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Highlights 16 

- Time-lapse geophysical surveys can help assess the impact of agricultural practices 17 

- Cover crops affect soil drying while in place but have no substantial effect on the main crop 18 

- Traffic-induced soil compaction limits water extraction depths of potato crops 19 

- The soil electrical conductivity in moldboard plowing decreases faster than in direct drill 20 

- N levels have significant impact on the soil EC after application but not over a longer term 21 

 22 

Abstract 23 

Geophysical surveys are now commonly used in agriculture for mapping applications. High-24 

throughput collection of geophysical properties such as electrical conductivity (inverse of 25 

resistivity), can be used as a proxy for soil properties of interest (e.g. moisture, texture, 26 

salinity). Most applications only rely on a single geophysical survey at a given time. However, 27 

time-lapse geophysical surveys have greater capabilities to characterize the dynamics of the 28 
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system, which is the focus of this work. Assessing the impact of agricultural practices through 29 

the growth season can reveal important information for the crop production. In this work, we 30 

demonstrate the use of time-lapse electrical resistivity tomography (ERT) and electromagnetic 31 

induction (EMI) surveys through a series of three case studies illustrating common agricultural 32 

practices (cover crops, compaction with irrigation, tillage with nitrogen fertilization). In the first 33 

case study, time-lapse EMI reveals the initial effect of cover crops on soil drying and the 34 

absence of effect on the subsequent main crop. In the second case study, compaction, 35 

leading to a shallower drying depth for potatoes was imaged by time-lapse ERT. In the third 36 

case study, larger change in electrical conductivity over time were observed in conventional 37 

tillage compared to direct drill using time-lapse EMI. In addition, different nitrogen application 38 

rates had significant effect on the yield and leaf area index but only ephemeral effects on the 39 

dynamics of electrical conductivity mainly after the first application. Overall, time-lapse 40 

geophysical surveys show great potential for monitoring the impact of different agricultural 41 

practices that can influence crop yield. 42 

1 Introduction 43 

Geophysical methods such as electromagnetic induction (EMI) and electrical resistivity 44 

tomography (ERT) are increasingly being used for agricultural applications. ERT enables the 45 

generation of an image of the electrical resistivity of the subsurface from measurements made 46 

using electrodes in contact with the ground. In contrast, EMI senses the electrical conductivity 47 

(the inverse of resistivity) of the ground through inductive signals and thus does not require 48 

galvanic contact with the subsurface. Originating, in part, from the mineral and oil exploration 49 

industries (Schlumberger, 1920), ERT is now widely used for many shallow near-surface 50 

applications. EMI has proved effective for soil salinity mapping (Corwin and Lesch, 2005). It 51 
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has since been widely used for mapping different soil properties (Doolittle and Brevik, 2014), 52 

defining management zone in agriculture (Hedley et al., 2004) or assessing soil structure 53 

(Romero-Ruiz et al., 2018). More recently the development of multi-coil EMI instruments has 54 

enabled simultaneous measurements at multiple depths, enabling the recovery of the 55 

distribution of electrical conductivity of the subsurface as in ERT. 56 

Understanding the availability and movement of water in the ground has become a significant 57 

driver for many geophysical studies and has led to the field of hydrogeophysics (Binley et al., 58 

2015). Geophysical methods have the capability to characterize properties of soil that 59 

influence the flow and storage of soil water making such methods relevant for plant-related 60 

application (Jayawickreme et al., 2014; Shanahan et al., 2015; Whalley et al., 2017; Zhao et 61 

al., 2019; Cimpoiaşu et al., 2020). For more information on other geophysical methods, we 62 

redirect the reader to the review of Allred et al. (2008) who illustrate a range of geophysical 63 

applications in agriculture, and the broader overview of geophysical methods for proximal soil 64 

sensing given by Viscarra Rossel et al. (2011). These reviews focus on static surveys for 65 

assessment of soil properties and states, however, there is much greater potential for 66 

geophysical methods for characterizing the dynamic state of the subsurface, which is the 67 

focus of this study. 68 

Soil and water are essential resources for agriculture. However, these resources are 69 

endangered by intensive agricultural practices which can impact food security (Amundson et 70 

al., 2015). Loss of soil structure due to tillage or compaction can substantially affect the plant 71 

water availability and nutrients uptake and impact crop growth. Conservation agriculture 72 

practices aim at addressing some of these specific issues and improve and sustain crop 73 

production. The FAO (http://www.fao.org/conservation-agriculture/en/) define three axes for 74 
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conservation agriculture: (1) minimum mechanical soil disturbance, (2) permanent soil organic 75 

cover and (3) species diversification. The case studies presented in this work concentrates on 76 

(1) and (2). More specifically, this paper focuses on the agricultural practices: compaction with 77 

irrigation, tillage with nitrogen fertilization and cover crops. This work does not aim at 78 

exhaustively detailing each practice but rather at assessing the potential of two popular 79 

geophysical methods (ERT and EMI) at monitoring the effects of these different management 80 

practices on soil properties and soil water status. 81 

Traffic-induced soil compaction can be significant in certain (mainly loamy) soils as the 82 

compaction occurs in deeper layers. Over short time scales, compaction reduces the soil 83 

porosity making it more difficult for the roots to penetrate and the water to circulate in the soil 84 

(Keller et al., 2013), potentially impacting the effectiveness of irrigation practices. We redirect 85 

the reader to Hamza and Anderson (2005) and Batey (2009) who review the different 86 

agricultural impacts of soil compaction. Soil compaction can also have long-term effects 87 

