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Abstract 

Tropical forests are vital global reservoirs of biodiversity and carbon (C). Deforestation 

and degradation of these ecosystems greatly threatens their capacity to provide crucial 

ecosystem functions and services, by altering complex plant-soil interactions and 

biogeochemical cycles underpinned by soil microbes. Forest disturbance is accelerating 

in Southeast Asia, through widespread selective logging (SL) and forest conversion to 

oil palm plantation (OP). This has major implications for soil microbial communities 

and functions, although effects of tropical forest disturbance on belowground 

biodiversity and the resistance and resilience of soil microbial nutrient and C-cycling 

are unresolved. The potential to restore soil microbial communities and essential 

functions is also largely unknown. The aim of this thesis was to evaluate impacts of 

tropical forest modification (degradation, conversion and restoration) on soil microbial 

community attributes, and implications for ecosystem biogeochemical cycling. The 

rainforests of Borneo were used as a model study system, representing a hotspot of 

biodiversity and forest degradation. I conducted survey and experiments across land-

use contrasts of old-growth (OG), SL and restored forest and OP. SL and OP 

significantly affected relative abundances of mycorrhizal fungal types, with 

implications for soil C storage. Mycelial productivity was not affected by SL but was 

negatively impacted by OP, indicating potential for SL forest rehabilitation but 

consequences for OP nutrient cycling and restoration. Logging gaps in SL forest 

significantly altered bacterial and fungal community structure, reducing mycorrhizal 

abundance and altering supply rates of key nutrients. Logging gaps may also supress 

microbial C cycling, implied by reduced soil respiration, although soil functioning 

appeared more resilient to drought than adjacent closed canopy forest. Prolonged 

increases in soil respiration in SL forest soils after rewetting highlight sensitivity of 



 

     v 

tropical forest to future climate change perturbations. Overall, soil microbial 

communities did not recover with restoration of SL forest, suggesting current 

management practices select for different microbial taxa which may impede 

rehabilitation of ecosystem functions. Overall findings demonstrate human 

modification of tropical forest affects key soil microbial groups, with potential 

consequences for biogeochemical cycling and atmospheric C feedbacks at the landscape 

scale. This highlights the need to incorporate evaluation of belowground communities 

and function in predicting impacts of land-use and climate change, as well as effective 

ecosystem rehabilitation for biodiversity conservation and provision of essential 

ecosystem services by these vital, hyperdiverse environments. 

Keywords: old-growth • selective logging • oil palm • ecosystem restoration • 

resistance and resilience • carbon dioxide emissions 
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fungal group as reads were dominated by one phylum (Ascomycota: 98.76 % in 

OG, 100 % in SL and 99.38 in OP) with the remaining reads comprising taxa of 

the Basidiomycota. ............................................................................................... 33 

Figure 2.3 Principle coordinates analysis (PCoA) ordination of A) overall, B) 

saprotrophic, C) mycorrhizal and D) pathogenic mycelial fungal community Bray-
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and oil palm plantation (OP). Points are scaled by hyphal length indicating 

mycelial production. Ellipses represent t-distribution confidences for OG 

selectively SL forest. Ellipses are not included for OP samples due to number of 
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Figure 2.4 Relative abundances of fungal guilds for old-growth (OG) and selectively 

logged (SL) forest and oil palm plantation (OP). Error bars represent standard 

errors. Lower case letters indicate statistically different or similar groups across all 

three land-use types identified by post-hoc tests after linear mixed modelling or 

Kruskal-Wallis analysis (p < 0.05). Mycorrhizal and pathogenic guilds have been 
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Figure 2.5 A) Mycorrhizal Amplicon Sequence Variant (ASV) richness and B) 

mycelial productivity (hyphal length) in old-growth and selectively logged forest 
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Figure 4.4 Box and whisker plot of baseline CO2 efflux rates in closed canopy forest 
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1 Introduction 

1.1 The world’s tropical forests: a global life support system under pressure 

The world’s forests provide vitally important ecosystem services, including the 

maintenance of global biodiversity, conservation of soil and water, provision of food, 

medicine and fuel, and regulation of the Earth’s hydrological and biogeochemical 

cycles (Jenkins and Schaap, 2018). Tropical forests represent the most biologically rich 

and ecologically complex ecosystems on the planet (Laurance, 2007b). Although they 

constitute just 7 % of the Earth’s land cover (Bradshaw et al., 2009), tropical forests 

support more than two-thirds of all known species (Dirzo and Raven, 2003; Laurance, 

1999). This biodiversity is itself integral in supporting crucial ecosystem functions that 

sustain life on Earth (Dirzo and Raven, 2003). For example, tropical forests provide the 

world’s largest terrestrial carbon (C) sink (approximately 50 %) (Malhi et al., 2004; Pan 

et al., 2011). Tropical forests therefore play a central role in global C cycling and 

mitigation of the effects of climate change by offsetting anthropogenic C emissions 

(Zarin, 2012; DeFries et al., 2002). 

Despite their fundamental importance, forests worldwide are under immense 

pressure due to human activity. The global extent of natural forest is rapidly 

diminishing, with the currently leading form of global land cover change is conversion 

of primary (undisturbed) forest (Keenan et al., 2015). The highest rates of loss are 

occurring in tropical regions (Hansen et al., 2013), most extreme in Southeast Asia 

(Laurance, 2007a), driven by the interactive effects of human land-use and climate 

change (Lambin et al., 2003; Malhi and Phillips, 2004). The most recent estimates 

indicate a loss of 5.5 million hectares of tropical forest cover per year, with a total loss 
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of 195 million hectares between 1990 and 2015 (Keenan et al., 2015). Besides forest 

clearance, remaining tropical forest has been extensively disturbed, and in 2012 there 

was already an estimated 500 million hectares of degraded forest across the tropical 

regions (International Timber Trade Organisation (ITTO), 2012). Causes of loss and 

degradation include logging, agricultural intensification, expansion of cattle pasture, 

hunting and urban development (Asner et al., 2009; Wilcove et al., 2013; de Sy et al., 

2019), furthered by increased susceptibility of remaining fragmented forest to 

environmental disturbances such as fire (Malhi and Phillips, 2004). As a consequence, 

immense human-modified landscapes now dominate much of tropical regions (Gardner 

et al., 2009). These trends are only expected to continue, as increasing demand for food 

production and infrastructure rises alongside rapidly expanding populations in 

developing tropical countries (Laurance et al., 2014) in tandem with growing global 

demand for agricultural products produced in these regions (Corley, 2009). 

Tropical deforestation and degradation represents a major ecological crisis 

(Laurance, 2007b; Gibson et al., 2011), with predicted biodiversity losses amounting to 

a global mass extinction event if tropical forest disturbance continues unchecked 

(Powers and Jetz, 2019; Alroy, 2017; Giam, 2017). Subsequently, reduced cover and 

quality of tropical forest negatively impacts on essential ecosystem functions (Ferraz et 

al., 2014), including C storage (Baccini et al., 2017; Berenguer et al., 2014), and has 

major consequences for large-scale soil emissions of other greenhouse gases such as 

methane (CH4) (Han and Zhu, forthcoming). Furthermore, predicted future climate 

scenarios for tropical regions are likely to magnify effects of human disturbance on 

ecosystem functions, through increasing intensity and duration of drought events and 

temperatures extremes (Rifai et al., 2019; Coelho and Goddard, 2009). 
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1.2 The forests of Southeast Asia: a hotspot of biodiversity and degradation 

The forests of Southeast Asia are uniquely biologically rich, owing to a complex 

combination of distinctive biogeographical factors, and harbour the greatest levels of 

diversity in the world for several groups of faunal and floral taxa (Sheldon et al., 2015; 

Hughes, 2017; Woodruff, 2010). The island of Borneo in particular is a recognised 

global biodiversity and evolutionary hotspot (Myers et al., 2000; de Bruyn et al., 2014), 

with extremely high botanical and animal endemism (approximately 37 % of vascular 

plants, 28 % of overall plants and vertebrates) (Raes et al., 2009; Runting et al., 2015; 

Roos et al., 2004). Bornean rainforests have a characteristically highly abundance of 

trees of the Dipterocarpaceae family, which are (often mono-) dominant in the forest 

canopy (Whitmore, 1984). These are now known to be the largest tropical trees in the 

world, the tallest reaching over 100 metres (Gagen, 2019). Due to the unique rapid 

growth and morphological traits of the Dipterocarpaceae, the rainforests of Borneo are 

capable of storing more C than even Amazonian forests (Banin et al., 2014), supporting 

their role as a vital and irreplaceable global C sink (Qie et al., 2017). 
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The most rapid forest losses in Southeast Asia are occurring on the island of 

Borneo (Bryan et al., 2013). Here, the combined effects of industrial timber extraction 

and expansion of monoculture plantations for the production of palm oil has resulted in 

a reduction of more than 30 % of forest cover (approximately 18.7 Mha) since the early 

1970s, while more than 70 % of the remaining forest has been degraded through 

selective logging (Gaveau et al., 2014; Gaveau et al., 2016) (Fig. 1.1). 

Between 1980 and 2000, more wood was harvested from Borneo than from the Amazon 

and Africa combined (Curran et al., 2004). The state of Sabah in Northern Malaysian 

Borneo represents the fastest rates of deforestation in the world, with only 8% of 

Sabah’s current land area now covered by intact forest (Bryan et al., 2013; Gaveau et 

al., 2014). Although legal protection from logging has in some areas been granted to 

Figure 1.1 Land-cover maps for island of Borneo derived from LANDSAT data illustrating 

A) forest cover loss between 1973 and 2010 due to the combined effects of timber 

harvesting and expansion of industrial plantations, and B) recent land-cover classification 

for intact old-growth and selectively-logged forest and monoculture oil palm plantation 

in 2010. Modified from Gaveau et. al. (2014). 



 

   5 

protect remaining intact old-growth forests in Sabah (Hazebroek et al., 2004; Marsh and 

Greer, 1992), these conservation areas are small in number and relative scale (Reynolds 

et al., 2011). The landscape is now a mosaic of fragmented and degraded selectively-

logged forest (SL), interspersed with isolated patches of intact old-growth forest (OG) 

and expansive monoculture oil palm plantations (OP) (Gaveau et al., 2014) (Fig. 1.2). 
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The heterogeneous selectively-logged forest matrix 

Figure 1.2 The major land cover types across the human-modified landscapes of Borneo: remaining 

intact old-growth rainforest (A), characteristically dominated by trees of the Dipterocarpaceae (B 

& C); extensively degraded selectively-logged forest (D & E); expansive monoculture oil palm 

plantations (F & G). All photographs were taken by the author in the Malaysian state of Sabah. 

Photographs were taken in the Maliau Basin (A) and Danum Valley (B) Conservation Areas, 

Kalabakan Forest Reserve (B & C), and Menggaris Oil Palm Estate, Benta Wawasan Sdn. Bdh. (F 

& G). 
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The practice of selective logging involves the removal of individual large trees rather 

than clearing forest entirely, and is widely used across the tropics (Asner et al., 2009). 

On Borneo, dipterocarp species (Fig. 1.2 B & C) are targeted during selective logging 

for their high commercial value as a timber product (Gaveau et al., 2014). Although 

forest is not clear-felled by this method, an opening of the canopy through removing 

large individuals, and creation of logging landings and skid trails for extractive 

machinery can have significant effects on forest ecosystems (Fig. 1.3). 

Figure 1.3 Examples of human-made canopy gaps in selectively logged forest in Sabah, 

Borneo, created through removal of large individual trees of the Dipterocarpaceae, and 

opening of logging landings and skid trails for extractive machinery. These can be highly 

variable is scale and vegetation characteristics, as shown. 
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This disturbance modifies vegetation structure, community characteristics and plant 

inputs due to removal of species and alterations in plant functional niches (Muscolo et 

al., 2014), which can affect interrelated microclimate, soil conditions, nutrient- and C-

cycling (Marthews et al., 2008; Hartmann et al., 2013; Scharenbroch and Bockheim, 

2007; 2008a; Saner et al., 2009). Subsequently, the majority of remaining forest cover 

on Borneo is a highly heterogeneous environment, comprising a tremendously variable 

matrix of closed-canopy forest and human-made canopy gaps of various sizes and 

stages of natural regeneration (Ellis et al., 2016; Bossel and Krieger, 1991). 

1.2.1 Rehabilitation of degraded forest and ecosystem functions 

There is now an increased pressure on the remaining Bornean rainforest to provide 

essential ecosystem functions. Despite the unique capability of Bornean dipterocarp 

rainforest to store C (Banin et al., 2014), this extensive degradation by selective logging 

significantly threatens its capacity as a crucial global C sink (Qie et al., 2017; Asner et 

al., 2018; Ferraz et al., 2018). Ecological restoration of degraded forest ecosystems 

through large-scale rehabilitation projects is becoming a widely adopted approach 

across the tropics, attempting to recover coupled biodiversity and ecosystem services 

(Aronson and Alexander, 2013; Benayas et al., 2009; Brancalion et al., 2013). However, 

success of restoration programmes is often limited by lack of context-specific 

knowledge of the ecology of planted tree species and plant-soil interactions (Rodrigues 

et al., 2009). On Borneo, forest rehabilitation interventions mainly take the form of 

enrichment planting, where removed indigenous dipterocarp species are reintroduced 

back into SL forest, with an aim to restore floristic composition to that of intact OG 

forest (Daisuke et al., 2013). In Sabah alone, c. 44,000 hectares of degraded forest are 

currently under active restoration through co-funded collaborations between 

international corporations, the government of Sabah and the Yayasan Sabah 
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Foundation, primarily to offset carbon emissions associated with industrial practices 

(Reynolds et al., 2011; Face the Future, 2007). 

1.3 Soil microbial diversity and function: the unseen biogeochemical engine 

Recent advances in molecular techniques, such as high-throughput and next-generation 

sequencing (NGS), have provided novel insights into the incredible diversity of soil 

microbiota that has previously been impossible due to the sheer number of taxa and 

limitations in cultivability (Schloss and Handelsman, 2006; Barriuso et al., 2011; 

Soliman et al., 2017; Caspermeyer, 2017; Nema, 2019). One gram of soil may, for 

example, contain up to 5 × 104 bacterial species (Roesch et al., 2007; Curtis et al., 2002), 

with the number of individual bacteria estimated at the giga-scale (Raynaud and Nunan, 

2014; Horner‐Devine et al., 2003). As such, soil microbiota represent a significant 

contribution to the Earth’s overall genetic diversity (Whitman et al., 1998). Although 

the impacts of tropical land-use change on aboveground (plant and animal) biodiversity 

has been a significant research focus during the past decades (Gibson et al., 2011; 

Laurance, 1999), we are now only just beginning to understand the effects for 

belowground soil microbial communities and their associated functions (Rodrigues et 

al., 2013; Tripathi et al., 2016; Lee-Cruz et al., 2013; Kerfahi et al., 2014). 

Soil microbes underpin vital biogeochemical cycles, affecting C and nutrient 

flows through entire ecosystems (Trivedi et al., 2016; Schimel and Schaeffer, 2012; 

Wardle et al., 2004). Soil microorganisms function as crucial ‘gatekeepers’ determining 

the relative accumulation or release of soil C and N pools through soil-atmosphere 

exchange (Malik et al., 2018; Kuypers et al., 2018), maintaining soil as a global 

reservoir of C which holds double the amount of C in the atmosphere, and more than 

the atmosphere and plants combined (Singh et al., 2010). These functions are driven by 

complex plant-soil interactions, involving reciprocal feedbacks between aboveground 
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vegetation and belowground soil microbial communities (van der Heijden et al., 2008; 

van Der Putten et al., 2013; Cortois et al., 2016; Bever et al., 2010; Wardle et al., 2004). 

Soil microbes are well recognised as key regulators of plant primary productivity, 

diversity and community structure through their influence on plant growth and survival 

(van der Heijden et al., 2008). In turn, soil microbial communities are mutually 

influenced by plants via inputs from litter and roots altering soil biotic and abiotic 

conditions (Bever et al., 2010; van Der Putten et al., 2013; Cortois et al., 2016). 

Specific processes mediated by soil microbiota, largely bacteria and fungi, 

include: soil formation and stabilisation (Rillig et al., 2015; Wilson et al., 2009; Rillig 

and Mummey, 2006); decomposition of soil organic matter (SOM) (e.g. from plant 

litter) whereby organic compounds are broken down and transformed or mineralised 

into the form of bioavailable inorganic nutrients (Schimel and Bennett, 2004; van der 

Heijden et al., 2008); mining and mobilisation of nutrients from mineral soils 

(Landeweert et al., 2001); contributions to SOM through production and turnover of 

microbial biomass (Liang et al., 2019; Kyaschenko et al., 2017; Wallander et al., 2013); 

N-cycling processes (ammonification, nitrification and de-nitrification) (Schimel and 

Bennett, 2004); CH4-cycling processes (methanogenesis and methane oxidation) 

(Aronson et al., 2013); soil emissions of carbon dioxide (CO2) through microbial 

respiration for energy production, required for growth and activity (Auffret et al., 2016). 

These mechanisms are driven both by free-living soil microbes, and microbiota forming 

mutualistic plant-root associations. Such symbioses result from several hundred million 

years of coevolution between plants and microbes (Brundrett, 2002; Humphreys et al., 

2010; Redecker et al., 2000), and play specific key roles in functioning of ecosystems. 

Throughout tropical, temperate and boreal biomes, N-fixing bacteria of the rhizobia 

form partnerships with some vascular (typically leguminous) plants by root nodulation, 
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overcoming plant N deficiencies through their ability to convert atmospheric dinitrogen 

(N2) into plant-available forms (Nasto et al., 2014; Vitousek et al., 2002). Mycorrhizae 

are ubiquitous associations between certain fungi and the majority (approximately 80%) 

of terrestrial plants. In exchange for plant-derived photosynthates required for growth 

and survival, mycorrhizal fungi supply their hosts with key limiting nutrients such as 

phosphorus (P) and N. This is achieved through establishment of often extensive hyphal 

networks (mycelium) able to reach distant nutrient pools, and release nutrients from 

otherwise non-bioavailable sources through extracellular enzyme production (Smith 

and Read, 2008; Lambers et al., 2008; Itoo and Reshi, 2013). As such, mycorrhizal 

fungi provide a ‘functional link’ between plants and the soil (Wurzburger and 

Clemmensen, 2018), ultimately influencing nutrient dynamics over multiple trophic 

levels (Maxwell Stevens et al., 2018). As much as 200 m of fungal hyphae can be found 

in one gram of soil (Leake et al., 2004) and the mycelium of actively-foraging fungi 

itself provides a soil C sink, while mycelial turnover can in some cases lead to 

accumulation of SOM (Wallander et al., 2013). The characteristics of mycorrhizal 

communities may determine soil C dynamics and storage potential at the ecosystem 

scale (Averill et al., 2014; Dickie et al., 2014; Orwin et al., 2011; Zak et al., 2019). 

Resistant, resilient, redundant? Impacts of forest disturbance on soil microbial 

communities and function in Southeast Asia 

An understanding of the resistance (ability to remain unchanged) and resilience 

(ability to recover after change) of soil microbial communities and functions to 

environmental perturbation is of central importance for predicting impacts of global 

change on ecosystem processes. Considerable questions remain about the potential for 

land-use disturbances to alter microbial community diversity and structure, and whether 

or not these shifts correspond to changes in function as resultant communities may 
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support similar soil processes (i.e. functional redundancy) (Allison and Martiny, 2008; 

Griffiths and Philippot, 2013; Shade et al., 2012). Some studies have shown land use 

change to have profound and long-lasting effects on microbial community attributes 

and functions across multiple biomes (Fraterrigo et al., 2006; Bonner et al., 2019; 

Fichtner et al., 2014; Rodrigues et al., 2013), while other evidence suggests high levels 

of functional redundancy and community plasticity owing to the extreme diversity of 

soil microbiota (Nannipieri et al., 2017; Grządziel, 2017).  

A handful of recent studies have begun to elucidate the impacts of forest 

clearance and degradation in Southeast Asia on soil microbial diversity and community 

structure. While bacterial and protistan communities appear to be broadly resilient to 

forest ecosystem perturbations (Tripathi et al., 2016; Lee-Cruz et al., 2013), strong 

effects of both forest conversion to OP and logging disturbance on fungal community 

attributes have been highlighted (Elias et al., 2019; Kerfahi et al., 2014; McGuire et al., 

2015). Observed impacts, including significant reductions in ectomycorrhizal (EcM) 

fungal abundance and diversity in OG versus SL forest (Elias et al., 2019), may relate 

to alteration in aboveground communities as selectively removed dipterocarp trees are 

known to be an obligate EcM-associating family (Brearley, 2012). Recent studies show 

that even in extremely heterogeneous and hyper-diverse tropical forests, patterns in soil 

microbial community composition may relate to the phylogenetic and taxonomic 

structure of aboveground vegetation – although fungal assemblages may be more 

sensitive than bacteria (Barberán et al., 2015). 

Shifts in plant functional traits and net primary productivity (NPP) with 

increasing disturbance intensity have recently been identified in Bornean rainforest 

(Riutta et al., 2018; Both et al., 2019). However, there has been little overall exploration 
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of the functional implications of alterations in soil microbial communities in disturbed 

Southeast Asian forest (Both et al., 2017). The factors governing microbial functioning 

in tropical forests as a whole represents a significant knowledge gap (Camenzind et al., 

2018). For example, we do not yet know the impacts of observed shifts in foraging 

fungal community attributes on fungal productivity, despite the central importance of 

the soil mycelium in biogeochemical cycling as extensively studied in boreal and 

temperate systems (Ekblad et al., 2013). Moreover, the limited number of studies of soil 

microbial communities to date have mainly adopted a broad land-use classification 

approach for comparative analysis between OG and SL forest and/or industrial 

plantation. However, SL forests are highly heterogeneous and more local impacts of 

disturbance, e.g. by creation of selective-logging canopy gaps, is unknown. Soil organic 

C pools and emissions through soil respiration are known to be highly sensitive to both 

land-use and climate changes, by altering soil abiotic and biotic conditions and 

temperature which may accelerate decompositional processes (Nazaries et al., 2015; 

Auffret et al., 2016). A single in situ study undertaken in logged-over Bornean forest in 

recent years found soil respiration to be lower in human made canopy gaps relative to 

surrounding closed canopy forest (Saner et al., 2012). However, the relative 

contributions to C emissions by heterotrophic soil microbial versus autotrophic plant 

processes, and roles of microclimatic conditions and soil microbial community 

composition is unclear. Furthermore, knowledge of responses of altered soil microbial 

communities in heterogeneous SL forest to future climate scenarios is greatly lacking. 

Specifically, there is an urgent need to understand the resistance and resilience of soil 

microbial functions to drought events, the frequency and intensity of which are 

predicted to increase as the main impacts of climate change in Southeast Asia (Rifai et 

al., 2019). Due to the extensive cover of current SL forest on Borneo, an unpicking of 
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these mechanisms is of vital importance for understanding effects of forest disturbance 

on soil C cycling now and in the future. Finally, although large-scale forest 

rehabilitation projects on Borneo appear to have had significant successes in promoting 

C sequestration by trees (Face the Future, 2020), the wider consequences of restoration 

interventions on broader ecosystem biodiversity and functions is little understood, and 

remains a subject of contention (Cerullo et al., 2019). Understanding of coupled above- 

and below-ground processes during restoration and effects on microbial communities 

and function is still required (Perumal et al., 2016), necessary for evaluating recovery 

of vital biogeochemical cycles. 

1.4 Thesis aims and objectives 

The overarching aim of this thesis is to address current knowledge gaps regarding the 

impacts of human modification of tropical forests (degradation, conversion and 

restoration) on soil microbial community attributes and functioning, and evaluate 

implications for ecosystem biogeochemical cycling. Using the highly biodiverse and 

heavily altered rainforest of Sabah, Borneo, as a study system, this thesis is structured 

around the following specific research questions: 

1) How does selective logging and conversion of forest to oil palm affect active 

soil fungal community attributes and mycelial productivity? 

2) How do logging gaps affect soil bacterial and fungal community attributes and 

nutrient cycling? 

3) How do logging gaps affect the resistance and resilience of soil microbial carbon 

cycling to drought? 

4) Does active ecological restoration of degraded forest recover soil microbial 

community attributes and function?  



 

   15 

2 Soil fungal community characteristics and mycelial production 

across a tropical forest disturbance gradient 

2.1 Abstract 

The rainforests of Southeast Asia are a global hotspot of biodiversity and forest 

degradation. Selective logging and forest conversion to oil palm plantation has major 

implications for biogeochemical cycling and carbon (C) storage that are underpinned 

by plant-soil interactions. Soil fungi are key regulators of C and mineral nutrient flows 

between above- and below-ground organisms, yet understanding of fungal community-

productivity relationships in hyper-diverse tropical forests is lacking. Recent studies 

suggest sensitivity of soil fungal communities to land-use change, although impacts on 

fungal productivity remain unresolved. To address this gap, we installed hyphal in-

growth bags for six months in old-growth (OG), selectively-logged (SL) forest and oil 

palm plantation (OP) in Bornean lowland rainforest. Mycelial (actively foraging) fungal 

communities were characterised by ITS amplicon sequencing, and mycelial production 

estimated by measurement of fungal hyphae. Mycelial fungal community compositions 

were similar in OG and SL forest, whereas OP had significantly different communities 

of saprotrophic, mycorrhizal, and pathogenic fungi. In particular, mycorrhizal relative 

abundance and diversity and mycelial production was reduced. However, due to 

restricted sampling replication in OP, effects associated with site could not be excluded. 

In forest plots (OG & SL), we further explored the broader drivers of mycelial fungal 

communities using tree community, structure and productivity data, and soil and 

environmental properties. Forest mycelial community dissimilarities were related to soil 

and vegetation characteristics. Mycelial production was independent of fungal 

community or vegetation attributes but positively related to soil inorganic P 

concentrations (although tenuously). Changes in relative abundances of mycorrhizal 
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types were also found with selective logging, which may have implications for C 

storage capacity in these forests, while an apparent retention of mycorrhizal mycelium 

in SL forest may act as a reservoir of inoculum that could aid forest restoration. Our 

results show that conversion of rainforest to OP has significant consequences for fungal 

diversity-productivity relationships with implications for nutrient and C dynamics and 

restoration over large spatial scales. 
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2.2 Introduction 

Tropical forests represent the most biodiverse terrestrial ecosystems on the planet 

(Myers et al., 2000) and provide a globally important C sink (Pan et al., 2011). 

Increasingly rapid reductions in forest cover through land-use change threatens the 

capacity of tropical forest to support biodiversity (Powers and Jetz, 2019; Hansen et al., 

2013) and store C (Baccini et al., 2017). Significant forest degradation is occurring in 

Southeast Asia, with highest rates in Borneo (Bryan et al., 2013). Since the early 1970s, 

expansion of industrial oil palm (OP) plantation has resulted in the loss of >30 % of 

forest cover (18.7 Mha of old-growth forest), while more than 70 % of the remaining 

forest has been degraded through selective logging for extraction of commercially 

valuable timber (Gaveau et al., 2014; Gaveau et al., 2016). 

Ecosystem functions and biogeochemical cycles are underpinned by complex 

plant-soil interactions, mediated through reciprocal feedbacks between aboveground 

vegetation and belowground soil microbial communities (van der Heijden et al., 2008; 

Cortois et al., 2016; van Der Putten et al., 2013; Bever et al., 2010; Wardle et al., 2004). 

Changes in soil properties associated with forest disturbance have been shown to have 

significant and long-lasting effects on microbial community assemblages and diversity 

across multiple biomes (Hartmann et al., 2013; McGuire et al., 2015). However, despite 

the importance of plant-soil microbe interactions, understanding of relationships 

between above-below-ground communities alongside soil properties in tropical 

ecosystems remains limited (Barberán et al., 2015; Elias et al., 2019; Mueller et al., 

2016). A small number of recent studies have highlighted the sensitivity of soil fungal 

communities to land-use change in Southeast Asia, including effects of logging and 

forest conversion to oil palm plantation on community structure and diversity (Kerfahi 
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et al., 2014; McGuire et al., 2015), although the direct impacts on functioning of fungal 

communities are unclear. 

The mycelium produced by actively foraging soil fungi is a key component of 

carbon (C) and mineral nutrient cycles in terrestrial ecosystems (Cairney, 2012; Finlay, 

2008; Johnson et al., 2002). The extraradical mycelia of mycorrhizal fungi act as direct 

pathways for the reciprocal exchange of mineral nutrients from soils and photosynthetic 

C between plants and fungal symbionts. This mutualistic association benefits the host 

plant through increased surface area for the absorption of mineral nutrients from soil, 

in exchange for plant-derived photosynthates required for fungal growth and survival 

(Smith and Read, 2008; Itoo and Reshi, 2013; Chen et al., 2016). Plant productivity is 

enhanced through this mutually beneficial partnership (Wurzburger and Clemmensen, 

2018; Lambers et al., 2008; Nasto et al., 2014), in turn leading to greater belowground 

C allocation by plants (Orwin et al., 2011) and C supply to the wider soil microbiome 

(Nottingham et al., 2013; Drigo et al., 2012). Recent research has evidenced nutrient 

transfer between plants of the same or even different species through common mycelial 

networks (CMNs), that physically connect two or more individual plants and can 

support interplant exchanges over long distances (Babikova et al., 2013; Bever et al., 

2010; Gorzelak et al., 2015; Barto et al., 2012). While this process can influence plant 

survival and growth, it may also support establishment of young trees by providing 

existing infrastructure for seedlings to access (Nara, 2006; Gorzelak et al., 2015). While 

fungal hyphal structures themselves provide a C sink, they may also contribute to soil 

organic matter accumulation through mycelial turnover (Wallander et al., 2013) and 

protection of organic substrates through effects on soil aggregation (Rillig et al., 2015; 

Wilson et al., 2009). Although the precise role of mycelial production and activity in 

soil C dynamics is contentious and remains an area of active research (Zak et al., 2019), 
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recent studies have highlighted links between mycorrhizal community structure and soil 

C storage. For example, dominance of ectomycorrhizal (EcM) versus arbuscular 

mycorrhizal (AM) fungi may influence soil C accumulation potentially through 

competition with saprotrophic fungi for resources required for the decomposition of 

organic matter (Averill et al., 2014). 

Mycelial production is regulated by a range of abiotic and biotic factors such as 

soil mineral nutrient availability (Ekblad et al., 2013; Hagerberg et al., 2003; Potila et 

al., 2009; Nilsson and Wallander, 2003), soil moisture (Majdi et al., 2008), climate 

(Bakker et al., 2015), phenological/seasonal changes in belowground C allocation 

(Ekblad et al., 2013) and direct grazing by soil mesofauna which may inhibit or 

stimulate mycelial production (Ek et al., 1994; Setälä et al., 1999). Plant and fungal 

community structure themselves are also critical for determining mycelial growth and 

turnover (Clemmensen et al., 2015), as shifts in vegetation and mycelial fungal 

communities related to forest management have been linked to patterns in mycelial 

production (Hagenbo et al., 2018). However, quantification of mycelial production rates 

has largely been confined to boreal and temperate biomes, mostly focussing on EcM-

dominated systems in Scandinavia (Ekblad et al., 2013).  

The lowland rainforests of Borneo are characterised by the high abundance and 

canopy dominance of tree species belonging to the obligate EcM-associating 

Dipterocarpaceae family (Whitmore, 1984; Brearley, 2012; Taylor and Alexander, 

2005), with dipterocarp community assemblages potentially mediated by their 

mycorrhizal partners (Essene et al., 2017). Overall, the majority of tree species in these 

hyper-diverse forests also associate with AM fungi as in most tropical forests (McGuire 

et al., 2008). Dipterocarps are also directly targeted through selective logging due to 
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their commercial value as timber (Appanah and Turnbull, 1998), making way for 

establishment of other tropical tree species that are likely to be AM-forming (McGuire 

et al., 2008). A recent study highlighted the effects of such tree community alterations 

on net primary productivity (NPP) allocation (Riutta et al., 2018), with shifts from 

canopy NPP to woody NPP fractions in logged forest in Bornean lowland dipterocarp 

rainforest. Corresponding shifts in tree functional traits have also been reported, 

indicating traits associated with carbon capture and growth to be more pronounced in 

selectively logged (SL) forest compared to structural and persistence traits in old-

growth (OG) forest (Both et al., 2019). These alterations to aboveground productivity 

patterns and plant functional traits along with modified soil properties due to logging 

may have strong implications for soil mycelial fungal community characteristics (i.e. 

the structure and diversity of actively foraging soil fungi) and their productivity, 

although these relationships to date have not been investigated. 

