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ABSTRACT. We show that sets of integers lacking the configuration z, x + ¥,
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1. INTRODUCTION

1.1. Density bound. In [PP19] the authors obtained, for the first time, an ef-
fective bound for subsets of {1,..., N} lacking the nonlinear Roth configuration
x, x +vy, v+ y2. There it was established that such sets have cardinality at most
O(N/(loglog N)°), where ¢ > 0 is an absolute constant. The key breakthrough
of [PP19] was a “local U'-control” result, from which a bound for sets lacking the
nonlinear Roth configuration follows via standard methods. Here, we combine this

local U'-control result with a more sophisticated argument to remove a logarithm
from the bound of [PP19)].

Theorem 1.1 (Density bound). There exists an absolute constant ¢ > 0 such that
the following holds. Suppose that A C {1,..., N} lacks configurations of the form

T, T4y, T+y° (y #0). (1.1)
Then
|Al = O (N/(log N)°).
A careful analysis shows that the exponent ¢ = 271%° is permissible, where 150
represents the combined number of times we utilise the Cauchy—-Schwarz inequality

in [PP19] and this paper
1
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1.2. Major arc correlation. The techniques which yield Theorem 1.1 also al-
low us to show, in a quantitatively effective manner, that the major arc Fourier
coefficients of a set determine how many nonlinear Roth configurations (1.1) the
set contains.

Theorem 1.2 (Major-arc control). Let 6 > 0 and f,g,h : Z — C be 1-bounded
functions with support in {1,..., N}. Suppose that

Y f@)glz +y)hlz +17)

r€Z yeN

> IN3/2,

Then either N < 6=°W), or there is a frequency a € R and a positive integer
q < 679U such that' ||qal < 6 °V/N and

> h(x)e

TEZ

)| > 90w

In the nomenclature of [Tao06], the major arc linear phases are the only ob-
structions to uniformity for the nonlinear Roth configuration. We emphasise that
Theorem 1.2 is not used in the proof of Theorem 1.1.

The major arc Fourier coefficients of a subset of {1,..., N} essentially measure
its distribution in arithmetic progressions of common difference < 1 and length
> N. To illustrate this, the following definition is useful.

Definition 1.3 (Local function). We call a function ¢ : Z — C a local function of
resolution M and modulus q if there exists a partition of Z into intervals of length
M such that ¢ is constant on the intersection of every such interval with every
congruence class mod gq.

Corollary 1.4 (Local control of the nonlinear term). Let§ > 0 and f,g9,h : Z — C
be 1-bounded functions with support in {1,..., N}. Suppose that

DY f@)glz +y)hlz +37)

z€Z yeN

> IN3/2,

Then either N < 69U or there is a 1-bounded local function ¢ of resolution
M > 6°DN and modulus ¢ < 6~°W such that

> h(z)¢

T€Z

)| > 500

One cannot hope to prove that the functions f and g above also correlate globally
with local functions, as the following example illustrates. For any positive integers
Zy, Ig N1/2 set

1 ifz,=0 (mod 4),

0 if =1 (mod 4)

—1) N2 = i ’

f (iUl + (22 ) L J) —-1 ifzy, =2 (mod 4),
0 ifzy=3 (mod4);

'Here ||-|| denotes the distance to the nearest integer, and e(a) := €™, For our conventions
regarding asymptotic notation see §1.5.



POLYLOG NONLINEAR ROTH 3

and set f(x) = 0 everywhere else. Taking g := f and h := 1g_ ny, one can check
that either NV <1 or

> f@)glz +y)hlz +y7) > N2,

z€Z yeN
However, for any arithmetic progression P C {1,..., N}, we have
Z f(z)] < N2,
zeP

Hence, for any 1-bounded local function ¢ of resolution > J N and modulus < 6},
the trlangle inequality gives the discorrelation

> fl=)

TEZ

< §2N12,

This example is a local obstruction coming from the real numbers: the nature
of our counting operator means that we cannot disentangle possible correlations
between the f and g functions on subintervals of length N'/2. We can, however,
show that these are the only other possible obstructions to uniformity.

Theorem 1.5 (Local control of all terms). Let 6 > 0 and fi, fo, f3 : Z — C be
1-bounded functions with support in {1,..., N}. Suppose that

ZZfl ) folz +y) f3(z + y7)| = SN2,

r€Z yeN

Then either N < 6~°M | or for each i = 1,2,3 there is a 1-bounded local function
&; of resolution > §°MDNY2 and modulus q; < 6N such that

S~ le)o(a)| > 500
TEZL
Proof. This is an immediate consequence of Corollary 1.4 and Lemma 3.2. U

1.3. Longer polynomial progressions. In analogy with the first author’s gen-
eralisation [Pell9] of [PP19], it is natural to ask whether the methods of this paper
yield polylogarithmic bounds for sets of integers lacking longer progressions

z, t+ Pi(y), ..., v+ P,(y), (1.2)

where the P; € Z[y] have zero constant term and deg P; < --- < deg P,,.

