
	
	
	
	

	

Lancaster	University	Management	School:		
Author	Accepted	Manuscript	
This	is	an	‘accepted	manuscript’	as	required	by	HEFCE’s	Open	Access	policy	for	REF2021.

	
	
Please	cite	this	paper	as:		
Richard	A	Williams	(forthcoming),	User	Experiences	using	FLAME:	A	Case	
Study	Modelling	Conflict	in	Large	Enterprise	System	Implementations,	
Simulation	Modelling	Practice	and	Theory	
	

ACCEPTED	FOR	PUBLICATION	|	September	16,	2020		

ORCID	NUMBER:	0000-0001-6333-9448	

DOI:	Not	yet	Assigned		
	
	
	
	
	
	
	
	
	
	
	
Dr	Richard	Alun	Williams
Senior	Lecturer	in	Management	Science
Lancaster University Management School
Lancaster, LA1 4YX

User Experiences using FLAME: A Case Study
Modelling Conflict in Large Enterprise System

Implementations

Richard A. Williams

Department of Management Science, Lancaster University, Lancaster, UK

Abstract

The complexity of systems now under consideration (be they biological, phys-
ical, chemical, social, etc), together with the technicalities of experimentation
in the real-world and the non-linear nature of system dynamics, means that
computational modelling is indispensible in the pursuit of furthering our un-
derstanding of complex systems. Agent-based modelling and simulation is
rapidly increasing in its popularity, in part due to the increased appreciation
of the paradigm by the non-computer science community, but also due to the
increase in the usability, sophistication and number of modelling frameworks
that use the approach. The Flexible Large-scale Agent-based Modelling En-
vironment (FLAME) is a relatively recent addition to the list. FLAME was
designed and developed from the outset to deal with massive simulations,
and to ensure that the simulation code is portable across di↵erent scales of
computing and across di↵erent operating systems. In this study, we report
our experiences when using FLAME to model the development and propaga-
tion of conflict within large multi-partner enterprise system implementations,
which acts as an example of a complex dynamical social system. We believe
FLAME is an excellent choice for experienced modellers, who will be able
to fully harness the capabilities that it has to o↵er, and also be competent
in diagnosing and solving any limitations that are encountered. Conversely,
because FLAME requires considerable development of instrumentation tools,
along with development of statistical analysis scripts, we believe that it is not
suitable for the novice modeller, who may be better suited to using a graph-

Email address: r.williams4@lancaster.ac.uk (Richard A. Williams)

Preprint submitted to Simulation Modelling Practice and Theory 29th August 2020

ical user interface driven framework until their experience with modelling
and competence in programming increases.

Keywords: Agent-Based Modelling, Complex Systems, Computational
Social Systems, High-Performance Computing

1. Introduction

Over the past two decades, the use of computational approaches to in-
vestigate social systems, including organizational and behavioural research
has progressed from mere quantitative data analysis to one that complements
traditional social science techniques through the use of advanced techniques5

in modelling and simulation. The techniques used within computational
social science have evolved from mathematical approaches that utilize de-
terministic or stochastic equations, through to computational modelling ap-
proaches such as agent-based modelling and simulation [1, 2]. An advantage
of these computational modelling approaches is the ability to fully control10

the underlying mechanistic component interactions of the model, thus once a
computational model is established, quick studies of the e↵ects of changes to
the elements and associated parameter values can be seen through equation-
solving or simulation. As such, simulation-based experimental results from
a well engineered model are directly related to the level of abstraction and15

assumptions made during model design and development. This provides a
firm basis for testing hypotheses on the mechanisms behind social behaviours
and dynamics than traditional approaches such as participant observations or
action research, where the unseen variables/factors can introduce additional
complexity and uncertainty, which limits our ability to translate interpreta-20

tions of observational/qualitative results to the real-world system.
Real-world systems are complex, with a range of system behaviours, prop-

erties and characteristics that emerge from the low-level interactions of a
highly connected set of system components that function through temporal
and spatial dimensions. One of the main strengths of the systems approach to25

investigating complex systems, is that it focuses on three key properties when
modelling the systems: 1) system structures, 2) system dynamics, and 3) sys-
tem control [3]. Indeed, previous discussions around Agent-Based Modelling
and Simulation (ABMS) advise that it can be used to test working theories of
the underlying mechanics of component interactions within systems and their30

resulting dynamics [4, 5]. As such, we believe that ABMS is the preferred

2

approach to facilitate the micro-to-macro mapping of complex dynamical
systems, in particular, social systems [6]. This is performed through altering
the way in which agent interactions occur, or relaxing of assumptions at the
individual agent-level, in order to investigate the emergence of system-level35

behaviours at the system-level. We therefore believe that ABMS provides a
low-cost computational approach for developing hypotheses of the real-world
system. With ABMS having recently become accepted as a scientific in-
strument for investigation [7], it is now imperative that agent-based models
(ABMs) adhere to the scientific method through a principled approach to40

their design, development and use, to ensure they are fit-for-purpose [4].
Technology advances in hardware architecture, data storage and pro-

cessing speed over the past twenty years has encouraged the development
of new simulation frameworks that can handle increasingly complex compu-
tational models. With respect to ABMS, this has resulted in the development45

of a number of frameworks aimed at either subject matter experts or novice
modellers, which use graphical user interfaces, or experienced computational
modellers that are comfortable with command line terminals, a range of basic
programming languages and shell scripting. A relatively new ABMS frame-
work that falls in the latter category is the Flexible Large-scale Agent-based50

Modelling Environment (FLAME). Within this study we have used FLAME
to model the development and propagation of conflict within a large multi-
partner enterprise system implementation.

This manuscript provides an account of our experiences in using FLAME,
with particular reference to a number of it’s strengths and weaknesses with55

respect to: ABM design; ABM development; constraints due to its underly-
ing technical architecture; and performance. In particular, we highlight: the
ease of model design for experienced computational modellers who are famil-
iar with object-oriented programming and the Unified Modelling Language
(UML); and the ease of model development for experienced computational60

modellers who are comfortable with the logic behind UML State Transition
diagrams. In addition, we discuss a number of significant constraints of
FLAME due to the underlying architecture, such as: issues when setting
the Pseudo-Random Number Generator seed value; the inability to send
messages between simulation time-steps; the inability to use global mutable65

parameters; performance challenges due to the I/O rate-limiting character-
istics and the need for significant fast storage allocation to accommodate
realistic simulations of social systems. The manuscript is structured as fol-
lows: section 2 provides an overview of the major concepts that contribute

3

to the theory behind our study; section 3 discusses the case study; section70

4 provides an account of our user experiences when using FLAME to model
the case study; section 5 is the discussion section; and section 6 provides our
conclusions.

2. Related Work

This section provides an overview of the major concepts that contribute75

to the theory behind our study.

2.1. Agent-Based Modelling and Simulation of Social Systems

Social networks and the various dynamics and emergent behaviours that
develop from interactions between individual human agents are complex,
meaning that they often display non-linear dynamics. Computational social80

scientists often model these social dynamics through equation-based mathem-
atical approaches (e.g., system dynamics or di↵erential equations) or ABMS.
These computational modelling approaches facilitate the analysis and invest-
igation of complex social systems that would otherwise be intractable. This
may be due to direct experimentation of the system being either unethical or85

impossible across the scale and hierarchies of the social system; di�culties in
observing system dynamics due to extremely short or indeed large timescales;
di�culties in observing the whole population due to the magnitude of the
system, or to the location or complexity of the system (e.g., virtual team).

Importantly, it is frequently apparent that a significant amount of data90

generated through observations, participant interviews or surveys in the so-
cial sciences, accumulates and is collected in a manner comparable to the
object-oriented paradigm for design of computational systems. Historically,
computational modellers have taken inspiration from the natural and phys-
ical sciences and utilized the reductionist approach, which advocates that95

systems should be investigated through their decomposition to their smallest
indivisible unit, which we believe is analogous to looking for ‘objects’ within
nature. As such, we believe that an object-oriented approach to computa-
tional modelling, through the use of a bottom-up approach for design and
development of the models is a useful formalism for modellers in general,100

and those interested in Computational Social Systems in particular. ABMS
intuitively expands upon the object-oriented approach to model design and
development, and significantly benefits through the principal enhancement
that an agent is active instead of passive, and secondarily, that ABMS is

4

not bound by a central computational mechanism of control, but instead105

has multiple threads of control. Macal and North [8] provide a tutorial on
ABMS, which describes this by stating that the “fundamental feature of an
agent is the capacity of the component to make independent decisions”. In
addition, Jennings [9] further extends the notion of an agent by advising that
they are asynchronous components of a computational model that interact110

with the environment. As such, agents have the capability to sense their
environment, and through processing the input(s) that they receive from the
environment, may act upon it.

