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Abstract  
This study develops a novel unwelded, unbolted, ultrahigh-performance fibre-reinforced concrete 

(UHPFRC) grouted connection for prefabricated square tubular composite columns. Herein, eight full-scale 

columns with UHPFRC grouted connections are tested to investigate their ultimate tensile and compressive 

resistance. The test results show that the novel connections exhibit good resistance and structural stiffness. The 

primary failure modes are punching shear of the end plate, welding fracture at the inner tube, tube yielding and 

local buckling of the steel tube. The test specimens are simulated using finite element analysis in ABAQUS. The 

experimental and simulated results are in good agreement, indicating that the FE simulations can capture the 

observed failure modes and ultimate resistance. Thereafter, existing analytical design formulas are evaluated to 

assess their suitability to predict the compressive and tensile resistance of prefabricated tubes with/without the 

novel grouted connections. A good agreement between the formula predictions and the test results are observed. 

These analytical formulas have the potential to be used in the design of the novel unwelded, unbolted, UHPFRC 

grouted connections for prefabricated steel, reinforced concrete and steel-concrete composite columns. 
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1. Introduction 

Prefabricated building structures consist of prefabricated parts that are assembled on construction sites. 

Compared with the traditional building structures (e.g., cast in situ reinforced concrete (RC) structures), 

prefabricated building structures have a range of advantages, including increased construction productivity 

and quality, reduced labour, and decreased energy consumption and carbon emissions. These advantages 

promote green construction, which will be a major trend in the future development of the building 

construction industry [1-2]. With the increasing demand for housing and the growing capacity of 

manufacturing in China, industrialization of construction provides a very attractive and cost-efficient 

alternative in shaping the current and future infrastructure [3,4]. Studies of precast concrete and 

prefabricated building structures have been widely used in Europe, the United States, Japan and other 

international regions. The connections between the prefabricated structural components are always of 

special concern in the assembly of prefabricated constructions. The safety and reliability of the connections 

directly affect the overall structural performance of the assembled structures. The existing studies have 

mainly focused on various joints in traditional RC structures and steel structures, such as cast in situ 

concrete joints [5], bolted connections [6] and welded connections [7]. These prefabricated components are 

normally prepared in a factory environment and assembled on-site, which still requires significant on-site 

building work due to the numerous structural components. 

 

(a) Grouted reinforcement sleeve connection and (b) grouted anchor connection 
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(c) Pile sleeve connection [35] 

Figure 1. Grouted connection for RC structures and offshore structures 

At present, the commonly used connections in prefabricated RC structures are grouted reinforcement 

sleeve connections (Figure 1a) and grouted anchor connections (Figure 1b). The grouted sleeve connection 

is a key technology in prefabricated RC structures. The rebars are inserted into the sleeve that is grouted 

with high-strength, expansive cement. This connection provides high shear strength that transfers the force 

from the upper rebar to the lower rebar. This technology has been widely used in the United States and 

Japan and has been constantly improved through continuous experimental research and practical 

engineering tests. The connection technology is also recommended for the design code of high-rise 

prefabricated buildings (JGJ1-2014) [8]. In recent years, there has been more research on grouted 

reinforcement sleeves [9-14]. Ling et al. [9] and Wu et al. [10] investigated the failure patterns and load-

displacement relations of grouted steel sleeve joints, in which they particularly focused on the rebar 

embedment length and diameter. Under active confinement, the required embedment depth of the rebar can 

be reduced to 8 times of the rebar diameter. The failure process of the grouted sleeve is similar to the stress-

strain relation of a steel rebar. Zheng et al. [13] proposed a new grouted deformed pipe splice (GDPS) 

sleeve, and the tests on the GDPS sleeve showed good tensile capacity that satisfied the requirements in 

JGJ107-2016 [15]. However, the new GDPS sleeve requires a special fabrication process and higher 

installation accuracy, leading to a higher cost than the conventional steel sleeves. To study the effect of the 

sleeve cavity on the bond behaviour of the grouted sleeve connection, Zheng et al. [14] carried out an axial 
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tensile test, taking into account the number, spacing and height of the ribs of the sleeve. Their results showed 

that increasing the number and the height of ribs significantly increased the tensile capacity and the stiffness 

of the grouted sleeve connection before yielding. Based on the abovementioned studies, the grouted steel 

bar sleeve connections performed well in terms of their tensile and deformation capacity when joining steel 

rebars. Unfortunately, at present, there are still problems that need to be addressed in order to promote wider 

applications of the emerging joint technology. These include that (1) the properties of sleeve and grouting 

materials in the market vary and are not properly regulated; (2) there is a shortage of skilled labour to do 

adequate grouting, and (3) there is a lack of relevant technical standards. The current sleeve connections 

still require significant on-site operations, leading to low construction efficiency and a poor construction 

environment, which may also introduce substantial safety risks for structural members in high-rise buildings. 

Therefore, the demand for new types of connections that are simple and can be rapidly constructed for 

prefabricated buildings is highly urgent.  

Pile sleeve is another type of grouted connection that is used in the offshore engineering practice to 

assemble heavy platform structures and pile foundations, aiming to reduce installation inaccuracy and 

eliminate on-site bolting and welding, which significantly simplifies the complexity of platform 

construction process even in an extreme construction environment [16]. This grouted connection can be 

described as a composite connection consisting of high strength grout cast in an annulus between two 

concentric circular tubes with different diameters, as shown in Figure 1c. To enhance shear transfer, shear 

keys in the form of ribs are always welded to the surface of the steel tubes. As this is a simple, rapid 

installation technique, in a harsh marine environment, the grouted connection has been widely used in 

offshore structures to connect pile foundations and transition pieces of offshore wind turbines. Billington 

et al. [17] first carried out a large number of tests on this type of grouted connection and found that the 

connections with a shear key exhibit much higher axial bearing capacity than those without. The findings 

suggested that the grout properties and the connection size have a great impact on the ultimate resistance. 

