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Abstract 22 

Secondary forests are increasing in the Brazilian Amazon and have been cited as an important mechanism for reducing 23 

net carbon emissions. However, our understanding of the contribution of secondary forests to the Amazonian carbon 24 

balance is incomplete, and it is unclear to what extent emissions from old-growth deforestation have been offset by 25 

secondary forest growth. Using MapBiomas 3.1 and recently refined IPCC carbon sequestration estimates, we mapped 26 

the age and extent of secondary forests in the Brazilian Amazon and estimated their role in offsetting old-growth 27 

deforestation emissions since 1985. We also assessed whether secondary forests in the Brazilian Amazon are growing 28 

in conditions favourable for carbon accumulation in relation to a suite of climatic, landscape and local factors. In 2017, 29 

the 129,361 km2 of secondary forest in the Brazilian Amazon stored 0.33±0.05 billion Mg of above-ground carbon but 30 

had offset just 9.37% of old-growth emissions since 1985. However, we find that the majority of Brazilian secondary 31 

forests are situated in contexts that are less favourable for carbon accumulation than the biome average. Our results 32 

demonstrate that old-growth forest loss remains the most important factor determining the carbon balance in the 33 

Brazilian Amazon. Understanding the implications of these findings will be essential for improving estimates of 34 

secondary forest carbon sequestration potential. More accurate quantification of secondary forest carbon stocks will 35 

support the production of appropriate management proposals that can efficiently harness the potential of secondary 36 

forests as a low-cost, nature-based tool for mitigating climate change. 37 

 38 
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Introduction 39 

Tropical forests are an enormous reservoir of carbon, storing upwards of 190 billion Mg of above-ground carbon 40 

(Saatchi et al., 2011). However, this critical carbon store is threatened by deforestation (Eva et al., 2012; Hansen et al., 41 

2013), which is responsible for 0.81–1.14 billion Mg of carbon emissions annually (Baccini et al., 2012; Harris et al., 42 

2012). The rate of global deforestation has prompted the establishment of several international initiatives intended to 43 

reduce the rate of forest loss and its associated consequences (e.g. Reducing emissions from deforestation and forest 44 

degradation). The Amazon basin is the largest remaining tropical carbon stock (Saatchi et al., 2011). However, it also 45 

has the highest rates of forest clearance (Hansen et al., 2013), with carbon losses directly related to deforestation 46 

estimated to be 0.16–0.67 billion Mg C yr-1 (Achard et al., 2002; Loarie, Asner and Field, 2009). Approximately 20% of 47 

old-growth forest in the Brazilian Amazon has already been cleared, and since the dramatic slowdown in deforestation 48 

from 2004 to 2012 (27,772 km2 to 4,571 km2), the rate of forest loss has been increasing with 2019 marking a 10-year 49 

high (PRODES, 2020). 50 

 51 

The abandonment of agriculture on previously deforested land – a typical land use change in the tropics – is resulting in 52 

the expansion of secondary forests (Aide et al., 2013; Chazdon, 2014). Secondary forests, defined here as forest 53 

growing after complete land clearance, rapidly store large quantities of carbon (Poorter et al., 2016; Requena Suarez et 54 

al., 2019), making them a potentially important mechanism for reducing net carbon emissions (Pan et al., 2011; 55 

Griscom et al., 2017; Rogelj et al., 2018). Secondary forests have long been recognised as important for offsetting 56 

deforestation emissions (Skole et al., 1994) and in recent years, promoting secondary forest growth has been included 57 

in a number of key global policies as a readily available and cost-effective strategy for reducing net carbon emissions 58 

and mitigating climate change. For example, the Bonn Challenge (2011) aims to restore 3.5 million km2 of forest 59 

by 2030 and is supported by the New York Declaration on Forests (2014) and by the UN Decade of Restoration (2019), 60 

which recognises the need to reverse ecosystem degradation in order to achieve the UN Sustainable Development 61 

Goals. In South America, these schemes are reinforced on a regional scale in several countries by agreements such as 62 

Initiative 20x20 (2014), which aimed to restore 200,000 km2 of degraded land by 2020. Within Brazil, secondary forests 63 

are supported by the Forest Code, which mandates that properties within the Legal Amazon hold up to 80% forest 64 

cover, of either primary and secondary vegetation. However, whilst secondary forest is known to be increasing in the 65 

Brazilian Amazon (Nunes et al., 2020), it is also subject to widespread clearance (Wang et al., 2020), which undermines 66 

its effectiveness as a carbon store. 67 

 68 

Our understanding of the contribution of secondary forests to the tropical carbon balance is incomplete. First, despite 69 

studies estimating deforestation-mediated emissions (e.g. Harris et al., 2012), it is not clear to what extent these 70 

emissions have been offset by secondary forest growth or how this has varied over time. The value of secondary forests 71 

as a carbon store needs to be assessed within a context of dynamic land use, with old-growth forests still being lost and 72 

secondary forests reconverted to agriculture. With the promotion of secondary forest growth being suggested as an 73 

important climate change mitigation strategy (Pan et al., 2011; Griscom et al., 2017; Rogelj et al., 2018), the need to 74 

improve our understanding grows more pressing. Second, the trajectory and rate of secondary forest growth are 75 
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influenced by numerous climatic, landscape and local factors, which contribute to a ten-fold difference in estimates of 76 

carbon sequestration rates across the tropics (Elias et al., 2019). Carbon accumulation in secondary forests is strongly 77 

linked to climatic conditions, with longer, more intense dry seasons, and lower annual rainfall known to slow 78 

accumulation (Poorter et al., 2016). At the landscape scale, secondary forest growth is slower when there is less old-79 

growth forest cover to act as a seed source (Caughlin, Elliott and Lichstein, 2016; Chazdon et al., 2016). Locally, 80 

secondary forests growing on abandoned pasture accumulate carbon more slowly than on abandoned cropland 81 

