Time-lapse geophysical assessment of agricultural practices on soil moisture dynamics

G. Blanchy1,2, C. W. Watts2, J. Richards3, J. Bussell3 (formerly)4, K. Huntenburg1, D. Sparkes3, M. Stalham5, M. J. Hawkesford2, W. R. Whalley2, A. Binley1

1Lancaster University, Lancaster, Lancashire LA1 4YW, UK
2Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
3University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, UK
4The Game & Wildlife Conservation Trust, Allerton Project, Loddington, Leicestershire LE7 9XE, UK
5NIAB CUF, Cambridge, Cambridgeshire, CB3 0DL, UK

Highlights
- Time-lapse geophysical surveys can help assess the impact of agricultural practices
- Cover crops affect soil drying while in place but have no substantial effect on the main crop
- Traffic-induced soil compaction limits water extraction depths of potato crops
- The soil electrical conductivity in moldboard plowing decreases faster than in direct drill
- N levels have significant impact on the soil EC after application but not over a longer term

Abstract
Geophysical surveys are now commonly used in agriculture for mapping applications. High-throughput collection of geophysical properties such as electrical conductivity (inverse of resistivity), can be used as a proxy for soil properties of interest (e.g. moisture, texture, salinity). Most applications only rely on a single geophysical survey at a given time. However, time-lapse geophysical surveys have greater capabilities to characterize the dynamics of the
system, which is the focus of this work. Assessing the impact of agricultural practices through the growth season can reveal important information for the crop production. In this work, we demonstrate the use of time-lapse electrical resistivity tomography (ERT) and electromagnetic induction (EMI) surveys through a series of three case studies illustrating common agricultural practices (cover crops, compaction with irrigation, tillage with nitrogen fertilization). In the first case study, time-lapse EMI reveals the initial effect of cover crops on soil drying and the absence of effect on the subsequent main crop. In the second case study, compaction, leading to a shallower drying depth for potatoes was imaged by time-lapse ERT. In the third case study, larger change in electrical conductivity over time were observed in conventional tillage compared to direct drill using time-lapse EMI. In addition, different nitrogen application rates had significant effect on the yield and leaf area index but only ephemeral effects on the dynamics of electrical conductivity mainly after the first application. Overall, time-lapse geophysical surveys show great potential for monitoring the impact of different agricultural practices that can influence crop yield.

1 Introduction

Geophysical methods such as electromagnetic induction (EMI) and electrical resistivity tomography (ERT) are increasingly being used for agricultural applications. ERT enables the generation of an image of the electrical resistivity of the subsurface from measurements made using electrodes in contact with the ground. In contrast, EMI senses the electrical conductivity (the inverse of resistivity) of the ground through inductive signals and thus does not require galvanic contact with the subsurface. Originating, in part, from the mineral and oil exploration industries (Schlumberger, 1920), ERT is now widely used for many shallow near-surface applications. EMI has proved effective for soil salinity mapping (Corwin and Lesch, 2005). It
has since been widely used for mapping different soil properties (Doolittle and Brevik, 2014),
defining management zone in agriculture (Hedley et al., 2004) or assessing soil structure
(Romero-Ruiz et al., 2018). More recently the development of multi-coil EMI instruments has
enabled simultaneous measurements at multiple depths, enabling the recovery of the
distribution of electrical conductivity of the subsurface as in ERT.

Understanding the availability and movement of water in the ground has become a significant
driver for many geophysical studies and has led to the field of hydrogeophysics (Binley et al.,
2015). Geophysical methods have the capability to characterize properties of soil that
influence the flow and storage of soil water making such methods relevant for plant-related
application (Jayawickreme et al., 2014; Shanahan et al., 2015; Whalley et al., 2017; Zhao et
al., 2019; Cimpoiașu et al., 2020). For more information on other geophysical methods, we
redirect the reader to the review of Allred et al. (2008) who illustrate a range of geophysical
applications in agriculture, and the broader overview of geophysical methods for proximal soil
sensing given by Viscarra Rossel et al. (2011). These reviews focus on static surveys for
assessment of soil properties and states, however, there is much greater potential for
geophysical methods for characterizing the dynamic state of the subsurface, which is the
focus of this study.

Soil and water are essential resources for agriculture. However, these resources are
endangered by intensive agricultural practices which can impact food security (Amundson et
al., 2015). Loss of soil structure due to tillage or compaction can substantially affect the plant
water availability and nutrients uptake and impact crop growth. Conservation agriculture
practices aim at addressing some of these specific issues and improve and sustain crop
production. The FAO (http://www.fao.org/conservation-agriculture/en/) define three axes for
conservation agriculture: (1) minimum mechanical soil disturbance, (2) permanent soil organic cover and (3) species diversification. The case studies presented in this work concentrates on (1) and (2). More specifically, this paper focuses on the agricultural practices: compaction with irrigation, tillage with nitrogen fertilization and cover crops. This work does not aim at exhaustively detailing each practice but rather at assessing the potential of two popular geophysical methods (ERT and EMI) at monitoring the effects of these different management practices on soil properties and soil water status.

