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Abstract

Time-lapse electrical resistivity tomography (ERT) measurements provide indirect observations of hydrological
processes in the Earth's shallow subsurface at high spatial and temporal resolution. ERT has been used in the
past decades to detect leaks and monitor the evolution of associated contaminant plumes. Specifically, inverted
resistivity images allow visualization of the dynamic changes in the structure of the plume. However, existing
methods do not allow the direct estimation of leak parameters (e.g. leak rate, location, etc.) and their
uncertainties. We propose an ensemble-based data assimilation framework that evaluates proposed hydrological
models against observed time-lapse ERT measurements without directly inverting for the resistivities. Each
proposed hydrological model is run through the parallel coupled hydro-geophysical simulation code
PFLOTRAN-E4D to obtain simulated ERT measurements. The ensemble of model proposals is then updated
using an iterative ensemble smoother. We demonstrate the proposed framework on synthetic and field ERT data
from controlled tracer injection experiments. Our results show that the approach allows joint identification of
contaminant source location, initial release time, and solute loading from the cross-borehole time-lapse ERT
data, alongside with an assessment of uncertainties in these estimates. We demonstrate a reduction in site-wide
uncertainty by comparing the prior and posterior plume mass discharges at a selected image plane. This
framework is particularly attractive to sites that have previously undergone extensive geological investigation
(e.g., nuclear sites). It is well suited to complement ERT imaging and we discuss practical issues in its
application to field problems.

Graphical abstract
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Estimation of leak parameters and their uncertainties using raw geophysical data and data assimilation.

1) Introduction

Identification of solute loadings from an unknown source is a complex yet critical problem. For example,
understanding the whereabouts of the source(s) of contamination is often the first question that needs to be
addressed in a remediation project. This identification, however, is not straightforward and it is often
complicated by factors such as unknown forcing (e.g., boundary and flow conditions), aquifer and vadose zone
heterogeneity, and limited data (in terms of number, types, temporal and spatial coverage). Because of these



28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72

Prepared for submission to Journal of Contaminant Hydrology
Page 3 of 29

complications, attempts to assess source identification should also address the uncertainties in the estimates,
and provide realistic and actionable uncertainty bounds.

Traditional point-based sampling methods suffer from limited coverage and resolution. As prompted,
in part, by the wealth of studies in stochastic subsurface hydrology that argued for better field techniques,
geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the
past two decades (Binley et al., 2015). Geophysical methods can provide much larger spatial and temporal
resolution. Once installed, autonomous long-term monitoring systems, such as ALERT (Kuras et al., 2009), can
repeatedly collect geophysical data and transmit it back to the office using telemetry. Among them, electrical
resistivity tomography (ERT) is particularly suitable for leak detection due to its sensitivity to fluid conductivity.
Note that leak detection is not limited to the detection of the breakthrough of saline fluids (as proxies of
contaminants), but it also includes monitoring the integrity of water-retaining structures (e.g. embankments or
levees) (Abdulsamad et al., 2019) and landfills (Audebert et al., 2014; Chambers et al., 2006; Maurya et al.,
2017). Landfill sites with a high content of inorganics tend to provide good signal (Maurya et al., 2017), which
in some cases can be linked to other contaminants from the same source and following the same pathways.
Howevers, this is a critical assumption which needs to be tested at each site (Balbarini et al., 2018).Many previous
ERT studies have focused on inferring plume characteristics by delineating the plume geometry (Aghasi et al.,
2013), obtaining summary statistics of the plume structure (e.g. spatial and temporal movements) (Crestani et
al., 2015; Pidlisecky et al., 2011; Singha and Gorelick, 2006), or developing methods for automatic tracking of
plumes (Ward et al., 2016). There is also a substantial amount of work dedicated to delineating local hydraulic
properties using ERT (e.g. Camporese et al., 2011). As an effort to better use geophysical data for
hydrogeological studies, comparisons between coupled and uncoupled hydrogeophysical inversions of ERT-
monitored tracer tests have been made (Camporese et al., 2015; Hinnell et al., 2010). Others have tried to address
the uncertain link between hydrological systems and geophysical data using data-driven or machine learning
approaches (Hermans et al., 2016, 2015; Oware et al., 2013). There is also increased use of geophysics to
estimate remediation efficiency (LaBrecque et al., 1996). For example, Power et al. (2014) applied 4D active
time-constrained inversion to time-lapse ERT data to estimate the volume of solute plume remediated in a
laboratory experiment, while Slater and Binley (2006, 2003) used electrical imaging to monitor the integrity of
permeable reactive barriers. Its applicability largely depends whether the plume (e.g. saline or inorganic) and
the injected agents (e.g. zero valent iron or oxidants) or background gives distinct electrical signals. Plumes
with non-charged compounds, such as chlorinated ethenes, tend not to give an ERT response, except at extreme
concentrations. Likewise, in nuclear sites, the concentration of radionuclides itself tend not to generate a large
enough signal but secondary species such as metallic ions may give a distinctive ERT response.

The various electrical methods applied to the mapping and monitoring at the U.S. Department of Energy
Hanford nuclear site has greatly improved the readiness of these methods (Johnson et al., 2015a). For example,
the work on the monitoring of the groundwater/river water interaction beneath the Hanford 300 Area infiltration
bonds (Johnson et al., 2012; Johnson et al., 2015b; Slater et al., 2010; Wallin et al., 2013) shows ERT is well
suited for monitoring such complex and dynamic processes, while the successful monitoring of vadose zone
desiccation (Truex et al., 2013, 2012) at the BC Cribs Area demonstrates its capability to monitor 3-D changes
in moisture content caused by gas injection. The leak tank experiments in the 1990s and 2000s have contributed
some important work in geoelectrical leak detection. The first two mock tank experiments set up a 15 m diameter
steel tank at the Hanford site and ERT tomograms clearly shows area of resistivity decrease of the leak plume
(Ramirez et al., 1996). A subsequent series of mock tank experiments evaluated a number of electrical methods
for leak detection (Barnett et al., 2003). Among them, a “blind test” was carried out for 110 days where the
release episodes were not known to the modeller (Daily et al., 2004). The modeller achieved a 57% success rate
in defining a leak or no leak declaration during the test, although further analysis have greatly improved the



73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116
117

Prepared for submission to Journal of Contaminant Hydrology
Page 4 of 29

success rate. A follow-up study on the dataset used Markov chain Monte Carlo inversion to estimate the
probability distribution of the plume of being in different sizes and shapes (Ramirez et al., 2005).