(Fearnside and Guimarães, 1996) and growth is slower where the number of previous swidden cycles, also known as 82 

slash-and-burn or shifting cultivation, is higher (Jakovac et al., 2015). The status of the majority of secondary forests in 83 

relation to these climatic, landscape and local variables is not known. Establishing the location of secondary forests will 84 

provide insights into whether they are growing in contexts that are more or less favourable to rapid carbon 85 

accumulation.  86 

	87 

Here we address these knowledge gaps, using the MapBiomas 3.1 landcover dataset (1985-2017) and the Avitabile et 88 

al. (2016) pan-tropical biomass map to provide the first spatially explicit estimate of the role of secondary forests in 89 

offsetting deforestation emissions in the Brazilian Amazon. We calculate the age, extent and carbon stock of secondary 90 

forests and estimate the initial carbon stock of old-growth forest, asking (1) what has been the potential role of 91 

secondary forests in offsetting old-growth deforestation emissions since 1985? We then explore (2) how secondary 92 

forests are distributed in relation to a broad suite of climatic, landscape and local factors that are known to affect 93 

carbon accumulation. Finally, as a first step in identifying the potential for interacting effects, (3) how are these 94 

variables correlated spatially within the existing range of secondary forests? 95 

 96 

 97 

Methods 98 

Assessing secondary forests and deforestation 99 

We used MapBiomas to define deforestation and forest recovery. We opted to use it over other alternatives such as 100 

TerraClass (see Wang et al., 2020) as it provides a longer temporal series (1985-2017 rather than 2004-2014) and has 101 

undergone an extensive two-stage validation process: first a comparative analysis with existing land cover maps and 102 

second a visual analysis of 30,000 sample pixels. While there is a low level of agreement (33.8%) between the 103 

secondary forest map derived from MapBiomas and that of the most recent TerraClass product at the pixel level (both 104 

for 2014), the two datasets broadly agree in terms of spatial distribution (see supplementary information). The 105 

temporal pattern of deforestation captured by MapBiomas is also comparable to that of PRODES (2020; Figure S1). 106 

 107 

Secondary forest extent 108 

Our study focused on the Brazilian Amazon, a 4.27 million km2 expanse covering almost a quarter of the South 109 

American landmass and constituting 60% of the total Amazon forest. We produced 30-m resolution annual maps of 110 

secondary forest cover for the Brazilian Amazon from 1986 - 2017 using the MapBiomas 3.1 land cover dataset and a 111 

change-detection algorithm (Supporting Information). We initially reclassified the MapBiomas schema into four classes: 112 
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old-growth forest, cropland, pasture, and other (Table 1; Figure S2). The secondary forest class was introduced during 113 

the change detection process. Pixels were classified as secondary forest when they returned to ‘forest’ following a 114 

period being classified as ‘non-forest’. We applied a spatial filter restricting ‘forest’ to ‘non-forest’ transitions to a 115 

minimum of 0.36 ha (4 contiguous pixels), unless directly adjacent to a pre-existing non-forest area of 4 or more pixels. 116 

This filter was used to limit the influence of natural canopy opening events (e.g. small tree falls) and changes resulting 117 

from georeferencing issues from being incorrectly recorded as anthropogenic clearances, whilst also being small 118 

enough to capture the activities of all land use change including by small landholders, who typically clear just 2-3 ha yr-1 119 

(Fujisaka et al., 1996). Averaged over the time series, this resulted in an Amazon-wide reduction in calculated 120 

secondary forest area of 0.82±0.31% (n = 32, mean±SD) compared with the same analysis conducted without the 121 

spatial filter.  122 

 123 

Table 1: Reclassification of MapBiomas schema 

MapBiomas ID MapBiomas Classification Reclassification 
1 1. Forest  Old-growth Forest 
2 1.1. Natural Forest  Old-growth Forest 
3 1.1.1. Forest Formation  Old-growth Forest 
4 1.1.2. Savannah Formation  Old-growth Forest 
5 1.1.3. Mangrove  Old-growth Forest 
9 1.2. Forest Plantation  Cropland 

10 2. Non-Forest Natural Formation  Other/Water 
11 2.1. Wetland  Other/Water 
12 2.2. Grassland Formation  Other/Water 
32 2.3. Salt Flat  Other/Water 
13 2.3. Other Non-Forest Natural Formation  Other/Water 
14 3. Farming  Cropland 
15 3.1. Pasture  Pasture 
18 3.2. Agriculture  Cropland 
21 3.3. Mosaic of Agriculture and Pasture  Cropland 
22 4. Non-Vegetated Area  Other/Water 
23 4.1. Beach and Dune  Other/Water 
24 4.2. Urban Infrastructure  Other/Water 
29 4.3. Rocky Outcrop  Other/Water 
30 4.4. Mining  Other/Water 
25 4.5. Other Non-Vegetated Area  Other/Water 
26 5. Water  Other/Water 
33 5.1. River, Lake and Ocean  Other/Water 
31 5.2. Aquaculture  Other/Water 
27 6. Non-Observed  NA 

 124 

Secondary forest age 125 

Using our annual maps of secondary forest extent, we calculated secondary forest age as the number of consecutive 126 

years that a pixel was classified as secondary forest. The first year in our time series is 1985, meaning the maximum age 127 

of secondary forests is 32 years. We assumed all forest existing in 1985 to be old-growth forest. As large-scale 128 

deforestation began in the 1970s, this old-growth mask included some secondary forest. However, only a proportion of 129 

the ~140,000 km2 of the land deforested before 1985 (Fearnside, 1990) would have returned to secondary forest 130 

(Almeida et al., 2016; Nunes et al., 2020) and much of that secondary forest is likely to have been cleared again during 131 

our time series. As such, we believe this old-growth forest mask is unlikely to have had major impacts on our more 132 

recent estimates of secondary forest extent and age. Where reporting forest extent or age, results are reported as 133 

mean ± the temporal standard deviation in order to capture interannual variability.   134 

