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Abstract—This paper deals with tracking control problem for
six degrees of freedom (6-DOF) nonlinear quadrotor unmanned
aerial vehicle (UAV). A virtual control design using PD controller
is proposed for tracking control position. The rotational dynamics
of UAV is considered to have several unknown parameters such
as propeller inertia, rotational drag coefficient and an external
disturbance parameter. To handle this issue, an adaptive scheme
using the certainty equivalence principle is developed. The basic
idea behind this scheme is to cancel the nonlinear term by
applying a similar nonlinear structure in the feedback control
design. The unknown parameters are replaced by estimated
parameters generated by adaptation law. The rigorous theoretical
design and simulation results are presented to demonstrate the
effectiveness of the controller.

Index Terms—Immersion & invariance, unmanned aerial ve-
hicle, 6-DOF, certainty equivalence principle, adaptive control

I. INTRODUCTION

Robotics and autonomous systems have recently drawn the
attention of academics and industries in various fields to
assist human in challenging environments such as off-shore
and underwater applications, space exploration, mining and
volcanic fields, and nuclear decommissioning. For example,
in [9, 13] the use of robotic manipulator and quadcopter
for the nuclear decommissioning application was investigated.
Improving autonomy and cognition of robotic systems can
unlock their potential for hazard monitoring. To move towards
this objective, design and development of suitable controllers
are an urgent need, especially for UAV applications [10].
Many control approaches have already been tested on UAVs
for different scenarios. As the size of UAV is becoming
smaller, the stabilization and control problems become more
challenging in front of disturbances and uncertainties in real
scenarios.

The UAV trajectory flight relies on four individual rotors
configured in plus or cross configuration. Three degrees of
freedom in UAV is related to translational motion, letting it to
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have backward, forward, vertical and lateral motion. The other
three states are related to rotational motions, i.e. roll, pitch
and yaw. Therefore, four control inputs are available to design
a controller with the capability of regulating highly coupled
states of the UAV. Since regulating the position and orientation
of UAV requires six states as the system output, we are dealing
with an under-actuated system, which is not a straightforward
problem from control system design perspective.

The presence of nonlinearities in the rotational dynamics
is a common issue in designing a proper controller for UAV.
Several results were reported in the literature to address the
trajectory tracking problem in UAVs. One of the common
approaches proposed in the literature relies on the feedback
linearization technique. An interested reader is referred to
[16, 18], for example. However, since feedback linearization
relies on a perfect dynamic model of UAV, it may not provide
a good solution in practical applications.

In many realistic situations, several parameters of UAV
are unavailable or may be changing as time goes on. These
uncertain parameters will cause more technical difficulty in
designing the controller. To address this issue, two major
research lines have been proposed in the literature. The first
major research line is the so called fixed gain approach or
robust control approach. The idea behind this technique is
to design a feedback controller, dominating the uncertain
dynamics of the system. As such, the uncertain nonlinearity
within a particular bound can be handled by proper design
of the controller. In this case, a priori information about the
uncertainty bound is required for the control design task.
One of the most common methods proposed in this research
line is sliding mode control. The results using sliding mode
control for quadcopter applications can be found in [14, 17].
To address the chattering problem in sliding mode control
techniques, significant effort has been made in the literature.
In the context of UAV application, the interested reader is
referred to [12, 13].

Adaptive control technique is the second major research
line to handle uncertain nonlinear dynamics, especially for the
systems with unknown constant parameters. The idea behind
this technique is to cancel the unknown nonlinear dynamics by
estimating the unknown parameters. An estimated parameter
is updated by an adaptation law until it converges to the actual978-1-7281-8763-1/20/$31.00 ©2020 Crown



value. A Lyapunov like function is usually utilized to design
the adaptation law.

Amongst various adaptive techniques, model reference
adaptive control (MRAC) is commonly used to handle un-
known parameters in the system dynamics. In this scheme,
a state predictor as an ideal reference model is required to
estimate the unknown constant parameters of the system. Sev-
eral results, relying on the use of this technique were reported
in [11, 15]. Nevertheless, the major drawback of MRAC was
the fact that the stability of the closed-loop system cannot
be guaranteed [1]. This issue was resolved in L1 adaptive
control technique by including a filter in the control structure
[4]. This technique was proposed in [7] for a single UAV
application and in [5] for a cooperative control framework. In
these two results, the error between the estimated parameter
and the actual value of the unknown parameter was required
to synthesize the adaptation law. Consequently, this approach
is not realizable for practical implementation.

