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Abstract—Network update enables Software-Defined Networks
(SDNs) to optimize the data plane performance via southbound
APIs. The single update between the initial and the final network
states fail to handle high-frequency changes or the burst event
during the update procedure in time, leading to prolonged update
time and inefficiency. On the contrary, the continuous update can
respond to the network condition changes at all times. However,
existing work, especially “Update Algebra” can only guarantee
blackhole- and loop-free. The congestion-free property cannot be
respected during the update procedure. In this paper, we propose
Coeus, a continuous network update system while maintaining
blackhole-, loop- and congestion-free simultaneously. Firstly, we
establish an operation-based continuous update model. Based on
this model, we dynamically reconstruct an operation dependency
graph to capture unexecuted update operations and the link
utilization variations. Subsequently, we develop an operation
composition algorithm to eliminate redundant update commands
and an operation node partition algorithm to speed up the update
procedure. We prove that the partition algorithm is optimal and
can guarantee the consistency. Finally, extensive evaluations show
that Coeus can improve the makespan by at least 179% compared
with state-of-the-art approaches when the arrival rate of update
events equals to three times per second.

I. INTRODUCTION

Software-Defined Networks (SDNs) outsource the network

control function over switches to the logically-centralized

controller. Benefitting from the global view of the controller

and the simplified data plane, SDNs can provide flexible traffic

management and fine-grained network monitoring (e.g., traffic

engineering [1], [13], [14], [34] and failures recovery [7], [29],

[33]). Due to high-frequency network condition variations, the

controller requires handling continuous update events rapidly

to optimize the performance of the data plane [5], [27]. There-

fore, the network needs to have the ability to perform update

events as soon as possible and guarantee consistency [2],

[6], [31] (i.e., blackhole-, loop- and congestion-free) during

updates.
Given the initial and the final network states in the data

plane, the single update [4], [9], [18], [23], [25], [26], [32]

advocates determining a consistent update sequence to shorten

the update time. However, they fail to handle high-frequency

changes or the burst event during the update procedure. Each

update event can only be executed after the completion of the

previous update events, leading to prolonged update time and

poor performance. Instead of the single update, existing work,

especially “Update Algebra” [11] explores the continuous

update solution to respond to network condition variations,

where the update events arrive in an online manner. “Update

Algebra” models operations in continuous update events as a

set of projections and selects a feasible subset of projections

to execute.

Although “Update Algebra” [11] has the ability to handle

continuous update events in an online manner, it can only guar-

antee blackhole- and loop-free properties. Essentially, “Update

Algebra” mainly considers the order of update operations in

the flow-based granularity, but different flows compete for the

limited link bandwidth resource. The transient congestion may

occur during updates, which incurs packets loss and degrades

network performance.

In this paper, we initiate the study of consistent continuous

network update problem, which can handle the frequent update

events in an online manner and guarantee blackhole-, loop-

and congestion-free properties simultaneously. To the best of

our knowledge, little is known today about how to schedule

flows in this problem. Performing the consistent continuous

update remains algorithmically challenging. We face three

main challenges: (i) Performing continuous updates requires

the controller to identify which update commands have been

executed, which ones are being executed, and which ones will

be executed. Besides, the time-varying network resources and

update commands should be jointly considered to produce

a consistent update sequence. (ii) The number of possible

congestion-free update orders is exponential many even for

a single update event [15]. For an update event containing n
flows which need to be rerouted, the number of possible update

orders is O(n!). Involving multiple update events makes the

problem essentially harder. (iii) We need to speed up the

continuous update procedure, i.e., increasing the degree of

parallelism. We wish to find as many independent parts as

possible to execute them simultaneously in a consistent way.

To address the challenges mentioned above, we make the

following contributions. Firstly, we develop Coeus, a con-

tinuous network update system to maintain consistency. We

give an overview of Coeus (Sec. III). Besides, we extend the

continuous model proposed in [11], which only captures the

data plane update. We establish the operation-based continuous

update model, which can capture both the update event in

the control plane and forwarding actions in the data plane

(Sec. IV). Secondly, we propose a set of algorithms to achieve

the consistent continuous update (Sec. V). Specifically, based

on the continuous update model, we dynamically reconstruct
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Fig. 1. A continuous update example. Fig. 1(a) shows the network topology. Fig. 1(b)∼Fig. 1(e) denote the update events and network states.

an operation dependency graph to capture utilization variations

of each link and dependencies of unexecuted update operations

in continuous update events. However, an update operation

from the newly arrived event may cancel out an existing unexe-

cuted update operation. We develop the operation composition

algorithm in the dependency graph to eliminate redundant

operations. By leveraging the dynamic operation dependency

graph and operation composition, we solve the first two

challenges. To address the third challenge, we design the

operation node partition algorithm to split the operation node

into a series of independent suboperation nodes. The update of

independent suboperation nodes improves the degree of update

parallelism since parts of flow path can be updated directly,

and the flow does not need to wait until all link resources

along its target path are sufficient. We prove that our node

partition algorithm is optimal, and the update of suboperation

nodes ensures the consistency. Finally, we evaluate Coeus by

using experiments in large-scale simulations (Sec. VI). We use

two common topologies (i.e., SWAN and fat-tree) to verify the

effectiveness of Coeus by changing the arrival rate of update

events constantly. The simulations show that Coeus improves

the makespan by at least 179% compared with state-of-the-art

approaches when the arrival rate of update events equals to

three times per second.