 135 
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Above-ground biomass in secondary forest 136 

Requena Suarez et al. (2019) estimate biomass accumulation rates for young (≤20 years) and old (21 to 100 years) 137 

secondary forest in tropical and subtropical ecozones (FAO, 2012). Three of these ecozones intersect our study area: 138 

tropical rainforest (~91.8%), tropical moist forest (~7.8%) and tropical montane forest (~0.2%). For these ecozones, 139 

Requena Suarez et al. (2019) estimate above-ground biomass accumulation rates (mean±95% CI) of, respectively, 140 

5.9±0.8 Mg ha-1 yr-1, 4.4±1.3 Mg ha-1 yr-1 and 5.2±1 Mg ha-1 yr-1 for young secondary forest, and 2.3±0.3 Mg ha-1 yr-1, 141 

1.8±0.8 Mg ha-1 yr-1 and 2.7±0.8 Mg ha-1 yr-1 for old secondary forest. We applied these refined estimates across our 142 

map of secondary forest age to calculate the total above-ground biomass of secondary forest in the Brazilian Amazon.  143 

We converted these above-ground biomass values to carbon stock by multiplying them by the Intergovernmental Panel 144 

on Climate Change (IPCC) conversion factor of 0.47 (Eggleston et al., 2006). As this is just one estimate of carbon 145 

accumulation in secondary forest, we explore the representativeness of the underlying plot network in the 146 

supplementary information. Below-ground carbon may contribute an additional 25% to the total stored carbon 147 

(Luyssaert et al., 2007). However, assessing below-ground carbon is not within the scope of this study (Powers et al., 148 

2011). 149 

 150 

Deforestation emissions 151 

Using the change in old-growth forest extent captured by our analysis of MapBiomas, we calculated deforestation 152 

emissions using above-ground biomass estimates produced by Avitabile et al. (2016), which fuse the Saatchi et al. 153 

(2011) and Baccini et al. (2012) datasets to produce a 1-km resolution pan-tropical above-ground biomass map for the 154 

early 2000s. Much of the deforestation captured by our algorithm occurred before the most recent datasets used by 155 

Avitabile et al. (2016). Therefore, we infilled the biomass of areas deforested before 2010 with the mean above-ground 156 

biomass from the surrounding 10 km2 using the ArcGIS Pro Focal Statistics tool. As the Avitabile et al. (2016) estimates 157 

include degraded forests, we may be under-estimating emissions from old-growth deforestation. A further limitation of 158 

the Avitabile et al. (2016) dataset is its 1-km resolution, which we downscaled to match the 30-m resolution 159 

MapBiomas land cover data. We assigned above-ground biomass values to each old-growth forest pixel using its 160 

centroid. To calculate annual emissions, we apply an exponential decay rate of 0.49, based on the combustion rate 161 

reported by Van Leeuwen et al. (2014), to extend emissions from a deforestation event over several years. Repeated 162 

fires increase combustion completeness to nearly 100% for cropland deforestation and up to 90% for pasture 163 

deforestation (Morton et al., 2008). This exponential decline is a reasonable expectation as pasture management 164 

practices often involve fire for several years after deforestation. It is also consistent with the loss of all above-ground 165 

biomass in deforested land in longer-term assessments (e.g. Berenguer et al., 2014). Results were also similar when we 166 

assumed all above-ground carbon was emitted in the year of deforestation (see supplementary information). 167 

 168 

We estimated emissions from secondary forest clearance using our map of secondary forest above-ground biomass, 169 

calculated using the Requena Suarez et al. (2019) accumulation rates. We convert above-ground biomass to carbon 170 

stock using a conversion factor of 0.47 and apply an exponential decay rate of 0.49 to emissions, as above. We report 171 

variation in secondary forest emissions using the 95% confidence interval of estimates in Requena Suarez et al. (2019). 172 

 173 
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Factors mediating secondary forest recovery 174 

Climatic  175 

Rainfall, rainfall seasonality and climatic water deficit have been found to be the best climatic indicators of absolute 176 

biomass recovery potential in the Neotropics (Poorter et al., 2016). Using these same measures, with mean annual 177 

rainfall and rainfall seasonality from WorldClim (variable ‘BIO12’ and ‘BIO15’, respectively; Hijmans et al., 2005) and 178 

climatic water deficit from Chave et al. (2014), we compared the climate of secondary forests with that of the whole 179 

Brazilian Amazon. This allowed us to determine if secondary forests are situated in climatic contexts relatively more or 180 

less favourable for biomass recovery than the biome average. To do so, we randomly sampled the distribution of each 181 

climate indicator for both secondary forest and the whole Brazilian Amazon, then used the Wilcoxon Rank Sum test to 182 

assess whether the samples were drawn from different distributions. We repeated this process 10,000 times and 183 

recorded the mean p-value. We undertook these analyses with a variety of sample sizes. However, results were 184 

insensitive to sample size (Table S5), and we report results for n = 1000. 185 

 186 

Variation in local climate is known to influence carbon sequestration in secondary forest (Elias et al., 2019). However, 187 

accounting for it involves a number of spatial and temporal issues. For example, local climate is altered drastically by 188 

deforestation (e.g. Spracklen et al., 2018; Spracklen and Garcia-Carreras, 2015), and accounting for this would require 189 

climate data to be updated in near real-time. Moreover, there are no large-scale assessments of the sensitivity of 190 

secondary forests to these changes.  191 

 192 

Landscape 193 

We calculated the proportion of the landscape within 1 km of each secondary forest pixel that was occupied by old-194 

growth forest, secondary forest and total forest (either old-growth or secondary). We created a 1-km buffer for each 195 

pixel using the Python package Shapely and calculated the area of each forest type within the buffer using the 196 

zonal_stats function from the Python package rasterstats. All Python packages are freely available. 197 