The origins of ABMS are in the modelling and simulation of human soci-
eties, systems, and networks and the associated dynamics and relationships115

within these hierarchical structures [10], with particular connection to the
fields of: Complex Systems, Computer Science, and Management Science
[8]. In fact, the agent-based approach was developed to allow investigation
of complex social systems at the level of individual actors/people, so bor-
rowed the reductionist perspective from the Natural Sciences. The belief120

here, which was also borrowed from Engineering, is that complex systems
are built from the ground up, which was a marked contrast to the beliefs of
Systems Thinkers who took a top-down view. Since its inception, the agent-
based approach has gained the attention of researchers from fields far away
from its origins within the social sciences. Examples of the use of ABMS125

to model complex dynamical social systems include: the seemingly inocu-
ous renting and sales patterns of houseowners/tennants within a reimple-
mentation of Shelling’s Bounded Neighbourhood Model [11]; the most recent
banking crisis associated with the British banking sector [12]; the way that
virtual project team performance is a↵ected by communication technologies130

[13]; and the recent Covid-19 pandemic [14].
The behaviour of individual agents is dictated by rules for their beha-

viour(s) and interactions. The interactions between compatible agents gives
rise to behaviour(s) and dynamics at the system-level. This population-level
behaviour, develops through the aggregated dynamics of individual agents,135

and is consequently deemed an emergent behaviour because it is not defined
in the technical design of the computational model. Epstein [6] advises that
this study of the emergent system-level behaviours is one of the key ad-
vantages of the ABM approach, and the ability to investigate the e↵ects of
the heterogeneous and autonomous individual agents has led to its increased140

adoption over the past decade [8, 10]. Moreover, an agent-based approach
allows the modeller to design and develop the model by explicitly taking

5

the individual agent’s location into consideration, which results in the model
more accurately reflecting the spatial aspects of the complex social system,
and in particular the network of social interactions within the system.145

The engineering of viable computational models of social networks is not
a straightforward process. This is due to the real-world system containing
multiple feedback signals and non-linear dynamics, along with the model
requiring the use of numerous parameters whose values have a degree of
uncertainty (or may even be unknown) from observations/participant inter-150

views. This uncertainty is further compounded through the introduction of
randomness at key decision points/system events to provide the heterogen-
eity in behaviours that are seen across a population of human actors within
the system [15]. ABMS equips the model developer with a set of techniques
to integrate multiple data types gained from empirical data collection and155

knowledge themes gained from secondary data sources. Furthermore, one of
the key strengths of the agent-based approach is that it allows us to model
the complex non-deterministic and heterogeneous behaviours, which allows
us to investigate the role of di↵erences in chracteristics (e.g., demographic
or behavioural) of individuals within social systems and develop testable hy-160

potheses for new empirical research. See Williams [4] for lessons learned on
development and application of ABMs of complex dynamical systems.

The work of Nikolai and Madey [16] has reviewed the main agent-based
modelling frameworks available, and discussed their di↵erent computational
underpinnings; examples include MASON [17], Repast [18], and NetLogo165

[19]. The commonality between all of these frameworks, is that they represent
the individual agent as having a specific state at any particular point in time.
Consequently, representations of each individual agent may be considered
as a state machine, where the combination of current and previous inputs
(previous states), along with the logic/functions associated with the agent-170

type, determines the output (next state) of the agent.
Increasing progress in hardware architecture, storage and speed over the

past twenty years has encouraged the development of new simulation frame-
works that can handle increasingly complex computational models, which
simulate at magnitudes and dimensions that are much more closely aligned to175

real-world societal populations. For example, the Flexible Large-scale Agent-
based Modelling Environment (FLAME1) was developed [20] to provide an

1http://www.flame.ac.uk

6

intuitive development framework for large-scale ABMs. FLAME was de-
veloped for use over the full range of computer hardware, which allows for
the early coding and unit/system testing on a personal computer, before be-180

ing moved to high-performance computing infrastructure for full-scale testing
and simulation. FLAME has been used by researchers across a variety of do-
mains, ranging from Biology [21], to Economics [22], to Human Resources
[23], to transport and logistics [24].

2.2. The FLAME Simulation Framework185

The FLAME simulation framework comprises a collection of Application
Programming Interfaces (APIs), templates to define the agent-based model,
and compilation and parsing routines to create the C code for running sim-
ulations. Due to FLAME’s conceptual architecture being based on com-
municating stream X-Machines, templates are used to define the rule-based190

functions (written in C code) of agents, with the agent types being defined
through XML templates, and the instantiation of the initial iteration of a
simulation run using another XML template that defines the attributes and
internal agent states for the simulation run. FLAME requires installation
and configuration of the Message Passing Interface (MPI) to develop mes-195

sages that communicate interactions between specific agents and changes
within the system’s environment. These agent interactions are simulated
through transition functions that specify the rule-based logic of the ABM,
with all agents that transition to a new state having their internal memory
updated accordingly. Following specification of the model in the appropriate200

templates (e.g., C and XML), the xparser tool is used to generate simulation
code (see figure 1). The xparser is written in C with the use of standard
libraries, and is actually a collection of template files and header files that
are stored in the desired directory of the computer (i.e., laptop, desktop, or
HPC) and compiled using the freely available GCC compiler. Furthermore,205

through the use of the MPI communication framework, the generated simu-
lation code is also portable to HPC platforms that use parallel architectures,
thus enabling e�cient communication between agents that may be across
di↵erent compute nodes, and therefore remain in sync [25].

An X-machine is a formalized specification developed by Eilenberg [27]210

that has the capability to model both the system’s data and the specific-
ation method (function) for controlling the system. They were originally
introduced in 1974, but did not receive widespread acknowledgement in the
modelling community until 1988 [28] when the approach was advocated as

7

Figure 1: FLAME relies on the definition of models using the XML and C templates, and
their parsing and subsequent compilation into simulation code. This simulation code is
then run, through linking the main executable file to an initial starting parameters file
(0.xml). Due to FLAME utilizing the discrete-event approach, individual simulation runs
generate separate output files for each time-step increment within the simulation, with
each output file acting as the input file for the subsequent simulation time-step (after
[26]).

the basis for a formal model specification language. Subsequently, this was215

built upon in 1992 through the concept of stream X-Machines, which utilized
sets of input and output symbols that were read through in a stream. From a
conceptual modelling perspective, X-Machines employ both a diagrammatic
approach and formal notation to model the system, where the X-Machine
contains infinite internal memory, a set of functions, and a current state. The220

current state of control (the function defined in the specification method) and
the current state of the memory, is processed alongside an input symbol from
the input stream to determine the next state of the X-Machine, update it’s
memory state, and calculate the output symbol, which becomes part of the
output stream that is used for communicating to other X-Machines. This225

can be summarized in that the system’s new state is a product of it’s cur-
rent state (using memory and reference to a list of input symbols) and the
relevant function [29].

A communicating stream X-Machine model is a formalized specification
that builds upon that of X-Machines to introduce additional modelling cap-230

abilities. In particular, communicating stream X-Machines can be used to
compute the functional behaviour of the system at a lower-level of granular-
ity (i.e., individual agents), whose individual dynamics may be aggregated

8

up to the overall system level in order to generate the emergent behaviour
of the system as a whole. The formal notation of the communicating stream235

X-Machine specification utilizes a 10-tuple notation, with CX
i representing

the ith communicating stream X-Machine component, which is defined by
Stamatopoulou [30] as:

CX
i = (⌃i,�i,Qi,Mi,�i,Fi,q0i,m0i,I�i,O�i)

where:240

- ⌃ and � are respectively the input and output alphabets.
- Q is the finite set of real-world system states.
- M is the (possibly) infinite set that relates to memory.
- �, the type of the X-Machine X, is a set of partial functions '

that translates a specific input and a specific memory state to a
specific output and a possibly di↵erent memory state, ' : ⌃ x
M ! � x M.