In groundwater hydrology or hydrogeophysical problems, models are often too complex (in terms of
parameterisation) such that fully Bayesian methods such as Markov chain Monte Carlo (McMC) methods are
rarely applied (Irving and Singha, 2010). Data assimilation has played an increasingly important role in
subsurface characterization (Zhou et al., 2014). For example, Chen et al. (2013) used p-space ensemble Kalman
filter (EnKF) (Nowak, 2009; Schoniger et al., 2012) and ensemble smoother (ES) to assimilate head, flowmeter,
and conservative tracer test data to characterize the permeability field of the Hanford 300 area. Zovi et al. (2017)
used surface ERT results to generate facies model that honour the geophysical data, then used restart normal-
score EnKF to estimate the hydraulic conductivity (K) field. In a recent review, it was concluded that the
iterative ES (IES) could achieve results comparable with those of the EnKF, at a fraction of EnKF’s
computational cost (Li et al., 2018). This computational saving stems from the difference in their formulation—
in the EnKF, the data are sequentially integrated into the model at simulation time steps while in ES all the data
are combined together and assimilated only once (note in IES the amount of data between updating steps are
the same). Since EnKF assimilates data in a sequential fashion (i.e. one time step after another), the number of
assimilation steps equals the number of time steps present in the data. Therefore, EnKF is more computationally
expensive than IES when data from many time steps are used.

The Hanford leak tank studies and other earlier work on geoelectrical leak monitoring have focused on
obtaining time-lapse ERT images during the suspected leak, and making “leak/ no leak” decisions based on the
images. It is difficult, however, to use geophysical images to infer leak parameters such as leak location, solute
loading, and onset time. Recent hydrogeophysical studies have attempted to estimate parameters of interest from
geophysical data without inverting for geophysical images. Different hydrological model proposals are
evaluated and compared to observed geophysical data. For example, Manoli et al. (2015) used an iterative
particle filter approach and a coupled hydrogeophysical forward model to estimate hydraulic conductivity, K,
of up to four zones from ERT data obtained during a controlled infiltration experiment. This approach is then
extended to a field study which considers both ERT and ground penetrating radar (GPR) data in K estimation
(Rossi et al., 2015). Scholer et al. (2012) used time-lapse crosshole ground GPR data collected under different
infiltration conditions to estimate unsaturated soil hydraulic properties using a McMC inversion. Kowalsky et
al. (2005) jointly estimated the dielectric and unsaturated zone parameters using both GPR and hydrological
data. Johnson et al. (2009) developed a data-domain correlation approach for joint hydrogeological inversion of
time-lapse hydrogeological and ERT data to jointly estimate fluid solute concentration and resistivity without
explicitly specifying a petrophysical transform.

Though contaminant source identification has been a persistent problem in hydrogeology (Michalak
and Shlomi, 2007; Shlomi and Michalak, 2007; Sun, 2007; Sun et al., 2006; Sun and Sun, 2015), advances in
data assimilation methods have opened a new avenue in addressing this problem. Only a few studies have jointly
estimated leak parameters and hydraulic parameters (Datta et al., 2009; Koch and Nowak, 2016; Wagner, 1992).
Zeng et al. (2012) developed a sparse grid Bayesian method for contaminant source identification, which greatly
reduced the computational burden in McMC sampling and accurately identifies both leak parameters and time-
varying source strengths in case studies. Xu et al. (2016) simultaneously identified the above contaminant source
parameters using the restart normal-score ensemble Kalman filter, while subsequently Xu et al. (2018) extended
the method to also identify the heterogeneous hydraulic conductivity field. The method has recently been
applied to a sandbox study (Chen et al., 2018), where six leak parameters and 2 parameters for the location of
an impermeable plate are estimated. Assuming known source location, Kang et al. (2018) estimated K and Dense
Non-Aqueous Phase Liquid (DNAPL) saturation (and thus total DNAPL volume) from ERT data using restart
EnKEF.
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In contaminated land studies, there has been a paradigm shift to focus more on site-wide metrics.
Instead of focusing on thresholds from point-based measurements, mass discharge and mass flux has been used
increasingly (Brusseau and Guo, 2014; Christ et al., 2010, 2006; Hadley and Newell, 2012). Several studies are
dedicated to studying their estimation and uncertainty bounds from point measurements (Cai et al., 2011;
Troldborg et al., 2012, 2010), while Balbarini et al. (2018) used regression kriging of collocated concentration
and geoelectrical data to improve mass discharge estimates.

In this paper, we introduce an ensemble-based data assimilation framework to jointly identify various
leak parameters with their associated uncertainty bounds from ERT data. The method evaluates proposed
hydrological models (i.e. different hydrogeological units, different leak locations and loads) against observed
time-lapse ERT measurements. To the best of our knowledge, this work is the first attempt to estimate solute
source parameters using raw ERT data, as most previous work focuses on estimating hydraulic parameters or
reconstructing solute distribution. A key feature of our method is that it allows visualization of uncertainty
reduction by comparing the envelopes of prior and posterior mass discharge curves. This method is particularly
suitable for sites where characterization work had been conducted so that previous results can be used to inform
the proposal of prior models. The methods and data used in this work are detailed in section 2. Results of the
various synthetic and field test cases are reported in section 3 and 4 respectively. Finally, we discuss and
summarize our findings in section 5 and 6 respectively.

2) Methodology

We begin by outlining the different steps in the framework, followed by details of the different
framework components. Finally, we introduce the datasets used in test cases.

2.1. Overview of framework

The data assimilation framework (summarized by Figure 1(a)) begins by proposing a range of
hydrological models (i.e. model parameters such as leak locations). All parameters for variably saturated flow
and transport simulation need to be prescribed, either as a fixed constant or a distribution (which will be updated
by the DA framework). Also, the setup for the ERT experiment (e.g. mesh, electrode locations, measurement
protocols, petrophysical transforms) need to be included. Once we have an ensemble of model proposals, they
are fed to simulate the ERT response using PFLOTRAN-E4D (Johnson et al., 2017). The misfits between
observed and simulated ERT responses are used to form data error covariance matrices, which in turn are used
to update the model proposals. The entire process repeats until the misfit criterion is met or the algorithm reaches
the user-specified maximum number of iterations.
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Figure 1 (a) Flowchart of the overall data assimilation framework used in this work. More details are found in the subsections.
(b) The goal of this framework is that upon conditioning of geophysical data, the envelope of possible mass discharge time series
will become less uncertain.