The overarching aim of this study was to evaluate the impact of selective logging 

and forest conversion to oil palm plantation on mycelial fungal community 

characteristics and productivity, and explore the role of soil and vegetation properties 

as drivers of mycelial fungal community composition and productivity in tropical 

lowland dipterocarp rainforest. This study was constructed to address the following 

hypotheses: 

H1. Mycelial fungal community attributes (composition and alpha diversity) and 

mycelial production will differ between OG and SL forest and OP, with 

corresponding differences in soil and environmental properties, tree community 

composition and functional characteristics between land-use types. 
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H2. Across OG and SL forest, mycelial fungal community attributes and 

production will be explained by soil and environmental properties, tree 

community composition and functional characteristics. 

H3. Across OG and SL forest, mycelial fungal community attributes will 

correlate with rates of mycelial production. 

2.3 Methods 

2.3.1 Study sites 

This study was carried out in the Malaysian state of Sabah, northern Borneo. This region 

is characterised by moist tropical climate and is considered mainly a-seasonal (average 

daily temperature 27 ˚C, annual precipitation 2,600 - 2,700 mm) although may 

experience irregular inter-annual dry periods which with an average total of ~1.4 

months per year (Walsh and Newbery, 1999; Kumagai and Porporato, 2012). Sampling 

was conducted in a total of nine 1 ha plots across OG and SL lowland dipterocarp 

rainforest and OP (Fig. 2.1). 
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Four plots were distributed across OG forest: two plots were situated in the Danum 

Valley Conservation Area (DVCA) (4.951°, 117.796° and 4.953°, 117.793°), and two 

in the Maliau Basin Conservation Area (MBCA) (4.747°, 116.970° and 4.754°, 

116.950°), coded as DAN-04, DAN-05, MLA-01 and MLA-02 respectively in the 

ForestPlots database. These reserves have undergone little or no anthropogenic 

disturbance with legal protection from logging granted in 1976 and 1981, respectively 

(Marsh and Greer, 1992; Hazebroek et al., 2004). Four plots were located in SL forest 

in the Kalabakan Forest Reserve (SAF-01: 4.732°, 117.619°; SAF-02: 4.739°, 

117.617°; SAF-03: 4.691°, 117.588° and SAF-04: 4.765°, 117.700°) and one in OP 

Figure 2.1 Map of nine sampling locations A) in northern Malaysian Borneo B) in the state of 

Sabah, C) with four 1 ha study plots situated within old-growth forest (DAN-04, DAN-05, MLA-

01 and MLA-02), four in selectively-logged forest (SAF-01, SAF-02, SAF-03, SAF-04) and one 

in oil palm plantation (OP). 
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(4.641°, 117.452°; Benta Wawasan Sdn. Bdh.), in established research sites within the 

large-scale forest fragmentation study Stability of Altered Forest Ecosystems (SAFE) 

Project (Ewers et al., 2011). Two SL plots had been selectively logged twice and two 

four times, with forests undergoing timber extraction first during the mid-1970s 

(approximately 113 m3 ha-1 timber removed), followed by up to three more rounds 

between 1990 and 2008 (approximately 37-66 m3 ha-1 cumulative timber removed) 

(Fisher et al., 2011; Riutta et al., 2018). The OP plot was located in a stand aged 

approximately seven years at the time of sampling, where fertiliser applications were 

roughly two applications of 3-4 kg bags palm-1 year-1 (comprising a mixture of 

diammonium phosphate, potassium chloride, ammonium sulphate, magnesium sulphate 

and borax pentahydrate) prior to this study (J. Drewer, personal communication). All 

plots in OG and SL forest were previously established as part of the Global Ecosystem 

Monitoring (GEM) network (http://gem.tropicalforests.ox.ac.uk/) for the long-term 

evaluation of forest carbon cycling and productivity since 2011 (Malhi et al., 2015; 

Riutta et al., 2018), and have recently been characterised for tree community 

assemblage, plant traits, soil microbial communities and soil physicochemical 

properties (Both et al., 2019; Elias et al., 2019). 

2.3.2 Sampling design 

Three 20 × 20 m subplots were randomly chosen per 1 ha plot for assessing mycelial 

community attributes and productivity. Ten hyphal in-growth bags were installed per 

subplot at a randomly chosen location. Bags were buried at 50 cm intervals along two 

parallel transects (5 bags per transect) spaced 1 m apart to ensure adequate sample 

recovery and account for spatial variability in fungal community composition and 

mycelial production.  
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2.3.3 Hyphal in-growth bags 

Hyphal in-growth bags were constructed from two 5 cm × 5 cm squares of fine pore-

size nylon mesh (Plastok, UK) sealed with a soldering iron. A mesh size of 41 µm was 

chosen to allow access to fungal hyphae, but prevent infiltration of plant roots 

(Wallander et al., 2013; Fisher et al., 2013). Bags were filled with 25 g oven-dried, heat-

sterilised quartz sand (150 ˚C for 24 hours). In-growth bags were installed between 

April-May 2016 by burying vertically at the soil surface covering a depth of 

approximately 0-5 cm. This was chosen to include the organic layer and interface 

between organic and mineral horizons to maximise fungal in-growth (Lindahl et al., 

2007; Wallander et al., 2013). As there is no distinct growing season in this region, in-

growth bags were harvested after a period of 6 months to allow fungal colonisation 

under relatively stable seasonal conditions. Bags were frozen in a field laboratory upon 

collection, and transported on ice to Lancaster University where they were stored at -20 

˚C prior to analysis. Bags were examined and discarded where there was clear damage 

or root ingress. Due to low recovery of undamaged bags, three in-growth bags were 

used per subplot to account for local variation in mycelial colonisation (with the 

exception of five composite samples: one bulked from two in-growth bags, and four 

from one bag due to high damage or loss rates in some subplots). Bags were opened in 

the laboratory and sand was carefully bulked per subplot and hand-mixed, providing 27 

composite samples (three per 1 ha plot) for quantification of mycelial abundance and 

molecular analysis of fungal communities. Only one 1 ha plot was established in the OP 

site, due to logistical challenges and as spatial variation in this land-use type was 

expected to be low. As such the three composite OP samples were treated as 

independent replicates, each representing an individual plot-level sample for all 

analyses. 
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2.3.4 Hyphal extraction and estimation of mycelial productivity 

Hyphae were extracted from sand using an adapted floatation method (Bakker et al., 

2015). 5 g subsamples were transferred into 50 ml sample tubes, then filled up to 30 ml 

with 4M KCl solution. This extractant was used to ensure floatation of all hyphae and 

avoid clumping and sinking of fungal filaments, which may be hydrophilic or 

hydrophobic (Ekblad et al., 2013), preventing adequate seperation from sand particles 

(as found in prior labortory tests using distlled water). Tubes were vortexed at full speed 

for 1 minute, left to stand for 30 seconds to allow hyphal material to reach the surface 

of the solution, and 25 ml was decanted into a clean sample tube, avoiding the transfer 

of sand particles. This process was repeated once more on the same sand subsample. 

The extract was transferred into a sample pot and made up to 100 ml by rinsing the 

sample tube twice with 25 ml distilled water. Hyphal material was prepared for 

measurement using the membrane filtration technique (Hanssen et al., 1974). The 

extract was evenly mixed using a sample mixer at 700 rev min-1, and 10 ml aliquots 

were transferred in two steps using a 5 ml pipette during mixing into a 15 ml glass 

filtration tube mounted on a nitrocellulose filter membrane (Merck Millipore, USA; 1.2 

µm pore size, 25 mm diameter). The suspension was filtered with a vacuum pump, and 

hyphae were stained in the tube using Lactophenol cotton blue under a fume hood for 

20 minutes. The filter membrane was then rinsed with distilled water until filtrate ran 

clear, and left to air dry overnight. Filter membranes were mounted onto microscope 

slides with immersion oil for transparency and sealed under a coverslip. 

 Hyphae on filter membranes were photographed at high resolution (4080 × 

3072 pixels) using a microscope-mounted camera at x 100 magnification (Olympus 

BX51, Olympus DP71), allowing identification of hyphal structures with diameters ≥ 1 

µm. Photographs were used for hyphal measurement to maximise membrane coverage 
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and capture of within-sample variation not possible through direct microscope 

observation at higher magnification. Twenty-five photographs (each covering an area 

of approximately 1.53 mm2) were taken per membrane along four crossing transects 

positioned at 45 ̊  to each other, as described by Boddington et. al (1999). Hyphal length 

was estimated from photographs using the gridline intersect method (Tennant, 1975). 

A regular grid with grid size 50 × 50 µm was digitally placed on top of each photograph 

using ImageJ (Shen et al., 2016; Schneider et al., 2012). Image contrast and brightness 

were altered as necessary to improve visualisation of hyphae. All intersections between 

hyphae and gridlines were counted, and total hyphal length was calculated using 

Tennant’s formula. The total hyphal length in each subsample was estimated using 

hyphal length per area in photographs and area of membrane used for filtration. 10 g of 

fresh sand from each composite sample was oven-dried at 105 ˚C to constant weight to 

calculate moisture content for standardisation of hyphal length estimations. Hyphal 

length was then calculated in mm g-1 dry sand for statistical analysis of mycelial 

production. 

2.3.5 Soil, environmental and vegetation characteristics 

Soil physicochemical data for corresponding subplots were obtained from an existing 

dataset (Elias et al., 2018). Briefly, five soil samples were collected within each subplot 

(3 cm diameter gouge auger) March-April 2015. Organic soil layer depth was measured 

before separation from underlying mineral soil. Organic layer soil samples were bulked 

per subplot and analysed for organic layer pH, total C, total N, total P, inorganic P and 

texture (% sand, silt and clay). pH in water was measured on fresh soils using a pH 

meter (1:2.5 soil to deionised water) after shaking overnight at 100 rev m-1 on an orbital 

shaker and standing for 30 min (Landon, 1984). The remaining soils were air-dried at 

40 °C to constant weight and passed through a 2 mm sieve. Subsamples for total C and 
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N analysis were dried at 65 °C for 48 hours and milled to a fine powder with a pestle 

and mortar. Total soil C and N contents were determined by dry combustion at 900°C 

using an Elementar Vario Max CN analyser (Elementar Analysensysteme, Hanau, 

Germany). Samples were digested using sulphuric acid-hydrogen peroxide (Allen, 

1989) for soil total P. Inorganic P was extracted using a Bray No. 1 extractant (Bray 

and Kurtz, 1945). P contents of extracts and digests were determined using the 

molybdenum-blue method (Anderson and Ingram, 1993), read at 880 nm on a 

spectrophotometer (HITACHI-UV-VIS, Japan). Soil texture was measured by the 

pipette method (Miller and Miller, 1987). Soil bulk density was determined from one 

additional sample taken per subplot using a 7.5 cm diameter volumetric, dried at 105 

°C for 24 hours after removal of roots and stones (Emmett et al., 2008). Soil moisture 

content (top 12 cm), temperature (10 cm depth) and air temperature (20 cm above soil 

surface) values for corresponding subplots were accessed from datasets of continuous 

sampling of GEM plots, as described in Marthews et al. (2014). Slope measurements 

were taken upon in-growth bag harvesting using a clinometer at each subplot corner and 

centre, and values were averaged at the subplot level. Altitude was recording using a 

GPS in each subplot centre. Forest structural characteristics (stem density, basal area, 

and mean and maximum diameter of stems at breast height (DBH) ≥ 10 cm, pioneer 

tree proportion of basal area, and Leaf Area Index (LAI)) and tree productivity metrics 

(canopy net primary production (NPP), woody NPP, root NPP, total NPP) for 

corresponding subplots were also accessed from GEM plot datasets, using temporally-

averaged data collected between 2011-2016 (Riutta et al., 2018; Marthews et al., 2014). 

Tree taxonomic community datasets were constructed at the 1 ha plot level from a 

previous survey undertaken July-December 2015, where all individual trees DBH ≥ 10 
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cm within three 20 × 20 m subplots were taxonomically identified (Both et al., 2019). 

Dipterocarp basal area was derived from tree community data at the plot level. 

Molecular analysis of mycelial fungal communities and data pre-processing 

DNA was extracted from 0.2 g sand from in-growth bags using the PowerSoil® DNA 

Isolation Kit and protocol (MoBio Laboratories). Amplicon libraries were constructed 

according to a dual indexing strategy with each primer consisting of the appropriate 

Illumina adapter, 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker and the 

amplicon specific primer (Kozich et al., 2013). Fungi were targeted by amplifying the 

ITS2 region using primers GTGARTCATCGAATCTTTG and 

TCCTCCGCTTATTGATATGC (Ihrmark et al., 2012). Although the capability of 

detecting AM fungi using ITS primers is debated (Hart et al., 2015), recent studies have 

shown that patterns in diversity and community composition can be adequately 

identified within sample types such as soil (Berruti et al., 2017; Lekberg et al., 2018). 

Amplicons were generated using a high fidelity DNA polymerase (Q5 Taq, New 

England Biolabs). After an initial denaturation at 95 °C for 2 minutes, PCR conditions 

were as follows: Denaturation at 95 °C for 15 seconds; annealing at 52 °C; annealing 

times were 30 seconds with extension at 72 °C for 30 seconds; cycle numbers were 25; 

a final extension of 10 minutes at 72 °C was included. Amplicon sizes were determined 

using an Agilent 2200 TapeStation system, samples were normalised using SequalPrep 

Normalization Plate Kit (Thermo Fisher Scientific) and pooled. The pooled library was 

quantified using a Qubit dsDNA HS kit (Thermo Fisher Scientific) prior to sequencing 

with an Illumina MiSeq using V3 600 cycle reagents at a concentration of 8 pM with a 

5% PhiX Illumina control library. The sequencing run produced in excess of 18 million 

reads passing filter. Sequences were processed in R using DADA2 to quality filter, 

merge, de-noise and assign taxonomies (Callahan et al., 2016). Sequence reads were 
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trimmed to 225 and 160 bases, forward and reverse respectively. Filtering settings were 

maximum number of Ns (maxN) = 0, maximum number of expected errors (maxEE) = 

1. Sequences were dereplicated and the DADA2 core sequence variant inference 

algorithm applied. mergePairs and removeBimeraDenovo functions were used at 

default settings to merge forward and reverse reads and remove chimeric sequences. 

The amplicon sequence variants (ASVs) were subject to taxonomic assignment using 

assignTaxonomy and the training database UNITE version 7.2 (UNITE Community, 

2017). 

Fungal functional guild classifications were assigned to ASVs using the 

FUNGuild annotation tool (Nguyen et al., 2016). Only ASVs with unambiguous (non-

multiple) classifications of “probable” or “highly-probable” confidence rankings were 

considered for analysis. These were used for calculating relative abundances of fungal 

guilds and sub-setting saprotrophic, mycorrhizal and pathogenic fungal datasets for 

assessment of diversity and community dissimilarity. Sequencing data were pre-

processed (steps described below) and alpha diversity indices (ASV richness, Shannon 

index) and fungal guild relative abundances calculated in R version 3.5.1 (R Core Team, 

2013) using the phyloseq package (Mcmurdie and Holmes 2013). Only ASVs assigned 

to the kingdom of Fungi were retained for downstream analysis (99.34 % of total reads), 

and all singleton ASVs were removed. Sub-setting by fungal guilds was conducted on 

the full unrarefied dataset to maximise the number of ASV reads available for analysis 

of functional groups. Sample sequencing depth was normalised for each group by 

rarefying to the minimum read counts of 4881, 151, 75 and 67 per sample for overall, 

saprotrophic, mycorrhizal and pathogenic fungal groups respectively. Analyses of 

diversity metrics and community dissimilarities were repeated using unrarefied and 
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whole-sample only rarefied datasets (before sub-setting fungal groups), which showed 

broadly consistent results. 

2.3.6 Statistical analyses 

All statistical analyses were conducted in R version 3.5.1 (R Core Team, 2013) and 

significance was considered at the p ≤ 0.05 level. For univariate analyses, linear mixed 

effects regression models (LMMs) were constructed in the lme4 R package (Bates et 

al., 2015). This included testing (H1) the effect of land-use type on relative abundances 

of mycelial fungal guilds and alpha diversity, mycelial production and soil, 

environmental and vegetation characteristics, and (H2 & H3) relationships between 

these variables across OG and SL plots. Post-hoc pairwise comparisons were conducted 

with the emmeans R package (Lenth et al., 2019) with Bonferroni correction to identify 

statistically different variable means between OG, SL and OP land-use types. To control 

for potential within-plot pseudoreplication, plot ID was included as a random intercept 

term. Significance was evaluated using the Satterthwaite degrees of freedom 

approximation (Luke, 2017). Normality of model residuals were evaluated using 

Shapiro-Wilk tests, and variables were log- and exponentially- transformed where 

necessary to improve model fit. Kruskal-Wallis tests were conducted when residual 

normality could not be satisfactorily achieved using data averaged at the plot level. 

Mycelial fungal community compositions across all land-use types were 

visualised with PCoA using Bray-Curtis dissimilarities via the phyloseq, vegan 

(Oksanen et al., 2019) and ggplot2 (Wickham, 2016) packages. To test differences in 

fungal community compositions between OG, SL and OP (H1), Bray-Curtis community 

dissimilarities were calculated from data averaged at the plot level (n = 11) using the 

merge_samples function in phyloseq. Differences between land-use types were tested 
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with PERMANOVA using the adonis vegan function, and statistically different groups 

were identified using the pairwise.adonis function in the pairwiseAdonis R package 

(Martinez Arbizu, 2019) controlling for the False Discovery Rate (FDR). All 

permutational tests were run with 9,999 permutations with the exception of pairwise 

multiple comparisons, where full enumeration was used. Indicator analyses were 

conducted to identify specific fungal taxa associated with different land-use types using 

the labsdv R package (Roberts, 2016; Dufrêne and Legendre, 1997). Differences in tree 

community composition between OG and SL forest (H1) were tested with 

PERMANOVA using Bray-Curtis community dissimilarities calculated from plot-level 

community data. Hellinger-transformation was applied to all community data prior to 

multivariate analyses (Legendre and Borcard, 2018) to control for the effect of rare taxa. 

Homogeneity of multivariate dispersion across land-use types (an assumption of 

PERMANOVA) for fungal and tree community dissimilarities was evaluated using the 

betadisper vegan function for overall and pairwise tests (FDR-corrected). 

Relationships between mycelial fungal community compositions and soil, 

environmental and vegetation characteristics (H2) across forest (OG and SL) plots were 

evaluated using distance-based redundancy analysis (db-RDA). Tree community 

composition was included in analysis as represented by the first three PCoA axes, 

explaining most of the variation (60.39 % cumulative eigenvalues). Prior to analysis, 

highly correlated variables within 1) soil and environmental and 2) vegetation groups 

were identified with correlograms using the corrplot R package (Wei and Simko, 2017). 

Variables correlated with Pearson’s r > ≈ 0.7 were removed. Soil and environmental 

variables were treated as one group as soil characteristics were considered to be of 

primary ecological importance, while driven by environmental factors. The best 

predictors of fungal Bray-Curtis dissimilarities were identified through forward-
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selection using the criteria of adjusted R2 and significance level of p < 0.05 (Blanchet 

et al., 2008) with the ordiR2step vegan function. Here Bray-Curtis dissimilarities were 

calculated at the subplot level and permutational tests were restricted by plot ID to 

control for the nested sampling design using the permute R package (Simpson et al., 

2019). Variation in fungal community dissimilarities was partitioned by soil and 

environmental and vegetation components using the varpart function, and significance 

of components and individual predictors was tested with partial db-RDA in vegan. 

Relationships between mycelial fungal and vegetation communities (H2) were tested 

using plot-level Bray-Curtis dissimilarities with Mantel tests (Spearman’s rank 

correlation) in vegan. Relationships between mycelial fungal community compositions 

and mycelial production (H3) were  tested with PERMANOVA using Bray-Curtis 

dissimilarities and the same permutational scheme described above. 

2.4 Results 

Overall, 3565 fungal ASVs from 10 phyla (Fig. 2.1) and 374 genera were detected 

across all samples of OG forest, SL forest and OP. 
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Figure 2.2 Relative abundance of mycelial fungal phyla as a percentage of total Amplicon Sequence Variants 

(ASVs) in old-growth (OG) and selectively logged (SL) forest and oil palm plantation (OP) for A) overall, B) 

saprotrophic, C) mycorrhizal fungal groups. Phyla with < 1% relative abundance across all forest land-use 

types are represented as one group for overall fungi. C) Relative abundances of classes of mycelial pathogenic 

fungi. Phyla are not shown for this fungal group as reads were dominated by one phylum (Ascomycota: 98.76 

% in OG, 100 % in SL and 99.38 in OP) with the remaining reads comprising taxa of the Basidiomycota. 
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Of the ASVs that were assigned fungal functional guilds, the majority of reads 

comprised saprotrophic (39.9 %), followed by mycorrhizal (27.0 %: 83.1 % of which 

EcM; 16.7 % AM; 0.2 % ericoid mycorrhizal (ErM)), pathogenic (21.0 %: 51.4 % of 

which animal pathogenic; 48.6 % plant pathogenic), parasitic (7.1 %), endophytic (2.2 

%), lichenised (2.0 %) and epiphytic (0.7 %) fungi. 

2.4.1 Impact of land-use type on mycelial fungal community attributes, mycelial 

productivity and soil, environmental and vegetation characteristics 

Land-use type significantly affected community dissimilarities for overall, 

saprotrophic, mycorrhizal and pathogenic fungal groups (Fig. 2.3; see Table 2.1 for 

summary of statistics). 
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Figure 2.3 Principle coordinates analysis (PCoA) ordination of A) overall, B) saprotrophic, C) 

mycorrhizal and D) pathogenic mycelial fungal community Bray-Curtis dissimilarities across old-

growth (OG) and selectively logged (SL) forest and oil palm plantation (OP). Points are scaled by 

hyphal length indicating mycelial production. Ellipses represent t-distribution confidences for OG 

selectively SL forest. Ellipses are not included for OP samples due to number of samples (n = 3). 

For mycorrhizal fungal community dissimilarities (C), two OP points are indistinguishable (hyphal 

length values 0.24 and 0.84 m g−1 respectively) due to sharing the same PCoA scores for Axes 1 and 

2 (coordinates: 0.32, −0.12). 
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Table 2.1 PERMANOVA test statistics for differences in fungal guild community dissimilarities between 

land-use types. Summaries are given for overall models and pairwise comparisons between old-growth (OG) 

and selectively-logged forest (SL) and oil palm plantation (OP). Significant p-values (p > 0.05) are highlighted 

in bold. Pairwise tests were conducted controlling for the False Discovery Rate (FDR). 

Fungal guild 
Overall model 

Pairwise tests 

OG-SL OG-OP SL-OP 

F R2 p F R2 p F R2 p F R2 p 

Overall fungal 1.48 0.27 0.001 1.08 0.15 0.170 1.84 0.27 0.043 1.58 0.24 0.043 

Saprotrophic 1.23 0.24 0.023 1.05 0.15 0.223 1.45 0.23 0.086 1.21 0.19 0.129 

Mycorrhizal 1.19 0.23 0.041 1.13 0.16 0.171 1.15 0.19 0.171 1.29 0.20 0.171 

Pathogenic 1.69 0.30 0.006 1.07 0.15 0.305 2.04 0.29 0.043 2.10 0.30 0.043 

 

Pairwise comparisons identified significant differences between OP and forest land-

uses for overall and pathogenic fungal community dissimilarities. No significant 

differences were found between land-use types for saprotrophic or mycorrhizal 

community dissimilarity in pairwise comparisons (p > 0.05). However, further tests 

using only OG and SL plots showed no significant effect of land-use type on 

saprotrophic or mycorrhizal community dissimilarities (PERMANOVA: p = 0.223; p = 

0.115, respectively), indicating the significant effects of land-use type across the full 

disturbance gradient was driven by OP. Community dissimilarity dispersions were 

homogenous between all land-use types for all fungal groups (betadisper: p > 0.05). No 

significant differences in community dissimilarities were found between OG and SL for 

any fungal group (p > 0.05), despite significant differences in soil, environmental and 

vegetation properties between forest land-uses (see below). However, relative 

abundance of AM fungi was significantly higher in SL relative to OG, and ErM fungal 

relative abundance was higher in SL relative to all other land-use types (Fig. 2.4; see 
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Table 2.2 for means of all mycelial fungal community attributes by land-use type; test 

statistics for significant differences are reported in Table 2.3). 

 

 

 

 

Figure 2.4 Relative abundances of fungal guilds for old-growth (OG) and selectively logged (SL) forest 

and oil palm plantation (OP). Error bars represent standard errors. Lower case letters indicate 

statistically different or similar groups across all three land-use types identified by post-hoc tests after 

linear mixed modelling or Kruskal-Wallis analysis (p < 0.05). Mycorrhizal and pathogenic guilds have 

been further divided into subtypes as indicated. 
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Table 2.2 Mean (± 1 SD) mycelial production (hyphal length) and fungal guild community attributes 

(Amplicon Sequence Variant (ASV) richness, Shannon alpha diversity and relative abundances) by land-

use type for old-growth (OG) and selectively-logged forest (SL), and oil palm plantation (OP). Superscript 

letters indicate statistically different groups at the p < 0.05 level identified in post-hoc tests after linear 

mixed model analysis. 

Parameter Fungal guild 
Land-use type 

OG SL OP 

Hyphal length (m g-1 of dry sand) - 2.83 ± 1.79 a 2.70 ± 2.02 a 0.60 ± 0.32 b 

Richness  Overall fungal 0.41 ± 0.18 0.42 ± 0.14 0.30 ± 0.17 

(No. observed ASVs per 10 reads) Saprotrophic 2.04 ± 1.17 2.03 ± 0.81 1.90 ± 0.82 

 Mycorrhizal 1.01 ± 0.63 a 0.97 ± 0.28 a 0.31 ± 0.20 b 

 Pathogenic 1.67 ± 0.62 1.43 ± 0.67 1.14 ± 0.48 

Shannon alpha diversity index Overall fungal 3.78 ± 1.04 4.03 ± 0.34 3.70 ± 0.58 

 Saprotrophic 2.58 ± 1.03 2.76 ± 0.59 2.90 ± 0.36 

 Mycorrhizal 1.29 ± 0.56 1.38 ± 0.39 0.57 ± 0.52 

 Pathogenic 1.74 ± 0.51 1.57 ± 0.65 1.55 ± 0.55 

Relative abundance Saprotrophic 40.27 ± 21.35 40.42 ± 14.42 36.47 ± 14.97 

(% total reads) Mycorrhizal 32.25 ± 24.89 a 28.10 ± 17.42 a 1.64 ± 0.23 b 

 Ectomycorrhizal 31.94 ± 25.00 a 24.73 ± 19.48 a 0.43 ± 0.75 b 

 Arbuscular mycorrhizal 0.32 ± 0.52 b 3.20 ± 5.79 a 1.21 ± 0.96 ab 

 Ericoid mycorrhizal 0.00 ± 0.00 b 0.17 ± 0.37 a 0.00 ± 0.00 b 

 Pathogenic 16.64 ± 8.07 24.83 ± 11.16 22.65 ± 21.11 

 Plant pathogenic 9.18 ± 8.55 11.22 ± 11.13 6.06 ± 0.78 

 Animal pathogenic 7.46 ± 5.50 13.61 ± 9.41 16.59 ± 21.38 

 Parasitic 5.20 ± 5.00 2.48 ± 3.01 33.16 ± 26.34 

 Endophytic 3.71 ± 11.77 1.27 ± 4.19 0.00 ± 0.00 

 Lichenised 1.93 ± 2.54 a 2.89 ± 3.78 a 0.00 ± 0.00 b 

 Epiphytic 0.00 ± 0.00 b 0.00 ± 0.00 b 6.07 ± 4.93 a 
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Table 2.3 Linear mixed model (LMM) test statistics for significant differences in fungal guild relative 

abundances between land-use types. Summaries are given for overall models and post-hoc comparisons 

between old-growth (OG) and selectively-logged forest (SL) and oil palm plantation (OP). Significant p-

values (p > 0.05) are highlighted in bold. p-values for pairwise tests were adjusted using the Tukey 

method. 

Fungal guild 
Overall model 

Pairwise tests 

OG - SL OG - OP SL - OP 

F R2 p t-ratio p t-ratio p t-ratio p 

Total mycorrhizal 14.52 0.53 < 0.0001 0.42 0.907 5.23 < 0.001 4.96 < 0.001 

Ectomycorrhizal 14.93 0.53 < 0.0001 1.12 0.512 5.43 < 0.0001 4.72 < 0.001 

Arbuscular mycorrhizal 4.86 0.27 0.017 -3.06 0.014 -1.52 0.301 0.42 0.908 

Ericoid mycorrhizal 4.86 0.27 0.017 -2.96 0.018 0.00 1.000 1.87 0.169 

Lichenised 5.34 0.32 0.027 0.18 0.983 3.04 0.027 2.89 0.035 

 

Total pathogenic fungal relative abundance was marginally significantly higher in SL 

compared to OG when tested without OP samples. The vast majority of mycorrhizal 

reads were attributed to EcM fungi in forest plots (89.6 %: 98.31 % in OG; 80.90 % in 

SL), but were mostly AM fungi in OP (69.4 % AM; 30.6 % EcM). Total mycorrhizal 

and EcM fungal relative abundances were significantly lower in OP compared to forest 

plots (Fig 2.4). Mean parasitic fungal relative abundance was an order of magnitude 

higher in OP relative to OG and SL, although no significant differences between land-

use types was found due to the considerable variation in OP samples (post-hoc tests: p 

> 0.05). For alpha diversity metrics, only mycorrhizal fungal ASV richness was 

significantly affected by land-use type (F = 5.80, R2 = 0.33, p = 0.025; Fig. 2.5 A), with 

lower values in OP compared to forest plots (OG – OP:  p = 0.028; SL – OP: p = 0.018).  
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Alpha diversity indices (ASV richness, Shannon index) did not differ between OG and 

SL for any fungal group (post-hoc tests: p > 0.05). Indicator analysis identified certain 

fungal taxa of the families Aspergillaceae, Sporocadaceae and Nectriaceae to be most 

indicative of OG forest, while those of Ophiocordycipitaceae were characteristic of SL 

forest and Nectriaceae, Aspergillaceae and Ophiocordycipitaceae characteristic of OP. 

Hyphal length values ranged from 0.24 to 8.50 m g-1 of dry sand across the 

disturbance gradient, and were significantly affected by land-use type (F = 6.50, R2 = 

0.33, p = 0.006; Table 2.2; Fig. 2.5 B). Hyphal length values were significantly lower 

in OP relative to forest land-use types (OP – OG: p = 0.007; OP – SL: p = 0.008) but 

did not significantly differ between OG and SL (p = 0.999). 

Relative to OG, significantly higher values were associated with SL for soil bulk 

density, altitude and proportion of pioneer species, and lower values for LAI and 

Figure 2.5 A) Mycorrhizal Amplicon Sequence Variant (ASV) richness and B) mycelial 

productivity (hyphal length) in old-growth and selectively logged forest and oil palm plantation. 

Lower case letters indicate statistically different or similar groups across all three land-use 

types identified by post-hoc tests (p < 0.05). Values are shown on a log scale to represent 

differences corresponding to statistical tests. 
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canopy, woody and total NPP (means by land-use type summarised in Table 2.4; test 

statistics for significant differences are reported in Table 2.5). 

 

 

Table 2.4 Means (± 1 SD) of soil, environmental and vegetation characteristics by land-use type for old-

growth (OG) and selectively-logged forest (SL), and oil palm plantation (OP). Superscript letters indicate 

statistically different groups at the p < 0.05 level identified in linear mixed model or Kruskal-Wallis 

analysis and post-hoc tests. Dashes indicate metrics that were not assessed for characterisation of OP. 