II. A MOTIVATING EXAMPLE

In this section, we use a motivating example to illustrate the

continuous update problem. For convenience, we summarize

important notions in the Table I.

Fig. 1(a) shows a network topology containing of seven

switches {R1, ..., R7}, where the capacity of link 〈R1, R5〉
equals to 5 units and others equal to 10 units. Two update

events UE1 and UE2 arrive sequentially. The update event

UE1 will install forwarding rules of two flows FA and FB ,

where demands of FA and FB are both 5 units. The update

event UE2 will install forwarding rules of flow FC , where the

demand of FC is 8 unit. Each update event incurs different

network states, and each network state captures different

network routing information. We use the directed edge to

denote the routing of each flow. The dashed line characterizes

that the forwarding rules of the flow have not been installed

while the solid line characterizes that the forwarding rules

of the flow have already been installed. Fig. 1(b) denotes that

when the update event UE1 appears, the controller will assign

the path of flows FA and FB . However, the corresponding

forwarding commands have not been installed in switches.

Fig. 1(c) shows that in the network state NS2, FA has been

updated to its target path while FB has not been updated. The

network state NS3 shown in Fig. 1(d) indicates that FB has

been updated, and the update event UE1 is finished since all of

the flows in UE1 are routed through their target paths. Fig. 1(e)

shows that when UE2 occurs after UE1, the controller will

assign the route of flow FC and change the routes of FA and

FB due to the limited capacity of link 〈R3, R4〉.
TABLE I

KEY NOTATIONS

Notation Meaning
G Acyclic directed network graph G = (V,E)
V Set of switches {v}
E Set of links {〈u, v〉}
cu,v Capacity of link 〈u, v〉
F Set of flows {fi}
dfi Demand of flow fi
UE Update event
̂UE Set of unexecuted update operations in UE.
NS Network state

NSinit Relative initial state
OI Set of executed update operations
ONI Set of unexecuted update operations

Ofi Set of unexecuted update operations of fi
ofi Update operation of fi
Ru,v Resource nodes in the operation dependency graph
ru,v Residual resource of the resource node

In the single update scheme, the update event must wait for

the completion of previous update events, e.g., if UE2 occurs

after NS1, UE2 cannot be responded until UE1 is finished.

This serial update scheme prolongs the makespan significantly.

We aim to develop a system to respond random and continuous

update events. However, dealing with the continuous update

in an online manner and guaranteeing blackhole-, loop- and

congestion-free simultaneously are full of challenges.

For example, under the condition where UE1 has installed

the forwarding rule of FA on the switch R2 and has not

installed the forwarding rule of FA on the switch R3, UE2

occurs. Then, the update event UE1 encourages R3 to install

the following forwarding rule for FA (i.e., forwarding FA to

switch R4) while the update event UE2 encourages R3 to

install another forwarding rule for FA (i.e., forwarding FA

to switch R7). Therefore, handling continuous update events

simply may lead to chaotic routing. Besides, switches must

have forwarding rules of each incoming flow, and the flow

should not have transient loops during updates (i.e., main-

taining blackhole- and loop-free). For example, when UE2

occurs after NS2, the switch R5 should has the forwarding

rule of FA before FA routes through the link 〈R1, R5〉.
Besides, the forwarding rules of FA should be installed on

switch R3 and R7 after the original forwarding rule on switch
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R2 is removed. Otherwise, the transient loop 〈R2, R3〉 →
〈R3, R7〉 → 〈R7, R2〉 appears. To guarantee a congestion-

free condition, the update order of multiple flows should be

carefully calculated. For example, when UE2 occurs after

NS3, FA should not be updated before FB . Otherwise, link

congestion will occur due to the limited link resource of

〈R1, R5〉. Similarly, FC should be updated after FA. To speed

up the continuous update procedure, the concurrency of update

should be taken into consideration. We will introduce the

corresponding method in detail in Sec. V-B.

III. COEUS OVERVIEW

To solve the problems mentioned above, we propose a sys-

tem, Coeus, to achieve the consistent and continuous update.

In this section, we will introduce an overview of Coeus.

The entire workflow of Coeus is shown in Fig. 2. In

SDNs, the update events come in an online manner. To handle

continuous updates, the centralized controller firstly judges

whether the previous update events are finished. Once the

condition is true, we build the operation dependency graph

which has a set of resource nodes and a set of operation nodes

to capture the link utilization variations and the dependencies

of update operations. Otherwise, we make further judgment

about whether updated flows which involved in the new update

event have already existed in the data plane. If flows do not

have forwarding paths at this moment (e.g., FC in Fig. 1(e)),

we insert new operation nodes of flows in the operation

dependency graph and construct corresponding relationships.

Otherwise, update operations are added into existing opera-

tion nodes, and we dynamically reconstruct the dependency

relationship in the dependency graph. However, adding up-

date operations into operation nodes continuously may lead

to redundant operations in operation nodes. By compositing

update operations, Coeus replaces redundant operations into

equivalent ones. Subsequently, Coeus designs the operation

node partition algorithm to increase the parallelism of updates

and speed up the continuous update procedure. The node

partition algorithm divides the operation node into several

suboperation nodes which can be updated independently in a

blackhole- and loop-free manner. Finally, by leveraging the

dynamic dependency graph, our update scheduling scheme

sends a set of update commands to the data plane.