2.2. Coupled hydrogeophysical forward modelling

We use the massively parallel code PFLOTRAN-E4D (Johnson et al., 2017) for coupled
hydrogeophysical forward modelling. E4D (Johnson et al., 2010) is an ERT code which has state-of-the-art
capability for parallelization and for accurate modelling of metallic infrastructure (e.g. tanks and pipes that are
common at contaminated sites) (Johnson and Wellman, 2015) and near-real-time inversion to monitoring
bioremediation (Johnson et al., 2015c). E4D has been used for ERT modelling on a number of complex
problems such as those at the Hanford Site. PFLOTRAN (Hammond and Lichtner, 2010, also see pflotran.org)
is a state-of-the-art massively parallel subsurface flow and reactive transport code. PFLTORAN-E4D
(implemented as “hydrogeophysics” mode in the 2018 PFLOTRAN distributions used in this work) translates
states of the PELTORAN model to bulk electrical conductivity o}, distribution using an interpolation matrix that
maps between the meshes of the two codes given a petrophysical transform. To do so, users need to provide
elementwise petrophysical parameters (e.g. Archie parameters), times when the simulated ERT measurements
are needed, and the fluid conductivities of the groundwater and the injected tracer. In this work, we assume
surface electrical conductivity is negligible and use Archie’s law as the petrophysical relationship:

op=0,P"S, @))
where m, is the cementation exponent, and n is the saturation exponent. Specifically, fluid conductivity o,
porosity @, and fluid saturation S, are passed from the PFLOTRAN output to E4D through the mapping routine.
After the petrophysical mapping, E4D will run a forward simulation with the given ERT survey configuration
and oy, distribution to produce the simulated ERT data. Note that PELOTRAN-E4D is no longer supported in
newer PFLOTRAN releases. The mapping routine is available through the corresponding author.

2.3. Prior parameter generation: Latin hypercube sampling
For multi-parameter data assimilation problems, we need to use an efficient scheme to generate nreaz
model proposals. We use Latin hypercube sampling (LHS) to obtain multi-parameter model proposals that
efficiently span the parameter space. The LHS approach is implemented using the R package Envstats (Millard,
2013). For the synthetic and field examples, we assume multivariate Gaussian distribution (N,= 32) and
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multivariate uniform distribution (N,= 64) for the prior distribution of parameter values respectively. The use
of more realizations and a non-informative prior in the field example is due to greater parameter uncertainty.

2.4. Data assimilation: ensemble smoother with multiple data assimilation (ES-MDA)

In this work, we use the ensemble smoother with multiple data assimilation (ES-MDA) (Emerick and
Reynolds, 2013) to update hydrological models. ES-MDA is also known as an iterative variant of ensemble
smoother (ES). The ES-MDA has been used heavily in hydrocarbon reservoir history matching of production
and seismic data, but there are growing applications in hydrology. For example, Ju et al. (2018) combined ES-
MDA with Gaussian process surrogate modelling and tested the new method on synthetic 2-D transient
groundwater flow problems. Lan et al. (2018) combined sequential ensemble-based optimal design and ES-
MDA to accurately and efficiently estimate the heterogeneous distribution of physical and geochemical
parameters in groundwater models. Aalstad et al. (2018) used ES-MDA and fractional snow-covered area
retrieved from satellites to estimate the snow distribution at Arctic sites. Song et al. (2019) used ES-MDA with
level set parameterization to estimate the three-facies heterogeneous permeability field at the Hanford IFRC
site, while Kang et al. (2019) jointly assimilated ERT and concentration data using ES-MDA alongside with
direct sampling (Mariethoz et al., 2010) to estimate the non-Gaussian hydraulic conductivity field from a
synthetic salt injection experiment. More recently, a modified version of ES-MDA has been used for crosshole
GPR travel-time tomography in conjunction with approximate forward solvers and model error correction
(Kopke et al., 2019).

An ensemble smoother (ES) considers all available time-lapse data simultaneously for updating the
model parameters. The ES-MDA method essentially allows iterative updating of the nonlinear ES problem by
inflating the observational errors by a factor a and solve the updating equation « times iteratively. It has been
shown that iterative updating better handles nonlinearity in the data assimilation problem than the classic ES
formulation. Our implementation of the ES-MDA procedure is summarized below:

1. Prepare observational data (and their error estimates) to be used for data assimilation (DA)
2. Setup a base PFLOTRAN-E4D model
3. Decide on which parameter(s) to update, either based on expert judgement or some preliminary global
sensitivity analysis. The parameter estimation may be affected if important parameters are neither assumed
correctly nor updated. Sample N, realizations from the prior distribution of parameter(s) values (e.g. assume
normal or uniform distribution) to obtain parameter array m at [ = 0 (mg). Parameters that are not being
updated are assumed known and base model values are used throughout the DA process for all realizations.
4. Run PFLOTRAN-E4D using my to obtain an ensemble of simulated ERT data
5. Updating. For [ = 1 to N, (where N, is the number of data assimilation steps),
G.) The data misfit from the ({ — 1)-th iteration is given by
504 20 (dops, - i)
Ne X Ny (2)
where N is the number of measurements and d; is the j-th simulated data of the i-th realization.

misfit =

>ii.) Obtain the auto covariance matrix of model predictions Cpp and the cross-covariance matrix
between the parameter vector and model predictions Cy;p by

- 1 N, — —
Cpp = cov(d'd) = 7%, ,(d; - d)(d; - d)' 3)

.. 1 N, J— —
Cup = cov(m',d’) ~ 2,2 | (m; - m)(d; - d)’ 4
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where d; and m; are vectors of simulated data and model parameter estimates of the i-th
realization, respectively. The overbar denotes the mean across realizations of a matrix.

(iii.)  For each ensemble member, perturb the observation vector using
dyc=dops + \/Elclézzd ()
where a; is an inflation coefficient, z;~N(0,Iy ), Iy, is an identity matrix of size Ny, Cp is the
covariance matrix of the measurements error, d,;s is a vector of the observed field data.
Resampling the vector of perturbed observations at each iteration tends to reduce sampling

problems caused by matching outliers that may be generated when perturbing the observations
(Emerick and Reynolds, 2013).

(iv.)  Update the parameter ensemble using:
Cup(Cpp + aiCp) " (dye - dy_1)"

m=m;_q1+ 6
: -1 Kalman gain misfit ( )

Note that in order to preserve the equivalence between single and multiple data assimilation,
it is necessary that Z;Val /a; =1 (Emerick and Reynolds, 2013). This effectively serves to

update the average sensitivity matrix.
v.) Run PFLOTRAN-E4D N, times using m;to obtain the updated simulated data ensemble
7. If solution does not converge, repeat steps 3-6 with a higher a and/or N,. Convergence is based on the
ensemble root-mean-square-error of the ERT data misfit:

114N N, ;
RMSE = \/W i:‘ilzjzl(d"{?s—d%{}ﬂ (7)

ES-MDA outperforms ES because the smoother effectively represents a single Gauss—Newton iteration
with a full step and an average sensitivity matrix (Reynolds et al., 2006) that is approximated by the covariance
matrices of the prior ensemble. Instead of a single and potentially large Gauss-Newton correction, ES-MDA
allows multiple smaller corrections through the use of multiple iterations and inflating the covariance matrices
to damp the parameter updating (Emerick and Reynolds, 2013). It is more flexible and easier to implement than
Gauss-Newton methods because it does not require derivation of sensitivity matrices. Previous work have
shown that good results can be obtained in a few iterations (e.g. 4-10), while using a decreasing order of a;‘s
only resulted in small improvements compared to using constant a;‘s.