 198 
Local 199 

For the period 1985 - 2017, the change-detection algorithm records total clearance events as the number of times a 200 

pixel transitions from ‘forest’ to ‘non-forest’. Our two measures of prior agricultural land use (time as cropland and 201 

time as pasture) were recorded as the number of years spent as cropland or pasture between the most recent 202 

clearance event and the pixel returning to ‘forest’. 203 

 204 
Associations between factors influencing biomass accumulation 205 

Using Spearman’s Rank-Order Correlation and a sample of secondary forest pixels (n = 1000), we tested the association 206 

between each of the climatic, landscape and local variables. To enhance the dispersal of selected pixels across the 207 

Brazilian Amazon, we used stratified sampling with replacement such that 25% of pixels were situated in each quadrant 208 

of the Amazon biome, while within-quadrant selection was random. We repeated this process 10,000 times, recording 209 

the mean correlation coefficient. Results were similar from a spatially unconstrained selection process (Figure S4). 210 

Given the large number of repeated tests (n = 104) and the relatively large sample size (n = 1000), we used a more 211 

conservative significance threshold of 0.01 for this analysis. 212 
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Results 213 

Secondary forest extent and age 214 

We find a near-continuous expansion in the extent of secondary forest from 1985 onwards (Figure 2a), resulting in a 215 

total of 129,361 km2 of secondary forest in the Brazilian Amazon in 2017. When averaged across the time series, the 216 

yearly increase in secondary forest extent was 8.61±10.96% (mean±SD; hereafter unless stated) and in 2017 these 217 

forests accounted for approximately 3.8% of the total forest cover. The year 2000 is the only exception to this upward 218 

trend, with a decline in secondary forest area of 3,089 km2. We find that secondary forests were not distributed 219 

uniformly across the basin but were concentrated along the ‘arc of deforestation’, waterways and major highways (e.g. 220 

Trans-Amazonian highway; Figure 1a). Our results show that in 2017, 111,023 km2 (85.8%) of secondary forests were 221 

less than 20 years old, with a median age of seven years. Very young secondary forests (≤ 5 years old) accounted for 222 

42.08% (Figure 1c). From 1995, these very young forests consistently represent almost half of total secondary forest 223 

extent (48.0±4.5%).  224 

  225 

Old-growth deforestation emissions offset by secondary forest growth 226 

Old-growth deforestation emissions: Between 1985 and 2017, MapBiomas detects the clearance of 512,473 km2 of old-227 

growth forest. We estimate that this resulted in a gross carbon loss of 3.49 billion Mg C, emitting the equivalent of 228 

12.80 billion Mg CO2 (Figure 2c).  229 

 230 

Secondary forest sequestration: We estimate that in 2017, secondary forests in the Brazilian Amazon stored 231 

0.33±0.05 billion Mg C, equivalent to 1.20±0.18 billion Mg CO2 (mean±95% CI; Figure 1d) and more than a quarter 232 

(26.9%) of the total carbon stock was stored in forests ≤ 10 years old. Gross secondary forest carbon sequestration 233 

increased considerably over the time series, from 10.38±1.6 million Mg CO2 in 1986 to 66.12±9.7 million Mg CO2 in 234 

2017 (mean±95% CI; Figure 2b). The accumulation of carbon in secondary forests was slowed by clearance, with an 235 

average 6,410±2007 km2 of secondary forest cleared annually (Figure 2a). Of all the secondary forest mapped during 236 

our time series, 60.6% (198,688 km2) had been cleared again by 2017, resulting in the gross loss of 0.23±0.03 237 

billion Mg C, equivalent to 0.83±0.12 billion Mg CO2 in emissions (mean±95% CI). However, averaged across the time 238 

series, secondary forests were a net carbon sink of 6.75±1 million Mg C yr-1 (mean±95% CI). 239 

 240 

Deforestation emissions offset: Our findings show that between 1985 and 2017, approximately 9.37% (1.20±0.18 billion 241 

Mg CO2, mean±95% CI) of old-growth deforestation emissions had been offset by secondary forest growth, once the 242 

loss of carbon from secondary forest clearance had been subtracted (Figure 2c). For much of the time series 243 

(1986-2004), old-growth deforestation emitted carbon at 16.95±4.6 times the rate of net secondary forest 244 

sequestration. However, following the rapid decline in old-growth deforestation after the 2004 peak, emissions 245 

dropped to 4.97±1.1 times annual secondary forest net sequestration (2010-2017). When averaged across the time 246 

series, 10.29±6.8% of old-growth emissions were offset by net secondary forest sequestration annually (1986-2017). 247 

The proportion of old-growth deforestation emissions offset by net secondary forest sequestration varied across the 248 

time series, dropping from 8.51% in 1993 to 5.48% in 2003 and then peaking at 25.59% in 2013. 249 
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Factors influencing secondary forest carbon sequestration 250 

Climatic 251 

In 2017, there was an important spatial congruence between climate and secondary forests. Most secondary forests 252 

were located in regions where annual rainfall is lower than the biome average (secondary forest: 1945 mm, Brazilian 253 

Amazon: 2224 mm, Figure 3a), and where there is greater rainfall seasonality (secondary forest: 70%, Brazilian 254 

Amazon: 57%, Figure 3b) and a greater climatic water deficit (secondary forest: -375.5 mm yr-1, Brazilian 255 

Amazon: -259 mm yr-1 Figure 3c). We can be highly confident (p < 0.01) in meaningful differences between these 256 

distributions (Wilcoxon rank sum; climatic water deficit: W = -16.71, p < 0.01, rainfall: W = -14.49, p < 0.01, seasonality: 257 