As was mentioned above, the key input to this paper is the local U!-control result
[PP19, Theorem 7.1]. Replacing this with [Pell9, Theorem 3.3|, our argument
generalises in a straightforward manner to yield polylogarithmic bounds for subsets
of {1,..., N} lacking (1.2) when m = 2, that is, for all three-term polynomial
progressions with distinct degrees and zero constant term.

Obtaining polylogarithmic bounds for longer polynomial progressions requires
an additional idea. We sketch a strategy in §7, which relies on obtaining an
appropriate generalisation of [Pell9, Theorem 3.3], a generalisation that would
require re-running the majority of the arguments therein.
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1.4. An outline of our argument. Effective Szemerédi-type theorems are com-
monly proved via a density increment strategy, the prototypical example being
the proof of Roth’s theorem [Rot53] on three-term arithmetic progressions. This
strategy begins with a set A C {1,..., N} of density § := |A|/N that lacks the
configuration in question. It then proceeds to show that there is a substructure
S C {1,...,N} on which A has increased density J + 5(1). One then hopes to
iterate the argument with A NS in place of A and S in place of {1,..., N}.

One avenue to obtaining polylogarithmic bounds in a Szemerédi-type theorem
is to obtain a constant proportion density increment 0 + (d) on a substructure S
of polynomial size |S| ~ N, This was accomplished for three-term arithmetic
progressions by Heath-Brown [HB87] and Szemerédi [Sze90] (in fact, they were
able to handle a smaller lower bound on |S|).

An alternative strategy for obtaining polylogarithmic bounds is to obtain the
weaker polynomial increment & + Q(6°M), yet on a dense or global substructure
S, that is, a substructure of size |S| > exp(—O(§~°M))N. This was accomplished
by Sérkozy [S4r78] for the configuration x,x + y* and for three-term arithmetic
progressions by Bourgain [Bou99].

Both of these strategies are achievable for the nonlinear Roth configuration. The
global structure strategy is perhaps the most natural, and may be accomplished by
utilising a generalisation of Theorem 1.2. In this note we do not pursue this, and
instead give details for a constant-proportion density increment, as our argument
is somewhat cleaner in this form.

More specifically, we show that if A C {1,..., N} has density 0 and lacks
nontrivial configurations of the form x, x+y, x+v?, then there exists an arithmetic
progression P of length |P| > 6°WN'/2 and common difference ¢ < 6-°™" such
that we have the density increment

|AN P| 14|
1P| N

As outlined in [PP19], the ‘almost bounded’ size of ¢ allows us to iterate this pro-
cedure. (In [PP19], we obtain the weaker density increment (1 + Q(§°))|A|/N,
which leads to the extra logarithm appearing in the bound there.)

We obtain the constant-proportion increment (1.3) by combining the local U?-
control result of [PP19] with a strategy of Heath-Brown [HB87] and Szemerédi
[Sze90], which has a very robust formulation due to Green and Tao [GT09]. To
accomplish this, we first give a structural characterisation of sets lacking the non-
linear Roth configuration (this is Lemma 3.3, whose essence is captured in the
weaker Theorem 1.5). These sets resemble the level sets of the product of a func-
tion that is constant on intervals of length N'/2 and a function that is constant
on congruence classes modulo a bounded gq.

Having obtained such a structural characterisation, an energy increment proce-
dure closely following [GT09] allows us to approximate an arbitrary set of integers
by these level sets, up to an error that does not contribute substantially to the
count of nonlinear Roth configurations. A combinatorial argument then allows
us to deduce that our set must have a substantial density increment on one of

> (1+9Q(1)) (1.3)
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these level sets, of the form 6 +€(J). As a result, our density increment procedure
requires only log(671) + O(1) iterations, compared with the O(§~°M) required in
[PP19], and this yields the polylogarithmic improvement over our previous density
increment iteration.

The remainder of this paper is organized as follows. We derive Theorem 1.1
in §2 via a density increment iteration. Our deduction uses a density increment
lemma that is established in §§3-5. We prove Theorem 1.2 and Corollary 1.4 in

§6.

1.5. Notation.

1.5.1. Standard conventions. We use N to denote the positive integers. For a real
number X > 1, write [X] = {1,2,..., | X ]|}. A complex-valued function is said to
be 1-bounded if the modulus of the function does not exceed 1.

We use counting measure on Z, so that for f,g:Z — C, we have

£l = (1) g = 52 1) and (7)) = 3 Tl

Any sum of the form ) _ is to be interpreted as a sum over Z. The support of f
is the set supp(f) := {z € Z: f(x) # 0}. We write | f||, for sup,ez | f(2)|-
We use Haar probability measure on T := R/Z, so that for measurable F': T —

C, we have | |
1Pl = ([ 1F@paa)” = ( 1 Fla)Pda)”

We write |||y for the distance from o € R to the nearest integer min, ez | — n.
This remains well-defined on T.
We define the Fourier transform of f : Z — C by

= Z f(z)e(ax) (e, (1.4)

when this makes sense. Here e(a) stands for ™,
For a finite set S and function f : S — C, denote the average of f over S by

SGSf : |S| Zf

ses
If || - || is @ seminorm on an inner product space, recall that its dual seminorm
| - ||* is defined by
IFII" == sup [{f, )| (1.5)
llgll<t
Hence,
(Ll < AP Hlgll (1.6)

For a complex-valued function f and positive-valued function g, write f < g¢
or f = O(g) if there exists a constant C' such that |f(z)| < Cg(z) for all xz. We
write f = Q(g) if f>g.
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1.5.2. Local conventions. Up to normalisation, all of the above are widely used
in the literature. Next, we list notation specific to our paper. We have tried to
minimise this in order to aid the casual reader.