In this work, the above steps (except forward modelling) were implemented in R. For the synthetic
studies presented, we set N, to 7 and use a constant «; of 7, which appears to obtain convergence in all cases

g o N, e g . .
and also satisfies the criterion X, ; '1/a;=1. Because the initial misfit for the field data is much larger than that
for the synthetic data, the algorithm was unstable and more difficult to converge. Thus, for our field study we
set a constant a; to 200 and iterate until the RMSE is stabilized, which is achieved within ten iterations. Although
this violates the ), ; “1/a; =1 criterion, we remark that its choice is determined based on data noise levels and

discrepancy between observed and simulated data, which can be high in field data. A higher a; can be seen as

adding regularization to the ensemble Kalman scheme (Iglesias, 2016). An alternative approach is to adaptively
decide @; at each iteration automatically (e.g. Le et al., 2016) based on the mean of RMSE of data misfit across

all realizations.

In previous hydrogeology applications using ensemble Kalman methods, the hydraulic heads or solute
concentrations are often transformed using normal-score transformation (e.g. Schoniger et al., 2012). We
consider ERT data to be more Gaussian than hydrogeological data so we use raw ERT data (transfer resistances)
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directly in this study but such scaling may improve results. Note that the geometric factors for the crosshole
measurements in our examples do not vary greatly.

2.5. Plume mass discharge
Mass discharge is the integral of solute fluxes across a control plane (ITRC, 2010). The control plane
can be a model or site boundary, the water table, or any arbitrary planes. Mass flux is defined as | = q(C, where
is qo groundwater flux and C is solute concentration. It follows that the solute mass discharge (or equivalently
solute integral flux) across a control plane is defined as My = J JdA, where A is area of the control plane and /

is the spatially variable solute mass flux. Note that since the solute fluxes are vectors, it is possible for solute
mass discharge to be negative. As shown in Figure 1(b), one way to visualize reduction in site-wide uncertainty
is by observing a reduction of spread of the mass discharge time series.

3) Synthetic experiments based on the Sellafield ERT field trial

Between 2013-2014, a field ERT trial was conducted at the Sellafield Nuclear Site in Cumbria, U.K.
(Kuras et al., 2016; Tso et al., 2017) by the British Geological Survey to demonstrate the utility of a permanent
ERT monitoring system to support critical decommissioning activities at nuclear sites. Four vertical boreholes
and two inclined boreholes with forty electrodes each were installed in front of the Sellafield MSSS building.
The field trial included three controlled injections of an electrically conductive tracer (as simulant of the silo
liquor) into the vadose zone. Time-lapse ERT data were collected during the experiment.

We built a PFLOTRAN model based on the hydrogeological model developed for Sellafield (Kwong and
Fowler, 2014) and an E4D model based on the electrode locations and design of the field trial. Details of the
PFLOTRAN and E4D models are found in Table 1. Note that there are multiple units in the domain, but only
the hydraulic parameters in the main unit (i.e. sandy drift) is listed in Table 1. The parameters not being
estimated are kept constant during parameter estimation.

To test our method, we obtained synthetic ERT data based on the experimental setup of the field trial
and consider a series of parameter estimation cases. They are summarized in Table 2. Unless otherwise stated,
the parameters not being estimated are assumed to be known exactly. We began by considering the estimation
of leak location (xloc,yloc), both for a leak inside and outside the ERT monitoring cell. Then we proceed by
also estimating the solute loading (g), release onset time (t;). Subsequently, we estimate both leak parameters
and uniform Archie parameters (m,n) jointly, which is important in field applications as fixing the parameters
imposes too much confidence on uncertain petrophysical relationships. Finally, we consider a few cases with
uncertainty and heterogeneity in hydraulic conductivity (K). In the first case, the K field has a log variance of
1.0 but its mean value is unknown; while in the second case, the K field is heterogeneous but its mean value is
known. In the last case, the mean K value is being estimated for a heterogeneous field. Other potential
parameters to consider includes water table depths, permeability [log10 (m?)], porosity, unsaturated zone van
Genuchten parameters, recharge rates, depth of the leak (zloc), and duration of the leak (dt). Each iteration
takes 40 minutes on average to run on 192 cores on PNNL’s institutional computing facility. Note that only the
forward modelling is parallelized, not the parameter updating.
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295 Table 1 “True” coupled hydrogeophysical model parameters used for synthetic experiments. It is developed based on the
296 Sellafield field trial. *Only parameters for the main zone are listed below. #Leak location for some cases is (33.4534, -14.4303)
297 instead. Note that for all cases the leak location is at the water table.
PFLOTRAN simulation Value
Total simulation time (days) 30
Model dimensions (m) 40 x 40 x 20
Grid spacing (m) Ix1x1
Horizontal permeability (m?) * 8.8854 x 10°1°
Vertical permeability (m?) * 4.4427 x 101
Porosity * 0.2
Water table depth (m) 6.0
van Genuchten M 0.5
van Genuchten @ 1x10*
Residual water saturation 0.1
Leak location (m) # (20,-10,18.1)
Leak period (day) 12-30
Leak rate (m*/d) 8.0
Background fluid conductivity (S/m) 1x10*
Leak fluid conductivity (S/m) 0.1
Mass discharge plane Vertical plane at y=-25.03m
E4D simulation Value
Full Model dimensions (m) 100 x 100 x 100
Imaging cell dimensions (m) 9.5x22.8x41.5
Grid spacing Unstructured
Number of elements 380457
ERT imaging times (day) Every 5 days between day 5 to day 30
Archie’s cementation exponent 1.3
Archie’s saturation exponent 2.0
298
(a) (b) (c)
455 foundation
- il -—— ,
- I conductiviy (/)
k- -
I N..
, , il ,
. L B % e
299