IV. CONTINUOUS UPDATES MODEL

After describing Coeus, we will introduce the continuous

update model in this section. The general network can be

modeled as a graph G = (V,E), where V is the set of switches

and E ⊆ V 2 is the set of links. Each link 〈u, v〉 ∈ E has a

capacity cu,v . F is the set of s−d flows in the network, where

s and d are the source and destination of flow f . Each flow

fi ∈ F is an unsplittable flow with demand dfi .

In the control plane, continuous update events {UE} arrive

randomly. Each update event UE = {ofi |∀fi ⊆ F} contains a

set of update operations {ofi} to assign the route of each flow

fi. We define ̂UE ∈ UE to characterize the set of operations

that have not been executed in the data plane. The network

states {NS} present the current route information captured by

the control plane, where NS = {OI , ONI}. OI denotes the

set of operations that have been executed while ONI denotes

the set of operations that have not been executed in the data

plane. When the n-th update event arises, OI and ONI can

be expressed as follows.

OI = {(UE1− ̂UE1)∪(UE2− ̂UE2)...∪(UEn−̂UEn)} (1)

ONI = { ̂UE1 ∪ ̂UE2... ∪ ̂UEn} (2)

In this paper, we focus on scheduling unexecuted update

operations orderly. We introduce Ofi to denote the set of

unexecuted operations of fi, i.e., Ofi = Ofi
NI . Different from

the single update with the deterministic initial and final state,

continuous update events with unknown update operations

make it hard to determine the final state of the network. We

define the relative initial state as follows.

Definition IV.1. Relative Initial State: The relative initial
state represents that all operations of the previous update
events {UE} have been executed in the data plane, i.e., all of
the previous update events {UE} are completed.

Now we discuss the mapping relationship between update

operations in the control plane and forwarding actions in

the data plane. The controller sends update operations to

individual switches. Once an update operation ofi is executed

on the specified switch, it will execute the corresponding

action if fi matches the flow entry in the switch flow table. We

classify update operations into three types {add,mod, del}.

At the specified switch u, once the add operation ofiadd :
add{fwd v} is executed, the forwarding rule of fi is added,

and fi will be forwarded to switch v. Once the del operation

ofidel : del{fwd v} is executed, the forwarding rules of

fi is deleted from the switch. Similarly, the mod operation

ofimod : mod{fwd v → fwd w} denotes that modifying the

forwarding rules of fi enables fi to be forwarded to switch w
instead of v. Indeed, ofimod can be treated as a delete operation

ofidel that removes the original forwarding rule, and an add

operation ofiadd that adds the new forwarding rule. In the

continuous update, not all of the update operations are valid,

we define the validity of update operations as follows.

Definition IV.2. Valid Update Operations: The valid update
operations of flow depend on the previous operations of the
same flow acting on the same switches, valid update operations
enable each switch to have at most one forwarding rule for
each flow, and the repeated forwarding rule is forbidden.



TABLE II
VALID UPDATE OPERATIONS OF UE

Update Event Update Operation

UEp ofiadd ofidel ofimod

UE ofidel ‖ ofimod ofiadd ofidel ‖ ofimod

Specifically, the valid update operations must follow the

rule shown in Table II, where UEp is the previous update

events, and UE is a new update event. For example, on the

specified switch, if UEp involves the add operation ofiadd, the

operation in UE should only be ofidel or ofimod. Otherwise, there

is another add operation for fi acting on the same switch,

which is forbidden in the continuous update. If UEp involves

the del operation ofidel, the operation in UE should only be

ofiadd. Since once the del operation of fi is executed, there is no

forwarding rule in the switch for fi that needs to be deleted or

modified. Similarly, if UEp contains the mod operation ofimod,

the operation of UE acting for the same flow on the same

switch should only be ofidel or ofimod.

V. COEUS SCHEDULING

In this section, we will introduce modules of Coeus and

present efficient scheduling algorithms to ensure the consis-

tency policy in the continuous update. Before that, we sketch

the continuous update process in Algorithm 1.

Our update process starts from a relative initial state NSinit

defined in Definition IV.1. Once an update event appears after

the relative initial state, the initial operation dependency graph

GD = (VD, ED) is built (lines 1-5). If the flow has existed in

NSinit, we apply Algorithm 4 to divide the operation node of

the flow into independent suboperation nodes to speed up the

update process (lines 6, 7). When the operation dependency

graph GD 	= ∅, i.e., the update events have not been finished,

we check whether a new update event NS arrives (lines

9). Once a new update event occurs, we split updated flows

in UE into existing flows and emerging flows. For existing

flows, we apply Algorithm 3 and Algorithm 4 to composite

the update operations and generate independent suboperation

nodes in the operation dependency graph (lines 11-15). For

emerging flows, we construct new operation nodes and the

corresponding relationships in the operation dependency graph

(lines 16-19). According to the operation dependency graph,

we produce a set of update commands to update the data plane

until GD = ∅ (line 20).

A. The Dependency Graph

To capture the variation of link resources and the order

of update operations, we construct the operation dependency

graph and adjust the dependency graph dynamically to handle

continuous update events. We define the operation dependency

graph as follows.

Definition V.1. Operation Dependency Graph (ODG): The
operation dependency graph GD = (VD, ED) is a directed
graph that captures dependent relationships between update
operations of each updated flow and link resources. There are
two types of nodes in the ODG: the operation node Ofi ∈VD

and the resource node Ru,v ∈ VD. And it contains two types
of edges: {Ru,v ���Ofi}∈ED and {Ofi ���Ru,v}∈ED.