Group Parameter 

Land-use type 

OG SL OP 

Soil pH 5.08 ± 0.88 4.15 ± 0.85 5.05 ± 0.76 

 Total C (%) 3.88 ± 0.87 5.72 ± 2.86 3.24 ± 1.09 

 Total N (%) 0.29 ± 0.08 0.38 ± 0.13 0.27 ± 0.06 

 Total P (µg g-1) 310.89 ± 115.69 b 226.52 ± 60.50 b 1220.36 ± 719.72 a 

 Inorganic P (µg g-1) 19.04 ± 8.14 b 24.26 ± 15.72 b 374.04 ± 315.77 a 

 C:N ratio 13.71 ± 2.90 14.62 ± 2.34 11.52 ± 1.59 

 Sand (%) 23.91 ± 4.21 22.34 ± 7.60 32.00 ± 3.46 

 Silt (%) 20.53 ± 3.81 ab 17.34 ± 6.56 b 34.34 ± 6.92 a 

 Clay (%) 55.56 ± 5.67 ab 60.33 ± 9.60 a 33.66 ± 7.09 b 

 O-layer depth (cm) 3.07 ± 0.34 ab 4.47 ± 1.29 a 1.96 ± 1.04 b 

 Soil bulk density (g cm3) 0.54 ± 0.11 b 0.80 ± 0.13 a 0.99 ± 0.18 a 

 Soil moisture (%) 26.24 ± 4.42 25.05 ± 3.53 24.98 ± 1.36 

Environmental Soil temperature (˚C) 24.57 ± 0.37 ab 24.21 ± 0.35 b 25.15 ± 0.06 a 

 Altitude (m) 262.42 ± 34.71 b 431.58 ± 86.85 a 326.33 ± 3.51 ab 

 Slope (˚) 19.82 ± 7.59 24.90 ± 8.97 17.60 ± 1.39 

Vegetation Stem density (no. stems DBH ≥ 10 

cm per subplot) 

18.67 ± 4.92 a 20.25 ± 8.07 a 7.00 ± 1.00 b 

 Basal area (m2 ha-1) 26.94 ± 11.23 b 18.20 ± 8.24 b 79.10 ± 10.45 a 

 Dipterocarp basal area (m2 ha-1) 1.19 ± 0.72 a 0.46 ± 0.32 ab 0.00 ± 0.00 b 

 LAI 4.31 ± 0.22 a 3.33 ± 0.56 b 3.10 ± 0.10 b 

 Mean diameter (cm) 23.18 ± 3.41 b 20.15 ± 2.63 b 75.50 ± 0.69 a 

 Max diameter (cm) 60.44 ± 21.34 ab 42.48 ± 11.86 b 86.93 ± 4.67 a 

 Proportion of pioneer species (% 

total basal area) 

0.02 ± 0.08 b 0.31 ± 0.29 a - 

 Canopy NPP (Mg C ha-1 year-1) 6.19 ± 1.78 a  3.79 ± 0.73 b - 

 Woody NPP (Mg C ha-1 year-1) 4.40 ± 2.16 b 12.92 ± 6.65 a - 

 Root NPP (Mg C ha-1 year-1) 1.14 ± 0.46 ab 2.44 ± 1.77 a 0.73 ± 0.22 b 

 Total NPP (Mg C ha-1 year-1) 11.31 ± 2.45 b 19.15 ± 7.12 a - 
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Root NPP, soil clay content and organic layer depth in OP were significantly lower 

relative to SL, while soil silt content was significantly higher. OP soil bulk density was 

significantly higher relative to OG. Total and inorganic soil P were an order of 

magnitude higher in OP relative to both OG and SL. While stem density was 

Table 2.5 Linear mixed model (LMM) or Kruskal-Wallis* test statistics for significant differences in soil, 

environmental and vegetation characteristics between land-use types. Summaries are given for overall models and 

post-hoc comparisons between old-growth (OG) and selectively-logged forest (SL) and oil palm plantation (OP). 

Significant p-values (p > 0.05) are highlighted in bold. p-values for pairwise tests were adjusted using the Tukey 

method for LMMs and Bonferroni method for Dunn tests*. Post-hoc tests were only conducted for variables that 

were measured across all three land-use types. 

Group Parameter 

Overall model 
Pairwise tests 

PF - LF PF - OP LF - OP 

F / χ2* R2 p 
t-ratio / 

z-test* 
p 

t-ratio / 

z-test* 
p 

t-ratio / 

z-test* 
p 

Soil Total P 16.73 0.61 0.002 1.15 0.514 -4.56 0.004 -5.59 0.001 

 Inorganic P 23.88 0.67 0.000 -0.63 0.809 -6.55 0.000 -6.04 0.000 

 Silt 5.12 0.34 0.033 1.12 0.530 -2.22 0.115 -3.19 0.024 

 Clay* 6.41 - 0.041 0.64 1.000 -1.88 0.182 2.47 0.041 

 O-layer depth* 6.96 - 0.031 1.39 0.497 -1.35 0.532 2.63 0.025 

 Soil bulk density 11.43 0.58 0.004 -3.17 0.041 -4.58 0.003 -1.92 0.186 

Environmental Soil temperature 6.75 0.41 0.015 1.66 0.278 -2.28 0.101 -3.67 0.009 

 Altitude* 8.91  0.012 2.98 0.009 1.38 0.501 1.38 0.501 

Vegetation Stem density 8.33 0.39 0.002 -0.08 0.996 3.85 0.002 3.90 0.002 

 Basal area 10.46 0.47 0.003 1.55 0.322 -3.40 0.010 -4.57 0.001 

 Dipterocarp 

basal area* 
5.89 - 0.053 -1.04 0.900 -2.42 0.046 1.46 0.429 

 LAI 13.76 0.59 0.001 4.57 0.006 4.06 0.002 0.74 0.741 

 Mean diameter 105.12 0.90 0.000 1.86 0.214 -12.52 <.0001 -13.97 <.0001 

 Max diameter 5.46 0.35 0.024 1.79 0.235 -1.84 0.195 -3.26 0.016 

 Proportion of 

pioneer species* 
4.29 - 0.038 - - - - - - 

 Canopy NPP 11.73 0.48 0.014 - - - - - - 

 Woody NPP 20.51 0.49 0.004 - - - - - - 

 Root NPP 4.83 0.36 0.034 -2.21 0.134 1.11 0.525 2.89 0.033 

 Total NPP 9.51 0.41 0.022 - - - - - - 
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significantly lower in OP relative to forest land-uses, basal area and mean stem diameter 

were significantly higher. Maximum stem diameter was also higher in OP relative to 

SL, however, all belong to the same species of oil palm. Plot-level tree community 

dissimilarity significantly differed between OG and SL (PERMANOVA: F = 1.43, R2 

= 0.19, p = 0.028; betadisper: p > 0.05). 

2.4.2 Relationships between forest mycelial fungal community attributes, soil, 

environmental and vegetation characteristics and mycelial production 

Overall, saprotrophic, mycorrhizal and pathogenic fungal community dissimilarities 

were significantly related to soil and vegetation characteristics, although overall 

variance explained was low for each group (see Table 2.6 for summary of statistics). 

 
Table 2.6 Best soil, environmental and vegetation characteristics as predictors of fungal group dissimilarities in 

forests plots, identified by forward selection (adjusted R2 and p > 0.05) in distance-based redundancy analysis 

(db-RDA). Variation in fungal community dissimilarities (adjusted R2) is partitioned by soil/environmental and 

vegetation components. Significance of individual predictors and components were tested using partial db-RDA. 

Group Predictor F p 

Soil/env properties 
Vegetation 

properties 

Soil/env  + 

vegetation 

properties 

Overall 

model 

F p R2
adj F p R2

adj R2
adj R2

adj 

Overall fungal pH 1.68 0.009 1.68 0.009 0.03 1.61 0.021 0.03 0.00 0.05 

 LAI 1.61 0.021         

Saprotrophic Inorganic P 1.55 0.012 1.55 0.012 0.02 - - 0.00 0.00 0.02 

Mycorrhizal pH 1.85 0.002 1.85 0.002 0.04 1.61 0.020 0.03 0.00 0.06 

 Dipterocarp 

basal area 

1.61 0.020         

Pathogenic pH 1.96 0.006 2.04 0.002 0.08 1.93 0.000 0.07 0.00 0.16 

 Tree comm. 

axis 2 

1.97 0.012                 

 Basal area 1.85 0.002                 

 Inorganic P 1.85 0.002                 
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The best predictors selected for overall fungal community dissimilarity were soil pH 

and LAI. Of these, soil pH was negatively related to relative abundance of animal 

pathogenic fungi (F = 8.63, R2 = 0.27, p = 0.008), while LAI was negatively related to 

relative abundance of AM fungi (F = 8.04, R2 = 0.28, p = 0.015). The only predictor 

selected for saprotrophic community dissimilarity was soil inorganic P, while the best 

predictors for mycorrhizal fungal community dissimilarity were pH and dipterocarp 

basal area. Soil pH, tree community PCoA axis 2, tree basal area and soil inorganic P 

were all identified as predictors of pathogenic fungal community dissimilarity. Plot- 

level tree community dissimilarity was significantly related to plot-level community 

dissimilarity of mycorrhizal fungi (r = 0.55, p = 0.015; Fig. 2.6), but no other fungal 

group (p > 0.05). 

 

Figure 2.6 Relationship between ranked tree and mycorrhizal community dissimilarities. 

Statistics were provided by Mantel test with Spearman’s rank correlation. The r-value 

represents the Mantel coefficient, and significance level was calculated using 9,999 

permutations. 
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Dipterocarp and mycorrhizal fungal community dissimilarities were not significantly 

related at the plot-level (p > 0.05). 

Hyphal length was not significantly associated to any mycelial fungal 

community attributes (H3), although a negative relationship with EcM fungal relative 

abundance was marginally significant (F = 3.57, R2 = 0.13, p = 0.072). There was no 

significant link between hyphal length and any of the vegetation properties measured 

(H2), including tree productivity metrics, but was significantly positively related to soil 

inorganic P (F = 5.25, R2 = 0.19, p = 0.032; Fig. 2.7). 

 

Figure 2.7 Relationship between mycelial production (hyphal length) and soil inorganic P 

concentrations across old-growth (OG) and selectively logged (SL) forest. Hyphal length 

values are shown on a log scale corresponding to statistical tests. This relationship was 

found to be non-significant when the data point with high values in both parameters (top-

right) was excluded from analysis (F = 0.83, R2 = 0.04, p = 0.371). 
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However, the association between hyphal length and soil inorganic P was primarily 

driven by one sampling point in SL forest with high values in both parameters (Fig. 

2.7), and was found to be non-significant when this data point was excluded from 

analysis (F = 0.83, R2 = 0.04, p = 0.371). 

2.5 Discussion 

No significant shifts were found in community structure of any mycelial fungal group 

between OG and SL forest (Fig. 2.3), despite clear differences in soil and vegetation 

properties (higher soil bulk density, proportion of pioneer trees, woody and total NPP, 

and lower LAI and canopy NPP in logged forest) and plot-level tree community 

composition, broadly in line with previous findings from these study sites (Elias et al., 

2019; Both et al., 2019; Riutta et al., 2018). This finding contrasts our hypothesis (H1) 

and recent surveys which found the compositions of bulk soil fungal communities in 

tropical Southeast Asian dipterocarp forest to be highly sensitive to logging (McGuire 

et al., 2015; Kerfahi et al., 2014). Our results suggest that actively foraging fungi may 

be more resilient to disturbance than the wider fungal community in bulk soil. However, 

direct comparability with other studies may be affected by methodological differences 

in sampling related to community capture rates (i.e. micro-environmental conditions 

inside in-growth bags potentially selecting for certain fungal species (Ekblad et al., 

2013; Wallander et al., 2001). It should also be highlighted that the in-growth bag 

method recovers only active hyphae, therefore avoiding confounding effects of relic 

DNA on soil microbial community patterns that can be a concern in studies across 

environmental gradients (Lennon et al., 2018). The total number of ASVs detected was 

lower than found in other recent ITS amplicon sequencing studies of bulk soil fungal 

communities in the region, which may exceed 25,000 (Elias, unpublished data), which 
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we similarly attribute to these reasons. Differences were identified in other mycelial 

fungal attributes between OG and SL forest, including a significant increase in the 

relative abundances of AM and ErM fungi in SL forest. The vast majority of forest 

mycorrhizal reads comprised EcM fungi (Fig 2.4). The canopy of lowland rainforests 

of Borneo is typically dominated by species belonging to the Dipterocarpaceae, which 

are an EcM-associating family (Brearley, 2012; Taylor and Alexander, 2005). Although 

our finding may relate to presence of host tree species, high EcM relative to AM fungal 

relative abundance may also result from amplification bias associated with ITS primers 

(Hart et al., 2015). Although mean dipterocarp basal area (Table 2.4) and relative 

abundance of EcM fungi (Table 2.2; Fig. 2.4) were lower in SL forest, no significant 

differences were detected in either metric due to the high variability in both. 

Nevertheless, the relative increase in abundances of AM and ErM fungi in SL forest 

(the only other mycorrhizal types identified; Fig. 2.4) is considered to indicate 

increasing evenness in mycorrhizal types and diminished dominance of EcM reflecting 

differences in vegetation indicated by the increased proportion of non-dipterocarp 

pioneer species in SL forest, which typically form arbuscular mycorrhizas (McGuire et 

al., 2008). This shift may have implications for nutrient and C cycling, as recent 

correlative studies have suggested EcM- rather than AM-dominated communities may 

promote soil C storage on a global scale (Averill et al., 2014) through their ability to 

access N and P (Liu et al., 2018) from organic sources, potentially competing with free-

living soil decomposers requiring N for the breakdown of organic matter (Averill et al., 

2014). An increase in relative abundances of AM fungi may, therefore, have 

implications for the release of C from the soil as N becomes more available for soil 

saprotrophs. Alterations in soil C-cycling processes in SL dipterocarp forest have been 

observed, although as litter decomposition has been found to be slowed in logged forest 
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due to subtle changes in forest microclimatic conditions (Both et al., 2017), the overall 

consequences for biogeochemical cycling and ecosystem functions are unclear. Alpha 

diversity itself (ASV richness and Shannon index) did not statistically differ between 

OG and SL forest for any fungal group. 

Overall fungal community structure within in-growth bags was significantly 

different between OP plantation and OG and SL forests, and the impact of OP as a driver 

of differences over land-use types for saprotrophic, mycorrhizal and pathogenic 

mycelial fungal communities were also observed (Fig. 2.3), which corroborates the 

dramatic effects of forest conversion on bulk soil fungal communities (McGuire et al., 

2015). Mycorrhizal alpha diversity was also strongly affected, with much lower values 

in oil palm relative to forest plots. As no differences were found between OG and SL 

forest, overall mycelial fungal communities appear to follow a similar pattern to soil 

bacterial communities, which have been shown to be generally unaffected by logging 

but distinctly different in oil palm plantation (Lee-Cruz et al., 2013; Tripathi et al., 

2016). 

In contrast to expectations (H1), mycelial production did not significantly differ 

between OG and SL forest, but was significantly lower in OP relative to both forest 

land-use types (Fig. 2.5 B). Hyphal length was also not found to correspond to the 

differences observed in mycelial community attributes, soil properties and vegetation 

community between SL and OG, which may reflect the resilience of some soil functions 

to selective logging (e.g. enzyme activity; McGuire et al., 2015). The variation within 

both OG and SL forest was considerable and of a comparable magnitude (Table 2.2; 

Fig. 2.5 B), suggesting that variation in soil, environmental and vegetation 

characteristics not directly associated with logging are responsible for the variation in 
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hyphal length in these forests. The resilience of both mycelial production and relative 

abundance of mycelial EcM fungi to selective logging implies the extramatrical EcM 

mycelium may be largely retained in SL forest, when individuals of EcM-associating 

species remain present. Mycorrhizal mycelial networks are crucial for tree seedling 

establishment (Nara, 2006), and may facilitate interplant exchange of resources with 

trees sharing the same mycorrhizal partnerships (Gorzelak et al., 2015). Our findings 

indicate implications for the potential restoration of these degraded forests, as EcM 

mycelial networks vital for supporting dipterocarp recruitment and survival may remain 

even after individuals of this family have been removed. Although basal area was 

significantly highest in OP, significantly lower mean root NPP was found in OP relative 

to SL. There was also a complete removal of dipterocarp species through forest 

conversion to agricultural plantation. Furthermore, although canopy NPP was not 

measured in the OP site, significantly lower soil organic layer depth (Table 2.4) may 

indicate reduced litter inputs – especially as dead palm fronds are typically removed 

and collected in localised areas as standard in OP. This suggests a combination of a lack 

of EcM fungi, due to replacement of by AM-associating oil palm species (Phosri et al., 

2010), diminished belowground allocation of C by trees and reduced organic matter 

inputs may be down-regulating mycelial production rates in this land-use type. This is 

despite a ten-fold increase in the availability of limiting nutrients (inorganic P; Table 

2.4) in OP due to the use of fertiliser. As the OP plantation was established after the 

selective-logging of these forests, lower hyphal length values, mycorrhizal abundance 

and richness appears to result from magnitude of EcM host removal rather than time 

since disturbance. The significant reduction in the soil (mycorrhizal) mycelium through 

the extreme disturbance of agricultural forest conversion represents a substantial barrier 

to the restoration of these systems. 
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Across OG and SL forest, mycelial fungal community attributes significantly 

varied with vegetation and soil properties (H2), but did not correspond with mycelial 

production (H3). Soil microbial community assemblage, particularly fungi, have been 

shown to correlate with aboveground plant taxonomic and phylogenetic structure in 

addition to local soil properties (Barberán et al., 2015). Soil pH was a significant 

predictor of community composition for all fungal groups, particularly important for 

mycorrhizal and pathogenic fungi, a pattern observed across large scales in temperate 

ecosystems (Dupont et al., 2016). Mycorrhizal community structure was surprisingly 

not affected by relative proportion of soil sand or clay content (although silt content was 

weakly related), previously found to be a strong predictor of EcM communities in 

Bornean lowland dipterocarp rainforest (Essene et al., 2017); a possible result of sand 

used inside in-growth bags masking the influence of soil texture. Tree and mycorrhizal 

community structure were significantly correlated at the plot-level (Fig. 2.6), likely 

driven by the significant relationship between mycorrhizal fungal community 

dissimilarity and total dipterocarp basal area (Table 2.6). Previous studies in Bornean 

lowland dipterocarp rainforest have shown EcM communities to be related to 

dipterocarp species assemblage in addition to strong effects of soil properties, 

suggesting dipterocarp species distributions across different soil types to be mediated 

by assemblage of their mycorrhizal partners (Essene et al., 2017). However, no 

significant correlation was found between mycorrhizal fungal and dipterocarp 

community dissimilarities, indicating overall abundance rather than composition of 

dipterocarps is more important in structuring actively foraging mycorrhizal fungal 

communities in the present study. 

Mycelial productivity was significantly positively related to soil inorganic P 

(Fig. 2.7). Although mycelial biomass has previously been shown to be greater in more 
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P-deficient forests (Potila et al., 2009), the proliferation of mycorrhizal hyphae into 

nutrient ‘hotspots’ is a mechanism observed both in laboratory experiments and natural 

systems (Ekblad et al., 2013), whilst the role of inorganic P in controlling rates of 

mycelial production has been demonstrated in forests using hyphal in-growth bags 

augmented with mineral P, and field manipulations using fertiliser applications 

(Hagerberg et al., 2003; Ekblad et al., 2013; Potila et al., 2009; Camenzind et al., 2016). 

The positive relationship found in the present study may therefore represent greater 

mycelial production in localised areas with higher inorganic P concentrations in an 

otherwise P-limited ecosystem. This suggests that variation in mycelial production in 

tropical forest may be primarily driven by local inorganic P availability, largely 

independent of vegetation characteristics, productivity and associated mycelial 

community attributes. However, the significant relationship between mycelial 

production and soil inorganic P was found to be mainly dependent on one sampling 

point in SL with high values in both parameters (Fig. 2.7), which limits the strength of 

interpretation. It is recommended that future studies consider higher spatial resolution 

soil sampling and incorporate larger mineral P gradients to confirm this mechanism. 

The in-growth bag method has been found to adequately represent mycorrhizal 

mycelial productivity, as reflected by 13C (Wallander et al., 2001) and molecular 

(Kjøller, 2006) analyses of bags in EcM-dominated systems. However, our results 

indicate that this may not be the case in tropical forest, with the largest proportion of 

overall reads belonging to ASVs identified as saprotrophs. As such, hyphae measured 

cannot be directly attributable to one fungal group or mycorrhizal type in this study. To 

clarify productivity and turnover rates specifically relating to mycorrhizal fungal types, 

future studies may incorporate molecular or biomarker analyses, or include additional 

measures to reduce saprotrophic mycelial production (Wallander et al., 2013). A high 
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level of variability was found in mycelial fungal community dissimilarities across forest 

plots. Our analysis focused on the topsoil, as this is where the vast majority of nutrient 

turnover occurs. Here, fine-scale environmental heterogeneity can drive greater spatio-

temporal fungal community variation compared to underlying mineral soil where 

communities may differ (Bahram et al., 2015). It is recommended that future studies 

consider the effects of forest degradation on mycelial fungal communities and 

productivity at different soil depths, which may identify different patterns along the soil 

profile. It is acknowledged that care must be taken in the interpretation of differences 

found between forest land-uses and OP due to differences in sampling in the OP site 

(i.e. spatial scale and number of replicates). However, as lower replication would be 

expected to increase statistical error in OP, significant differences found in this land-

use type are expected to be consistent with broad-scale patterns. 

In conclusion, selective logging did not significantly shift mycelial fungal 

community structure or productivity from OG forest, suggesting mycelial fungal 

communities and function may be relatively resilient to forest degradation compared to 

fungi in bulk soil. Results indicate the extramatrical EcM mycelium to be largely 

retained in selectively logged forest, with positive implications for potential restoration 

of dipterocarp forest by providing existing mycorrhizal networks for tree seedling 

establishment. However, SL forest was associated with higher relative abundances of 

AM and ErM fungi relative to OG, which may have consequences for soil C cycling 

and storage in lowland rainforests in Borneo. Mycelial production was not related to 

vegetation characteristics or NPP, but to higher soil inorganic P concentrations 

associated with topography; suggesting that (belowground) productivity is driven by 

availability of limiting nutrients in tropical forest. In contrast, land conversion to oil 

palm plantation was shown to have a significant effect on overall, saprotrophic, 
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mycorrhizal, and pathogenic mycelial fungal community structures, reducing 

mycorrhizal relative abundance and diversity. Mycelial production was significantly 

lower in oil palm relative to forest, despite soil inorganic P concentrations being an 

order of magnitude greater under this land-use type. The impact of forest conversion on 

fungal community attributes and mycelial productivity may have wide repercussions 

for nutrient dynamics, plant-soil interactions and restoration potential over large scales 

as oil palm plantation has rapidly become a major land-use across Southeast Asia. 
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3 Impacts of logging gaps on soil microbial community attributes 

and nutrient cycling 

3.1 Abstract 

The rainforests of Borneo are a globally important biodiversity hotspot and carbon (C) 

sink, and are under increasing pressure by rapid land-use change. Conversion to 

industrial plantation has reduced forest cover on Borneo by >30 % in recent decades, 

while the majority of remaining forest is degraded through selective logging. Here 

timber extraction results in canopy gaps, which can alter microclimate, vegetation and 

soil properties, and significantly affect biogeochemical cycles underpinned by soil 

microbial communities. Understanding of soil microbial responses to environmental 

heterogeneity caused by selective logging gaps (SLG) in Southeast Asian tropical 

rainforest remains limited. To address this, a survey of soil microbial communities, soil 

physicochemical properties, nutrient supply rates and microclimate was conducted 

across logged forest in closed canopy forest (CCF) and SLG with varying disturbance 

intensities. Bacterial and fungal communities were characterised using 16S and ITS 

amplicon sequencing. Results showed that soil pH, bulk density and maximum soil 

moisture were significantly higher in SLG. Nitrate (NO3
-) supply rates and inorganic 

phosphorus (P) pools were lower in SLG, indicating reduced nutrient cycling. Bacterial 

and fungal community structures were significantly affected by SLG, with lower 

relative abundances of total mycorrhizal and EcM fungi, and higher relative abundance 

of AM fungi compared to CCF. In SLG, disturbance intensity was strongly positively 

related to ammonium (NH4
+) supply rates, and negatively to total mycorrhizal and EcM 

relative abundances. Findings suggest nitrogen (N) mineralisation may be enhanced by 

reduced competition for organic N sources between EcM fungi and saprotrophs with 

changes in mycorrhizal types affecting ecosystem C and nutrient cycling. Overall 
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findings demonstrate impacts of SLG on key soil microbial groups that regulate crucial 

nutrient and C cycles, with the potential to alter biogeochemical functioning at the 

landscape scale. Evaluations of impacts of forest degradation and forest restoration 

potential should incorporate SLG effects on belowground communities and function.  
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3.2 Introduction 

The tropical forests of Borneo are a global biodiversity hotspot (Myers et al., 2000), 

storing vast amounts of carbon (C) through a complex network of plant-soil interactions 

(Qie et al., 2017). These forests are under pressure from rapid degradation due to 

commercial timber extraction and widespread conversion to plantation agriculture 

(Gaveau et al., 2014; Gaveau et al., 2016; Bryan et al., 2013; Ferraz et al., 2018), with 

fragmentation and degradation threatening its capacity as a carbon sink (Qie et al., 2017; 

Asner et al., 2018). More than 30 % of the original forest cover on Borneo has been lost 

since these land-use practices began in the early 1970’s. Very little of the forest remains 

undisturbed, with approximately 70 % affected by selective logging for commercially 

valuable species of the Dipterocarpaceae (Gaveau et al., 2014; Gaveau et al., 2016). The 

removal of large individual trees and clearance for landings and skid trails opens gaps 

in the forest canopy (selective logging gaps; SLG). As a result, the vast majority of 

remaining forest is a human-modified, heterogeneous mosaic comprising a mixture of 

selectively logged (SL) closed-canopy forest (CCF) and SLG at various stages of 

regeneration (Ellis et al., 2016; Bossel and Krieger, 1991). 

Naturally occurring canopy gaps play an essential role in forest regeneration and 

maintenance of structural complexity, biodiversity and heterogeneity of soil and 

environmental conditions that influence nutrient availability and biogeochemical 

cycling (Muscolo et al., 2014). The artificial creation of canopy gaps mimicking natural 

disturbances (i.e. treefall) for forest regeneration is now practiced in silviculture for 

sustainable forest management and conservation across multiple biomes (Zhu et al., 

2014; Muscolo et al., 2017). However, intensive gap creation by SL in tropical forest 

can have negative consequences, including increasing susceptibility to fire (Matricardi 

et al., 2013; Cochrane, 2001) and long-lasting impacts on vegetation population 
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dynamics and diversity that can persist for over half a century post-disturbance 

(Yamada et al., 2013; Xu et al., 2015). 

Canopy gaps can drastically alter microclimatic conditions, as increased solar 

radiation reaching the forest understorey affects air and soil temperatures (Marthews et 

al., 2008), while soil moisture regimes are also affected by increased rainfall reaching 

the ground and reduced plant transpiration (Scharenbroch and Bockheim, 2007; Zhu et 

al., 2003; Zirlewagen and Von Wilpert, 2001). In tropical forests, canopy gaps are 

generally associated with wetter soil conditions (Denslow et al., 1998; Saner et al., 

2009; Ostertag, 1998), although this remains contested and soil moisture and 

temperature dynamics may be dependent on disturbance intensity (gap size) 

determining relative effects of root water extraction and soil surface evaporation 

(Marthews et al., 2008). Changes in microclimate along with altered plant productivity 

and inputs, including reduced litterfall (Saner et al., 2009; Lin et al., 2015), have knock-

on effects for local soil characteristics and biogeochemical cycling (Scharenbroch and 

Bockheim, 2008a). Gaps may function as nutrient-cycling ‘hotspots’ (Schliemann and 

Bockheim, 2011), with studies observing greater organic matter decomposition (Lin et 

al., 2015), net mineralisation and nitrification rates (Ritter, 2005; Denslow et al., 1998), 

altering soil nutrient bioavailability through increasing labile inorganic phosphorus (P) 

fractions and total nitrogen (N) pools (Hu et al., 2016; Scharenbroch and Bockheim, 

2008b). However, disturbance intensity and gap age may determine the extent and 

direction of these processes (Ritter, 2005; Denslow et al., 1998; Muscolo et al., 2007a). 

Increased rainfall reaching the topsoil has also been found to cause erosion and 

leaching, reducing overall soil fertility in gaps (Arunachalam and Arunachalam, 2000). 

Soil compaction in landings and skid trails through use of heavy machinery for timber 

extraction is another major disturbance associated with selective logging (Hartmann et 
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al., 2013; Grigal, 2000; Marshall, 2000; Alexander, 2012; Malmer and Grip, 1990). 

Along with removal of organic matter, these disturbances can have significant 

consequences for soil microbial communities and function (Hartmann et al., 2012). 

Forest biogeochemical cycling is driven by complex plant-soil interactions and 

reciprocal feedbacks between aboveground vegetation and belowground soil microbial 

communities (Cortois et al., 2016; van Der Putten et al., 2013; Bever et al., 2010; van 

der Heijden et al., 2008; Wardle et al., 2004). Microbial communities in turn are 

sensitive to alterations in soil physiochemical properties associated with land-use 

change (Tripathi et al., 2012; Jesus et al., 2009). Despite this, most studies have 

focussed on aboveground community dynamics and processes in gaps (see Muscolo et 

al., 2014), and few have evaluated belowground patterns in soil microbial diversity that 

underpins ecosystem functioning (Yang et al., 2017b; Li et al., 2019). The impacts of 

canopy gaps on soil microbial communities are complex and not necessarily 

unidirectional. Attributes such as total, bacterial and fungal microbial biomass have 

been found to be lower in gaps relative to closed canopy forest due to reduced litter 

inputs and root densities (Arunachalam and Arunachalam, 2000; Schliemann and 

Bockheim, 2014). Other studies detected no differences (Luizão et al., 1998), or 

observed greater microbial biomass in small gaps (Muscolo et al., 2007a; Yang et al., 

2017b) that may decrease again with increasing gap size (Muscolo et al., 2007a; b; 

Muscolo et al., 2010; Yang et al., 2017b). Biomass of certain microbial groups may also 

be differentially affected, e.g. bacteria favoured over fungi with increasing disturbance 

intensity (Arunachalam and Arunachalam, 2000), and microbial community structure, 

diversity and activity can be shifted, varying according to gap size along with soil 

conditions (Yang et al., 2017a; Yang et al., 2017b; Xuan et al., 2018; Li et al., 2019). 
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A small number of recent studies have evaluated the effects of selective logging 

in tropical forest in Southeast Asia on soil microbial community structure, diversity 

(Tripathi et al., 2016; Lee-Cruz et al., 2013; Kerfahi et al., 2014; Elias et al., 2019; 

McGuire et al., 2015) and function (Chapter 1). Fungal community attributes, 

particularly ectomycorrhizal (EcM) fungal relative abundance and diversity, have been 

shown to be highly sensitive to logging disturbance (Elias et al., 2019; Kerfahi et al., 

2014; McGuire et al., 2015). Bacteria and protists appear to be more resilient (Tripathi 

et al., 2016; Lee-Cruz et al., 2013) through a strong association with soil properties 

often independent of land-use type (Tripathi et al., 2012). However, studies conducted 

so far have largely assessed impacts via comparison of selectively logged forest with 

old-growth forest and/or agricultural plantation relying on broad land-use 

classifications. SLGs have the potential to greatly alter soil microbial communities and 

function underpinning vital biogeochemical cycles, although impacts in Southeast 

Asian rainforest remain unclear. This represents a significant knowledge gap, requiring 

finer-scale studies to improve understanding and predictions of effects of environmental 

heterogeneity associated with logging disturbance. There is an urgent need to improve 

current understanding as the vast majority of forest on Borneo is now heavily modified 

as a result of SL. The aim of this study was to evaluate the impacts of SLGs on soil 

microbial community attributes and nutrient cycling in Bornean lowland dipterocarp 

rainforest, with the following specific hypotheses: 

H1. Soil physicochemical properties and nutrient cycling rates will differ 

between CCF and SLG, corresponding to differences in environmental and 

vegetation characteristics. 
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H2. Soil bacterial community attributes (community composition and alpha 

diversity) will not differ between CCF and SLG when controlling for effects 

associated with site. 

H3. Soil fungal community attributes (community composition, functional 

composition and alpha diversity) will differ between CCF and SLG. 

H4. Within SLG, soil fungal community attributes, soil properties and nutrient 

cycling rates will be related to disturbance intensity. 

3.3 Methods 

3.3.1 Study site 

This study was conducted in selectively logged lowland dipterocarp rainforest in the 

state of Sabah, northern Malaysian Borneo. The climate is characterised as moist 

tropical (average daily temperature 27 ˚C, annual precipitation 2,600 - 2,700 mm) and 

without distinct seasonality, although may experience irregular inter-annual dry periods 

with an average total of ~1.4 months per year.(Walsh and Newbery, 1999; Kumagai and 

Porporato, 2012). Sampling was carried out in November 2016 within two existing 1 ha 

research plots within the Kalabakan Forest Reserve (B South 4.732°, 117.619° and B 

North 4.739°, 117.617°; coded as SAF-01 and SAF-02 respectively in the ForestPlots 

database), situated within the large-scale forest fragmentation study Stability of Altered 

Forest Ecosystems (SAFE) Project (Ewers et al., 2011). These plots (hereafter referred 

to as sites) were previously established for long-term evaluation of forest carbon cycling 

and productivity as part of the Global Ecosystem Monitoring (GEM) network 

(http://gem.tropicalforests.ox.ac.uk/; Malhi et al., 2015; Riutta et al., 2018). The two 

sites chosen for study had similar land-use histories of heavy logging, both having been 

selectively logged four times: firstly in the mid-1970s (approximately 113 m3 ha-1 
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timber removed) followed by three subsequent rounds 1990-2008 (approximately 37-

66 m3 ha-1 cumulative timber removed) (Riutta et al., 2018; Fisher et al., 2011). 