Subsequently, the United States, Japan, Australia and other countries conducted systematic research on this 

connection technology [18-22]. Karsan and Krahl [23] proposed the calculation formula to predict the shear 

resistance of grouted connections and compiled it into the API code [24]. Accordingly, design guidelines, 
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such as the DOE code [25] in the United States and the DNV codes [26, 27] in Norway, have also published 

design methods for grouted connections. These specifications significantly contribute to the development 

of the ultimate resistance design approaches for grouted steel pile sleeves. A typical design of such may 

consider a wide range of design parameters, including the form of the shear key, the stiffness of the sleeve, 

the material properties of the grout, the height-distance ratio of the shear key (h/s), the thickness-distance 

ratio (b/s) of the grout, and the aspect ratio of the connection [28-30]. Unfortunately, only a few research 

efforts have been made for grouted connections of other section forms, such as rectangular hollow sections 

(RHSs) and square hollow sections (SHSs). Thus, the mechanical behaviour of these grouted sections 

remains unclear. For non-marine building structures, columns are mainly made in the form of RHSs and 

SHSs since these components are more effective and efficient for on-site assembly and architectural 

arrangement [31]. This study develops a new type of grouted ultrahigh-performance fibre-reinforced 

concrete (UHPFRC) connection for prefabricated SHS and RHS steel and steel-concrete composite 

columns. This new connection provides great superiority in fabrication and construction by removing the 

necessity for welding and bolting and considerably decreasing the number of member connections, on-site 

labour and additional construction requirements. Compared to the normal cast in situ concrete used in the 

traditional column connections, UHPFRC, which has high tensile strength and ductility, can provide a high 

shear strength even after cracking [32-34]. In addition, due to the existence of steel fibres, the shrinkage 

deformation of UHPFRC can also be controlled so that the effective bond strength between the grout and 

tube can be enhanced [35]. 

Through combined experimental and numerical studies, this study aims to reveal the load transfer 

mechanism and mechanical behaviour of the innovative UHPFRC grouted connection under uniaxial tensile 

and compressive loads. The development of the UHPFRC and material tests are first presented, followed 

by tensile and compressive tests of eight full-scale SHS tubes with/without the grouted connection to show 

the failure modes and the load-deformation relationship of the specimens. A finite element (FE) model is 

established to investigate the failure process. Analytical models are finally evaluated to provide a better 

understanding of the failure mechanism and ultimate resistance, thereby serving as a guide for the design 

of the novel UHPFRC grouted connections for prefabricated steel, RC and steel-concrete composite 



 

6 Draft, 9/21/2020 
 

columns. 

2. Full-Scale Experiments 

This section details the novel UHPFRC grouted connection for an SHS composite column without any 

welding or bolting. Figure 2 illustrates the concept, the prefabrication and the assembly process of the 

UHPFRC grouted connection, in which the upper and lower steel tubes are prepared by welding the shear 

keys on the outside surface of the inner tube and inside surface of the upper tube, respectively. Afterwards, 

the upper and lower steel tubes are precisely assembled on-site before grouting UHPFRC using the grouting 

hole on the upper tube, resulting in a novel unwelded, unbolted connection for steel, RC or steel-concrete 

composite columns. 

This section conducts full-scale experiments to investigate the tensile and compressive behaviour of the 

SHS tubular column connections. Some researchers have adopted simplified methods, such as the direct 

double shear test, to calculate the shear capacity of large-diameter grouted connections [22, 29, 36]. These 

simplified methods can be effectively implemented in the tests when the laboratory environment is limited 

and the failure modes are easy to observe. However, these research findings from component tests cannot 

represent the structural stiffness and ultimate resistance behaviour of the full-scale system, which may not 

be applied directly in practical design [37]. In this case, a full-scale experiment should provide a more 

accurate result for realistic engineering design purposes. 
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Figure 2. Development of novel unwelded, unbolted UHPFRC grouted connection for composite columns 

2.1 Materials 

2.1.1 Development of UHPFRC 

The new UHPFRC consists of ultrafine silica fume (SF), granulated ground blast furnace slag 

(GGBFS), PII 52.5 R Portland cement, fine sand, sugar calcium retarder and 2% steel fibres. Table 1 lists 

the characteristic parameters of the steel fibres. Table 2 lists the mix proportion of the UHPFRC. 

Table 1. Steel fibre characteristic parameters 

Fibre type Tensile strength  
(MPa) 

Elastic modulus 
(GPa) 

Length  
(mm) 

Diameter  
(mm) 

Length to  
diameter ratio 

Density 
(kg·m-3) 

Steel fibre 2750±15% 200 13±10% 0.21±10% 62±15% 7850 

Table 2. Mix proportion of UHPFRC (kg/m3) 

Mix W/B W OPC SF GGBFS S F HWRA SRA Retarder 

UHPFRC 0.14 174.3 967.6 154.8 190.9 927.5 156 33.3 5.39 1.97 
*W/B=water to binder ratio; W=water; OPC=ordinary Portland cement; SF=silica fume; GGBFS= ground granulated 
blast furnace slag; S=sand; F=steel fibre; HWRA=high water reducing agent; SRA=shrinkage reducing agent; 
R=retarder. 

Two forced-type twin-shaft concrete mixers were used simultaneously to produce the UHPFRC. First, 

all the dry blending components, including the OPC, SF, GGBFS and sand, were slowly mixed in the mixer 
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for 2 min until a homogeneous dry mixture was achieved. Then, water was added, and the superplasticizer 

was gradually poured into the mixer. After the surface of the powder appeared slightly wet and the mixture 

showed a fluidized state, the steel fibres were evenly added, and the mixture was mixed for a minimum of 

5 minutes to obtain a uniform distribution of the steel fibres in the fresh grout. The UHPFRC had a 

satisfactory consistency in its fresh state, with an average measured slump flow of 760 mm (Figure 3a), 

according to ASTM C1611-2014 [38], before being placed into the steel formwork, as shown in Figure 3b. 