The quantity (N/q)'/? appears repeatedly, where N and ¢ are integers fixed
throughout the majority of our paper. We therefore adopt the convention that

M = L N/qJ . (1.7)
Assuming this, define the counting operator on the functions f; : Z — C by
Ao n(fo, f1, f2) = EuepnEyeppn fo(x) fr(z + y) falx + Qyz)- (1.8)

When fo = f1 = fo = f, we simply write A, n(f) for Ay n(fo, f1, f2)-
For a real parameter H > 1, we use uy : Z — [0, 1] to represent the following
normalised Fejér kernel

(1.9)

_ o ey (g 1) ()

[ ]
This is a probability measure on Z with support in the interval (—H, H).

2. ITERATING THE DENSITY INCREMENT

In this section we prove Theorem 1.1 using the following lemma, which we will
devote §§3-5 to proving.

Lemma 2.1 (Density increment lemma). Let ¢ < N be positive integers and
d > 0. Suppose that A C [N] satisfies |A| = IN and lacks the configuration

z, x4y, vHqy’ (Y #0). (2.1)

Then either N < (q/8)°Y) or there exists ¢ < exp (O (67°W)) and N’ >
q W exp (—O (5_0(1))) N2 such that, for some a € Z, we have

|AN(a+qq - [N'])] = (14 Q(1))oN". (2.2)

Proof of Theorem 1.1 given Lemma 2.1. This is the same as the proof of [PP19,
Theorem 1.1], but using the improved density increment lemma above in place of
the density increment lemma of [PP19]. Note first that if A lacks the configuration
(2.1), then the set

{x:a+qqx e A},

lacks configurations of the form

z, o+y, v+ ¢3dy (y#0).

Let A C [N] have size §N, and suppose that it has no non-linear Roth config-
urations (1.1). Setting Ay := A, Ny := N and ¢y = 1, let us suppose we have a
sequence of tuples (A;, N;, q;) for i = 0,1,...,n that each satisfy the following:

(i) A; lacks configurations of the form
i i—1
vooty, etqd cdaay’ (Y #0).
(i) 4 < exp (0 (5-00));
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(iii) A; C [N;] and for ¢ > 1 we have
[Ail o [Aica]
Ni Nz 1

where ¢ = Q(1) is a positive absolute constant;
(iv) for i > 1 we have the lower bound

> (1+c¢)——

1/2

N
i1 o))"
(q% CeeQi_q CXD (5—0(1))) 1

i—1

Applying Lemma 2.1 with ¢ = qgiqf -+ q? g, either

on 2n71 2 O(l)
N, < <qo @ ---qn_lqn/5> : (2.3)

or we may obtain (A1, Npi1, gni1) satisfying conditions (i)—(iv). If (2.3) holds,
then our iterative process terminates at stage n.

If the number of iterations n is at least ¢!, then the density of A, on [N,] is
at least 20. After an additional %c‘l iterations, the density is at least 49. Hence
if the number of iterations is at least

—1 1.1 1.1 11

[+ e+ e+ o+ e
then the density is at least 2™d. The density therefore exceeds one if the number
of iterations exceeds 2¢™! + log,(67'). Since this cannot happen, it follows that

there exists n < log,(671) + O(1) such that the procedure terminates at stage n.
At the point of termination, the smallness assumption (2.3) must hold, so that

N, < exp (O (5_0(1)>> .

On the other hand, iteratively applying the lower bound (iv), we have

N; >

N2

(q(Q)n Lo Gn—1 €XP (570(1)))0(1)
> NV [qgnfl ©+ Qo1 XD (5‘0(”)]
> exp (—O ((5’0(1))) N,

where we use the upper bound (ii) on the ¢;’s, together with n < log,(6) +O(1).
Taking a logarithm and comparing upper and lower bounds for N,, gives log N <«
§-°M which yields the bound claimed in Theorem 1.1. O

—O(1+45+3+-4277)

3. THE CUT NORM INVERSE THEOREM

The first step of the proof of Lemma 2.1 is to use the main technical result
of [PP19] to prove an inverse theorem for the cut norm associated to A, y, which
we now define.

Definition 3.1 (Cut norm). For positive integers ¢ < N, we define the cut norm
of f:Z — C by

11l = suptAg N (f, 915 g2l [Agn(91s £592)] (Mg (g1, 92, I}, (1)
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where the supremum is taken over all 1-bounded functions g; : [N] — C. We note
that, in spite of our nomenclature, this is not a norm, but a seminorm. One could
remedy this by summing over y > 0 in the counting operator (1.8).