300 Figure 2 . (a) PFLOTRAN model domain for the Sellafield MSSS. The grey area is the MSSS building, which is modelled as
301 impermeable. The hashed area is the ERT imaging cell consisting of four ERT boreholes. (b) A snapshot of the simulated tracer
302 concentration due to injection. (c) The corresponding distribution of electrical conductivity within the ERT imaging cell obtained
303 via petrophysical transform.
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Size of Parameter(s) Initial and final
Figure ensemble . Prior distribution Comments
(Ney to estimate RMSE
Figure 3a 32 xloc, yloc 6x6 grid (exclude corners) Estimation of the 3.63>1.01
Uniform spacing leak location on the
X range: -5 — 55m x,y plane ; leak is
Y range: -33 - -3m located within the
ERT cell
Figure 3b 32 xloc, yloc 6x6 grid (exclude corners) Estimation of the 7.66 > 1.01
Uniform spacing leak location on the
X range: -5 - 55m %,y plane; leak
Y range: -33 - -3m location is outside
the ERT cell
Figure 4 32 xloc, yloc q, Multivariate uncorrelated truncated Gaussian: Estimation of the 4 7.01 > 1.01
t0 xloc = (mean=25.0, sd=20.0, min=-5.0,max=55.0), leak parameters
yloc = (mean=-18.0,sd=10.0,min=-33.0, max=-3.0),
q = (mean=15.0,sd=10.0,min=0.0, max=30.0),
t0 = (mean=15.0,sd=10.0,min=0.0, max=30.0)
Figure 5 32 xloc, yloc q, Multivariate uncorrelated truncated Gaussian: Joint estimation of 22.65 > 1.65
t0 m n xloc = (mean=25.0, sd=20.0, min=-5.0,max=55.0), leak parameters and
yloc = (mean=-18.0,sd=10.0,min=-33.0, max=-3.0), uncertain
q = (mean=15.0,sd=10.0,min=0.0, max=30.0), (homogeneous)
t0 = (mean=15.0,sd=10.0,min=0.0, max=30.0), petrophysical
¢ = (mean=1.6,sd=0.5,min=0.0, max=2.0), parameters (Archies
m = (mean=2.5,5d=0.8,min=0.0, max=3.0) cementation factor
and saturation
exponent)
Figure 6a 32 xloc, ylocq, Multivariate uncorrelated truncated Gaussian: Leak estimation 3.30~> 1.10
t0 xloc = (mean=25.0, sd=20.0, min=-5.0,max=55.0), under the influence
yloc = (mean=-18.0,sd=10.0,min=-33.0, max=-3.0), of permeability
q = (mean=15.0,sd=10.0,min=0.0, max=30.0), heterogeneity
t0 = (mean=15.0,sd=10.0,min=0.0, max=30.0)
Figure 6b 32 xloc, yloc g, Multivariate uncorrelated truncated Gaussian: Leak estimation 6.47 > 1.31
t0 xloc = (mean=25.0, sd=20.0, min=-5.0,max=55.0), under the influence 6.66 2 1.70
yloc = (mean=-18.0,sd=10.0,min=-33.0, max=-3.0), of and uncertain 6.50 > 1.22
q = (mean=15.0,sd=10.0,min=0.0, max=30.0), (homogeneous) 6.53 > 1.41
t0 = (mean=15.0,sd=10.0,min=0.0, max=30.0) permeability 6.54 > 1.27
Figure 7 32 xloc, yloc g, Multivariate uncorrelated truncated Gaussian: Joint estimation of 3.30 2> 1.03
t0, K xloc = (mean=25.0, sd=20.0, min=-5.0,max=55.0), leak parameters and

yloc = (mean=-18.0,sd=10.0,min=-33.0, max=-3.0),
q = (mean=15.0,sd=10.0,min=0.0, max=30.0),
t0 = (mean=15.0,sd=10.0,min=0.0, max=30.0),
K = (mean=-9.0,sd=sqrt(1.0),min=-11.0, max=-7.0))

uncertain
(homogeneous)
permeability values

3.1. Base cases

Our initial example considers the estimation of the leak location (Figure 3). The prior realizations are laid
in a rectangular grid. We consider both the cases where the leak is within and outside the ERT imaging cell.
Although the estimate at the first iteration is superior when the leak is within the imaging cell, the leak location
is accurately estimated after seven iterations in both cases. Figure 4 shows the results from the joint estimation
of four leak parameters: the (x,y) coordinates of the leak location, leak rate, and onset time, assuming a wide
multivariate Gaussian prior distribution. After conditioning the parameter values with ERT data, all four leak

parameters are accurately estimated. Figure 4b shows the mass discharge curves across a pre-defined plane. The
mass discharge curves for the prior distribution are highly variable, while those for posterior distribution

collapse to the true curve.
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Figure 3 Estimation of leak location. (a) The true leak location is within the ERT array (33.4534, -14.4303). (b) The true leak
location is outside the ERT array (20, -10). In both cases, the data assimilation framework successfully identified the true leak

location within a few iterations.
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Figure 4 Joint estimation of leak parameters: (x,¥) location, leak rate, and onset time. (a) Violin plots showing the prior and
posterior parameter distributions. In each violin plot in this paper, the minima, maxima, mean, median, as well as the 25% and
75% quantiles are marked. The true values are marked with an orange lines. The posterior parameter values collapse around
the true values (b) Prior and posterior tracer mass discharge (i.e. integral of mass fluxes) across the pre-defined plane. All the
posterior curves collapse to nearly the true curve (green). Note that the sign of mass discharge denotes its direction across the
plane.

3.2. Effects of petrophysical parameters

Figure 5 shows the joint estimation of leak parameters and Archie petrophysical parameters. The prior
estimates are generated as multivariate Gaussian distributions using Latin hypercube sampling. The posterior
estimates are in very good agreement with the true values, with the exception that the onset time is slightly
underestimated. It is noteworthy that including the Archie parameters as a covariate has caused the RMSE of
the prior ensemble to be much higher than those in other synthetic test cases (see Table 2), highlighting that it
causes a larger range of transfer resistance values.
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Figure 5 Joint estimation of leak and petrophysical parameters: the prior and posterior parameter distributions are shown as
violin plots. The true values are marked with orange lines.

3.3. Influence and joint estimation of uncertain (homogeneous) hydraulic conductivity

Figure 6a shows the estimation of leak parameters under uncertain K values. Estimating leak parameters
under K uncertainty leads to highly uncertain and inaccurate leak parameter estimates. Figure 6b shows the
estimation of leak parameters with variance of log K equal to 2, 3, 5, 7, 10, while assuming the mean K values
are known exactly and unit correlation lengths. Although some variations in the estimates are seen, they
generally lie close to the true values. There is no apparent correlation between the leak parameter estimation
performance and the variance of the field. Figure 7 shows the estimates of leak parameters and effective
hydraulic conductivity. The results show good estimates of the leak locations, while that for g and tg is
manifested as a narrow envelope. The posterior uncertainty for K remains high and the algorithm underestimates
the effective K value. Again, the envelope of mass discharge curves is greatly reduced, demonstrating a
reduction in uncertainty. However, the posterior curves do not collapse to the true curve, indicating significant
uncertainty in the estimates.
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Figure 6 (a) The estimation leak parameters under uncertain K values and K (log10) variance = 1.0. The violin plots show the
prior and posterior parameter distributions. The true value is marked with an orange line. (b) The estimation of leak parameters
at variance of log10(K) equal to 2, 3, 5, 7, 10 , while assuming the mean K values are known exactly and the K field is isotropic
and is of unit correlation length. The violin plots show the posterior parameter distribution, while the true value is marked with
an orange line.
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Figure 7 (a) Joint estimation of leak parameters and effective hydraulic conductivity. The violin plots show the prior and
posterior parameter distributions. The true value is marked with an orange line. (b) Prior and posterior tracer mass discharge
across the pre-defined plane. The true curve is marked in green in the posterior plot.