3.3.2 Sampling design 

SLG in the two sites were not discrete, but formed a mostly contiguous matrix with 

varying degrees of canopy openness. Twelve 6 × 6 m plots were distributed equally 

across both sites (six plots in each). Within each site, three plots were established in 

SLG and three in CCF vegetation types in co-located pairs (< 50 m between each SLG 

and CCF pair). Plot size was chosen relative to the widths of SLGs studied, to avoid 

close proximity to edge of CCF. Widths of SLGs at narrowest points ranged from 

approximately 12 - 30 m, estimated from aerial images taken at the time of sampling by 

drone survey (Cheerson CX-20 Auto-Pathfinder fitted with Apeman Action Camera). 

Each plot was subdivided into nine 2 × 2 m subplots, and six of these were randomly 

chosen for sampling of soil physicochemical properties, soil nutrient supply rates, and 

environmental and vegetation characteristics, with subplot centre marked as the 

sampling point. 

3.3.3 Soil sampling and physicochemical analysis 

Three 10 cm depth soil cores were taken around each sampling point using a 3 cm-

diameter gouge auger. The depth of the organic soil layer was measured before it was 

separated from underlying mineral soil and collected. Soil samples were bulked per 

subplot (n = 6 composite samples per plot), sealed in Ziploc bags and transported to a 

field laboratory. Each composite sample was hand-homogenised and 10 g subsamples 

taken for analysis of soil microbial community attributes. These were frozen at -20 ˚C 

on the day of collection and transported on ice to the UK: 5 g was transported to Centre 

for Ecology & Hydrology, Wallingford, UK for amplicon sequencing of soil microbial 
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communities; 5 g was analysed at Lancaster University for total soil microbial biomass 

C (MBC) and N (MBN). The remaining soil was transported to the Sabah Forest 

Research Centre, Sepilok for physicochemical analysis. One additional soil sample was 

taken at three randomly selected sampling points per plot with a volumetric core (3.8 

cm diameter, 8 cm depth) to calculate soil bulk density. 

pH in water was measured on fresh soils using a pH meter with a combination 

glass-calomel electrode (a ratio of 1:2.5 soil to deionised water) after shaking overnight 

at 100 rev m-1 on an orbital shaker and standing for 30 min (Landon 1984). The 

remaining soils were air-dried at 40 °C to constant weight and passed through a 2 mm 

sieve for homogenisation and removal of roots and stones. Subsamples for Total C and 

N analysis were dried at 65 °C for 48 hours and milled to a fine powder with a pestle 

and mortar. Total soil C and N contents were determined by dry combustion at 900 °C 

using an Elementar Vario Max CN analyser (Elementar Analysensysteme, Hanau, 

Germany). For soil Total P, samples were digested using sulphuric acid-hydrogen 

peroxide (Allen, 1989). Inorganic P was extracted using a Bray No. 1 extractant (Bray 

and Kurtz, 1945). P contents of extracts and digests were determined using the 

molybdenum-blue method (Anderson and Ingram, 1993), read at 880 nm on a 

spectrophotometer (HITACHI-UV-VIS, Japan). Soil texture (% Sand, Silt and Clay) 

was determined using the particle size distribution test (Day, 1965) on one bulked 

sample per plot (n = 12). Bulk density was calculated from the volume of the core and 

soil weight after drying at 105 °C for 48 hours and removal of roots and stones (Emmett 

et al., 2008) to provide one average value per plot (n = 12). 

MBC and MBN were determined using a modified chloroform fumigation 

extraction method (Vance et al., 1987; Brookes et al., 1985). Briefly, microbial biomass 
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subsamples were passed through a 2 mm sieve to remove roots and stones. For each 

sampling point, two 2.5 g fresh weight soil were measured into separate 50 ml sample 

tubes. 12.5 ml 0.5M K2SO4 extractant was added to each sample tube (first adjusted to 

pH-neutral with NaOH) and gently hand shaken. 0.25 ml EtOH-free chloroform was 

then added to one sample. Sample tubes for fumigated and unfumigated samples were 

closed and shaken at approx. 300 rev min-1 for two hours on an orbital shaker. Sample 

tubes were centrifuged at 3000 rpm for 10 minutes, and the supernatant was filtered 

through Whatman no. 42 filter papers. Any remaining chloroform in fumigated extracts 

was removed by sparging with compressed air for 20 min. Total C and N contents of 

extracts were measured using a Total Organic Carbon (TOC) analyser (TOC-L, 

Shimadzu Corporation, Kyoto, Japan). MBC and MBN calculated as the difference 

between fumigated and unfumigated samples, and expressed in µg g-1 dry soil after 

correction using soil moisture content. Clearly erroneous MBC and MCN values for 

two gap samples and one forest sample (e.g. negative values) were removed from the 

final dataset before analysis. 

3.3.4 Nutrient supply rates 

Soil nutrient availability was measured using resin ion exchange membranes (PRS® 

Probes, Western AG, Saskatoon, Canada) for anions NO3, P and S, and cations NH4, 

Ca, Mg, K, Fe, Mn, Cu, Zn, B, Pb, Al and Cd. These simulate plant roots through 

attraction and adsorption of ions in soil, capturing bioavailable nutrient pool dynamics 

and providing a measure of net soil nutrient supply rates (Qian and Schoenau, 2002). 

Probes were installed in situ in four pairs (one cation and one anion probe) around each 

sampling point to minimise the effects of localised spatial variability, inserted to a depth 

of 10 cm. Probes were removed from soil after a period of seven days, cleaned on 

collection with distilled water and shipped to the manufacturer for chemical analysis. 
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Probes were bulked per sampling point and eluted with 0.5 M HCL for 1 hour. NO3 and 

NH4 concentrations were measured by colorimetric automated flow injection analysis. 

Concentrations of all other ions were measured using inductively coupled plasma-

optical emission spectroscopy. Nutrient supply rates for each element are given as 

amounts per area of ion exchange membrane for the duration of burial (i.e. µg 10 cm-2 

7 days-1). 

3.3.5 Environmental and vegetation characteristics 

Location and elevation was recorded at the centre of each plot using GPS. Slope 

measurements were taken at each sampling point using a clinometer. For microclimate 

measurements, data loggers equipped with soil moisture and temperature probes (Delta-

T Devices Ltd., Cambridge, UK) were installed in the centre of each plot to record 

hourly measurements between November 2016 and March 2018 (490 days) for 

calculation of soil moisture and soil temperature means, minima and maxima (taken 

over the entire duration). Due to damage and equipment failure during this period, only 

soil moisture data from 75 continuous days (November 2016 - January 2017) and soil 

temperature data for 26 continuous days (November 2016 - December 2016) in B South 

were used for consistency in statistical analysis (minimum of three data loggers per 

vegetation type in one site). Photosynthetically active radiation (PAR) was measured at 

each sampling point upon soil sample collection using a light meter (PP Systems, USA) 

with the sensor held just above understorey vegetation. For canopy openness, 

hemispherical photographs were taken at each sampling point using an Opteka 180 ˚ 

6.5 mm fish-eye lens (Samyang Optics, Masan, South Korea) focussed to infinity, fitted 

on a vertically-mounted digital Canon 400D camera (Canon, Tokyo, Japan) with the 

top of the image oriented North (Hu et al., 2009; Frazer et al., 2001). The canopy gap 

fraction of images was calculated using the Hemisfer program version 2.2 (Swiss 
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Federal Institute for Forest, Snow and Landscape research) and expressed as a 

percentage. 

3.3.6 Molecular analysis of soil microbial communities and data pre-processing 

DNA was extracted from 0.1 g soil using the Quick-DNA™ Soil Microbe Kit and 

protocol (Zymo Research). Amplicon libraries were constructed according to a dual 

indexing strategy with each primer consisting of the appropriate Illumina adapter, 8-nt 

index sequence, a 10-nt pad sequence, a 2-nt linker and the amplicon specific primer 

(Kozich et al., 2013). For bacteria, V3-V4 16S rRNA amplicon primers 

(CCTACGGGAGGCAGCAG and GCTATTGGAGCTGGAATTAC) were used 

(Kozich et al., 2013). Fungi were targeted by amplifying the ITS2 region using primers 

GTGARTCATCGAATCTTTG and TCCTCCGCTTATTGATATGC (Ihrmark et al., 

2012). Although the capability of detecting AM fungi using ITS primers is known to be 

somewhat limited due to bias (Hart et al., 2015), recent studies have shown that patterns 

in diversity and community composition can be adequately identified within sample 

types such as soil (Berruti et al., 2017; Lekberg et al., 2018). Amplicons were generated 

using a high fidelity DNA polymerase (Q5 Taq, New England Biolabs). After an initial 

denaturation at 95 °C for 2 minutes, PCR conditions were as follows: Denaturation at 

95 °C for 15 seconds; annealing at 55 °C (16S) and 52 °C (ITS); annealing times were 

30 seconds with extension at 72 °C for 30 seconds; cycle numbers were 25; a final 

extension of 10 minutes at 72 °C was included. Amplicon sizes were determined using 

an Agilent 2200 TapeStation system, samples were normalized using SequalPrep 

Normalization Plate Kit (Thermo Fisher Scientific) and pooled. The pooled library was 

quantified using a Qubit dsDNA HS kit (Thermo Fisher Scientific) prior to sequencing 

with an Illumina MiSeq using V3 600 cycle reagents at a concentration of 8 pM with a 

5% PhiX Illumina control library. The sequencing run produced in excess of 21 and 18 
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million reads passing filter (16S and ITS, respectively). Sequences were processed in R 

using DADA2 to quality filter, merge, de-noise and assign taxonomies (Callahan et al., 

2016). 16S forward reads were trimmed to 250 bases. ITS sequence reads were trimmed 

to 225 and 160 bases, forward and reverse, respectively. Filtering settings were 

maximum number of Ns (maxN) = 0, maximum number of expected errors (maxEE) = 

1. Sequences were dereplicated and the DADA2 core sequence variant inference 

algorithm applied. mergePairs and removeBimeraDenovo functions were used at 

default settings to merge forward and reverse reads and remove chimeric sequences. 

The amplicon sequence variants (ASVs) were subject to taxonomic assignment using 

assignTaxonomy and the training database UNITE version 7.2 (UNITE Community, 

2017). 

Fungal functional guild classifications were assigned to ASVs using the 

FUNGuild annotation tool (Nguyen et al., 2016). Only ASVs with unambiguous (non-

multiple) classifications of “probable” or “highly-probable” confidence rankings were 

considered for analysis. These were used for calculating relative abundances of fungal 

guilds and sub-setting saprotrophic, mycorrhizal, EcM, pathogenic and parasitic fungal 

datasets for analysis of diversity and community dissimilarity. Only ASVs assigned to 

the kingdom of Bacteria and Fungi were retained for downstream analysis (99.34 % and 

99.73 % of total 16S and ITS reads, respectively). Eight samples with abnormally low 

read counts in all libraries were removed. These all comprised SLG samples, including 

one entire SLG plot in B North. All singleton ASVs were removed and sample 

sequencing depth was normalised by rarefying to the minimum read counts of 13,498 

(bacteria), 7,124 (overall fungal), 1,983 (saprotrophic fungal), 22 (mycorrhizal fungal), 

13 (EcM fungal), 501 (pathogenic fungal) and 19 (parasitic fungal). Alpha diversity 

indices (ASV richness, Shannon index) and fungal guild relative abundances were 
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calculated using rarefied datasets. All sequencing data pre-processing was conducted in 

R version 3.5.1 (R Core Team, 2013) using the phyloseq package (Mcmurdie and 

Holmes, 2013). 

3.3.7 Statistical analyses 

All statistical analyses were conducted in R version 3.5.1 (R Core Team, 2013). 

ANOVA was used to test differences in soil, environmental and vegetation 

characteristics and univariate soil microbial community attributes (alpha diversity and 

fungal guild relative abundances) between CCF and SLG (H1, H2 & H3). Plot-averaged 

data was used to control for spatial pseudoreplication, and the effect of vegetation type 

was tested after the site factor to control for potential site effects. To test the relationship 

between disturbance intensity (canopy openness) and soil characteristics and microbial 

community attributes (H4), linear mixed effects regression models (LMMs) were 

constructed in the lme4 R package (Bates et al., 2015) using data from SLG only. To 

control for potential within-plot pseudoreplication, plot ID was included as a random 

intercept term. Normality of model residuals were evaluated using Shapiro-Wilk tests, 

and variables were log-transformed where necessary to improve model fit and satisfy 

assumptions of homoscedasticity (ANOVA). Significance was considered at the p ≤ 

0.05 level. For univariate soil microbial community attributes significantly affected by 

SLG, the soil physiochemical parameters explaining the largest proportion of variance 

across SL forest were identified through multiple linear regression. Prior to analysis, 

highly correlated soil variables were identified with correlograms using the corrplot R 

package (Wei and Simko, 2017). Variables correlated with Pearson’s r > 6 were 

removed after averaging correlation coefficients by site. The best model was identified 

through stepwise forward and backward variable selection using AIC as the criterion. 
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Soil microbial community data were Hellinger-transformed prior to analysis 

(Legendre and Borcard, 2018) to control for the effect of rare taxa, and merged at the 

plot level (n = 11) using the merge_samples function in phyloseq to control for spatial 

pseudoreplication. Soil microbial community compositions across CCF and SLG were 

visualised with PCoA using Bray-Curtis dissimilarities via the phyloseq, vegan 

(Oksanen et al., 2019) and ggplot2 (Wickham, 2016) packages. Differences in soil 

microbial community compositions between vegetation types (H2 & H3) were tested 

with PERMANOVA using the adonis vegan function and Bray-Curtis community 

dissimilarities. All permutational tests were run with 10,000 permutations and restricted 

by site to control for the nested sampling design using the permute R package (Simpson 

et al., 2019). Homogeneity of multivariate dispersion between vegetation types (an 

assumption of PERMANOVA) for soil microbial community dissimilarities was 

evaluated using the betadisper vegan function. For soil microbial community 

dissimilarities significantly affected by SLG, the soil physiochemical parameters 

explaining the largest proportion of variance across SL forest were identified through 

backwards-selection using PERMANOVA with adonis2, where variables with highest 

p-values in marginal tests were sequentially removed until all predictors were 

significant. Indicator analysis was conducted to identify specific fungal taxa associated 

with different vegetation types using the labsdv R package (Roberts, 2016; Dufrêne and 

Legendre, 1997).  

3.4 Results 

3.4.1 Differences in soil, environmental and vegetation characteristics between CCF 

and SLG 

For all comparisons between CCF and SLG, R2 values are given after removing variance 

associated with site, apart from microclimate characteristics, which were only measured 
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in one site (B South). SLG was associated with significantly higher maximum soil 

moisture content (R2 = 0.96, F1,4 = 85.61, p < 0.001), PAR (R2 = 0.68, F1,8 = 16.89, p = 

0.003), soil pH (R2 = 0.69, F1,8 = 17.73, p = 0.003), soil bulk density (R2 = 0.48, F1,8 = 

7.42, p = 0.026), and lower soil Inorganic P content (R2 = 0.56, F1,8 = 10.00, p = 0.013), 

corresponding with significantly greater canopy openness in SLG (R2 = 0.93, F1,8 = 

113.91, p < 0.001) (Fig. 3.1 A-F; see Table 3.1 for summary of all soil, environmental 

and vegetation characteristics by forest type). 

 

Figure 3.1 Box and whisker plots of microclimate and soil properties, soil nutrient supply rates and 

vegetation properties found to significantly differ between closed canopy forest (CCF) and selective 

logging gaps (SLG) as identified with ANOVA after controlling for site. Asterisks indicate significance 

level of statistical differences between vegetation types; * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 3.1 Means (± 1 SD) of all soil, environmental and vegetation properties by vegetation types of 

closed canopy forest (CCF) and selective logging gaps (SLG). Asterisks indicate statistically different 

groups at the p < 0.05 level identified with ANOVA after controlling for site effects; * p < 0.05, ** p 

< 0.01, *** p < 0.001. 

Group Parameter 
Vegetation type 

CCF SLG 

Vegetation Canopy openness (%) 8.77 ± 1.54 *** 50.18 ± 14.31 *** 

 Gap vegetation height (cm) - 90.13 ± 22.13 

Microclimate PAR (µmol m-2 s-1) 6.88 ± 10.14 ** 92.53 ± 63.28 ** 

 Mean soil temperature (˚C) 26.41 ± 3.38 27.26 ± 3.65 

 Max. soil temperature (˚C) 27.60 ± 3.47 31.80 ± 5.62 

 Min. soil temperature (˚C) 25.37 ± 3.15 24.87 ± 3.51 

 Mean soil moisture (%) 38.24 ± 5.95 39.77 ± 8.80 

 Max. soil moisture (%) 48.23 ± 1.54 *** 62.33 ± 2.15 *** 

 Min. soil moisture (%) 33.00 ± 7.40 33.70 ± 5.74 

Soil physicochemical pH 4.66 ± 0.54 ** 5.24 ± 0.44 ** 

 O-layer depth (cm) 4.06 ± 0.78 3.86 ± 2.24 

 Sand (%) 61.67 ± 6.41 58.40 ± 8.17 

 Silt (%) 13.50 ± 2.43 17.20 ± 4.09 

 Clay (%) 24.83 ± 4.96 24.20 ± 5.12 

 Bulk density (g cm-3) 0.87 ± 0.13 * 1.06 ± 0.09 * 

 C (%) 3.85 ± 0.94 3.39 ± 0.59 

 N (%) 0.31 ± 0.09 0.28 ± 0.05 

 C : N ratio 12.60 ± 1.96 12.14 ± 1.38 

 Total P (µg g-1) 230.07 ± 83.24 255.35 ± 101.65 

 Inorganic P (µg g-1) 6.45 ± 1.68 * 4.64 ± 0.64 * 

Nutrient supply rates NO3 (µg 10 cm-2 7 days-1) 90.63 ± 76.96 * 49.29 ± 43.66 * 

 NH4 (µg 10 cm-2 7 days-1) 20.20 ± 9.08 13.76 ± 9.87 

 Ca (µg 10 cm-2 7 days-1) 327.00 ± 270.55 486.28 ± 310.02 

 Mg (µg 10 cm-2 7 days-1) 129.48 ± 70.28 178.17 ± 92.70 

 K (µg 10 cm-2 7 days-1) 222.43 ± 67.45 213.40 ± 54.46 

 P (µg 10 cm-2 7 days-1) 1.22 ± 0.45 1.52 ± 1.14 

 Fe (µg 10 cm-2 7 days-1) 6.44 ± 2.32 14.57 ± 13.49 

 Mn (µg 10 cm-2 7 days-1) 9.95 ± 2.85 12.34 ± 15.78 

 Zn (µg 10 cm-2 7 days-1) 0.73 ± 0.11 0.61 ± 0.23 

 S (µg 10 cm-2 7 days-1) 21.59 ± 12.07 30.30 ± 8.58 

 Al (µg 10 cm-2 7 days-1) 10.96 ± 2.94 11.93 ± 3.95 

Environmental Altitude (m) 481.00 ± 111.52 459.40 ± 116.56 

 Slope (˚) 17.94 ± 7.27 11.07 ± 5.64 
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3.4.2 Differences in soil microbial community attributes between CCF and SLG 

In total, 10,913 bacterial ASVs (representing 40 phyla; 267 genera) and 13,848 fungal 

ASVs (12 phyla; 590 genera) were detected across all samples including CCF and SLG 

(see Fig. 3.2 for summaries of phyla for all soil microbial groups by forest type). 

 

Figure 3.2 Relative abundance of A) bacterial and B) fungal phyla as a percentage of total 

Amplicon Sequence Variants (ASVs) in closed-canopy forest (CCF) and selective logging gaps 

(SLG). Phyla with < 1% relative abundance in both vegetation types are represented as one 

group. 

 

Bray-Curtis community dissimilarities significantly differed between CCF and 

SLG for bacteria (PERMANOVA: R2 = 0.10, F1,8 = 1.01, p = 0.034; Fig. 3.3 A) and 

overall fungal (R2 = 0.13, F1,8 = 1.34, p = 0.005), saprotrophic fungal (R2 = 0.14, F1,8 = 

1.43, p = 0.005) and pathogenic fungal groups (R2 = 0.15, F1,8 = 1.60, p = 0.005) (Fig. 

3.3 B-D), while no significant difference was detected for mycorrhizal (p = 0.131), EcM 

(p = 0.226) or parasitic (p = 0.089) fungal groups. Multivariate dispersion of community 
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dissimilarities was homogenous between forest types for all soil microbial groups 

(betadisper: p > 0.05). 

 

Figure 3.3 Principle coordinates analysis (PCoA) ordination of Bray-Curtis dissimilarities for soil 

microbial groups that significantly differed between closed canopy forest (CCF) and selective logging gaps 

(SLG) identified with PERMANOVA after controlling for site (p < 0.05). Shapes indicate samples collected 

at the two sites B North (BN) and B South (BS). Ellipses represent 95 % confidences with t-distribution. 
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No significant differences were detected in MBC, MBN or alpha diversity indices (ASV 

richness and Shannon diversity index) between CCF and SLG for any soil microbial 

group (p > 0.05; see Table 3.2 for summary of soil microbial attributes by forest type). 

Table 3.2 Means (± 1 SD) of all soil microbial community attributes (Total microbial biomass C and N, 

Amplicon Sequence Variant (ASV) richness and Shannon alpha diversity) and relative abundances of 

fungal guilds by forest types of closed canopy forest (CCF) and selective logging gaps (SLG). Asterisks 

indicate statistically different groups at the p < 0.05 level identified with ANOVA after controlling for 

site; * p < 0.05, ** p < 0.01, *** p < 0.001. 

Parameter Soil microbial group 

Forest type 

CCF SLG 

Total microbial biomass C (µg g-1 dry soil)  - 326.11 ± 265.92 166.63 ± 105.56 

Total microbial biomass N (µg g-1 dry soil) - 24.09 ± 24.98 21.95 ± 25.86 

Richness (no. observed ASVs 10 reads-1) Bacteria 0.42 ± 0.15 0.48 ± 0.19 

 Overall fungi 0.70 ± 0.20 0.76 ± 0.13 

 Saprotrophic fungi 0.65 ± 0.22 0.67 ± 0.15 

 Mycorrhizal fungi 2.82 ± 0.22 2.72 ± 0.53 

 EcM fungi 3.29 ± 0.63 2.62 ± 0.88 

 Pathogenic fungi 0.51 ± 0.16 0.52 ± 0.08 

 Parasitic fungi 13.49 ± 4.10 13.72 ± 2.20 

Shannon alpha diversity index Bacteria 4.98 ± 0.43 4.98 ± 0.53 

 Overall fungi 4.34 ± 0.57 4.75 ± 0.30 

 Saprotrophic fungi 3.11 ± 0.67 3.33 ± 0.26 

 Mycorrhizal fungi 1.41 ± 0.13 1.36 ± 0.25 

 EcM fungi 1.15 ± 0.24 0.92 ± 0.36 

 Pathogenic fungi 2.00 ± 0.50 2.24 ± 0.30 

 Parasitic fungi 0.44 ± 0.29 0.60 ± 0.23 

Fungal guild relative abundance  

(% total fungal ASV reads) 

Saprotrophic fungi 63.60 ± 8.24 66.88 ± 5.51 

Mycorrhizal fungi 15.71 ± 9.80 * 4.70 ± 3.00 * 

 EcM fungi 14.85 ± 9.43 * 4.11 ± 2.70 * 

 AM fungi 0.18 ± 0.12 ** 0.45 ± 0.12 ** 

 Ericoid mycorrhizal fungi 0.68 ± 0.82 0.14 ± 0.24 

 Orchid mycorrhizal fungi 0.000 ± 0.000 0.002 ± 0.005 

 Pathogenic fungi 15.98 ± 4.35 * 22.98 ± 3.82 * 

 Plant pathogenic fungi 10.05 ± 5.27 15.66 ± 3.18 

 Animal pathogenic fungi 5.94 ± 2.47 7.32 ± 4.48 

 Parasitic fungi 2.83 ± 1.67 3.27 ± 1.32 

 Endophytic fungi 0.14 ± 0.06 *** 1.42 ± 1.40 *** 

 Lichenised fungi 1.83 ± 0.94 * 0.85 ± 0.49 * 
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However, relative abundances of mycorrhizal, EcM and lichenised fungi were 

significantly lower in SLG relative to CCF (Mycorrhizal: R2 = 0.48, F1,8 = 7.28, p = 

0.027; EcM: R2 = 0.49, F1,8 = 7.71, p = 0.024; Lichenised: R2 = 0.58, F1,8 = 11.18, p = 

0.010; Fig. 3.4), while relative abundances of AM, pathogenic, and endophytic fungi 

were significantly higher in SLG (AM: R2 = 0.65, F1,8 = 14.64, p = 0.005; Pathogenic: 

R2 = 0.46, F1,8 = 6.86, p = 0.031; Endophytic: R2 = 0.77, F1,8 = 26.30, p = < 0.001; Fig. 

3.4). 

 

Figure 3.4 Relative abundances of fungal guilds for closed canopy forest (CCF) and selective logging 

gaps (SLG). Error bars represent standard errors. Asterisks indicate statistically different groups by 

vegetation type identified in ANOVA after controlling for site (p < 0.05). Mycorrhizal and pathogenic 

guilds have been further divided into subtypes as indicated. 
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 Bray-Curtis community dissimilarities for bacteria, overall fungi and 

pathogenic fungi were best explained by soil pH alone, while for saprotrophic fungi the 

selected predictors were pH and NO3 supply rates (see Table 3.3 for summary of all 

PERMANOVA model statistics). 

 

Soil pH also explained the largest proportion of variance in relative abundances of 

mycorrhizal (42.7 %), EcM (45.1 %), AM (68.4 %), pathogenic (46.6 %), endophytic 

(51.8 %) and lichenised fungi (61.1 %) after removing variance associated with site (see 

Table 3.4 for summary of multiple linear regression results and statistics). Although 

saprotrophic fungal relative abundance was not significantly affected by vegetation 

type, multiple regression analysis was also conducted, as most fungal ASV reads were 

attributed saprotrophic fungi (66.7 % overall: 63.6 % in CCF; 69.4 % in SLG). Total 

soil phosphorus explained the vast majority of variation in saprotrophic relative 

abundance (80.2 %) after removing variance associated with site. 

Table 3.3 PERMANOVA results of soil characteristics best explaining variation in soil 

microbial Bray-Curtis community dissimilarities, identified through backward-selection 

using p-values in marginal tests controlling for site. Variables are presented in order entered 

in the model. Partial R2 represents the relative proportion of explained variance of each 

predictor. 

Soil microbial group Predictor df Partial R2 F p Model R2 

Bacteria pH 1 0.37 5.23 0.014 0.37 

 Error 9     

Overall fungi pH 1 0.24 2.81 0.002 0.24 

 Error 9     

Saprotrophic fungi pH 1 0.23 2.79 < 0.001 0.34 

 NO3 1 0.11 1.35 0.029  

 Error 8     

Pathogenic fungi pH 1 0.35 4.76 0.007 0.35 

 Error 9     
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Table 3.4 Multiple linear regression results of soil characteristics explaining variation in fungal guild relative 

abundances. Variables are presented in order entered in the model. The factor ‘Site’ was entered first in all 

models to control for site effects. Partial R2 represents the relative proportion of explained variance of each 

predictor, calculated from partitioned sums of squares. Corrected partial and model R2 values represent 

proportion of explained variance of predictors after removing variance associated with the ‘Site’ categorical 

control variable.  Continuous predictors were mean-centred and scaled by standard deviation to give 

standardised coefficients. 

Guild Predictor df Partial R2 Corrected 

partial R2 
F p 

Standardised 

coefficients 

Corrected 

model R2 

Mycorrhizal fungi Site 1 0.04  1.00 0.351  0.68 

 pH 1 0.41 0.43 9.29 0.019 -8.57  

 Total P 1 0.24 0.25 5.46 0.052 -9.89  

 Error 7       

EcM fungi Site 1 0.03  0.68 0.438  0.70 

 pH 1 0.44 0.45 10.68 0.014 -8.61  

 Total P 1 0.25 0.25 6.02 0.044 -9.69  

 Error 6       

AM fungi Site 1 0.02  1.21 0.314  0.88 

 pH 1 0.67 0.68 34.31 0.001 0.28  

 Organic layer depth 1 0.13 0.13 6.73 0.041 0.06  

 NO3 1 0.06 0.06 3.13 0.127 -0.07  

 Error 6       

Pathogenic fungi Site 1 0.01  0.16 0.701  0.60 

 pH 1 0.46 0.47 8.11 0.025 7.52  

 Total P 1 0.13 0.13 2.29 0.174 -4.24  

 Error 7       

Endophytic fungi Site 1 0.05  0.89 0.378  0.61 

 pH 1 0.49 0.52 9.41 0.018 1.29  

 C:N ratio 1 0.09 0.10 1.74 0.229 -0.49  

 Error 7       

Lichenised fungi Site 1 0.31  42.74 0.003  0.96 

 pH 1 0.42 0.61 56.86 0.002 -0.97  

 NO3 1 0.09 0.13 11.65 0.027 0.35  

 Available P 1 0.08 0.12 11.38 0.028 -0.31  

 Organic layer depth 1 0.04 0.06 6.02 0.070 -0.22  

 NH4 1 0.02 0.03 3.08 0.154 -0.23  

 Error 4       

Saprotrophic fungi Site 1 0.00  0.13 0.737  0.94 

 Total P 1 0.80 0.80 53.09 0.002 12.17  

 Zn 1 0.08 0.08 5.05 0.088 -1.82  

 C:N ratio 1 0.03 0.03 2.11 0.220 1.50  

 NH4 1 0.02 0.02 1.04 0.366 3.15  

 NO3 1 0.01 0.01 0.89 0.399 -2.94  

 Error 2       



 

   77 

3.4.3 Relationships between disturbance intensity and soil characteristics, nutrient 

cycling rates and microbial community attributes 

Within SLG, canopy openness was significantly positively related to supply rates of 

NH4 (F1,2 = 16.25, p = 0.009; Fig. 3.5 A), Mg (F1,2 = 5.14, p = 0.046; Fig. 3.5 B), K 

(F1,2 = 9.62, p = 0.025; Fig. 3.5 C) and Zn (F1,2 = 9.51, p = 0.016), and proportion of 

sand in the soil (F1,2 = 48.82, p = 0.020). Of these, supply rates of NH4 were significantly 

positively related to supply rates of Zn (F1,2 = 20.98, p < 0.001) and proportion of sand 

(F1,2 = 9.47, p = 0.005). For microbial community attributes, canopy openness was 

significantly negatively related to relative abundance of overall mycorrhizae (F1,2 = 

5.81, p = 0.024; Fig. 3.5 D) and EcM (F1,2 = 4.73, p = 0.039). 
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Figure 3.5 Significant relationships between disturbance intensity (canopy openness) and nutrient 

cycling rates and mycorrhizal relative abundance within selective logging gaps. Relationships are 

shown by sites B North (BN) and B South (BS), corresponding to linear mixed model analysis 

controlling for site effects. 
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3.5 Discussion 

In support of the initial hypothesis, some soil physicochemical properties significantly 

differed between CCF and SLG. Of all the microclimatic measures, only soil moisture 

maxima significantly differed between CCF and SLG, with higher values in SLG (Fig 

3.1 A; Table 3.1), likely due to reduced interception by canopy forming trees during 

rainfall events (Scharenbroch and Bockheim, 2007; Zhu et al., 2003; Zirlewagen and 

Von Wilpert, 2001). The counteracting effects of increased soil surface evaporation by 

exposure to solar radiation in SLG (as indicated by significantly higher PAR values; 

Figure 3.1 B; Table 3.1), understorey transpiration and root water extraction by adjacent 

trees may explain why no differences were found in mean soil moisture between 

vegetation types over the period measured (Marthews et al., 2008). Mean soil moisture 

and maximum soil temperature were higher in SLG relative to CCF, although no 

significant differences were detected due to increased variability in SLG (Table 3.1); 

reflecting greater microclimatic heterogeneity (Muscolo et al., 2014). Overall findings 

suggest microclimatic conditions are broadly similar between CCF and SLG possibly 

owing to gap size, although SLG experience periodically wetter conditions due to 

rainfall events in line with other studies in the tropics (Denslow et al., 1998; Saner et 

al., 2009; Ostertag, 1998). 