Initially, the cut norm is too restrictive for us, so we begin by working with the
weaker quantity

I£12 v == sup{|Aqn (£, g1, 92)|, [Aqv (g1, £, 92)| + g5 < 1 and supp(gi) C [N]},

which we refer to as the partial cut norm.

The following lemma is simply a rephrasing of [PP19, Theorem 7.1], which is
the technical heart of that paper. See Definition 1.3 for the meaning of ‘local
function’.

Lemma 3.2 (Partial cut norm inverse theorem). Let ¢ < N be positive integers,
d >0, and f:Z — C be a 1-bounded function with support in [N]. Suppose that

b
1Fllgn =0

Then eitherN < (q/8)°WM) or there exists a 1-bounded local function ¢ of resolution
> (6/q)°VO N2, modulus qq for some ¢ < 6! 1), and such that

> f@)g(x) > 690
T€E[N]

Proof. By compactness, there exist 1-bounded functions gy, g, : [N] — C such
that either |Ay N (f, g1,02)] = 6 or |Agn (g1, f,g2)] = 6. In the latter case, we may
apply [PP19, Theorem 7.1] to deduce that there exist positive integers ¢’ < 6-°M)
and N’ >> (§/q)°D N2 such that

D> flatady)| > CUNN

r  |y€e[N']

In the former case, the reader may check that the argument of [PP19, Theorem
7.1] delivers the same conclusion?.

To ease notation, write () := ¢¢’. Partitioning the integers into arithmetic
progressions of length N’ and common difference @) gives

ONN' < Y 3 371> f(Qz+QN'z+u+Qy)

z€[N'| uelQ] =€Z |ye[N']

N’mzaxzz Z f(Qz+QN'z+u+ Qy)|.

uelQ] z€Z |ye[N']

Defining 9. (u,z) to be the conjugate phase of the inner sum, we deduce the
existence of z for which

PN <« Z Z Z f(Qz+QN'zx +u+ Qy)v.(u, ).

u€l@ = ye[N']

2For details see the second author’s exposition [Pre20].
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The result follows on noting that every integer has a unique representation of the
form QN'z + u+ Qy with u € [Q)], x € Z and y € [N']. Hence the map
Qz+QN'z +u+ Qy — ¥, (u, x)
is a local function of resolution QN’ and modulus Q. O

Now we can prove an inverse theorem for the cut norm itself.

Lemma 3.3 (Full cut norm inverse theorem). Let ¢ < N be positive integers,
d >0, and f :7Z — C be a 1-bounded function with support in [N]. Suppose that

1Fllgn = 0

Then either N < (¢/8)°Y) or there exist 1-bounded local functions ¢; and ¢, of
resolution > (6/q)°M N2 and moduli qq1 and qqs, respectively, for some qi, gz <
6~ OW such that

S f@)on(x)ga(z)| > ODN. (3.3)
Z€[N]

A key tool in proving Lemma 3.3 is the following decomposition result, which
relies on the finite-dimensional Hahn—-Banach theorem.

Lemma 3.4. Let ||-|| be a seminorm on the space of complex-valued functions with
support in [N]. For any such function f and e > 0, there exists a decomposition

1farl” < e flle and N funsll <€l flle-

Proof. This can be found in the discussion following [Gow10, Proposition 3.6].
Although the statement therein is for norms, and not seminorms, one can check
that the (simple) argument remains valid in this greater generality®. O

Using the dual norm decomposition afforded by Lemma 3.4, we can gain control
of every function in the counting operator.

Proof of Lemma 3.3. By the definition of the cut norm (3.1) and Lemma 3.2, we
may assume that there are 1-bounded functions g, h : [N] — C such that

[ AN (g, )] = 6.
Applying Lemma 3.4 to g with [|-|| := |||||;N and € := 10N ~/2, we deduce that
g (Gatr by )| = 0 = |Agx(Gungs s £)] = 0 = [lgunsl > 3.
Recalling that M := |\/N/q|, define the dual function
F(z) = Eyepnh(z +y) f(z + qy°).
The dual inequality (1.6) then gives
3 < A0 (Gars s )l = N7H g, F) [ < 2071

30n occasion the relevant results in [Gow10] appear to assume that unit balls are bounded
(if we take the definition of convexr body to be a compact convex set with non-empty interior),
which may not be true for the unit ball of a seminorm. However, the boundedness assumption
is not necessary in the pertinent proofs. Moreover, one could quotient by the norm zero set to
obtain a genuine norm.
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Hence, by the partial cut norm inverse theorem (Lemma 3.2), there exists a 1-
bounded local function ¢; of resolution > (6/¢)°N'/? and modulus qq; for
some ¢q; < 6-°M) such that

> F(z)¢(x)| > °VN.

z€[N]
Thus
(Mg (@1, B, f)] > 69,
We now re-run our argument, this time applying Lemma 3.4 to h and deducing

the existence of a I-bounded local function ¢, of resolution > (§/¢)°WN'/? and
modulus ¢g, for some ¢o < 6~°M such that