4) Field application at the Hatfield site
4.1. Data description

To illustrate the approach in a field setting we use data from a solute injection experiment at the Hatfield
(Yorkshire) site in the UK. At the site, six boreholes were drilled in 1998 in order to monitor tracer injection,
two of which were for transmission GPR measurements (H-R1 and H-R2), while four were for ERT
measurements (H-E1, H-E2, H-E3, and H-E4). These four ERT boreholes consist of sixteen stainless steel mesh
electrodes equally spaced between 2 and 13 m depth. These boreholes were drilled to a depth of 12 m and
completed with 75 mm PVC casing. Both the ERT and radar boreholes have a weak sand/cement grout
backfilling the annulus. A tracer injection borehole was also installed (H-I2), located within the centre of the
borehole array. The injection borehole is 3.5 m deep, with a 100 mm diameter slotted section and gravel pack
between 3 and 3.5 m depth.

We focus our discussion using the ERT results from the March 2003 tracer infiltration experiment at
Hatfield (Winship et al., 2006). The tracer consisted of 1,200 litres of water, dosed with NaCl to give an
electrical conductivity value of 2200 pS cm™ (groundwater electrical conductivity at the site was measured as
650 pS cm). The tracer was injected over a period of three days, from 14" March 2003 to 17 March 2003 at
a steady rate of approximately 17 litres per hour. A float valve in the injection borehole was used to control the
head in the injection borehole, and hence the flow rate. Duplicate sets of background measurements of ERT
were made on 6" March and 13" March. Tracer flow was monitored by means of a pressure transducer in a
storage tank, which gave a way of calculating the cumulative injection volume over time. The tracer injection



388
389
390
391

392
393
394
395

396

397
398
399

400

401
402

403

404

Prepared for submission to Journal of Contaminant Hydrology

Page 17 of 29

port H-I2 was screened between 3m and 3.5m below ground surface. The tracer injection was monitored by
ERT measurements from four boreholes and inverted images clearly show the plume migration, as shown in
Figure 8 (Winship et al., 2006). During the tracer test no rainfall was observed at the site. The water table was
observed at approximately 10 m depth.

After removal of outliers, 3108 of the 3172 measurements are kept and 5% Gaussian data error is assumed
in the inversions. Let t = 8 be the day where injection commenced, ERT snapshots for ¢ = 7,10, 15, 21 days
are used in the inversion. Table 3 lists the baseline parameters for our simulation, which are largely adopted
from Binley et al. (2002). The parameters not being estimated are kept constant during parameter estimation.

15-Mar-03 16-Mar-03 21-Mar-03 24-Mar-03 27-Mar-03 02-Apr-03
0. s 0 ".U 0 HEL o HEL ° HEL 0 H-E4
om., H-E3 . Ha pe we . ez e - wex - we
. 3 ‘@ e 3 . .; e 3 . = e "['.‘4-»:4 e i ne gy HICT -
i ; » i 3 | I e 1
2m h }
H-EL HIZ HEZ E & Es O E & = & g £ ¢
4m * 0 o Q. £ 5 £ £ = =
=
12 12 12 12 12 12
am 10 10 10 10 10 10
H-E4 %, 4 4 % 5
8 ] | A
10m D %@r oo - %, 00 5 oo 5 % 0 5 0 5 %@ 0 5
Dy pistance tm) &’ Distance (m) pistance (M) iy 0 pistance () J pistance () 0 ance ()

Figure 8 Setup of the tracer injection test at Hatfield (H-12 is the injection borehole and H-E1 to H-E4 are ERT boreholes) and
the time-lapse resistivity images (iso-surfaces are plotted for 7.5% reduction of resistivity relative to baseline) obtained from a
difference inversion of the ERT data (reproduced from Winship et al., 2006)

Table 3 Baseline coupled hydrogeophysical model parameters used for the parameter estimation from the Hatfield field ERT

data. *The domain consists of 3 meters of top soil and a uniform main zone. Only parameters of the main zone are listed below.

PFLOTRAN simulation Value
Total simulation time (days) 41
Model dimensions (m) 30x33x 16
Grid spacing (m) 1x1x0.5
Permeability (m?) * 4.8225 x 1013
Porosity * 0.32
Water table depth (m) -12.0

van Genuchten m * 0.6

van Genuchten @ * 3.5x10%
Residual water saturation * 0.04
Recharge (m/day) 1x 104
Leak location (m) (3.0, 4.0,-3.0)
Leak period (day) 8-11
Leak rate (m%/d) 0.408
Background fluid conductivity (S/m) 0.22
Leak fluid conductivity (S/m) 0.065
Mass discharge plane Vertical plane aty =-3 m
E4D simulation Value
Full Model dimensions (m) 500 x 500 x 50
Imaging cell dimensions (m) 10x13x 15
Grid spacing Unstructured
Number of elements 46482
ERT imaging times (day) for inversion 7,10, 15, 21
Archie’s cementation exponent 1.35
Archie’s saturation exponent 1.35
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405 4.2. Parameter estimation
406  We applied the proposed leak detection framework to the Hatfield field data and consider two cases (details
407  are listed in
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Table 4). The first case estimates four leak parameters and two Archie parameters (xloc, yloc,log q
, t0, m, n). The second case considers the estimation of a few additional parameters, namely the duration of the
leak event (dt) and the uniform horizontal and vertical hydraulic conductivity (K and Kz). We consider K
anisotropy may exist at the site because well logs suggest the presence of fine-texturedlayers (Binley et al.,
2001). Compared to the earlier synthetic examples, convergence was much more difficult to achieve. We have
used the following modification to our methods to circumvent this issue: we estimated log q instead of g, used
more realizations, and used a uniform prior instead of a Gaussian one. We transformed the leak location priors
to a uniform grid to aid the interpretation of the results. We have not considered the estimation of depth of the
leak source in any of our examples because for most leak detection problems, the leak depth is usually precisely
known: for example, base of storage tanks/silos, depth of buried pipelines, and bottom of landfill lining. Each
iteration takes 2.5 hours on average to run on 192 cores. Note that only the forward modelling is parallelized,
not the parameter updating.

Results from the base case is reported in Figure 9. Figure 9(a) shows that the posterior estimates of most
parameter pairs form a small cluster. The estimates of xloc and log g are close to the true values, while those
for yloc and t are slightly above the true (known) values. The inversion appears to have no sensitivity to m,
while the estimation of nn converges to a very small value of about 0.53. Note that in this field test the true values
of m and n are not known. In the inversion of field data, we would not necessarily consider the estimates of m
and n representative of actual petrophysical parameters, but rather they act as hyperparameters to adjust any
discrepancy in model structure. Figure 9(b) shows that the variability of mass discharge curves between
realizations is greatly reduced upon conditioning of ERT data. Specifically, its spread is reduced by two orders
of magnitude, highlighting a reduction in site-wide uncertainty of the plume migration.