Traffic-induced soil compaction can be significant in certain (mainly loamy) soils as the compaction occurs in deeper layers. Over short time scales, compaction reduces the soil porosity making it more difficult for the roots to penetrate and the water to circulate in the soil (Keller et al., 2013), potentially impacting the effectiveness of irrigation practices. We redirect the reader to Hamza and Anderson (2005) and Batey (2009) who review the different agricultural impacts of soil compaction. Soil compaction can also have long-term effects (Keller et al., 2017).

Tillage, conventionally moldboard plowing increases the soil porosity but worsens the soil structure. Direct drilling (zero-tillage) offers an alternative to conventional tillage as it prevents major disruption of the soil structure. The structure of the soil plays a key role in making water and nutrients available to the crop and hence can affect crop productivity. While tillage has other major implications for the biological activity of the soil (Hobbs et al., 2008), the case study presented in this manuscript focuses on the comparison of plowing and direct drill treatments on the soil moisture dynamics and nitrogen uptake.

Cover crops, usually sown in a sequence with the main cash crop, have many benefits. They can improve the soil structure, increase the availability of organic matter and also prevent the
loss of nutrients to depth, among other advantages (Fageria et al., 2005). Deep rooting cover
crops can increase the porosity of the soil, hence potentially improving the water availability
for the main crop.

The impact of these practices on the agricultural ecosystem is often assessed using small
sampling volumes over a short time-window. Some methods, such as soil coring or
installation of access tubes for soil moisture probes can be destructive for the crop and the
soil. In contrast, geophysical methods such as ERT and EMI are minimally invasive and
enable repeated measurements without disturbing the growth of the crop. The other
significant advantages of geophysical methods are their large sampling volume and their
high-throughput data collection making them well suited to study field-scale processes.

All these advantages make geophysical methods attractive for obtaining a quick single scan
survey of the field. This single mapping approach is widely used today and even commercially
available for obtaining a proxy textural map for precision agriculture. However, such an
approach is not well suited to study highly dynamic soil-plant-water interactions. Instead of a
single survey, we argue that geophysical time-lapse monitoring can bring more information
about how the agricultural practices influence the soil-plant-water interactions and how this
can impact crop productivity.

Through a series of case studies, this manuscript aims to demonstrate the potential of time-
lapse geophysical investigation to better understand the impact of these practices on the soil
moisture dynamics. Specifically, the manuscript aims to:

- highlight the potential of time-lapse geophysical surveys to assess conservation agricultural
practices;
- detail the current limitations of the approach;
- provide recommendations on the use of time-lapse geophysical monitoring.

2 Materials and methods

2.1 Geophysical properties

Geophysical methods measure geophysical properties which are then linked to soil properties of interest using pedophysical relationships (Archie, 1942; Waxman and Smits, 1968; Rhoades et al., 1976; Laloy et al., 2011; Wunderlich et al., 2013; Boaga, 2017). ERT measures the soil electrical resistivity using galvanic coupling and EMI measures the soil electrical conductivity (EC) using inductive coupling. The soil EC (or resistivity) is influenced by many factors such as soil temperature, soil moisture, pore water EC, soil texture and porosity. This makes the interpretation of EC values challenging as the user needs to identify the dominant factor influencing EC for a given site and account for effect of the other ones. This also emphasizes the need for site-specific relationships (e.g. Calamita et al., 2015).

The time-lapse approach can help here as some factors are usually relatively constant during the survey time such as soil texture and porosity. Soil temperature can be corrected for (Ma et al., 2011) and in a non-saline rainfed environment the EC of the pore water can often be assumed to remain constant except when fertilizers or other chemicals are applied. Thus, the soil moisture is often the main factor controlling the change in EC observed over the growing season of a crop.

2.2 Electrical resistivity tomography

Electrical resistivity tomography uses multiple electrodes to measure the distribution of the electrical resistivity of the subsurface. In the case studies of this manuscript, all electrodes are
located on the surface, but other configuration might involve borehole electrodes, hence increasing the sensitivity of the measurements at depth. ERT measurements are made using four electrodes: a quadrupole. Current is injected between two electrodes and the difference in electrical potential is measured between the other two. Each measurement provides an apparent resistivity, i.e. the resistivity of an equivalent homogeneous subsurface. Given multiple combinations of current and potential electrodes along a transect, a 2D image of the true resistivity can be reconstructed using inverse modeling (Binley, 2015). For a more detailed review on ERT methods in soil science, the reader is directed to Samouëlian et al. (2005).

2.3 Electromagnetic induction

EMI instruments use electromagnetic induction principles to measure the apparent electrical conductivity (ECa) of the subsurface. By making measurements with different induction coil spacing and/or orientation, it is possible to sense different depths of the subsurface, and thus like ERT, inverse methods can used to convert the apparent conductivity measurements to a depth profile of electrical conductivity (McLachlan et al., 2020; von Hebel et al., 2019). The instrument used in this study is the CMD Mini-Explorer (GF Instruments, Czech Republic), which is composed of one transmitter coil and three receiver coils and can be used in horizontal co-planar (HCP) or vertical co-planar (VCP) orientation. When measuring, the transmitter coil emits a primary time-varying electromagnetic field that induces eddy currents proportional to the ground EC. These eddy currents, in turn, induce a secondary electromagnetic field. Both primary and secondary electromagnetic fields are sensed by the receiver coils. From their ratio, a depth-weighted, “apparent”, electrical conductivity (ECa) can be derived. The larger the separation between the transmitter and the receiver coil, the
deeper the volume investigated. The combination of HCP/VCP orientations and the three coils separations enables the collection of up to six data points per sampling location with the CMD Mini-Explorer. In the rest of the manuscript coil configuration will be presented as VCP0.32 with VCP the orientation and 0.32 the coil separation in meters. We redirect the reader to Callegary et al. (2007) for more information on the specific aspects of EMI measurements.