(Keller et al., 2017). 88 

Tillage, conventionally moldboard plowing increases the soil porosity but worsens the soil 89 

structure. Direct drilling (zero-tillage) offers an alternative to conventional tillage as it prevents 90 

major disruption of the soil structure. The structure of the soil plays a key role in making water 91 

and nutrients available to the crop and hence can affect crop productivity. While tillage has 92 

other major implications for the biological activity of the soil (Hobbs et al., 2008), the case 93 

study presented in this manuscript focuses on the comparison of plowing and direct drill 94 

treatments on the soil moisture dynamics and nitrogen uptake. 95 

Cover crops, usually sown in a sequence with the main cash crop, have many benefits. They 96 

can improve the soil structure, increase the availability of organic matter and also prevent the 97 
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loss of nutrients to depth, among other advantages (Fageria et al., 2005). Deep rooting cover 98 

crops can increase the porosity of the soil, hence potentially improving the water availability 99 

for the main crop. 100 

The impact of these practices on the agricultural ecosystem is often assessed using small 101 

sampling volumes over a short time-window. Some methods, such as soil coring or 102 

installation of access tubes for soil moisture probes can be destructive for the crop and the 103 

soil. In contrast, geophysical methods such as ERT and EMI are minimally invasive and 104 

enable repeated measurements without disturbing the growth of the crop. The other 105 

significant advantages of geophysical methods are their large sampling volume and their 106 

high-throughput data collection making them well suited to study field-scale processes. 107 

All these advantages make geophysical methods attractive for obtaining a quick single scan 108 

survey of the field. This single mapping approach is widely used today and even commercially 109 

available for obtaining a proxy textural map for precision agriculture. However, such an 110 

approach is not well suited to study highly dynamic soil-plant-water interactions. Instead of a 111 

single survey, we argue that geophysical time-lapse monitoring can bring more information 112 

about how the agricultural practices influence the soil-plant-water interactions and how this 113 

can impact crop productivity. 114 

Through a series of case studies, this manuscript aims to demonstrate the potential of time-115 

lapse geophysical investigation to better understand the impact of these practices on the soil 116 

moisture dynamics. Specifically, the manuscript aims to: 117 

- highlight the potential of time-lapse geophysical surveys to assess conservation agricultural 118 

practices; 119 
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- detail the current limitations of the approach; 120 

- provide recommendations on the use of time-lapse geophysical monitoring. 121 

2 Materials and methods 122 

2.1 Geophysical properties 123 

Geophysical methods measure geophysical properties which are then linked to soil properties 124 

of interest using pedophysical relationships (Archie, 1942; Waxman and Smits, 1968; 125 

Rhoades et al., 1976; Laloy et al., 2011; Wunderlich et al., 2013; Boaga, 2017). ERT 126 

measures the soil electrical resistivity using galvanic coupling and EMI measures the soil 127 

electrical conductivity (EC) using inductive coupling. The soil EC (or resistivity) is influenced 128 

by many factors such as soil temperature, soil moisture, pore water EC, soil texture and 129 

porosity. This makes the interpretation of EC values challenging as the user needs to identify 130 

the dominant factor influencing EC for a given site and account for effect of the other ones. 131 

This also emphasizes the need for site-specific relationships (e.g. Calamita et al., 2015). 132 

The time-lapse approach can help here as some factors are usually relatively constant during 133 

the survey time such as soil texture and porosity. Soil temperature can be corrected for (Ma et 134 

al., 2011) and in a non-saline rainfed environment the EC of the pore water can often be 135 

assumed to remain constant except when fertilizers or other chemicals are applied. Thus, the 136 

soil moisture is often the main factor controlling the change in EC observed over the growing 137 

season of a crop. 138 

2.2 Electrical resistivity tomography 139 

Electrical resistivity tomography uses multiple electrodes to measure the distribution of the 140 

electrical resistivity of the subsurface. In the case studies of this manuscript, all electrodes are 141 
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located on the surface, but other configuration might involve borehole electrodes, hence 142 

increasing the sensitivity of the measurements at depth. ERT measurements are made using 143 

four electrodes: a quadrupole. Current is injected between two electrodes and the difference 144 

in electrical potential is measured between the other two. Each measurement provides an 145 

apparent resistivity, i.e. the resistivity of an equivalent homogeneous subsurface. Given 146 

multiple combinations of current and potential electrodes along a transect, a 2D image of the 147 

true resistivity can be reconstructed using inverse modeling (Binley, 2015). For a more 148 

detailed review on ERT methods in soil science, the reader is directed to Samouëlian et al. 149 

(2005). 150 

2.3 Electromagnetic induction 151 

EMI instruments use electromagnetic induction principles to measure the apparent electrical 152 

conductivity (ECa) of the subsurface. By making measurements with different induction coil 153 

spacing and/or orientation, it is possible to sense different depths of the subsurface, and thus 154 

like ERT, inverse methods can used to convert the apparent conductivity measurements to a 155 

depth profile of electrical conductivity (McLachlan et al., 2020; von Hebel et al., 2019). The 156 

instrument used in this study is the CMD Mini-Explorer (GF Instruments, Czech Republic), 157 

which is composed of one transmitter coil and three receiver coils and can be used in 158 

horizontal co-planar (HCP) or vertical co-planar (VCP) orientation. When measuring, the 159 

transmitter coil emits a primary time-varying electromagnetic field that induces eddy currents 160 

proportional to the ground EC. These eddy currents, in turn, induce a secondary 161 

electromagnetic field. Both primary and secondary electromagnetic fields are sensed by the 162 

receiver coils. From their ratio, a depth-weighted, “apparent”, electrical conductivity (ECa) can 163 

be derived. The larger the separation between the transmitter and the receiver coil, the 164 
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deeper the volume investigated. The combination of HCP/VCP orientations and the three coils 165 

separations enables the collection of up to six data points per sampling location with the CMD 166 