Specifically, the operation node Ofi ∈ VD with a set of

unexecuted update operations {ofi} is labeled with the flow

demand dfi . The resource node Ru,v ∈ VD is labeled with

the residual link resource ru,v . Initially, the link residual

resource ru,v equals to the link capacity cu,v . The edge

{Ofi ��� Ru,v} represents that once the update operation

ofi ∈ Ofi is executed, the link resource will be occupied

by flow fi. Inversely, the edge {Ru,v ��� Ofi} denotes that

the update operation ofi ∈ Ofi will release the link resource.

In the continuous update process, the operation dependency

graph changes dynamically with update operations executed

and new update events arriving.

Algorithm 1: Continuous Update Process

Input: The update events {UE} with updated flows
Output: A set of update commands

1: GD = (VD, ED) = ∅;
2: for each updated flow fi do
3: VD ← VD ∪Ofi with its demand dfi ;
4: for each operation ofi ∈ Ofι do
5: Apply Algorithm 2 to obtain the initial ODG;
6: if the flow fi is the existing flow then
7: Apply Algorithm 4 to divide operation node Ofi into

suboperation node Ofi
j ;

8: for GD 	= ∅ do
9: if the new update event UE arrives then

10: for each flow fi ∈ NS do
11: if the flow fi is the existing flow then
12: if Ofi has been divided into suboperation nodes

then
13: Treat suboperation nodes as a virtual node;
14: Apply Algorithm 3 to composite operations;
15: Apply Algorithm 4 to divide fi into independent

suboperation nodes;
16: else
17: VD ← VD ∪Ofi with its demand dfi ;
18: for each operation ofi ∈ Ofι do
19: Apply Algorithm 2 to build the dependency

relationship;
20: Apply Algorithm 5 to update the dependency graph;

Now we discuss the construction of dependency relationship

in Algorithm 2. As Algorithm 1 mentioned, we add the

operation node Ofi into the ODG (lines 2, 3). Then, we

judge the type of each operation ofi for fi and build the

corresponding dependency relationship with the resource node

Ru,v in Algorithm 2 (lines 1-13). For example, if the operation

ofi is an add operation, the forwarding rule will be added

into the switch u to forward fi to the link 〈u, v〉, and the

corresponding resource of 〈u, v〉 will be consumed. We add

the resource node Ru,v and the edge {Ru,v ��� Ofi} if

Ru,v does not exist in the ODG (lines 2-4). Similarly, we

build the corresponding relationship among operation nodes

and resource nodes if the operation is del or mod (lines 5-

13). Specifically, we treat a mod operation as a del operation

and an add operation, and construct two directed edges

{Ru,v ��� Ofi} and {Ofi ��� Rp,q} in the ODG (lines 9-13).



Fig. 3. The operation dependency graph of UE1, NS2, and UE2 in Fig. 1.

Algorithm 2: Dependency Relationship Construction

Input: The update operation ofi ∈ Ofi

Output: The dependency relationship between Ofi and Ru,v

1: if ofi is an add operation then
2: if corresponding link node Ru,v /∈ VD then
3: VD ← VD ∪Ru,v with its current capacity cu,v;
4: ED ← ED ∪ {Ru,v ��� Ofi};
5: if ofi is a del operation then
6: if corresponding link node Rp,q /∈ VD then
7: VD ← VD ∪Rp,q with its current capacity cu,v;
8: ED ← ED ∪ {Ofi ��� Rp,q};
9: if ofi is a mod operation then

10: Treat ofi as an add and a del operation;
11: if corresponding link node Ru,v or Rp,q /∈ VD then
12: VD ← VD ∪Ru,v with its current capacity cu,v or

VD ← VD ∪Rp,q with its current capacity cp,q;
13: ED← ED∪{Ru,v��� Ofi} and

ED ← ED∪{Ofi��� Rp,q};

By leveraging the ODG, the state of update operations

can be identified. For the unexecuted operations, the ODG

maintains the relationship between the operation node and

the resource node. When update operations are executed,

Coeus removes update operations from operation nodes Ofi

and corresponding edges between Ofi and Ru,v in the ODG.

Then, Coeus updates the link resource of Ru,v . Fig. 3 shows

the ODG of UE1, NS2, and UE2 in Fig. 1. We assume

that UE2 arises after NS2. Fig. 3(a) corresponds to the

ODG of NS1 shown in Fig. 1(b), where the operation

node OfA contains a set of uninstalled operations {oFA

(R1,add)
,

oFA

(R2,add)
, oFA

(R3,add)
} of FA. In NS2 shown in Fig. 1(c), the

flow FA has been routed on its target path, the corresponding

operation node OFA = ∅, which is shown in Fig. 3(b).

Also, corresponding directed edges are removed, and link

resources are consumed. Similarly, Fig. 3(c) represents the

ODG of UE2, which means the resource request and release

relationship among FA, FB , and FC .

B. Operation Composition

Based on the ODG, we present the operation composition to

reduce the number of redundant operations in the continuous

update. The basic idea is that once the update event occurs, we

add new update operations into existing operation nodes and

construct the new dependency relationship. By checking a cy-

cle between operation nodes and resource nodes, Coeus judges

whether unnecessary operations exist and replaces redundant

operations with fewer equivalent ones.