The inverted change in EC profiles presented in this manuscript were obtained using a Gauss-Newton approach following Whalley et al. (2017), implemented in the open-source code EMagPy (McLachlan et al., 2020).

The ECa maps provided by the EMI instruments are often qualitative, showing areas of higher EC and lower EC. While this does not have any impact for mapping applications, its effect is significant for quantitative application. Different methods exist to calibrate apparent EMI values based on independently measured depth profiles of EC. Trenches and soil samples can be used to build an EC depth profile. In this study, EMI calibration was done using the inverted EC values from an ERT transect (Lavoué et al., 2010; von Hebel et al., 2014). Other methods such as using multi-elevation measurements have also been proposed to calibrate EMI data (Tan et al., 2019). von Hebel et al. (2019) reviewed the best practices for calibration, conversion and inversion of EMI data.

2.4 Time-lapse approach

A one-time geophysical survey is useful for assessing the static soil properties but when assessing dynamic states, such as soil moisture, the time-lapse approach is more appropriate. The time-lapse approach consists of multiple surveys taken at different times during the period of interest, e.g. the growing season of a crop. A reference survey, usually chosen as a ‘wet’ or ‘dry’ reference, is subtracted from the other surveys to obtain a change in
EC. This way, static effects on soil EC (e.g. from texture) is accounted for and only the
dynamic part of the EC is analyzed. In non-arid conditions, one of the major drivers of the
change in EC observed through the season is the change in soil moisture. Since rainfall
events can induce sudden increases in soil moisture, when surveys are focused on assessing
changes due to evapotranspiration field measurements should be conducted following
significant rainfall events to avoid sensing localized changes in soil moisture.

Note that the EC (and hence resistivity) is sensitive to temperature and hence a temperature
 correction is needed for proper interpretation of a time-lapse survey (Hayashi, 2004; Ma et al.,
2011). In this study, ECa values were corrected using:

\[EC_{25} = \frac{EC_T}{1 + 0.02 \times (T - 25)} \]

where \(EC_{25} \) is the temperature corrected EC (at 25 degrees Celsius) and \(T \) is the soil
 temperature in degrees Celsius. When soil temperature profiles were available (all studies
 except the compaction case), a depth-weighted temperature was computed using the
cumulative sensitivity function of the EMI instrument (Blanchy et al., 2020b). This ‘apparent’
temperature was then used in Equation 1 to correct the ECa values.

2.5 Experiments

To demonstrate the potential of time-lapse geophysics to study the impact of different
agricultural practices, three case studies with different crops were selected (Figure 1). The
first one focuses on the impact of cover crops on the soil moisture availability for the main
crop (sugar beet). It also compares short-term and long-term cover crops (Figure 1a). The
second case focuses on the impact of soil compaction with two different irrigation treatments
on the water uptake of potatoes (Figure 1b). The third case explores the interactions between
two types of tillage (moldboard plowing and direct drill) and different application rates of nitrogen fertilizer on winter wheat (Figure 1c).
2.5.1 Cover crops

Two experiments were carried out with cover crops aiming at assessing the impact on the cover crops on soil moisture availability for the main crop. Cover crops are usually sown in autumn after the harvest of the main crop. They are kept over the winter and, if needed, are destroyed in spring before sowing of the main crop. The hypothesis behind these experiments is that cover crops will improve the soil structure via its root system. The improved soil structure will then help the following cash crop (in this case: sugar beet, *Beta vulgaris* L.) to better access soil moisture. Time-lapse EMI was used to monitor the potential effect of the cover crops on the dynamics of soil moisture.

The first experiment was sown with the different cover crops in September 2016 at Nottingham Sutton Bonington campus (52°50'12.4"N 1°15'05.7"W) on a Cambisol (WRB) with a texture of 13.2% clay, 19.5% silt and 67.3% sand. The cover crops were sown in a random block design of four blocks with eight plots (3 m by 7.5 m) per block. Seven different cover crops were tested: oil radish (*Raphanus sativus* L.), tillage radish (*Raphanus sativus* L.), forage rye (*Secale cereale* L.), black oat (*Avena strigosa* Schreb.), white mustard (*Sinapsis alba* L.) and Egyptian clover (*Trifolium alexandrinum* L.). An additional bare soil plot was also part of the treatments as a reference. The cover crops were destroyed in December 2016.

Sugar beet was then established using direct drilling in spring of the following year and harvested in autumn. EMI data were collected using the CMD Mini-Explorer (GF Instruments, Czech Republic) on 2016-11-09, 2016-12-08 (a few days after the crop was destroyed), 2017-03-08, 2017-05-11 and 2017-06-22 (all dates expressed as ISO 8601).