Another adaptive technique, dealing with unknown constant
parameters is immersion and invariance (I&I), proposed in
[2, 8]. In this technique, the adaptive control law is designed
such that the mismatch estimation error is driven to a manifold.
The closed-loop system is assumed to be input to state
stable (ISS) without unknown nonlinear function. Therefore
the analysis is conducted to ensure the stability in front of the
mismatch estimation error dynamics. The application of this
scheme for under-actuated systems can be found in [3, 7].
More sophisticated results for 6-DOF UAV dynamic with
unknown constant parameters was developed in [6].

In this paper, an adaptive controller for stabilization and
trajectory tracking of a quadrotor UAV with unknown con-
stant parameters in the rotational dynamics is proposed. The
unknown parameters are estimated by applying the certainty
equivalence principle. This scheme has two steps. First, the
controller is designed for the system under an ideal situation
where unknown parameters are assumed to be known. Then,
the unknown parameters of the controller are replaced by their
value estimated by the adaptation law in the second step.
For translational dynamics, a virtual control input using PD
controller is presented for position control and tracking.

The remainder of this paper is organized as follows. In
Section II, the dynamics of 6-DOF UAV is presented. Follow-
ing that, the tracking control position using PD controller and
attitude control design using an adaptive control are proposed
in Section III. Then in Section IV, we present a simulation
to demonstrate the effectiveness of our control approach. A
summary and suggestion for future work are presented in
Section V.

II. SYSTEM DYNAMICS OF UAV
In this section, we present the system dynamics of UAV. As

depicted in [7], the translational dynamics is expressed by

η̈1 = −gze + J1(η2)
u

m
ze −

kt
m
η̇1, (1)

where g, u, m, IR, and kt are gravity acceleration, thrust
force, mass, propeller inertia and translational drag coefficient,

respectively. Vector η1 =
[
x y z

]T
is a position vector and

ze =
[
0 0 1

]T
. From the property of ze, we can see that

UAV is an under-actuated as the number of control input is less
than the number of output. Matrix J1(η2) is a transformation
matrix given by

J1(η2) =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ
cos θ sinψ sinφ sin θ sinψ + cosφ cosψ
− sin θ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ sinψ − sinφ cosψ

cosφ cos θ

 ,
where η2 =

[
φ θ ψ

]T
is an orientation vector. By assuming

cosφ and cos θ to be non-zero, then

J
T

1(η2) = J−1
1 (η2). (2)

The rotational dynamics is represented by

ν̇2 = I−1
M (−(ν2 × IMν2)− IR(ν2 × ze)Ω− krν2

+ τ), (3)

where ν2 =
[
p q r

]T
is an angular velocity vector, kr is

rotational drag coefficient, τ =
[
τp τq τr

]T
is the torques

acting in the body frame, and IM = diag
[
Ix Iy Iz

]
is an

inertia matrix. The relative angular speeds of the motor Ω is
computed by

Ω = Ω1 − Ω2 + Ω3 − Ω4. (4)

Both translational and rotational dynamics are highly cou-
pling as represented by the following relationship

η̇1 = J1(η2)ν1, η̇2 = J2(η2)ν2, (5)

where ν1 =
[
u v w

]T
is a linear velocity vector, and matrix

J2(η2) is

J2(η2) =

1 sinφ tan θ cosφ tan θ
0 cosφ sin θ

0 cosφ
cos θ

cosφ
cos θ

 .
The thrust force u is generated by

u =

4∑
ι=1

fι =

4∑
ι=1

kιΩ
2
ι , (6)

where kι is a positive constant and fι is upward-lifting force
generated by each rotor. The relationship between the thrust
force and the torques acting around the body of UAV are
expressed by the following

u
τp
τq
τr

 =


1 1 1 1

l

√
(2)

2 −l
√

(2)

2 −l
√

(2)

2 l

√
(2)

2

l

√
(2)

2 l

√
(2)

2 −l
√

(2)

2 −l
√

(2)

2
d −d d −d



f1

f2

f3

f4

 , (7)

where l is the arm length and d is the drag factor.



For convenience presentation, the attitude dynamics (3) with
an additional external disturbance can be rewritten in the
following linearly parameterized form

ν̇2 = f(ν2)ν2 + g1(ν2)IR + g2(ν2)kr + hδ + u, (8)

where

f(ν2) = −

 0
Iz−Iy
Ix

r 0

0 0 Ix−Iz
Iy

p
Iy−Ix
Iz

q 0 0


g1(ν2) =


−Ωq
Ix
Ωp
Iy

0

 , g2(ν2) = −

 p
Ix
q
Iy
r
Iz

 , u = I−1
M τ.