- F is the next state partial function, F : Q x � ! Q, which given
a state and a function from the type � determines the next state.
F is often described as a state transition diagram.

- q0 and m0 are respectively the initial state and initial memory.
- I�i is the communication interface for the input messages.
- O�i is the communication interface for the output messages.

An X-Machine is defined by Holcombe [28] as a system that has internal
memory and an internal computational state, which dependent on environ-
mental input and their current internal state, can transition to another com-
putational state (see figure 2). The additional functionality incorporated into245

communicating stream X-Machines means that they are able to model in a
single process specification, the functional behaviours and dynamics of an
agent, as well as the intrinsic system data that it is modelling. A commu-
nication matrix using MPI facilitates communication (and thus interactions)
between individual communicating stream X-Machines. This communica-250

tion matrix is essentially a simulation-level message board that facilitates
the reading and writing of information between every communicating stream
X-Machine.

2.3. Enterprise System Implementations
The Gartner Group devised the term Enterprise Resource Planning (ERP)255

in 1990 [32] to define the software that provided functionality for organiza-
tions to use to manage their core administrative (back o�ce) functions such

9

Figure 2: Diagrammatic representation of a generic communicating stream X-Machine.
Relevant input messages that are held within the communication matrix are read by an
agent, and potentially processed to initiate state transitions and updating of the agent’s
current memory and current state [31].

as Finance, Payroll and Human Resources. A number of leading software
vendors (e.g., Oracle, JD Edwards, PeopleSoft and SAP) o↵ered ERP soft-
ware packages to store the organizational data and provide assistance to260

facilitate compliance to a standardized set of business processes [33]. With
the expansion of Information Systems (IS) and Information Technology (IT)
throughout the late twentieth century, the individual software modules that
focused on the di↵erent organizational business functions were integrated
together. These larger software systems, which were termed Enterprise Sys-265

tems, not only integrated the individual ERP modules, but also provided
additional functionality, such as business intelligence, advanced planning,
and automatically processing data from external supplier/customer relation-
ships. Enterprise systems are now commonly used to help organizations (of
all sizes) manage their human, financial and physical resources (e.g., sta↵,270

money, and products) along with key external relationships (e.g., customers
and suppliers) more e↵ectively [34].

Enterprise systems require considerable time and resource commitments
in order to be implemented properly within an organization. These imple-
mentation projects within large organizations are usually implemented by275

third-party service providers, with the largest implementations using the
consultancy services of both the vendor (e.g., SAP or Oracle) and profes-
sional services firms (e.g., Accenture, IBM, CapGemini, etc.). The various

10

customer, vendor, and professional services personnel are usually structured
into project teams that relate to the functional modules within the enterprise280

system, such as Finanicals, Payroll and Human Resources, which gives rise
to a wider implementation programme.

Whitty [35] has postulated that the increasing complexity and scale of
reach into the business by these enterprise system implementation programmes,
contributes to them exhibiting similar behaviours and traits to those of com-285

plex systems. We have previously discussed that the emergent behaviour gen-
erated within the social network of these large implementation programmes,
may, to a large degree, be due to the complexity stemming from the large
number of team members, and the growing trend of using multiple third-
party providers to implement the individual projects that combine to form290

the programme. In addition, we discovered that the individual project teams
may have competing priorities and objectives, and that these may lead to
various forms of conflict propagating throughout the wider programme, which
we view as a social network of formal workplace relationships [36].

2.4. Conflict within Enterprise System Implementations295

Conflict within group situations, such as the project teams that imple-
ment functional modules of enterprise system software, has been defined as
interpersonal incompatibilities or the holding of divergent views/perspectives
amidst the members/participants, which may be individuals within a single
group (intragroup conflict) or between di↵erent groups (intergroup conflict)300

[37]. Conflict has been reasoned to be an intrinsic part of group [38] and pro-
ject team dynamics, which can propagate throughout the network of group
members as a shared a↵ect [36]. Conflict develops during a variety of circum-
stances relating to the implementation of group- and team-based activities,
and in three main forms: task, process, and relationship conflict [39].305

Enterprise system implementations at large organizations, often require
the personnel, expertise and resources of multiple third-party organizations,
which may have di↵erent, and often incompatible, business objectives and
commercial drivers. As discussed above, the programme-wide implementa-
tion of the enterprise system is routinely divided into discrete project teams310

that map on to the corresponding functional modules within the enterprise
system software (e.g., Finance, Payroll, HR). Our recent study [36] showed
that within large multi-partner enterprise system implementations, conflict
(be that task, process or relationship) can develop between members of a par-
ticular project team, or between members of di↵erent project teams, and once315

11

developed, can propagate throughout the social network of the multi-partner
enterprise system implementation. Furthermore, this study conceptualized
the propagation of conflict within large multi-partner enterprise system im-
plementations as conflict propagating between team members of an individual
project team, and also between team members that are situated within dif-320

ferent project teams (see figure 3). In addition, we built upon the work of
Gamero et al. [40] who discovered that conflict is dynamic and can trans-
ition over time, by hypothesizing that task or process conflict can transition
to relationship conflict, and that relationship conflict (being directly related
to shared a↵ect), is the most common form of conflict to propagate through325

the social network of enterprise system implementations. We therefore hypo-
thesize that the conflict, which initially developed between a subset of team
members from two di↵erent project teams, has the potential to propagate
throughout the social network of the wider enterprise system structure, and
may negatively a↵ect implementation of the enterprise system as a whole.330

3. Case Study

The case study relates to a large UK-based organization that was imple-
menting an enterprise system along with associated IT hardware as part of a
major strategic modernization initiative. This IS/IT change programme was
underpinned by the need to integrate the enterprise system with multiple,335

existing, third-party legacy systems, to facilitate significant cost savings and
promote more e�cient business processes. The client selected a large Enter-
prise Applications vendor to implement the installation and configuration of
the enterprise system, and to lead the design and assist in the development of
the technical architecture that the enterprise system was embedded within.340

In addition, two di↵erent Professional Service Providers were also contracted
to act as Domain Expert Consultants for the configuration and extension
of functional modules within the enterprise system, along with a third Pro-
fessional Service Provider who consulted on the hardware and middleware
requirements for hosting the enterprise system.345

Such an environment is best described as a multi-partner enterprise sys-
tem programme implementation. The resulting social network was struc-
tured into project teams that aligned to the functional modules within the
enterprise system, along with a Programme Management O�ce (PMO) and
project teams that focused on developing technical extensions (e.g., cus-350

tom forms, reports, and database triggers), training material, and installing

12

Figure 3: Rich picture: Observable phenomena that emerge from the interactions between
individual team members. It is hypothesized that conflict can develop through a number
of mechanisms, and that once formed, it may propagate throughout the social network of
the wider programme. If any of these occur, they may be observed as deviations away
from the agreed scope, time, budget and quality of the enterprise system implementation.
Reproduced from [36] under Creative Commons Attribution 4.0 License.

and configuring the technical architecture that hosted the enterprise system.
Overall, there were 159 resources from these five organizations, with 972 un-
directed workplace relationships between them, which formed the basis of
the social network map (see figure 4). The Conceptual Framework presen-355

ted in [36], acted as our conceptual model for the ABM, by providing the
phenomenological behaviours that are the basis of the emergent behaviours
generated from the ABM (see figure 3), alongside the detailed person-level
data and social network map that formed the basis for the individual agents
within our computational model, and the rules that dictate which agents can360

interact with each other.
The case therefore constitutes a large multi-partner enterprise system

implementation, which utilizes IS/IT consulting personnel from four external
organizations. These external resources were combined with client resources,
to form a number of project teams that align to the underlying functional365

13

HR

Offshore

Payroll

Training

Financials

Technical

Hosting

Programme Directorate & PMO

Figure 4: Social network of the case. The programme structure of the multi-partner
enterprise system case study is represented by a social network map that defines how
resources from the various organizations are assigned to the individual project teams.
It can be seen that the individual project teams are structured around the functional
modules within the enterprise system software (e.g., Financials, HR, etc.) and that they
do not work in isolation, but instead require interactions with other project teams in
order to implement their specific project objectives, and in turn facilitate implementation
of the wider programme. Reproduced from [36] under Creative Commons Attribution 4.0
License.

modules of the enterprise system. The resources worked together within their
respective project team, with a number of them also acting as bridgers to
interact with other project teams, which is diagrammatically represented in
figure 4 as the programme-wide interfirm social network. This multi-partner
social network, introduces a risk that conflict may develop due to the di↵ering370

backgrounds of project team personnel (e.g., di↵erent professional identities,
cultural backgrounds, education, and normalized behaviours), along with
their constrasting drivers and motives for being at their chosen employer (and
occupation), and thus on the implementation programme. It was discussed
in our previous work [36], that conflict is to all intents and purposes inherent375

within large multi-partner enterprise system implementations, and as such
is almost always going to occur at some point during the lifecycle of the

14

programme-wide implementation, or within one or more of its constituent
project teams. Our ABM has been designed to model this case. It allows
us to simulate the development and propagation of conflict throughout the380

social network of the workplace relationships within the individual project
teams and the wider programme as a whole.