Mini-Explorer. In the rest of the manuscript coil configuration will be presented as VCP0.32 167 

with VCP the orientation and 0.32 the coil separation in meters. We redirect the reader to 168 

Callegary et al. (2007) for more information on the specific aspects of EMI measurements. 169 

The inverted change in EC profiles presented in this manuscript were obtained using a 170 

Gauss-Newton approach following Whalley et al. (2017), implemented in the open-source 171 

code EMagPy (McLachlan et al., 2020). 172 

The ECa maps provided by the EMI instruments are often qualitative, showing areas of higher 173 

EC and lower EC. While this does not have any impact for mapping applications, its effect is 174 

significant for quantitative application. Different methods exist to calibrate apparent EMI 175 

values based on independently measured depth profiles of EC. Trenches and soil samples 176 

can be used to build an EC depth profile. In this study, EMI calibration was done using the 177 

inverted EC values from an ERT transect (Lavoué et al., 2010; von Hebel et al., 2014). Other 178 

methods such as using multi-elevation measurements have also been proposed to calibrate 179 

EMI data (Tan et al., 2019). von Hebel et al. (2019) reviewed the best practices for calibration, 180 

conversion and inversion of EMI data. 181 

2.4 Time-lapse approach 182 

A one-time geophysical survey is useful for assessing the static soil properties but when 183 

assessing dynamic states, such as soil moisture, the time-lapse approach is more 184 

appropriate. The time-lapse approach consists of multiple surveys taken at different times 185 

during the period of interest, e.g. the growing season of a crop. A reference survey, usually 186 

chosen as a ‘wet’ or ‘dry’ reference, is subtracted from the other surveys to obtain a change in 187 
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EC. This way, static effects on soil EC (e.g. from texture) is accounted for and only the 188 

dynamic part of the EC is analyzed. In non-arid conditions, one of the major drivers of the 189 

change in EC observed through the season is the change in soil moisture. Since rainfall 190 

events can induce sudden increases in soil moisture, when surveys are focused on assessing 191 

changes due to evapotranspiration field measurements should be conducted following 192 

significant rainfall events to avoid sensing localized changes in soil moisture.  193 

Note that the EC (and hence resistivity) is sensitive to temperature and hence a temperature 194 

correction is needed for proper interpretation of a time-lapse survey (Hayashi, 2004; Ma et al., 195 

2011). In this study, ECa values were corrected using: 196 

    𝐸𝐶ଶହ ൌ
ா஼೅

ଵା଴.଴ଶൈሺ்ିଶହሻ
,     (1) 197 

where EC25 is the temperature corrected EC (at 25 degrees Celsius) and T is the soil 198 

temperature in degrees Celsius. When soil temperature profiles were available (all studies 199 

except the compaction case), a depth-weighted temperature was computed using the 200 

cumulative sensitivity function of the EMI instrument (Blanchy et al., 2020b). This ‘apparent’ 201 

temperature was then used in Equation 1 to correct the ECa values. 202 

2.5 Experiments 203 

To demonstrate the potential of time-lapse geophysics to study the impact of different 204 

agricultural practices, three case studies with different crops were selected (Figure 1). The 205 

first one focuses on the impact of cover crops on the soil moisture availability for the main 206 

crop (sugar beet). It also compares short-term and long-term cover crops (Figure 1a). The 207 

second case focuses on the impact of soil compaction with two different irrigation treatments 208 

on the water uptake of potatoes (Figure 1b). The third case explores the interactions between 209 
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two types of tillage (moldboard plowing and direct drill) and different application rates of 210 

nitrogen fertilizer on winter wheat (Figure 1c). 211 

 212 

 

Figure 1: (a) Long-term cover crop experiment (picture taken on 2018-10-29). (b) 
Compaction experiment on potatoes showing an ERT measurement taking place in a furrow. 
(c) Experiment on the effects of tillage and nitrogen treatment on winter wheat. 

 213 
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2.5.1 Cover crops 214 

Two experiments were carried out with cover crops aiming at assessing the impact on the 215 

cover crops on soil moisture availability for the main crop. Cover crops are usually sown in 216 

autumn after the harvest of the main crop. They are kept over the winter and, if needed, are 217 

destroyed in spring before sowing of the main crop. The hypothesis behind these experiments 218 

is that cover crops will improve the soil structure via its root system. The improved soil 219 

structure will then help the following cash crop (in this case: sugar beet, Beta vulgaris L.) to 220 

better access soil moisture. Time-lapse EMI was used to monitor the potential effect of the 221 

cover crops on the dynamics of soil moisture. 222 

The first experiment was sown with the different cover crops in September 2016 at 223 

Nottingham Sutton Bonington campus (52°50'12.4"N 1°15'05.7"W) on a Cambisol (WRB) with 224 

a texture of 13.2% clay, 19.5% silt and 67.3% sand. The cover crops were sown in a random 225 

block design of four blocks with eight plots (3 m by 7.5 m) per block. Seven different cover 226 

crops were tested: oil radish (Raphanus sativus L.), tillage radish (Raphanus sativus L.), 227 

forage rye (Secale cereale L.), black oat (Avena strigosa Schreb.), white mustard (Sinapsis 228 

alba L.) and Egyptian clover (Trifolium alexandrinum L.). An additional bare soil plot was also 229 

part of the treatments as a reference. The cover crops were destroyed in December 2016. 230 

Sugar beet was then established using direct drilling in spring of the following year and 231 

harvested in autumn. EMI data were collected using the CMD Mini-Explorer (GF Instruments, 232 

Czech Republic) on 2016-11-09, 2016-12-08 (a few days after the crop was destroyed), 2017-233 