W = 20.25, p < 0.01). 258 

 259 

Landscape 260 

The majority (98.9%) of secondary forests in 2017 were within 1 km of old-growth forest, with 28.9% having more than 261 

half of the surrounding landscape (1 km radius) occupied by old-growth forest (Figure 4a). Where the proportion of old-262 

growth forest cover in the surrounding landscape was high (≥70%), secondary forest typically occupied the majority of 263 

the deforested area (median: 83%; Figure S6). Therefore, 17.2% of all secondary forests had a surrounding landscape 264 

that was almost entirely forested (≥95% total forest cover; Figure 4e); despite very little secondary forest having such 265 

high surrounding forest cover when considering old-growth and secondary forest cover separately (2.8% and 0.2%, 266 

respectively; Figure 4a; Figure 4c). Where the proportion of old-growth forest cover in the surrounding landscape was 267 

very low (<10%), secondary forest typically occupied 26.0% (median) of the deforested area (Figure S6). Thus, 268 

secondary forests in landscapes with < 10% total forest cover are in the minority (2.4%; Figure 4e). The median 269 

proportion of the surrounding landscape occupied by each forest type was 34% for old-growth forest, 20% for 270 

secondary forest and 66% for total forest. 271 

 272 
Local 273 

Across all secondary forests present in 2017, the median time spent as agriculture (cropland and pasture) prior to 274 

abandonment was 4 years (Figure 4b). The majority of secondary forest (85.4 %, 110,522 km2) had experienced just one 275 

type of agricultural use, with median usage times of 2 years for cropland (39.2%, 50,692 km2) and 5 years for pasture 276 

(46.3%, 59,830 km2; Figure 4d). For the portion of secondary forests that had experienced multiple use types (14.6%, 277 

18,838 km2), median land use time was 2 years for cropland, 8 years for pasture and 12 years for total use time. The 278 

majority (66.8%) of secondary forest in 2017 was growing on land that had only been cleared of forest once (Figure 4f). 279 

However, much had been subjected to more than one clearance event during the time series (33.2%, 42,958 km2) and 280 

thus experienced additional land use in previous cycles. 281 

 282 
Associations between factors that influence biomass accumulation 283 

Climatic versus Landscape 284 

All our climatic (climatic water deficit, annual rainfall and rainfall seasonality) and landscape (old-growth forest cover, 285 

secondary forest cover, total forest cover) variables were significantly correlated (p < 0.01; Figure S5). These 286 

correlations show that secondary forests set in low forest cover landscapes also tend to be in regions with drier and 287 

more seasonal climates (Figure 5).  288 
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Landscape versus Local 289 

The proportion of the surrounding landscape occupied by secondary forest was positively correlated with all our 290 

measures of prior use (time as agriculture, time as pasture, time as cropland). The strength of the correlation with time 291 

as pasture was weaker than the others and statistically marginal given the sample sizes and the number of tests 292 

(p = 0.02; Figure 5; Figure S5). The number of clearance events was positively associated with secondary forest cover (p 293 

< 0.01; Figure 5; Figure S5). These associations were reversed for old-growth forest cover and total forest cover, which 294 

have negative correlations with all our local factors (p < 0.01; Figure 5; Figure S5). Taken together, we find longer use 295 

times and more agricultural cycles in landscapes with lower overall forest cover and where secondary forests represent 296 

a larger proportion of total forest cover (Figure 5).  297 

 298 

Climatic versus Local 299 

Climatic water deficit and annual rainfall were both negatively correlated with number of clearance events, time as 300 

agriculture and time as cropland (p < 0.01; Figure 5; Figure S5). Rainfall seasonality was positively correlated with these 301 

same factors, although the association with number of clearance events was weaker. We found similar correlations 302 

between climatic variables and time as pasture, albeit with lower confidence in the associations (p > 0.01; Figure 5; 303 

Figure S5). Taken together, these findings show that secondary forests in regions with drier climates also experienced a 304 

higher frequency of agricultural cycles and more prolonged use times (p < 0.01; Figure 5; Figure S5).  305 

 306 

Discussion 307 

Inaccurate estimates of forest age and low resolution images, leading to an overestimation of secondary forest extent, 308 

have been two of the greatest limitations of previous attempts to estimate secondary forest carbon stocks at 309 

large-scale (Chazdon et al., 2016). The MapBiomas land cover data has allowed us to overcome both of these 310 

challenges. Using annual data, we found that in 2017 secondary forests occupied 20% of the deforested land in the 311 

Brazilian Amazon (also see Nunes et al., 2020 and Almeida et al., 2016). Crucially, if these secondary forests have 312 

followed the regrowth trajectories calculated by Requena Suarez et al. (2019), we show that by 2017 their total carbon 313 

stock had offset less than 10% of the emissions resulting from the loss of old-growth forest (Figure 2c). This is much 314 

lower than the 20% offset calculated by Houghton et al. (2000), despite secondary forests now covering an area almost 315 

the size of England. Nonetheless, our estimate may be high, given the climatic conditions of secondary forest compared 316 

to the network of plots on which the carbon accumulation rates are modelled (Figure S3). We explore these issues 317 

below, first examining why secondary forest carbon stocks are so low, and then exploring what climatic, landscape and 318 

local factors indicate about the recovery potential of secondary forests in the Brazilian Amazon. 319 

 320 

High rates of forest conversion limit secondary forest carbon stocks 321 

Within the Amazon, there is clear evidence that the carbon stock of secondary forests is related to their age (Poorter et 322 

al., 2016; Lennox et al., 2018; Elias et al., 2019; Requena Suarez et al., 2019). Recent estimates suggest a 32-year-old 323 

secondary forest, the maximum age detectable with MapBiomas, would hold a maximum of 68.4±9.2 Mg C ha-1, which 324 

is just 59±8% of the average for old-growth forest (115.2 Mg C ha-1 ; Avitabile et al. 2016). Furthermore, some 325 
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secondary forests recover at much slower rates still, reaching just 34.6 Mg C ha-1 at 32 years (Elias et al., 2019). 326 