[Agx (91,69, )] > 590,

Expanding the counting operator and taking a maximum over y € [M] gives

SOONM < | Y > f(@)dn(x — qy)da(z — gy + )
yeM] =

]

<M

S F(@)d(@)da(a)|

where both ¢; are 1-bounded local functions of resolution > (§/¢)°M N2 and
moduli ¢g; for some ¢; < § W, O

4. A WEAK REGULARITY LEMMA

Much of the material is this section is standard, and closely follows the exposi-
tions in Green [Gre07] and Green-Tao [GT09]. To simplify the exposition of later
arguments, while the factors in [Gre07] and [GT09] are o-algebras, our factors will
be the set of atoms of certain o-algebras (which can obviously be recovered by
taking the o-algebra generated by the set of atoms).

Definition 4.1 (Factor). We define a factor B of [N] to be a partition of [N], so
that [N] = UgepB. We say that a factor B’ refines B if every element of B is a
union of elements of B’. The join By V ---V B, of factors By, ..., By is the factor
formed by taking the d-fold intersections of the elements of By, ..., By, that is,

Bl\/"'\/BdZ:{Blﬂ"'ﬁBdlBiEBifOrizl,...,d}.

Definition 4.2 (Measurability, projection). Given a factor BB, we say that a func-
tion f: [N] — C is B-measurable if it is constant on the elements of B.
Define the projection of any function f : [N] — C onto B by

g f(z) = Eyen. f(y), (4.1)

where B, is the element of B that contains x. Notice that [Izf is B-measurable,
and is just the conditional expectation of f with respect to the o-algebra generated
by the elements of B.

We record some well-known properties of the projection operator Iz (that is,
properties of conditional expectation) in the next lemma.
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Lemma 4.3 (Properties of the projection operator).

(i) The operator llg linearly projects onto the space of B-measurable functions.
(i) Ilp is self-adjoint with respect to the inner product

(f.9) =Y _ flx)g(x)  (f.g:[N]—C),

so that <f7 HB.g> = <H3fa g>
(iii) If B' is a refinement of B then

(iv) If B' refines B then lgf is orthogonal to U f — g f.

Proof. Inspecting the formula (4.1) reveals that 115 is linear, that Iz f is constant
on elements of B, and that if f itself is constant on elements of B, then [Izf = f.

This establishes (i).
Interchanging the order of summation gives

(f:llsg) =Y Bl Y f(2)g(y) = (lsf.9).

BeB z,yeB

This proves that Iz is self-adjoint.
The first refinement property follows from the fact that IIzf is B’-measurable.
We utilise self-adjointness of Iz and the first refinement property to conclude
that

(U f,Upf —Up f) = Mgf,Ugf — f) = (f,1gf —zf) = 0.

Now we describe the particular type of factors that will be relevant to us.

Definition 4.4 (Local factor). A simple real factor of resolution M is a factor of
[N] obtained by partitioning R into intervals all of length M.

A simple congruence factor of modulus ¢ is the factor of [N] obtained by par-
titioning into congruence classes mod q.

We say that B is a simple local factor of resolution M and modulus ¢ if it is
the join of a simple real factor of resolution M and a simple congruence factor of
modulus ¢. Notice that B is a simple local factor if and only if it consists of the
level sets of a local function (Definition 1.3) of resolution M and modulus g.

A local factor of dimension d, resolution M and modulus ¢ is the join of d
simple local factors B;, each of resolution M; and modulus ¢;, where M; > M and

q= lcm[(_h? cee 7Qd]'

Local factors of large resolution and small modulus and dimension necessarily
contain few sets. This fact will be useful later in the proof of Lemma 2.1.

Lemma 4.5 (Size of a local factor). If B is a local factor of dimension d, resolution

M, and modulus q, then
N
< — +2).
1Bl < qd (M + )
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Proof. By the definition of a local factor, it suffices to bound the size of the join of
d simple real factors, and then bound the size of the join of d simple congruence
factors. The product of these two numbers gives us our final bound.

Joining d congruence simple factors with moduli ¢, ..., gq results in another
congruence simple factor of modulus ¢ = lem|[qy, . .., qq]. The number of parts in
such a partition is gq.

The join of d simple real factors partitions [N] into intervals. The upper end-
point of each of these intervals is either equal to N or is equal to an endpoint of
an interval in one of the original simple real factors. For a simple real factor of
resolution M, at most 1 + N/M upper endpoints lie in [1, N). Hence the number
of intervals in the join of d simple real factors of resolutions My, ..., M, is at most
2d+ N(M7'+ -+ M. O

We now prove a weak regularity lemma for the cut norm via an energy increment
argument.