In this paper, IR and kr are unknown for feedback control
design. The external disturbance is represented by hδ that
contains a known vector function of time h and an unknown
constant δ.

III. PROPOSED CONTROL DESIGN

In this section, we present the control strategies for both
translational and rotational dynamics of UAV. For translational
dynamics, a virtual control using PD controller for the tracking
error position in Section III-A. In another side, an adaptive
control scheme is proposed for rotational dynamics with
uncertain parameters. The adaptive controller is developed
using the certainty equivalence principle in Section III-B.

A. Translational control design
The tracking control for translational dynamics in this

section is presented from [6]. We define the tracking error
of the system to be

η̃1 = η1d
− η1, (9)

where η̃1 is the error vector position and η1d is the desired
vector position. We have the second-order dynamics of 9

¨̃η1 +KD
˙̃η1 +KP η̃1. (10)

It is easy to see that system dynamics (10) satisfies Routh-
Hurwitz stability criterion for any positive definite KP and
KD. We can rewrite the dynamics (9) as

η̈1 = η̈1d
+KD(η̇1d

− η̇1) +KP (η1d
− η1). (11)

Let virtual input U = η̈1 =
[
U1 U2 U3

]T
. By substitut-

ing U to (1), then we have

U = −gze + J1(η2)
u

m
ze −

kt
m
η̇1. (12)

By doing several mathematical calculation as presented in [6],
we can compute φ and θ

φ = arcsin

(
(U1 sinψ − U2 cosψ)

(
(U1 +

kt
m
ẋ)2

+ (U2 +
kt
m
ẏ)2 + (U3 + g +

kt
m
ż)2
)1/2)

θ = arctan

(
U1 cosψ + U2 sinψ

U3 + g + kt
m

)
, (13)

and φd and θd

φd = arcsin

(
(U1 sinψd − U2 cosψd)

(
(U1 +

kt
m
ẋd)

2

+ (U2 +
kt
m
ẏd)

2 + (U3 + g +
kt
m
żd)

2
)1/2)

(14)

θd = arctan

(
U1 cosψd + U2 sinψd

U3 + g + kt
m żd

)
. (15)

The total thrust can be computed by

u = m
(
U1(cosφ sin θ cosψ + sinφ sinψ)

+ U2(cosφ sin θ sinψ − sinφ cosψ)

+ (U3 + g +
kt
m

) cosφ cos θ
)
. (16)

B. Rotational control design

One of the challenge issues in designing controller for
attitude dynamics is the presence of uncertain parameters. In
case all parameters of the dynamics are available for feedback
control design, it is easy to cancel the nonlinear dynamics by
applying a simple feedback linearization approach. However,
several parameters may unknown in many practical settings.
In this paper, several parameters such as IR, kr and δ are
unknown for feedback control design. An adaptive control
scheme is proposed to handle the uncertainties.

Before presenting our adaptive approach, let us define the
desired trajectory such that mismatch between actual and
desired trajectories to be

e = ν2 − ν2d
, (17)

where ν2d
=

[
pd qd rd

]T
is a vector of the desired

trajectory.
The estimate parameters are generated by adaptation law

along Lyapunov like function. The main objective of adapta-
tion law is

lim
t→∞

ĨR(t), k̃r(t), δ̃(t) = 0, (18)

where ĨR(t) = ÎR(t) − IR, k̃r(t) = k̂r(t) − kr and
δ̃(t) = δ̂(t) − δ. The proposed adaptive scheme is presented
in Theorem 3.1.

Theorem 3.1: Consider the attitude dynamics (8). The
controller is selected to be

τ = IM

(
− αe− f(ν2)ν2 − g1(ν2)ÎR − g2(ν2)k̂r

− hδ̂
)

+ ν̇2d
, (19)

where ÎR, k̂r, δ̂ is generated by

˙̂
IR = γ1e

Tg1(ν2),

˙̂
kr = γ2e

Tg2(ν2),

˙̂
δ = γ3e

Th, (20)



Fig. 1: The control system scheme of 6-DOF of UAV

for some α, γ1, γ2, γ3 > 0 and ν̃2 = ν2 − ν̂2. Then the time-
derivative of

V (e, ĨR, k̃r, δ̃) =
1

2
eTe+

1

2γ1
Ĩ2
R +

1

2γ2
k̃2
r +

1

2γ3
δ̃2, (21)

along the closed-loop system (8)+(19)+(20) is

V̇ (e, ĨR, k̃r, δ̃) = −α‖e‖2. (22)