Moreover, these maximum values are rarely attained because high rates of secondary forest clearance (6,410 km2 yr-1) 327 

impose an age distribution that is highly skewed towards young age classes (Figure 1c; see also Chazdon et al., 2016). 328 

We find only 16% of secondary forests were aged between 20 and 32 years in 2017, whereas forests less than 329 

5-years-old, which store just 12±2% of the carbon of old-growth forest, comprised 50% of all secondary forests. 330 

 331 

The carbon balance of secondary forests was undermined by continued clearance (Figure 2a-b). Over the time series, 332 

almost as much carbon as was stored by secondary forest in 2017 (0.33±0.05 billion Mg C), was released back into the 333 

atmosphere through secondary forest clearance (0.25±0.4 billion Mg C, Figure 2b). The ephemeral nature of secondary 334 

forests seems unlikely to change as younger secondary forests, which constitute the majority (84%), are also more 335 

susceptible to clearance (Schwartz et al., 2017). Furthermore, the increasing proportion of total forest loss accounted 336 

for by secondary forest indicates they are being cleared preferentially (Wang et al., 2020). Protecting secondary forests 337 

from clearance is key if they are to be used to meet climate change mitigation goals (Grassi et al., 2017). Yet, any such 338 

policies also need to consider their contribution to swidden agriculture and examine whether their clearance helps to 339 

reduce old-growth forest loss (Wang et al., 2020). 340 

 341 

Could the climatic, landscape, and local context of secondary forests be affecting their carbon accumulation 342 

potential? 343 

Climatic factors 344 

The occurrence of deforestation is strongly influenced by an area’s agricultural suitability, which in turn is determined 345 

by a suite of economic, climatic, and edaphic conditions (Vera-Diaz et al., 2008). This has resulted in the more seasonal 346 

regions of the Brazilian Amazon experiencing the most extensive land use change (Figure 1a, Figure S7a-c). 347 

Consequently, in 2017, the distribution of secondary forests within the Amazon’s climatic range was also skewed 348 

towards these drier and more seasonal conditions (Figure 3), which are likely to be less favourable for secondary forest 349 

growth (Poorter et al., 2016). Crucially, our understanding of secondary forest growth in these drier regions is also 350 

limited – the plots underpinning the most recent basin-wide estimates of secondary forest carbon accumulation rate 351 

(Requena Suarez et al., 2019) are located in significantly wetter regions of the Amazon than secondary forests generally 352 

(Figure S3). This climatic distribution of secondary forests means they could be more sensitive to climate change 353 

resulting from global greenhouse gas emissions and regional changes in forest cover. On a local scale, deforestation 354 

results in reduced rainfall (e.g. Spracklen et al., 2018; Spracklen and Garcia-Carreras, 2015) and higher temperatures 355 

(Silva, Pereira and da Rocha, 2016), leading to increased evapotranspiration and drought stress. Over longer 356 

time-scales, these changes are likely to be intensified by global climate change, which is causing the Amazon to become 357 

drier and increasing the dry season length – by as much as 6.5 days per decade in some regions (Fu et al., 2013). 358 

Drought is known to affect tree species composition and lead to biomass reductions in old-growth forest (Phillips et al., 359 

2009; Esquivel-Muelbert et al., 2019) and there is evidence that such changes could reduce secondary forest recovery 360 

rates (Elias et al., 2019). We could reasonably expect secondary forests to be even more susceptible to these drought 361 

stresses as they may lack the deep roots known to support old-growth forests (Nepstad et al., 1994), pioneer tree 362 

species have lower water use efficiency (Markesteijn et al., 2011), and mortality from droughts is linked to lower wood 363 
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density (Phillips et al., 2009; Uriarte et al., 2016). Conversely, if the slow shift towards species associated with dry 364 

environments that is seen in old-growth forest (Esquivel-Muelbert et al., 2019) is also occurring in secondary forests, 365 

then the latter may become more resilient to drought. However, secondary forests are often found in regions with little 366 

surrounding old-growth forest cover (e.g. Elias et al. 2020), and compositional changes may be limited by seed 367 

availability. 368 

 369 

Landscape factors 370 

Agricultural land abandonment is a complex phenomenon primarily driven by socioeconomic factors such as migration 371 

(Benayas et al., 2007). As a result, although Amazon-wide secondary forest covered approximately 20% of deforested 372 

land, this figure varied greatly between regions. The greatest proportional recovery occurred in the highly forested 373 

areas of the western Amazon, where headwater abandonment and rural-to-urban migration are enabling secondary 374 

forest growth (Figure 1b, Parry et al., 2010). As surrounding forest cover has positive effects on biomass recovery 375 

(Jakovac et al., 2015; Toledo et al., 2020), secondary forests growing in these relatively intact landscapes were 376 

positioned favourably for carbon sequestration. However, across the Brazilian Amazon, we find such forests to be in the 377 

minority: just 13% of all secondary forest was in landscapes with ≥ 80% old-growth forest (Figure 4a). Most secondary 378 

forest was found along the highly deforested agricultural frontier, where it may suffer the negative impacts of 379 

fragmentation, isolation, and edge effects (Ewers and Didham, 2005; Magnago et al., 2017). Consequently, these 380 

forests likely have considerably lower carbon-accumulation potential than those in regions with more intact forest 381 

landscapes (Chazdon, 2003; Bihn, Gebauer and Brandl, 2010). Finally, although surrounding forest cover is important 382 

for carbon accumulation, the role of the type and condition of the surrounding forest requires further research. Recent 383 

findings indicate that high surrounding of secondary forest cover is advantageous for forest growth in the early stages 384 

of succession (Toledo et al., 2020). However, it is likely that proximity to old-growth forest will be more important later 385 

in succession, as they are essential for providing the diverse seed sources required to establish resilient, biodiverse and 386 

high-biomass secondary forests (e.g. Hawes et al. 2020). Furthering our understanding these relationships will be key to 387 

designing effective restoration programmes within landscapes where there is little old-growth forest remaining. 388 