Lemma 4.6 (Weak regularity). Let ¢ < N be positive integers and 6 > 0. FEither
N < (q/86)°N), or for any function f : [N] — [0,1] there exists a local factor B
of dimension d < 6~°W, resolution > (6/q)°V N2, and modulus qq' for some
¢ <0(1/8)°?Y such that

If = afllyn <6 (4.2)

Proof. We run an energy increment argument, initialising at stage 0 with the
trivial factor By := {[N]}. Suppose that at stage d of this iteration we have a
local factor B of resolution > (6/¢)°Y N1/2, dimension at most 2d, and modulus
qq for some ¢’ < O(1/6)°@. In addition, suppose that we have the energy lower
bound

T f|% > ds°DN. (4.3)
With these assumptions in place, we query if the following holds
If =T fll,n <0 (4.4)

If so, then the process terminates. If not, we show how our iteration may proceed
to stage d + 1.

Applying the cut norm inverse theorem (Lemma 3.3), we conclude that there
exist 1-bounded local functions ¢; of resolution > (§/¢)°Y N'/2 and modulus qg;
for some ¢; < 6~°M) such that

[(f = Tgf,162)| = | Y (f = Hsf)(x)di(x)s(w)| > 67N

Z€[N]

Let B’ denote the join of B and the simple local factors generated by ¢; and
¢2, so that B’ is a local factor of dimension at most 2(d + 1), resolution >
(6/q)°Y N2 and modulus qq” for some ¢" < ¢'q1qo < O(1/6)°+V. Since ¢1¢,
is B’-measurable, we can use the properties listed in Lemma 4.3 together with the
Cauchy—-Schwarz inequality to deduce that

[(f = Hgf, ¢102)| = [(f — Ugf, s (d1¢2))| = [(Ilz f — I f, r162)]
SN2 Hp f = s flle -
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It follows that
T f — Mg fll > 87O N2,

Lemma 4.3 (iv) tells us that Iz f is orthogonal to [z f —IIg f, hence by Pythago-

ras’s theorem
1M 172 = [T 1l + [ f — s f 72

The energy bound (4.3) follows for B, allowing us to proceed to the next stage of
our iteration.

Since the function f is 1-bounded, the projection Iz f is also 1-bounded, hence
the energy (4.3) is always bounded above by N. It follows that this energy incre-
ment must terminate at stage d for some d < §~ %W yielding the lemma. O

5. THE DENSITY INCREMENT LEMMA

In this section we prove Lemma 2.1, modelling our argument on that given by
Green and Tao [GT09, Corollary 5.8]. We first record, for the sake of convenience,
the following immediate consequence of the triangle inequality.

Lemma 5.1 (¢/!-control). Suppose that N > q. Then for any fo, fi, fo: [N] = C
we have

g (o, fr )l S N fill [Tl
J#i
Proof. We prove the result for i = 1, the other cases being similar. A reparametri-
sation gives

Mg (fo, f1, 2)| = |Baeini f1(2)Eyepnn fo(z — y) folz + gy — y)|

< Eoep | f1 (@) [Eyepa [fo(@ — )l fo(z + qy* — ).
U

We are now in a position to prove Lemma 2.1, and thereby complete our proof
of Theorem 1.1.

Proof of Lemma 2.1. Let A satisfy the assumptions of Lemma 2.1. Increasing
d only strengthens our conclusion, so we may assume that |A| = JN. Since
Aq,N<1A) =0, we have that ‘A%N(lA) — Aq,N((Sl[N])‘ = (SSAq’N(l[N]) > 53,
Applying the weak regularity lemma (Lemma 4.6), there exists a local factor B
of dimension d < §~°W resolution > (6/¢)°WN/2 and modulus ¢¢’ for some
¢ < O0(1/6)°@ such that
114 = Tglall, v < §0°Ag N (1(n))-
Setting f := Ilgly, a telescoping identity thus yields
[Agn(f) = Ao (01| = 30°Ag v (Liny) > 6%,
Define the B-measurable set
S={z €[N]: f(x) > (14 )},

where ¢ > 0 is a sufficiently small absolute constant that will be chosen to make

the following argument valid. By Lemma 5.1 and a telescoping identity, we have
[Agn(f) = Agn(flse)| < 3|S|/N, so that

B+ [Aan (f1se) = Agn(S1pwy)| > 6°.
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Yet another telescoping identity, in conjunction with Lemma 5.1, gives

Mg (f1se) = Mg (01| < & [[F1se = 010 < 5 [1F = 1m0 + 5,
so that
1148 ||F — 81,0 > 8N
Since f — 01y) has mean zero, its ¢'-norm is equal to twice the ¢!-norm of its
positive part. The function ( f— 51[N}) L can only exceed c¢d on S, so taking c
small enough gives |S| > §3N. Letting B denote the largest element of B for
which B C S, the bound in Lemma 4.5 yields
‘B| > q—O(l)(SO(d)Q—O(d)Nl/Q'

By construction (see Definition 4.4), the set B is an arithmetic progression of
common difference q¢’ with ¢ < O(1/8)°9. Moreover, the density of A on B
is equal to the value of f(x) for any z € B, and this is at least (1 + ¢)d by the
definition of S. O

6. GLOBAL CONTROL BY MAJOR ARC FOURIER COEFFICIENTS

The purpose of this section is to prove Theorem 1.2 and Corollary 1.4. We begin
with an alternative version of Lemma 3.2, replacing the rigid local function found
therein with something more continuous.