Since the setting time for the UHPFRC grout to reach a hardened state is too short, which may affect the 

workability and the construction quality of the grout, a retarder was added to the mixture in the pouring 

stage to guarantee favourable workability performance. As shown in Figure 3c, the initial and the final 

setting time increase significantly when the volumetric content of the S-series retarder increases from 0% 

to 0.15% and 0.2%. However, the M-series retarder with a volumetric content of 0.2% did not affect the 

setting time. The drawback of adding a retarder is that the early compressive strength of the UHPFRC may 

decrease. To make a compromise between the early concrete strength and setting time requirements of the 

grout, a volumetric content of 0.15% was finally selected for the S-series retarder. In most previous studies, 

the production of UHPFRC required high-temperature steam curing [39]. However, the new UHPFRC 

developed in this paper can be cured at room temperature and still exhibit excellent mechanical properties, 

as mentioned in authors’ previous study [40]. Cylinders and cubes were prepared for each batch of grout, 

and these samples were demoulded after 24 hours and cured along with the column specimens until the test 

day. 

   

(a) Slump flow test of the 
UHPFRC (b) Grouting from a hole on top (c) Setting time vs. slump flow curve 

under different retarder dosages 

Figure 3. Workability of UHPFRC  
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2.1.2 Material properties 
Tables 3 and 4 show the material properties of the UHPFRC and the steel tube, respectively, which 

were obtained through standard material tests. The experimental programme tested three Φ100 mm×200 

mm concrete cylinders in accordance with ASTM C39/C39M-2014 [41], three 100 mm×100 mm×100 mm 

concrete cubes in accordance with GB/T 169 31387-2015 [42] and five concrete coupons in accordance 

with JSCE-2008 [43] after 28th dayof curing to determine the material properties of the UHPFRC. The 

average compressive strength of the concrete cylinders reached 121 MPa, the average compressive strength 

of the concrete cubes reached 157 MPa, and the average tensile strength of the concrete coupons reached 

7.9 MPa. All the steel tubes and plates were made of mild steel S355, and the shear keys were HRB 400 

rebar. Tensile tests on the steel/rebar coupons, which were cut from different locations on both the inner 

and the outer tubes, were performed with a universal test machine in accordance with ASTM E8/E8M-2016 

[44]. The Young's modulus Es, yield strength fy and ultimate strength fu of the steel plate, steel tube and 

rebar are summarized in Table 4. 

Table 3. Material properties of the concrete 
Concrete 𝑓𝑓𝑐𝑐 (MPa) 𝑓𝑓𝑐𝑐𝑐𝑐 (MPa) 𝑓𝑓𝑡𝑡 (MPa) Poisson’s ratio 

UHPFRC-0.15%R 121 157 7.9 0.25 
Notes: 𝑓𝑓𝑐𝑐=cylinder compressive strength; 𝑓𝑓𝑐𝑐𝑐𝑐=cube compressive strength; 𝑓𝑓𝑡𝑡=coupon tensile strength. 

Table 4. Material properties of the steel 
Item Material Es (GPa) fy (MPa) fu (MPa) 

Inner tube flat coupons Mild steel 209 324 461 
Inner tube corner coupons Mild steel 211 517 588 

Outer tube flat coupons Mild steel 209 340 466 
Outer tube corner coupons Mild steel 211 511 587 

Steel plate Mild steel 209 352 478 
Shear key HRB 400Φ6 194 357 485 

2.2 Test specimens 

The experimental programme tested a total of eight full-scale SHS tubes that are classified into four 

types: (1) hollow steel tube, (2) fully grouted steel tube, (3) steel tube with a partially-grouted joint, and (4) 

steel tube with a fully-grouted joint. Two specimens were made for each of the above types for the axial 

compression and tension tests, respectively. The group 1 specimens serve as a reference to examine the 
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mechanical behaviour of the columns with grouted connections. Figure 4 shows the configuration and 

dimensions of the specimens with and without the UHPFRC grouted connections. Figures 4a and b show 

the partially-grouted and fully-grouted connected columns, respectively, whereas Figures 4c and d show 

the conventional steel tube and concrete-filled steel tube (CFST) composite column, respectively, which 

are used as references. The specimen with the grouted connection consists of an upper and a lower steel 

part. The lower part is fabricated by welding an inner tube onto a steel plate that is then welded to the top 

of the lower tube. The upper tube has the same size as the lower one and serves as an outer tube of the 

connection. Shear keys are welded to both the outside surface of the inner tube and the inside surface of the 

outer tube. The current research considers two grouting schemes to connect the upper tube to the lower one: 

(1) grouting only the space between the inner and the outer tube, which is referred to as the partially-grouted 

column, and (2) grouting the entire cavity of both the upper and the lower tubes, which is referred to as the 

fully-grouted column. The central holes of the top plates allow injection and flow of the UHPFRC grout 

and an overflow hole also locates at the end plate welded on the lower tube. Figure 4f shows the 

prefabricated steel tubes with sleeves. 

Table 5 presents the details of the test specimens, including the materials used, geometric parameters 

and loadings conditions. In this Table, NGEC indicates non-grouted entire column under compression; 

NGET indicates non-grouted entire column under tension; FGEC indicates fully-grouted entire column 

under compression; FGET indicates fully-grouted entire column under tension; PGCC indicates partially-

grouted connected column under compression; PGCT indicates partially-grouted connected column under 

tension; FGCC indicates fully-grouted connected column under compression; and FGCT indicates fully-

grouted connected column under tension. The specimens are designed with a nominal size of 300 

mm(W)×300 mm(H)×8 mm(T), and the inner tube of the connection is designed with a nominal size of 200 

mm×200 mm×8 mm. The shear keys are designed with a height of 6 mm and a width of 12 mm and are 

positioned with a spacing of 50 mm, as shown in Figures 4a and b. 
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(a) PGCC/PGCT 

 
(b) FGCC/FGCT 

 
(c) NGEC/NGET 
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(d) FGEC/FGET (e) Definition of symbols 