 389 

Local factors 390 

Incorporating measures of prior land use has previously been suggested as a mechanism for improving the accuracy of 391 

biomass estimates in secondary forest (Wandelli and Fearnside, 2015), as studies have found that higher land use 392 

intensity leads to slower biomass recovery (e.g. Jakovac et al., 2015). Our assessment provides a mixed evaluation of 393 

the favourability of local land use intensity factors for secondary forest carbon accumulation. We find the majority 394 

(66.8%) of secondary forests in 2017 were in the favourable position of only having experienced one agricultural cycle. 395 

However, this alone does not adequately represent land use intensity, as the type and length of land use within a single 396 

cycle vary greatly. Secondary forests accumulate carbon more slowly on abandoned pasture than on abandoned 397 

cropland (Fearnside and Guimarães, 1996). We find 46.3% of secondary forests in 2017 to be growing on land that was 398 

previously pasture and a further 14.6% on land that was pasture at some point during the most recent land use cycle 399 

(Figure 4d), placing the majority of secondary forests on unfavourable ground for carbon accumulation. Although 400 

secondary forest pixels were on average in use for just 4 years, almost 25% had 10 or more years of use before being 401 
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abandoned. Extended use periods are more characteristic of pasture (median: 5 years), which typically had a longer use 402 

period than cropland (median: 2 years). This short-term cropland use suggests that most of the secondary forests 403 

growing on former cropland may be part of farm-fallow swidden land use practises, on which secondary forests grow 404 

more quickly than on abandoned pasture (Wandelli and Fearnside, 2015) or mechanised croplands. These conditions 405 

are more favourable for carbon accumulation. However, the land is an inherent component of a cyclical agricultural 406 

system that supports local livelihoods, thus cannot be relied upon for long-term carbon storage. The impact of land use 407 

on carbon accumulation rate is complex, with many interacting variables determining the fate of the subsequent forest 408 

(Guariguata and Ostertag, 2001; Jakovac et al., 2015; Martínez-Ramos et al., 2016). Although providing some insight 409 

into the variety of secondary forest land use histories, the MapBiomas classifications of pasture and cropland mask 410 

important details about specific land use practises which may be key to fully understanding the influence of local 411 

factors on secondary forest growth. 412 

 413 

Interactions between predictors of secondary forest recovery 414 

While each of these climatic, landscape and local factors are important in their own right, they do not act 415 

independently (Figure 5), giving rise to the possibility that interactions between factors that may be influencing carbon 416 

accumulation in secondary forests. Some of the variables are so influential that they may overwhelm the effect of 417 

others; for example, higher previous land use intensity can restrict carbon recovery even in very high forest-cover 418 

landscapes (Fernandes Neto et al., 2019). Therefore, the longer land use periods found in high forest cover areas 419 

suggests that the benefits of a favourable landscape context experiences by many secondary forests could be reduced 420 

by their land use history.  421 

 422 

Other associations between factors known to affect carbon accumulation may act together to limit secondary forest 423 

recovery. For example, secondary forests in drier, less favourable climatic contexts are also more likely to have lower 424 

surrounding forest cover and a greater proportion of the landscape comprising secondary rather than old-growth forest 425 

(Figure 5). These secondary forests are not only suffering the consequence of limited water availability (Poorter et al., 426 

2016) but may also be subject to edge and isolation effects, reduced tree seed sources and the changes in local climate 427 

that result from high levels of deforestation (Fu et al., 2013; Magnago et al., 2017; Spracklen et al., 2018). The 428 

association between these factors suggests that the very low biomass accumulation rates found in one region in the 429 

eastern Amazon (Elias et al., 2019) may be representative of far greater areas of Amazonia’s secondary forests, 430 

highlighting the urgent need to expand sampling efforts. 431 

 432 

Uncertainty in the role of secondary forests as a carbon sink  433 

While the carbon balance of undisturbed forests has been well studied (Pan et al., 2011; Saatchi et al., 2011; Brienen et 434 

al., 2015; Hubau et al., 2020), estimates of the rate of carbon sequestration in secondary forests remain highly variable 435 

(Pan et al., 2011; Saatchi et al., 2011; Grace, Mitchard and Gloor, 2014)(Elias et al., 2019). Requena Suarez et al. (2019) 436 

have made huge advances in refining our understanding of secondary forest carbon accumulation. However, there are 437 

uncertainties associated with applying their rates universally in order to produce large-scale estimates. Chiefly, the 438 

estimates we used are based on a plot network that, despite being the most wide-spread available, does not fully 439 
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represent conditions influencing secondary forest growth. This network is over-representing the accumulation rates in 440 

regions that are wetter and less seasonal than the majority of secondary forests in the Brazilian Amazon (see 441 

supplementary information). This disparity in climate may even be greater than reported here, as we have potentially 442 

underestimated the climatic range of secondary forests by using WorldClim data, which may no longer be 443 

representative of true climate on the ground, given the impact of deforestation on local climates (Spracklen et al., 444 

2018). Many of the plots (~60%) also began growing before 1985 (Requena Suarez et al., 2019), when large-scale 445 

deforestation had not yet substantially reduced forest cover (Fearnside, 2005) and before mechanised agriculture had 446 

intensified land use. Recent studies from other regions have shown much lower carbon accumulation rates of 447 

2.25 Mg ha-1 yr-1 in  Paragominas and Santarém-Belterra (Lennox et al., 2018), 1.08 ha-1 yr-1 in Bragança (Elias et al., 448 

2019) or as low as 0.89 Mg ha-1 yr-1 in the Guiana Shield (Chave et al., 2020). 449 

