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Abstract 

Within schistosomiasis control, assessing environmental risk of currently non-treated 

demographic groups e.g. pre-school-aged children (PSAC) and their mothers is 

important. We conducted a pilot micro-epidemiological assessment at the crater lake 

of Barombi Kotto, Cameroon with GPS tracking and infection data from 12 PSAC-

mother pairs (n=24) overlaid against environmental sampling inclusive of snail, 

parasite and water-use information. Several high-risk locations or ‘hotspots’ with 

elevated water contact, increased intermediate snail host densities and detectable 

schistosome environmental DNA (eDNA) were identified. Exposure between PSAC 

and mother pairs was temporally and spatially associated, suggesting interventions 

which can benefit both groups simultaneously might be feasible. When attempting to 

interrupt parasite transmission in future, overlaid maps of snail, parasite and water 

contact data can guide fine-scale spatial targeting of environmental interventions. 
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1. Introduction 

Urogenital schistosomiasis is a waterborne parasitic disease, caused by infection with 

the trematode blood fluke Schistosoma haematobium, often common in impoverished 

rural sub-Saharan communities (Colley et al., 2014). The frontline intervention against 

this disease is with preventive chemotherapy (PC) by mass drug administration (MDA) 

of praziquantel (PZQ). In Cameroon, for example, whilst there has been regular annual 

treatment of school-aged children (Tchuenté and N’Goran, 2009), approaching the 

World Health Organization (WHO) treatment coverage targets (World Health 

Organization, 2017),  treatment  of other at-risk groups, such as pre-school aged 

children (PSAC) and their mothers, remains incomplete (Faust et al., 2020; Rollinson 

et al., 2013; Tchuem Tchuenté et al., 2017; World Health Organization, 2011, 2003). 

As the national control programme in Cameroon moves towards local interruption of 

schistosome transmission, the expansion of PC to currently excluded groups is needed 

alongside targeted interventions appropriate to  disease foci (Stothard et al., 2017; 

Tchuem Tchuenté et al., 2017).  

 

In 2017 the WHO published new guidelines on the use of molluscicides for 

schistosomiasis control but they lacked information on how to best identify local 

hotspots for most effective focal-targeting (World Health Organization, 2017). Today, 

with increasing investment specifically for snail control, this is an important requirement 

for disease surveillance (Xu et al., 2016). In contrast to general MDA campaigns where 

coarse disease prevalence mapping is sufficient, focal control requires precision 

mapping to capture spatial and temporal heterogeneities in schistosomiasis 

transmission (Tchuem Tchuenté et al., 2018). Therefore, when interruption of parasite 
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transmission is considered, a holistic mapping framework at fine scale is needed that 

integrates snail and schistosome populations with human water-contact patterns 

(Stothard et al., 2017). 

 

Barombi Kotto, a crater lake in South-West Cameroon with an island-dwelling 

population, is a well-known transmission focus for urogenital schistosomiasis 

(Campbell et al., 2017). In June 2016, environmental and parasitological cross-

sectional surveys were carried out in Barombi Kotto. They found a high egg-patent 

prevalence of 40.1% and a significantly higher level of water contact among infected 

participants than those who were uninfected (Campbell et al., 2017). These surveys 

were repeated in 2017 with a novel environmental DNA (eDNA) detection component, 

in which the DNA of a target organism which can be extracted from environmental 

samples (Taberlet et al., 2012). In this study, the top mid-layer of lake water was 

sampled since sediments may contain parasite DNA from a longer period. An 

additional study which aimed to improve understanding of fine-scale human mobility 

and exposure in MDA-excluded groups was carried out concurrently, tracking the 

movements of PSAC and mother pairs prior to an expanded treatment campaign 

(Macklin et al., 2018). 

 

Using Barombi Kotto as an exemplar case, we attempted to pilot an integrated 

approach to identify potential transmission micro-hotspots by combining water, 

sanitation and hygiene (WASH) and human infection information, snail and eDNA 

sampling data as overlaid with individual GPS tracking data. 