03-08, 2017-05-11 and 2017-06-22 (all dates expressed as ISO 8601). 234 

The second experiment was sown with cover crops in September 2017 in a field near to the 235 

first experiment (52°49'53.8"N 1°14'49.3"W), also classified as Cambisol. Its aim was not only 236 
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to estimate the impact of cover crops on soil moisture availability but also to compare cover 237 

crops grown over the winter with cover crops in place for a full season. The experimental 238 

design was composed of four blocks with 10 plots per block (12 m by 3 m). Four different 239 

cover crops were tested: chicory (Cichorium intybus L.), a mix of red clover (Trifolium repens 240 

L.) and cocksfoot (Dactylis spp L.), lucerne (also called alfalfa) (Medicago sativa L.) and 241 

cocksfoot alone. An additional bare soil treatment was also added as a reference. In 242 

September 2017, the five cover crop treatments were applied to five plots inside each block. 243 

Wheat was grown on the unattributed plots. In September 2018, after the wheat had been 244 

harvested, the five treatments were applied on the remaining plots. As such, each block 245 

contained two plots with the same treatment, but one was in place since September 2017 and 246 

one since September 2018. Figure 1a shows the experiment in October 2018. At the 247 

beginning of March 2019, the cover crops were destroyed, and sugar beet was sown using 248 

direct drilling. Sugar beet was harvested in autumn 2019. EMI data were collected on 2017-249 

10-25, 2017-12-08, 2018-03-26, 2018-06-19, 2018-08-01, 2018-10-29, 2019-03-11, 2019-05-250 

14, 2019-06-04, 2019-07-03 and 2019-09-10. EMI data were calibrated using ERT lines 251 

collected in another experiment nearby following Lavoué et al. (2010). 252 

2.5.2 Compaction and irrigation 253 

A compacted soil can potentially impede root water extraction and hence lead to water stress 254 

for some crops. In this experiment, the impact of soil compaction and irrigation is explored on 255 

potatoes. The compaction experiment took place in a field managed by the NIAB Agronomy 256 

Centre (52°14'13.4"N 0°05'57.9"E) in Cambridge UK in 2018. Two different treatments were 257 

applied: compaction/no compaction and frequent irrigation (wet) /severe deficit irrigation (dry). 258 

The experiment was composed of four replicate blocks (16 plots; each 3 m by 4.5 m) planted 259 

with potatoes (Solanum tuberosum L.), cultivar Maris Piper, at a density of 180 tubers per plot 260 
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in four rows (15 plants per row). Two extra rows were used as irrigation barriers between the 261 

plots. The soil was a sandy loam (67% sand, 27% silt, 13% clay, 2.9% organic matter) 262 

Cambisol (WRB). The compaction treatment was applied by successive passes of a tractor-263 

drill-cultivator combination with high pressure, row-crop tyres on soil irrigated to field capacity 264 

before the formation of the ridges for tuber plantation. An ERT array of 24 electrodes (0.25 m 265 

electrode spacing) was used to collect resistivity transects on all plots of block 3 by putting the 266 

electrodes in the furrows between the ridges (Figure 1b). ERT data were collected on 2018-267 

06-12 and 2018-08-03. ERT data were inverted with a background constrained approach 268 

using ResIPy (Blanchy et al., 2020a) that makes use of the R2 inverse code (Binley, 2015). 269 

2.5.3 Tillage and N treatments 270 

The experiment aims at analyzing the impact of tillage and nitrogen fertilizer application on 271 

the growth of winter wheat and the associated soil moisture dynamics. It took place in a field, 272 

named “Pastures” (51°48'28.6"N 0°22'23.6"W) managed by Rothamsted Research 273 

(Harpenden, UK). The soil of the field is classified as a Luvisol (WRB) with a clayey loamy 274 

texture. On 2018-10-03, the experiment was sown with winter wheat (Triticum aestivum L.). 275 

The experimental setup is composed of five blocks of ten plots each (6 m by 9 m). Two tillage 276 

treatments (direct drilling and conventional plowing) and five different nitrogen fertilizer rates 277 

(0, 80, 140, 180, 220 kg N/ha) were applied by hand to each plot in two equal splits on 2019-278 

03-04 and 2019-04-23. The tillage treatment was applied in bands across all the blocks while 279 

the nitrogen fertilizers were randomly applied to each plot within a block (Figure 1c). ERT 280 

arrays (24 pins, 0.25 m electrode spacing) were installed in four selected plots in the 281 

experiment to calibrate EMI measurements following (Lavoué et al., 2010). ERT 282 

measurements were collected on 2019-02-05, 2019-04-05, 2019-05-07, 2019-05-24, 2019-283 

06-06, 2019-06-18, 2019-07-09, 2019-07-22 and 2019-08-05. EMI measurements using the 284 
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CMD Mini-Explorer were collected on 2018-12-07, 2019-02-05, 2019-03-01, 2019-03-04, 285 

2019-03-05, 2019-03-07, 2019-03-11, 2019-03-13, 2019-03-21, 2019-04-05, 2019-04-15, 286 

2019-04-30, 2019-05-07, 2019-05-20, 2019-06-06, 2019-06-18, 2019-07-09, 2019-07-22 and 287 

2019-08-05. The field had a large variability with ECa values ranging from 20 to 45 mS/m. 288 

Analysis of variance (ANOVA) was used to detect significant differences (p < .05) between the 289 

treatments. 290 

Table 1 summarizes the different experiments, instrument used and processing steps. 291 

Table1: Summary of the experiments, devices used and processing steps performed. 292 

Experiments Devices Processing steps 

Impact of cover crops on soil 
moisture availability 

EMI 
calibrated 
with ERT 

1. inversion of ERT transects 
2. calibration of EMI data with inverted ERT 
(Lavoué et al., 2010) 
3. temperature correction of calibrated ECa (Ma 
et al., 2011) 
4. computing ΔECa from reference 2017-07-22 
5. inversion of ΔECa (Whalley et al., 2017) 