Soil pH was significantly higher in SLG relative to CCF (Figure 3.1 C; Table 

3.1), despite higher soil moisture maxima which may be expected to result in leaching 

of soil bases with an acidifying effect (Arunachalam and Arunachalam, 2000). This 

difference can subsequently be attributed to mechanisms associated with vegetation 

rather than microclimate. Lower pH under CCF is potentially a result of alterations in 

the quantity and quality of litter inputs. In disturbed tropical forest, the breakdown of 

litter from more mature stands has been associated with lower soil pH through greater 
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release of humic acids into the soil (Robinson et al., 2015; Melvin et al., 2011), while 

the amount of litterfall is higher under a closed canopy relative to gaps (Saner et al., 

2009; Lin et al., 2015). Root exudation under CCF may also contribute to rhizosphere 

acidification, for example carboxylates that are especially produced in P-limited 

systems (Lambers et al., 2006; Weemstra et al., 2016). Soil bulk density was 

significantly higher in SLG relative to CCF (Figure 3.1 D; Table 3.1), attributable to 

soil compaction by heavy machinery used for timber extraction (Hartmann et al., 2013; 

Grigal, 2000; Marshall, 2000; Alexander, 2012; Malmer and Grip, 1990) and reduced 

root infiltration (Saner et al., 2009). 

Differences in supply rates of certain nutrients were found between CCF and 

SLG, also in line with the first hypothesis. NO3 supply rates were significantly lower in 

SLG (Fig 3.1 D) while NH4 was not affected (Table 3.1), indicating that N cycling by 

nitrification may be down-regulated by canopy gap creation. This is contrary to many 

studies evaluating biogeochemical cycling rates in temperate forest gaps, which have 

observed increased nutrient availability through soil organic matter turnover, largely 

resulting from increases in soil temperature enhancing soil microbial activity and 

decompositional processes (Muscolo et al., 2014; Ritter, 2005; Scharenbroch and 

Bockheim, 2008b). However, both mineralisation and nitrification processes can 

depend on disturbance intensity and gap age, with high rates in newly-formed gaps 

(Ritter, 2005). The present study area has undergone multiple rounds of selective 

logging since the mid 1970’s, with the youngest potential gap age at the time of 

sampling being 8 years (although the precise age of individual gaps is unknown). 

Differences in NO3 supply rates may therefore indicate longer-term impacts of gap 

creation on nutrient cycling in heavily degraded tropical forest, which may be restricted 

by decreased litter inputs (Saner et al., 2009; Lin et al., 2015) once fresh substrates have 
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been broken down. Similarly, soil inorganic P content was significantly lower in SLG, 

although P supply rates were not found to differ by vegetation type (Table 3.1). This 

highlights the importance of nutrient pool dynamics in these forests, as static measures 

(soil inorganic P content) do not take into account variation in P availability over time. 

However, this could also suggest that while inorganic P pools are reduced in SLG of 

this age, faster cycling processes in SLG may result in similar supply rates to CCF. 

Contrary to expectations (second hypothesis), bacterial community composition 

did significantly differ between SLG and CCF (Fig 3.3 A). Previous studies finding no 

differences in bacterial β-diversity between SL and old-growth forest in Borneo have 

suggested bacterial community assemblage to be broadly resilient to logging 

disturbance (Lee-Cruz et al., 2013; Tripathi et al., 2016). The findings of the current 

study outline that this observation may result from heterogeneity within SL forest, and 

a finer-spatial scale approach is required to understand impacts of SL on bacterial 

diversity and community structure. Elsewhere in the humid tropics, a small number of 

studies have found soil bacterial communities to be sensitive to different kinds of forest 

disturbances. For example, as recently reviewed by Franco et al. (2019), disturbed 

Amazonian rainforests have been shown to harbour distinct soil bacterial communities 

relative to primary forest due to fire events (de Carvalho et al., 2016), after 

anthropogenic deforestation by slash and burn practices (Mendes et al., 2015a; Mendes 

et al., 2015b; Navarrete et al., 2015) and in secondary regenerating forest on abandoned 

pasture or agricultural land, with community dissimilarities varying according to land 

use intensification (de Carvalho et al., 2016). The effects of disturbance on bacterial 

communty composition appear to be mediated by changes in soil properties, with 

variation in community dissimilarities particularly linked with soil pH (de Carvalho et 

al. 2016; Mendes et al., 2015a). Corresponding variation in bacterial community 
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structure and functional characteristics associated with metabolism suggests taxonomic-

functional adaptation of soil bacterial communities after forest clearance (Navarrate et 

al, 2015). Similarly, in Costa Rican Atlantic (including lowland) forest, bacterial 

community composition was significantly shifted by a hurricane event opening the 

forest canopy and increasing woody debris on the forest floor. Here, differences found 

were attributed to “taxonomic switching” of bacterial functional genera in response to 

altered canopy material inputs to the soil (Eaton et al., 2020). In the present study, 

differences found in bacterial community composition along with disturbance-related 

alterations in vegetation inputs and soil properties are in line with these observations in 

other comparable tropical systems, rather than appearing resilient to selective logging 

as previously suggested in studies of Southeast Asian lowland dipterocarp forest (Lee-

Cruz et al., 2013; Tripathi et al., 2016). 

Overall, saprotrophic and pathogenic fungal community compositions were also 

significantly affected by SLG (Fig 3.3 B-D). This corroborates the hypothesis that 

fungal community structure is highly sensitive to forest disturbance in lowland 

dipterocarp rainforest, as found in recent studies in Southeast Asia (Elias et al., 2019; 

Kerfahi et al., 2014; McGuire et al., 2015), and reflects limited observations of soil 

fungal communities in humid tropical forest systems more generally, including 

rainforests of French Guiana (García de León et al., 2018), Costa Rica (Eaton et al., 

2020) and Southwest China (Shi et al., 2019). In particular, Shi et al. (2019) found 

saprotrophic and pathogenic fungal community attributes shifted along a forest 

disturbance gradient ranging from individual tree cutting to complete forest clearance, 

in agreement with the observed effects on these fungal groups in the present study. More 

specifically, the authors found pathogenic fungal abundance increased with forest 

disturbance, in line with higher pathogenic fungal relative abundances observed in SLG 
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relative to CCF. The authors suggested potential mechanisms underlying these 

differences arising from altered plant-soil interactions: firstly, combined effects of plant 

community composition and soil pH may drive differences in saprotrophic fungal 

community attributes by affecting local concentrations of soil P; secondly, disturbance-

related increases in understorey vegetation may create more ecological niches for 

pathogenic fungi by way of increased heterogeneity in root and litter compositions; 

thirdly, the opening of the forest canopy may allow for increased deposition of airborne 

fungal spores to the soil, promoting colonisation pathogenic fungi which are often wind-

dispersed. 

Despite differences observed in community dissimilarities of the above fungal 

groups, no differences were detected in mycorrhizal or EcM community compositions 

between vegetation types. Although there may be distinct alterations in vegetation 

community aboveground, belowground mycorrhizal community structure may be more 

resilient to disturbance. The extramatrical mycelium produced by EcM fungi, shown to 

be largely retained after SL (Chapter 1), may extend into gaps from surrounding closed 

canopy forest. However, care must be taken in interpretation due to the low number of 

ASV reads used for assessing community composition of mycorrhizal and EcM fungal 

groups (22 and 13 ASV reads respectively) and the known bias of the ITS region 

towards amplification of EcM rather than AM fungal taxa (Hart et al., 2015) which may 

limit sensitivity in detecting differences. Despite similarities in community 

composition, overall mycorrhizal and EcM fungal relative abundances were 

significantly lower in SLG, while AM fungi were more abundant (Fig. 3.4; Table 3.2). 

This pattern reflects the differences found in bulk soil and actively-foraging fungal 

communities between old-growth and SL forest in the same area (Elias et al., 2019; 

Chapter 1). This is likely a direct result of gap creation through the removal of 
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individuals of the Dipterocarpaceae, a family of EcM-associating trees (Brearley, 2012; 

Taylor and Alexander, 2005). Although dipterocarp species are targeted in selectve 

logging for their economic value (Appanah and Turnbull, 1998), some individuals may 

remain even after repeated, heavy logging. This is indicated in recent tree community 

surveys of the 1 ha plots used in the present study (dipterocarp basal area B North: 0.57 

m2 ha-1; B South: 0.41 m2 ha-1) (Chapter 1; Both et al., 2019). Increased AM fungal 

relative abundance in SLG subsequently reflects a shift to non-dipterocarp, AM-

associating vegetation, the dominant mycorrhizal type across tropical ecosysems 

(McGuire et al., 2008). These results also highlight that dipterocarp trees left during SL 

may remain an important component of CCF vegetation, influencing relative 

abundances of mycorrhizal types. As discussed in Chapter 1, shifts from EcM- to AM-

dominated communities may have important implications for biogeochemical cycling. 

EcM fungi have been associated wth soil C accumulation by competing with saprotophs 

for nutrients (N and P) required for the breakdown of organic matter (Averill et al., 

2014; Liu et al., 2018). A reduced EcM dominance therefore has potential consequences 

for C release from tropical forest soils. However, this effect may be negated by overall 

reduced organic matter inputs (i.e. litterfall) associated with lower in situ soil respiration 

rates in SLG relative to CCF as found in Southeast Asia (Saner et al., 2009). In the same 

study, SLG-associated differences in soil temperature and fine root biomass also 

significantly contributed to soil respiration rates. Future studies incoporating controlled 

laboratory experiments are therefore recommend to unpick the relative effects of soil 

microbial communities, microclimate and substrate inputs on C and nutrient cycling 

and fluxes in SL forest. No differences were found in alpha diversity indices between 

CCF and SLG for any soil microbial group (Table 3.2) despite alterations in soil 

characteristics, and a significant relationship previously identified between dipterocarp 
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basal area and EcM richness across selectively logged and old-growth forest in the 

region (Elias et al., 2019). 

Variation in all soil microbial attributes affected by SLG was predominantly 

explained soil pH even after controlling for site effects (Tables 3.3 & 3.4), indicating 

that differences between CCF and SLG are primarily driven by the influence of 

vegetation type on soil pH. Linkages between pH and soil microbial community 

assemblages and diversity are well established in temperate (Lauber et al., 2008; Lauber 

et al., 2009; Rousk et al., 2010; Dupont et al., 2016) and tropical ecosystems (Jesus et 

al., 2009; de Carvalho et al., 2016; Mendes et al., 2015a). Soil pH has in particular been 

identified as the primary driver structuring bacterial communities and diversity in 

tropical forest in Southeast Asia (Tripathi et al., 2012). However, although increased 

soil pH levels associated with certain land use practices in the tropics (e.g. agricultural 

crop and pastureland) have been shown to increase bacterial diversity as a result of these 

mechanisms (Tripathi et al., 2012), bacterial diversity was not found to be significantly 

higher in SLF relative to CCF despite elevated pH levels towards neutral. 

Within SLG, canopy openness was significantly negatively related to overall 

mycorrhizal and EcM relative abundances, while positively associated with supply rates 

of certain key soil nutrients (NH4, Mg, K, Zn) (Fig. 3.5) and soil sand content. 

Disturbance intensity therefore plays an important role in soil nutrient cycling processes 

in these systems, in support of the final study hypothesis. However, increasing NH4 

supply rates with canopy openness may contradict assumptions about disturbance 

intensity and N-cycling (Muscolo et al., 2007a). A positive relationship between gap 

size and N mineralisation has been observed in temperate (Ritter, 2005) and tropical 

(Denslow et al., 1998) systems, but only in newly-created gaps (< 17 months and 12 
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months old, respectively) where increased nutrient cycling rates have been attributed to 

decomposition of fresh litter inputs resulting from disturbance. The time since SL in the 

current study and lack of difference in NH4 supply rates between CCF and SLG (Table 

3.1) suggests a different mechanism underlying N mineralisation. Mycorrhizae, 

particularly EcM, are now known to be able to mobilise soil N from organic sources 

and not be reliant on previous breakdown by other soil saprotrophs (Lindahl and Tunlid, 

2015). A reduction in mycorrhizal relative abundance may subsequently increase the 

availability of organic N to be mineralised by other soil microorganisms (Averill et al., 

2014). In situ manipulations of root and mycorrhizal relative abundances, e.g. with 

fungal hyphal and fine root exclusion cores (Johnson et al., 2001; Langley et al., 2006), 

coupled with monitoring of N-fraction dynamics is suggested to identify drivers of N-

cycling rates in SLG. Further study of the influence of disturbance intensity on 

microclimatic conditions is also recommended, as inferences were limited in the present 

study due to equipment failure. 

In conclusion, this study found significant shifts in both fungal and bacterial 

community attributes, soil physicochemical properties and nutrient cycling rates 

between CCF and SLG, emphasising the importance of fine-scale studies to evaluate 

the impacts of selective logging in highly heterogeneous degraded tropical forest. A 

strong reduction in relative abundances of mycorrhizal and EcM fungi and a significant 

increase in AM fungi in SLG may have consequences for soil carbon fluxes, although 

controlled experiments are required to unpick underlying mechanisms. The importance 

of EcM-associating dipterocarp trees remaining within CCF after selective logging is 

highlighted. Differences in all soil microbial community attributes were primarily 

related to soil pH, which was also related to vegetation type. Lower NO3 supply rates 

and inorganic P pools indicate reduced nutrient cycling in SLG of this age due to 
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reduced litterfall. Within SLG, disturbance intensity was significantly positively related 

to certain key soil nutrients, including a strong association with NH4 supply rates, while 

negatively related to mycorrhizal and EcM relative abundance. Findings indicate 

mineralisation rates in SLG may be enhanced by reduced competition for organic soil 

N sources between EcM fungi and other soil saprotrophs. Field manipulations of 

mycorrhizal hyphae and fine roots may help to identify key drivers of mineralisation 

rates. 

Alterations in soil microbial community attributes and nutrient cycling through 

creation of SLG has major implications for biogeochemical and ecosystem functions at 

the regional scale, as selectively logged forest now represents the major natural forest 

type on Borneo. Evaluations and predictions of the impacts of SL should incorporate 

SLG effects on belowground communities and processes, which may influence 

restoration potential and recovery of biodiversity and vital ecosystem services in 

degraded tropical forest.  
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4 Resistance and resilience of soil microbial functioning to logging 

and drought in tropical rainforest 

4.1 Abstract 

Soil is a global reservoir of carbon (C), where the accumulation and release of C to the 

atmosphere is governed by soil microbes. Land-use and climate change has the potential 

to shift microbial community structure and functional diversity, impacting on crucial 

biogeochemical processes including C cycling. Degradation of tropical forest threatens 

the capacity of these highly biodiverse ecosystems to store C by altering complex plant-

soil interactions. Forest disturbance is accelerating in Southeast Asia, most extremely 

on the island of Borneo through widespread selective logging (SL). Recent studies have 

highlighted SL-induced alterations in soil microbial communities, with bacterial and 

fungal community compositions in selective logging gaps (SLG) significantly differing 

from those in closed canopy forest (CCF). This has major implications for soil-

atmosphere C exchanges and the sensitivity of soil functions to environmental 

perturbations associated with predicted increased frequency of climate change 

extremes. However, resistance and resilience of soil microbial functions to these 

disturbances remains unclear. A controlled laboratory incubation experiment was 

conducted to determine SLG and CCF effects on baseline soil respiration (RS), and RS 

responses to drought and rewetting. Results show that baseline RS was lower in SLG 

relative to CCF soils, highlighting important impacts of SL disturbance on microbial 

heterotrophic RS previously unidentified in field survey due to confounding vegetation 

and microclimatic factors. Resistance of soil function to reduced moisture did not differ 

between CCF and SLG. Some evidence was found for greater resilience of SLG soil 

functioning to drought, although SLG RS responses were highly variable. RS in 

droughted-rewetted soils were significantly higher than controls at the final recovery 



 

   89 

stage, indicating prolonged alterations in soil functioning that may relate to changes in 

soil microbial ecophysiological traits. Findings indicate functioning of degraded 

tropical forest soil may not be resilient to drought events which are predicted to increase 

in intensity and frequency across tropical regions, with major implications for soil C 

feedbacks to the atmosphere under future climate change scenarios.  
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4.2 Introduction 

Soils represents the largest terrestrial carbon (C) pool on the planet, storing more C than 

the sum of all plants and the atmosphere (Singh et al., 2011). As such they offer a vital 

sink for anthropogenic CO2 emissions associated with climate change (Stockmann et 

al., 2013). Soil microbes are key regulators of crucial soil C cycling processes by way 

of complex and reciprocal plant-soil interactions (van der Heijden et al., 2008; Wardle 

et al., 2004), governing relative accumulation of soil C or feedbacks of carbon dioxide 

(CO2) to the atmosphere through soil respiration (RS) (Malik et al., 2018). 

Anthropogenic pressures threaten to upset the balance of soil C storage or release 

globally (Sanderman et al., 2017). Alterations in soil abiotic and biotic conditions 

through human land-use change can drastically shift soil microbial community 

structure, with potential significant and irreversible impacts on the vital ecosystem 

functions they regulate (Bonner et al., 2019; Fichtner et al., 2014; Rodrigues et al., 2013; 

Fraterrigo et al., 2006; Hartmann et al., 2012; Hartmann et al., 2013), further 

exacerbated by effects of climate change (Auffret et al., 2016). However, significant 

questions remain about the resistance and resilience of soil microbial communities and 

subsequent functions to environmental disturbance (Allison and Martiny, 2008; Shade 

et al., 2012; Griffiths and Philippot, 2013). Extremely high levels of diversity in soil 

microbial communities may offer functional redundancy and plasticity, with resultant 

communities performing broadly the same soil processes (Nannipieri et al., 2017; 

Grządziel, 2017). As such, understanding of the direction and magnitude of RS 

responses to interactive effects of land-use and climate change is widely lacking, despite 

the crucial need for accurate predictions of future impacts (Nazaries et al., 2015). 

Tropical forests and their soils are globally important reservoirs of biodiversity 

and C (Paz et al., 2016), but they are threatened by extensive deforestation and 
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degradation through rapid land-use change (Zarin, 2012; Saatchi et al., 2011; Chaplin-

Kramer et al., 2015; Guillaume et al., 2015) particularly in Southeast Asia (Laurance, 

2007a). On Borneo, over 40% of the forest cover has been lost over the last 40 years 

due to conversion to monoculture oil palm plantation (Carlson et al., 2012; Gaveau et 

al., 2014). There is now increased pressure on the remaining forest to provide vital 

ecosystem services (Qie et al., 2017; Asner et al., 2018; Ferraz et al., 2018), with the 

majority (> 70 %) of remaining forest being heavily degraded by selective logging (SL) 

(Gaveau et al., 2014). Certain soil microbial groups have shown a sensitivity to SL 

disturbance in these forests (Elias et al., 2019; Kerfahi et al., 2014; McGuire et al., 

2015). This has significant implications as soil microbial processes account for a major 

portion (up to 80%) of CO2 emissions from forest ecosystems (Yuste et al., 2004), and 

even small alterations can have a large effect (Lu et al., 2014). However, the impacts of 

SL on belowground C cycling and RS are currently unclear. Moreover, there is a lack 

of knowledge of the resistance and resilience of soil microbial communities in SL forest 

to environmental perturbations associated with climate change. Specifically, there is 

uncertainty regarding soil microbial sensitivity to drought events - the intensity and 

frequency of are predicted to increase across tropical regions including Southeast Asia 

(Coelho and Goddard, 2009; Rifai et al., 2019). 

Selective logging characteristically includes the opening of canopy gaps as a 

result of the removal of large individual trees and the creation of skid trails and logging 

roads (Asner et al., 2004). A previous field survey identified alterations in soil bacterial 

and fungal community compositions as a result of the creation of selective-logging gaps 

(SLGs) in logged-over Bornean rainforest (Chapter 2), relating to shifts in soil 

physicochemical properties (i.e. increased soil bulk density, indicating compaction, and 

reduced soil acidity). Although changes in certain key soil microbial functional groups 
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may have implications for nutrient and C-cycling, the impacts of SLG creation on these 

crucial functions is unknown. Limited studies in Malaysian forest suggest overall RS 

rates are lower within SLGs (Saner et al., 2009; Saner et al., 2012; Adachi et al., 2006). 

However, these field studies have been unable to unpick the relative contributions of 

soil microbial communities and vegetation to overall CO2 efflux, as well as 

microclimatic conditions which may govern rates of soil CO2 efflux. 

Soil microbial activity and RS are fundamentally linked to soil moisture 

availability. Low soil moisture conditions associated with drought are subsequently 

associated with reduced soil CO2 efflux rates, although the magnitude of change relates 

to the particular physiological traits and adaptive capacity of soil microbes (de Nijs et 

al., 2019). Following drought, short-term pulses of elevated RS are often observed 

directly after rewetting of soils, through enhanced microbial mineralisation of soil 

organic C and N known as the ‘Birch Effect’ (Birch, 1958; Zhou et al., 2016). This 

results from the re-activation of dormant soil microbes, and stimulated burst in 

microbial growth and turnover due to the increased availability of more easily broken 

down (labile) C substrates, largely through accumulation of dead microbial material 

(necromass) and plant inputs during antecedent low soil moisture conditions (Blazewicz 

et al., 2014; Karlowsky et al., 2018). These RS pulses can occur between minutes and 

several days post-rewetting (Song et al., 2017; Huxman et al., 2004), with the magnitude 

of elevated CO2 production rates related to the intensity of drought (Canarini et al., 

2017). An understanding of the magnitude and duration of these responses is crucial for 

understanding soil C losses and storage (de Nijs et al., 2019; Canarini et al., 2017; 

Cleveland et al., 2010). 
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Evidence suggests that exposure to drought and rewetting can shape soil 

microbial community composition, potentially selecting for communities that are more 

resistant to low moisture conditions (Griffiths et al., 2000) and that recover more rapidly 

post-disturbance (Evans and Wallenstein, 2012). Even short-term drought events can 

significantly alter soil microbial communities, with changes persisting long after return 

to pre-drought conditions. This can have long-term effects for soil microbial functioning 

long after drought events (Meisner et al., 2018). In intact tropical forest, throughfall 

manipulation studies have identified shifts in soil microbial ecophysiological 

characteristics with long-term drying, towards functional traits associated with the 

breakdown of complex C molecules through extracellular enzyme production (Bouskill 

et al., 2016b). The RS of these soils was shown to be more resilient to further drying and 

rewetting than control soils in controlled microcosm experiments, a potential hysteretic 

response as soil microbial communities acclimate to drought conditions as an adaptation 

to previous exposure. However, very few studies have investigated resistance and 

resilience of soil functions to the interactive effects of forest ecosystem disturbance and 

climate perturbations (Chaer et al., 2009; Griffiths and Philippot, 2013). 

Alterations in soil physical properties through SL disturbance may also have 

knock-on effects for RS by affecting soil drying rates and dynamics in response to 

drought. Initial evaporation of soil moisture occurs at the soil surface, with drying rates 

governed by meteorological conditions (atmospheric demand). With progressive 

drying, the evaporative boundary moves down the soil profile to below the depleted soil 

surface layer, where drying rates are determined primarily by soil properties (Yamanaka 

et al., 1998; Aydin et al., 2005). Soil compaction through timber harvesting practices 

can negatively impact upon soil porosity and pore connectivity, subsequently reducing 

hydraulic conductivity (Hartmann et al., 2013) and increasing soil water (matric) 
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potential (i.e. the force by which moisture is held in the soil matrix) (Box and Taylor, 

1962). This can ultimately reduce soil evaporation rates (Aydin et al., 2005). As such, 

soil compaction associated with creation of SLGs may buffer effects of soil drying 

under drought conditions, with implications for microbial activity and soil functions. 

Owing to the complex interactions between soil physicochemical properties, soil 

microbial communities and microclimatic conditions determining overall soil functions, 

understanding the impacts of tropical forest ecosystem disturbance remains a significant 

challenge. Few studies have investigated resistance and resilience of soil functions to 

the interactive effects of forest degradation and drought perturbations, despite the 

rapidly growing area of disturbed tropical forest worldwide and predicted future climate 

scenarios. The overarching aim of this study was to assess the resistance and resilience 

of soil functioning in CCF and SLG to drought and rewetting through controlled 

laboratory manipulations, with a specific focus on RS (CO2 efflux rates) as a functional 

measure. This study was structured around the following specific hypotheses: 

H1. Baseline RS will be lower in SLG relative to CCF due to effect of soil 

compaction through SL disturbance, found through previous survey (Chapter 2). 

H2. SLG soils will demonstrate greater resistance to drought relative to CCF 

soils. As there were no previously detected differences in soil moisture minima 

between CCF and SLG under study (Chapter 2), this is predicted as a result of 

buffering of soil drying in SLG under drought conditions due to compaction of 

SLG soils (increasing soil water matric potential and reducing hydraulic 

conductivity), rather than a hysteretic response of soil microbial communities 

(i.e. acclimation to drought conditions through previous exposure to low soil 

moisture conditions). 



 

   95 

H3. The magnitude of elevated RS following rewetting will increase with 

drought intensity in both CCF and SLG soils. 

H4. SLG soils will demonstrate greater resilience to drought after rewetting 

relative to CCF soils. RS of CCF soils is predicted to recover slower than SLG 

after rewetting, as shifts in soil microbial ecophysiological traits increases 

breakdown of more complex C compounds (e.g. cellulose and lignin) potentially 

in greater supply under CCF due to tree inputs, increasing C cycling in CCF 

soils. 

4.3 Methods 

4.3.1 Study site 

Soil was collected from SL lowland dipterocarp rainforest in the Malaysian State of 

Sabah in Northern Borneo. Samples were taken from twelve established 6 × 6 m study 

plots located within SLG and adjacent CCF across two sites previously characterised 

for soil bacterial and fungal microbial communities, soil physicochemical properties, 

microclimate and vegetation characteristics (Chapter 2). 

4.3.2 Soil sampling 

Within each 6 x 6 m plot, three points were randomly selected for sampling. Around 

each selected sampling point, three soil cores were taken for experimental incubation 

(totalling 36 cores) using plastic piping (8 cm deep, 4 cm inside diameter). The ends 

were sealed on collection with rubber lids. Soil cores were maintained intact for this 

study to preserve soil structural properties, more closely representing field conditions. 

In each plot, three additional cores were collected in the same way for determining soil 

water holding capacity (WHC), field soil moisture content and field % WHC. On 

collection, soil cores were transported to a laboratory and stored in a cool box with 
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frozen gel packs. Cores were then shipped to Lancaster University, UK, where they 

were kept refrigerated at 4 °C prior to MC and WHC analysis and experimental 

incubation. 

4.3.3 Calculation of soil (%) WHC 

Soil WHC was determined after Öhlinger (1995). The fresh weights of the 36 cores 

taken for determining soil WHC were recorded before immersion in deionised water for 

24 hours to reach maximum saturation. The lower opening of the cores were covered 

with plastic mesh and filter paper secured with electrical tape prior to immersion, to 

prevent loss of material. Core saturated weight was recorded after leaving cores to freely 

drain overnight (approx. 21 hours) to remove excess water, covered with cling film to 

prevent evaporation from the upper core opening. Core dry weight was recorded after 

drying cores in an oven at 105˚ C for approx. 48 hours. Soil was then removed from 

plastic piping, mesh and filter paper which was weighed separately. The mass of water 

in saturated cores was calculated by subtracting dry core weight from saturated core 

weight. The mass of dry soil in each core was calculated by subtracting the weight of 

plastic piping, mesh and filter paper from the dry core weight. Maximum soil WHC (g 

water g soil-1) was determined by dividing the mass of dry soil by the mass of water in 

saturated cores. Field soil moisture content was determined by subtracting dry core 

weight from fresh core weight and dividing by mass of dry soil. Field % WHC (%) was 

determined by dividing field soil moisture content by maximum WHC, and multiplying 

by 100. 

4.3.4 Experimental incubations and gas sampling 

The fresh weights of all cores used for the incubation experiment were recorded on 

removing rubber lids. The lower opening of incubation cores was covered with plastic 



 

   97 

mesh and filter paper to prevent loss of material, before mounting on a plastic draining 

plate. Intact cores were placed upright in 1L Mason jars for experimental incubation 

(Fig. 4.1). 

 

 

For each field sampling point (three per plot), each of the three cores collected was 

randomly assigned to one of three experimental moisture treatments: 1) control (average 

field % WHC); 2) mild drought; 3) severe drought. Cores were separated into three 

experimental blocks (A, B and C) according to their respective plot sampling point (i.e. 

one true replicate per block), and arranged by moisture treatment in alternating CCF 

and SLG pairs (Fig. 4.2).   

Figure 4.1 Side (A) and top (B) view of 8 x 4 cm intact soil core installed 

in mason jar for experimental incubation. 

A B 
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Cores were installed in a controlled temperature room maintained at 24 ˚C for the 

duration of the study. This was the average soil temperature across all CCF and SLG 

plots measured in situ during the previous soil survey (Chapter 2). Jars were placed on 

one shelf at the same height to maximise uniformity in temperature across all cores (Fig. 

4.3), with the nested block design providing additional control of small variations in 

local microclimate conditions within the room. When not under drought conditions, jars 

were covered with a moisture-resistant flexible film (Parafilm; Bemis, USA) punctured 

with air holes, to reduce soil evaporation rates while allowing gas exchange to avoid 

anaerobic conditions.  

Figure 4.2 Schematic of experimental incubation setup. Cores were arranged in blocks 

of paired closed-canopy forest (F) and selective logging gap (G) cores by plot (1-6) and 

moisture treatment (control, mild drought and severe drought). 
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For soil % WHC adjustment, synthetic rain was prepared using autoclaved 

deionised water with additions of sodium chloride (NaCl: 0.29 g l-1), calcium chloride 

dihydrate (CaCl2.2H20: 0.09 g l-1), calcium sulphate dihydrate (CaSO4.2H2O: 0.07 g l-

1), magnesium sulphate heptahydrate (MgSO4.7H2O: 0.13 g l-1) and sulphuric acid (98 

% H2SO4: 0.23 g l-1) based on available chemical composition data of rain collected at 

Danum Valley Field Station, Danum Valley Conservation Area, Sabah, Borneo (4.95°, 

117.79°), in the same region as the present study plots (data were obtained from the 

World Data Centre for Precipitation Chemistry; http://wdcpc.org; Vet et al., 2014). 

Synthetic rain was used rather than pure deionised water to minimise leaching of 

nutrients from soils during the incubation, and more closely represent field conditions. 

60 % maximum soil WHC was chosen to represent average field moisture conditions, 

using the approximate % WHC of all cores measured for WHC (CCF and SLG). The 

weights of soil cores at 60 % WHC was determined by estimating the mass of dry soil 

in each core, using core fresh weight (subtracting average plastic pipe weight) and 

Figure 4.3 Soil cores mounted in mason jars installed at equal height in a controlled 

temperature (CT) room. 
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average soil moisture content for each plot, then multiplying by average maximum 

WHC for each plot. 

All cores were adjusted to and maintained at 60 (± 3) % soil WHC (monitored 

every three days minimum) for an equilibration period of one week prior to the 

measurement of baseline CO2 efflux and experimental drought treatments. This was to 

allow microbial communities to revive after refrigeration, and stabilisation of soil CO2 

efflux. The start of the equilibration period (and of all subsequent experiment time 

points) was staggered by one day between blocks, to allow time for % WHC monitoring 

and adjustment, and gas sampling throughout the duration of the incubation experiment. 

After equilibration, only control treatment cores were maintained at 60 % WHC. The 

paraffin film was removed from jars of mild and severe drought treatment cores, and % 

WHC was monitored daily. When drought treatment cores reached approximately half 

the control % WHC when averaged across all CCF and SLG cores (i.e. 30 % WHC; 

after seven days of drying), mild drought treatment cores were readjusted back to 60 % 

WHC and re-covered with paraffin film. Severe drought treatment cores were left to dry 

for approximately double the drying period of mild treatment cores (a total of 15 days) 

before readjusting back to 60 % WHC and re-covering with paraffin film. After 

rewetting, both mild and severe drought treatment cores were maintained at 60 % WHC 

for a recovery period of 11 days. 