 

2. Materials and methods 

Primary data available for this study were collected during malacological and 

parasitological cross-sectional surveys and a GPS survey conducted on the central 
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island of Barombi Kotto in June 2017. Additional information on the locations of known 

bathing sites was collected by supplementary questionnaire (Macklin et al., 2018). 

 

For detailed malacological inspections, a total of 8 shoreline sites were selected based 

on observed human water-contact patterns and accessibility for the field team. Each 

site was sampled for aquatic snails by hand using metal collection sieves, with three 

collectors spending a total of 15 minutes searching. Following the methodology 

described by Campbell (Campbell et al., 2017), collected snails of medical importance 

were identified according to the morphological keys of Brown (Brown, 2002) and 

counted before being exposed to light for two hours on two occasions to check for 

schistosome cercarial shedding. At Sites 1-7 (Site 8 became unavailable for eDNA 

sampling during the study period), 1.5 litres of lake water were collected, approximately 

50cm below the water surface, and passed through 5μm nylon water filter with 

subsequent DNA extraction and real-time PCR with TaqMan probes to detect 

Schistosoma environmental eDNA as described by Al-Shehri et al. (Al-Shehri et al., 

2018). 

 

Within the parasitological survey, a nested GPS study was carried out concurrently, as 

described (Macklin et al., 2018). A cohort of 12 mother and PSAC pairs (n=24) were 

randomly selected from the parasitological survey (n=180) to wear GPS dataloggers 

for 48 hours. The movements of each individual in the cohort were tracked using a 

GPS datalogger (I-gotU GT-120, Mobile Action, UK; dimension 44.5 x 28.5 x 13 mm, 

weight 20g) which was wrapped in a waterproof bag and attached to the arm or wrist 

with an elastic strap. The cohort was split into two 48-hour study periods and 

dataloggers were configured for their GPS location to be recorded at 1-minute intervals 

during the period 05:00-21:00, identified as the community’s waking hours. 
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A water-contact risk area was defined as a buffer region of 10m inland from the 

shoreline and 20m into the lake to account for GPS uncertainty, the movement of 

individuals and swimming. To assess temporal trends in water contact, the number of 

different individuals entering the risk area was calculated for each 30-minute period 

across a day, collapsing all times from the two study periods into a single day. To map 

exposure hotspots, time-weighted activity heatmaps were produced using kernel 

density estimation in QGIS (QGIS Development Team, 2009) (with a bandwidth radius 

of 10m) for the GPS points within the risk area.  

 

The proximity of mother-child pair movements was calculated as the Euclidean 

distance between the geometric centres of their locations in each ten-minute window 

period for i) all locations across the entire island space and ii) all locations within the 

risk area. The distance between locations in the risk area and estimated house location 

(identified from shared activity hotspots on the island for mother-PSAC pairs) was also 

calculated for each participant. 

 

All analyses were carried out in the R statistical language version 3.6.3 (R Core Team, 

2016) and maps were created in QGIS. Study protocols were approved by the 

Cameroon National Ethics Committee and the Liverpool School of Tropical Medicine 

Research Ethics Committee. 

 

3. Results 

The GPS cohort’s pervasive water contact was clear, with at least one mother and one 

PSAC entering the risk area in every 30-minute window of the day after 05:45 (Figure 

1). Group water contact was greater for mothers, while both mother and PSAC groups 

followed a similar temporal trend, peaking in the early morning (06:45-09:15) and 

afternoon/early evening. Peak water contact (>4 individuals) in the afternoon/evening 

period was longer for mothers (13:45-19:45) than PSAC (15:15-17:15 and 17:45-
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18:45). As has been reported previously (Macklin et al., 2018), two mothers and one 

PSAC in the cohort were found to have egg-patent infections. 

 

Across the entire island, PSAC and mother pair movements were consistently close 

during waking hours. Out of 12 pairs, 9 stayed within a distance of less than 35m 

between mother and child for at least 65% of all ten-minute periods. When within the 

risk area, mother-PSAC pairs were more consistently close together, with 9 pairs 

spending at least 83% of their time within 35m of each other. 