Algorithm 3 gives a detailed operation composition process.

We default all of the update operations are valid. We add

each valid operation ofi into the corresponding operation

node Ofi and apply Algorithm 2 to update the dependency

relationship (lines 1-3). Once the new update operation ofi

incurs a cycle between Ofi and Ru,v , it is denoted that update

operations ofi and ōfi will request and release the same link

resource successively, where ōfi is an update operation in the

previous update events. We treat these operations as redundant

operations. Therefore, we remove these two directed edges and

corresponding update operations from the ODG (lines 4-21).

Particularly, if the mod operation ofi forms a cycle, we split

ofi as ofiadd and ofidel and eliminate the redundant operations

that are related to the removed edges (lines 14-20). Besides, if

the residual operations of ofi and ōfi contain a del operation

and an add operation acting on different links, we merge the

residual operations into a new mod operation õfi (line 21). If

ofi does not incur a cycle while there exists another update

operation ôfi acting on the same switch, we merge these two

operations into a new mod operation õfi (line 23).

Algorithm 3: Operation Composition

Input: The update event with a set of new operations
Output: The composited dependency graph

1: for each ofi ∈ UE do
2: Ofi ← ofi ∪Ofi ;
3: Apply Algorithm 2 to update the dependency relationship;
4: if there is a cycle between Ofi and Ru,v then
5: Remove edges {Ofi ��� Ru,v} and {Ru,v ��� Ofi};
6: if ofi is an add operation then
7: Ofi = Ofi/{ofi , ōfidel}, where ōfidel is the operation

which is related to the edge {Ru,v ��� Ofi};
8: if ofi is a del operation then
9: if ōfi is an add operation then

10: Ofi =Ofi/{ofi,ōfiadd}, where ōfiadd is the operation
that is related to the edge {Ofi ��� Ru,v};

11: else
12: Divide ōfi into ōfiadd and ōfidel;
13: Ofi = Ofi/{ofi , ōfiadd};
14: if ofi is a mod operation then
15: Divide ofi into ofiadd and ofidel;
16: if ōfi is an add or a del operation then
17: Ofi =Ofi/{ofidel,ōfiadd} or Ofi =Ofi/{ofiadd,ōfidel};
18: else
19: Divide ōfi into ōfiadd and ōfidel;
20: Remove the divided operations of ofi and ōfi

which related to the removed edges;
21: Merge the residual operations of ofi and ōfi

as a new mod operation õfi ;
22: else
23: Merge ofi and ôfi as a new operation õfi , where ôfi is

an operation for fi that acting on the same switch;

Fig. 4 is an example to illustrate the operation composition.

We assume that the update event UE2 (shown in Fig. 1(e)) oc-
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TABLE III
CORRECT OPERATIONS OF

SINGLE UPDATE

UEn/UEm o
fi
add o

fi
del o

fi
mod

o
fi
add o

fi
add

o
fi
del o

fi
del o

fi
del

o
fi
mod o

fi
mod o

fi
mod

TABLE IV
COMPOSITION OF UEm AND

UEn

UEn/UEm o
fi
add o

fi
del o

fi
mod

o
fi
add ∅ ‖ õ

fi
mod

o
fi
del ∅ õ

fi
del

o
fi
mod õ

fi
add õ

fi
mod

curs after the network state NS2 (shown in Fig. 1(c)). Fig. 4(a)

shows the dependency relationship among the operation node

OFB and corresponding link resources under the situation

mentioned above. After operation composition, the simplified

dependency relationship is shown in Fig. 4(b).

Definition V.2. Correct Update Operations: The correct
update operations mean that if all update operations are
executed, flows are routed on their target paths, and there
are no redundant forwarding rules for each flow in switches.

In the single update, all operations in the previous update

events must be finished before executing the new update

event. For example, we assume that two valid update events

UEm, UEn arrive successively. The update event UEn can

be responded when all of the flows in UEm have been routed

on their target paths. Since UEm, UEn are valid update

events, executing UEm, UEn serially makes switches have no

redundant rules. Therefore, the correct update operations can

always be guaranteed in the single update. Table III represents

the correct update operations in the single update, where

blanks denote invalid operations. However, the single update

causes lots of unnecessary operations. In Coeus, continuous

update events are handled by compositing the unexecuted

operations in UEm with the operations in UEn. Now, we

prove after operation composition, the update operations are

still correct.

Theorem V.1. The graph-based operation composition pro-
duces the correct update operations.

Proof: Table IV shows the result of operation composition

under the assumption that operations of UEm have not been

executed. We prove that the final route in Table IV and

Table III are equivalent. According to Algorithm 3, an add
operation in UEn and a del operation in UEm may produce

two types of operations after composition. One is the empty

set, which means doing nothing in the specified switch. The

flow still routes along its original path. This composited result

corresponds to the condition where a del operation in UEm

deletes the original route of flow, then an add operation in

UEn adds the new route which is the same as the original

route in the single update. Another possible composited result

is producing a mod operation õfimod. The new operation õfimod

will delete the original route and add a new route for fi. The

flow fi will route along the new path. This composited result

corresponds to the condition where a del operation in UEm

deletes the original route of flow and an add operation in UEn

adds the new route which is different from the original route

in the single update. Therefore, executing the new operation

produced by compositing ofiadd in UEn and ofidel in UEm

is equivalent to executing corresponding update operations

serially in the single update. Similarly, once operations õfidel,

õfiadd, õfimod produced by operation composition are executed,

we obtain the same routes compared with the single update.