Impact of compaction and 
irrigation on potatoes water 
uptake 

ERT 1. inversion of ERT transects 
2. temperature correction of the inverted profiles 
(Ma et al., 2011) 
3. computing ΔECa from reference 2019-03-11 

Impact of tillage and nitrogen 
fertilization on soil drying 
under winter wheat 

EMI 
calibrated 
with ERT 

1. inversion of ERT transects 
2. calibration of EMI data with inverted ERT 
(Lavoué et al., 2010) 
3. temperature correction of calibrated ECa (Ma 
et al., 2011) 
4. computing of ΔECa from reference 2018-06-12 

 293 

3 Results 294 

3.1 Cover crops 295 

Figure 2 shows the evolution of the soil ECa (both apparent Figure 2a and inverted Figure 2b, 296 

c and d) for three selected cover crops and the bare soil treatment in 2016-2017. There is 297 



15 

clear difference in ECa in November 2016 with higher values implying greater soil moisture 298 

content. The plots with tillage radish and white mustard exhibit significantly lower apparent 299 

conductivity than the bare soil or the vetch treatments. After the cover crops were destroyed 300 

(mowed) in December 2016, this difference is still visible, but starts to reduce. Finally, in 301 

March 2017, there is no difference between the bare soil and the cover crops treatments. 302 

Similar interpretation can be made using the profiles (Figure 2b, c and d) of inverted change 303 

in conductivity (changes are expressed from July 2017). There are differences between the 304 

bare soil and the cover crops in November 2016 which tend to reduce in December 2016 and 305 

vanish in March 2017. 306 

 

Figure 2: (a) shows the evolution of the apparent electrical conductivity (ECa) for four 
selected treatments: bare soil, tillage radish, white mustard and vetch. (b), (c) and (d) shows 
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the inverted change in electrical conductivity (ΔEC) for three different dates. The inverted 
changes are computed as differences with respect to 2017-07-22 (dry reference). 

 307 

Figure 3b shows the evolution of the ECa for the long-term cover crop experiment expressed 308 

as differences relative to 2018-03-11. Given the amplitude of the signal in Figure 3b, for each 309 

survey date (𝑡), we averaged all differences (𝛥𝐸𝐶𝑎௧ which are still differences from 2018-03-310 

11) from all treatments to form the mean difference (𝛥𝐸𝐶𝑎௧). For each survey date, this mean 311 

was then subtracted from the difference for each treatment. This allows easier comparison 312 

between treatments (Figure 3c): 313 

   𝛥𝐸𝐶𝑎௜,௧ െ 𝛥𝐸𝐶𝑎௧ ൌ 𝛥𝐸𝐶𝑎௜,௧ െ
ଵ

ே
∑𝛥𝐸𝐶𝑎௜,௧,    (2) 314 

where 𝑡is the index of the survey, 𝑖 is the index of the treatment, 𝑁 is the number of 315 

treatments, 𝛥𝐸𝐶𝑎௜,௧ represents the differences relative to 2018-03-11 for treatment 𝑖 at survey 316 

date 𝑡, and 𝛥𝐸𝐶𝑎௧ is the mean encompassing all treatments for the survey 𝑡. 317 

Thus, Figure 3c removes the seasonal trend of Figure 3b and enhances the difference 318 

between treatments inside the same survey. The date 2019-03-11 was chosen as a reference 319 

because it is the date with minimal effects of the treatments and most homogeneous ECa, all 320 

cover crops having been destroyed in the beginning of March. Figure 4 supports Figure 3 by 321 

showing subplots of differences in ECa for all varieties. Figure 3 and Figure 4 show data from 322 

VCP0.71 (the coil configuration that appears to be the most sensitive to the root zone). 323 

However, similar trends, albeit less strong for other coil configurations, can also be observed. 324 

Both short-term (sown in September 2018) and long-term (sown in September 2017) cover 325 

crops show a significant difference compared to the bare soil treatments (2018-06-19, 2018-326 

08-01, 2018-10-29 in Figure 4). This can be seen over the summer of 2018 (Figure 3a). The 327 
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long-term cover crops also tend to show a larger difference in ECa compared to the short-328 

term cover crops (2018-10-29 in Figure 4). For the long-term chicory and lucerne, two deep 329 

rooting cover crops, this difference stays significant even in June and July 2019 but not for 330 

their short-term equivalent. Note that the magnitude of this difference is relatively small (about 331 

2 mS/m) and hence, does not represent a large difference in soil moisture (only a few 332 

percent). The other shallower rooting cover crops, such as the red clover and cocksfoot, do 333 

not show any effect in June or July 2019 for both short and long-term variants. 334 

 

Figure 3: Evolution of the difference in apparent electrical conductivity of VCP0.71 for bare 
soil, lucerne and red closer + cocksfoot (R Clov + Cksft) treatments in place for one-year 
(dotted lines) and two years (solid lines). (a) shows the daily rainfall. (b) shows the difference 
in apparent electrical conductivity compared to the reference date 2019-03-11. To make the 
difference between treatments more visible, the average difference for all treatments is 
computed for each survey (𝛥𝐸𝐶𝑎௧) and is subtracted from (b) leading to (c). Error bars 
represent the standard error of the mean. 

 335 
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Figure 4: Subplots of boxplots showing the differences in apparent electrical conductivity 
(ΔECa) compared to the reference date 2019-03-11. Long-term cover crops are indicated by 
(2y) and short-term by (1y). A star on top of the graph shows that there are significant 
differences (p<0.05) from an ANOVA test between the treatments. Non-significant results are 
denoted by ‘ns’. Each subplot has its own vertical scale. 