Definition 6.1 (C-Lipschitz). We say that ¢ : Z — C is C-Lipschitz along q - Z
if for any x,y € Z we have

|0(x + qy) — o(z)| < Clyl.

Recalling our definition for the Fejér kernel (1.9), we observe that a function of
the form

T Z,LLH(h)f(a:+qh) (6.1)

is Lipschitz along ¢ - Z.

Lemma 6.2. Let q, H be positive integers and f : 7Z — C be 1-bounded. If ¢ is
defined as in (6.1), then ¢ is O(H')-Lipschitz along q - Z.

Proof. Recalling (1.9), the triangle inequality for |- | and max{-,0} show that
la(h+y) — p(h)| <|yl/ |H]? for all h,y € Z. Hence a change of variables gives

6+ av) — 0)| < Y lumlh—9) —pa < L 31
h

he(—H,H)U(y—H,y+H)

i

Now we prove another partial cut norm inverse theorem, this time getting cor-
relation with functions that are Lipschitz along progressions with small common
difference.

Lemma 6.3 (Partial cut norm inverse theorem II). Let N be a positive integer,
d >0, and f,g,h : Z — C be 1-bounded functions with support in [N]. Suppose
that

B Eyenirz f(2)g(z + y)h(z + y?)| = 6.
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Then either N < 690 or there exists ¢ < 6-°M and a 1-bounded function ¢
that is O(6-CWN~Y2)_Lipschitz along q - Z such that

> g(@)g(x) > °VN.

TE[N]

Proof. Applying [PP19, Theorem 7.1], we obtain positive integers ¢ < 6= and
NYZ > M > §9ONY2 guch that

Z Z g(x + qu) > §°ON M.

T |ye[M]

By the Cauchy—Schwarz inequality and a change of variables, we have

29(@ Z g(z + q(y1 — ya)) > VN M.

Y1,y2€[M]
Setting
¢(x) = Ey, yoepng(z + q(y1 — v2)),
Lemma 6.2 shows this function has the required properties. O

Before proving Theorem 1.2, we record two standard facts.
Lemma 6.4. There are at most O(N*) solutions x € [N]° to the equation
x%+x%+x§ :xi+x§+:p§.

Proof. There are a number of ways to prove this. Perhaps the most robust is via
the circle method, see [Dav05]. The result can be read out of [Bou89, Proposition
1.10]. O

Lemma 6.5 (Weyl’s inequality). Let P C Z be an arithmetic progression with
common difference q and let 0 < § < 1. Suppose that

Z e(az?)

zeP

Then either |P| < =% or there exists a positive integer ¢ < §~°W) such that
l'q*al| < 6~ |P| 72,

> 6|P).

Proof. Let P = xy+ ¢ - [N], so that our exponential sum becomes
Z e(az?) = Z e(aq®y® + 2aqroy + axl).
z€P y€[N]

Applying [GTO08, Lemma A.11], either N < §~°( or the conclusion of our lemma
follows. O

Proof of Theorem 1.2. Write Ay for the counting operator A; y (that is, the av-
erage (1.8) with ¢ = 1). Let f,g,h: [N] = C be 1-bounded functions satisfying

Define the seminorm

9]l == sup {|An (91,9, 92)| : |g;| <1 and supp(g;) C [N]}.
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Applying Lemma 3.4 to g with € := %5N*1/2, we follow the argument in the proof
of Lemma 3.3 to deduce that

|AN(fagstr7h)| 6_|AN(f gunf7 >| ||gunf|| g

Define the dual function

F(x) == E ey f(r — y)h(z + y? — 7).
The dual inequality (1.6) then gives
2 < |AN(f’gstr7h)| - N_1| <gstr7F> | < 25_1 ”FH .
Hence, by Lemma 6.3, there exists ¢ < 6-°(1) and a 1-bounded function ¢ that is
O(6-9WN~1/2)_Lipschitz along ¢ - Z and satisfies
Z F(z)(z) > DN
z€[N]
Expanding the definition of the dual function, we have
Z Z f(@)p(z 4+ y)h(x + y?) > OO N2,
z€[N] yE[Nl/Q]

Let us partition Z into arithmetic progressions P each of common difference ¢
and length M, where M will be chosen shortly. For each such arithmetic progres-
sion P, fix an element yp € P. Using the Lipschitz property of ¢, for any = € Z
and y € P we have

6(x +yp) — bz +y)| < §TOVMN2,

Hence,

> Z S f@)élr+y) — éle +yp)lh(z + )| < 5OOMN.

P z€[N]yePn[N1/2]

We can therefore take M sufficiently small to satisfy both M > §@M N1/2 and

ZZ ST f@)d(x + yp)h(z +y?)| > SOON2,

T yePN[N1/2

Set fp(z) := f(x)é(x+yp). The number of progressions P that intersect [N'/?]
is at most O(N'V2M ' +¢q) = O(6-°W). Therefore, the pigeon-hole principle gives
a progression P for which

ST fe@h(z + )| > OWN2, (6.2)
T yePN[N1/2]
In particular, |P N [NY/2]| > §OWN1/2,
Writing Sp(a) for -, cprnisz € (ay?), the orthogonality relations allow us to
reformulate (6.2) as

Sp(a)da| > VN2,
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Let n > 0 be a parameter to be determined shortly, and define the major arcs
M:={aeT:|Sp(a)] > 77N1/2} .