We omit the proof in detail due to space constraints.

C. Operation Node Partition

To improve the parallelism of update, we divide the op-

eration node into multiple suboperation nodes. We aim to

generate independent suboperation nodes as many as possible

while maintaining the consistency. Our algorithm is inspired

by the partition technology used in [23], [24], while they

either cause excessive dependencies among each partition [23]

or cannot be applied to the situation where the network has

potential loops [24]. In Coeus, we develop a novel partition

algorithm. We prove that our algorithm is optimal to obtain

independent suboperation nodes and each suboperation node

can be updated in a blackhole- and loop-free manner. Now, we

define suboperation node and independent suboperation node.

Definition V.3. Suboperation Node: The suboperation node
Ofi

j owns a part of update operations of the operation node
Ofi . Specifically, the suboperation node contains at least one
mod operation to delete the original forwarding rule and add
the new forwarding rule. Besides, each suboperation node has
different update operations compared with other subopera-
tions, i.e., Ofi

j ∪Ofi
j+1 ∪ · · · = Ofi , Ofi

j ∩Ofi
j+1∩ · · · = ∅.

In the following, we describe the process of operation node

partition in Algorithm 4. Ofi
j is the j-th suboperation node

of Ofi . When the current operation is ofimod, we define next

mod operations along the target path and the original path

as ofi(mod,nt) and ofi(mod,no) respectively. Firstly, we traverse

update operations of Ofi along the target path of fi in reverse

order (line 3). If the operation node Ofi has a mod operation

ofimod, we initialize a suboperation node Ofi
j (lines 4, 5). Then

we add ofimod into ϕfi
o , ϕfi

n and remove ofimod from Ofi (lines

6, 7), where ϕfi
o and ϕfi

n are sets of update operations acting

on the original path and the target path. Since installing add
operations makes fi routes through its target path, we add

a set of add operations {ofiadd} between ofimod and ofi(mod,nt)

into ϕfi
n (line 8). If the original path deleted by ofimod is

involved in a loop, the next suboperation node will depend

on this suboperation node, i.e., the next suboperation node

cannot be updated directly until this suboperation node is

completed. Otherwise, a forwarding loop will occur. Next,

we check whether the original path deleted by ofi(mod,no) is



Fig. 5. Dependency graph with suboperation nodes.

involved in a loop. If this condition holds, we split ofi(mod,no)

into ofi(add,sp) and ofi(del,sp) and search the next mod operation

ofi(mod,no) along the original route of fi until ofi(mod,no) does

not incur a loop (lines 9-12). Finally, we add a set of del
operation {ofidel} between ofimod and ofi(mod,no) into ϕfi

o (line

13) and construct the next suboperation node (lines 15, 16).

We eliminate potential loops by this way since we add update

operations which may incur loops into two suboperation nodes.

Algorithm 4: Operation Node Partition

Input: The current dependency graph
Output: The dependency graph with suboperation nodes

1: for each operation node Ofi in dependency graph do
2: j = 0;
3: Traverse operations along the target path of fi in reverse

order;
4: while ofimod 	= ∅ do
5: Ofi

j = ϕfi
o ∪ ϕfi

n , where ϕfi
o = ϕfi

n = ∅;

6: ϕfi
o = ϕfi

o ∪ ofimod, ϕfi
n = ϕfi

n ∪ ofimod;

7: Ofi = Ofi/ofimod;

8: ϕfi
n = ϕfi

n ∪ {ofiadd}, where {ofiadd} is a set of add
operations between ofimod and ofi(mod,nt);

9: if the original path which will be deleted by ofimod
involved in a loop then

10: while the original path that will be deleted by
ofi(mod,no) involved in a loop do

11: Split ofi(mod,no) into ofi(add,sp) and ofi(del,sp);

12: ofi(mod,no) = the next mod operation along the
original path;

13: ϕfi
o = ϕfi

o ∪ {ofidel}, where {ofidel} is a set of del
operations between ofimod and ofi(mod,no);

14: Ofi
j = ϕfi

o ∪ ϕfi
n ;

15: j = j + 1;
16: ofimod = ofi(mod,nt);

17: Divide Ofi into a set of suboperation nodes {Ofi
j };

By executing Algorithm 3 and Algorithm 4, the dependency

relationship among suboperation nodes is shown in Fig. 5.

OFA
1 , OFA

3 , OFB
1 , OFB

2 , and OFB
1 are suboperation nodes

which can be executed independently, while OFA
2 is a depen-

dent node which can be executed until OFA
1 is completed.

Now, we define the independent suboperation node formally.

Definition V.4. Independent Suboperation Node: The inde-
pendent suboperation node is the suboperation node that can
execute update operations independently.

Theorem V.2. The number of independent suboperation nodes
obtained by Algorithm 4 is optimal.