 336 

3.2 Compaction and irrigation 337 

After inverting each survey, the difference in resistivity from June 2018 to August 2018 (Δρ) is 338 

computed and divided by the resistivity of the first survey taken on 2018-06-12 (ρ0) to obtain a 339 

relative difference. Figure 5 shows the relative difference in inverted resistivity (Δρ/ρ0 340 

expressed as percentage) sections with yellow area associated with an increase in resistivity 341 

(drying) and blue area associated with a decrease in resistivity (wetting). All sections show a 342 

larger positive change, probably associated with soil drying close to the surface, extending no 343 

deeper than 0.7 m. The compacted wet treatment shows the shallowest drying by the crop, 344 

while the non-compacted treatments exhibits deeper drying. Figure 5a and 5c also clearly 345 
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show the depth of drying is limited, probably by the compaction, compared to non-compacted 346 

treatments (Figure 5b and d). No treatments showed any major differences in resistivity 347 

deeper than approximately 1.5 m depth. 348 

 

Figure 5: Relative change in inverted resistivity (Δρ/ρ0) section between 2018-06-12 and 
2018-08-03 showing the different treatments: (a) compacted wet, (b) non-compacted wet, (c) 
compacted dry and (d) non-compacted dry. Note that the resistivity is the inverse of the 
conductivity. The semi-transparent white overlay shows the sensitivity of the survey. 

 349 

3.3 Tillage and nitrogen treatments 350 

In October 2018, there was a significant (p < 0.05 by ANOVA) difference in absolute ECa 351 

between the plow and the direct drill treatments prior to any drying by the crops or application 352 

of N. The direct drill plots show a higher ECa compared to the plowed plots (data not shown). 353 

To remove the effect of this initial difference, the change in ECa is computed by subtracting 354 

the values measured on 2018-12-07 (reference date). Figure 6 shows that nitrogen levels 355 

only had a significant effect on ECa for a few days following the first fertilizer application 356 

where the ECa changes were correlated to the nitrogen rates (Figure 7). The nitrogen 357 

fertilizer increases the ECa proportionally to the application rates but because differences in 358 

ECa are used and there is a general ECa decrease throughout the season, the inverse 359 
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relationship is observed. Despite having no significant effect later on in the season, it can still 360 

be observed that the plots which did not receive additional nitrogen fertilizer (0 kg N/ha) are 361 

distinct from the other plots from May onwards in the plow treatment. This cannot be 362 

observed in the direct drill treatment. Figure 8 shows the main effect of tillage treatment. Both 363 

plow and direct drill treatments show a decrease through the season probably related to soil 364 

drying. We observe that the difference between direct drill and plow treatments increases 365 

after the second application of fertilizer for most EMI coil configurations, especially those 366 

which were more sensitive to deeper layers. These differences are not significant anymore 367 

after the 1st July. The nitrogen fertilizer rate had a significant impact on the yield (Figure 9). 368 

Nitrogen fertilizer was more effective at increasing yield in the plow treatment compared to the 369 

direct drill treatment, particularly at the higher rates of N. This effect is also seen in the 370 

development of the leaf area index (LAI) (Figure 10). Between mid-May and mid-June, the 371 

LAI in the direct-drill treatments continues to increase. In the plow treatments, the LAI reaches 372 

its maximum mid-May and does not substantially increase from mid-May to mid-June. 373 

 

Figure 6: Evolution of the differences in apparent conductivity (ΔΕCa) for VCP0.71 according 
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to (a) direct drill and (b) plow treatment. The vertical dotted lines indicate when fertilizer was 
applied. Black dots show where the difference between the fertilizer treatments is significant 
(p < 0.05 by ANOVA). Error bars represent the standard error of the mean. 

 374 
 375 

 

Figure 7: Differences in apparent electrical conductivity (ΔΕCa) as a function of the amount 
of nitrogen after the first application (nitrogen applied on 2019-03-04). Note that differences 
are taken with respect to the reference date 2018-12-07 and not just before the nitrogen 
application. This is why large amount of fertilizer actually shows a smaller decrease in ECa 
as they compensate more the global ECa decreases from the reference date. 

 376 
 377 
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Figure 8: Evolution of the differences in apparent electrical conductivity (ΔΕCa) with respect 
to the reference date 2018-12-07 for the six coil configurations of the CMD Mini-Explorer (a 
to f). All plots have been averaged between direct drill and plow treatment. Error bars 
represent standard error of the mean. Black dots show where the difference between direct 
drill and plow treatment is significant (p < 0.05 by ANOVA). 

 378 

 379 

 

Figure 9: Yield response to the amount of nitrogen fertilizer for the direct drill and plow 
treatments. Error bars represent the standard error of the mean. A sigmoid (a/(b+exp(-c*x + 
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d))) has been fitted to both curves. 

 380 

 381 

 

Figure 10: Evolution of the leaf area index (LAI) between direct drill (a) and plow (b) 
treatments split by amount of nitrogen fertilizers applied. Black dots show where the 
difference between the fertilizer treatments is significant (p < 0.05 by ANOVA). Error bars 
represent the standard error of the mean. 