4. User Experiences of FLAME when Modelling the Case Study

The ABM [41] was designed and developed to reflect findings from our
previous qualitative studies [36, 42]. In the subsections below, we discuss our385

experiences using FLAME following the design, development, and simulation-
based experimentation of an ABM of conflict development and propagation
within our case study. Our discussion focuses on four main areas: the ease
of model design having made the decision to use FLAME; the ease of model
development using FLAME; constraints due to the underlying architecture390

of FLAME; and performance of FLAME in running simulations.

4.1. Ease of Model Design

As discussed above, the FLAME simulation framework utilizes the concept
of communicating stream X-Machines to define the logical entities and the
rule-based logic of their interactions within the agent-based model. The con-395

ceptual framework [36, 42], acted as the functional specification for our ABM,
which in turn was used as the basis for developing our technical specifica-
tion. When developing the technical specification, we were cognizant of the
underlying architecture of FLAME, and made explicit reference to: the C
programming language and the XML markup language, which were used for400

coding agent interaction functionality and defining agents; the communicat-
ing stream X-Machine architecture for defining agents and their associated
behaviours and dynamics; along with the use of the centralized message board
to facilitate communication between agents.

Briefly, our technical specification consisted of a two-dimensional, undir-405

ected network of 159 agents that represented the individual team members
from the case study. Communication between individual members followed
the rules specified in the adjacency matrix and resulting social network map
(figure 4), and this communication within the ABM is modelled as a process
with no velocity (i.e., link between two agents, but no speed). Specifica-410

tion of the agents was straightforward because the communicating stream

15

X-Machine architecture facilitates easy compliance to an object-oriented ap-
proach to design. In addition, FLAME is flexible with respect to defining the
physical boundary of the model, which allowed us to design a 2-Dimensional
physical environment for our ABM, and the use of Cartesian co-ordinates415

to position individual agents within the environment. This allowed us to
group agents together in 2-Dimensional space to represent the clustering of
resources into their respective project team, and to disperse individual teams
within an open-plan o�ce, another o�ce in the building, or potentially in
another location.420

System-level behaviours corresponded to those depicted in our Rich Pic-
ture (figure 3), with the main agent attributes that facilitate simulation of
conflict development and propagation relating to: project team (e.g., Pro-
gramme, HR, Financials, etc.); Organization (e.g., Client, Vendor, Consult-
ing Firm); Role Type (e.g., Management, Functional, Technical, Training);425

Conflict Quotient for each type of conflict; Stress Quotient for each type of
conflict; and Formal Authority Quotient, which indicates how much formal
authority/power the agent has over others. With respect to communication
between agents, although FLAME utilizes a centralized message board, we
were able to design restrictions into the communication mechanism to ensure430

agent communication corresponded to the workplace social interactions, as
defined within the adjacency matrix from our case study (i.e., the 972 work-
place relationships between agents). This was facilitated through adding an
attribute to the agent definition that explicitly defined the other agents that
it is able to communicate and interact with.435

One point to note is that when diagrammatically modelling an X-Machine
as part of the technical specification, the X-Machine state is associated with
the computational system state transitions and does not correlate to the so-
cial (domain specific) states. These internal X-Machine state transitions are
achieved through the use of transition functions, which encode the logic that440

changes the agents memory, and communicates with other agents through
the use of messages sent to (using output port) and received from (using
input port) the centralized communication matrix. For those familiar with
UML, an ABM developed using X-Machines can be specified (from a system
behavioural perspective) as a set of connected state transition diagrams.445

4.2. Ease of Model Development

For those comfortable with integrated development environments (to write
code), the command line terminal (to run simulations and submit batch

16

jobs to HPC architecture), and the use of shell scripts (to submit jobs to a
server, link to scripts for post-processing of output files, and link to analysis450

scripts [such as R or Matlab] to generate descriptive statistics and graphs),
the FLAME simulation framework is an intuitive and very friendly tool for
developing agent-based models using XML and C. Unfortunately, the con-
verse of this holds for the novice modeller, and we conjecture that a more
user friendly agent-based modelling framework that uses a graphical user455

interface, such as NetLogo, would be suitable as a first step to developing
competence in model development and simulation-based experimentation.

FLAME provides a simulation engine that parses the ABM specification
files (XML agent definition files and C functions files), manages the execu-
tion of simulations (on either a single node or over parallel architecture),460

and manages potential interactions between individual X-Machine agents.
Within FLAME simulation runs, the notion of time is modelled as discrete
time-steps. Each time-step therefore involves the individual X-Machines to
iterate through their internal computational states, which may result in up-
dates to their real-world social states following interactions with either the465

environment or other X-Machine agents. Furthermore, for those familiar with
object-oriented design and development, FLAME, being underpinned by the
concept of communicating stream X-Machines, allows the various functions
within the ABM to be constructed in a modular fashion. Consequently,
FLAME ensures that each type of X-Machine agent can be designed in an470

object-oriented way, which allows their construction and modification to be
performed without the risk of a↵ecting the functionality of other agent types
as long as a standard interface is used for communication and interactions
between agents.

The underlying process related to the technical architecture of FLAME475

is the requirement for synchronization, through a simulation-level time-step
after all agents within the simulation run have completed one internal compu-
tational transition function. The e↵ect of this technical processing constraint,
is that the end and start of computational transition functions, incorporate
the ability to synchronize communication and internal computational state480

transitions. With this in mind, care is required to ensure that agent beha-
viours do not contain any loops, which would incur the risk of undecideability
problems, and that the interactions between agents (through use of the cent-
ralized message board) does not result in causal loops, which could impact
upon the step-by-step updating of the agent internal states.485

Coakley openly acknowledged during his design and development of the

17

FLAME simulation framework that “when communicating X-Machines are
used to represent agents in an [ABM], communication is [often] restricted to
interactions with neighbouring agents that are [located] close to one another”
[20]. Within our social system model, there are two broad categories of490

messages used within the simulation runs to communicate an X-Machine
agents’ current location and their potential to initiate or be part of a social
interaction. The location message is sent from individual X-Machines to the
communication matrix to broadcast their current location so that other X-
Machine agents can calculate whether they are within the appropriate spatial495

range for initiating an interaction, or alternatively to determine whether
they are connected within the social network. With specific reference to
the latter, the agents will elucidate whether they are connected (as defined
in the adjacency matrix), and once [a] suitable agent(s) is/are identified,
messaging to the centralized communication matrix would then be used to500

initiate interactions between the relevant agents.
Finally, one point to be aware of, is that although development of an

ABM is one of the principal essential activities, in isolation, it will not enable
simulation-based experimentation. In order to run simulations and analyze
the resultant data, a number of additional computational tools need to be de-505

veloped (termed instruments). For our research, we developed the following
instrumentation tools alongside the development of the ABM itself: Unix
shell (specifically, BASH) and Ruby scripts to facilitate a semi-automated
submission of simulation runs to the HPC resources; Python scripts to facil-
itate a semi-automated mechanism to generate the initial starting parameters510

files (using XML templates) for initiating simulation runs; scripts for the pro-
cessing and transformation of XML output files to CSV files (Python and
Matlab scripts); scripts to automatically generate graphs (in Matlab and R)
for analyzing the data; a visualization tool to provide a graphical and an-
imated view of the simulation run’s system dynamics over time (separate515

package provided by the FLAME development team, that can be configured
to the ABM); and various statistical analysis scripts (developed in Matlab
and Python) to analyze the simulation output data for statistical significance
using the Kolmogorov-Smirnov test [43], and e↵ect magnitude using the A-
Test [44]. These instrumentation tools (apart from the FLAME visualizer)520

were developed using the appropriate scripting/programming language, so
in order to ensure that ABMs developed in FLAME can be robustly tested
and analyzed, the developer requires a working knowledge of various stat-
istical techniques along with competence in various scripting/programming

18

languages. With that in mind, we do not believe that FLAME is appropriate525

for the novice modeller or subject matter expert.