The second experiment was sown with cover crops in September 2017 in a field near to the first experiment (52°49'53.8"N 1°14'49.3"W), also classified as Cambisol. Its aim was not only
to estimate the impact of cover crops on soil moisture availability but also to compare cover
crops grown over the winter with cover crops in place for a full season. The experimental
design was composed of four blocks with 10 plots per block (12 m by 3 m). Four different
cover crops were tested: chicory (*Cichorium intybus* L.), a mix of red clover (*Trifolium repens*
L.) and cocksfoot (*Dactylis* spp L.), lucerne (also called alfalfa) (*Medicago sativa* L.) and
cocksfoot alone. An additional bare soil treatment was also added as a reference. In
September 2017, the five cover crop treatments were applied to five plots inside each block.
Wheat was grown on the unattributed plots. In September 2018, after the wheat had been
harvested, the five treatments were applied on the remaining plots. As such, each block
contained two plots with the same treatment, but one was in place since September 2017 and
one since September 2018. Figure 1a shows the experiment in October 2018. At the
beginning of March 2019, the cover crops were destroyed, and sugar beet was sown using
direct drilling. Sugar beet was harvested in autumn 2019. EMI data were collected on 2017-
10-25, 2017-12-08, 2018-03-26, 2018-06-19, 2018-08-01, 2018-10-29, 2019-03-11, 2019-05-
14, 2019-06-04, 2019-07-03 and 2019-09-10. EMI data were calibrated using ERT lines
collected in another experiment nearby following Lavoué et al. (2010).

2.5.2 Compaction and irrigation

A compacted soil can potentially impede root water extraction and hence lead to water stress
for some crops. In this experiment, the impact of soil compaction and irrigation is explored on
potatoes. The compaction experiment took place in a field managed by the NIAB Agronomy
Centre (52°14'13.4"N 0°05'57.9"E) in Cambridge UK in 2018. Two different treatments were
applied: compaction/no compaction and frequent irrigation (wet) /severe deficit irrigation (dry).
The experiment was composed of four replicate blocks (16 plots; each 3 m by 4.5 m) planted
with potatoes (*Solanum tuberosum* L.), cultivar Maris Piper, at a density of 180 tubers per plot
in four rows (15 plants per row). Two extra rows were used as irrigation barriers between the plots. The soil was a sandy loam (67% sand, 27% silt, 13% clay, 2.9% organic matter) Cambisol (WRB). The compaction treatment was applied by successive passes of a tractor-drill-cultivator combination with high pressure, row-crop tyres on soil irrigated to field capacity before the formation of the ridges for tuber plantation. An ERT array of 24 electrodes (0.25 m electrode spacing) was used to collect resistivity transects on all plots of block 3 by putting the electrodes in the furrows between the ridges (Figure 1b). ERT data were collected on 2018-06-12 and 2018-08-03. ERT data were inverted with a background constrained approach using ResIPy (Blanchy et al., 2020a) that makes use of the R2 inverse code (Binley, 2015).

2.5.3 Tillage and N treatments
The experiment aims at analyzing the impact of tillage and nitrogen fertilizer application on the growth of winter wheat and the associated soil moisture dynamics. It took place in a field, named “Pastures” (51°48'28.6"N 0°22'23.6"W) managed by Rothamsted Research (Harpenden, UK). The soil of the field is classified as a Luvisol (WRB) with a clayey loamy texture. On 2018-10-03, the experiment was sown with winter wheat (Triticum aestivum L.).

The experimental setup is composed of five blocks of ten plots each (6 m by 9 m). Two tillage treatments (direct drilling and conventional plowing) and five different nitrogen fertilizer rates (0, 80, 140, 180, 220 kg N/ha) were applied by hand to each plot in two equal splits on 2019-03-04 and 2019-04-23. The tillage treatment was applied in bands across all the blocks while the nitrogen fertilizers were randomly applied to each plot within a block (Figure 1c). ERT arrays (24 pins, 0.25 m electrode spacing) were installed in four selected plots in the experiment to calibrate EMI measurements following (Lavoué et al., 2010). ERT measurements were collected on 2019-02-05, 2019-04-05, 2019-05-07, 2019-05-24, 2019-06-06, 2019-06-18, 2019-07-09, 2019-07-22 and 2019-08-05. EMI measurements using the

Analysis of variance (ANOVA) was used to detect significant differences (p < .05) between the treatments.

Table 1 summarizes the different experiments, instrument used and processing steps.

Table 1: Summary of the experiments, devices used and processing steps performed.