 
(f) Prefabricated steel tubes with sleeves 

Figure 4. Configuration and dimensions of the specimens 

Table 5. Test matrix 

Specimen (mm) Tubular section 
Width B  

(mm) 
Height H 

(mm) 
Thickness t 

(mm) 
R  

(mm) 
r  

(mm) 
Grout type Loading 

NGEC ET 300×300×8 301 301 7.80 20 10 No grout 
Compressio

n 
NGET ET 300×300×8 300 300 7.80 20 10 No grout Tension 

FGEC ET 300×300×8 299 298 7.80 20 10 
Fully 
grout 

Compressio
n 

FGET ET 300×300×8 300 300 7.80 20 10 
Fully 
grout 

Tension 

PGCC 
OT 300×300×8 298 302 7.80 20 10 Partially 

grout 
Compression 

IT 200×200×8 202 201 7.75 15 8.5 

PGCT 
OT 300×300×8 299 299 7.80 20 10 Partially 

grout 
Tension 

IT 200×200×8 202 201 7.75 15 8.5 
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FGCC 
OT 300×300×8 299 301 7.80 20 10 

Fully grout Compression 
IT 200×200×8 202 202 7.75 15 8.5 

FGCT 
OT 300×300×8 300 301 7.80 20 10 Fully 

grout 
Tension 

IT 200×200×8 201 202 7.75 15 8.5 
Notes: ET=entire tube; OT=outer tube; IT=inner tube; B=width of the tube cross section; H=height of the tube cross 
section; t=tube thickness; R=fillet radius of the tube outer surface; r=fillet radius of the tube inner surface. 

2.3 Test setup, loading procedure and measurement scheme 

Figure 5 shows the setup of the tensile and compressive tests. A computer-controlled servo-hydraulic 

actuator with a tensile capacity of 5000 kN and a compressive capacity of 12,000 kN was used for the tests. 

For the tensile tests, the actuator was connected to the end plate with a ball joint connection mounted in the 

actuator to provide a uniform tensile force. The specimen was then connected to the end plate and bearing 

floor with high-strength bolts to transfer the tensile load to the specimens. For the compressive tests, the 

specimens were directly located on the bearing floor. The loads were applied under displacement control at 

a displacement rate of 0.2 mm/min. Figure 6 shows the measurement scheme for each type of specimen. 

Linear variable displacement transducers (LVDTs), T1, T2 and T3, were used to measure the lateral 

displacement along the height of the specimen, whereas T4 and T5 were placed vertically to measure the 

global axial displacement. Considering the symmetry of the SHS tubes, strain gauge pairs (S1-S12) aligned 

in both the axial and the circumferential directions were bonded on the outside surface of the specimens. 
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Figure 5. Test setup 

 

(a)NGEC/NGET        (b)FGEC/FGET         (c)PGCC/PGCT          (d)FGCC/FGCT 
Figure 6. Measurement scheme 

3. Test Results 

3.1 Failure modes 

Figure 7 shows the three main failure modes observed in the grouted connections. For the compressive 

tests of specimens FGWC and FGCC, the tests were terminated when the load approached 75% of the 

machine capacity because the high compressive resistance might exceed the allowable loading capacity 

of the machine. Therefore, there was no obvious failure observed in these two specimens. For 
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specimens NGEC and PGCC, both failed due to buckling of the outer steel tube, as shown in Figures 

7a and b. As expected, specimen NGEC was a conventional steel tube, and visible local buckling 

occurred in the mid-length of the steel tube. However, buckling of specimen PGCC initiated from a 

small deformation in the non-grouted region of the column. This phenomenon occurred because the 

sandwiched UHPFRC grout helped to improve the lateral stiffness of the steel tube. As the load 

increased, local buckling also occurred in the lower tube region, and the circumferential deformation 

increased rapidly, which demonstrated that the damage had bypassed the grouted connection; hence, 

the tube failed before failure of the connection. This observation shows that the strength of the grouted 

connection is greater than that of other parts, thus satisfying the seismic design principle of “strong 

joint-weak member”. 

For the tensile tests, specimens NGET and FGET both failed because of the yielding of the outer tube, 

and obvious deformation occurred in these two specimens. However, specimen FGCT failed by 

punching shear of the steel end plate, as shown in Figure 7c. The punching surface was clearly seen 

after removing the lower tube section (Figure 15h). Similarly, specimen PGCT failed from weld tearing 

at the welding position between the inner tube and the end plate. During this failure, a sharp tearing 

noise emanated from the specimen, and a visible gap formed between the upper and lower tubes, as 

shown in Figure 7d. The steel end plate also had obvious bending deformation. The structural stiffness 

degraded significantly when approaching the failure load. Ultimately, the steel end plate and the weld 

were fully sheared off. The test results reveal that the end plate in the connected region is one of the 

most important and weakest parts in this grouted connection system. Therefore, enhancement in this 

region must be taken into consideration to prevent the end plate from unexpected failure. The failure 

also indicates that the UHPFRC grouted connection region has much higher shear strength than the 

inner tube. The high shear strength of the grouted connection verifies that it is feasible to use this novel 

grouted connection in prefabricated building structures. Figure 15f displays the internal picture of the 

UHPFRC grout after removing the outer tube. Based on the profile of the dent, very small slip can be 

observed between the shear keys and the grout. 

Figure 8 shows all the possible failure modes and corresponding load-displacement curves for the novel 
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UHPFRC grouted connection under tensile and compressive loads, i.e., (Mode A) grout shear damage, 

(Mode B) punching shear of the end plate or welding fracture, (Mode C) steel tube yielding, (Mode D) 

local buckling, and (Mode E) steel yielding and concrete crushing. The analysis of failure modes can 

provide an insight understanding of the load transfer mechanism in the novel grouted connection. 

Moreover, the analysis also serves as a guidance for further design of the UHPFRC connections in 

prefabricated columns. 