4.3. Constraints due to Underlying Architecture

With FLAME being designed and developed from the outset to utilize
parallel processing hardware architectures, the notion of a global mutable
parameter unfortunately does not exist within the simulation framework.530

This is because such functionality would introduce issues around concur-
rency control and potentially lead to dead-locking. For instance, an indi-
vidual compute node within the HPC architecture may be processing the
simulation data for a particular X-Machine agent that is dependent on the
current value of a global parameter, but the global parameter is currently535

being processed by another compute node. To mitigate risks around using
outdated parameter values, the compute nodes would be required to wait
until they confirmed that the global parameter was not being processed.
When amplified up to the level of the overall simulation run, the cumulative
waiting would incur a significant overhead regarding the Wall-Clock time540

of simulation runs, which would significantly o↵set the benefits of parallel
processing. Consequently, we were unable to utilize a global counter to keep
track of system-level quantities or to set system-level chracteristics, such as
a pseudo-random number generator seed value.

4.3.1. Setting the Pseudo-Random Number Generator Seed545

Pseudo-Random Number Generators (PRNGs) allow us to introduce prob-
abilistic behaviour into our computational models, such as the interactions
between X-Machine agents, or between the agents and the system environ-
ment. During the calibration exercise, and later more formally during the
verification process, we ensure that the computational model is not over-550

tuned through running multiple replicate simulations that utilize di↵erent
PRNG seed values and performing statistical analysis to ascertain the vari-
ance in simulation output data. The principle behind explicitly setting the
seed value for a PRNG is that you set once, and use multiple times [45]. A
significant constraint that we discovered with FLAME is that it does not in-555

clude a mechanism for you to do this very easily, because mutable parameter
values can only be defined and set within the definition of an agents’ logic
(the C functions file). As discussed in the previous paragraph, the design
decisions taken when FLAME was first developed means there is no oppor-
tunity to set a global constant within the simulation environment setup of a560

19

Figure 5: The levels within a simulation run at which the PRNG seed value can be
set when using FLAME. Although the principle of using PRNG seed values is that you
set once per simulation and use multiple times, FLAME’s explicit exclusion of global
mutable parameters means that this is not straightforward. Due to FLAME requiring
all functionality to be written at the level of agents, this provides us with the ability to
experiment to see whether any of the levels allow us to develop a technical workaround,
for instance through setting at the level of agent-type, where any function would be called
once per agent-type per iteration, or at the level of individual agents, where any function
would be called once for each agent and for each iteration.

simulation run due to the ine�ciencies involved with it propagating across
the multiple nodes within the HPC architecture. With that in mind, not
only are global variables, such as total counts, unable to be updated, but
the PRNG seed value cannot be set at the global level. This introduces the
constraint of either not being able to set your own PRNG seed value, and565

therefore being forced to use the system clock to derive the seed value, or to
develop a technical workaround where the PRNG seed value is explicitly set
within an individual agent’s definition and logic (see figure 5).

When setting the PRNG seed value at the level of agent-type, you un-
fortunately encounter the issue of the seed value being reset during each570

simulation time-step, and thus do not gain the full benefit of using a PRNG
to simulate stochastic behaviours within the computaional model. Through
explicitly setting the PRNG seed value a list of random numbers is generated,
albeit in a determinstic manner so that you can reproduce simulation runs
by using the same seed value (hence the use of the prefix pseudo), to be used575

within probabilistic functions [46]. The resetting of the PRNG seed with the

20

same value and at the level of agent-type, results in the same deterministic
list of pseudo-random numbers being generated as per the previous simu-
lation time-step, which reduces the benefits of using a PRNG. This can be
succinctly illustrated within our case study: if you set the seed value at the580

level of an individual agent within our ABM that contains 159 agents (e.g.,
separate programme team members) over a 2,000 time-step simulation, you
in e↵ect repeat the resetting of the seed value 318,000 times. Likewise, if you
set the seed value at the level of agent-type, you in e↵ect repeat the resetting
of the seed value 2,000 times (assuming a single high-level agent type of team585

member and 2,000 time-step simulation run). Although the overall e↵ects at
this level are orders of magnitude smaller (e.g., far fewer resets of the PRNG
seed value), it still significantly a↵ects our ability to incorporate stochasticity
into the ABM and associated simulation runs.

One approach for incorporating stochasticity into ABMs developed using590

FLAME, and therefore gaining variance between replicate simulations is to
run simulations using the built-in Production mode within FLAME, which
derives the seed value from the system clock. Unfortunately, this approach
does not enable exact reproduction of individual simulation runs because the
system clock is continuously updating with the progression of time, which595

seriously impacts our ability to repeat simulation-based experiments that
have interesting dynamics, or to help resolve issues during the debugging
activities in model development. Fortunately, a technical workaround was
identified that resolved this issue, which involved the creation of a dummy
agent whose sole purpose is to set the PRNG seed value in the first iteration600

of an individual simulation run. This utilized an agent-level counter (to
count the simulation time-step), and logic to only set the PRNG seed value
when the counter equals zero. In addition, and to keep the simulator tidy
of computational artefacts, the logic also ensures that this dummy agent is
removed from the simulation once the simulation time-step counter reaches605

a pre-defined number.

4.3.2. Unable to Send Messages between Simulation Time-Steps and Need to
Explicitly Set Memory Allocation

Additional constraints, although minor in relation to the above, are that
a single simulation time-step is taken as a standalone run of a simulation, and610

that memory allocation for the agents and messages requires a continuous
block size of memory. With respect to the single simulation time-step, this
means that upon completion of all functions in that time-step, the global

21

message board is emptied of all messages generated by agents during that
time-step. Simulation modellers therefore have to take this constraint into615

account when designing and developing the ABM, because messages can-
not be sent between time-steps, so pertinent information (e.g., temporary
parameter values or communication from specific neighbours) will need to
be stored within the agent’s memory (i.e., within an agent attribute). Con-
versely, with respect to the block size, this is important for parallelization620

when using MPI, because the simulator needs to know how to package up
data that is sent across nodes, so the need to explicitly define the size of the
agent memory and messages (both in bytes) is crucial.

4.4. Performance

During the calibration process, initial simulations were run using a desktop625

PC that had quad-core processor, 8GB RAM and used the Windows oper-
ating system. This meant that three separate simulation runs could com-
fortably be performed simultaneously in distributed mode across three out
of the four cores in the processor. We found the performance of FLAME to
be very promising during initial evaluation when running a single simulation630

on a single compute node across multiple hardware platforms. Both CPU
time and Wall-Clock time were found to be linear following increases in the
number of agents within a simulation, and also linear when the simulation
length increased up to 50,000 time-steps (the maximum needed in our simu-
lation), which both indicate that FLAME scales very well. However, further635

investigation identified that the rate-limiting processes and tasks associated
with simulation runs was the Input/Output ([I/O], e.g., Read and Write)
speed for writing and reading the large number of XML files that are created
as part of the simulation output. The cause for this relates to the underlying
design principles of FLAME, with its conceptual architecture being based640

on communicating stream X-Machines, which require the generation of in-
dividual XML files for each simulation time-step (these XML files contain
parameter values and states for every X-Machine agent that is instantiated).
Due to the output XML file for a specific simulation time-step, becoming the
input XML file for the next simulation time-step, a performance bottleneck645

is encountered with respect to the speed of reading from and writing to, the
storage disk.