 382 

4 Discussion 383 

4.1 Capabilities 384 

A single geophysical survey can be useful to map soil textural variation across the field and, in 385 

some cases, can be linked to soil moisture distribution (Calamita et al., 2012). However, there 386 

is little information on how it might impact crop productivity. Time-lapse geophysical surveys, 387 

in contrast, enable, to some extent, the removal the static effects of soil properties on the 388 

geophysical measurements. Changes in EC (or ECa), once temperature corrected, can then 389 

more easily be linked to changing states such as soil moisture or pore water ionic 390 

concentration. In the case-studies presented here, which took place in non-saline 391 
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environments, we can reasonably link the changes in ECa to the changes in soil moisture due 392 

to crop-water uptake (evapotranspiration). We also observed that during short periods 393 

immediately following the application on mineral N, there was a sudden increase in EC 394 

probably due to an increase in pore water EC (Figure 6). 395 

In the first case study, cover crops were found to have a significant effect compared to the 396 

bare soil in the first and second experiments. In November 2016, the tillage radish and white 397 

mustard had a larger effect than the vetch. However, after mowing, no more effect of the 398 

cover crops on the soil dynamics was observed. In the second experiment, both short-term 399 

and long-term cover crops show significant effect compared to the bare soil. Cover crops in 400 

place for two years tend to have a larger effect compared to cover crops grown for one 401 

season (Figure 4). After being cut down, most cover crop treatments do not show any 402 

difference compared to bare soil. Only the long-term chicory and lucerne, two deep-rooting 403 

cover crops, show a significant effect in June and July 2019 (Figure 3 and 4). These ECa 404 

differences in the long-term chicory and lucerne treatments on 2019-06-04 (Figure 4) could be 405 

caused by an improved soil structure allowing better rainfall infiltration and possibly larger 406 

moisture storage. Ren et al. (2019) found that white mustard has a positive effect on the soil 407 

structure, promoting deeper root penetration of maize crop. However, the magnitude of the 408 

change (a few mS/m), once converted to soil moisture only represent a few percent, hence 409 

not constituting a substantial difference in soil drying compared to other treatments. Analysis 410 

of changes in ECa enhances the differences between cover crops, which would be less 411 

obvious with absolute ECa values as part of the signal would be impacted by various soil 412 

texture across the field. 413 
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Potatoes are particularly sensitive to drought stress. While Tang et al. (2019) have attempted 414 

to directly related ECa to soil moisture and potatoes tuber yield, the second case study 415 

presented here focused on the impact of traffic-induced compaction and irrigation treatment 416 

on the soil moisture. Time-lapse ERT between potato ridges reveals the limited depth of water 417 

uptake in compacted soil compared to non-compacted treatments. Plants in the non-418 

compacted treatments can probably access water at a greater depth more easily (and thus 419 

dry the soil) in comparison to the compacted treatments. In wet treatments, crops rely mainly 420 

on the water stored in the uppermost 30-40 cm of soil. One major disadvantage of placing the 421 

electrodes in the furrows is that no information can be collected on what is happening inside 422 

the ridges. However, this setup enables us to better measure the effect of compaction as all 423 

ridges are compaction-free. Such information is potentially useful for agronomists to adapt 424 

agricultural practices, such as irrigation-schedules tailored to canopy and root development. 425 

Minimally invasive ERT or EMI survey could reveal depth of drying of the crop and help 426 

estimate more accurately the amount of water needed for irrigation, leading to more cost-427 

effective management of the water resource. 428 

Time-lapse EMI in the third case study reveals that direct drill and plow treatments influence 429 

the soil moisture dynamics and the nitrogen uptake by the crop. From Figure 1c, it can be 430 

observed that direct drill resulted in patchier plots mainly due to the lower survival rate of the 431 

plants in the direct drill plots over winter. During the growing season, direct drill plots showed 432 

a somewhat smaller rate of decrease in ECa (Figure 8). It is probably the case that the direct 433 

drilled plots remained wetter due to a combination of lower evapotranspiration losses from a 434 

lower leaf area (Figure 10) and a more restricted root system. This is consistent with 435 

Sławiński et al. (2012) who found higher soil moisture in reduced tillage compared with 436 
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conventional tillage, for three years of winter wheat monoculture on two different soils. The 437 

potential decrease in porosity in the plow treatment during the season could have increased 438 

the ECa. However, given that a general decrease in ECa is observed, this effect is probably 439 

minor compared to change in soil moisture. Nevertheless, it could potentially lead to an 440 

underestimation of the soil drying in the plow treatment based on ECa changes. The addition 441 

of nitrogen fertilizer caused a significant increase in ECa over a short period (Figure 6). The 442 

changes in ECa correlates well with the amount of nitrogen supplied (Figure 7). This is in 443 

accordance with the results of Eigenberg et al. (2002) who successfully use EMI for 444 

monitoring different nitrogen uptakes. However, this effect was only observed after the first 445 

application of fertilizer (2019-03-04) and not the second (2019-04-23). This could be because 446 

of a more rapid nitrogen uptake due to larger plants at the second application. In contrast, the 447 

LAI started to increase proportionally to the nitrogen level after the second application (Figure 448 

10). This increase in LAI, potentially lead to larger soil drying and might be the cause of the 449 

significant differences observed between the tillage treatments (Figure 8). Yield response to 450 

the different rates was also larger for the plow than for the direct drill treatment (Figure 9). 451 

One possible explanation is that the larger root impedance in direct drill treatments led to a 452 

less effective use of nitrogen fertilizer (Ge et al., 2019). However, without additional nitrogen, 453 

both plow and direct-drill treatments had similar yield. Overall, time-lapse EMI enables us to 454 

obtain information on the soil moisture and nitrogen dynamics taking place in different tillage 455 

treatments. 456 

4.2 Limitations and recommendations 457 

The cases we describe demonstrate that the minimal invasive operation of EMI and its high 458 

throughput are significant advantages of this method for agricultural applications. In some 459 
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cases, EMI surveys can even be conducted while the crop is still in place (e.g. placing the 460 

instrument between the rows of wheat or the ridges of potatoes without damaging the crop). 461 