  

(a) NGEC-local buckling  (b) PGCC-local buckling 

  
(c) FGCT-punching shear damage (d) PGCT-welding fracture 
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Figure 7. Failure modes 
 

  
(a) Tensile load-displacement curves (b) Compressive load-displacement curves 

     

Mode A 
Grout shear damage 

Mode B 
Punching shear of the 
end plate or welding 

fracture 

Mode C 
Steel tube yielding 

Mode D 
Local buckling 

Mode E 
Steel yielding and 
concrete crushing 

(c) Failure modes 
Figure 8. Possible failure modes and corresponding load-displacement curves of the grouted connections 

 

3.2 Load-strain relationship 
Figure 9 shows the load-strain curve of each specimen. Under axial compression, the ultimate load of 

specimens FGCC and FGEC is approximately 9000 kN because the test terminates due to the limited 

machine capacity. Specimen FGEC begins to yield at approximately 4100 kN, whereas yielding of 

specimen FGCC starts at approximately 4800 kN, which shows that a column with a grouted connection 
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has a higher compressive stiffness, as shown in Figures 9a and 9b. For specimens NGEC and PGCC, the 

ultimate compressive resistance is approximately 3000 kN because both fail due to local buckling of the 

steel tube. The compressive resistance of specimen PGCC is slightly larger than that of specimen NGEC 

due to the shorter buckling lengths. In contrast to specimen NGEC (see F3 and F4), the stress of the grouted 

region (see F4 and F6) of specimen PGCC is far from the yielding point. This grouted connection exhibits 

either a comparable compression resistance with or even higher compression resistance than that of the 

column without grouted connection. Under tension, specimens FGWT and NGET both begin to yield when 

the load reaches approximately 2500 kN. No obvious failure pattern appears until the steel tube completely 

yields. However, specimens PGCT and FGCT do not reach the yielding stage because they suffer from 

early punching shear damage of the steel end plate and weld tearing damage between the end plate and the 

inner tube. This finding indicates that the shear strength of the UHPFRC grouted region is higher than the 

punching shear strength of the end plate. The punching shear failure of the end plate is attributed to the high 

strength of the UHPFRC. 

The distribution of the longitudinal and circumferential strain along the specimens are shown in 

Figures 10a-d. The specimen is divided into the upper tube, the grouted connection region and the lower 

tube. For the compressive specimen PGCC, the longitudinal strain develops rapidly, and the steel tube yields 

outside the grouted region. However, the strain in the grouted region is far below the yield strain due to the 

constraint effect of the UHPFRC grout, implying that the axial load is well transferred from the upper tube 

to the lower tube through the UHPFRC grouted connection. A large circumferential strain is achieved since 

a visible buckling deformation occurs in the lower tube. For the tensile specimen PGCT, the longitudinal 

strain in the grouted region is also far smaller than that in the other regions. When the tensile load increases, 

neither longitudinal strain nor circumferential strain reaches the yield strain of the steel due to the early 

fracture of the weld. The maximum longitudinal strain along the specimen is less than 800 microstrain. The 

upper tube region expands while the lower tube region shrinks, leading to tensile strains in the 

circumferential direction of the upper tube and compressive strains in the lower tube. This phenomenon 

occurs due to the punching shear deformation of the steel end plate, which further induces inward concave 

deformation of the lower tube. Nevertheless, to induce grout failure and prevent punching shear failure of 
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the end plate, further studies should focus on reducing the strength of the sandwiched grout and 

strengthening the end plate. Therefore, from the compressive and tensile tests on the novel grouted 

connection, it should be noted that the connection exhibits acceptable compressive and tensile performance, 

which is effective in transferring the force from the upper column to the lower column. 

  
(a) FGEC (b) FGCC 

  
(c) NGEC (d) PGCC 
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(e) PGCT (f) FGCT 

  

(g) FGET (h) NGET 

Figure 9. Load-strain curves 

 
  (a) Longitudinal strain along specimen PGCC (b) Circumferential strain along specimen PGCC 

 
   (c) Longitudinal strain along specimen PGCT (d) Circumferential strain along specimen PGCT 

Figure 10. Strain distribution in the specimens 
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4. Finite Element Analysis 

To capture a more detailed failure mechanism of the connections during the loading history and build 

confidence for future parametric analysis, the current study conducts advanced FE analysis on each 

specimen using ABAQUS. This section presents the details of the material models of the UHPFRC and the 

steel, the element type, meshing scheme and the contact definition for the steel and concrete. The FE results 

are then verified against the test results. 

4.1 Material model of the concrete 

The FE analysis adopts the concrete damaged plasticity (CDP) model [45, 46] to represent the 

behaviour of the UHPFRC. The CDP model can accurately simulate the macroscopic response of concrete 

material. Moreover, this model also considers the compression "softening phenomenon" when subjected to 

tension in 2-dimensional or 3-dimensional state of stress, which allows the mechanical behaviour of 

concrete to be accurately simulated. The parameters for the CDP model are the modulus of elasticity (E0), 

Poisson’s ratio (v), dilation angle (w), second stress invariant ratio (Kc), ratio of biaxial to uniaxial 

compressive strength (rb0/rc0), parameter of the flow potential G(𝜀𝜀), and viscosity factor. In this model, the 

values of all the parameters and modelling techniques are based on the previous studies of UHPFRC [47, 

48] and are calibrated with the test results. The values for w, Kc, rb0/rc0, G(𝜀𝜀) and the viscosity factor are 

finally set to be 54°, 0.667, 1.07, 0.1 and 0.0001, respectively [47]. 

The compressive stress-strain relations presented in GB 50010-2010 [49] are used for the FE analysis 

to simulate the UHPFRC. A nonlinear equation in dimensionless form is given in Eq. (1), and the stress-

stain curve is shown in Figure 11. 
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where 2.41B =  is the descending parameter and 0 /pc cA E fε=  is the ascending parameter, in which E0=

0 0
0 0/e e

c cσ ε  is the elastic modulus ( 0
0 1 / 2e

c cfσ =  is the elastic limit point stress), 𝑓𝑓𝑐𝑐 is the compressive peak 

stress and 𝜀𝜀𝑝𝑝𝑐𝑐 is the corresponding strain [50]. 