 

Figure 1  

 

Title: The number of individuals with at least one water contact in each half hour period 

(n=12 in each group) for A) PSAC and B) mothers. 

 

Mother and PSAC groups entered the risk area at a range of different locations around 

the island’s shoreline (Figure 2). Figures 2A and 2B show that the two groups shared 

all contact sites except for Site 2. Both groups were particularly active across the length 

of the southwestern shore, with the highest intensity in the central section. The three 

members of the cohort with egg-patent infections almost exclusively entered the risk 

area in this section. All of the contact sites were independently identified as bathing 

sites (Figure 2C) except for three hotspots on the western bay and southwestern and 

north-eastern shores. Seven of the identified bathing sites were not visited by the 
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cohort. Individuals entered the risk area at a mean distance of 83.6m (range 18.0-

140.0m) from their houses, showing that they generally, but not exclusively, chose 

contact sites near to their houses. 

 

Environmental sampling found Bulinus camerunensis snails at all sites (Figures 2A 

and 2B) and a snail shedding schistosome cercariae at site. The mean number of 

snails found at all sites was 56 (range 21-107), with over 25 snails collected at 6 of the 

8 sites. Schistosoma eDNA was detected in water samples for 4 out of 7 sites. 

 

Figure 2 (in colour) 

 

Title: Activity heatmaps of person-time in the risk area (yellow = low, red = high) for A) 

mothers (n=12), B) PSAC (n=12) and C) both groups together (n=24). In A) and B), 

the number of collected Bulinus camerunensis snails are shown by circle size	(small 
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circle = 1-25 snails, larger circle = >25 snails) and water eDNA results are indicated by 

colour (green = negative, pink = positive, violet = unsampled) at each of the 8 

numbered sampled sites. The identified shedding snail is marked (blue star) at Site 5. 

In C), known bathing sites are marked (diamonds). 

 

There was a clear overlap of risk factors for transmission at the sampled sites. Three 

of the sites (1, 3 and 6) were high risk, with more than 25 snail hosts present, 

schistosome eDNA detected in the water and significant local water contact from both 

mothers and PSAC. Another three sites (2, 4 and 7) had a high number of snails 

present, were negative for eDNA and varied in water contact. Site 2 was only visited 

by two mothers, while members of both groups visited Site 7 and five individuals 

passed through Site 4 momentarily before spending time in the more southernly 

hotspots located nearby. Interestingly, Site 5, where the shedding snail was located, 

only had brief contact from a single mother-PSAC pair and a small number of snails 

present. 

 

4. Discussion 

Our pilot approach has demonstrated that this cohort of mothers and PSAC have 

substantial levels of at-risk water contact in areas where intermediate hosts were 

present and schistosome eDNA was detected. Whilst their relative contribution(s) to 

environmental contamination is debated, it is consistent with their now recognised 

position as particularly vulnerable groups for schistosomiasis globally (Poole et al., 

2014; World Health Organization, 2011). Both group’s similar daily exposure patterns 

and PSAC-mother movement patterns can be broadly explained by the mother’s 

guardian role, an underappreciated epidemiological driver of the child’s spatial and 

temporal risk of infection. An infected mother or PSAC will place their corresponding 

pair at high risk of infection and interventions should aim to target them jointly through 

either environmental control to their water contact points or from health education 
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towards mothers. The spatial heterogeneity of contact sites used by these groups is 

indicative of the increasing importance of human behaviour as a key driver of 

transmission at smaller spatial scales (Stothard et al., 2017). 

In low-level transmission contexts with high heterogeneity, treatment or 

alternative interventions must be targeted at the ‘most-at-risk’ members of the 

population (Mari et al., 2017). GPS datalogging is a new tool which enables us to 

develop a detailed understanding of water-contact patterns within a target population 

and identify who has a high-risk water-contact profile and perhaps plays a 

disproportionate role in transmission (Campbell et al., 2017). It can collect individual-

level data about frequency and intensity of water use at higher spatial and temporal 

resolutions than conventional methods, albeit for a short period of time. This allows 

future investigation of classic epidemiological questions of where and when 

transmission takes place. 