 CO2 efflux rates were measured at four experimental time points: 1) before 

drought (BD), i.e. after stabilisation period for baseline CO2 efflux; 2) after drought 

(AD), for mild and extreme drought treatments and respective controls; 3) initial 

recovery (IR), three days after rewetting of mild and extreme drought treatment cores; 

4) final recovery (FR), eleven days after rewetting of mild and extreme drought 
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treatment cores. CO2 sampling was conducted using a Picarro gas analyser (Picarro 

Instruments, USA). Jars were sealed using a custom lid fitted with inlet and outlet pipes 

in a closed system with the Picarro analyser, using silicon grease to ensure an airtight 

seal. Increase in CO2 concentration was allowed to stabilise for approximately one 

minute, based on real-time visualisation using the analyser display. CO2 concentrations 

were then recorded in ppm at one second intervals for six minutes. CO2 concentration 

data for each measurement were trimmed to the last 350 points to retain a period of 

linear increase over time, and rate of change in ppm was calculated using linear 

regression. CO2 efflux rates were then calculated in µg CO2-C cm-2 hour-1 using the 

following formula: 

𝐶𝑂2 𝑒𝑓𝑓𝑙𝑢𝑥 𝑟𝑎𝑡𝑒 =
3,600 ∗ 𝑚 ∗  𝑉 ∗ 𝐶𝑀 ∗ 𝑃

𝐴 ∗ 𝑅 ∗ 𝑇
    

where m is the rate of change on CO2 concentration (ppm s-1), V is the volume of 

chamber used during measurement corrected for soil core volume (m3), CM is the 

molecular mass of C (g mol-1), P is absolute gas pressure, A is surface area of core (m2), 

R is the universal gas constant and T is temperature (Kelvin). As intact cores were used 

to represent the inherent properties of the entire soil matrix, CO2 efflux rates were 

expressed on a per area rather than per g soil basis. This retains integrated soil 

physicochemical and structural properties influencing soil water and gas dynamics 

along the soil profile (see for example Briones et al., 2014). 

4.3.5 Relative change in CO2 flux rates 

Additional indices were calculated for evaluating relative effects of mild and extreme 

drought treatments on CO2 efflux rates within and between forest types and experiment 

time points. Absolute change in CO2 efflux rates (AC; µg CO2-C cm-2 hour-1) was 

calculated by subtracting CO2 efflux rates of respective controls from those of mild and 
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extreme drought treatment cores at each experiment time point. Proportional change in 

CO2 efflux rates was calculated as a response ratio (RR %) by dividing CO2 efflux rates 

of mild and extreme drought treatment cores by those of respective controls at each time 

point, subtracting 1 to indicate direction of change, and multiplying by 100. 

4.3.6 Statistical analyses 

All statistical analyses were conducted in R version 3.6.0 (R Core Team, 2019) and 

significance in all tests was considered at the p ≤ 0.05 level. Data were first averaged 

by moisture treatments within plots to control for spatial pseudoreplication in field 

sampling and to account for block effects in incubation design (total 36 cores). ANOVA 

was used to test for differences in CO2 efflux rates, AC, RR and % WHC between forest 

types and moisture treatments at each experimental time point, and between 

experimental time points within forest types and moisture treatments. Data were subset 

prior to ANOVA tests by experiment time point or forest type as necessary. Differences 

in all parameters between CCF and SLG at each time point were tested with linear 

models, fitting vegetation type after the site factor to control for potential site effects in 

field sampling design. Differences between moisture treatments and time points were 

tested with linear mixed models (LMMs) in the lme4 R package (Bates et al., 2015) 

including plot ID as a random intercept term to control for the nested experimental 

design. Post-hoc pairwise comparisons between experiment time points and moisture 

treatments within and between forest types were conducted where necessary with the 

emmeans R package (Lenth et al., 2019) with Bonferroni correction. Significance tests 

for LMMs were performed using the Satterthwaite degrees of freedom approximation 

(Luke, 2017). Normality of residuals for all models were evaluated using Shapiro-Wilk 

tests, and variables were transformed where necessary to improve model fit and satisfy 

assumptions of homoscedasticity. 
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4.4 Results 

4.4.1 Baseline respiration 

Baseline CO2 efflux was significantly lower in SLG (4.32 ± 2.15 µg cm-2) relative to 

CCF (7.03 ± 1.87), when tested after the stabilisation period using all samples (Fig. 4.4; 

R2
C = 0.30, F = 6.07, p = 0.036). This difference was mainly driven by one SLG plot 

(G6) with very low values. No significant difference was found when this plot was 

excluded from analysis (p = 0.065)  

 

4.4.2 Effects of drying and rewetting on soil CO2 efflux rates in CCF and SLG 

Drying and rewetting significantly affected soil CO2 efflux rates within both forest types 

(Fig. 4.5; see Table 4.1 for summary of all test statistics for effects of moisture treatment 

at each time point by forest type). 

Figure 4.4 Box and whisker plot of baseline CO2 efflux rates in closed canopy forest (CFF) 

and selective logging gaps (SLG) after the 7 day equilibration period before commencing 

drought treatments. The asterisk indicates a significant difference between forest types at the 

p < 0.05 level as identified by ANOVA through linear mixed model (LMM) analysis 

controlling for site effects and the nested sampling design within plots. 
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Figure 4.5 Box and whisker plots of raw soil CO2 efflux rates for closed canopy forest (CCF) and selective 

logging gap (SLG) cores for the three moisture treatments at experimental time points: before drought 

(BD); after drought (AD); initial recovery (IR); final recovery (FR). Lower case letters indicate statistically 

different or similar means in CO2 efflux rates between moisture treatments within forest types for each 

experimental time point at the p < 0.05 level, identified with ANOVA after controlling for site effects and 

nested experimental design. 
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Table 4.1 ANOVA and post-hoc pairwise test results for the effects of moisture treatment on soil CO2 efflux 

rates at each time point by forest types of closed canopy forest (CCF) and selectiv logging gaps (SLG), 

conducted using linear mixed models (LMMs) controlling for the nested experimental design. p-values for 

pairwise tests were determined using Bonferroni correction. 

Time point 
Forest 

type 

Overall model 

Pairwise tests 

C-MD C-SD MD-SD 

F p t-ratio p t-ratio p t-ratio p 

Before drought CCF 0.27 0.767 0.66 0.791 0.62 0.814 -0.04 0.999 

 SLG 2.83 0.106 -2.29 0.104 -0.59 0.830 1.70 0.251 

After drought CCF 145.95 0.000 9.85 0.000 17.02 0.000 7.17 0.000 

 SLG 21.68 0.000 4.52 0.003 6.41 0.000 1.89 0.193 

Initial recovery CCF 11.35 0.003 -2.93 0.037 -4.72 0.002 -1.79 0.221 

 SLG 11.06 0.003 -1.96 0.173 -4.68 0.002 -2.72 0.052 

Final recovery CCF 8.02 0.008 -1.14 0.515 -3.89 0.008 -2.76 0.049 

 SLG 4.17 0.048 -0.81 0.705 -2.81 0.045 -2.00 0.164 

 

At the after drought time point, mean CO2 efflux rates of mild and severe drought 

treatments were significantly lower than respective controls for both CCF and SLG (see 

Table 4.2 for summaries of mean CO2 efflux at each experimental time point for each 

forest type and drought treatment). At the initial recovery time point (three days after 

rewetting), severe drought treatment CO2 efflux rates were significantly higher than 

respective controls for both CCF and SLG. Mild drought treatment CO2 efflux rates 

were significantly higher than respective controls for CCF, while those for SLG did not 

significantly differ. At the final recovery time point (eleven days after rewetting), severe 

drought treatment CO2 efflux rates remained significantly higher than respective 

controls for both CCF and SLG, while mild drought treatment CO2 efflux rates did not 

differ from respective controls for either CCF or SLG. 
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4.4.3 Relative effects of drying and rewetting on soil CO2 efflux between forest types 

and drought treatments 

Neither absolute change in CO2 efflux rates or RRs differed between CCF and SLG at 

any experimental time point for either mild or severe drought treatments (Fig 4.6; see 

Table 4.3 for summary of all test statistics for effects of drought treatment on absolute 

change in CO2 efflux and response ratios at each time point by forest type). 

 

Table 4.2 Means of soil CO2 efflux rates (± 1 SD) in µg CO2-C cm-2 hour-1 

for closed-canopy forest (CCF) and selective logging gap (SLG) cores for 

control (C), mild drought (MD) and severe drought (SD) moisture treatments 

at the experimental timepoints of before drought (BD), after drought (AD) 

initial recovery (IR) and final recovery (FR). Superscript letters indicate 

statistically similar or different mean CO2 efflux rates between moisture 

treatments within forest types for each experimental time point at the p < 0.05 

level identified through ANOVA with post-hoc pairwise tests controlling for 

the nested experimental design. 

Time point Treatment 

Forest type 

CCF SLG 

BD C 7.40 ± 1.59 3.96 ± 1.88 

 MD 6.82 ± 2.01 4.83 ± 2.68 

 ED 6.86 ± 2.26 4.18 ± 2.12 

AD C 7.48 ± 2.15 a 4.56 ± 2.17 a 

 MD 2.28 ± 0.82 b 1.44 ± 0.80 b 

 ED 0.97 ± 0.46 c 0.60 ± 0.33 b 

IR C 6.88 ± 1.74 c 4.61 ± 2.22 b 

 MD 9.17 ± 2.29 b 5.67 ± 2.60 ab 

 ED 11.09 ± 3.48 a 7.14 ± 3.13 a 

FR C 5.77 ± 1.60 b 4.27 ± 2.16 b 

 MD 8.68 ± 2.45 b 4.67 ± 2.42 ab 

 ED 6.62 ± 1.83 a 5.58 ± 2.27 a 
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Figure 4.6 Barplots of means (± SE) for A) absolute change and B) proportional change (response ratios) in CO2 

efflux rates relative to controls for closed canopy forest (CCF) and selective logging gap (SLG) soil cores by mild 

and severe drought treatments at experimental time points: before drought (BD); after drought (AD); initial 

recovery (IR) and final recovery (FR). Capitalised letters indicate significant differences in absolute change or 

response ratios between drought types at the same experimental time points within forest types for CCF (F) and 

SLG (G). 
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For CCF, absolute change in CO2 efflux was significantly greater in the extreme 

relative to mild treatment at the initial recovery and final recovery experiment time 

points (Fig 4.6 A). For SLG, absolute change in CO2 efflux was also significantly 

Table 4.3 ANOVA results for differences in absolute change (AC) and proportional change (response 

ratios; RR) in CO2 efflux rates between 1) forest types of closed canopy forest (CCF) and selective 

logging gaps (SLG) and 2) mild and extreme drought types relative to control cores at each time point. 

Analyses were conducted using linear models for vegetation type controlling for site effects, and linear 

mixed models (LMMs) for drought types controlling for the nested experimental design. 

Parameter Comparison between Time point Within group F p 

AC Forest types Before drought Mild drought 1.43 0.262 

   Severe drought 1.03 0.336 

  After drought Mild drought 4.27 0.069 

   Severe drought 2.52 0.147 

  Initial recovery Mild drought 0.17 0.691 

   Severe drought 2.55 0.145 

  Final recovery Mild drought 0.17 0.691 

   Severe drought 3.98 0.077 

 Drought types Before drought CCF 0.00 0.962 

   SLG 2.57 0.170 

  After drought CCF 0.24 0.644 

   SLG 2.18 0.200 

  Initial recovery CCF 13.05 0.015 

   SLG 8.72 0.032 

  Final recovery CCF 13.66 0.014 

   SLG 0.73 0.432 

RR Forest types Before drought Mild drought 0.95 0.355 

   Severe drought 0.24 0.633 

  After drought Mild drought 0.19 0.671 

   Severe drought 0.00 0.998 

  Initial recovery Mild drought 0.02 0.904 

   Severe drought 1.02 0.338 

  Final recovery Mild drought 0.08 0.787 

   Severe drought 0.30 0.595 

 Drought types Before drought CCF 0.07 0.796 

   SLG 3.44 0.123 

  After drought CCF 16.08 0.003 

   SLG 1.94 0.197 

  Initial recovery CCF 14.29 0.013 

   SLG 1.02 0.338 

  Final recovery CCF 19.60 0.007 

   SLG 2.37 0.158 
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greater in the extreme relative to mild treatment at the initial recovery experiment time 

point, but not final recovery. CCF RRs were of a significantly larger magnitude 

(positive or negative) in the extreme drought treatment relative to the mild drought 

treatment at the after drought, initial recovery and final recovery experiment time points 

(Fig 4.6 B). SLG RRs did not significantly differ between drought treatments at any 

experiment time points. 

4.4.4 Effects of drought treatments on soil % WHC within and between forest types 

% WHC of samples significantly differed between treatment time points before drought, 

after mild drought and after severe drought (Fig 4.7; all pairwise tests: p < 0.0001). 

 

Figure 4.7 Box and whisker plots of estimated % soil water holding capacity (WHC) in closed canopy 

forest (CCF) and selective logging gap (SLG) soil cores before drought and after mild and severe 

drought treatments. Lower case letters indicate statistically different groups between treatment time 

points within forest types at the p < 0.05 level identified with ANOVA and pairwise post-hoc tests. 
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No differences were found in % WHC between CCF and SLG at any time point tested 

for either drought treatment (p > 0.05). However, variation around the mean was slightly 

larger in % WHC of SLG relative to CCF soils (Table 4.4). 

 

 

 

 

 

 

4.5 Discussion 

Baseline CO2 efflux after the equilibration period was found to be significantly lower 

in SLG relative to CCF (Fig. 4.4), in line with the initial hypothesis that RS is negatively 

influenced by SL disturbance. This is consistent with observations in a previous study 

in SL forest in Sabah, Borneo, where in situ field measurements of soil CO2 efflux was 

also found to be lower in SLG (Saner et al., 2009). While supporting these observations, 

findings contrast with other studies in dipterocarp forest of Peninsular Malaysia, where 

the effect of SL on soil CO2 efflux was not detected either between CCF and SLG after 

approximately 50 years of recovery (Adachi et al., 2006), or between old-growth and 

SL forest (Yashireo et al., 2008). Meanwhile, in other tropical systems, reduced soil 

CO2 efflux has been reported in response to clearance of moist deciduous forest in India 

(Mohanty and Panda, 2011) and plantation forest in Congo (Epron et al., 2006). 

However, none of these field studies could disentangle the relative effects of vegetation 

Table 4.4 Means of soil % WHC (± 1 SD) for closed-canopy 

forest (CCF) and selective logging gap (SLG) cores at treatment 

time points of before drought, after mild drought and after severe 

drought. Superscript letters indicate statistically similar or 

different mean % WHC between treatment time points within 

forest types at the p < 0.05 level, as identified through ANOVA 

with pairwise post-hoc tests controlling for the nested 

experimental design. 

Treatment time point 
Forest type 

CCF SLG 

Before drought 60.19 ± 0.33 a 60.52 ± 0.32 a 

After mild drought 30.89 ± 2.64 b 30.99 ± 3.24 b 

After severe drought 13.24 ± 2.87 c 12.80 ± 4.15 c 
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structure and composition, microclimate, and soil microbial community attributes on 

altered RS with forest disturbance. Saner et al. (2009) attributed the suppression of RS 

in SLG in Borneo mainly to differences in vegetation (i.e. lower fine-root biomass in 

SLG), potentially reducing the contribution of autotrophic plant root respiration to 

overall soil CO2 production. By removing the influences of vegetation and controlling 

temperature and soil moisture conditions, the present study highlights the importance 

of SL-induced changes to soil physicochemical properties and soil microbial 

communities in shaping microbial heterotrophic respiration responses to forest 

disturbance which may be an important component of overall RS. These findings are 

congruent with those of other tropical soil incubations studies similarly demonstrating 

reduced RS in response to forest disturbance under controlled laboratory conditions, for 

example comparison of CO2 efflux of soils from natural forest and deforested land in 

India (Sahini and Behera, 2001). In studies of SL impacts on resistance and resilience 

of soil microbial functioning in temperate biomes, soil microbial CO2 production has 

been linked to severity of soil compaction associated with timber extraction (i.e. through 

use of heavy machinery) (Hartmann et al., 2013). This was attributed to changes in soil 

microbial community structure and reduced microbial decomposition under more 

anaerobic conditions, as well as increased physical protection of soil organic matter and 

reduced gas diffusivity. Analyses of physicochemical properties in the present study 

plots found greater soil bulk densities in SLG relative to CCF (Chapter 2), soil 

compaction may thus be a contributory mechanism down-regulating soil microbial CO2 

production rates and overall RS in SLG. 

 Results did not support the initial hypothesis that functioning of SLG soils 

would be more resistant than CCF soils to drought. Both CCF and SLG soil CO2 efflux 

rates were significantly negatively affected by mild and severe drought treatments (Fig. 
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4.5). For CCF soils, CO2 efflux was significantly lower after the severe drought relative 

to the mild drought treatment, while post-drought CO2 efflux did not differ between 

drought treatments for SLG. Despite this, no difference was found in either the absolute 

or relative (%) change in CO2 efflux rates between CCF and SLG. The prediction that 

the more compacted soils of SLG would reduce soil evaporation rates through decreased 

hydraulic conductivity and corresponding increased soil water matric potential 

(Yamanaka et al., 1998; Aydin et al., 2005; Hartmann et al., 2013; Box and Taylor, 

1962) was not corroborated, as there was no difference found in % WHC between CCF 

and SLG soils after 7 or 15 days of drying (Fig. 4.7). 

 The observed reduction in RS of both CCF and SLG soils under drought 

conditions may represent a combination of mechanisms underpinned by moisture 

availability, a fundamental factor governing soil microbial community attributes and 

activity (Manzoni et al., 2012; Moyano et al., 2013; Tecon and Or, 2017; Waksman and 

Gerretsen, 1931). Firstly, moisture-dependent stable state decompositional processes 

may be down-regulated by drought (Manzoni et al., 2012), i.e. a slowing of microbial 

metabolic activity (e.g. mineralisation; Cassman and Munns, 1980; Hueso et al., 2012) 

and reduction in substrate supply to microbial decomposers through inhibition of soil 

solute and enzyme mobility (Stark and Firestone, 1995; Schjønning et al., 2003). 

Subsequent lowering of microbial growth rates in turn reduces overall soil microbial 

biomass and net microbial activity (Hueso et al., 2012). Secondly, drought can impact 

on soil microbial community structure itself, as well as functional diversity (Hueso et 

al., 2012) which may have downstream consequences for C-cycling capabilities 

(Bouskill et al., 2016b). This occurs as unadapted soil microbes die under low moisture 

conditions (van Meeteren et al., 2008), while those more tolerant to water stress are 

selected for (Evans et al., 2011). Different microbial groups may be affected more 
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strongly, with bacteria generally more sensitive to drought than fungi (Manzoni et al., 

2012). The magnitude of these effects therefore depends on the adaptive capacity of the 

soil microbial communities present to environmental disturbance, which may be 

influenced by previous exposure to perturbations (de Nijs et al., 2019; Evans et al., 

2011; Bouskill et al., 2016b). While there was no evidence of soil structural properties 

buffering the drying effects of drought in SLG, similar % WHC values and CO2 efflux 

rates in CCF and SLG at the time of gas sampling indicate that microbial RS responds 

similarly to similar moisture deficits in CCF and SLG, even though soil bacterial and 

fungal communities have been found to differ in overall composition between these 

forest types (Chapter 2). This finding supports the notion that neither soil microbial 

communities of CCF or SLG are more or less acclimated to drought conditions through 

previous exposure to low moisture conditions, which may present a hysteretic RS 

response to drought as has been observed in other controlled tropical forest soil 

incubation studies, for example higher CO2 efflux rates from soils under laboratory 

drought conditions that were previously subjected to short-term throughfall exclusions 

in Costa Rican forest (Waring and Hawkes, 2014). 

 In contrast to the reduced soil CO2 efflux rates observed with drying in the 

present study, field experiments in tropical forest systems have in some instances shown 

increased RS in response to experimental drought treatments, for example in another 

Costa Rican study (Cleveland et al., 2010). This has also been observed in response to 

natural drought conditions, as observed in high-frequency measurements of greenhouse 

gas emissions in Puerto Rican forest during the severe Caribbean drought of 2015, 

where soil CO2 efflux increased dramatically by 60 % and 163 % on slopes and in 

valleys, respectively (O’Connell et al., 2018). Elevated RS with drought may be 

attributed to increased soil oxygen (O2) availability with reduced moisture, or by 
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increased microbial respiration efficiency due to higher concentrations of dissolved 

organic carbon (DOC) reaching the soil from the litter layer with reduced throughfall. 

The latter may also potentially stimulate priming effects, i.e. the breakdown of more 

recalcitrant soil C pools through addition of concentrated and more labile C substrates 

(Cleveland et al., 2010). However, in some cases field throughfall exclusions have 

reduced soil CO2 efflux, for example during a long-term experiment in Indonesia (van 

Straaten et al., 2011), or had no impact, for example in tropical forest of Southern China 

(Deng et al., 2018). According to a recent synthesis of the effects of field drought 

simulations in tropical forest, the differences between these observations may result 

from system-specific soil moisture thresholds, where peak RS occurs somewhere 

between very wet and very dry soil conditions, and with this point varying by ecosystem 

(Meir et al., 2015). In the present study, reduced CO2 efflux rates with a lowering of 

soil moisture from average field conditions suggests a negative effect of drought on RS 

in these systems, although it is important to note the litter layer was removed from soil 

before incubation and so effects of litter-associated DOC inputs were not included. 

 The magnitude of CO2 effluxes after rewetting was higher following the severe 

relative to the mild drought treatment for both CCF and SLG soils when absolute change 

in CO2 efflux was analysed. This supports the third hypothesis that CO2 efflux pulses 

are related to drought intensity, as shown in other study systems (Canarini et al., 2017). 

As the influence of vegetation inputs was removed in this controlled experiment, this 

likely results from the increased accumulation of microbial necromass during longer 

periods of low soil moisture conditions, providing a greater labile C source for rapid 

regrowth and turnover of soil microbes after drought (Blazewicz et al., 2014). There 

were no differences found in relative magnitude of pulses CO2 efflux between CCF or 

SLG (absolute or proportional change) at the initial recovery time point, which may 
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result from similar microbial biomass pools as found in previous biological analysis 

(Chapter 2). 

The final hypothesis that SLG soils would be more resilient to drought and 

rewetting compared to CCF was only partially supported. Relative responses in CO2 

efflux after drought and rewetting were found to be similar in CCF and SLG at both the 

initial and final recovery experiment time points. However, CO2 efflux rates in CCF 

soils were significantly higher than respective controls after mild drought treatment 7 

days after rewetting, while SLG CO2 efflux rates did not differ from controls (Fig. 4.5). 

This suggests that soil communities and function may recover more rapidly in SLG than 

CCF after less severe drought. Furthermore, the relative effects of drought severity 

(proportional change) were much more pronounced for CCF soils, as CO2 efflux rates 

significantly differed between drought treatments at each timepoint for this forest type, 

while SLG CO2 efflux rates did not (Fig. 4.5). The lack of differences detected between 

drought treatments in SLG may indicate lesser sensitivity of SLG soil function to more 

extreme drought, particularly as means of absolute change in CO2 efflux rates and 

response ratios tended to be smaller relative to CCF (although not significantly) after 

the severe drought treatment (Fig 4.6). However, absence of clear differences in SLG 

RS responses to differing drought intensities or between CCF and SLG after rewetting 

may also result from higher variation in SLG soils relative to mean values. This suggests 

that while some SLGs may be more resilient to drought and rewetting, others may be 

much less so, potentially due to other soil abiotic and biotic properties not characterised 

by CCF and SLG classifications. 

Following the severe drought treatment, both CCF and SLG CO2 efflux rates 

remained significantly higher than respective controls at the final recovery time point, 
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11 days after rewetting. There are two possible mechanisms responsible for this 

observation. Firstly, continued elevated RS may indicate that temporary CO2 efflux 

pulses associated with a burst in microbial growth and activity on rewetting (Birch, 

1958; Zhou et al., 2016; Blazewicz et al., 2014; Karlowsky et al., 2018) may be 

prolonged in both CCF and SLG soils after intense drought, with recovery times longer 

than the period studied. Although these pulses may peak in the seconds or minutes after 

rewetting, it may take several days before soil functions return to pre-drought conditions 

(Song et al., 2017; Huxman et al., 2004). Secondly, extremely low soil moisture 

conditions may have permanently altered microbial communities and associated 

ecophysiological traits, leading to a persistent alteration in soil functioning (Meisner et 

al., 2018). Although drought was predicted to result in sustained elevation of RS in CCF 

soils due to shifts toward microbial breakdown of more complex C compounds 

associated with canopy cover (Bouskill et al., 2016a; Bouskill et al., 2016b), these 

findings may indicate alterations in metabolic characteristics and C cycling capabilities 

of soil microbial communities in both CCF and SLG soils. 

 A number of study limitations need to be recognised with respect to 

interpretation of differences (and non-differences) observed in RS responses to drought 

and rewetting of CCF and SLG soils. Due to the high number of cores measured and 

time requirement for gas sampling, CO2 efflux was only measured at the end point of 

mild and extreme drought periods and at 7 and 11 days following rewetting. The 

resolution of gas sampling may therefore limit detectability of differences in CO2 efflux 

rates during drought and recovery periods which may be highly dynamic. While CCF 

soils demonstrated clear RS responses to drought of differing intensities, impacts on RS 

of SLG were less certain due to high variability. Further study incorporating different 

classes of SLG according to soil biological and physicochemical properties may help to 
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clarify the range in observed sensitivity of soil function in SLG to environmental 

perturbations, and improve predictions of responses to land-use and climate change in 

SL forest. As no further measurements were made after 11 days of recovery, it remains 

unclear whether elevated RS following severe drought in CCF and SLG soils at the final 

recovery stage represents a prolonged but temporary burst in microbial activity, or a 

persistent or permanent shift in microbial communities and ecophysiological traits 

related to breakdown of different C fractions. Similarly, the underlying drivers of lower 

baseline CO2 efflux rates in SLG relative to CCF are unknown. Analysis of soil 

microbial functional traits pre- and post-drought perturbations (e.g. extracellular 

enzyme production) may help to unpick the mechanisms (Bouskill et al., 2016b). 

Furthermore, substrate addition experiments utilising C compounds of differing 

structural complexities are also recommended to identify specific differences in soil 

microbial C cycling capabilities (e.g. Whitaker et al., 2014a; Whitaker et al., 2014b), 

and subsequent implications of SL and climate induced changes in soil microbial 

functions.  Finally, only a single drying and rewetting cycle was studied, and impacts 

of repeated drought events which may compound alterations in soil functions (Fierer 

and Schimel, 2002) remain unresolved. 

In conclusion, baseline RS was found to be lower in SLG relative to CCF soils, 

corresponding to previously found differences in soil microbial community structure 

and physicochemical properties between vegetation types. This highlights the important 

impacts of SL disturbance on soil microbial heterotrophic RS not previously identified 

due to extraneous vegetation and microclimatic factors. No evidence was found for 

differences in resistance of soil functioning to drought between CCF and SLG, which 

experienced similar soil moisture deficits after mild and severe drought treatments 

despite differences in soil structural characteristics. Magnitude of CO2 efflux rates 
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increased with drought intensity in initial recovery following drought for both forest 

types. Some evidence was found for greater resilience of SLG soil function to drought 

and rewetting, although further study including higher resolution of sampling time 

points and inclusion of different classifications of SLG types may help to identify 

underlying mechanisms. RS remained significantly higher than controls at the final 

recovery stage following the severe drought treatment for both forest types, indicating 

prolonged alterations in soil functioning that may relate to ecophysiological changes in 

soil microbial communities as a result of disturbance. While future experiments 

including repeated drought-rewetting cycles and substrate additions may help to clarify 

longer term responses of differing vegetation types of SL Southeast Asian tropical forest 

soils to environmental perturbations, these findings have major implications for 

increased CO2 release to the atmosphere in response to climate change events predicted 

to increase in intensity and frequency across tropical regions.  
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5 Restoration effects on soil microbes in Bornean lowland 

dipterocarp rainforest 

5.1 Abstract 

Rapid loss of forest cover in Borneo due to expansion of monoculture plantation puts 

increasing pressure on remaining forest to provide globally important ecosystem 

services, including carbon storage. The majority of remaining forest is heavily degraded 

through selective logging, impacting on vital biogeochemical cycles underpinned by 

complex plant-soil microbial interactions. Ecological restoration offers potential for 

recovery of ecosystem functions in degraded tropical forest, through re-establishing 

vegetation and soil microbial communities. However, most studies have focussed on 

aboveground dynamics during rehabilitation, and understanding of patterns in soil 

microbial community attributes and function remains limited. To address this, a survey 

of soil microbial communities was conducted across old-growth (OG), unrestored 

selectively-logged (USL) and restored selectively-logged (RSL) forest in Sabah, 

Borneo. Results indicate that restoration by enrichment planting can successfully 

recover levels of bacterial alpha diversity and spatial turnover of bacterial taxa 

comparable to OG. Fungal diversity appeared to recover more slowly, largely due to 

saprotrophic fungal richness and Shannon alpha diversity remaining similar to USL. 

Soil microbial community compositions were generally more similar between USL and 

RSL, with more distinct communities in OG. An apparent absence of fungal suppressors 

of plant pathogens and parasites with restoration may have negative implications for 

reestablishment of planted species. Surprisingly, fewer microbial taxa were shared 

between OG and RSL compared to other forest types. This indicates potential selection 

of different soil microbial taxa through current restoration practices, including removal 

of lianas and understorey vegetation. The observed impact of forest degradation on 
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bacterial diversity contradicts previous coarser spatial scale studies that found bacterial 

communities to be broadly resilient to selective logging, emphasising the importance of 

fine-scale (cm to m) approaches to evaluation of soil microbial biodiversity patterns. 

Overall findings suggest impediment to rehabilitation of soil microbial community 

attributes and associated functions, with implications for landscape-scale 

biogeochemical cycling. Changes in management practices to incorporate rehabilitation 

of belowground communities may be required for successful biodiversity conservation 

and recovery of vital ecosystem services including C storage.  
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5.2 Introduction 

Old-growth forests (OG) are rapidly being replaced by human-modified secondary 

forest worldwide, with highest conversion rates in the tropics (Keenan et al., 2015). The 

degradation of tropical forest ecosystems by human activity affects their crucial 

function as global reservoirs of biodiversity and carbon (C) (Myers et al., 2000; Pan et 

al., 2011; Powers and Jetz, 2019; Baccini et al., 2017; Qie et al., 2017). The forests of 

Borneo are a hotspot of forest disturbance and loss, driven by commercial timber 

extraction and conversion to oil palm plantations. A reduction of forest cover by more 

than 30 % since the early 1970’s means increasing pressure on remaining forest to 

provide vital ecosystem functions, although over 70 % of this remaining forest has been 

disturbed through selective logging (Gaveau et al., 2014; Gaveau et al., 2016) affecting 

its capacity as a carbon sink (Asner et al., 2018). 

Forest degradation can significantly affect soil physicochemical properties (see 

Chapter 1), often reducing soil carbon pools (Don et al., 2011; Wei et al., 2014) and 

altering nutrient availability and overall fertility (Paul et al., 2010; Daljit Singh et al., 

2013). This subsequently influences microbial communities (Tripathi et al., 2012; Jesus 

et al., 2009) and biogeochemical cycles, underpinned by complex plant-soil interactions 

and reciprocal feedbacks between vegetation and soil microbes (Cortois et al., 2016; 

van Der Putten et al., 2013; Bever et al., 2010; van der Heijden et al., 2008; Wardle et 

al., 2004). Although the preservation of primary forest is crucial for biodiversity 

conservation and the maintenance of ecosystem functions (Gibson et al., 2011), natural 

and managed restoration of secondary tropical forest has great potential to recover 

ecosystem services (Chazdon, 2008; Melo et al., 2013; Wright, 2010) including carbon 

storage (Pan et al., 2011). Rainforest rehabilitation through planting programmes is now 

a widely used strategy to recover vegetation structure and diversity after disturbance 
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(Celis and Jose, 2011; Shoo et al., 2016; Bonner et al., 2019). Enrichment planting, 

involving the reintroduction of tree species lost through human disturbance (usually 

systematically along regularly placed planting lines), has been adopted across Southeast 

Asia as a strategy to restore forest floristic composition towards that of OG forest 

(Perumal et al., 2016). This practice is often accompanied by liana cutting and clearing 

of understorey vegetation along planting lines, to facilitate establishment of 

reintroduced seedlings by reducing competition for resources (Face the Future, 2007; 

2020). This approach is currently employed in large-scale restoration projects 

(approaching 30,000 ha) established over recent decades in the Malaysian state of Sabah 

(Reynolds et al., 2011), where forest degradation has been most extreme (Gaveau et al., 

2014). However, success of tropical forest planting programmes has in many cases been 

limited by lack of context-specific knowledge of the ecology of planted tree species, 

including plant-soil interactions (e.g. Rodrigues et al., 2009). For enrichment planting, 

the majority of studies in Malaysia has focussed on the survival, growth and 

productivity of planted tree species, with little consideration of soil physicochemical 

and biological properties, or wider ecosystem functions (Perumal et al., 2016). 

