer RQ1 we investigated whether complex components are likely to
be more defective compared to their simpler counterparts. To reduce the bias
we compared only components of similar size. We removed non–defective com-
ponents which are 30% smaller or bigger than the defective components. Larger
thresholds would include more components but would also defeat the purpose of
comparing similar sizes. Smaller thresholds leave few components to compare.
30% threshold resulted in the right balance for further statistical analysis. To an-
swer RQ2 we used an approach similar to binary testedness previously reported

1 https://github.com/lancsunise/JavaMetrics
2 https://github.com/lancsunise/quatic20 replication

Visualising the Relationship between Software Architecture and Defects 5

Table 1. Open source projects used in this paper

Project # defects # analysed commits # avg. package # avg. class

hadoop-common 1617 10509 428 8362
camel 10501 44609 2081 14681
derby 5130 8269 230 2790
hive 11122 14377 621 12703

by Ahmed et al. [2] and Bach et al. [5]. Binary testedness separates source code
in two (binary) groups. In its original form, one binary group is code covered
with tests whilst another group is code with no associated tests. It is then pos-
sible, for a given snapshot, to count the occurrences of defective components for
covered and uncovered code. If fewer defects end up in the covered compared
to the uncovered group, we establish that testing is effective. Note that defects
should initially be extracted via some form of defect prediction, rather than ex-
posed by tests (i.e. tests would not be able to uncover any defects in uncovered
code). We undertook a similar experiment to validate whether some architec-
tural attributes lead to more defect–prone components. We defined Equation 2
to calculate the defect–proneness of components with D ≈ 0 and D ≈ 1. We
used three thresholds, 0.2, 0.4 and 0.6 to calculate the ratios defined in Equation
2.

RD≈0 =
Nd0

Nd0 + Nnd0
, RD≈1 =

Nd1

Nd1 + Nnd1
(2)

Each equation represents the ratio of defective components over the total
number of components for a particular region of the tension plot. RD≈0 are com-
ponents similar to the green components, whilst RD≈1 are components similar
to the red components in Figure 1. Nd and Nnd are the counts of defective and
non–defective components for the specific region of the tension plot, respectively.

4 Results and Analysis

Our RQ1 investigates whether architecturally complex components are likely to
be more defect–prone compared to architecturally simpler components. If archi-
tecturally complex components were more defective on average, we would expect
them to be farther away from the MS. To test the hypothesis whether defective
components tend to have a greater distance, we used a one–sided non–parametric
Mann–Whitney U test. We used the Mann–Whitney U test because of different
numbers of instances between defective and non–defective components. For all
projects except derby the p−values were at least 5.596E−3 or lower confirming
that there is a statistical significance to conclude that architecturally complex
components are more likely to be defective than their simpler counterparts.

Given that there is a significant difference between distance and defectiveness
in most cases, we investigated the magnitude of this difference. To estimate the
magnitude we used the ratios defined in Equation 2 for three different thresholds:

6 J. Petrić et al.

0.2, 0.4 and 0.6. These thresholds represent the maximum “shift” from the MS
that divides the tension plot into two groups, as previously explained in Section
3.2. The expectation is to see RD≈1 > RD≈0 for the thresholds approaching
closer to 1. In other words, defectiveness of components increase as they are
approaching closer to the ZoE. By calculating RD≈1

RD≈0
it is possible to estimate

the magnitude (scale) of the difference between the two groups. Table 2 reports
these details.

Table 2. Ratios of defective and non-defective components based on the distance from
the Main Sequence

Project shift rdef rnondef scale p–val

hadoop-common 0.2 0.129 (+/-0.129) 0.105 (+/-0.199) 1.223 0.266
hadoop-common 0.4 0.208 (+/-0.233) 0.140 (+/-0.206) 1.492 0.303
hadoop-common 0.6 0.405 (+/-0.45) 0.074 (+/-0.13) 5.449 0.102

derby 0.2 0.036 (+/-0.115) 0.103 (+/-0.119) 0.345 1.000
derby 0.4 0.022 (+/-0.078) 0.075 (+/-0.074) 0.288 1.000
derby 0.6 0.018 (+/-0.107) 0.054 (+/-0.035) 0.33 1.000

camel 0.2 0.060 (+/-0.099) 0.021 (+/-0.061) 2.838 0.000
camel 0.4 0.070 (+/-0.139) 0.028 (+/-0.078) 2.529 1.000
camel 0.6 0.119 (+/-0.315) 0.047 (+/-0.084) 2.54 1.000

hive 0.2 0.082 (+/-0.152) 0.083 (+/-0.157) 0.987 0.839
hive 0.4 0.033 (+/-0.129) 0.088 (+/-0.094) 0.373 1.000
hive 0.6 0.020 (+/-0.088) 0.030 (+/-0.02) 0.657 1.000

Table 2 presents the ratios and scale of the two groups of components for all
four projects and the different thresholds. The first column is the project name,
shift corresponds to the distance from the MS, rdef and rnondef are RD≈1 and
RD≈0, respectively. The scale represents the magnitude RD≈1

RD≈0
. scale > 1 means

that architecturally complex components are indeed more likely to be defect–
prone, whilst scale < 0 shows the opposite. In addition, scale = 2 shows that
there are two times more defective components in the ZoE than around the
MS. Finally, p-val shows whether the differences between RD≈1 and RD≈0 are
significant. From Table 2, for camel, the scale is close to 3 for all the thresholds
which indicates that an architecturally complex component is almost 3 times
more likely to be defect–prone. On the other hand, derby shows very similar
results with the scale close to 0.3 indicating that simpler components are 3
times more likely to be defect–prone. Figure 2 is an example of using the tension
plot for a real–world project. The figure shows the arrangement of defective and
non–defective components for 11 commits of hadoop-common. Each subplot in
Figure 2 represents the state of defective and non–defective components for one
git commit. Figure 2 clearly shows that for four commits, 0d5ed9, 382ec9, 46a7e0
and f3a5d1 the most architecturally complex components are defective.