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Devices</th>
<th>Processing steps</th>
</tr>
</thead>
</table>
| Impact of cover crops on soil moisture availability | EMI calibrated with ERT | 1. inversion of ERT transects
2. calibration of EMI data with inverted ERT (Lavoué et al., 2010)
3. temperature correction of calibrated ECa (Ma et al., 2011)
4. computing ΔECa from reference 2017-07-22
5. inversion of ΔECa (Whalley et al., 2017) |
| Impact of compaction and irrigation on potatoes water uptake | ERT | 1. inversion of ERT transects
2. temperature correction of the inverted profiles (Ma et al., 2011)
3. computing ΔECa from reference 2019-03-11 |
| Impact of tillage and nitrogen fertilization on soil drying under winter wheat | EMI calibrated with ERT | 1. inversion of ERT transects
2. calibration of EMI data with inverted ERT (Lavoué et al., 2010)
3. temperature correction of calibrated ECa (Ma et al., 2011)
4. computing of ΔECa from reference 2018-06-12 |

3 Results

3.1 Cover crops

Figure 2 shows the evolution of the soil ECa (both apparent Figure 2a and inverted Figure 2b, c and d) for three selected cover crops and the bare soil treatment in 2016-2017. There is
clear difference in ECa in November 2016 with higher values implying greater soil moisture content. The plots with tillage radish and white mustard exhibit significantly lower apparent conductivity than the bare soil or the vetch treatments. After the cover crops were destroyed (mowed) in December 2016, this difference is still visible, but starts to reduce. Finally, in March 2017, there is no difference between the bare soil and the cover crops treatments.

Similar interpretation can be made using the profiles (Figure 2b, c and d) of inverted change in conductivity (changes are expressed from July 2017). There are differences between the bare soil and the cover crops in November 2016 which tend to reduce in December 2016 and vanish in March 2017.

Figure 2: (a) shows the evolution of the apparent electrical conductivity (ECa) for four selected treatments: bare soil, tillage radish, white mustard and vetch. (b), (c) and (d) shows
the inverted change in electrical conductivity (ΔEC) for three different dates. The inverted changes are computed as differences with respect to 2017-07-22 (dry reference).

Figure 3b shows the evolution of the ECa for the long-term cover crop experiment expressed as differences relative to 2018-03-11. Given the amplitude of the signal in Figure 3b, for each survey date (t), we averaged all differences (ΔECa_t which are still differences from 2018-03-11) from all treatments to form the mean difference ($\overline{\Delta ECa_t}$). For each survey date, this mean was then subtracted from the difference for each treatment. This allows easier comparison between treatments (Figure 3c):

$$\Delta ECa_{i,t} - \overline{\Delta ECa_t} = \Delta ECa_{i,t} - \frac{1}{N} \sum \Delta ECa_{i,t},$$

(2)

where t is the index of the survey, i is the index of the treatment, N is the number of treatments, $\Delta ECa_{i,t}$ represents the differences relative to 2018-03-11 for treatment i at survey date t, and $\overline{\Delta ECa_t}$ is the mean encompassing all treatments for the survey t.

Thus, Figure 3c removes the seasonal trend of Figure 3b and enhances the difference between treatments inside the same survey. The date 2019-03-11 was chosen as a reference because it is the date with minimal effects of the treatments and most homogeneous ECa, all cover crops having been destroyed in the beginning of March. Figure 4 supports Figure 3 by showing subplots of differences in ECa for all varieties. Figure 3 and Figure 4 show data from VCP0.71 (the coil configuration that appears to be the most sensitive to the root zone).

However, similar trends, albeit less strong for other coil configurations, can also be observed. Both short-term (sown in September 2018) and long-term (sown in September 2017) cover crops show a significant difference compared to the bare soil treatments (2018-06-19, 2018-08-01, 2018-10-29 in Figure 4). This can be seen over the summer of 2018 (Figure 3a).
long-term cover crops also tend to show a larger difference in ECa compared to the short-
term cover crops (2018-10-29 in Figure 4). For the long-term chicory and lucerne, two deep
rooting cover crops, this difference stays significant even in June and July 2019 but not for
their short-term equivalent. Note that the magnitude of this difference is relatively small (about
2 mS/m) and hence, does not represent a large difference in soil moisture (only a few
percent). The other shallower rooting cover crops, such as the red clover and cocksfoot, do
not show any effect in June or July 2019 for both short and long-term variants.

Figure 3: Evolution of the difference in apparent electrical conductivity of VCP0.71 for bare
soil, lucerne and red clover + cocksfoot (R Clov + Cksft) treatments in place for one-year
(dotted lines) and two years (solid lines). (a) shows the daily rainfall. (b) shows the difference
in apparent electrical conductivity compared to the reference date 2019-03-11. To make the
difference between treatments more visible, the average difference for all treatments is
computed for each survey (ECa,.) and is subtracted from (b) leading to (c). Error bars
represent the standard error of the mean.
Figure 4: Subplots of boxplots showing the differences in apparent electrical conductivity (ΔECa) compared to the reference date 2019-03-11. Long-term cover crops are indicated by (2y) and short-term by (1y). A star on top of the graph shows that there are significant differences ($p<0.05$) from an ANOVA test between the treatments. Non-significant results are denoted by ‘ns’. Each subplot has its own vertical scale.

3.2 Compaction and irrigation

After inverting each survey, the difference in resistivity from June 2018 to August 2018 ($\Delta \rho$) is computed and divided by the resistivity of the first survey taken on 2018-06-12 (ρ_0) to obtain a relative difference. Figure 5 shows the relative difference in inverted resistivity ($\Delta \rho/\rho_0$ expressed as percentage) sections with yellow area associated with an increase in resistivity (drying) and blue area associated with a decrease in resistivity (wetting). All sections show a larger positive change, probably associated with soil drying close to the surface, extending no deeper than 0.7 m. The compacted wet treatment shows the shallowest drying by the crop, while the non-compacted treatments exhibits deeper drying. Figure 5a and 5c also clearly
show the depth of drying is limited, probably by the compaction, compared to non-compacted treatments (Figure 5b and d). No treatments showed any major differences in resistivity deeper than approximately 1.5 m depth.