Proof: If there is no potential loop shown in Fig.6(a),

each mod operation will not incur loops. Algorithm 4 adds

R1R1

R2R2

R3R3

R4R4

R7R7R5R5

R6R6

R1R1 R2R2 R4R4R3R3 R5R5

Fig. 6. Illustration of independent suboperation nodes.

each of mod operation into different suboperation nodes,

i.e., the number of mod operations equals to the number of

independent suboperation nodes. According to Definition V.4,

Coeus produces the most number of independent suboperation

nodes. If forwarding loops occur shown in Fig. 6(b), we

assume that the optimal algorithm can generate an extra

independent suboperation node Ofi
e . If the original path which

Ofi
e will be deleted is not in a potential loop, e.g., the link

〈R1, R2〉 or 〈R4, R5〉, this situation is similar to the loop-

free network shown in Fig. 6(a). Ofi
e must be one of the

independent suboperation nodes produced by Algorithm 4,

which contradicts with our assumption. Otherwise, the original

path which will be deleted by Ofi
e is involved in loops, e.g.,

〈R2, R3〉 or 〈R3, R4〉. According to Definitions V.3, Ofi
e must

has a mod operation. And a mod operation in Ofi
e acting on

the target link must be involved in a loop, e.g., o(R3,mod).

Otherwise, Ofi
e is one of the independent suboperation nodes

that we produced. Ofi
e cannot be an independent node under

this situation because to guarantee loop-free condition, the

forwarding rule that added on the target path by a mod opera-

tion in Ofi
e must be executed after deleting the corresponding

forwarding rule of the original path.

After suboperation nodes are determined, we update each

of them in the following way. Firstly, we install all add
operations of the subsection node simultaneously and remove

the corresponding edges and operations in the ODG. Then we

install the mod operation, which makes the flow route through

its target path. The residual link resources along the original

path and target path are updated. Finally, we install the del
operations to delete the forwarding rules acting on the original

path of the flow.

Theorem V.3. The update of suboperation nodes is blackhole-
and loop-free.

Proof: Firstly, the update of each suboperation node

requires to install the forwarding rules of the target path. Then

the mod operation and del operations are executed, which

ensures that packets always have the forwarding rule. Besides,

each suboperation node contains the operations that will delete

current forwarding rules and add target forwarding rules.

Packets among suboperation nodes will not be dropped and

the update is blackhole-free. In Algorithm 4, the suboperation

node only contains one mod operation which is not going

to form a loop. It is because that we always assign update

operations incurring a potential loop to two suboperation

nodes. We restrict the update order of these two suboperation

nodes to ensure the loop-free condition.

D. Update Scheduling

After dividing the operation node into several independent

suboperation nodes, the parallelism of the ODG has been



improved. Then according to the ODG, a set of update

commands are sent from the controller orderly. We describe

the update scheduling in Algorithm 5.

Algorithm 5: Operation Dependency Graph Update

Input: The current dependency graph
Output: A set of update commands

1: θ = θ̃ = ∅
2: for each independent operation node Ofi

j do
3: if there are no add and mod operations then
4: θ̃ = θ̃ ∪Ofi

j ;
5: else
6: if all link resources are sufficient for Ofi

j then
7: θ = θ ∪Ofi

j ;

8: Rank Ofi
j in θ in descending order according to their

out-degree;
9: for each Ofi

j in θ do
10: if all link resources are sufficient for θ̃+Ofi

j then
11: θ̃ = θ̃ ∪Ofi

j ;

12: Update each operation node in θ̃;
13: if a deadlock occurs then
14: for each Ofi

j in a deadlock do
15: Calculate throughput loss ratio Φ =

dfi−minru,u

dfi
;

16: Choose Ofi
j with minimal Φ and limit its rate;

17: Update Ofi
j with minimal Φ;

We use θ and θ̃ to present the set of candidate update nodes

and formal update nodes. Initially, we put the operation node

Ofi
j which only contains del operations into θ̃. Coeus can up-

date such a Ofi
j directly since Ofi

j just releases link resources

(lines 3, 4). Then, we find the operation nodes which have

sufficient resources to update and put them into θ (lines 5-7).

The candidate update nodes cannot be updated simultaneously

since the residual link resources may be insufficient. To select

the operation nodes which can be updated at the same time,

we rank Ofi
j ∈ θ in descending order of out-degree and add

the congestion-free operations into θ̃ (lines 8-11). Selecting

the operation nodes with high out-degree and updating them

simultaneously will release more link resources (line 8). Once

deadlock occurs in the ODG, i.e., flows occupy insufficient

resources of links mutually, the throughput loss ratio Φ is

calculated for each operation node in deadlock. Then we select

the operation node with minimal Φ and update it directly by

limiting the flow rate to dfi(1−Φ) (lines 13-17). Once a set

of update commands are sent, Coeus checks whether the new

update event arises and decides the next update step.

Theorem V.4. Coeus always produces a blackhole-free, loop-
free, and congestion-free update sequence.

Proof: According to TheoremV.3, suboperation nodes can

be updated in a blackhole-free and loop-free manner. Besides,

Algorithm 5 always updates operation nodes with sufficient

link resources, which makes the network congestion-free. If

deadlocks occur, we limit the rate of flow to fit the residual

link resource. Therefore, updating the flow involved in the

deadlock will never congest the link.

Fig. 7. The maximum link utilization.

VI. EXPERIMENTAL EVALUATION

In this section, we design large-scale simulation experiments

to verify the performance of Coeus.