Results from the second case are reported in Figure 10. We observe a larger spread in the parameter
space but similar results for the estimation of m and n. xloc, yloc, and ¢ty are slightly overestimated. The
inversion appears to have no sensitivity to K and Kz. The estimates of log q and dt centres around the true
value, indicating the inversion algorithm also correctly estimates the total solute loading (q X dt) that enters
the flow and transport modelling domain. This underscores that the proposed data assimilation framework does
not suffer from mass balance issues that are common in inverted resistivity-based approaches.
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Table 4 Summary of cases for the Hatfield field example
Size of Parameter(s)
Figure ensemble - Prior distribution Comments Final RMSE
(N,) to estimate
Figure 9 64 xloc, yloc, Multivariate uncorrelated uniform: Base case 223.16>15.3
logq, t0, m Adjusted uniform grid from xloc 0-8m (iter==8, stabilized
n and yloc =0-10m afterwards)
log q= list(min=-2.0, max=1.0),
t0=list(min=0.0, max=20.0),
m = list(min=0.5, max=2.5),
N = list(min=0.5, max=2.5)

Figure 10 64 xloc, yloc, Multivariate uncorrelated uniform: K, Kz and dt are also 310.66>13.95
log g, t0, dt Adjusted uniform grid from Xoc 0-8m estimated. (iter = 2, stabilized
mn K Kz and Yloc =0-10m afterwards)

log g= list(min=-2.0, max=1.0),
t0= list(min=0.0, max=20.0),
dt = list(min=1.0, max=5.0),
m = list(min=0.5, max=2.5),
N = list(min=0.5, max=2.5),
K =list(min=-13.0, max=-9.0),
Kz = list(min=-13.0, max=-9.0)
xloc [m] yloc [m] logso(g [m3/d])
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Figure 9 (a) Violin plots showing the prior and posterior parameter values for the Hatfield example estimating leak and Archie
parameters. The parameter symbols are defined in section 3. The true leak parameters used in the field injection experiment is
indicated by the orange lines. (b) The prior and posterior mass discharge time series. The sign of mass discharge indicates the
direction across the defined plane.
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Figure 10 Violin plots showing the prior and posterior parameter values for the Hatfield example estimating leak and Archie
parameters and hydraulic conductivities. The parameter symbols and units are defined in Table 3. The true leak parameters
used in the field injection experiment is indicated by orange lines.

4.3. Global sensitivity analysis using the Morris method
To better understand the sensitivity of ERT data to various parameters in the coupled hydrogeophysical
problem used to analyse the Hatfield dataset, we performed a global sensitivity analysis using the Morris
method (Morris, 1991; Tran et al., 2016; Wainwright et al., 2014) that is implemented in the R package
sensitivity (Iooss, 2019). The Morris method returns the elementary effect (EE) of the parameters, which can
be considered as an extension of the local sensitivity method. Since the mean EE represents the average effect
of each parameter over the parameter space, the mean EE can be regarded as a global sensitivity measure. To
ignore the effects of the sign, the mean of absolute EE is usually reported (mean |[EE|). In general, for the
parameter ranges considered, parameters with high mean |EE| have a large impact on the data. Unconditional
realizations are generated using the Morris algorithm based on the parameter ranges specified in Table 5 and
the parameter space is sampled uniformly. We used 25 chains, so for a 13 parameter problem
25 X (13 + 1) = 350 realizations are generated. We run the forward models using PFLOTRAN-E4D to
obtain simulated ERT response (the settings are the same as those in
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Table 4, unless otherwise stated). We set the objective function for calculating the mean |EE]| to be the
weighted misfit between the simulated and observed ERT data at Hatfield. The same dataset as in the previous
section is used.

Results from the global sensitivity analysis of the Hatfield experiment shows that some parameters,
especially water table depths and two of the van Genuchten parameters have the largest effects on the data misfit
(Table 5), followed by uniform permeability, porosity and Archie parameter values. Leak parameters has low
mean |EE|, indicating the difficulty for ERT data to inform their estimation if the others are not known with
confidence. Among them, xloc and yloc have the highest and the lowest mean|EE|, respectively. Recharge has
virtually no effect on the data misfit. The results show that using ERT data and coupled hydrogeophysical
modelling is a challenging problem. Future work can benefit from better constraining the problem incorporating
additional data sources (e.g. pressure head, concentration, temperature, saturated and unsaturated hydraulic
parameters). Our results agree with that of Tran et al. (2016), who showed Archie parameters have a higher
mean |EE| than van Genuchten a. However, they found the mean |EE| of van Genuchten m is negligible, while
the largest mean |EE| for ERT data they found is around 8.0. This highlights the Morris sensitivity analysis is
best considered on a case-by-case basis, as it is affected by the observed data and the selected parameter ranges.
We also report a list of realizations with low data misfit in Table 5. We observe that none of the realizations
have an RMSE lower than 7.4 and their parameter values vary greatly. It is noteworthy that a “true” deterministic
run (using parameters in Table 3) would give an RMSE of 4.82 (Figure 11). The above shows that some
solutions to the ERT leak detection problem can be considered equifinal.

Table 5 Global sensitivity analysis results using the Morris (1991) method on selected parameters on the Hatfield coupled
hydrogeophysical model. The parameter ranges considered and the mean absolute elementary effect (|[EE|) are reported.
Parameter value combinations from ten realizations with the lowest RMSE are also reported.

Parameters [units] Range Mean|EE| #24 #59 #61 #62 #63 #133 #150 #152 #153 #154
xloc [m] 0.0-8.0 7.65 0.0 8.0 2.0 2.0 2.0 6.0 2.0 2.0 2.0 2.0
yloc [m] 0.0-10.0 0.18 0.0 10.0 2.5 2.5 2.5 10.0 7.5 7.5 7.5 7.5

q [log10 (m*/d)] -20-1.0 1.82 -2.00 -1.25 -1.25 -1.25 -1.25 1.00 -1.25 -1.25 -1.25 -1.25
t0 [d] 0.0-20.0 1.53 15.00 5.00 5.00 5.00 5.00 15.00 20.00 20.00 20.00 20.00
Archie m [-] 1.0-15 26.52 1.38 1.00 1.00 1.00 1.00 1.50 1.50 1.50 1.50 1.50
Archie n [-] 05-2.0 11.68 1.63 0.88 0.88 0.88 0.88 2.00 1.63 1.63 1.63 1.63
water table [m] -14.0--9.0 49.39 -14.00 -14.00 -14.00 -14.00 -14.00 -14.00 -12.75 -12.75 -12.75 -12.75
permeability 15.0 —-12.0 6.85 41500 -12.00  -12.00 -1425  -1425  -1200  -12.00  -12.00  -12.00  -12.00
[log10 (m?)]
porosity [-] 0.25-0.35 12.34 0.25 0.35 0.35 0.35 0.35 0.28 0.35 0.35 0.28 0.28
VG o [Pa'] 2e-4-2e-3 7.50 2.0e-3 2.0e-4  2.0e-4  2.0e-4  1.55e-3  2.0e-4  6.5e-4  65e-4  6.5e-4  6.5e-4
VGm|[-] 04-08 115.16 0.7 0.7 0.7 0.7 0.7 0.5 0.4 0.7 0.7 0.7
VG Sr[-] 0.01-0.2 69.30 0.2 0.01 0.01 0.01 0.01 0.1525 0.01 0.1525  0.1525  0.1525
recharge [mm/d] 0.0 -0.001 0.03 0.00 7.5e-4 7.5e-4 7.5e-4 7.5e-4 0.00 1.0e-3 1.0e-3 1.0e-3 2.5e-4
RMSE -- -- 7.54 11.10 11.22 11.15 10.57 9.30 8.25 9.40 7.44 7.42
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Figure 11 Transfer resistance scatter plot between the observed and simulated data at Hatfield. The simulated data uses
parameter values listed in Table 3.