For example, our ABM contained 159 separate agents that corresponded
to the individual team members in the case study, and resulted in each XML
output file being approximately 50kb in size. A 50,000 iteration simulation650

22

run, would therefore generate 50,000 individual simulation time-step out-
put files, that contain the parameter values and states associated with each
of the 159 agents at the respective simulation time-step, which in our case
approximated to 2.5Gb of output data per simulation run. Furthermore, fol-
lowing aleatory uncertainty analysis, we discovered that 75 replicates of each655

simulation run (using di↵erent PRNG seed values) are required to stabilize
the median averages of system dynamics [47], which results in approxim-
ately 190Gb of simulation output being generated for each set of simulation
runs. As such, complex ABMs that incorporate a large number of agents, can
quickly generate significant volumes of simulation output data, which could660

significantly impact the ability to perform simulation-based experimentation
if large capacity storage is not available on the computing hardware.

Our relatively simple ABM took approximately 25min to run on the Win-
dows PC, along with an extra 10min to process and transform the XML simu-
lation output files (using Python scripts) to CSV files, and then subsequently665

transforming these into a single CSV file that contained the median average
dynamics of each agent over the duration of the simulation. Through using
a pipeline of scripts in this way, we were able to ensure that the large volume
of output data spent the minimum of time on the storage facility.

To confirm I/O rate-limiting characteristics of FLAME, we performed an670

identical set of simulation runs using the same Windows PC, but for this
experiment, the output files were written to an external USB hard drive. We
found the overall Wall-Clock time increased due to the flow of data across the
USB port being slower than that to the onboard hard disk. We built upon
these initial findings through using another desktop setup, which this time675

encompassed an Apple Mac Mini with 8GB RAM and Solid State Disk (SSD),
along with a High-Performance Computing facility run by the Northern Eight
Universities Consortium (N8) (based within the North of England). The Mac
Mini with SSD was 28% faster (with respect to Wall-Clock time) than the
Windows PC with internal disk, and 38% faster than that setup when using680

an external USB hard drive, resulting in the overall Wall-Clock time of a
50,000 time-step simulation run being reduced down to 18min. Likewise, the
N8 HPC was 85% faster than the setup using Mac Mini with SSD, bringing
the Wall-Clock time for simulation runs down to just under 3min (see figure
6). Access to fast storage (of suitable large capacity) is therefore crucial for685

any moderately complicated ABM that requires replicate simulations to be
run in order to account for the aleatory uncertainty within the model.

An additional observation on performance relates to the communication

23

Figure 6: The performance of FLAME was found to be linear with respect to the number
of iterations within a simulation run and the wall clock time. FLAME was found to
be Input-Output rate-limiting by running a simulation on various hardware setups. For
instance, we ran the simulation on: a Windows PC with internal HDD and on an external
HDD, a Mac Mini with SSD, and a high-performance cluster with dedicated fast lustre
storage.

between agents over parallel architectures, and the resultant sequence of mes-
sages being sent and read. Such communication dependencies between agents690

requires a synchronization block between the cores (on a laptop/desktop) or
nodes (on a HPC) to ensure that messages arrive in time to meet the de-
pendency, i.e., functions being performed in the specific time-step of the
simulation do not try to read a message before the node/core has received
it from another node/core. These synchronization blocks are a consider-695

able time bottle neck, which introduce performance losses into simulations.
As such, the fewer synchronization blocks introduced into a simulation, the
greater the performance of the overall simulation run.

5. Discussion

Real-world social systems are complex, with sets of behaviours, charac-700

teristics and dynamics that emerge through the individual relationships that

24

function through time and space. One of the major benefits of the agent-
based modelling paradigm, is the emphasis on three principal characteristics
of complex systems: 1) system structures, 2) system dynamics, and 3) system
control [3]. One of the advantages of the agent-based approach is that the705

simulations aim to replicate the dynamics of the real-world system, in order to
ensure the validity of the underlying assumptions behind the computational
model can be tested. However, in order for these ABMs to be successful in
performing their role as scientific instruments that act as credible abstrac-
tions of complex social systems, it is crucial that the preferred modelling710

and simulation framework is able: to realistically represent system structure
and dynamics; is modular, so that the ABM can be incrementally updated
with new functionality, without the need to re-engineer the entire model; can
expand with reference to the hierarchical-scale of the real-world system, e.g.,
individual team members, to discrete project teams, to the programme-wide715

network as a whole; and is amenable to a thorough validation and verification
process, including stringent statistical analysis of simulation output data.

Within this study, we used FLAME to develop an ABM that was calib-
rated to the quantitative and qualitative data from our case study around
the development and propagation of conflict within multi-partner enterprise720

system implementations. As discussed above, the FLAME modelling and
simulation framework utilizes the conceptual and technical architectures as-
sociated with communicating stream X-Machines to facilitate agent-based
models in a discrete-event manner (the simulation time-steps are the dis-
crete events). It has been reported to provide very significant improvements725

in performance over more traditional ABM frameworks [48]. FLAME’s over-
arching purpose is to deal with massive simulations, allowing for modelling
abstraction levels that cater for large scope with respect to the real-world
system of interest, and hundreds of thousands, to millions, of X-Machine
agents. Through being designed and developed to comply with the MPI730

communication framework, FLAME code is also deployable on to parallel
hardware platforms.

Our study has identified a number of strengths and weaknesses for us-
ing FLAME to model complex social systems. Firstly, with respect to the
strengths, and for modellers who are familiar with the object-oriented ap-735

proach to design of computational models, we have identified that FLAME
is an intuitive framework for designing ABMs of complex social systems due
to its template-driven approach. Similarly, for modellers who are comfort-
able with command line terminal, basic programming languages, and shell

25

scripts, we have identified that FLAME is an intuitive framework for de-740

veloping ABMs of complex social systems. Conversely, we have shown that
FLAME su↵ers with a number of constraints that introduced technical is-
sues into the development process for our ABM. The four major constraints
were: the lack of built-in functionality to set the PRNG seed value at the
simulation level; the inability to utilize functionality associated with global745

mutable parameters; the inability to communicate between simulation time-
steps/iterations; and the lack of instrumentation to analyze simulation out-
put data, thus requiring the development of various statistical and data
transformation scripts, which is fine for experienced modellers, but is a real
constraint for novice modellers or subject matter experts.750

These constraints are unfortunately a direct consequence of the design
decisions taken during the initial creation of FLAME, because the underly-
ing premise was that it would harness the power of parallel processing to run
individual simulations across HPC architectures. A number of technical chal-
lenges were introduced by these constraints, but fortunately, we were able755

to develop workarounds to resolve them. As such, we want to inform future
users of the FLAME simulation framework that they need to be cognizant
of these constraints, especially due to the fact that it has been proposed as
suitable for subject matter experts within the real-world domain of interest,
who may have limited experience and/or competence in computational mod-760

elling or programming. With this in mind, we advocate that this message be
moderated, because subject matter experts may not have the technical com-
petence or modelling experience to fully investigate, analyze, diagnose and
resolve the full variety of problems and constraints that we have experienced
during this study.765

Furthermore, and of more significance is that we discovered a major lim-
itation when using FLAME, is that models that incorporate large numbers of
individual agents are computationally expensive with respect to Wall-Clock
time, the I/O load, the need for HPC architecture to run multiple replications
in distributed mode, and the consequent very large size of output simulation770

data. This computational expense is compounded when the ABM is increased
in scale to reproduce results consistent with system-level dynamics from the
real-world domain. Due to FLAME’s communicating stream X-Machine ar-
chitecture, which relies on input and output streams of messages to facilitate
communication, we unexpectedly discovered that comparatively small simu-775

lations (with respect to total X-Machine agent numbers, the complexity of
interaction logic, and the total time-steps within the simulation) could gen-

26

erate a considerable number of XML data files, which directly correlates to
the volume of simulation output data produced. The Wall-Clock time for
single simulation runs was found during diagnostic tests, to grow linearly in780

accordance with the number of time-steps within simulation runs. Diagnostic
tests also indicated the Input-Output rate-limited nature of FLAME (as op-
posed to being rate-limited through the Central Processing Unit), which is
due to separate XML output files being generated for each time-step within
simulation runs.785

To put this into further context, the communicating stream X-Machine
nature of FLAME requires that individual XML output files are generated at
the end of each time-step to record the parameter values for internal compu-
tational and simulated real-world states along with internal memory values
for each X-Machine agent; these are then used as the XML input file at the790

beginning of the next time-step to set the corresponding starting parameter
values, states, and memory values for the next time-step of the simulation
run. A bottleneck is therefore experienced regarding computational per-
formance, which results from the speed of reading from and writing to, the
onboard or peripheral storage disk. The results from aleatory uncertainty795

analysis further compounded this performance issue by identifying that a
minimum of 75 simulation replicates were required to achieve stable median
dynamics, which resulted in approximately 3,750,000 total XML output files,
which as disucssed, amounts to 190GB for our relatively small ABM.