Understanding of the capacity for recovery of tropical forest soil physicochemical 

properties, microbial community attributes and biogeochemical processes is broadly 

limited due to few studies having been made (Bonner et al., 2019). 

Some studies of restoration planting following forest clearance observed 

increases in microbial biomass C (MBC) (Deng et al., 2010; Nurulita et al., 2016) and 

bacterial alpha diversity, with alterations in bacterial community structure that may 

indicate ecosystem recovery (Deng et al., 2010). The small number of studies 

undertaken in enrichment planted secondary Malaysian forest also highlight increases 

in microbial biomass towards OG (Daisuke et al., 2013; Perumal et al., 2016; Daljit 
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Singh et al., 2013). However, microbial indicators can be system-specific and depend 

on type, intensity and duration of disturbance (Banning et al., 2011). In general, there 

is a lack of understanding of the patterns of microbial responses to ecosystem restoration 

(Banning et al., 2011; Strickland et al., 2017). This outlines a major knowledge gap for 

understanding the potential for secondary forest recovery, and evaluation of the success 

of rehabilitation. 

While very little is known about impacts of restoration on soil microbial 

attributes, more is known about effects of disturbance. Selective logging (SL) in SE 

Asia has been shown to influence soil fungal community composition and diversity, 

largely through targeted removal of the dominant ectomycorrhizal-associating 

dipterocarp tree species, having major implications for carbon and nutrient cycling 

(Chapter 1; Chapter 2; Elias et al., 2019; Kerfahi et al., 2014; McGuire et al., 2015). 

Soil bacterial communities appear more resilient to disturbance, with two studies 

conducted in Malaysian Borneo finding no differences in alpha or (community distance-

based) beta diversity of bacterial communities between OG and SL forest using 16S 

amplicon sequencing (Tripathi et al., 2016; Lee-Cruz et al., 2013). However, findings 

from a higher spatial resolution study in SL (Chapter 2) indicate a finer-scale approach 

may be necessary to detect impacts of SL on soil microbial structure and diversity. 

Inference of results from previous landscape-scale surveys may therefore be hindered 

by coarse sampling resolution (composite samples bulked over 200 m transects), as 

bacterial communities may vary considerably at the metre- or even centimetre-scale (O' 

Brien et al., 2016). Furthermore, apparent effects of SL on “true” beta diversity (Lee-

Cruz et al., 2013) show a sensitivity of results to definition and calculation of diversity 

metrics. In some tropical systems, soil microbial alpha and beta diversity have been 

shown to become uncoupled during disturbance (e.g. through conversion of Amazonian 
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forest to cattle pasture), through increasing local (alpha) diversity, while spatial turnover 

of taxa (beta diversity) is reduced. This may result in overall net losses in diversity of 

soil microbial taxa, and homogenisation of communities across landscapes (Rodrigues 

et al., 2013). Increases in bacterial alpha diversity have also been observed in 

agricultural land versus forest in Malaysia (Tripathi et al., 2012). Alterations in soil 

microbial communities and diversity with ecosystem disturbance may arise from effects 

on soil physicochemical properties determining both availability of effective resources 

and creation of different ecological niches (Zhang et al., 2018). Soil microbial 

biodiversity has the potential to increase with a certain level of disturbance (the 

intermediate disturbance hypothesis: Zhang et al., 2011; Ferrenberg et al., 2013; Galand 

et al., 2016; Wilkinson, 1999), while changes in community composition and functional 

capabilities may directly relate to disturbance intensity (Berga et al., 2012). Reversal of 

ecosystem disturbance effects through active restoration may therefore recover soil 

microbial attributes along with availability of effective resources and ecological niches. 

However, effects of SL disturbance and restoration on bacterial diversity patterns in 

these ecosystems is unresolved, limited by both sampling resolution and lack of 

unification in analytical approaches to comparisons of diversity at different scales. This 

represents a vital knowledge gap for evaluating consequences of disturbance, and 

crucially potential mitigation through ecosystem rehabilitation. 

One particular relationship used to study spatial biodiversity patterns is the 

decrease in similarity of community compositions with increasing geographic distance, 

known as distance-decay (Nekola and White, 1999; Morlon et al., 2008). Although such 

biogeographical approaches have been widely used for macro-organisms, advances in 

molecular techniques have allowed for studies focussing on microbial communities 

(Green et al., 2004; Martiny et al., 2006). A central element of the theory underlying 
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the distance-decay relationship attributes decreases in community dissimilarity to 

spatial changes in environmental conditions (Soininen et al., 2007). SL has been shown 

to create highly heterogenous forest environments in terms of vegetation structure, plant 

composition, environmental and soil conditions related to microbial community 

compositions (see Chapter 2). As the distance-decay relationship can be derived using 

distances ranging from centimetres to kilometres simultaneously (e.g. Barreto et al., 

2014), this approach offers a method to directly compare rates of spatial turnover in 

microbial taxa (beta diversity) as a result of environmental heterogeneity between OG, 

SL and restored forest across scales not previously studied. 

 To address these knowledge gaps, we evaluated differences in soil microbial 

community attributes, soil physicochemical properties, and environmental and 

vegetation characteristics between OG, logged-unrestored (USL) and logged-restored 

(RSL) forest in Bornean lowland dipterocarp rainforest across different spatial scales. 

We conducted this study with the following specific hypotheses: 

H1. Bacterial community attributes will be affected by forest type, with bacterial 

alpha diversity greater in USL due to ecosystem disturbance effects on effective 

resources and functional niches (intermediate disturbance hypothesis). This will 

correspond to lower spatial turnover of taxa, as observed in similar study 

systems. Bacterial diversity patterns will be more similar between OG and RSL 

due to active restoration recovering available resources and ecological niches. 

H2. Fungal community attributes will be affected by forest type, with 

differences in community composition, alpha diversity and spatial turnover of 

taxa driven by USL. Fungal community attributes in OG and RSL will be more 

similar, corresponding to greater shared fungal taxa between OG and RSL than 
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OG and USL. This is expected due to more similar vegetation composition, 

including mycorrhizal-associating tree species, and litter inputs influencing 

saprotrophic fungal composition. 

H3. Overall microbial biomass indicators will increase with restoration towards 

OG, as previously observed in other studies of enrichment planted SL forest in 

Malaysia. 

H4. Differences in soil microbial attributes between forest types will correspond 

to differences in soil physicochemical properties and environmental and 

vegetation characteristics, as observed in previous studies of SL disturbance in 

these systems. 

5.3 Methods 

5.3.1 Study sites 

This study was conducted in the state of Sabah, northern Malaysian Borneo. The climate 

is characterised as moist tropical (average daily temperature 27 ˚C, annual precipitation 

2,600 - 2,700 mm) and without distinct seasonality, although may undergo irregular 

inter-annual dry periods averaging a total of ~1.4 months of the year (Walsh and 

Newbery, 1999; Kumagai and Porporato, 2012). Sampling was conducted in March 

2018 at a total of nine sites across adjacent OG, USL and RSL lowland dipterocarp 

rainforest (3 sites in each). USL and RSL forest were situated within the Innoprise Face 

Foundation Rainforest Rehabilitation Project (INFAPRO) area (4.99°, 117.86°). This 

large-scale restoration initiative, in partnership with the Yayasan Sabah Foundation, 

aims to restore 25,000 ha within the Ulu-Segama forest management unit (Face the 

Future, 2007). USL and RSL forests were both selectively-logged once in 1989. The 

RSL forest has undergone rehabilitation by enrichment planting since 2000, with 
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mixtures of dipterocarp and various fruit tree species planted at 3 m intervals along 

transects 10 m apart. Planting lines are maintained regularly by liana cutting and 

removal of understorey vegetation (Face the Future, 2007). OG forest was located in 

the adjacent Danum Valley Conservation Area (4.95°, 117.79°), a 438 km2 rainforest 

reserve that has undergone little or no anthropogenic disturbance legally protected from 

commercial timer operations since 1976 (Marsh and Greer, 1992). 

5.3.2 Sampling design for soil, environmental and vegetation characteristics 

Three sampling sites were established in each forest type of OG, USL and RSL. Sites 

were situated a minimum of 500 m apart (measured using a GPS), with similar distances 

of 600 – 1,500 m between sites of different forest types. This allowed for direct 

comparison of soil microbial attributes, soil physicochemical, environmental and 

vegetation characteristics. At each of the nine sites, a geospatial transect design was 

used for soil sampling and measurement of environmental and vegetation 

characteristics. Three connected transects were established, radiating out from one 

centre point and positioned at 120 ˚ to one another. The first transect was oriented 

towards due North. Sampling points for soil physicochemical properties and 

environmental metrics were located at the centre point, and then at increasing distances 

of 10 cm, 30 cm, 90 cm, 2.7 m, 8.4 m and 24.3 m along each transect relative to the 

centre. Distances were calculated using a factor of three, chosen to allow assessment of 

spatial heterogeneity in soil microbial communities over scales of different orders of 

magnitude. 

At each sampling point, one soil core was collected a using a 3 cm-diameter 

gouge auger to a depth of approximately 10 cm for analysis of soil microbial community 

attributes and physicochemical analysis. The depth of the organic soil layer was 
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measured before it was separated from underlying mineral soil, sealed in a Ziploc bag 

and transported to a laboratory. Here samples were hand-homogenised and 

approximately 10 g subsamples taken for analysis of soil microbial community 

attributes. These were frozen at -20 ˚C on the day of collection and transported on ice 

to the UK for analysis of soil microbial communities: 5 g was transported to Centre for 

Ecology & Hydrology, Wallingford for amplicon sequencing and 5 g to Lancaster 

University for Phospho-Lipid Fatty Acid (PLFA) analysis. The remaining soil was 

transported to the Sabah Forest Research Centre, Sepilok for physicochemical analysis. 

Nineteen soil samples were collected per site, with a total of 171 overall across all forest 

types. 

 Environmental metrics were measured during sampling at each of the sampling 

points. Soil temperature (approximate depth 0-10 cm) and air temperature at the soil 

surface (5-15 cm) were measured with using a thermistor (Salter, UK). 

Photosynthetically active radiation (PAR) was measured using a light meter (PP 

Systems, USA) with the sensor held just above the soil surface. 

 For vegetation characteristics, all stems with diameter at breast height (DBH) 

> 5 cm were recorded and circumferences measured within a 2.5 m buffer of all 

transects, for calculation of stem density and basal area. This DBH was chosen to 

capture finer-scale variation in tree abundance. Stem density and basal area were 

calculated at the site-level (n = 9). 

5.3.3 Soil physicochemical analysis 

pH in water was measured on fresh soils using a pH meter with a combination glass-

calomel electrode (a ratio of 1:2.5 soil to deionised water) after shaking overnight at 

100 rev m-1 on an orbital shaker and standing for 30 min (Landon, 1984). The remaining 
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soils were air-dried at 40 °C to constant weight and passed through a 2 mm sieve for 

homogenisation and removal of roots and stones. Subsamples for Total C and N analysis 

were dried at 65 °C for 48 hours and milled to a fine powder with a pestle and mortar. 

Total soil C and N contents were determined by dry combustion at 900°C using an 

Elementar Vario Max CN analyser (Elementar Analysensysteme, Hanau, Germany). 

For soil Total P, samples were digested using sulphuric acid-hydrogen peroxide (Allen, 

1989). Inorganic P was extracted using a Bray No. 1 extractant (Bray and Kurtz, 1945). 

P contents of extracts and digests were determined using the molybdenum-blue method 

(Anderson and Ingram, 1993), read at 880 nm on a spectrophotometer (HITACHI-UV-

VIS, Japan). 

5.3.4 Soil Phospholipid Fatty Acid (PLFA) analysis 

A subset of soil samples were analysed for PLFAs to provide indicators of total 

microbial biomass and relative abundances of bacteria and fungi across forest types. 

Due to the intensive extraction requirements, 36 of the 171 samples were analysed (four 

samples per site). These corresponded in each site to the transect centre point, and 30 

cm, 2.7 m and 24.3 m sampling points along the first transect. Soil samples were freeze 

dried, coarse roots and stones were removed prior to analysis. PLFAs were extracted 

from 1.8 g freeze dried soil using a modified version of the Bligh and Dyer extraction 

method (White et al., 1979). Extracts were analysed using an Agilent 6890 Gas 

Chromatograph with Flame Ionisation Detector (GC-FID; Agilent Technologies, Unites 

States) using an RTx-1 capillary column (60 m × 0.32 mm ID, 0.25 µm film thickness). 

PLFA peaks were identified using retention times calibrated against known standards. 

As indicators of Gram-positive bacterial biomass, the branched-chained fatty acids 

C15:0i, C15:0a, C16:0i, 7Me-C17:0, C17:0i and C17:0a were used (Lechevalier and 

Lechevalier, 1988; O'Leary and Wilkinson, 1988; Haack et al., 1994; Zelles, 1999; 
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Rinnan and Bååth, 2009; Whitaker et al., 2014a). For Gram-negative bacteria, the 

monounsaturated fatty acids C16:1ω7c, C16:1ω5, C18:1ω7c and cycloproprane fatty 

acids cyC17:0 and cyC19:0 were used (Zelles, 1999; Whitaker et al., 2014a; Rinnan 

and Bååth, 2009). For fungi, the fatty acids C18:2ω6,9 and C18:1ω9 were used (Bååth 

and Anderson, 2003; de Deyn et al., 2011). Total bacterial biomass was calculated as 

the sum of Gram-positive and Gram-negative PLFAs and the fatty acid C15:0 (de Deyn 

et al., 2011). Fungal to bacterial ratio (F : B) was calculated as the proportion of total 

bacterial relative to total fungal PLFAs. Total microbial PLFAs were determined as the 

sum of all identified PLFAs, including those above and the additional fatty acids C14:0, 

C16:1, C16:0, C17:1ω8, C17:0br, C18:0br, C18:1ω5, C18:0 and C19:1. PLFA contents 

were expressed as µg g-1 dry soil. Due to errors during extraction, four samples were 

lost (two OG and two USL samples, all from different sites). These were omitted from 

subsequent analysis, resulting in a total of 32 PLFA samples. 

5.3.5 Molecular analysis of soil microbial communities and data pre-processing 

DNA was extracted from 0.2 g soil using the PowerSoil® DNA Isolation Kit and 

protocol (MoBio Laboratories). Amplicon libraries were constructed according to a 

dual indexing strategy with each primer consisting of the appropriate Illumina adapter, 

8-nt index sequence, a 10-nt pad sequence, a 2-nt linker and the amplicon specific 

primer (Kozich et al., 2013). Bacteria were targeted using V3-V4 16S rRNA amplicon 

primers CCTACGGGAGGCAGCAG and GCTATTGGAGCTGGAATTAC. For 

fungi, the ITS2 region was amplified using primers GTGARTCATCGAATCTTTG and 

TCCTCCGCTTATTGATATGC (Ihrmark et al., 2012). Although the capability of 

detecting AM fungi using ITS primers is debated (Hart et al., 2015), recent studies have 

shown that patterns in diversity and community composition can be adequately 

identified within sample types such as soil (Berruti et al., 2017; Lekberg et al., 2018). 
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Amplicons were generated using a high fidelity DNA polymerase (Q5 Taq, New 

England Biolabs). After an initial denaturation at 95 °C for 2 minutes, PCR conditions 

were as follows: Denaturation at 95 °C for 15 seconds; annealing at 55 °C (bacteria) 52 

°C (fungi); annealing times were 30 seconds with extension at 72 °C for 30 seconds; 

cycle numbers were 25 for bacteria and fungi; a final extension of 10 minutes at 72 °C 

was included. Amplicon sizes were determined using an Agilent 2200 TapeStation 

system, samples were normalised using SequalPrep Normalization Plate Kit (Thermo 

Fisher Scientific) and pooled. The pooled library was quantified using a Qubit dsDNA 

HS kit (Thermo Fisher Scientific) prior to sequencing with an Illumina MiSeq using V3 

600 cycle reagents at a concentration of 8 pM with a 5% PhiX Illumina control library. 

The sequencing run produced in excess of 21 and 18 million reads passing filter for 16S 

and ITS amplicons, respectively. Sequences were processed in R using DADA2 to 

quality filter, merge, de-noise and assign taxonomies (Callahan et al., 2016). Forward 

sequence reads were used for 16S (trimmed to 250 bases), while forward and reverse 

were used for ITS (trimmed to 225 and 160 bases, respectively). Filtering settings were 

maximum number of Ns (maxN) = 0, maximum number of expected errors (maxEE) = 

1. Sequences were dereplicated and the DADA2 core sequence variant inference 

algorithm applied. mergePairs and removeBimeraDenovo functions were used at 

default settings to merge ITS forward and reverse reads and remove chimeric sequences. 

The amplicon sequence variants (ASVs) were subject to taxonomic assignment using 

assignTaxonomy and the training database UNITE version 7.2 (UNITE Community, 

2017). 

Fungal functional guild classifications were assigned to ASVs using the 

FUNGuild annotation tool (Nguyen et al., 2016). Only ASVs with unambiguous (non-

multiple) classifications of “probable” or “highly-probable” confidence rankings were 
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considered for analysis. These were used for calculating relative abundances of fungal 

guilds and sub-setting saprotrophic, mycorrhizal, ectomycorrhizal and pathogenic 

fungal datasets for assessment of diversity and community dissimilarity. 

Sequencing data were pre-processed (steps described below) and alpha diversity 

indices (ASV richness, Shannon index) and fungal guild relative abundances calculated 

in R version 3.6.0 (R Core Team, 2019) using the phyloseq package (Mcmurdie and 

Holmes, 2013). Three samples with abnormally low read counts in the bacterial dataset 

were identified by histogram and removed prior to analysis (two in different USL sites, 

one in RSL). Only ASVs assigned to the kingdoms of Bacteria or Fungi were retained 

for downstream analysis, and all singleton ASVs were removed. Sub-setting by fungal 

guilds was conducted on the full unrarefied dataset to maximise the number of ASV 

reads available for analysis of functional groups. Sample sequencing depth was 

normalised for each group by rarefying to the minimum read counts per sample for 

bacterial (3,778 reads), and overall fungal (3,868), saprotrophic (472), mycorrhizal (20), 

ectomycorrhizal (6) and pathogenic (69) fungal groups. 

5.3.6 Statistical analyses 

All statistical analyses were conducted in R version 3.6.0 (R Core Team, 2019), and 

significance of all tests was considered at the p ≤ 0.05 level. To test the differences in 

univariate soil microbial community attributes (alpha diversity metrics and fungal guild 

relative abundances) and soil, environmental and vegetation characteristics between 

forest types, linear mixed effects regression models (LMMs) were constructed in the 

lme4 R package (Bates et al., 2015). Post-hoc pairwise comparisons were conducted 

with the emmeans R package (Lenth et al., 2019) with Bonferroni correction to identify 

statistically different variable means between OG, USL and RSL forest types. To 



 

   133 

control for potential within-site pseudoreplication, site ID was included as a random 

intercept term. Normality of model residuals were evaluated using Shapiro-Wilk tests 

and QQ-plots, and variables were log-, square root- or exp- transformed where 

necessary to improve model fit. 

Soil microbial community data were Hellinger-transformed prior to analysis 

(Legendre and Borcard, 2018) to control for the effect of rare taxa, and merged at the 

site level (n = 9) using the merge_samples function in phyloseq to control for spatial 

pseudoreplication. Soil microbial community compositions across forest types were 

visualised with PCoA using Bray-Curtis dissimilarities via the phyloseq, vegan 

(Oksanen et al., 2019) and ggplot2 (Wickham, 2016) packages. Differences in soil 

microbial community compositions between forest types were tested with 

PERMANOVA using the adonis vegan function and Bray-Curtis community 

dissimilarities. All permutational tests were run with 9,999 permutations. Homogeneity 

of multivariate dispersion between vegetation types (an assumption of PERMANOVA) 

for soil microbial community dissimilarities was evaluated using the betadisper vegan 

function. Pairwise comparisons of soil microbial community dissimilarities between 

forest types could not be carried out due to the low number of true replicates, restricting 

the number of possible permutations for calculating significance level. UPGMA 

(unweighted pair-group method with mathematic average) hierarchical cluster analysis 

was performed and dendrograms constructed using the hclust R function (R Core Team, 

2019) to identify groups of more (dis)similar sites and evaluate community 

dissimilarities between forest types. 

Numbers of shared and distinct soil microbial ASVs between forest types were 

visualised with Venn diagrams using the group.venn function in the RAM R package 

(Chen et al., 2018). Indicator analysis was conducted to identify specific soil microbial 
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taxa uniquely associated with individual forest types, as well as pairs of forest types (i.e. 

only significantly occurring in two of the three forest types) using the mulitpatt function 

in the indicspecies R package (de Caceres and Legendre, 2009). This provided Indicator 

Values as an index of association between forest type and soil microbial ASVs, and p-

values denoting significant indicator taxa generated using the same permutational 

design described above. 

To evaluate differences in the rate of spatial turnover of taxa in soil microbial 

communities (distance decay of (dis)similarity) between forest types, pairwise Bray-

Curtis community dissimilarities for soil microbial groups and corresponding 

geographic distances were calculated between the 19 sampling points in each site. This 

provided a total of 171 pairs per site, with geographic distances ranging from 10 cm to 

42.09 m. Linear regression was used to obtain the coefficient (slope) of the distance 

decay relationship (Y), between log-transformed Bray-Curtis dissimilarities and log-

transformed geographic distances for each site and soil microbial group (Barreto et al., 

2014; Nekola and White, 1999). ANOVA with Tukey HSD post-hoc tests were used to 

test differences in Y-values between forest types for each soil microbial group (n = 9). 

5.4 Results 

 In total, 37,057 bacterial ASVs (representing 43 phyla; 737 genera) and 21,298 

fungal ASVs (12 phyla; 611 genera) were detected across all OG, USL and RSL 

samples (see Fig 5.1 A & B for number of bacterial and fungal ASVs partitioned by 

those unique to and shared between forest types). 
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Figure 5.1 Venn diagrams of numbers of Amplicon Sequence Variants (ASVs) unique 

to and shared between different forest types for all soil microbial groups studied 
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5.4.1 Differences in soil microbial alpha and beta diversity 

Mean bacterial Shannon alpha diversity was significantly higher in USL relative 

to OG, while RSL was statistically similar to USL and OG (Fig. 5.2 A; see Table 5.1 

for means of all soil microbial community attributes; see Table 5.2 for summary of test 

statistics for differences in alpha diversity metrics between forest types for all soil 

microbial groups). 

 

 

Figure 5.2 Box and whisker plots of soil microbial alpha diversity metrics (richness and Shannon 

index) derived from Amplicon Sequence Variants (ASVs) significantly differing between old-growth 

(OG), restored selectively logged (RSL) and unrestored selectively logged (USL) forest. Lower case 

letters indicate statistically different or similar groups at the p < 0.05 level identified in post-hoc 

tests after linear mixed model or Kruskal-Wallis analysis. 

OG OG OG 

OG OG OG 

USL USL USL 

USL USL USL 

RSL RSL RSL 

RSL RSL RSL 
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Table 5.1 Means (± 1 SD) of all soil microbial community attributes by forest type for old-growth (OG), 

logged-unrestored (USL) and logged-restored (RSL) forest. Superscript letters indicate statistically different 

or similar groups at the p < 0.05 level identified in post-hoc tests after linear mixed model or Kruskal-Wallis 

analysis. 

Parameter Soil microbial group 

Forest type 

OG USL RSL 

Total PLFAs (µg g-1 dry soil)  Total microbial 51.27 ± 21.85 52.85 ± 17.58 59.13 ± 14.91 

 Bacterial 26.56 ± 11.88 27.05 ± 8.90 30.19 ± 7.55 

 Fungal 2.50 ± 0.64 3.42 ± 1.25 3.51 ± 1.11 

Fungal : bacterial ratio - 0.11 ± 0.04 0.13 ± 0.04 0.12 ± 0.02 

Richness Bacteria 1.72 ± 0.42 1.80 ± 0.59 1.69 ± 0.49 

(no. observed ASVs 10 reads-1) Overall fungi 0.94 ± 0.18 a 0.75 ± 0.17 b 0.80 ± 0.14 b 

 Saprotrophic fungi 1.46 ± 0.37 a 1.04 ± 0.29 b 0.93 ± 0.23 b 

 Mycorrhizal fungi 2.39 ± 1.29 2.63 ± 1.29 3.14 ± 1.36 

 Ectomycorrhizal fungi 4.59 ± 1.97 4.12 ± 1.73 5.20 ± 2.02 

 Pathogenic fungi 2.17 ± 0.54 a 1.54 ± 0.58 b 1.67 ± 0.42 ab 

Shannon alpha diversity index Bacteria 5.41 ± 0.45 b 5.88 ± 0.38 a 5.79 ± 0.32 ab 

 Overall fungi 4.62 ± 0.36 a 4.10 ± 0.45 c 4.31 ± 0.37 b 

 Saprotrophic fungi 3.30 ± 0.57 a 2.84 ± 0.56 b 2.63 ± 0.63 b 

 Mycorrhizal fungi 1.13 ± 0.54 1.24 ± 0.57 1.39 ± 0.58 

 Ectomycorrhizal fungi 0.82 ± 0.49 0.72 ± 0.44 0.94 ± 0.47 

 Pathogenic fungi 2.16 ± 0.37 1.63 ± 0.61 1.91 ± 0.41 

Fungal guild relative abundance  

(% total fungal ASV reads) 

Saprotrophic fungi 44.73 ± 16.13 54.05 ± 24.82 42.72 ± 21.30 

Mycorrhizal fungi 30.96 ± 18.21 31.70 ± 25.59 47.24 ± 24.97 

 EcM fungi 30.21 ± 18.39 29.95 ± 26.62 45.98 ± 25.58 

 AM fungi 0.66 ± 1.28 1.63 ± 2.41 1.11 ± 1.12 

 Ericoid mycorrhizal fungi 0.09 ± 0.41 0.10 ± 0.19 0.14 ± 0.31 

 Orchid mycorrhizal fungi 0.00 ± 0.01 0.01 ± 0.10 0.00 ± 0.02 

 Pathogenic fungi 17.22 ± 8.17 a 11.51 ± 6.89 a 7.27 ± 4.18 b 

 Plant pathogenic fungi 10.93 ± 6.06 a 4.56 ± 5.06 b 4.21 ± 3.42 b 

 Animal pathogenic fungi 6.29 ± 4.71 ab 6.95 ± 4.84 a 3.06 ± 2.55 b 

 Parasitic fungi 5.68 ± 3.59 2.37 ± 2.87 2.59 ± 3.62 

 Endophytic fungi 0.22 ± 0.50 0.47 ± 1.13 0.14 ± 0.59 

 Lichenised fungi 1.45 ± 1.23 a 0.17 ± 0.28 ab 0.05 ± 0.10 b 

 Epiphytic fungi 0.14 ± 0.81 0.05 ± 0.23 0.04 ± 0.15 
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Table 5.2 Linear mixed model (LMM) or Kruskal-Wallis* test statistics for significant differences in soil 

microbial alpha diversity metrics (richness and Shannon index) between forest types. Summaries are 

given for overall models and post-hoc comparisons between old-growth (OG), logged-unrestored (USL) 

and logged-restored (RSL) forest. p-values for pairwise tests for LMM and Kruskal-Wallis analyses were 

adjusted using the Tukey and Bonferroni methods, respectively. Significant p-values (p > 0.05) are 

highlighted in bold. 

Soil 

microbial 

group 

Diversity 

metric 

Overall model 

Pairwise tests 

OG - USL OG - RSL USL - RSL 

R2 F/χ2* p t-ratio/Z* p t-ratio/Z* p t-ratio/Z* p 

Bacteria Shannon index 0.21 9.68 0.014 -4.27 0.013 -3.05 0.053 1.23 0.480 

Overall fungi Richness 0.21 22.03 < 0.001 6.37 < 0.001 4.79 < 0.001 -1.59 0.255 

 Shannon index 0.26 29.87 < 0.001 7.56 < 0.001 5.16 < 0.001 -2.41 0.045 

Saprotrophic 

fungi 

Richness 0.36 31.10 0.001 5.91 0.003 7.48 0.001 1.57 0.329 

 Shannon index 0.20 21.84 < 0.001 -4.55 < 0.001  -6.43 < 0.001 -1.87 0.150 

Pathogenic 

fungi 

Richness 0.21 7.58 0.023 3.69 0.024 2.93 0.060 -0.76 0.739 

 

Conversely, overall fungal richness and Shannon alpha diversity were 

significantly higher in OG relative to USL and RSL (Fig. 5.2 B & C), with overall fungal 

Shannon alpha diversity higher in RSL relative to USL. Saprotrophic fungal richness 

and Shannon alpha diversity were significantly higher in OG compared to USL and 

RSL (Fig. 5.2 D & E). Pathogenic fungal richness was higher in OG compared to USL, 

with RSL similar to both forest types (Fig. 5.2 F). 

Spatial turnover of microbial taxa (regression coefficient of community 

dissimilarity distance-decay relationship) only differed between forest types for bacteria 

(R2 = 0.89, F = 23.75, p = 0.001; Fig. 5.3). Significantly lower Y- values (indicating 

slower spatial turnover of taxa) were found in USL compared to OG and RSL (post-hoc 

tests: USL-OG: p = 0.001; USL-RSL: p = 0.006), while OG and RSL were similar (p = 

0.344). 
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5.4.2 Differences in soil microbial community compositions 

Analysis of PLFA contents indicated no differences in total microbial, fungal or 

bacterial biomass or fungal:bacterial ratio between forest types (p > 0.05 in overall and 

pairwise tests). Bray-Curtis community dissimilarities were significantly affected by 

forest type for all soil microbial groups, with the exception of ectomycorrhizal fungi, 

which was marginally significant (Fig. 5.4; see Table 5.3 for summary of all 

PERMANOVA test statistics). Community dissimilarity dispersions were homogenous 

between all land-use types for all fungal groups (betadisper: p > 0.05). 

  

Figure 5.3 A) Box and whisker plot of differences in rates of spatial turnover of bacterial 

taxa, distance-decay regression coefficient (Y), corresponding to B) slope of the relationship 

between log-transformed bacterial community Bray-Curtis dissimilarities and log-

transformed geographic distances between sampling points within each site. Lower case 

letters indicate statistically different or similar groups at the p < 0.05 level identified by Tukey 

test after ANOVA. 

OG 

USL 

RSL 

OG 

USL 

RSL 



 

   140 

  

OG 

USL 

RSL 

Figure 5.4 Principle coordinates analysis (PCoA) ordinations of Bray-Curtis dissimilarities for all soil 

microbial groups across old-growth (OG), logged-unrestored (LU) and logged-restored (LR) forest. 

Hulls are used to illustrate community dispersion rather than ellipses, due to the low number of 

replicates within each forest type (3). 
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Table 5.3 PERMANOVA test statistics for the effect of forest 

type on soil microbial community Bray-Curtis dissimilarities. 

Significant p-values (p < 0.05) are highlighted in bold. 

Soil microbial group  R2 F p 

Bacteria 0.49 2.90 0.007 

Overall fungi 0.38 1.85 0.004 

Saprotrophic fungi 0.36 1.71 0.004 

Mycorrhizal fungi 0.29 1.25 0.006 

Ectomycorrhizal fungi 0.28 1.14 0.074 

Pathogenic fungi 0.37 1.74 0.007 

 

UPGMA hierarchical clustering analysis (Fig. 5.5) identified communities in 

OG sites to be most dissimilar to those of USL and RSL across all microbial groups, 

with the exception of EcM fungi (bacteria: 86.50 % dissimilarity; overall fungi: 89.84 

%; saprotrophic fungi: 87.46 %; mycorrhizal fungi: 97.27 %; pathogenic fungi: 78.91 

%). For EcM, the greatest dissimilarity was found between OG-1 and all other sites 

(98.44 %), but similarly followed by dissimilarity between OG-2 and OG-3 sites and 

all others (97.59 % dissimilarity). USL and RSL sites were generally more similar, with 

USL and RSL sites clustering together over sites of the same forest type in all microbial 

groups. 

 

 

OG 

USL 

RSL 
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Figure 5.5 UPGMA (unweighted pair-group method with mathematic average) hierarchical cluster 

dendrograms illustrating Bray-Curtis dissimilarities between all sites across old-growth (OG), logged-

unrestored (LU) and logged-restored forest (LU). 
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Fungal guild relative abundances for total pathogens, plant pathogens, animal pathogens 

and lichens significantly differed by forest type (Fig. 5.6; see Table 5.4 for summary of 

significant test statistics). Total pathogenic and lichenised fungal relative abundances 

were significantly higher in OG relative to RSL (USL similar to both OG and RSL 

forest types for both fungal guilds), while plant pathogenic fungal relative abundance 

was significantly higher in OG relative to both SL forest types. Animal pathogenic 

fungal relative abundance was higher in USL relative to RSL (OG similar to both USL 

and RSL forest types). 