Ye, Jianqiao
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For normal concrete, cracks occur when the strain exceeds the tensile strain. The uniaxial tensile stress-

strain relation of normal concrete is assumed to be linear until the ultimate tensile strength ft is reached. 

However, for the UHPFRC, the embedded steel fibres provide a bridging effect that prevents crack 

propagation, resulting in multi-cracking and strain hardening after the first crack [51, 52, 53]. To make the 

tensile stress-strain relationship applicable to the nonlinear analysis, Uchida et al. [39] simplified the tensile 

stress-strain relationship and proposed a trilinear model, as shown in Figure 11. When the first crack occurs, 

the corresponding stress is defined as the peak stress ft. After this point, the stress magnitude remains the 

same in a strain hardening state, which is followed by a softening phase, wherein the stress decreases. 

Among the input data of tensile properties in the CDP model, 𝑓𝑓𝑡𝑡 is the peak strength obtained from 

the direct tensile test of the concrete coupon, the elastic modulus E0t is defined as equal to E0c, the cracking 

strains 𝜀𝜀1  and 𝜀𝜀2  can be calculated by 1 1 / eqLε ω=   and 2 2 / eqLε ω=  , 1ω   and 2ω   are the crack 

opening displacements obtained from the tensile test, and eqL  is the unit characteristic length, which is 

related to the selected element type and element size in the FE model [54]. 

 
Figure 11. Constitutive model of concrete for FE analysis 

The compressive and tensile damage variables are defined as follows: 
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where /pl in
c c cb ε ε=  and /pl ck

t t tb ε ε=  are the constant factors obtained from Birtel and Mark [55], which 

are 0.7 and 0.1, respectively; 𝜀𝜀𝑐𝑐𝑖𝑖𝑖𝑖  and 𝜀𝜀𝑡𝑡𝑐𝑐𝑐𝑐  are the compressive and tensile inelastic strains, which are 

calculated by 0/in
c c c Eε ε σ= −  and 0/ck

t t t Eε ε σ= − ; and 𝜀𝜀𝑐𝑐
𝑝𝑝𝑝𝑝 and 𝜀𝜀𝑡𝑡

𝑝𝑝𝑝𝑝are the plastic strain for concrete 

in compression and tension, respectively, which are calculated automatically by the software using the 

values of 𝜀𝜀𝑐𝑐𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑡𝑡𝑐𝑐𝑐𝑐. The values of 𝜀𝜀𝑐𝑐
𝑝𝑝𝑝𝑝 and 𝜀𝜀𝑡𝑡

𝑝𝑝𝑝𝑝 are neglected, as recommended by Chi et al. [56]. 

Figure 12a shows the relation between the compressive strength and damage variable dc versus inelastic 

strain, and Figure 12b shows the relation between the tensile strength and damage variable dt versus inelastic 

strain in the FE analysis. 

  
(a) Relationship between compressive strength and 
compression damage variable vs. inelastic strain. 

(b) Relationship between tensile strength and tension 
damage variable vs. inelastic strain. 

Figure 12. CDP model 

4.2 Material model for the steel 

The material model for the SHS tubes, steel plates, and shear keys is the elastic-plastic model. The 

engineering stress-strain curves are obtained from the tensile tests of the steel coupons, whereas in the FE 

model, the engineering stress-strain relations are converted to true stress-strain relationships and used as 

input data, as shown in Figures 13a and 13b. Since the round corner of the SHS tube hardens in the cold-

forming process during fabrication, the material properties of this part are defined separately. 
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(a) Stress-strain curves of the inner tube (flat coupons) (b) Stress-strain curves of the outer tube (flat coupons) 
Figure 13. Comparison of engineering stress-strain curves and true stress-strain curves 

4.3 Element types and meshing scheme 

In the FE model, all the material parts are well partitioned to achieve a regular hexagonal structural 

element shape to improve numerical convergence. Eight-node solid elements with reduced integration 

(C3D8R) are used to model the grout and steel. In the thickness direction of all material, a minimum of 

three elements are used. For the region outside the grouted connection, a coarse mesh with an element size 

of 10 mm is used, whereas for the grouted region, an 8 mm mesh is used. The total number of elements is 

129680. Figure 14 shows a quarter of the FE model of the column with the novel grouted connection under 

a tensile load. Both ends of the column are fixed. However, in the nonlinear local buckling analysis, the 

steel tube is subjected to a large bending moment. To improve the simulation efficiency, the incompatible 

mode eight-node solid elements (C3D8I) are used to model the steel tube, which overcomes the shear 

locking problem and provides higher calculation accuracy. 

4.4 Contact definition 

Surface-to-surface contacts are used to simulate the interfacial interaction between the steel tubes and 

the UHPFRC grout. The surface a the stiffer body is normally selected as the master surface. However, 

since the lateral stiffness of the infilled grout is much higher than that of the steel tube, although the elastic 

modulus of the steel is much higher than that of the concrete, the inner surface of the outer tube and the 
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outer surface of the inner tube are set as slave surfaces, whereas the outer surface of the UHPFRC grout is 

set as a master surface. For the contact properties, hard contact is assumed in the normal direction, and an 

isotropic penalty friction with a constant friction coefficient of 0.7 [28] is utilized to represent the tangential 

friction between the steel and the UHPFRC grout. 

4.5 Comparison of the FE results and test results 

The test results presented in Section 2 are used to validate the developed FE model. Figure 12 shows 

a quarter model of the SHS column with grouted connections. The UHPFRC grout, the upper and lower 

tubes, and the shear keys are modelled independently. Both ends of the column are welded to the end plates 

and stiffened to ensure that failure will not occur at the column ends. The corresponding boundary 

conditions are applied at the planes of symmetry. 