5) Discussion

ERT has been used to detect leaks from nuclear sites for more than two decades. The conventional
approach is to use inversion to obtain smoothed images of resistivity at different times and to assess whether
there is a leak. This approach does not allow estimation of leak parameters and inversion of large time-lapse
ERT datasets can be computationally demanding. We have presented a data assimilation framework to estimate
leak parameters from ERT data. It evaluates hydrological model proposals based on the misfits between
simulated and observed ERT data and update the model proposals. The estimated leak parameters are presented
as a posterior distribution. It also outputs plume mass discharge across a plane, which can be used as a metric
to evaluate site-wide uncertainty reduction. These features are not available in existing methods. Since current
methods to estimate mass discharge are based on interpolation of point measurements, our coupled modelling
approach provides an alternative to quantify mass discharge estimates. Together with point measurements and
ERT imaging, the various methods can help establish multiple lines of evidence to better inform decision making
in nuclear site characterisation.

Our synthetic results show that the method allows very good estimation of leak parameters (e.g. leak
rate, loading size, and location). They also show that this framework can work reasonably well under the
influence of uncertain petrophysical parameters and mean K values, as well as under K heterogeneity with small
correlation lengths (i.e. with no significant structures). With the rapid growth of autonomous ERT systems to
monitor infrastructure, such as British Geological Survey’s ALERT and PRIME (Huntley et al., 2019) systems,
our approach can provide additional value to ERT data and supplement inverted resistivity images. Our work
also has potential to be applied to other non-point source leak detection problems such as seepage through
embankments, or using a different geophysical method such as self potential (SP). Likewise, our method could
also be applied to induced polarisation (IP) data, which has been shown to be potentially effective for monitoring
some reactive plume processes.

We have only examined problems with a few parameters (e.g. leak parameters and homogeneous Archie
and permeability values). All hydrological and petrophysical parameters that are not being updated are treated
as known constants, which can be strong assumptions on uncertain subsurface properties. Future work should
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strive to relax such assumption and jointly estimate more parameters. The prior distribution of the uncertain
parameters may have an effect on the performance of our data assimilation approach. Nonetheless, we
emphasize that they should be chosen based on site-specific prior knowledge. In this work, we have considered
a relatively simple problem: a single conservative source with known concentration (thus fluid conductivity)
with a single release episode. With the aid of relevant auxiliary information, our framework has the potential to
be extended to more complex problems.

The challenges we have encountered when dealing with field data highlights the need of unbiased and
reliable prior information for the proposed method to work in practice. Equifinality (Beven, 2006; Binley and
Beven, 2003) obviously exist in the leak detection problem since multiple combinations of leak, petrophysical,
and hydraulic parameters can give similar data misfits. Different parameterization, scaling of parameters, and
additional data sources may alleviate the problem. But ultimately, methods that allow rejection of model
proposals may be desirable. Nevertheless, our method can be considered both a quick and approximate method
for quantifying posterior uncertainty of parameters of interest, as well as a flexible method to perform
regularized inversion without forming the Jacobian (Iglesias, 2016), which can be advantageous for coupled
problems. Our proposed method is best used in well characterized sites where an abundance of historical data
can be used to build prior models. Alternatively, our method can also be used in controlled tracer injection
experiments to estimate hydraulic, petrophysical and transport parameters.

There exists unique challenges for using raw ERT data in data assimilation. ERT datasets are usually
quite large, with each timeframe containing hundreds to tens of thousands of data points. The fast collection of
ERT data mean that multiple datasets can be collected daily. However, due to computation constraints, we have
only used data from a few selected days. Also, each ERT quadrupole measurement neither represent the state
response at a point (as in head or concentration data) or the overall system response (as in hydrocarbon
production rates). These challenges do not appear to impact leak estimation from synthetic results. But their
implications warrant further investigation—for example, can we compress raw ERT data for data assimilation
since they may contain significant redundant information?

Frameworks for efficient high-dimensional data assimilation (Ghorbanidehno et al., 2015; Li et al.,
2015, 2016) can be used to jointly estimate a heterogeneous permeability field. Methods such as level set
methods, discrete cosine transform (DCT) and principal component analysis (PCA) can reduce the number of
parameters to describe a highly heterogeneous field. A recent study has applied ES-MDA in combination with
level set methods (Iglesias and McLaughlin, 2011; Tai and Chan, 2004) to estimate the three-facies
heterogeneous permeability field from conservative tracer test data at the Hanford IFRC site (Song et al., 2019).
Future work should explore their utility in hydrogeophysical data assimilation. Likewise, we have assumed
relatively simple petrophysical relationships in our coupled hydrogeophysical models. Whether more complex
petrophysical models will improve data assimilation results remains an open question. We also have not
examined joint assimilation of ERT data with head or concentration data, which can be promising for further
constraining our results. In this paper, we have used a relatively small ensemble of highly detailed, fully coupled
hydrogeophysical simulations as the forward model. Our work can benefit from a recently developed, adaptive
multi-fidelity version of ES-MDA (Zheng et al., 2018), which leverages both the accuracy of highly detailed
models and the efficiency of simplified models within the ES-MDA framework.

6) Conclusions

We propose a data assimilation framework that allows the use of time-lapse ERT data for solving
hydrological parameters in a leak detection problem. It does not produce any ERT images during inversion;
rather, it updates parameters in the hydrological model to minimize ERT data misfit. The use of an ensemble-
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based framework allows straightforward computation of uncertainty estimates. Site-wide uncertainty reduction
can be visualized by comparison of prior and posterior mass discharge curves. Synthetic and field results
demonstrate its utility under a variety of settings, e.g. when uniform hydrological and Archie parameters are
estimated jointly. This new framework is particularly attractive to sites that have previously undergone
extensive geological investigation (e.g., nuclear sites). It can be readily extended to solving other complex
problems (e.g. multiple modalities) of interest that is monitored by geophysical data. We have only used ERT
data in our analysis but the framework is highly flexible that it is straightforward to incorporate multiple data
types. Our method complements electrical resistivity imaging and is particularly applicable to sites where some
prior characterization is performed and uncertainty estimates for the parameters that drive the underlying
processes observed are desired.
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