 450 

Further uncertainty is introduced by the inability to account for the different drivers of secondary forest growth, which 451 

we show may be associated in ways that could result in important interacting effects on carbon accumulation. Forest 452 

degradation contributes yet more uncertainty to large-scale estimates of carbon stock. This often unaccounted for 453 

source of carbon emissions affects 17% of the forest area in the Amazon (Bullock et al., 2020), meaning that we are 454 

under-estimating emissions from old-growth forests and over-estimating secondary forest carbon stock. The intricacies 455 

of local soil variation present another source of uncertainty when estimating secondary forest carbon stock across large 456 

regions and requires further research before we can begin to understand its impact on secondary forest carbon 457 

accumulation rates (Quesada et al., 2011, 2012). 458 

 459 

Some of these limitations may be overcome by improvements in LiDAR technology and our capacity to analyse the 460 

resulting data (Almeida et al., 2019). Nevertheless, these new remote sensing techniques cannot capture several key 461 

measures that are essential for understanding the impact of biogeographic factors on carbon accumulation, notably 462 

wood density (Baker et al., 2004). In order to overcome this, investment is needed to develop a distributed secondary 463 

forest plot network that captures the full range of factors known to affect recovery, with a design that allows studies to 464 

assess interactions between factors, and includes local measures of soil and other land use histories that cannot be 465 

resolved from space. Repeated samples of the same plot will also provide advantages over chronosequence 466 

approaches, allowing biomass responses to climatic variation to be included in models (Elias et al., 2019).  467 

 468 

Conclusion 469 

With properly implemented policy, secondary forests could provide an effective, low-cost, nature-based tool for 470 

mitigating climate change (Crouzeilles et al., 2017) and for reaching national and international ecosystem restoration 471 

targets (e.g. Bonn Challenge, UN Decade for Restoration). If just 80% of Brazil’s 12 million ha reforestation target took 472 

place in the Amazon, with the accumulation rates reported by Requena Suarez et al. (2019), it could store as much 473 

1.1±0.2 billion Mg C if left undisturbed 20 years. Yet, despite a fifth of deforested land now being covered by secondary 474 

forest, in more than 30 years, secondary forest growth has at most offset less than 10% of deforestation emissions. 475 

Without halting old-growth forest loss, the importance of secondary forest for the carbon balance of Amazonia is likely 476 
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to remain minimal. With 10,000 km2 of old-growth forest cleared in the Brazilian Amazon in 2019 (PRODES, 2020), this 477 

is unlikely to change in the near future. We have also shown that there is likely to be much more geographical variation 478 

in secondary forest recovery rates than is incorporated in current estimates. Future policies relying on secondary forest 479 

growth will require a much better understanding of the factors determining recovery to ensure different secondary 480 

forests are treated appropriately, with protection focused on those of greatest long-term carbon storage potential 481 

(Gren and Aklilu, 2016). More accurate quantification of carbon stocks and recovery rates in secondary forests will 482 

support the production of appropriate management proposals (Wandelli and Fearnside, 2015) and will be critical if 483 

carbon-based payments for ecosystem services (e.g. REDD+) are to be successfully implemented. Moreover, increasing 484 

our knowledge of secondary forests is crucial to our understanding of tropical forest responses to environmental 485 

stressors, and the resilience of one of the world’s most important biomes.  486 

  487 
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Figures  488 

 489 

 490 
 491 

Figure 1: The extent, age, and carbon stock of secondary forest in the Brazilian Amazon. 492 

(A) The spatial distribution of secondary forest (red). Inset reveals the level of detail available with 30-m resolution data 493 

(B) The proportion of total forest cover made up of secondary forest (C) Median secondary forest age per 1 km2 with 494 

inset of the secondary forest age distribution (D) Total above-ground carbon stock in secondary forests, calculated 495 

using accumulation rates estimated by Requena Suarez et al. (2019).  496 
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 497 
Figure 2: Forest cover change and associated emissions in the Brazilian Amazon from 1985 to 2017 498 

(A) Net annual change in secondary forest extent (red) with gross annual new growth (dark) and clearance (light) (B) 499 

Gross annual emissions from old-growth clearance (medium), secondary forest clearance (light) and secondary forest 500 

growth (dark) (C) Cumulative old-growth deforestation emissions (solid) and net carbon balance (dashed) after offset 501 

by secondary forest emissions (shaded). 502 
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 503 
Figure 3: The climatic context of secondary forest in the Brazilian Amazon in2017 504 

The distribution of (a) annual rainfall (mm yr-1), (b) rainfall seasonality (% difference in wet and dry season rainfall) and 505 

(c) climatic water deficit (mm yr-1) of secondary forest in the Brazilian Amazon (white, left). The distributions of all three 506 

variables were significantly different to the distributions for the entire Brazilian Amazon (blue, right) (p < 0.01). Medians 507 

for secondary forest (dots) and Amazon-wide (dashed) indicated by vertical lines.  508 
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 509 
 510 

 511 

Figure 4: Landscape and local contexts of secondary forest in the Brazilian Amazon in 2017 512 

The distribution of landscape (A, C, E) and local (B, D, F) factors known to influence carbon accumulation for secondary 513 

forest in the Brazilian Amazon in 2017. Landscape factors: the proportion of land cover within 1 km of a secondary 514 

forest pixel that was classified as (A) old-growth forest, (C) secondary forest, and (E) total forest. Local factors: (B) the 515 

number of clearance cycles, and the number of years a secondary forest pixel spent as (D) cropland or (F) pasture 516 
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before abandonment517 

 518 
 519 

 520 

Figure 5: Spatial correlations between climatic, landscape and local context of secondary forest in the Brazilian 521 

Amazon in 2017 522 

Mean correlation co-efficient of the spatial associations between the climatic, landscape and local contexts of 523 

secondary forest in the Brazilian Amazon. The tests used 10,000 iterations of Spearman’s Rank-Order Correlation on 524 

samples of secondary forest pixels (n = 1000) and a significance (*) threshold of p < 0.01. Samples were selected such 525 

that 25% of points were situated in each quadrant of the Amazon biome. 526 

 527 

  528 
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