![Figure 5: Relative change in inverted resistivity (Δρ/ρ₀) section between 2018-06-12 and 2018-08-03 showing the different treatments: (a) compacted wet, (b) non-compacted wet, (c) compacted dry and (d) non-compacted dry. Note that the resistivity is the inverse of the conductivity. The semi-transparent white overlay shows the sensitivity of the survey.]

3.3 Tillage and nitrogen treatments

In October 2018, there was a significant (p < 0.05 by ANOVA) difference in absolute ECa between the plow and the direct drill treatments prior to any drying by the crops or application of N. The direct drill plots show a higher ECa compared to the plowed plots (data not shown). To remove the effect of this initial difference, the change in ECa is computed by subtracting the values measured on 2018-12-07 (reference date). Figure 6 shows that nitrogen levels only had a significant effect on ECa for a few days following the first fertilizer application where the ECa changes were correlated to the nitrogen rates (Figure 7). The nitrogen fertilizer increases the ECa proportionally to the application rates but because differences in ECa are used and there is a general ECa decrease throughout the season, the inverse
relationship is observed. Despite having no significant effect later on in the season, it can still be observed that the plots which did not receive additional nitrogen fertilizer (0 kg N/ha) are distinct from the other plots from May onwards in the plow treatment. This cannot be observed in the direct drill treatment. Figure 8 shows the main effect of tillage treatment. Both plow and direct drill treatments show a decrease through the season probably related to soil drying. We observe that the difference between direct drill and plow treatments increases after the second application of fertilizer for most EMI coil configurations, especially those which were more sensitive to deeper layers. These differences are not significant anymore after the 1st July. The nitrogen fertilizer rate had a significant impact on the yield (Figure 9). Nitrogen fertilizer was more effective at increasing yield in the plow treatment compared to the direct drill treatment, particularly at the higher rates of N. This effect is also seen in the development of the leaf area index (LAI) (Figure 10). Between mid-May and mid-June, the LAI in the direct-drill treatments continues to increase. In the plow treatments, the LAI reaches its maximum mid-May and does not substantially increase from mid-May to mid-June.

![Figure 6: Evolution of the differences in apparent conductivity (ΔECa) for VCP0.71 according](image-url)
to (a) direct drill and (b) plow treatment. The vertical dotted lines indicate when fertilizer was applied. Black dots show where the difference between the fertilizer treatments is significant (p < 0.05 by ANOVA). Error bars represent the standard error of the mean.

Figure 7: Differences in apparent electrical conductivity (ΔECa) as a function of the amount of nitrogen after the first application (nitrogen applied on 2019-03-04). Note that differences are taken with respect to the reference date 2018-12-07 and not just before the nitrogen application. This is why large amount of fertilizer actually shows a smaller decrease in ECa as they compensate more the global ECa decreases from the reference date.
Figure 8: Evolution of the differences in apparent electrical conductivity (ΔECa) with respect to the reference date 2018-12-07 for the six coil configurations of the CMD Mini-Explorer (a to f). All plots have been averaged between direct drill and plow treatment. Error bars represent standard error of the mean. Black dots show where the difference between direct drill and plow treatment is significant ($p < 0.05$ by ANOVA).

Figure 9: Yield response to the amount of nitrogen fertilizer for the direct drill and plow treatments. Error bars represent the standard error of the mean. A sigmoid $(a/(b+\exp(-c*x +$
Figure 10: Evolution of the leaf area index (LAI) between direct drill (a) and plow (b) treatments split by amount of nitrogen fertilizers applied. Black dots show where the difference between the fertilizer treatments is significant (p < 0.05 by ANOVA). Error bars represent the standard error of the mean.

4 Discussion

4.1 Capabilities

A single geophysical survey can be useful to map soil textural variation across the field and, in some cases, can be linked to soil moisture distribution (Calamita et al., 2012). However, there is little information on how it might impact crop productivity. Time-lapse geophysical surveys, in contrast, enable, to some extent, the removal the static effects of soil properties on the geophysical measurements. Changes in EC (or ECa), once temperature corrected, can then more easily be linked to changing states such as soil moisture or pore water ionic concentration. In the case-studies presented here, which took place in non-saline...
environments, we can reasonably link the changes in ECa to the changes in soil moisture due to crop-water uptake (evapotranspiration). We also observed that during short periods immediately following the application on mineral N, there was a sudden increase in EC probably due to an increase in pore water EC (Figure 6).