Methodology: We evaluate Coeus with two common

topologies: Microsoft’s WAN topology [15] with 8 switches

(i.e., SWAN) and 8-pods fat-tree [3] with 80 switches and 128
hosts. We set the link capacity of each topology to be 1-Gbps

and then generate different numbers of updated flows (i.e., 100,

200, 400, 600) with random source and destination in the net-

work. For each updated flow, we generate continuous update

events with different arrival rate λ. Besides, according to the

test of commodity switches [15], we set the time of insertion,

deletion, and modification operations to be 5ms, 5ms, 10ms
respectively. The RTT between the controller and switches is

set to be 50ms. We compare the performance of Coeus with

“Update Algebra” [11] which only ensures blackhole- and

loop-free conditions and Cupid [23] which processes the

single update with congestion-free condition guaranteed. The

program executes 10 times for each data set.

Experiment results: At first, we investigate the maximum

link utilization of Coeus and “Update Algebra” in Fig. 7. We

do this simulation with 100 flows in SWAN topology and the

arrival rate of update events λ = 3/s. Once the maximum

link utilization is beyond one, the link congestion will happen.

Fig. 7 shows that Coeus always guarantees that the maximum

link utilization is less than or equal to one, which ensures

congestion-free condition. In contrast, sometimes the maxi-

mum link utilization of “Update Algebra” is over 1.3, which

incurs packets loss and degrades network performance.

Next, we generate 10 continuous update events and compare

Coeus against Cupid in multiple dimensions. Fig. 8 shows

the completion time of all update events. We observe that the

update time of Coeus is shorter than that of Cupid. Moreover,

the gap between the update time in Coeus and Cupid is getting

larger with the arrival rate increasing. Specifically, in SWAN

with 100 flows, Coeus shortens the makespan by 13.2%,

61.4%, 120.7%, 130.1%, 179.8% when λ =1 ∼ 3 respectively.

The reason is that Cupid executes update events serially while

Coeus enables the parallel execution. We also observe that the

update time of Coeus in SWAN and fat-tree are highly similar.

One reason is that lots of flows with sufficient resources can

be updated simultaneously. Another reason is that Coeus only

determines the update order of flows which may incur potential

link congestion, while the number of potential congested flows

in SWAN is close to that in fat-tree.

Fig. 9 shows the number of executed update operations after

finishing 10 continuous update events. The number of update
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Fig. 8. Update complete time.

(a) WAN scenario (b) Fat-tree scenario

Fig. 9. Number of operations.

(a) WAN scenario (b) Fat-tree scenario

Fig. 10. Operation composition ratio.

operations of Cupid is constant with arrival rate varying since

Cupid executes all update operations for each update event. In

contrast, Coeus executes fewer update operations. This benefits

from the operations composition which eliminates redundant

update operations. Furthermore, with the arrival ratio increas-

ing, Coeus owns more unexecuted operations which can be

composited with operations in new update events. This further

reduces the number of update operations. Specifically, when

the arrival rate λ = 3, Coeus reduces 51.2%, 59.9%, 64.2%
update operations compared with Cupid in SWAN with 100,

200, 400 updated flows. We also observe that operations in

fat-tree are much more than operations in SWAN since flows

in fat-tree are routed through more links. In fat-tree topology

with 100, 200, 400 updated flows, when the arrival rate λ = 3,

Coeus reduces 82.2%, 83.4%, 90.1% operations respectively

compared with Cupid since many operations are redundant in

fat-tree.

Fig. 10 reflects the operation composition ratio of each

update event. In SWAN, Coeus composites at least 30%
redundant operations of each update event. While in fat-tree,

the composition ratio is pretty high since fat-tree involves

more update operations. Specifically, at least 70% operations

can be composited by Coeus in each update event. This

demonstrates that Coeus can execute fewer update operations

while maintaining consistency in continuous updates.

VII. RELATED WORK

With the advance of SDNs, the update problem has been

widely studied. Reitblatt et al. [22] introduced the notion

of consistent update in SDNs and proposed the two-phase

update protocols to maintain per-packet coherence. To ensure

the connectivity consistency, Ludwig et al [8], [17] achieved

the fast blackhole- and loop-free update by using node-based

protocols. To guarantee the congestion-free and fast update,

zUpdate [16] and SWAN [12] utilized the slack capacity

of each link to produce the static congestion-free update

sequence. On these bases, Xin et al [15] and Gandhi et al. [10]

performed update scheduling dynamically by utilizing the

global resource dependency graph. Wang et al. [23] and Wu

et al. [24] divided the global dependency relationship into the

local dependency relationship by dividing flows into segments

and updated each segment in a congestion-free manner. By

taking advantage of time synchronization protocols [19]–[21],

Zheng et al. [28], [30] designed heuristic algorithms to update

a single flow and multiple flows at a specified time with

minimum time step while maintaining the congestion-free

property. Nevertheless, all of the update solutions mentioned

above mainly focus on how to improve the update order of

the single update. Such an update manner leads to the serial

execution of continuous update events, which slows down

the makespan significantly. The continuous update method is

firstly proposed in [11]. The authors built the theoretical frame-

work based on abstract algebra and generated the blackhole-

and loop-free update order. However, the update order in [11]

may cause transient congestion which leads to packets loss

and network performance degradation. To the best of our

knowledge, Coeus is the first work to handle the continuous

update with blackhole-, loop- and congestion-free properties

guaranteed simultaneously.

VIII. CONCLUSION

We studied the consistency and continuous update problem

in SDNs. We proposed Coeus to obtain a consistent update

sequence during the continuous update procedure. The results

of evaluation show that Coeus can reduce the makespan and

redundant update operations significantly.
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