Visualising the Relationship between Software Architecture and Defects 7

0
0.25
0.50
0.75

1
ab

st
ra

ct
ne

ss

0023e0

defective
False
True

0d5ed9 185bbe 24c399

0
0.25
0.50
0.75

1
2d1f5e 382ec9 46a7e0

0

0.
25

0.
50

0.
75 1

4a9d98

0

0.
25

0.
50

0.
75 1

0
0.25
0.50
0.75

1
4e0028

0

0.
25

0.
50

0.
75 1

f3a5d1

0

0.
25

0.
50

0.
75 1

instability

fe4269

Fig. 2. Abstractness vs Instability for the top defective hadoop-common snapshots

5 Conclusions

Our findings suggest that architectural complexity of a component, as defined
by Martin [14], does not always increase its likelihood to be defect–prone. There
could be multiple reasons why this is the case. One reason is that complex
components in some projects are more thoroughly tested compared to complex
components in other projects. We suspect this to be unlikely in our analysis,
given that we used the projects from the same community which follows the
same protocol. Another, more likely reason, could be the difference in respon-
sibilities of components in the ZoE compared to components close to the MS.
As other studies have shown, practitioners spend more time maintaining and
testing complex components (e.g. [3, 11]), which may leave more opportunity for
defects to slip unnoticed in simpler components.

Overall, our analysis showed that for three out of the four considered sys-
tems architectural complexity has a strong relationship with defects. A strategic
refactoring of components in the zones of exclusion by introducing abstraction
is likely to reduce architectural complexity of components and decrease overall
defect–proneness of the system. Visualisation techniques, such as the tension
plot, as well as the Martin metrics can be an effective way for practitioners
to determine which components require more attention. However, even though
the magnitude of defect–proneness in the zones of exclusion can be three times
higher, the effect is not consistent across all the systems. This suggests that there

8 J. Petrić et al.

are more factors that affect defect–proneness. For example, components in the
ZoE may be disproportionally more tested compared to components close to the
MS. Accounting for the level of testing could be a promising factor to explore in
the future.

Acknowledgements

This work was partly funded by a grant from the UK’s Engineering and Physical
Sciences Research Council under grant number: EP/S005730/1

References

1. Abreu, F.B.: The mood metrics set. In: proc. ECOOP. vol. 95, p. 267 (1995)
2. Ahmed, I., Gopinath, R., Brindescu, C., Groce, A., Jensen, C.: Can testedness be

effectively measured? In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. pp. 547–558 (2016)

3. Almugrin, S., Albattah, W., Alaql, O., Alzahrani, M., Melton, A.: Instability and
abstractness metrics based on responsibility. In: 2014 IEEE 38th Annual Computer
Software and Applications Conference. pp. 364–373. IEEE (2014)

4. Almugrin, S., Albattah, W., Melton, A.: Using indirect coupling metrics to predict
package maintainability and testability. Journal of systems and software 121, 298–
310 (2016)

5. Bach, T., Andrzejak, A., Pannemans, R., Lo, D.: The impact of coverage on bug
density in a large industrial software project. In: Empirical Software Engineering
and Measurement (ESEM). pp. 307–313. IEEE (2017)

6. Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D.: Are test smells really
harmful? an empirical study. Empirical Software Engineering 20(4), 1052–1094
(Aug 2015)

7. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on software engineering 20(6), 476–493 (1994)

8. Elish, M.O., Al-Yafei, A.H., Al-Mulhem, M.: Empirical comparison of three metrics
suites for fault prediction in packages of object-oriented systems: A case study of
eclipse. Advances in Engineering Software 42(10), 852 – 859 (2011)

9. Gamma, E.: Design patterns: elements of reusable object-oriented software. Pear-
son Education India (1995)

10. Hall, T., Zhang, M., Bowes, D., Sun, Y.: Some code smells have a significant but
small effect on faults. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 23(4), 1–39 (2014)

11. Izurieta, C., Bieman, J.M.: Testing consequences of grime buildup in object ori-
ented design patterns. In: 2008 1st International Conference on Software Testing,
Verification, and Validation. pp. 171–179 (2008)

12. Jaafar, F., Guéhéneuc, Y.G., Hamel, S., Khomh, F., Zulkernine, M.: Evaluating
the impact of design pattern and anti-pattern dependencies on changes and faults.
Empirical Software Engineering 21(3), 896–931 (2016)

13. Khomh, F., Di Penta, M., Guéhéneuc, Y.G., Antoniol, G.: An exploratory study of
the impact of antipatterns on class change-and fault-proneness. Empirical Software
Engineering 17(3), 243–275 (2012)

14. Martin, R.C.: Agile software development: principles, patterns, and practices. Pren-
tice Hall (2003)

15. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: Pro-
ceedings of the 2005 International Workshop on Mining Software Repositories.
pp. 1–5. MSR ’05, ACM, New York, NY, USA (2005)