Proof: The dynamics error of closed-loop system
(8)+(19)+(20) can be written as

ė = −αe− g1(ν2)(ÎR − IR)− g2(ν2)(k̂r − kr)
− h(ν2)(δ̂ − δ). (23)

Direct calculation shows that the time-derivative of
V (e, ĨR, k̃r, δ̃) is

V̇ (e, ĨR, k̃r, δ̃) = eTė+
1

γ1

˙̂
IR(ÎR − IR)

+
1

γ2

˙̂
kr(k̂r − kr) +

1

γ3

˙̂
δ(δ̂ − δ)

= eT
(
− αe− g1(ν2)(ÎR − IR)

− g2(ν2)(k̂r − kr)− h(ν2)(δ̂ − δ)
)

+ eTg1(ν2)(ÎR − IR)

+ eTg2(ν2)(k̂r − kr) + eTh(δ̂ − δ)

= −α‖e‖2 − eT
(
g1(ν2)(ÎR − IR)

+ g2(ν2)(k̂r − kr) + h(ν2)(δ̂ − δ)
)

+ eT
(
g1(ν2)(ÎR − IR)

+ g2(ν2)(k̂r − kr) + h(δ̂ − δ)
)

= −α‖e‖2. (24)

From the dynamics (8) under controllers (19) and (20), we can
see that e(t), ĨR, k̃r, and δ̃ are bounded. By Barbalat’s Lemma
as presented in [4], we can conclude that limt→∞ e(t) = 0.
This completes the proof.

For a better presentation, we present a fully control scheme
of UAV as illustrated in Figure 1. From the figure we can
see that outer-loop contains a control scheme for tracking
control position and inner-loop contains an adaptive scheme
for rotational dynamics.

IV. SIMULATION RESULTS

In this section, we conduct a simulation to demonstrate
the effectiveness of our approach. For translational dynamics,
translational controller in Section III-A is proposed with KP =
KD = 1. Meanwhile, the attitude dynamics is maintained by
the controller in Theorem 3.1. The gain control protocol (19)
and adaptive law (20) are selected as below

α = 10000, γ1 = 10000,

γ2 = 100, γ3 = 2000.

In this simulation setting, an external disturbance h =[
sin(t) 0.8 sin(t) 0.6 sin(t)

]T
is added with an unknown

constant δ = 0.2.

The parameters of quadrotor UAV used in this simulation
is presented in Table I [7]

TABLE I: The parameters of a quadrotor UAV

Parameter name Notation Value
Mass m 0.52kg

Gravity acceleration g 9.8m/s2

Translational drag coefficient kt 0.95
Rotational drag coefficient kr 0.105

Arm length l 0.205m
Drag factor d 7.5e−7kg.m2g

Propeller inertia IR 3.36e−5kg.m2

Inertia of x-axis Ix 0.0069kg.m2

Inertia of y-axis Iy 0.0069kg.m2

Inertia of z-axis Iz 0.0129kg.m2

The simulation results of the translational controller and
classical adaptive approach can be seen in Figures 2-8. From
the simulation results, we can see that a virtual control input
using PD controller can maintain the tracking control position
of UAV. Also, we can see the effectiveness of our adaptive
approach to handle uncertain parameters. Therefore the atti-
tude angles φ, θ, and ψ can be stabilized. These results show
that the performance of our control approach to successfully
maintain 6-DOF of UAV, as concluded in Section III-A and
Theorem 3.1.
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V. CONCLUSION AND DIRECTIONS FOR FUTURE WORK

A fully tracking control for 6-DOF of UAV with uncertain
parameters is presented in this paper. We propose a virtual
control input using PD controller for tracking control de-
sign. An adaptive controller is designed for tracking control
of rotational dynamics. Some parameters in the nonlinear
dynamics such as propeller inertia, translational drag and
an external disturbance parameter are unknown for feedback
control design. We develop an adaptive scheme using the
certainty equivalence principle to handle the uncertainties.
By applying Barbalat’s Lemma, we can conclude that the
rotational states can follow the desired trajectories. We also
present a simulation for a drone to see the effectiveness of
our approaches. It will be interesting to extend this scheme
for a more sophisticated controller with a simple structure and
apply it in the practical implementation.
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