In the first case study, cover crops were found to have a significant effect compared to the bare soil in the first and second experiments. In November 2016, the tillage radish and white mustard had a larger effect than the vetch. However, after mowing, no more effect of the cover crops on the soil dynamics was observed. In the second experiment, both short-term and long-term cover crops show significant effect compared to the bare soil. Cover crops in place for two years tend to have a larger effect compared to cover crops grown for one season (Figure 4). After being cut down, most cover crop treatments do not show any difference compared to bare soil. Only the long-term chicory and lucerne, two deep-rooting cover crops, show a significant effect in June and July 2019 (Figure 3 and 4). These ECa differences in the long-term chicory and lucerne treatments on 2019-06-04 (Figure 4) could be caused by an improved soil structure allowing better rainfall infiltration and possibly larger moisture storage. Ren et al. (2019) found that white mustard has a positive effect on the soil structure, promoting deeper root penetration of maize crop. However, the magnitude of the change (a few mS/m), once converted to soil moisture only represent a few percent, hence not constituting a substantial difference in soil drying compared to other treatments. Analysis of changes in ECa enhances the differences between cover crops, which would be less obvious with absolute ECa values as part of the signal would be impacted by various soil texture across the field.
Potatoes are particularly sensitive to drought stress. While Tang et al. (2019) have attempted to directly relate ECa to soil moisture and potatoes tuber yield, the second case study presented here focused on the impact of traffic-induced compaction and irrigation treatment on the soil moisture. Time-lapse ERT between potato ridges reveals the limited depth of water uptake in compacted soil compared to non-compacted treatments. Plants in the non-compacted treatments can probably access water at a greater depth more easily (and thus dry the soil) in comparison to the compacted treatments. In wet treatments, crops rely mainly on the water stored in the uppermost 30-40 cm of soil. One major disadvantage of placing the electrodes in the furrows is that no information can be collected on what is happening inside the ridges. However, this setup enables us to better measure the effect of compaction as all ridges are compaction-free. Such information is potentially useful for agronomists to adapt agricultural practices, such as irrigation-schedules tailored to canopy and root development. Minimally invasive ERT or EMI survey could reveal depth of drying of the crop and help estimate more accurately the amount of water needed for irrigation, leading to more cost-effective management of the water resource.

Time-lapse EMI in the third case study reveals that direct drill and plow treatments influence the soil moisture dynamics and the nitrogen uptake by the crop. From Figure 1c, it can be observed that direct drill resulted in patchier plots mainly due to the lower survival rate of the plants in the direct drill plots over winter. During the growing season, direct drill plots showed a somewhat smaller rate of decrease in ECa (Figure 8). It is probably the case that the direct drilled plots remained wetter due to a combination of lower evapotranspiration losses from a lower leaf area (Figure 10) and a more restricted root system. This is consistent with Sławiński et al. (2012) who found higher soil moisture in reduced tillage compared with
conventional tillage, for three years of winter wheat monoculture on two different soils. The potential decrease in porosity in the plow treatment during the season could have increased the ECa. However, given that a general decrease in ECa is observed, this effect is probably minor compared to change in soil moisture. Nevertheless, it could potentially lead to an underestimation of the soil drying in the plow treatment based on ECa changes. The addition of nitrogen fertilizer caused a significant increase in ECa over a short period (Figure 6). The changes in ECa correlates well with the amount of nitrogen supplied (Figure 7). This is in accordance with the results of Eigenberg et al. (2002) who successfully use EMI for monitoring different nitrogen uptakes. However, this effect was only observed after the first application of fertilizer (2019-03-04) and not the second (2019-04-23). This could be because of a more rapid nitrogen uptake due to larger plants at the second application. In contrast, the LAI started to increase proportionally to the nitrogen level after the second application (Figure 10). This increase in LAI, potentially lead to larger soil drying and might be the cause of the significant differences observed between the tillage treatments (Figure 8). Yield response to the different rates was also larger for the plow than for the direct drill treatment (Figure 9). One possible explanation is that the larger root impedance in direct drill treatments led to a less effective use of nitrogen fertilizer (Ge et al., 2019). However, without additional nitrogen, both plow and direct-drill treatments had similar yield. Overall, time-lapse EMI enables us to obtain information on the soil moisture and nitrogen dynamics taking place in different tillage treatments.

4.2 Limitations and recommendations
The cases we describe demonstrate that the minimal invasive operation of EMI and its high throughput are significant advantages of this method for agricultural applications. In some
cases, EMI surveys can even be conducted while the crop is still in place (e.g. placing the instrument between the rows of wheat or the ridges of potatoes without damaging the crop). For its part, the greater resolution of ERT allows better recovery of depth-specific properties at the expense of a more complex setup. The two methods have the advantage of sampling a relatively large volume of soil, producing more representative measurements than conventional soil sampling or soil moisture sensing. While both methods can be used for one-time survey, time-lapse studies clearly have great potential for agricultural studies as they enable the observation of the variation of states that can be related to plant development and plant productivity.

EMI instruments are sensitive to measurement drift and for our case-studies we let the instrument warm up to outdoor temperature for at least 30 min before starting the data collection (following Shanahan et al., 2015). Additionally, the setup of a drift station, a place where measurements are collected at regular time interval, is recommended. More complex drift correction can also be applied (Robinson et al., 2004; Delefortrie et al., 2014). This procedure is essential for time-lapse surveys as it is likely that the drift of one survey will be different from another survey, inducing bias in the analysis. Temperature corrections are also essential in time-lapse surveys as mentioned in section 2.4, as the soil temperature is an important factor contributing to the soil EC.