Figures 15a-15h show the failure modes of the columns under tensile forces observed from the tests 

and predicted by the FE simulations. From the figures, the FE simulations can accurately predict the failure 

patterns of the columns. For the compression tests on the steel column without grouting (i.e., specimen 

NGEC) and the column with the grouted connection (i.e., specimen PGCC), the FE simulation reproduces 

the local buckling of the steel tubes. For the tensile tests on the columns with grouted connections (i.e., 

specimens PGCT and FGCT), the punching shear failure of the end plate and the welding fracture are also 

predicted successfully in the FE simulations. Figures 16a-16h also compare the load-displacement curves 

of the specimens. The load-displacement curves obtained from the FE analysis accurately match the ones 

from the tests. The high strength of the UHPFRC guarantees the integrity of the infilled grout, and the 

nonlinear behaviour of the column connection or column is mainly governed by the steel tubes. The 

geometric and material parameters of the steel tube, such as the diameter, thickness, and yield strength, 

significantly affect the failure mode and ultimate resistance of the column with a grouted connection. Future 

research will be performed to quantify the effects of these parameters. 

Ye, Jianqiao
Your columns have square sections
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Figure 14. Quarter FE model of the grouted connection under a tensile force 

  

(a) NGEC-local buckling (b) PGCC-local buckling 
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(c) PGCT-welding fracture (d) FGCT-punching shear failure 

  
(f) PGCT-grout damage (g) Concrete shear failure 

 

(h) FGCT-punching shear failure of the end plate 
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Figure 15. Comparison of failure modes between the FE and test results 
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(a) NGEC (b) NGET 

  
(c) FGEC (d) FGET 

  
(e) PGCC (f) PGCT 



 

30 Draft, 9/21/2020 
 

  
(g) FGCC (h) FGCT 

Figure 16. Comparison of the load-displacement curves between the test and FE results 

5. Analysis on Ultimate Resistance and Verification 

5.1 Analytical model 

Based on the test observations, the primary failure modes of the unwelded, unbolted, grouted 

connection are buckling of the steel tube, punching shear failure of the end plate, welding fracture and 

yielding of the steel tube. Thus, the corresponding ultimate resistance of the grouted connections is 

governed by each failure mode. To guide the design of the new grouted connection, this section evaluates 

the existing analytical models using the test results obtained in this study.  

5.1.1 Buckling of the steel tube 

For the specimens under compression, specimens NGEC and PGCC exhibit local buckling failure of 

steel tube, as illustrated in Figure 7. Eurocode 3 [57] provides a formula to evaluate the compressive 

resistance of a steel tube with a local buckling failure pattern, which is given in Eq. (4). 

 b ya gN f Aχ=  (4) 

 2 /( ) ( )ya yb g u ybf f Cnt A f f−×= +  (5) 

where bN  is the buckling resistance of the member under compression; yaf  is the yield strength of steel, 

which takes into account the influence of cold forming; χ  is the reduction factor for the relevant buckling 

Ye, Jianqiao
All the formulas in this section are not new. Maybe they should be presented in an Appendix rather than in the main texts. A brief summary of all these theories are presented here, followed by verifications 

HUANG ZHENYU
For buckling failure of steel tube, punching shear failure of end plate etc, the existing equations predict quite well. I suspect if we put the prediction part into the appendix may bother the cohesion of the paper? So I intend to say “analysis on ultimate resistance and verification”Q: In the paper, tubes and columns were used randomly, which may cause confusion.A: I remove the column but use tubes or specimens.
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mode; ybf  and uf  are the characteristic tensile yield strength and tensile ultimate strength of the steel 

(MPa), respectively; t  is the steel thickness before cold forming (mm); gA  is the gross cross-sectional 

area (mm2); C  is a coefficient that is a function of the type of forming, e.g., C = 7 for a rolled material 

and C = 5 for other forming methods; and n  is the number of 90° bends in the section with an internal 

radius less than 5t. 

5.1.2 Punching shear of the steel plate 

The end plates are subjected to complex forces, which causes punching shear failure. Figure 17 shows 

a simplified model of the punching shear of the steel end plate. Packer and Henderson [58] described this 

failure mechanism using Eq. (6). 

 0
1 1 0 ,sin 4

3
y

e p

f
N t bθ = ⋅  (6) 

 , 1
0 0

10( )
/e pb b

b t
=  but 1b≤   (7) 

where 1N  is the ultimate axial load, 0yf  is the yield strength of the steel plate (N/mm2), 1θ  is the angle 

between the plate and the inner tube (herein, 1 90θ = ° ), 0t  is the plate thickness (mm), ,e pb  is the 

effective punching shear width (mm), 0b  is the external width of the plate (mm), and 1b  is the external 

width of the inner tube (mm). 
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Figure 17. Simplified model of punching shear in the end plate 

5.1.3 Welding fracture 

Welding fracture, as a possible failure mode of the grouted connection system, occurs due to the initial 

imperfection in the weld between the inner tube and end plate. Eq. (8) is the formula for the ultimate tensile 

strength of the weld. 

 f f eN l hσ=  (8) 

where N is the ultimate axial load; 𝜎𝜎𝑓𝑓 is the yield strength of weld (MPa); 𝑙𝑙𝑓𝑓 is the weld length, which is 

given by 2f fl l h= −  (mm); eh  is the effective thickness of the fillet weld, which is given by 

0.7e fh h=  (mm); and fh  is the fillet weld height (mm). 

5.1.4 Yielding of the steel tube 

For specimens NGET and FGET, there is no obvious failure pattern but steel tube yielding occurs. The 

measured tensile load when the corresponding longitudinal strain reaches 5000 𝜇𝜇𝜀𝜀 is defined as the tensile 

strength for specimens NGET and FGET [16]. The tensile strength of the hollow steel tube and CFST 

column are expressed in Eqs. (9) and (10), respectively. 

 
tu h y sN f A− =  (9) 
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where tu hN −  and tu CFSTN −  are the axial tensile resistance of the hollow steel tube and CFST columns, 

respectively; yf  is the yield strength of steel tube (N/mm2); sA  is the cross-sectional area of the steel 

tube (mm2); and α is the steel contribution ratio, which is given by /s cA Aα = . 