Table 5.4 Linear mixed model (LMM) or Kruskal-Wallis* test statistics for significant differences in fungal 

guild relative abundances between forest types. Summaries are given for overall models and post-hoc 

comparisons between old-growth (OG), logged-unrestored (USL) and logged-restored (RSL) forest. p-

values for pairwise tests for LMM and Kruskal-Wallis analyses were adjusted using the Tukey and 

Bonferroni methods, respectively. Significant p-values (p > 0.05) are highlighted in bold. 

Soil microbial 

group 

Overall model 

Pairwise tests 

OG - USL OG - RSL USL - RSL 

R2 F/χ2* p t-ratio/Z* p t-ratio/Z* p t-ratio/Z* p 

Pathogenic 0.28 12.64 0.007 2.44 0.110 5.03 0.006 2.59 0.091 

Plant pathogenic 0.30 14.06 0.005 4.63 0.009 4.55 0.009 -0.08 0.996 

Animal pathogenic 0.18 5.75 0.040 -0.60 0.824 2.59 0.091 3.19 0.043 

Lichenised fungal* - 7.20 0.027 1.34 0.539 2.68 0.022 -1.34 0.539 

 

5.4.3 Indicator ASVs unique to and shared between forest types 

Indicator analysis of bacterial taxa identified 581 significant indicator ASVs for OG, 

103 for USL and 140 for RSL. At the phylum level, a larger proportion of indicator 

Figure 5.6 Relative abundances of fungal guilds for old-growth (OG), logged-unrestored (USL) and logged-

restored (RSL) forest. Error bars represent standard errors. Lower case letters indicate statistically different or 

similar groups at the p < 0.05 level identified in post-hoc tests after linear mixed model or Kruskal-Wallis 

analysis. Mycorrhizal and pathogenic guilds have been further divided into subtypes as indicated. 

OG USL RSL 
OG USL RSL 
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ASVs unique to OG belonged to the Firmicutes in comparison to USL and RSL (Fig 

5.7 A). 

For fungal taxa, 205 significant indicator ASVs were identified for OG, 45 for USL and 

94 for RSL. Notable differences in composition of phyla was a taxa of the 

Mortierellomycota occurring mostly only in OG, and taxa of the Mucoromycota mostly 

only in RSL and USL (Fig 5.7 B). 

 For significant bacterial indicator ASVs shared between pairs of forest types, 

only two were identified for OG and RSL together (i.e. indicative of non-USL forest), 

both belonging to the phylum Firmicutes, class Bacilli (Alicyclobacillus sp. and Bacillus 

foraminis). Indicator ASVs for OG and USL belonged to the phyla Proteobacteria, 

Verrucomicrobia and Acidobacteria. A large number of significant bacterial indicator 

ASVs were identified for USL and RSL together (472 overall, 314 with maximum 

Figure 5.7 Stacked bar graphs of relative abundances of indicator Amplicon Sequence Variants (ASVs) 

unique to old-growth (OG), logged-unrestored (LU) and logged restored (LR) forest, grouped at the level of 

phyla 

OG USL RSL OG USL RSL 
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IndVal of 1) representing a large range of phyla. For fungi, a total of four significant 

indicator ASVs were identified for OG and RSL from the two phyla Ascomycota and 

Basidiomycota, and two classes Sordariomycetes and Tremellomycetes (Trichoderma 

deliquescens, Clonostachys rosea, Castanediella sp. and Saitozyma podzolica). 

Indicator ASVs for OG and USL comprised taxa of the Ascomycota and Basidiomycita 

(also including Clonostachys rosea), as did those for USL and RSL, but additionally 

including taxa of the Mucuromycota, Chytridiomycota, Mortierellomycota and 

Rozellomycota. The selection of the fungal species Clonostachys rosea as an indicator 

of both OG-USL and OG-RSL, but not USL-RSL forest pairs signified a primary 

association of this taxon with OG forest. 

5.4.4 Differences in soil physicochemical properties, environmental and vegetation 

characteristics between forest types 

 Of all the soil physicochemical properties, environmental and vegetation 

characteristics measured (see Table 5.5 for summary of all variable means by forest 

type), only soil pH significantly differed between forest types (overall model: R2 = 0.83, 

F = 50.56, p < 0.001). Post-hoc tests identified significantly lower soil pH in USL and 

RSL relative to OG (OG-USL: p < 0.001; OG-RSL: p < 0.001), while USL and RSL 

did not significantly differ (p = 0.693). 
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Table 5.5 Means (± 1 SD) of soil physicochemical properties, environmental and vegetation characteristics 

by forest type for old-growth (OG), logged-unrestored (USL) and logged-restored (RSL) forest. Superscript 

letters indicate statistically different or similar groups at the p < 0.05 level identified in post-hoc tests after 

linear mixed model analysis. 

Group Parameter 

Forest type 

OG USL RSL 

Soil  pH 5.57 ± 0.42 a 4.02 ± 0.30 b 3.89 ± 0.19 b 

 C (%) 5.87 ± 2.13 5.31 ± 1.67 4.25 ± 1.41 

 N (%) 0.44 ± 0.14 0.40 ± 0.11 0.31 ± 0.07 

 C : N ratio 13.23 ± 1.49 13.26 ± 1.23 13.52 ± 1.92 

 Total P (µg g-1) 478.42 ± 142.44 253.39 ± 43.43 348.49 ± 89.32 

 Inorganic P (µg g-1) 11.65 ± 7.63 14.55 ± 5.22 8.79 ± 4.23 

Environmental PAR (µmol m-2 s-1) 0.61 ± 0.84 1.44 ± 3.46 0.83 ± 1.95 

 Soil temperature (˚C) 26.29 ± 1.10 24.88 ± 0.66 26.37 ± 0.82 

 Air temperature (˚C) 26.20 ± 0.69 24.95 ± 0.44 25.86 ± 0.49 

Vegetation Basal area (m2 ha-1) 93.55 ± 42.99 117.92 ± 25.11 141.36 ± 18.00 

 Stem density (no. stems DBH ≥ 5 cm) 896.97 ± 98.93 1,336.99 ± 146.88 1,091.60 ± 235.66 

 Mean stem diameter (cm) 26.23 ± 4.35 28.61 ± 1.73 27.21 ± 0.19 

 

5.5 Discussion 

In this study, we evaluated differences in soil microbial community attributes, soil 

physicochemical properties, and environmental and vegetation characteristics between 

OG, USL and RSL forest in Bornean lowland dipterocarp rainforest across different 

spatial scales. Bacterial community attributes were shown to differ by forest type, 

including community composition (Fig. 5.4 A), alpha diversity metrics (Fig. 5.2 A) and 

rates of spatial turnover of taxa (Fig. 5.3), broadly supporting our initial hypothesis 

(H1). Specifically, results showed higher bacterial alpha diversity and lower rates of 
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spatial turnover of taxa in USL, in agreement the predictions that forest disturbance 

increases local bacterial diversity while homogenising communities over larger spatial 

scales (Rodrigues et al., 2013). Although tropical forest disturbance is often 

accompanied by declines in both alpha and beta diversity of aboveground organisms 

(Sodhi et al., 2009; Bierregaard, 2001), this is not necessarily the case for belowground 

microbial communities where the opposite trend may be seen in local diversity patterns 

(Petersen et al., 2019). As discussed by Rodrigues et al. (2013), this ‘decoupling’ of 

alpha and beta diversity with disturbance may depend on the relative effects of 

disturbance on ecosystem productivity. For example, alpha diversity in aboveground 

communities has been shown to increase with disturbance when productivity rates are 

higher in resulting ecosystems (Smart et al., 2006). In microbial terms, OG rainforests 

may be characterised by relatively low belowground productivity compared to adjacent 

open ecosystems created through anthropogenic disturbance (Cenciani et al., 2009; 

Cerri et al., 2004). In the current study system, increased bacterial alpha diversity with 

SL may potentially result from changes in vegetation characteristics (e.g. changes in 

tree community composition, or increasing understorey vegetation through creation of 

canopy gaps; Denslow, 1995) affecting the quality and quantity of plant inputs to the 

soil, improving effective resource availability and enhancing microbial growth and 

turnover (i.e. belowground microbial productivity; Cenciani et al., 2009; Cerri et al., 

2004), and simultaneously creating different ecological niches for bacterial 

communities (Zhang et al., 2018). This observation is congruent with the intermediate 

disturbance hypothesis, which predicts increases in coupled productivity and diversity 

with a certain level of disturbance (Zhang et al., 2011; Ferrenberg et al., 2013; Galand 

et al., 2016; Wilkinson, 1999). 
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 The observed differences in soil bacterial community attributes disagree with 

previous work in the same region of Borneo that found bacterial communities and 

diversity to be broadly resilient to SL disturbance (Tripathi et al., 2016; Lee-Cruz et al., 

2013). This is likely due to the coarse sampling resolution used in these studies to 

evaluate alpha and beta diversity (composite samples comprising soil collected up to 

200 m apart). As bacterial community structure can vary considerably over metre-and 

centimetre-scales (O' Brien et al., 2016), sampling resolution of previous surveys may 

be inappropriate for evaluating bacterial diversity and biogeographical patterns in 

response to forest ecosystem disturbance. The findings of the present study highlight 

the need for landscape studies of soil microbial diversity to incorporate fine spatial scale 

approaches to identify impacts and implications for biogeochemical cycling. Beyond 

this, although clear differences in alpha diversity and spatial turnover of taxa were 

detected in USL, findings suggest that restoration of SL forest by enrichment planting 

can recover these metrics to levels comparable to OG forest. As such, bacterial alpha 

diversity may even be used as an indicator of rehabilitation of SL forest, with lower 

values representing ecosystem recovery. This is opposite to the way bacterial alpha 

diversity may be used to monitor progress of rehabilitation after total forest clearance, 

which can demonstrate higher values after replanting (Nurulita et al., 2016). This 

emphasises the importance of disturbance history in identifying appropriate context-

specific recovery indicators. Indicator analysis identified a large proportion of bacterial 

taxa in OG belonging to the Firmicutes, a phylum associated with high soil carbon 

availability and resilience to environmental (microclimatic) perturbations (Rodrigues et 

al., 2013; Battistuzzi and Hedges, 2009), that were largely absent from USL and RSL. 

 The second hypothesis, that fungal community attributes would be affected by 

forest type with greater similarity between OG and RSL (H2), was only partially 
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supported. While results broadly agree with the known sensitivity of fungal 

communities to SL disturbance (Chapter 1; Chapter 2; Elias et al., 2019; Kerfahi et al., 

2014; McGuire et al., 2015), the prediction of similarity in community compositions 

through shared taxa between OG and RSL was not corroborated. Overall, saprotrophic, 

and fungal communities were shown to differ by forest type (Fig. 5.4 B-F), but were 

more similar between USL and RSL, with OG appearing more dissimilar to both 

human-modified forest types (Fig. 5.5 B-F). Notably, Clonostachys rosea appeared to 

be associated with OG forest. This species is known to protect plants by supressing 

sporulation of other plant-pathogenic fungi and infection of plant-parasitic nematodes, 

with potential for use as a biological control agent (Zhang et al., 2008). An apparent 

absence of such microbial taxa beneficial for plant growth and survival may have 

negative implications for reestablishment of reintroduced species, affecting recovery of 

ecosystem biodiversity and C storage. There were surprisingly few fungal taxa shared 

between OG and RSL (420 ASVs; Fig 5.1 B) relative to those shared between USL and 

RSL (1,334 ASVs), or even OG and USL (659 ASVs) – a pattern even more evident in 

bacteria (OG-RSL: 409 ASVs; USL-RSL: 2,801; USL-OG: 1,045; Fig 5.1 A). This 

suggests that there is actually a large amount of taxa lost specifically as a result of 

restoration practices that are otherwise present in both OG and USL. This is reflected 

in the lower overall fungal alpha diversity in RSL relative to OG (with richness in RSL 

similar to USL; Fig 5.2 B & C), which is likely largely driven by lower alpha diversity 

metrics observed for the saprotrophic fungal group in RSL (Fig 5.2 D & E), as it 

represented the largest proportion of overall fungal reads (47.17 %). These findings may 

be potentially related to long-term control of liana species - which have their own soil 

microbial associations (McGuire et al., 2008; Schnitzer et al., 2005) - and removal of 

understorey vegetation which is practiced in these study sites, and a common part of 
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management of enrichment planting programmes employed to ensure maximum 

survival and productivity of reintroduced tree species (Perumal et al., 2016; Face the 

Future, 2007). Vegetation removal may alter plant litter inputs, which in turn can 

affecting resulting microbial decomposer communities (Shi et al., 2019). Further study 

of the effects of liana and understorey vegetation removal through controlled field 

experiments (i.e. enrichment planting with and without additional vegetation clearance) 

is required to unpick the underlying drivers of these observations, and possible role in 

the impediment of fungal community recovery towards characteristics of OG forest. 

Mycorrhizal community composition, relative abundance (including EcM and 

AM) and alpha diversity did not differ between forest types (although differences in 

community dissimilarity were marginally non-significant across forest types). This was 

unexpected, as taxa from this functional group have been identified as some of the most 

sensitive to SL (Chapter 1; Elias et al., 2019; Kerfahi et al., 2014), likely due to EcM 

associations of the dominant dipterocarp tree species that are targeted during industrial 

timber extraction (Taylor and Alexander, 2005; Brearley, 2012; Whitmore, 1984; 

Appanah and Turnbull, 1998). A lack of a clear effect on mycorrhizal community 

attributes may owe to the intensity of, and time since, disturbance in the current study 

system. Here forests were selectively logged only once in 1989, compared to other 

studies in the region incorporating, for example, extremely degraded forest that has 

undergone selective logging multiple (up to four) times, with the most recent round in 

2008 (Chapter 1; Elias et al., 2019). As such mycorrhizal communities may have 

recovered over subsequent decades post-disturbance, especially as the mycorrhizal 

mycelium may be largely retained in SL forest (Chapter1). This is supported by the 

results of indicator analysis that found fungal indicator taxa of OG and USL forest to 

belong to pathotrophic and saprotrophic fungal guilds rather than mycorrhizal, as was 
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initially predicted to result from reintroduction of EcM-associating species. However, 

it is also important to note that the lack of differences found in community composition 

and diversity of total mycorrhizal and EcM fungal groups may also have arisen from 

the low number of reads used for sample normalisation of these subsets (20 and 6 reads 

per sample for total mycorrhizal and EcM fungi, respectively), increasing variability 

and therefore limiting sensitivity of analysis. 

Surprisingly, no differences were found in indicators of overall microbial 

biomass between forest types, refuting the hypothesis that overall microbial biomass 

indicators will be greater in OG than USL, with similar values between OG and RSL 

(H3). This contrasts with previous studies observing clear reductions in MBC in 

degraded forest relative to OG (Deng et al., 2010; Nurulita et al., 2016), or higher MBC 

in restored versus unrestored forest (Daljit Singh et al., 2013). In the present study, it is 

possible either microbial biomass was unaffected by SL in these forests, or returned to 

comparable levels with OG in both USL and RSL with natural or managed regeneration 

during time since disturbance. The small number of samples used for analysis (n = 32) 

may also have contributes to lack of differences found due to a large amount of within- 

forest type (and site) variation. 

Of all the soil physicochemical properties, environmental and vegetation 

characteristics measured, only soil pH was affected by forest type (H4) – with more 

acidic soils found in USL and RSL relative to OG (Table 5.5). Interestingly, bacterial 

alpha diversity was found to be higher in USL relative to OG despite more acidic soils 

in USL. This contrasts with studies across multiple biomes as well as Malaysia, which 

have found bacterial alpha diversity to increase with soil neutrality over land-use 

gradients (Tripathi et al., 2012; Lauber et al., 2009). This effect may also relate to altered 
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litter inputs with management of understorey vegetation such as shrubs and climber 

species, which may be closely associated with soil pH as suggested in previous study 

of human-made logging gaps (Chapter 2). 

In conclusion, these results indicate that restoration by enrichment planting can 

successfully recover levels of bacterial alpha diversity and spatial turnover of bacterial 

taxa comparable to OG after approximately 18 years of rehabilitation. Fungal diversity, 

however, showed slower signs of recovery, largely due to saprotrophic fungal richness 

and Shannon alpha diversity index remaining similar to USL forest. However, soil 

microbial community compositions (bacteria and fungi) were generally more similar 

between USL and RSL, with more relatively more different communities in OG. This 

indicates recovery of soil microbial communities may be inhibited under current 

management practices, having implications for biogeochemical cycling in these forests. 

Few fungal taxa were shared between OG and RSL relative to those shared between 

other forest types. Soil microbial taxa may potentially be lost through removal of lianas 

and understorey vegetation, impeding recovery of community attributes towards those 

characteristic of OG forest. Further study into the effects of liana and understorey 

vegetation removal through controlled field experiments is required to unpick 

underlying mechanisms. Contrary to previous studies undertaken at coarser spatial 

scales, bacterial alpha diversity was found to be greater in USL, while rates of spatial 

turnover of taxa was lower. This suggests bacterial alpha diversity may be used as an 

indicator of forest ecosystem rehabilitation following SL disturbance. Findings 

emphasise the importance of fine spatial scale studies (cm to m) for evaluation of 

biodiversity patterns in soil microbial communities that may otherwise be overlooked. 

Overall, these findings suggest impediment to the rehabilitation of soil microbial 

community attributes under current restoration, with implications for soil functions and 



 

   153 

landscape-scale biogeochemical cycling. Changes in current management practices to 

incorporate the rehabilitation of belowground soil microbial communities may be 

required for successful ecosystemic recovery of degraded tropical forest and vital 

ecosystem services, including C storage.  
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6 General discussion 

Tropical forests are vital global reservoirs of biodiversity and carbon (C) (Myers et al., 

2000; Pan et al., 2011). Deforestation and degradation of these ecosystems greatly 

threatens their capacity to provide crucial ecosystem functions and services, including 

C storage (Baccini et al., 2017), by altering underpinning plant-soil interactions (Wardle 

et al., 2004; van der Heijden et al., 2008; van Der Putten et al., 2013). Land-use change 

can have significant impacts on soil microbial communities and the biogeochemical 

cycles they regulate (Fraterrigo et al., 2006; Bonner et al., 2019; Fichtner et al., 2014; 

Rodrigues et al., 2013), while potentially affecting sensitivity of soil microbial function 

to environmental perturbations associated with climate change (Meisner et al., 2018; 

Bouskill et al., 2016b; Bouskill et al., 2016a). 

Human modification of Southeast Asian rainforest resulting from selective 

logging (SL) and conversion to oil palm plantation (OP) in recent decades has major 

implications for soil and ecosystem functions (Gaveau et al., 2014; Qie et al., 2017). 

Potential impacts have only just begun to be elucidated through a small number of 

studies, which have highlighted sensitivity of key soil microbial groups to these 

disturbances (Kerfahi et al., 2014; Tripathi et al., 2016; Lee-Cruz et al., 2013; Tripathi 

et al., 2012). However, understanding of the consequences for soil functioning and the 

potential for recovery of soil microbial communities is limited. The aim of this thesis 

was to address knowledge gaps regarding the impacts of tropical forest modification 

(degradation, conversion and restoration) on soil microbial community attributes and 

functioning and implications for ecosystem biogeochemical cycling, using lowland 

dipterocarp rainforest of Borneo as a model study system. The main research questions, 

key findings, conclusions and implications are summarised in Fig. 6.1. 
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Figure 6.1. Schematic of thesis structure summarising the main research questions, key findings, 

conclusions and implications 
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The soil mycelium, comprising hyphae produced by actively foraging soil fungi, 

represents a key component of terrestrial C and nutrient cycles (Cairney, 2012; Finlay, 

2008; Johnson et al., 2002). While the mycelium itself provides a C sink and can 

contribute to accumulation of soil organic matter (Wallander et al., 2013), the 

extraradical mycelia of mycorrhizal fungi provide a ‘functional link’ between plants 

and the soil as pathways of mineral nutrients and C between aboveground vegetation 

and belowground soil microbial communities (Smith and Read, 2008; Itoo and Reshi, 

2013; Chen et al., 2016). While soil fungal communities have shown a sensitivity to SL 

and forest conversion in Southeast Asia, consequences for fungal functioning have so 

far been largely unknown. In Chapter 2, the impact of SL and conversion of forest to 

OP on fungal community characteristics and mycelial productivity was evaluated 

through a large-scale field survey across a gradient of forest disturbance. The roles of 

soil and vegetation properties as underlying drivers of mycelial community attributes 

and production in lowland dipterocarp rainforest were also explored. Conversion of 

forest to OP had the largest effect on mycelial fungal attributes and productivity. OP 

significantly reduced mycelial production relative to OG and SL forest, with 

corresponding shifts in overall, saprotrophic, mycorrhizal and pathogenic fungal 

community compositions and a reduction in mycorrhizal relative abundance and alpha 

diversity. As OP now represents a major land-use type across Borneo and Southeast 

Asia, this may have wide repercussions for nutrient dynamics, plant-soil interactions 

and potential for ecosystem recovery over large scales. In contrast, SL did not 

significantly differ in mycelial fungal community structure or productivity from OG 

forest, indicating potential resilience of mycelial fungal communities and function to 

forest degradation relative to bulk soil fungi. Findings also suggest the retention of the 

extramatrical EcM mycelium after SL. This has positive implications for recovery or 
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restoration of SL lowland dipterocarp forest, benefiting establishment of tree seedlings 

by providing an existing mycorrhizal inoculum and infrastructure for interplant 

exchanges of limiting resources through common mycelial networks (CMNs) 

(Babikova et al., 2013; Nara, 2006; Gorzelak et al., 2015). However, higher relative 

abundances of arbuscular and ericoid mycorrhizal fungi were associated with SL forest. 

Alterations in the balance between mycorrhizal types may have consequences for soil 

C cycling and storage, by reducing competition between ectomycorrhizal and 

saprotrophic fungi for resources required for the breakdown of soil organic matter 

(Averill et al., 2014). Across OG and SL forest, mycelial fungal community 

composition was linked to both vegetation and soil characteristics, while mycelial 

production was independent of all of these factors (with the exception of a tenuous 

positive relationship with soil inorganic phosphorous concentrations, potentially 

relating to proliferation of hyphae in soil mineral nutrient hotspots). This offers new 

insights into the potentially un-coupled fungal diversity and productivity patterns at the 

landscape-scale. Taken together, the findings of this chapter demonstrate impacts of 

land-use change on soil fungi that are likely to influence ecosystem and landscape-scale 

biogeochemical cycling, as well as the potential for restoration and recovery of vital 

ecosystem functions that relates to the nature and intensity of forest disturbance. 

SL forest is a highly heterogeneous environment, comprising a mosaic of closed 

canopy forest and open canopy gaps, caused by the removal of large individual trees 

and creation of logging landings and skid trails (Asner et al., 2004). Canopy gaps can 

alter vegetation characteristics, soil properties and microclimate (Muscolo et al., 2014; 

Marthews et al., 2008), significantly affecting biogeochemical cycles regulated by soil 

microbial communities (Hartmann et al., 2013; Scharenbroch and Bockheim, 2007; 

2008a; Saner et al., 2009). In Chapter 3, the impacts of selective logging gaps (SLGs) 
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on soil microbial community attributes and nutrient cycling were evaluated. This was 

achieved through a survey of soil microbial communities, soil physicochemical 

properties, nutrient supply rates and microclimate across in SL forest, in closed canopy 

forest (CCF) and SLG with varying disturbance intensities (% canopy openness). 

Results showed significant differences in soil bacterial and fungal community 

compositions between CCF and SLG. Particularly, lower relative abundances of total 

mycorrhizal and EcM fungi, and higher relative abundance of AM fungi were found in 

SLG. These differences were accompanied by significantly higher soil pH, bulk density 

and maximum soil moisture, and diminished nitrate (NO3
-) supply rates and inorganic 

phosphorus (P) pools in SLG relative to CCF. Within SLGs, canopy openness was 

negatively related to total mycorrhizal and EcM relative abundances, while strongly 

positively related to supply rates of ammonium (NH4
+). Overall, these findings indicate 

reduced nutrient cycling rates in SLG relative to CCF, but with potential enhancement 

of nitrogen (N) mineralisation with increasing disturbance intensity in SLG by reducing 

EcM-saprotrophic fungal competition for organic N sources. This provides more 

evidence of the effects of SL on ecosystem nutrient and C cycling by alterations in 

relative abundances of mycorrhizal types. These results also highlight SL effects on 

bacterial communities previously shown to be largely resilient to SL disturbance in 

studies using broader forest type classifications (i.e. between OG-SL forest) (Tripathi 

et al., 2016; Lee-Cruz et al., 2013). This emphasises the need for studies at finer spatial 

scales to evaluate impacts of high environmental heterogeneity resulting from SL on 

soil microbial communities and functions. The overall findings of this chapter show 

impacts of SL on key soil microbial groups (bacteria and fungi) that regulate crucial 

nutrient and C cycles, with the potential to alter biogeochemical functions at the 

landscape scale. This demonstrates the need for evaluations and predictions of the 
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impacts of forest degradation (e.g. biodiversity loss and C storage) to include SLG 

effects on belowground communities and function, which may also influence 

restoration potential for recovery of biodiversity and ecosystem services in human-

modified tropical forest. 

Chapter 3 established the impacts of SLG on soil microbial community 

attributes and soil physicochemical properties. In Chapter 4, the effect of these 

alterations on soil microbial C cycling, and resistance and resilience of soil function to 

drought was investigated through controlled laboratory incubations using soil 

respiration (RS) as a functional measure. Results showed baseline RS to be lower in SLG 

relative to CCF soils. Although reduced RS has been found in SLGs in SL Bornean 

forest in a previous field survey, it had not yet been possible to separate the relative 

contributions of vegetation (i.e. autotrophic root respiration) and soil microbes to 

overall soil CO2 efflux, nor account for the confounding microclimatic differences 

between CCF and SLG (Saner et al., 2009). By controlling for extraneous factors of 

vegetation, moisture and temperature, these findings highlight the independent impact 

of SL on heterotrophic soil microbial respiration. Experimental drought and rewetting 

revealed no differences in resistance of soil microbial function to reduced soil moisture 

between CCF and SLG. Some evidence was found for greater resilience of SLG soil 

function relative to CCF, as RS returned to undisturbed levels faster after milder 

drought. However, RS responses of SLG soils to drought and rewetting were highly 

variable, possibly as a result of varied soil physicochemical and biological 

characteristics across SLGs studied. Results showed drought can result in prolonged 

elevation in RS in both CCF and SLG soils following rewetting. This may result from 

enhanced microbial growth and turnover (Birch, 1958; Zhou et al., 2016; Blazewicz et 

al., 2014; Karlowsky et al., 2018) and/or alterations in soil microbial ecophysiological 
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traits affecting breakdown of more recalcitrant soil C fractions (Bouskill et al., 2016c; 

Bouskill et al., 2016a). This has major implications for CO2 release to the atmosphere 

in response to drought events, which are predicted to increase in intensity and frequency 

with anthropogenic climate change in the tropics (Coelho and Goddard, 2009; Rifai et 

al., 2019). The findings of this chapter outline the crucial need to include soil microbial 

functional responses to land-use and climate change in predictions of land-atmosphere 

C feedbacks (i.e. climate models), to fully understand and mitigate against impacts of 

anthropogenic disturbance of tropical forest. 

Ecological restoration of degraded tropical forest may recover coupled 

biodiversity and ecosystem services, including C storage (Aronson and Alexander, 

2013; Benayas et al., 2009; Face the Future, 2007), through re-establishment of 

vegetation communities and soil microbial attributes (Deng et al., 2010; Nurulita et al., 

2016). However, most studies of restoration of SL forest in Southeast Asia have 

focussed on vegetation rather than soil microbial dynamics, potentially limiting 

rehabilitation success (Perumal et al., 2016). In Chapter 5, the effects of forest 

restoration by enrichment planting on soil microbial community attributes was 

evaluated through a survey of soil, vegetation and environmental characteristics across 

OG forest, restored SL (RSL) and unrestored SL forest (USL). Results showed RSL and 

USL bacterial and fungal communities to be relatively similar, while those of OG were 

distinct even after 18 years of restoration. Surprisingly, less soil microbial taxa were 

shared between OG and RSL across all groups compared to between OG and USL, and 

RSL and USL. Nevertheless, bacterial alpha and beta diversity indices appeared to 

successfully recover to levels representative of OG with enrichment planting. 

Additionally, further evidence was found for sensitivity of bacterial communities to 

forest disturbance, contradicting current understanding of bacterial community 
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resilience to SL (Tripathi et al., 2016; Lee-Cruz et al., 2013). Overall fungal alpha 

diversity was shown to recover more slowly, potentially driven by persistence of lower 

saprotrophic fungal alpha diversity in RSL comparable to USL. Findings indicate that 

current restoration management practices may be selecting for different soil microbial 

taxa in RSL than in OG and USL forest, which include liana and understorey vegetation 

removal. An apparent absence in human-modified forest of specific fungal taxa which 

may suppress plant pathogens (fungi and nematodes) with restoration may have 

negative consequences for reestablishment of planted species. Restoration practices 

may be impeding rehabilitation of soil microbial (particularly fungal) attributes, with 

implications for soil functioning. This is of vital importance considering the increased 

pressure now on remaining Bornean forest to provide essential ecosystem services, the 

vast majority of which is heavily degraded through SL (Gaveau et al., 2014). Overall, 

the findings of this chapter show that changes in current management practices to 

include consideration of the rehabilitation of belowground communities are required to 

effectively achieve ecosystemic recovery for biodiversity conservation and provision of 

vital ecosystem services, including C storage. 

There are several caveats regarding approaches taken and conclusions drawn in 

this thesis, and further research is required to confirm or unpick underlying 

mechanisms. For example, the effects of mycorrhizal types on soil C accumulation by 

altering mycorrhizal-saprotrophic competition for mineral nutrients remains a subject 

of contention in current research (Zak et al., 2019), with potential links made through 

correlative studies that cannot separate effects of climate (Averill et al., 2014). In the 

context of modified tropical forest, field manipulations of mycorrhizal abundances, for 

example using fungal hyphal and fine root exclusion cores (Johnson et al., 2001; 

Langley et al., 2006), along with analysis of soil C and nutrient cycling processes are 
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needed. For evaluation of SLG impacts on resistance and resilience of soil function to 

climate perturbations, incorporation of different classes of SLG according to soil 

biological and physicochemical properties in future analysis may help to explain the 

high variability observed in RS responses to drought and rewetting. Repeated and longer 

duration incubation studies of drought-rewetting cycles in conjunction with pre- and 

post-disturbance analyses of soil microbial community attributes are needed to clarify 

whether prolonged elevated RS following drought in SL forest soils represents a 

temporary burst in microbial activity, or a persistent shift in microbial communities and 

ecophysiological traits (Bouskill et al., 2016). Substrate addition experiments are also 

required to identify differences in soil microbial C cycling capabilities between SLG 

and CCF (Whitaker et al., 2014a; Whitaker et al., 2014b). Finally, further study is 

required to corroborate the effects of current forest restoration practices on soil 

microbial community recovery and confirm impacts on soil function. Controlled liana 

and understorey vegetation removal experiments alongside in situ monitoring of 

nutrient and C cycling processes will help elucidate consequences for ecosystem 

functions. Survey of restored forests of differing management regimes, ages and 

locations will also help confirm underlying patterns in belowground biodiversity and 

functions. 

This thesis has demonstrated impacts of human modification of tropical 

rainforest (degradation, conversion and restoration) on soil microbial community 

attributes, and highlighted potential consequences for crucial soil functions. Overall, the 

main findings may have implications for large-scale soil nutrient cycling and C storage, 

through shifts in relative abundances of mycorrhizal types relating to breakdown of soil 

organic matter, and prolonged elevation of soil CO2 emissions in SL forest in response 

to drought. This calls into question the capacity of remaining degraded forest to offset 
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anthropogenic C emissions, especially under future climate scenarios. An apparent 

retention of the soil mycorrhizal mycelium in SL forest may aid restoration by providing 

key limiting nutrients for establishment of dipterocarp seedlings, although results 

indicate potential selection of different soil microbial taxa by current restoration 

practices. This may inhibit recovery of soil microbial communities and ecosystem C 

sequestration in these biodiversity and degradation hotspots. Improved understanding 

of the impacts of degradation and restoration is required to ensure protection of globally 

critical tropical forest ecosystems. Evaluation of belowground communities and 

function is needed for predicting impacts of land-use and climate change, as well as 

effective ecosystem rehabilitation for biodiversity conservation and provision of 

essential ecosystem services by these vital, hyperdiverse environments.  
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