Calibration of EMI, possibly by using an ERT array (Lavoué et al., 2010; von Hebel et al., 2019), help to transform qualitative EMI data to more quantitative values. However, it requires that ERT and EMI data span a sufficient range of EC values (in time or in space) in order to build a strong relationship, which can be a limitation in some situation. In our case, robust calibration equations were obtained for the wheat experiment using four time-lapse ERT
arrays across the field and using a single time-lapse ERT array for the cover-crop experiments.

Multi-coil EMI instruments now enable the inversion of ECa data to depth-specific EC. However, this inversion remains challenging given the usual small number of coil configurations. Indeed, while ERT datasets usually consist of hundreds if not thousands of quadrupoles providing overlapping information on the same soil volume, EMI datasets usually rely on a few coil configurations. Smoothed Gauss-Newton solution (Whalley et al., 2017), McMC methods (Shanahan et al., 2015) or the shuffle complex algorithm (von Hebel et al., 2014) are a few of the available methods for 1D inversion of EMI data.

While the above precautions are not needed with ERT instruments, the electrode setup and acquisition are more important. Electrodes, after initial installation, can be left in place while the crop is growing allowing time-lapse measurements to be taken at the same exact position. This enables ERT surveys to be inverted using difference inversion (LaBrecque and Yang, 2001). The drawback of that is that soils with high clay content will tend to swell and shrink, eventually leading to desiccation cracks around the electrodes (point of stress concentration) undermining the galvanic contact needed for ERT acquisition. Such effects have led some authors to explore the use of ERT to detect cracks in soils (Samouelian et al., 2003; Samouelian et al., 2004; Hassan and Toll, 2013). Using a mobile ERT array that is set up for each survey can be an alternative but require more precautions to not damage the growing crop during installation. Given that the electrodes are unlikely to be at the same exact positions as previous surveys, a difference inversion cannot be used but inversion with constraint to a reference dataset can be adopted (as it is the case here). Once inverted, ERT sections also need to be temperature corrected.
Relating soil EC to soil properties or state is ultimately challenging. This is because EC is influenced by many factors (texture, density, pore water EC, soil moisture, temperature). These factors need to be controlled or accounted for to develop an EC value that relates the property of interest. Pedophysical relationships linking geophysical properties to soil properties are often site-specific and can be non-linear (Laloy et al., 2011; Calamita et al., 2012). While this manuscript does not attempt to convert change in EC to soil moisture content, we believe that the time-lapse approach and data processing carried out allow for the previous interpretations to be made. However, if changes in other soil properties, such as the decrease in porosity from tillage during the season, were to be observed with geophysical instruments, independent measurements of the soil moisture variation would be needed in order to better isolate the contribution of the change in porosity to the ECa variation.

The three case-studies presented in this work, were applied to relatively small plots from research sites. However, the geophysical methods proposed, particularly EMI has the potential to map much larger areas (Brogi et al., 2019). ERT systems as well, mounted on towed system (e.g. Veris Quad EC 1000) also allow mapping of large area. However, because ERT requires galvanic contact with the soil, it might be challenging to use a towed system without damaging a growing crop.

Finally, other geophysical methods such as acoustic/seismic (Lu, 2014), ground penetrating radar (Klenk et al., 2015; Algeo et al., 2018; Klotzsche et al., 2019; Akinsunmade et al., 2019) or even nuclear magnetic resonance (Paetzold et al., 1985) are emerging methods that have potential for agricultural applications.
5 Conclusion

Time-lapse EMI and ERT surveys detect changes in EC that can more easily be related to variable states, such as soil moisture, compared to conventional static (one time) surveys. The collection of case studies reported here illustrate the effectiveness of time-lapse geophysics for a range of applications. The time-lapse approach helps to monitor cover crop effect on soil drying and image the reduced depth of water uptake in compacted soil for potatoes. Under winter wheat, a plow-based treatment showed larger decrease in ECa associated with larger soil drying compared to a direct drill treatment, which might explain the yield gap observed. Significant correlation between the different level of nitrogen and the ECa changes was also found but only for a short period of time. In contrast, yield and LAI showed a stronger response to nitrogen levels in plow than in direct drill treatment. While interpretation of geophysical data should always be done carefully, we believe that the use of the time-lapse approach for EMI and ERT dataset have great potential to monitor the effects of a range of agricultural practices.

Acknowledgments

G.B. is supported by a Lancaster University - Rothamsted Research- CEH Graduate School for Environment PhD studentship. M.J.H and W.R.W. at Rothamsted Research are supported by the Designing Future Wheat Program by the UK Biotechnology and Biological Sciences Research Council [BB/P016855/1]. One field site for the long term cover crop experiment was fully funded by the British Beet Research Organisation (BBRO), the second field was funded by a joint University of Nottingham [50%] – (BBRO) [50%] studentship. The work on compaction and irrigation was funded under AHDB-Lancaster contracts 110002102 & 110002104 (Applications of precision farming technologies to enhance rotations). Pastures
experiment BBSRC Institute Strategic Programme grants Delivering Sustainable Systems (BB/J004286/1) and Soil to Nutrition (S2N, BBS/E/C/0010330). We are grateful for the comments received from two anonymous reviewers – their input strengthened the manuscript.

References