There can often exist a delicate balance with respect to computational800

e�ciency and performance during aleatory uncertainty analysis, which is
introduced from the desire to achieve stable simulation results by using a high
number of replicates for calculating the median average simulation results,
whilst being cognizant of the computational resources required (e.g., Wall-
Clock time, number of CPU cores on desktop or nodes on HPC, and access to805

fast storage disk). The number of simulation replicates chosen to calculate
the median average dynamics is therefore usually a compromise between
minimizing the impact of aleatory uncertainty versus the acceptable costs in
computational resources for the project. Our findings therefore indicate that
average, everyday desktop computing resources (such as a Windows PC or810

Apple Mac Mini) are unsuitable for running simulations that require large
numbers of replicates to achieve stable average dynamics to act as a baseline
for simulation-based experimentation. We therefore conjecture that access to
very fast multi-core desktops with significant storage capacity (such as fast
SSD raid capabilities), or to HPC architecture is critical for ensuring that815

27

our ABM of conflict development and propagation within a complex social
network can be used for simulation-based experimentation.

6. Conclusion

The above discussion has focused on our contributions to the computa-
tional modelling community through out user experiences when using FLAME820

to model a complex dynamical social system. Specifically, the discussion
has focused on the strengths and weaknesses that we identified when using
FLAME to model the development and propagation of conflict within the
social network of large multi-partner enterprise system implementations. We
found the design of our model to be straightforward due to FLAME’s un-825

derlying architecture using communicating stream X-Machines. The object-
oriented nature of communicating stream X-Machines, which are in e↵ect,
computational instantiations of UML state transition diagrams, makes the
design and subsequent development relatively intuitive. In addition, the use
of XML to define agents and C to code the agent communication and in-830

teraction rules, allows for a truly modular approach to ABM development.
Conversely, however, the limitations of FLAME are also due to the under-
lying conceptual and technical architecture of FLAME. We discovered four
main constraints relating to the lack of in-built functionality to set PRNG
seed values, the inability to use global mutable parameters, the inability to835

communicate between time-steps, and the lack of instrumentation to analyze
simulation output data. In addition, we identified a significant limitation
with respect to performance, which is a direct consequence of the communic-
ating stream X-Machine architecture, in that the output file for a simulation
time-step acts as the input file for the subsequent time-step. Our analysis840

indicated that this not only leads FLAME to be I/O rate-limiting, but also
means that large simulations (with respect to either total number of agents
or total number of simulation time-steps) quickly generate prohibitively large
amounts of simulation output data. We were lucky that our ABM of the case
study is relatively simple and had only 159 agents within the social network,845

but even still, following aleatory uncertainty analysis we were required to run
75 replicates of simulations in order to mitigate the e↵ects of aleatory uncer-
tainty, and produced 190GB. As such, we conjecture that for large, complex,
ABMs, the large volumes of simulation output data generated by FLAME
may mean that it is rejected as a potential simulation framework if access to850

very large capacity and high-speed storage capabilities cannot be achieved.

28

To conclude, we believe FLAME is an excellent choice for experienced
modellers, who will be able to fully harness the capabilities that it has to
o↵er, and also be competent in diagnosing and solving any limitations that
are encountered. Conversely, because FLAME requires considerable develop-855

ment of instrumentation tools, along with development of statistical analysis
scripts, we believe that it is not suitable for the novice modeller, who may be
better suited to using a graphical user interface driven framework until their
experience with modelling and competence in programming increases. In our
opinion, FLAME’s major strength is its flexibility, in that once the model860

definition (along with any technical workarounds) has been developed using
the XML and C templates (e.g., the social network topology, communication
rules, rules for conflict development, and functionality to explicitly set the
PRNG seed value), the augmentation of the ABM with new functionality is
comparatively easy due to the template-driven nature of FLAME facilitat-865

ing its modular approach to design and development. In addition, we have
found FLAME to be excellent for quickly developing ABMs of complex dy-
namical systems in both our case study presented here, and indeed in previous
work into complex dynamical biological systems [21]. We do however believe
that it requires significant computational modelling skills in order to develop870

workarounds to some of the constraints that have been imposed due to the
underlying technical architecture, and to develop a pipeline of scripts (e.g.,
Ruby, Unix Shell, MS DOS, and Python) to semi-automate the submission of
jobs to a HPC and to transform and analyze simulation output data to reduce
the storage load when large numbers of replicate simulations are required to875

account for the aleatory uncertainty within the model. Finally, we are aware
that a version of FLAME has been developed that harnesses the parallel pro-
cessing power of Graphics Processing Units (GPU) [49], which has recently
been extended [50]), and could prove beneficial, because a number of the lim-
itations that we discovered (e.g., no global mutable parameter and the I/O880

resource intensiveness) may be resolved through the di↵erence in processing
architecture. One final point to highlight on this however, is that FLAME
GPU, being based on CUDA, requires NVIDIA graphics cards, which could
prove problematic for those developers who are using Apple Mac computers
because of the current issues with drivers and Mac Mojave/Catalina operab-885

ility, and the need to use eGPU and various scripts to get the thunderbolt
connectivity working with older Macs - we are aware that newer Macs have
Thunderbolt 3 connectivity and that Mac OS High Sierra supports NVIDIA
drivers. To this end, we are in the process of trialling FLAME GPU on such

29

a setup.890

Acknowledgement

This work was in part funded by a Lancaster University Early Career
Small Grant and a Management and Business Development Fellowship awar-
ded jointly by the Society for the Advancement of Management Studies,
the United Kingdom Commission for Employment and Skills, and the Eco-895

nomic and Social Research Council (SAMS-UKCES-ESRC) with Grant No.
ES/L002612/1. The funders had no involvement in study design; develop-
ment of the underlying ABM, its analysis and interpretation of results; in
the writing of this manuscript, or the decision to submit this manuscript for
publication.900

References

[1] C. Cio�-Revilla, Computational social science, WILEY Interdisciplin-
ary Reviews: Computational Statistics 2 (3) (2010) 259–271.

[2] G. Cordasco, V. Scarano, C. Spagnuolo, Distributed MASON: A scalable
distributed multi-agent simulation environment, Simulation Modelling905

Practice and Theory 89 (2018) 15–34.

[3] T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: Sys-
tems biology, Annual Review of Genomics and Human Genetics 2 (2001)
343–372.

[4] R. A. Williams, Lessons learned on development and application of910

agent-based models of complex dynamical systems, Simulation Mod-
elling Practice and Theory 83 (2018) 201–212.

[5] M. Carillo, G. Cordasco, F. Serrapica, V. Scarano, C. Spagnuolo,
P. Szufel, Distributed simulation optimization and paramter exploration
framework for the cloud, Simulation Modelling Practice and Theory 83915

(2018) 108–123.

[6] J. Epstein, Agent-based computational models and generative social sci-
ence, Complexity 4 (5) (1999) 41–60.

30

[7] S. Stepney, F. A. C. Polack, Engineering Simulations as Scientific In-
struments: A Pattern Language, Springer, London, UK, 2018.920

[8] C. M. Macal, M. J. North, Tutorial on agent-based modeling and sim-
ulation, in: M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. Jones
(Eds.), Winter Simulation Conference, Orlando, Florida, 2005, pp. 2–15.

[9] N. R. Jennings, On agent-based software engineering, Artificial Intelli-
gence 117 (2000) 277–296.925

[10] E. Bonabeau, Agent-based modelling: Methods and techniques for simu-
lating human systems, Proceedings of the National Academy of Sciences
99 (s3) (2002) 7280–7287.