Parseval’s identity then gives

[ Jotehalsiayial € a2 ol A, < o
Hence we may take n > 0°M and ensure that
‘/ fp(@)h(—a)Sp(a)da| > sV N2,
m

By Lemma 6.4 and orthogonality, we have ||Sp||; < N'/3. Thus, by Hélder’s
inequality, we get that

‘ | Fet@ht-a)spialda) < |fsl,

We therefore deduce that there exists o € 9t such that
}ﬁ(—a)‘ > sOWN.

< e ll, 1Bl h(—a)|".

[Sp | sup
aeM

Finally, an application of Weyl’s inequality (Lemma 6.5) shows that if —a € 90t
then « has the required Diophantine approximation property. O

Proof of Corollary 1.4. Let a € R be the frequency and ¢ the positive integer
provided by Theorem 1.2. For any integer a and positive integer M, if z,y €
a+q - [M], then

le(az) — e(ay)| < 27 [la(z — y)l| < 5D MN

Partitioning 7Z into arithmetic progressions of common difference ¢ and length M
then gives

PN « Z)Z h(x)’ oMy,

P xeP

We thus take M > 6N sufficiently small to ensure that

OO N < Z\Z h(;p)(.

P zeP

Write 0p for the conjugate phase of the inner sum. Then the map z — . 0plp(z)
is a local function of resolution > §°N and modulus < §~°0), yielding the
corollary. O

7. LONGER PROGRESSIONS

As mentioned in §1.3, the main obstacle to generalising our polylogarithmic
bound to longer configurations such as (1.2) is in obtaining an appropriate gen-
eralisation of Lemma 3.3; in particular, showing that if the relevant counting
operator is large, then all functions must correlate with a product of a bounded
number of local functions.
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Let us demonstrate where the argument breaks down for m > 2. Given poly-
nomials as in (1.2) and 1-bounded functions fo, f1,..., fm : [N] = C, define the
counting operator

Agl ..... p, (fo, f1, o fm) =
]Eze[N}Eye[Nl/dchm]fo(SC)fl(x + P1(y)) e fm(x + Pm(y)).

Using the main technical result of [Pel19], [Pell9, Theorem 3.3], one can show that
if

|Ag1,...,Pm(f0;f17 e 7fm>‘ > 0,
then both fy and f; correlate with local functions ¢q and ¢;. Using the Hahn—
Banach decomposition (Lemma 3.4), as in our proof of Theorem 1.2 and Lemma
3.3, one may conclude that

|‘/\g1,-..,Pm (¢0a ¢1, f2a s 7fm)| > 50(1),

If m = 2, one can then pigeon-hole in the smaller y variable appearing in the
counting operator (as we do in the proof of Lemma 3.3) to conclude that fo
correlates with a product of two local functions. It is this simple pigeon-holing
argument that fails when m > 2.

7.1. An alternative strategy for longer progressions. A more productive
strategy is to follow our proof of Theorem 1.2 instead of Theorem 1.1. In proving
Theorem 1.2 we replace the counting operator A > (fo, f1, f2) with AY . (fo, ¢, f2),

where ¢ is a local function that is constant on progressions of length ~ N'/2
with common difference of size &~ O(1). Provided that we pass to appropriate
subprogressions in all of the variables appearing in our counting operator, we
can exploit the properties of this local function and ‘remove’ it from our count. In
effect (after passing to subprogressions of bounded common difference), we replace
the count Ajy\{yz(fo, f1, f2) with one of the form AY (fo, f2), where Q is a quadratic
polynomial and N’ is slightly smaller than N.

Generalising this approach, one can use [Pell9, Theorem 3.3 to replace the
counting operator AJI\th.”’Pm(fO, fi,.- fm) with A%,...,Pm(f(% &, fo,. -, fm), where ¢
is a local function. Provided that this local function has resolution > Ndeg 1/ deg P
and common difference ¢ < 1, we have

¢(z + Pi(y)) = ¢(x)

for any x € Z and any y constrained to a subprogression of common difference
q and length ~ NdeeP1/deePn  Pagsing to subprogressions in « and y, one should
then be able to replace the operator

A]IXL...,Pm(an (ba f27 R fm)
by one of the form

-----

Applying induction on m may then allow one to show that every function in the
original counting operator correlates with a local function.
The main impediment to carrying out this strategy is that the polynomials ()5,
.., Qm, which arise on passing to a subprogression, may not satisfy the hypotheses
required to reapply [Pell9, Theorem 3.3|. Tt is likely that the polynomials are
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sufficiently well-behaved for the arguments of [Pell9] to remain valid, but we
leave this verification to the energetic reader.
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