For its part, the greater resolution of ERT allows better recovery of depth-specific properties at 462 

the expense of a more complex setup. The two methods have the advantage of sampling a 463 

relatively large volume of soil, producing more representative measurements than 464 

conventional soil sampling or soil moisture sensing. While both methods can be used for one-465 

time survey, time-lapse studies clearly have great potential for agricultural studies as they 466 

enable the observation of the variation of states that can be related to plant development and 467 

plant productivity. 468 

EMI instruments are sensitive to measurement drift and for our case-studies we let the 469 

instrument warm up to outdoor temperature for at least 30 min before starting the data 470 

collection (following Shanahan et al., 2015). Additionally, the setup of a drift station, a place 471 

where measurements are collected at regular time interval, is recommended. More complex 472 

drift correction can also be applied (Robinson et al., 2004; Delefortrie et al., 2014). This 473 

procedure is essential for time-lapse surveys as it is likely that the drift of one survey will be 474 

different from another survey, inducing bias in the analysis. Temperature corrections are also 475 

essential in time-lapse surveys as mentioned in section 2.4, as the soil temperature is an 476 

important factor contributing to the soil EC. 477 

Calibration of EMI, possibly by using an ERT array (Lavoué et al., 2010; von Hebel et al., 478 

2019), help to transform qualitative EMI data to more quantitative values. However, it requires 479 

that ERT and EMI data span a sufficient range of EC values (in time or in space) in order to 480 

build a strong relationship, which can be a limitation in some situation. In our case, robust 481 

calibration equations were obtained for the wheat experiment using four time-lapse ERT 482 
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arrays across the field and using a single time-lapse ERT array for the cover-crop 483 

experiments. 484 

Multi-coil EMI instruments now enable the inversion of ECa data to depth-specific EC. 485 

However, this inversion remains challenging given the usual small number of coil 486 

configurations. Indeed, while ERT datasets usually consist of hundreds if not thousands of 487 

quadrupoles providing overlapping information on the same soil volume, EMI datasets usually 488 

rely on a few coil configurations. Smoothed Gauss-Newton solution (Whalley et al., 2017), 489 

McMC methods (Shanahan et al., 2015) or the shuffle complex algorithm (von Hebel et al., 490 

2014) are a few of the available methods for 1D inversion of EMI data. 491 

While the above precautions are not needed with ERT instruments, the electrode setup and 492 

acquisition are more important. Electrodes, after initial installation, can be left in place while 493 

the crop is growing allowing time-lapse measurements to be taken at the same exact position. 494 

This enables ERT surveys to be inverted using difference inversion (LaBrecque and Yang, 495 

2001). The drawback of that is that soils with high clay content will tend to swell and shrink, 496 

eventually leading to desiccation cracks around the electrodes (point of stress concentration) 497 

undermining the galvanic contact needed for ERT acquisition. Such effects have led some 498 

authors to explore the use of ERT to detect cracks in soils (Samouëlian et al., 2003; 499 

Samouelian et al., 2004; Hassan and Toll, 2013). Using a mobile ERT array that is set up for 500 

each survey can be an alternative but require more precautions to not damage the growing 501 

crop during installation. Given that the electrodes are unlikely to be at the same exact 502 

positions as previous surveys, a difference inversion cannot be used but inversion with 503 

constraint to a reference dataset can be adopted (as it is the case here). Once inverted, ERT 504 

sections also need to be temperature corrected. 505 
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Relating soil EC to soil properties or state is ultimately challenging. This is because EC is 506 

influenced by many factors (texture, density, pore water EC, soil moisture, temperature). 507 

These factors need to be controlled or accounted for to develop an EC value that relates the 508 

property of interest. Pedophysical relationships linking geophysical properties to soil 509 

properties are often site-specific and can be non-linear (Laloy et al., 2011; Calamita et al., 510 

2012). While this manuscript does not attempt to convert change in EC to soil moisture 511 

content, we believe that the time-lapse approach and data processing carried out allow for the 512 

previous interpretations to be made. However, if changes in other soil properties, such as the 513 

decrease in porosity from tillage during the season, were to be observed with geophysical 514 

instruments, independent measurements of the soil moisture variation would be needed in 515 

order to better isolate the contribution of the change in porosity to the ECa variation. 516 

The three case-studies presented in this work, were applied to relatively small plots from 517 

research sites. However, the geophysical methods proposed, particularly EMI has the 518 

potential to map much larger areas (Brogi et al., 2019). ERT systems as well, mounted on 519 

towed system (e.g. Veris Quad EC 1000) also allow mapping of large area. However, 520 

because ERT requires galvanic contact with the soil, it might be challenging to use a towed 521 

system without damaging a growing crop. 522 

Finally, other geophysical methods such as acoustic/seismic (Lu, 2014), ground penetrating 523 

radar (Klenk et al., 2015; Algeo et al., 2018; Klotzsche et al., 2019; Akinsunmade et al., 2019) 524 

or even nuclear magnetic resonance (Paetzold et al., 1985) are emerging methods that have 525 

potential for agricultural applications. 526 
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5 Conclusion 527 

Time-lapse EMI and ERT surveys detect changes in EC that can more easily be related to 528 

variable states, such as soil moisture, compared to conventional static (one time) surveys. 529 

The collection of case studies reported here illustrate the effectiveness of time-lapse 530 

geophysics for a range of applications. The time-lapse approach helps to monitor cover crop 531 

effect on soil drying and image the reduced depth of water uptake in compacted soil for 532 

potatoes. Under winter wheat, a plow-based treatment showed larger decrease in ECa 533 

associated with larger soil drying compared to a direct drill treatment, which might explain the 534 

yield gap observed. Significant correlation between the different level of nitrogen and the ECa  535 

changes was also found but only for a short period of time. In contrast, yield and LAI showed 536 

a stronger response to nitrogen levels in plow than in direct drill treatment. While 537 

interpretation of geophysical data should always be done carefully, we believe that the use of 538 

the time-lapse approach for EMI and ERT dataset have great potential to monitor the effects 539 

of a range of agricultural practices. 540 
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