For specimens FGEC and FGCC, the tests are terminated because of their high compressive resistance, 

which exceeds the allowable machine capacity. The plastic compressive resistance of these two CFST 

composite columns can be calculated from Eqs. (11)-(13) according to Eurocode 4 [59]. 

 (1 )y
pl a a y c c c

ck

ftN A f A f
d f

η η= + +  (11) 

 0.25(3 2 )aη λ= +  (12) 

 
2

4.9 18.5 17cη λ λ= − +  (13) 

Where, plN  is the plastic resistance; aA  is the cross-sectional area of the structural steel (mm2); yf  is 

the yield strength of the structural steel (MPa); cA  is the cross-sectional area of the concrete (mm2); ckf  

is the characteristic compressive strength of the concrete cylinder (N/mm2); t is the steel tube thickness 

(mm); d is the width of the steel section (mm), and λ  is the relative slenderness ( , /pl Rk crN Nλ = ). 

5.2 Verification 

Table 6 presents the maximum loads from the tests, FE analyses and the predictions using the above 

equations. From the table, it is shown that the average values of Ppre/Ptest and PFE/Ptest are 1.06 and 1.01, 

respectively, with standard deviations of 0.05 and 0.03. The existing failure-based models can provide close 

predictions of the maximum load with small standard deviations for all the specimens in terms of different 

failure modes. Figure 18 plots the predictions against the results from the tests and FE simulations, which 

shows a good accuracy of the existing analytical formulas. The comparisons again demonstrate that the 

existing analytical formulas can potentially be used in the design of prefabricated columns with UHPFRC 

grouted connections. 
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Table 6. Comparison of test, FE and predictive maximum loads and failure modes 

Specimen Ptest Ppre PFE Ppre/Ptest PFE/Ptest Failure mode 

NGEC 3029.2 3273.9 3015.4 1.08 1.00 Local buckling 
NGET 2943.3 3176.9 3056.1 1.08 1.04 Steel yielding 

FGEC* 9003.2* 13393.6 11806.2 N.A. N.A. 
Steel yielding & 
concrete crush 

FGET 2990.8 3347.4 3010.5 1.12 1.00 Steel yielding 
PGCC 3267.8 3273.9 3322.8 1.00 1.02 Local buckling 
PGCT 1204.5 1326.5 1237.0 1.10 1.03 Welding fracture 

FGCC* 9008.7* 13393.6 11980.0 N.A. N.A. 
Steel yielding & 
concrete crush 

FGCT 1214.1 1219.4 1183.4 1.00 0.97 
Punching shear of 

end plate 
Mean value   1.06 1.01  
Std. dev.   0.05 0.03  

*Ptest, Ppre, and PFE are the maximum loads from the tests, predictions and FE analyses, respectively. The 
tests of specimens FGEC* and FGCC* are terminated at approximately 9000 kN. Ppre_FGEC* and Ppre_FGCC* 
are the maximum loads predicted by Eqs. (11)-(13). Ppre_NGEC and Ppre_PGCC are the maximum loads predicted 
by Eqs. (4)-(5). Ppre_NGET is the maximum load predicted by Eq. (9). Ppre_FGET is the maximum load predicted 
by Eq. (10). Ppre_PGCT is the maximum load predicted by Eq. (8). Ppre_FGCT is the maximum load predicted 
by Eqs. (6)-(7). 

  
(a) Predictive results vs. test results (b) FE results vs. test results 

Figure 18. Comparison of the test, FE and predictive results 

6. Conclusions 

This study develops a novel UHPFRC grouted connection for prefabricated square tubular composite 

Prediction-to-test ratio
Ratio Mean COV

Ppre/Ptest 1.06 0.05

FE-to-test ratio
Ratio Mean COV

PFE/Ptest 1.01 0.03
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columns. The load transfer mechanism and the ultimate resistance behaviour of this new connection have 

been investigated through full-scale experimental tests and FE simulations. This study also evaluates the 

existing analytical models to predict the ultimate resistance of columns with these novel grouted 

connections in terms of different failure patterns. The following conclusions are drawn from the study: 

(1) For the connection under tension, three main failure modes are observed from the tests and FE 

simulations: (i) grout shear damage, (ii) punching shear of the steel end plate or welding fracture and 

(iii) steel tube yielding. The UHPFRC, which has a higher tensile strength, can provide a strong grouted 

connection, and the grouted region remains undamaged before the steel tube yields or the weld fails, 

thereby indicating that the grouted connection is effective in transferring the force from the upper to 

the lower tube. 

(2) For the connection under compression, two main failure modes are observed from the tests and FE 

simulations: (i) local buckling of the steel tube and (ii) yielding of the steel tube with concrete crushing. 

Since the connection has no impact on the vertical compressive load transfer between the upper and 

lower tubes, the tubes with a grouted connection exhibit a comparable or slightly higher load resistance 

than those without a grouted connection. 

(3) Three-dimensional FE models incorporated with the CDP model are capable of simulating the 

compressive and tensile behaviour of the prefabricated columns with grouted connections. The 

established FE model provides an accurate prediction of the nonlinear load-displacement curves and 

the failure modes for all the specimens. 

(4) This study evaluates the existing analytical formulas to predict the axial resistance of prefabricated 

tubes with grouted connections. The accuracy of the formulas in predicting the ultimate resistance is 

satisfactory when compared with the test results and FE simulations. These analytical formulas can be 

used in the design of prefabricated tubes with the novel grouted connections.  

(5) This study focuses on the development and fundamental behaviour of the novel grouted connection 

for prefabricated tubes. Future work is required to study shear failure of the concrete and optimize the 

geometric parameters and assess seismic performance of these novel grouted connections. 
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