For efficient use of GPS tracking, information on treatment status and current 

and historical infection status should be used to limit potential participants to those with 

the highest-risk profiles. In areas where transmission persists despite multiyear MDA, 

the priority is to identify potential ‘contaminators’ who may sustain transmission 

through intense daily water contact until they receive a curative dose of PZQ (Stothard 

et al., 2017). The untreated mothers and PSAC in this study are an example of a group 

at high-risk of playing this role due to their water contact in areas where snail 

populations were abundant and schistosome eDNA was present. 

In this study, we included use of eDNA detection methods, which are being 

continuously refined (Alzaylaee et al., 2020b, 2020a), to complement water contact 

and snail survey data for the estimation of environmental risk. As has been found in 

other recent studies (Sato et al., 2018; Sengupta et al., 2019), these methods offer an 

alternative direct measure of recent infestation with schistosomes to other more 

laborious snail shedding testing methods, which can be insensitive (Opisa et al., 2011; 

Sengupta et al., 2019). These eDNA methods also allow direct detection of 
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schistosomes in water rather than infection in snails (Allan et al., 2013; Kane et al., 

2013). In Barombi Kotto lake four sites were positive for eDNA, which we assume to 

be most likely of cercarial origin, although only a single shedding snail was collected. 

This may be indicative of insensitive snail shedding testing methods. With use of 

discriminatory DNA probes, eDNA collection should be considered more widely within 

micro-epidemiological studies. To ensure that eDNA testing and snail surveys are used 

most efficiently in the field, we recommend that GPS water contact information is 

collected first to help prioritise their use for sites regularly contacted by the target 

population. 

In ‘persistent hotspots’ (Kittur et al., 2017) - areas which are resistant to 

multiyear MDA - there is a need for alternative control methods which can break 

transmission cycles through environmental control (Campbell et al., 2017; Kittur et al., 

2017; Stothard et al., 2017; Tchuem Tchuenté et al., 2017; World Health Organization, 

2017). Several recent studies specifically recommend focal snail control as a cost-

effective means of interrupting transmission in sub-Saharan Africa (King et al., 2015; 

Tchuem Tchuenté et al., 2017; World Health Organization, 2017). However, successful 

application of focal mollusciciding that limits both cost and environmental damage 

(World Health Organization, 2017) is reliant on our ability to identify putative 

transmission hotspots. These hotspots must be identified at the fine spatial scale of 

schistosomiasis’ focality, rather than the village-level scale at which hotspots are often 

defined with MDA distribution in mind (Kittur et al., 2017; Rollinson et al., 2013; 

Standley et al., 2013; Tchuem Tchuenté et al., 2018).  

Currently, there is no international or national guidance on how to formally 

investigate environmental transmission in sub-Saharan Africa (Stothard et al., 2017) 

and the WHO manual for field mollusciciding (World Health Organization, 2017) only 

provides minimal guidance about how to identify transmission hotspots. In this study 

we have demonstrated how NTD programme managers can collect and present data 

in accordance with the manual’s recommendations that “simple maps of the local 
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transmission sites should be prepared” by “preparing risk maps of contact with water 

bodies by high-risk groups” (World Health Organization, 2017). By combining snail 

surveys with innovative new GPS and eDNA tools, more detailed maps of 

environmental risk can be produced for the identification of transmission hotspots for 

focal control. 

Whilst we acknowledge the constrained setting and context-specificity of our 

study, it is a pertinent exemplar of schistosomiasis transmission more broadly in two 

understudied demographical groups, set within fine-scale spatial and temporal 

resolutions. In principle, our approach could be used to better target non-treated 

population groups and guide local intervention strategies when interruption of 

transmission is considered. 
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