[11] A. A. Dodson, S. Stepney, E. Uprichard, L. Caves, Using the CoS-
MoS approach to study schelling’s bounded neighbourhood model, in:930

S. Stepney, P. S. Andrews (Eds.), Proceedings of the 2004 Workshop on
Complex Systems Modelling and Simulation, Luniver Press, New York,
NY, USA, 2014, pp. 1–12.

[12] P. Garnett, A tipping point in 300 years of banking? a conceptual sim-
ulation of the british banking system, Natural Computation 14 (2015)935

25–37.

[13] V. Sahasrabudhe, S. Kanungo, R. Iyer, Understanding the impact of
communication technologies on virtual team performance: An agent-
based simulation model, in: S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, M. Fu (Eds.), Proceedings of the 2011 Winter Simulation940

Conference, IEEE, Phoenix, Arizona, USA, 2011, pp. 321–332.

[14] C. S. M. Currie, J. W. Fowler, K. Kotiadis, T. Monks, B. S. Onggo,
D. A. Robertson, A. A. Tako, How simulation modelling can help re-
duce he impact of COVID-19, Journal of Simulation Advanced Online
Publication (2020).945

[15] M. E. Csete, J. C. Doyle, Reverse engineering of biological complexity,
Science 295 (2002) 1664–1669.

[16] C. Nikolai, G. Madey, Tools of the trade: A survey of various agent based
modeling platforms, Journal of Artificial Societies and Social Simulation
12 (2) (2009) 2.950

31

[17] S. Luke, C. Cio�-Revilla, L. Panait, K. Sullivan, G. Balan, MASON: A
multi-agent simulation environment, Simulation 81 (2005) 517–527.

[18] ROAD, Repast home page,, repast Orgainzation for Architecture and
Design, Chicago, IL: available at http://repast.sourceforge.net (2005).

[19] U. Wilensky, Netlogo, the center for connected learning and955

computer-based modeling, northwestern University, Evanston, IL,
http://ccl.northwestern.edu/netlogo/ (1999).

[20] S. Coakley, R. Smallwood, M. Holcombe, Using X-Machines as a formal
basis for describing agents in agent-based modelling, Simulation Series
38 (2) (2006) 33–40.960

[21] R. A. Williams, J. Timmis, E. E. Qwarnstrom, Investigating IKK dy-
namics in the NF-B signalling pathway using X-machines, in: Proceed-
ings of the IEEE 2017 Congress on Evolutionary Computation, IEEE
Xplore, Donastia-San Sebastian, Spain, 2017.

[22] M. Holcombe, S. C. Coakley, M. Kiran, S. Chin, C. Greenhough,965

D. Worth, S. Cincotti, M. Raberto, A. Teglio, C. Deissenberg, S. van der
Hoog, H. Dawid, S. Gemkow, P. Harting, M. Neugart, Large-scale mod-
eling of economic systems, Complex Systems 22 (2013) 175–191.

[23] B. Rachid, T. Mohamed, M. A. Khouaja, An agent based modeling ap-
proach in the strategic human resource management, including endogen-970

ous and exogenous factors, Simulation Modelling Practice and Theory
88 (2018) 32–47.

[24] P. Heywood, P. Richmond, S. Maddock, Road network simulation using
flame gpu, in: S. Hunold, A. Costan, D. Gimenez, A. Iosup, L. Ricci,
M. E. Gomez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott,975

S. Lankes, J. Weidendorfer, M. Alexander (Eds.), Proceedings of the
21st International Conference on Parallel and Distributed Computing,
Vol. 9523 of Lecture Notes in Computer Science, Springer, Vienna, Aus-
tria, 2015, pp. 430–441.

[25] I. Foster, Designing and Building Parallel Programs, Addison Wesley,980

1995, Ch. Message Passing Interface.

32

[26] S. Coakley, M. Kiran, FLAME User Manual, University of She�eld,
She�eld, UK (October 2009).

[27] S. Eilenberg, Automata Languages and Machines, Vol. A, Academic
Press, New York, NY, USA, 1974.985

[28] M. Holcombe, X-machines as a basis for dynamic system specification,
Software Engineering Journal (69-76) (1988).

[29] E. Kehris, G. Eleftherakis, P. Kefalas, Using X-machines to model and
test discrete event simulation programs, Systems and Control: Theory
and Applications (2000) 163–168.990

[30] I. Stamatopoulou, P. Kefalas, M. Gheorghe, Modelling the dynamics
structure of biological state-based systems, BioSystems 87 (2007) 142–
149.

[31] M. L. Palmer, R. A. Williams, D. Gatherer, Rosen’s (M,R) system as
an X-machine, Journal of Theoretical Biology 408 (2016) 97–104.995

[32] L. Wylie, ERP: A vision of the next-generation MRP II, Scenario s-300-
339, Gartner Group (April 1990).

[33] F. R. Jacobs, F. C. T. Weston, Enterprise Resource Planning (ERP) - A
brief history, Journal of Operations Management 25 (2) (2007) 357–363.

[34] S. F. King, T. F. Burgess, Beyond critical success factors: A dynamic1000

model of enterprise system innovation, International Journal of Inform-
ation Management 26 (1) (2006) 86–97.

[35] S. J. Whitty, H. Maylor, And then came complex project management
(revised), International Journal of Project Management 27 (3) (2009)
304–310.1005

[36] R. A. Williams, Conflict propagation within large technology and soft-
ware engineering programmes: A multi-partner enterprise system im-
plementation as case study, IEEE Access 7 (1) (2019) 167696–167713.

[37] K. Boulding, Conflict and Defense, Harper and Row, New York, NY,
USA, 1963.1010

33

[38] K. A. Jehn, A multimethod examination of the benefits and detriments
of intragroup conflict, Administrative Science Quarterly 40 (2) (1995)
256–282.

[39] K. A. Jehn, E. A. Mannix, The dynamic nature of conflict: A longit-
udinal study of intragroup conflict and group performance, Academy of1015

Management Journal 44 (2) (2001) 238–251.

[40] N. Gamero, V. Gonzalez-Roma, J. M. Peiro, The influence of intra-team
conflict on work teams’ a↵ective climate: A longitudinal study, Journal
of Occupational and Organizational Psychology 81 (1) (2008) 47–69.

[41] R. A. Williams, Modelling conflict within the social networks of1020

large multi-vendor software projects using communicating stream X-
Machines, in: Proceedings of the European Conference on Artificial Life,
MIT Press, Cambridge, MA, USA, 2015, p. 79.

[42] R. A. Williams, Cybernetics of conflict within multi-partner technology
and software engineering programmes, IEEE Access 8 (2020) 94994–1025

95018.

[43] F. J. Massey, The Kolmogorov-Smirnov test for goodness of fit, Journal
of the American Statistical Association 46 (253) (1951) 68–78.

[44] A. Vargha, H. D. Delaney, A critique and improvement of the CL com-
mon language e↵ect size statistics of McGraw and Wong, Journal of1030

Educational and Behavioural Statistics 25 (2000) 101–132.

[45] S. C. Barry, How much impact does the choice of a random number gen-
erator really have?, International Journal of Geographical Information
Science 25 (4) (2011) 523–530.

[46] K. P. van Niel, S. W. La↵an, Gambling with randomness: The use1035

of pseudo-random number generators in GIS, International Journal of
Geographical Information Science 17 (1) (2003) 49–68.

[47] M. Read, P. S. Andrews, J. Timmis, V. Kumar, Techniques for ground-
ing agent-based simulations in the real domain: A case study in exper-
imental autoimmune encephalomyelitis, Mathematical and Computer1040

Modelling of Dynamical Systems 18 (1) (2012) 67–86.

34

[48] M. Kiran, P. Richmond, M. Holcombe, L. S. Chin, D. Worth,
C. Greenough, FLAME: Simulating large populations of agents on par-
allel hardware architectures, in: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, Vol. 1,1045

IFAAMAS, Toronto, Canada, 2010, pp. 1633–1636.

[49] P. Richmond, S. Coakley, D. Romano, Cellular level agent-based mod-
elling on the graphics processing unit, in: International Workshop on
High-Performance Computational Systems Biology (HiBi’09), IEEE,
Trento, Italy, 2009, pp. 43–50.1050

[50] M. K. Chimeh, P. Richmond, Simulating heterogeneous behaviours in
complex systems on GPUs, Simulation Modelling Practice and Theory
83 (2018) 3–17.

35

